1 /*
   2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2013, 2014 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #ifndef CC_INTERP
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "interpreter/bytecodeHistogram.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "interpreter/interpreterGenerator.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "interpreter/interp_masm.hpp"
  34 #include "interpreter/templateTable.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/methodData.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvmtiExport.hpp"
  40 #include "prims/jvmtiThreadState.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/synchronizer.hpp"
  47 #include "runtime/timer.hpp"
  48 #include "runtime/vframeArray.hpp"
  49 #include "utilities/debug.hpp"
  50 #include "utilities/macros.hpp"
  51 
  52 #undef __
  53 #define __ _masm->
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str) /* nothing */
  57 #else
  58 #define BLOCK_COMMENT(str) __ block_comment(str)
  59 #endif
  60 
  61 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  62 
  63 //-----------------------------------------------------------------------------
  64 
  65 // Actually we should never reach here since we do stack overflow checks before pushing any frame.
  66 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
  67   address entry = __ pc();
  68   __ unimplemented("generate_StackOverflowError_handler");
  69   return entry;
  70 }
  71 
  72 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
  73   address entry = __ pc();
  74   __ empty_expression_stack();
  75   __ load_const_optimized(R4_ARG2, (address) name);
  76   // Index is in R17_tos.
  77   __ mr(R5_ARG3, R17_tos);
  78   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
  79   return entry;
  80 }
  81 
  82 #if 0
  83 // Call special ClassCastException constructor taking object to cast
  84 // and target class as arguments.
  85 address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() {
  86   address entry = __ pc();
  87 
  88   // Expression stack must be empty before entering the VM if an
  89   // exception happened.
  90   __ empty_expression_stack();
  91 
  92   // Thread will be loaded to R3_ARG1.
  93   // Target class oop is in register R5_ARG3 by convention!
  94   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3);
  95   // Above call must not return here since exception pending.
  96   DEBUG_ONLY(__ should_not_reach_here();)
  97   return entry;
  98 }
  99 #endif
 100 
 101 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 102   address entry = __ pc();
 103   // Expression stack must be empty before entering the VM if an
 104   // exception happened.
 105   __ empty_expression_stack();
 106 
 107   // Load exception object.
 108   // Thread will be loaded to R3_ARG1.
 109   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
 110 #ifdef ASSERT
 111   // Above call must not return here since exception pending.
 112   __ should_not_reach_here();
 113 #endif
 114   return entry;
 115 }
 116 
 117 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 118   address entry = __ pc();
 119   //__ untested("generate_exception_handler_common");
 120   Register Rexception = R17_tos;
 121 
 122   // Expression stack must be empty before entering the VM if an exception happened.
 123   __ empty_expression_stack();
 124 
 125   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
 126   if (pass_oop) {
 127     __ mr(R5_ARG3, Rexception);
 128     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
 129   } else {
 130     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
 131     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
 132   }
 133 
 134   // Throw exception.
 135   __ mr(R3_ARG1, Rexception);
 136   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
 137   __ mtctr(R11_scratch1);
 138   __ bctr();
 139 
 140   return entry;
 141 }
 142 
 143 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 144   address entry = __ pc();
 145   __ unimplemented("generate_continuation_for");
 146   return entry;
 147 }
 148 
 149 // This entry is returned to when a call returns to the interpreter.
 150 // When we arrive here, we expect that the callee stack frame is already popped.
 151 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 152   address entry = __ pc();
 153 
 154   // Move the value out of the return register back to the TOS cache of current frame.
 155   switch (state) {
 156     case ltos:
 157     case btos:
 158     case ctos:
 159     case stos:
 160     case atos:
 161     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
 162     case ftos:
 163     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 164     case vtos: break;                           // Nothing to do, this was a void return.
 165     default  : ShouldNotReachHere();
 166   }
 167 
 168   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
 169   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
 170   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
 171 
 172   // Compiled code destroys templateTableBase, reload.
 173   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
 174 
 175   if (state == atos) {
 176     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
 177   }
 178 
 179   const Register cache = R11_scratch1;
 180   const Register size  = R12_scratch2;
 181   __ get_cache_and_index_at_bcp(cache, 1, index_size);
 182 
 183   // Get least significant byte of 64 bit value:
 184 #if defined(VM_LITTLE_ENDIAN)
 185   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
 186 #else
 187   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
 188 #endif
 189   __ sldi(size, size, Interpreter::logStackElementSize);
 190   __ add(R15_esp, R15_esp, size);
 191   __ dispatch_next(state, step);
 192   return entry;
 193 }
 194 
 195 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 196   address entry = __ pc();
 197   // If state != vtos, we're returning from a native method, which put it's result
 198   // into the result register. So move the value out of the return register back
 199   // to the TOS cache of current frame.
 200 
 201   switch (state) {
 202     case ltos:
 203     case btos:
 204     case ctos:
 205     case stos:
 206     case atos:
 207     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
 208     case ftos:
 209     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 210     case vtos: break;                           // Nothing to do, this was a void return.
 211     default  : ShouldNotReachHere();
 212   }
 213 
 214   // Load LcpoolCache @@@ should be already set!
 215   __ get_constant_pool_cache(R27_constPoolCache);
 216 
 217   // Handle a pending exception, fall through if none.
 218   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
 219 
 220   // Start executing bytecodes.
 221   __ dispatch_next(state, step);
 222 
 223   return entry;
 224 }
 225 
 226 // A result handler converts the native result into java format.
 227 // Use the shared code between c++ and template interpreter.
 228 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 229   return AbstractInterpreterGenerator::generate_result_handler_for(type);
 230 }
 231 
 232 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 233   address entry = __ pc();
 234 
 235   __ push(state);
 236   __ call_VM(noreg, runtime_entry);
 237   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 238 
 239   return entry;
 240 }
 241 
 242 // Helpers for commoning out cases in the various type of method entries.
 243 
 244 // Increment invocation count & check for overflow.
 245 //
 246 // Note: checking for negative value instead of overflow
 247 //       so we have a 'sticky' overflow test.
 248 //
 249 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 250   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
 251   Register Rscratch1   = R11_scratch1;
 252   Register Rscratch2   = R12_scratch2;
 253   Register R3_counters = R3_ARG1;
 254   Label done;
 255 
 256   if (TieredCompilation) {
 257     const int increment = InvocationCounter::count_increment;
 258     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
 259     Label no_mdo;
 260     if (ProfileInterpreter) {
 261       const Register Rmdo = Rscratch1;
 262       // If no method data exists, go to profile_continue.
 263       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
 264       __ cmpdi(CCR0, Rmdo, 0);
 265       __ beq(CCR0, no_mdo);
 266 
 267       // Increment invocation counter in the MDO.
 268       const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 269       __ lwz(Rscratch2, mdo_ic_offs, Rmdo);
 270       __ addi(Rscratch2, Rscratch2, increment);
 271       __ stw(Rscratch2, mdo_ic_offs, Rmdo);
 272       __ load_const_optimized(Rscratch1, mask, R0);
 273       __ and_(Rscratch1, Rscratch2, Rscratch1);
 274       __ bne(CCR0, done);
 275       __ b(*overflow);
 276     }
 277 
 278     // Increment counter in MethodCounters*.
 279     const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 280     __ bind(no_mdo);
 281     __ get_method_counters(R19_method, R3_counters, done);
 282     __ lwz(Rscratch2, mo_ic_offs, R3_counters);
 283     __ addi(Rscratch2, Rscratch2, increment);
 284     __ stw(Rscratch2, mo_ic_offs, R3_counters);
 285     __ load_const_optimized(Rscratch1, mask, R0);
 286     __ and_(Rscratch1, Rscratch2, Rscratch1);
 287     __ beq(CCR0, *overflow);
 288 
 289     __ bind(done);
 290 
 291   } else {
 292 
 293     // Update standard invocation counters.
 294     Register Rsum_ivc_bec = R4_ARG2;
 295     __ get_method_counters(R19_method, R3_counters, done);
 296     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
 297     // Increment interpreter invocation counter.
 298     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
 299       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 300       __ addi(R12_scratch2, R12_scratch2, 1);
 301       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 302     }
 303     // Check if we must create a method data obj.
 304     if (ProfileInterpreter && profile_method != NULL) {
 305       const Register profile_limit = Rscratch1;
 306       int pl_offs = __ load_const_optimized(profile_limit, &InvocationCounter::InterpreterProfileLimit, R0, true);
 307       __ lwz(profile_limit, pl_offs, profile_limit);
 308       // Test to see if we should create a method data oop.
 309       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
 310       __ blt(CCR0, *profile_method_continue);
 311       // If no method data exists, go to profile_method.
 312       __ test_method_data_pointer(*profile_method);
 313     }
 314     // Finally check for counter overflow.
 315     if (overflow) {
 316       const Register invocation_limit = Rscratch1;
 317       int il_offs = __ load_const_optimized(invocation_limit, &InvocationCounter::InterpreterInvocationLimit, R0, true);
 318       __ lwz(invocation_limit, il_offs, invocation_limit);
 319       assert(4 == sizeof(InvocationCounter::InterpreterInvocationLimit), "unexpected field size");
 320       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
 321       __ bge(CCR0, *overflow);
 322     }
 323 
 324     __ bind(done);
 325   }
 326 }
 327 
 328 // Generate code to initiate compilation on invocation counter overflow.
 329 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
 330   // Generate code to initiate compilation on the counter overflow.
 331 
 332   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
 333   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 334   // We pass zero in.
 335   // The call returns the address of the verified entry point for the method or NULL
 336   // if the compilation did not complete (either went background or bailed out).
 337   //
 338   // Unlike the C++ interpreter above: Check exceptions!
 339   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
 340   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
 341 
 342   __ li(R4_ARG2, 0);
 343   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
 344 
 345   // Returns verified_entry_point or NULL.
 346   // We ignore it in any case.
 347   __ b(continue_entry);
 348 }
 349 
 350 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
 351   assert_different_registers(Rmem_frame_size, Rscratch1);
 352   __ generate_stack_overflow_check_with_compare_and_throw(Rmem_frame_size, Rscratch1);
 353 }
 354 
 355 void TemplateInterpreterGenerator::unlock_method(bool check_exceptions) {
 356   __ unlock_object(R26_monitor, check_exceptions);
 357 }
 358 
 359 // Lock the current method, interpreter register window must be set up!
 360 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
 361   const Register Robj_to_lock = Rscratch2;
 362 
 363   {
 364     if (!flags_preloaded) {
 365       __ lwz(Rflags, method_(access_flags));
 366     }
 367 
 368 #ifdef ASSERT
 369     // Check if methods needs synchronization.
 370     {
 371       Label Lok;
 372       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
 373       __ btrue(CCR0,Lok);
 374       __ stop("method doesn't need synchronization");
 375       __ bind(Lok);
 376     }
 377 #endif // ASSERT
 378   }
 379 
 380   // Get synchronization object to Rscratch2.
 381   {
 382     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 383     Label Lstatic;
 384     Label Ldone;
 385 
 386     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
 387     __ btrue(CCR0, Lstatic);
 388 
 389     // Non-static case: load receiver obj from stack and we're done.
 390     __ ld(Robj_to_lock, R18_locals);
 391     __ b(Ldone);
 392 
 393     __ bind(Lstatic); // Static case: Lock the java mirror
 394     __ ld(Robj_to_lock, in_bytes(Method::const_offset()), R19_method);
 395     __ ld(Robj_to_lock, in_bytes(ConstMethod::constants_offset()), Robj_to_lock);
 396     __ ld(Robj_to_lock, ConstantPool::pool_holder_offset_in_bytes(), Robj_to_lock);
 397     __ ld(Robj_to_lock, mirror_offset, Robj_to_lock);
 398 
 399     __ bind(Ldone);
 400     __ verify_oop(Robj_to_lock);
 401   }
 402 
 403   // Got the oop to lock => execute!
 404   __ add_monitor_to_stack(true, Rscratch1, R0);
 405 
 406   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
 407   __ lock_object(R26_monitor, Robj_to_lock);
 408 }
 409 
 410 // Generate a fixed interpreter frame for pure interpreter
 411 // and I2N native transition frames.
 412 //
 413 // Before (stack grows downwards):
 414 //
 415 //         |  ...         |
 416 //         |------------- |
 417 //         |  java arg0   |
 418 //         |  ...         |
 419 //         |  java argn   |
 420 //         |              |   <-   R15_esp
 421 //         |              |
 422 //         |--------------|
 423 //         | abi_112      |
 424 //         |              |   <-   R1_SP
 425 //         |==============|
 426 //
 427 //
 428 // After:
 429 //
 430 //         |  ...         |
 431 //         |  java arg0   |<-   R18_locals
 432 //         |  ...         |
 433 //         |  java argn   |
 434 //         |--------------|
 435 //         |              |
 436 //         |  java locals |
 437 //         |              |
 438 //         |--------------|
 439 //         |  abi_48      |
 440 //         |==============|
 441 //         |              |
 442 //         |   istate     |
 443 //         |              |
 444 //         |--------------|
 445 //         |   monitor    |<-   R26_monitor
 446 //         |--------------|
 447 //         |              |<-   R15_esp
 448 //         | expression   |
 449 //         | stack        |
 450 //         |              |
 451 //         |--------------|
 452 //         |              |
 453 //         | abi_112      |<-   R1_SP
 454 //         |==============|
 455 //
 456 // The top most frame needs an abi space of 112 bytes. This space is needed,
 457 // since we call to c. The c function may spill their arguments to the caller
 458 // frame. When we call to java, we don't need these spill slots. In order to save
 459 // space on the stack, we resize the caller. However, java local reside in
 460 // the caller frame and the frame has to be increased. The frame_size for the
 461 // current frame was calculated based on max_stack as size for the expression
 462 // stack. At the call, just a part of the expression stack might be used.
 463 // We don't want to waste this space and cut the frame back accordingly.
 464 // The resulting amount for resizing is calculated as follows:
 465 // resize =   (number_of_locals - number_of_arguments) * slot_size
 466 //          + (R1_SP - R15_esp) + 48
 467 //
 468 // The size for the callee frame is calculated:
 469 // framesize = 112 + max_stack + monitor + state_size
 470 //
 471 // maxstack:   Max number of slots on the expression stack, loaded from the method.
 472 // monitor:    We statically reserve room for one monitor object.
 473 // state_size: We save the current state of the interpreter to this area.
 474 //
 475 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
 476   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
 477            top_frame_size      = R7_ARG5,
 478            Rconst_method       = R8_ARG6;
 479 
 480   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
 481 
 482   __ ld(Rconst_method, method_(const));
 483   __ lhz(Rsize_of_parameters /* number of params */,
 484          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
 485   if (native_call) {
 486     // If we're calling a native method, we reserve space for the worst-case signature
 487     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
 488     // We add two slots to the parameter_count, one for the jni
 489     // environment and one for a possible native mirror.
 490     Label skip_native_calculate_max_stack;
 491     __ addi(top_frame_size, Rsize_of_parameters, 2);
 492     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
 493     __ bge(CCR0, skip_native_calculate_max_stack);
 494     __ li(top_frame_size, Argument::n_register_parameters);
 495     __ bind(skip_native_calculate_max_stack);
 496     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
 497     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
 498     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
 499     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
 500   } else {
 501     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
 502     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
 503     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
 504     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
 505     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
 506     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
 507     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
 508     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
 509   }
 510 
 511   // Compute top frame size.
 512   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
 513 
 514   // Cut back area between esp and max_stack.
 515   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
 516 
 517   __ round_to(top_frame_size, frame::alignment_in_bytes);
 518   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
 519   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
 520   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
 521 
 522   {
 523     // --------------------------------------------------------------------------
 524     // Stack overflow check
 525 
 526     Label cont;
 527     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
 528     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
 529   }
 530 
 531   // Set up interpreter state registers.
 532 
 533   __ add(R18_locals, R15_esp, Rsize_of_parameters);
 534   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
 535   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
 536 
 537   // Set method data pointer.
 538   if (ProfileInterpreter) {
 539     Label zero_continue;
 540     __ ld(R28_mdx, method_(method_data));
 541     __ cmpdi(CCR0, R28_mdx, 0);
 542     __ beq(CCR0, zero_continue);
 543     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
 544     __ bind(zero_continue);
 545   }
 546 
 547   if (native_call) {
 548     __ li(R14_bcp, 0); // Must initialize.
 549   } else {
 550     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
 551   }
 552 
 553   // Resize parent frame.
 554   __ mflr(R12_scratch2);
 555   __ neg(parent_frame_resize, parent_frame_resize);
 556   __ resize_frame(parent_frame_resize, R11_scratch1);
 557   __ std(R12_scratch2, _abi(lr), R1_SP);
 558 
 559   __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
 560   __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
 561 
 562   // Store values.
 563   // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
 564   // in InterpreterMacroAssembler::call_from_interpreter.
 565   __ std(R19_method, _ijava_state_neg(method), R1_SP);
 566   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
 567   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
 568   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
 569 
 570   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
 571   // be found in the frame after save_interpreter_state is done. This is always true
 572   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
 573   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
 574   // (Enhanced Stack Trace).
 575   // The signal handler does not save the interpreter state into the frame.
 576   __ li(R0, 0);
 577 #ifdef ASSERT
 578   // Fill remaining slots with constants.
 579   __ load_const_optimized(R11_scratch1, 0x5afe);
 580   __ load_const_optimized(R12_scratch2, 0xdead);
 581 #endif
 582   // We have to initialize some frame slots for native calls (accessed by GC).
 583   if (native_call) {
 584     __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
 585     __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
 586     if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
 587   }
 588 #ifdef ASSERT
 589   else {
 590     __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
 591     __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
 592     __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
 593   }
 594   __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
 595   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
 596   __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
 597   __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
 598 #endif
 599   __ subf(R12_scratch2, top_frame_size, R1_SP);
 600   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
 601   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
 602 
 603   // Push top frame.
 604   __ push_frame(top_frame_size, R11_scratch1);
 605 }
 606 
 607 // End of helpers
 608 
 609 
 610 // Support abs and sqrt like in compiler.
 611 // For others we can use a normal (native) entry.
 612 
 613 inline bool math_entry_available(AbstractInterpreter::MethodKind kind) {
 614   // Provide math entry with debugging on demand.
 615   // Note: Debugging changes which code will get executed:
 616   // Debugging or disabled InlineIntrinsics: java method will get interpreted and performs a native call.
 617   // Not debugging and enabled InlineIntrinics: processor instruction will get used.
 618   // Result might differ slightly due to rounding etc.
 619   if (!InlineIntrinsics && (!FLAG_IS_ERGO(InlineIntrinsics))) return false; // Generate a vanilla entry.
 620 
 621   return ((kind==Interpreter::java_lang_math_sqrt && VM_Version::has_fsqrt()) ||
 622           (kind==Interpreter::java_lang_math_abs));
 623 }
 624 
 625 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 626   if (!math_entry_available(kind)) {
 627     NOT_PRODUCT(__ should_not_reach_here();)
 628     return Interpreter::entry_for_kind(Interpreter::zerolocals);
 629   }
 630 
 631   Label Lslow_path;
 632   const Register Rjvmti_mode = R11_scratch1;
 633   address entry = __ pc();
 634 
 635   // Provide math entry with debugging on demand.
 636   __ lwz(Rjvmti_mode, thread_(interp_only_mode));
 637   __ cmpwi(CCR0, Rjvmti_mode, 0);
 638   __ bne(CCR0, Lslow_path); // jvmti_mode!=0
 639 
 640   __ lfd(F1_RET, Interpreter::stackElementSize, R15_esp);
 641 
 642   // Pop c2i arguments (if any) off when we return.
 643 #ifdef ASSERT
 644   __ ld(R9_ARG7, 0, R1_SP);
 645   __ ld(R10_ARG8, 0, R21_sender_SP);
 646   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
 647   __ asm_assert_eq("backlink", 0x545);
 648 #endif // ASSERT
 649   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
 650 
 651   if (kind == Interpreter::java_lang_math_sqrt) {
 652     __ fsqrt(F1_RET, F1_RET);
 653   } else if (kind == Interpreter::java_lang_math_abs) {
 654     __ fabs(F1_RET, F1_RET);
 655   } else {
 656     ShouldNotReachHere();
 657   }
 658 
 659   // And we're done.
 660   __ blr();
 661 
 662   // Provide slow path for JVMTI case.
 663   __ bind(Lslow_path);
 664   __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R12_scratch2);
 665   __ flush();
 666 
 667   return entry;
 668 }
 669 
 670 // Interpreter stub for calling a native method. (asm interpreter)
 671 // This sets up a somewhat different looking stack for calling the
 672 // native method than the typical interpreter frame setup.
 673 //
 674 // On entry:
 675 //   R19_method    - method
 676 //   R16_thread    - JavaThread*
 677 //   R15_esp       - intptr_t* sender tos
 678 //
 679 //   abstract stack (grows up)
 680 //     [  IJava (caller of JNI callee)  ]  <-- ASP
 681 //        ...
 682 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
 683 
 684   address entry = __ pc();
 685 
 686   const bool inc_counter = UseCompiler || CountCompiledCalls;
 687 
 688   // -----------------------------------------------------------------------------
 689   // Allocate a new frame that represents the native callee (i2n frame).
 690   // This is not a full-blown interpreter frame, but in particular, the
 691   // following registers are valid after this:
 692   // - R19_method
 693   // - R18_local (points to start of argumuments to native function)
 694   //
 695   //   abstract stack (grows up)
 696   //     [  IJava (caller of JNI callee)  ]  <-- ASP
 697   //        ...
 698 
 699   const Register signature_handler_fd = R11_scratch1;
 700   const Register pending_exception    = R0;
 701   const Register result_handler_addr  = R31;
 702   const Register native_method_fd     = R11_scratch1;
 703   const Register access_flags         = R22_tmp2;
 704   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
 705   const Register sync_state           = R12_scratch2;
 706   const Register sync_state_addr      = sync_state;   // Address is dead after use.
 707   const Register suspend_flags        = R11_scratch1;
 708 
 709   //=============================================================================
 710   // Allocate new frame and initialize interpreter state.
 711 
 712   Label exception_return;
 713   Label exception_return_sync_check;
 714   Label stack_overflow_return;
 715 
 716   // Generate new interpreter state and jump to stack_overflow_return in case of
 717   // a stack overflow.
 718   //generate_compute_interpreter_state(stack_overflow_return);
 719 
 720   Register size_of_parameters = R22_tmp2;
 721 
 722   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
 723 
 724   //=============================================================================
 725   // Increment invocation counter. On overflow, entry to JNI method
 726   // will be compiled.
 727   Label invocation_counter_overflow, continue_after_compile;
 728   if (inc_counter) {
 729     if (synchronized) {
 730       // Since at this point in the method invocation the exception handler
 731       // would try to exit the monitor of synchronized methods which hasn't
 732       // been entered yet, we set the thread local variable
 733       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 734       // runtime, exception handling i.e. unlock_if_synchronized_method will
 735       // check this thread local flag.
 736       // This flag has two effects, one is to force an unwind in the topmost
 737       // interpreter frame and not perform an unlock while doing so.
 738       __ li(R0, 1);
 739       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
 740     }
 741     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 742 
 743     __ BIND(continue_after_compile);
 744     // Reset the _do_not_unlock_if_synchronized flag.
 745     if (synchronized) {
 746       __ li(R0, 0);
 747       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
 748     }
 749   }
 750 
 751   // access_flags = method->access_flags();
 752   // Load access flags.
 753   assert(access_flags->is_nonvolatile(),
 754          "access_flags must be in a non-volatile register");
 755   // Type check.
 756   assert(4 == sizeof(AccessFlags), "unexpected field size");
 757   __ lwz(access_flags, method_(access_flags));
 758 
 759   // We don't want to reload R19_method and access_flags after calls
 760   // to some helper functions.
 761   assert(R19_method->is_nonvolatile(),
 762          "R19_method must be a non-volatile register");
 763 
 764   // Check for synchronized methods. Must happen AFTER invocation counter
 765   // check, so method is not locked if counter overflows.
 766 
 767   if (synchronized) {
 768     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
 769 
 770     // Update monitor in state.
 771     __ ld(R11_scratch1, 0, R1_SP);
 772     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
 773   }
 774 
 775   // jvmti/jvmpi support
 776   __ notify_method_entry();
 777 
 778   //=============================================================================
 779   // Get and call the signature handler.
 780 
 781   __ ld(signature_handler_fd, method_(signature_handler));
 782   Label call_signature_handler;
 783 
 784   __ cmpdi(CCR0, signature_handler_fd, 0);
 785   __ bne(CCR0, call_signature_handler);
 786 
 787   // Method has never been called. Either generate a specialized
 788   // handler or point to the slow one.
 789   //
 790   // Pass parameter 'false' to avoid exception check in call_VM.
 791   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
 792 
 793   // Check for an exception while looking up the target method. If we
 794   // incurred one, bail.
 795   __ ld(pending_exception, thread_(pending_exception));
 796   __ cmpdi(CCR0, pending_exception, 0);
 797   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
 798 
 799   // Reload signature handler, it may have been created/assigned in the meanwhile.
 800   __ ld(signature_handler_fd, method_(signature_handler));
 801   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
 802 
 803   __ BIND(call_signature_handler);
 804 
 805   // Before we call the signature handler we push a new frame to
 806   // protect the interpreter frame volatile registers when we return
 807   // from jni but before we can get back to Java.
 808 
 809   // First set the frame anchor while the SP/FP registers are
 810   // convenient and the slow signature handler can use this same frame
 811   // anchor.
 812 
 813   // We have a TOP_IJAVA_FRAME here, which belongs to us.
 814   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
 815 
 816   // Now the interpreter frame (and its call chain) have been
 817   // invalidated and flushed. We are now protected against eager
 818   // being enabled in native code. Even if it goes eager the
 819   // registers will be reloaded as clean and we will invalidate after
 820   // the call so no spurious flush should be possible.
 821 
 822   // Call signature handler and pass locals address.
 823   //
 824   // Our signature handlers copy required arguments to the C stack
 825   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
 826   __ mr(R3_ARG1, R18_locals);
 827 #if !defined(ABI_ELFv2)
 828   __ ld(signature_handler_fd, 0, signature_handler_fd);
 829 #endif
 830 
 831   __ call_stub(signature_handler_fd);
 832 
 833   // Remove the register parameter varargs slots we allocated in
 834   // compute_interpreter_state. SP+16 ends up pointing to the ABI
 835   // outgoing argument area.
 836   //
 837   // Not needed on PPC64.
 838   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
 839 
 840   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
 841   // Save across call to native method.
 842   __ mr(result_handler_addr, R3_RET);
 843 
 844   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
 845 
 846   // Set up fixed parameters and call the native method.
 847   // If the method is static, get mirror into R4_ARG2.
 848   {
 849     Label method_is_not_static;
 850     // Access_flags is non-volatile and still, no need to restore it.
 851 
 852     // Restore access flags.
 853     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
 854     __ bfalse(CCR0, method_is_not_static);
 855 
 856     // constants = method->constants();
 857     __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
 858     __ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1);
 859     // pool_holder = method->constants()->pool_holder();
 860     __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(),
 861           R11_scratch1/*constants*/);
 862 
 863     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 864 
 865     // mirror = pool_holder->klass_part()->java_mirror();
 866     __ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/);
 867     // state->_native_mirror = mirror;
 868 
 869     __ ld(R11_scratch1, 0, R1_SP);
 870     __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
 871     // R4_ARG2 = &state->_oop_temp;
 872     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
 873     __ BIND(method_is_not_static);
 874   }
 875 
 876   // At this point, arguments have been copied off the stack into
 877   // their JNI positions. Oops are boxed in-place on the stack, with
 878   // handles copied to arguments. The result handler address is in a
 879   // register.
 880 
 881   // Pass JNIEnv address as first parameter.
 882   __ addir(R3_ARG1, thread_(jni_environment));
 883 
 884   // Load the native_method entry before we change the thread state.
 885   __ ld(native_method_fd, method_(native_function));
 886 
 887   //=============================================================================
 888   // Transition from _thread_in_Java to _thread_in_native. As soon as
 889   // we make this change the safepoint code needs to be certain that
 890   // the last Java frame we established is good. The pc in that frame
 891   // just needs to be near here not an actual return address.
 892 
 893   // We use release_store_fence to update values like the thread state, where
 894   // we don't want the current thread to continue until all our prior memory
 895   // accesses (including the new thread state) are visible to other threads.
 896   __ li(R0, _thread_in_native);
 897   __ release();
 898 
 899   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
 900   __ stw(R0, thread_(thread_state));
 901 
 902   if (UseMembar) {
 903     __ fence();
 904   }
 905 
 906   //=============================================================================
 907   // Call the native method. Argument registers must not have been
 908   // overwritten since "__ call_stub(signature_handler);" (except for
 909   // ARG1 and ARG2 for static methods).
 910   __ call_c(native_method_fd);
 911 
 912   __ li(R0, 0);
 913   __ ld(R11_scratch1, 0, R1_SP);
 914   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
 915   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
 916   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
 917 
 918   // Note: C++ interpreter needs the following here:
 919   // The frame_manager_lr field, which we use for setting the last
 920   // java frame, gets overwritten by the signature handler. Restore
 921   // it now.
 922   //__ get_PC_trash_LR(R11_scratch1);
 923   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
 924 
 925   // Because of GC R19_method may no longer be valid.
 926 
 927   // Block, if necessary, before resuming in _thread_in_Java state.
 928   // In order for GC to work, don't clear the last_Java_sp until after
 929   // blocking.
 930 
 931   //=============================================================================
 932   // Switch thread to "native transition" state before reading the
 933   // synchronization state. This additional state is necessary
 934   // because reading and testing the synchronization state is not
 935   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
 936   // in _thread_in_native state, loads _not_synchronized and is
 937   // preempted. VM thread changes sync state to synchronizing and
 938   // suspends threads for GC. Thread A is resumed to finish this
 939   // native method, but doesn't block here since it didn't see any
 940   // synchronization in progress, and escapes.
 941 
 942   // We use release_store_fence to update values like the thread state, where
 943   // we don't want the current thread to continue until all our prior memory
 944   // accesses (including the new thread state) are visible to other threads.
 945   __ li(R0/*thread_state*/, _thread_in_native_trans);
 946   __ release();
 947   __ stw(R0/*thread_state*/, thread_(thread_state));
 948   if (UseMembar) {
 949     __ fence();
 950   }
 951   // Write serialization page so that the VM thread can do a pseudo remote
 952   // membar. We use the current thread pointer to calculate a thread
 953   // specific offset to write to within the page. This minimizes bus
 954   // traffic due to cache line collision.
 955   else {
 956     __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
 957   }
 958 
 959   // Now before we return to java we must look for a current safepoint
 960   // (a new safepoint can not start since we entered native_trans).
 961   // We must check here because a current safepoint could be modifying
 962   // the callers registers right this moment.
 963 
 964   // Acquire isn't strictly necessary here because of the fence, but
 965   // sync_state is declared to be volatile, so we do it anyway
 966   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
 967   int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
 968 
 969   // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
 970   __ lwz(sync_state, sync_state_offs, sync_state_addr);
 971 
 972   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
 973   __ lwz(suspend_flags, thread_(suspend_flags));
 974 
 975   Label sync_check_done;
 976   Label do_safepoint;
 977   // No synchronization in progress nor yet synchronized.
 978   __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
 979   // Not suspended.
 980   __ cmpwi(CCR1, suspend_flags, 0);
 981 
 982   __ bne(CCR0, do_safepoint);
 983   __ beq(CCR1, sync_check_done);
 984   __ bind(do_safepoint);
 985   __ isync();
 986   // Block. We do the call directly and leave the current
 987   // last_Java_frame setup undisturbed. We must save any possible
 988   // native result across the call. No oop is present.
 989 
 990   __ mr(R3_ARG1, R16_thread);
 991 #if defined(ABI_ELFv2)
 992   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
 993             relocInfo::none);
 994 #else
 995   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
 996             relocInfo::none);
 997 #endif
 998 
 999   __ bind(sync_check_done);
1000 
1001   //=============================================================================
1002   // <<<<<< Back in Interpreter Frame >>>>>
1003 
1004   // We are in thread_in_native_trans here and back in the normal
1005   // interpreter frame. We don't have to do anything special about
1006   // safepoints and we can switch to Java mode anytime we are ready.
1007 
1008   // Note: frame::interpreter_frame_result has a dependency on how the
1009   // method result is saved across the call to post_method_exit. For
1010   // native methods it assumes that the non-FPU/non-void result is
1011   // saved in _native_lresult and a FPU result in _native_fresult. If
1012   // this changes then the interpreter_frame_result implementation
1013   // will need to be updated too.
1014 
1015   // On PPC64, we have stored the result directly after the native call.
1016 
1017   //=============================================================================
1018   // Back in Java
1019 
1020   // We use release_store_fence to update values like the thread state, where
1021   // we don't want the current thread to continue until all our prior memory
1022   // accesses (including the new thread state) are visible to other threads.
1023   __ li(R0/*thread_state*/, _thread_in_Java);
1024   __ release();
1025   __ stw(R0/*thread_state*/, thread_(thread_state));
1026   if (UseMembar) {
1027     __ fence();
1028   }
1029 
1030   __ reset_last_Java_frame();
1031 
1032   // Jvmdi/jvmpi support. Whether we've got an exception pending or
1033   // not, and whether unlocking throws an exception or not, we notify
1034   // on native method exit. If we do have an exception, we'll end up
1035   // in the caller's context to handle it, so if we don't do the
1036   // notify here, we'll drop it on the floor.
1037   __ notify_method_exit(true/*native method*/,
1038                         ilgl /*illegal state (not used for native methods)*/,
1039                         InterpreterMacroAssembler::NotifyJVMTI,
1040                         false /*check_exceptions*/);
1041 
1042   //=============================================================================
1043   // Handle exceptions
1044 
1045   if (synchronized) {
1046     // Don't check for exceptions since we're still in the i2n frame. Do that
1047     // manually afterwards.
1048     unlock_method(false);
1049   }
1050 
1051   // Reset active handles after returning from native.
1052   // thread->active_handles()->clear();
1053   __ ld(active_handles, thread_(active_handles));
1054   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
1055   __ li(R0, 0);
1056   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
1057 
1058   Label exception_return_sync_check_already_unlocked;
1059   __ ld(R0/*pending_exception*/, thread_(pending_exception));
1060   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
1061   __ bne(CCR0, exception_return_sync_check_already_unlocked);
1062 
1063   //-----------------------------------------------------------------------------
1064   // No exception pending.
1065 
1066   // Move native method result back into proper registers and return.
1067   // Invoke result handler (may unbox/promote).
1068   __ ld(R11_scratch1, 0, R1_SP);
1069   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1070   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1071   __ call_stub(result_handler_addr);
1072 
1073   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1074 
1075   // Must use the return pc which was loaded from the caller's frame
1076   // as the VM uses return-pc-patching for deoptimization.
1077   __ mtlr(R0);
1078   __ blr();
1079 
1080   //-----------------------------------------------------------------------------
1081   // An exception is pending. We call into the runtime only if the
1082   // caller was not interpreted. If it was interpreted the
1083   // interpreter will do the correct thing. If it isn't interpreted
1084   // (call stub/compiled code) we will change our return and continue.
1085 
1086   __ BIND(exception_return_sync_check);
1087 
1088   if (synchronized) {
1089     // Don't check for exceptions since we're still in the i2n frame. Do that
1090     // manually afterwards.
1091     unlock_method(false);
1092   }
1093   __ BIND(exception_return_sync_check_already_unlocked);
1094 
1095   const Register return_pc = R31;
1096 
1097   __ ld(return_pc, 0, R1_SP);
1098   __ ld(return_pc, _abi(lr), return_pc);
1099 
1100   // Get the address of the exception handler.
1101   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1102                   R16_thread,
1103                   return_pc /* return pc */);
1104   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1105 
1106   // Load the PC of the the exception handler into LR.
1107   __ mtlr(R3_RET);
1108 
1109   // Load exception into R3_ARG1 and clear pending exception in thread.
1110   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1111   __ li(R4_ARG2, 0);
1112   __ std(R4_ARG2, thread_(pending_exception));
1113 
1114   // Load the original return pc into R4_ARG2.
1115   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
1116 
1117   // Return to exception handler.
1118   __ blr();
1119 
1120   //=============================================================================
1121   // Counter overflow.
1122 
1123   if (inc_counter) {
1124     // Handle invocation counter overflow.
1125     __ bind(invocation_counter_overflow);
1126 
1127     generate_counter_overflow(continue_after_compile);
1128   }
1129 
1130   return entry;
1131 }
1132 
1133 // Generic interpreted method entry to (asm) interpreter.
1134 //
1135 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1136   bool inc_counter = UseCompiler || CountCompiledCalls;
1137   address entry = __ pc();
1138   // Generate the code to allocate the interpreter stack frame.
1139   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
1140            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
1141 
1142   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
1143 
1144 #ifdef FAST_DISPATCH
1145   __ unimplemented("Fast dispatch in generate_normal_entry");
1146 #if 0
1147   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
1148   // Set bytecode dispatch table base.
1149 #endif
1150 #endif
1151 
1152   // --------------------------------------------------------------------------
1153   // Zero out non-parameter locals.
1154   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
1155   // worth to ask the flag, just do it.
1156   Register Rslot_addr = R6_ARG4,
1157            Rnum       = R7_ARG5;
1158   Label Lno_locals, Lzero_loop;
1159 
1160   // Set up the zeroing loop.
1161   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
1162   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
1163   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
1164   __ beq(CCR0, Lno_locals);
1165   __ li(R0, 0);
1166   __ mtctr(Rnum);
1167 
1168   // The zero locals loop.
1169   __ bind(Lzero_loop);
1170   __ std(R0, 0, Rslot_addr);
1171   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
1172   __ bdnz(Lzero_loop);
1173 
1174   __ bind(Lno_locals);
1175 
1176   // --------------------------------------------------------------------------
1177   // Counter increment and overflow check.
1178   Label invocation_counter_overflow,
1179         profile_method,
1180         profile_method_continue;
1181   if (inc_counter || ProfileInterpreter) {
1182 
1183     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
1184     if (synchronized) {
1185       // Since at this point in the method invocation the exception handler
1186       // would try to exit the monitor of synchronized methods which hasn't
1187       // been entered yet, we set the thread local variable
1188       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1189       // runtime, exception handling i.e. unlock_if_synchronized_method will
1190       // check this thread local flag.
1191       // This flag has two effects, one is to force an unwind in the topmost
1192       // interpreter frame and not perform an unlock while doing so.
1193       __ li(R0, 1);
1194       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1195     }
1196 
1197     // Argument and return type profiling.
1198     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
1199 
1200     // Increment invocation counter and check for overflow.
1201     if (inc_counter) {
1202       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1203     }
1204 
1205     __ bind(profile_method_continue);
1206 
1207     // Reset the _do_not_unlock_if_synchronized flag.
1208     if (synchronized) {
1209       __ li(R0, 0);
1210       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1211     }
1212   }
1213 
1214   // --------------------------------------------------------------------------
1215   // Locking of synchronized methods. Must happen AFTER invocation_counter
1216   // check and stack overflow check, so method is not locked if overflows.
1217   if (synchronized) {
1218     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
1219   }
1220 #ifdef ASSERT
1221   else {
1222     Label Lok;
1223     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1224     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
1225     __ asm_assert_eq("method needs synchronization", 0x8521);
1226     __ bind(Lok);
1227   }
1228 #endif // ASSERT
1229 
1230   __ verify_thread();
1231 
1232   // --------------------------------------------------------------------------
1233   // JVMTI support
1234   __ notify_method_entry();
1235 
1236   // --------------------------------------------------------------------------
1237   // Start executing instructions.
1238   __ dispatch_next(vtos);
1239 
1240   // --------------------------------------------------------------------------
1241   // Out of line counter overflow and MDO creation code.
1242   if (ProfileInterpreter) {
1243     // We have decided to profile this method in the interpreter.
1244     __ bind(profile_method);
1245     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1246     __ set_method_data_pointer_for_bcp();
1247     __ b(profile_method_continue);
1248   }
1249 
1250   if (inc_counter) {
1251     // Handle invocation counter overflow.
1252     __ bind(invocation_counter_overflow);
1253     generate_counter_overflow(profile_method_continue);
1254   }
1255   return entry;
1256 }
1257 
1258 // These should never be compiled since the interpreter will prefer
1259 // the compiled version to the intrinsic version.
1260 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
1261   return !math_entry_available(method_kind(m));
1262 }
1263 
1264 // How much stack a method activation needs in stack slots.
1265 // We must calc this exactly like in generate_fixed_frame.
1266 // Note: This returns the conservative size assuming maximum alignment.
1267 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
1268   const int max_alignment_size = 2;
1269   const int abi_scratch = frame::abi_reg_args_size;
1270   return method->max_locals() + method->max_stack() +
1271          frame::interpreter_frame_monitor_size() + max_alignment_size + abi_scratch;
1272 }
1273 
1274 // Returns number of stackElementWords needed for the interpreter frame with the
1275 // given sections.
1276 // This overestimates the stack by one slot in case of alignments.
1277 int AbstractInterpreter::size_activation(int max_stack,
1278                                          int temps,
1279                                          int extra_args,
1280                                          int monitors,
1281                                          int callee_params,
1282                                          int callee_locals,
1283                                          bool is_top_frame) {
1284   // Note: This calculation must exactly parallel the frame setup
1285   // in InterpreterGenerator::generate_fixed_frame.
1286   assert(Interpreter::stackElementWords == 1, "sanity");
1287   const int max_alignment_space = StackAlignmentInBytes / Interpreter::stackElementSize;
1288   const int abi_scratch = is_top_frame ? (frame::abi_reg_args_size / Interpreter::stackElementSize) :
1289                                          (frame::abi_minframe_size / Interpreter::stackElementSize);
1290   const int size =
1291     max_stack                                                +
1292     (callee_locals - callee_params)                          +
1293     monitors * frame::interpreter_frame_monitor_size()       +
1294     max_alignment_space                                      +
1295     abi_scratch                                              +
1296     frame::ijava_state_size / Interpreter::stackElementSize;
1297 
1298   // Fixed size of an interpreter frame, align to 16-byte.
1299   return (size & -2);
1300 }
1301 
1302 // Fills a sceletal interpreter frame generated during deoptimizations.
1303 //
1304 // Parameters:
1305 //
1306 // interpreter_frame != NULL:
1307 //   set up the method, locals, and monitors.
1308 //   The frame interpreter_frame, if not NULL, is guaranteed to be the
1309 //   right size, as determined by a previous call to this method.
1310 //   It is also guaranteed to be walkable even though it is in a skeletal state
1311 //
1312 // is_top_frame == true:
1313 //   We're processing the *oldest* interpreter frame!
1314 //
1315 // pop_frame_extra_args:
1316 //   If this is != 0 we are returning to a deoptimized frame by popping
1317 //   off the callee frame. We want to re-execute the call that called the
1318 //   callee interpreted, but since the return to the interpreter would pop
1319 //   the arguments off advance the esp by dummy popframe_extra_args slots.
1320 //   Popping off those will establish the stack layout as it was before the call.
1321 //
1322 void AbstractInterpreter::layout_activation(Method* method,
1323                                             int tempcount,
1324                                             int popframe_extra_args,
1325                                             int moncount,
1326                                             int caller_actual_parameters,
1327                                             int callee_param_count,
1328                                             int callee_locals_count,
1329                                             frame* caller,
1330                                             frame* interpreter_frame,
1331                                             bool is_top_frame,
1332                                             bool is_bottom_frame) {
1333 
1334   const int abi_scratch = is_top_frame ? (frame::abi_reg_args_size / Interpreter::stackElementSize) :
1335                                          (frame::abi_minframe_size / Interpreter::stackElementSize);
1336 
1337   intptr_t* locals_base  = (caller->is_interpreted_frame()) ?
1338     caller->interpreter_frame_esp() + caller_actual_parameters :
1339     caller->sp() + method->max_locals() - 1 + (frame::abi_minframe_size / Interpreter::stackElementSize) ;
1340 
1341   intptr_t* monitor_base = caller->sp() - frame::ijava_state_size / Interpreter::stackElementSize ;
1342   intptr_t* monitor      = monitor_base - (moncount * frame::interpreter_frame_monitor_size());
1343   intptr_t* esp_base     = monitor - 1;
1344   intptr_t* esp          = esp_base - tempcount - popframe_extra_args;
1345   intptr_t* sp           = (intptr_t *) (((intptr_t) (esp_base - callee_locals_count + callee_param_count - method->max_stack()- abi_scratch)) & -StackAlignmentInBytes);
1346   intptr_t* sender_sp    = caller->sp() + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize;
1347   intptr_t* top_frame_sp = is_top_frame ? sp : sp + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize;
1348 
1349   interpreter_frame->interpreter_frame_set_method(method);
1350   interpreter_frame->interpreter_frame_set_locals(locals_base);
1351   interpreter_frame->interpreter_frame_set_cpcache(method->constants()->cache());
1352   interpreter_frame->interpreter_frame_set_esp(esp);
1353   interpreter_frame->interpreter_frame_set_monitor_end((BasicObjectLock *)monitor);
1354   interpreter_frame->interpreter_frame_set_top_frame_sp(top_frame_sp);
1355   if (!is_bottom_frame) {
1356     interpreter_frame->interpreter_frame_set_sender_sp(sender_sp);
1357   }
1358 }
1359 
1360 // =============================================================================
1361 // Exceptions
1362 
1363 void TemplateInterpreterGenerator::generate_throw_exception() {
1364   Register Rexception    = R17_tos,
1365            Rcontinuation = R3_RET;
1366 
1367   // --------------------------------------------------------------------------
1368   // Entry point if an method returns with a pending exception (rethrow).
1369   Interpreter::_rethrow_exception_entry = __ pc();
1370   {
1371     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
1372     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
1373     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
1374 
1375     // Compiled code destroys templateTableBase, reload.
1376     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
1377   }
1378 
1379   // Entry point if a interpreted method throws an exception (throw).
1380   Interpreter::_throw_exception_entry = __ pc();
1381   {
1382     __ mr(Rexception, R3_RET);
1383 
1384     __ verify_thread();
1385     __ verify_oop(Rexception);
1386 
1387     // Expression stack must be empty before entering the VM in case of an exception.
1388     __ empty_expression_stack();
1389     // Find exception handler address and preserve exception oop.
1390     // Call C routine to find handler and jump to it.
1391     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
1392     __ mtctr(Rcontinuation);
1393     // Push exception for exception handler bytecodes.
1394     __ push_ptr(Rexception);
1395 
1396     // Jump to exception handler (may be remove activation entry!).
1397     __ bctr();
1398   }
1399 
1400   // If the exception is not handled in the current frame the frame is
1401   // removed and the exception is rethrown (i.e. exception
1402   // continuation is _rethrow_exception).
1403   //
1404   // Note: At this point the bci is still the bxi for the instruction
1405   // which caused the exception and the expression stack is
1406   // empty. Thus, for any VM calls at this point, GC will find a legal
1407   // oop map (with empty expression stack).
1408 
1409   // In current activation
1410   // tos: exception
1411   // bcp: exception bcp
1412 
1413   // --------------------------------------------------------------------------
1414   // JVMTI PopFrame support
1415 
1416   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1417   {
1418     // Set the popframe_processing bit in popframe_condition indicating that we are
1419     // currently handling popframe, so that call_VMs that may happen later do not
1420     // trigger new popframe handling cycles.
1421     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
1422     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
1423     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
1424 
1425     // Empty the expression stack, as in normal exception handling.
1426     __ empty_expression_stack();
1427     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1428 
1429     // Check to see whether we are returning to a deoptimized frame.
1430     // (The PopFrame call ensures that the caller of the popped frame is
1431     // either interpreted or compiled and deoptimizes it if compiled.)
1432     // Note that we don't compare the return PC against the
1433     // deoptimization blob's unpack entry because of the presence of
1434     // adapter frames in C2.
1435     Label Lcaller_not_deoptimized;
1436     Register return_pc = R3_ARG1;
1437     __ ld(return_pc, 0, R1_SP);
1438     __ ld(return_pc, _abi(lr), return_pc);
1439     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
1440     __ cmpdi(CCR0, R3_RET, 0);
1441     __ bne(CCR0, Lcaller_not_deoptimized);
1442 
1443     // The deoptimized case.
1444     // In this case, we can't call dispatch_next() after the frame is
1445     // popped, but instead must save the incoming arguments and restore
1446     // them after deoptimization has occurred.
1447     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
1448     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
1449     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
1450     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
1451     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
1452     // Save these arguments.
1453     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
1454 
1455     // Inform deoptimization that it is responsible for restoring these arguments.
1456     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1457     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
1458 
1459     // Return from the current method into the deoptimization blob. Will eventually
1460     // end up in the deopt interpeter entry, deoptimization prepared everything that
1461     // we will reexecute the call that called us.
1462     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
1463     __ mtlr(return_pc);
1464     __ blr();
1465 
1466     // The non-deoptimized case.
1467     __ bind(Lcaller_not_deoptimized);
1468 
1469     // Clear the popframe condition flag.
1470     __ li(R0, 0);
1471     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
1472 
1473     // Get out of the current method and re-execute the call that called us.
1474     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
1475     __ restore_interpreter_state(R11_scratch1);
1476     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
1477     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
1478     if (ProfileInterpreter) {
1479       __ set_method_data_pointer_for_bcp();
1480       __ ld(R11_scratch1, 0, R1_SP);
1481       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
1482     }
1483 #if INCLUDE_JVMTI
1484     Label L_done;
1485 
1486     __ lbz(R11_scratch1, 0, R14_bcp);
1487     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
1488     __ bne(CCR0, L_done);
1489 
1490     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1491     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1492     __ ld(R4_ARG2, 0, R18_locals);
1493     __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
1494     __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
1495     __ cmpdi(CCR0, R4_ARG2, 0);
1496     __ beq(CCR0, L_done);
1497     __ std(R4_ARG2, wordSize, R15_esp);
1498     __ bind(L_done);
1499 #endif // INCLUDE_JVMTI
1500     __ dispatch_next(vtos);
1501   }
1502   // end of JVMTI PopFrame support
1503 
1504   // --------------------------------------------------------------------------
1505   // Remove activation exception entry.
1506   // This is jumped to if an interpreted method can't handle an exception itself
1507   // (we come from the throw/rethrow exception entry above). We're going to call
1508   // into the VM to find the exception handler in the caller, pop the current
1509   // frame and return the handler we calculated.
1510   Interpreter::_remove_activation_entry = __ pc();
1511   {
1512     __ pop_ptr(Rexception);
1513     __ verify_thread();
1514     __ verify_oop(Rexception);
1515     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
1516 
1517     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
1518     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
1519 
1520     __ get_vm_result(Rexception);
1521 
1522     // We are done with this activation frame; find out where to go next.
1523     // The continuation point will be an exception handler, which expects
1524     // the following registers set up:
1525     //
1526     // RET:  exception oop
1527     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
1528 
1529     Register return_pc = R31; // Needs to survive the runtime call.
1530     __ ld(return_pc, 0, R1_SP);
1531     __ ld(return_pc, _abi(lr), return_pc);
1532     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
1533 
1534     // Remove the current activation.
1535     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
1536 
1537     __ mr(R4_ARG2, return_pc);
1538     __ mtlr(R3_RET);
1539     __ mr(R3_RET, Rexception);
1540     __ blr();
1541   }
1542 }
1543 
1544 // JVMTI ForceEarlyReturn support.
1545 // Returns "in the middle" of a method with a "fake" return value.
1546 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1547 
1548   Register Rscratch1 = R11_scratch1,
1549            Rscratch2 = R12_scratch2;
1550 
1551   address entry = __ pc();
1552   __ empty_expression_stack();
1553 
1554   __ load_earlyret_value(state, Rscratch1);
1555 
1556   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
1557   // Clear the earlyret state.
1558   __ li(R0, 0);
1559   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
1560 
1561   __ remove_activation(state, false, false);
1562   // Copied from TemplateTable::_return.
1563   // Restoration of lr done by remove_activation.
1564   switch (state) {
1565     case ltos:
1566     case btos:
1567     case ctos:
1568     case stos:
1569     case atos:
1570     case itos: __ mr(R3_RET, R17_tos); break;
1571     case ftos:
1572     case dtos: __ fmr(F1_RET, F15_ftos); break;
1573     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
1574                // to get visible before the reference to the object gets stored anywhere.
1575                __ membar(Assembler::StoreStore); break;
1576     default  : ShouldNotReachHere();
1577   }
1578   __ blr();
1579 
1580   return entry;
1581 } // end of ForceEarlyReturn support
1582 
1583 //-----------------------------------------------------------------------------
1584 // Helper for vtos entry point generation
1585 
1586 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
1587                                                          address& bep,
1588                                                          address& cep,
1589                                                          address& sep,
1590                                                          address& aep,
1591                                                          address& iep,
1592                                                          address& lep,
1593                                                          address& fep,
1594                                                          address& dep,
1595                                                          address& vep) {
1596   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1597   Label L;
1598 
1599   aep = __ pc();  __ push_ptr();  __ b(L);
1600   fep = __ pc();  __ push_f();    __ b(L);
1601   dep = __ pc();  __ push_d();    __ b(L);
1602   lep = __ pc();  __ push_l();    __ b(L);
1603   __ align(32, 12, 24); // align L
1604   bep = cep = sep =
1605   iep = __ pc();  __ push_i();
1606   vep = __ pc();
1607   __ bind(L);
1608   generate_and_dispatch(t);
1609 }
1610 
1611 //-----------------------------------------------------------------------------
1612 // Generation of individual instructions
1613 
1614 // helpers for generate_and_dispatch
1615 
1616 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1617   : TemplateInterpreterGenerator(code) {
1618   generate_all(); // Down here so it can be "virtual".
1619 }
1620 
1621 //-----------------------------------------------------------------------------
1622 
1623 // Non-product code
1624 #ifndef PRODUCT
1625 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1626   //__ flush_bundle();
1627   address entry = __ pc();
1628 
1629   const char *bname = NULL;
1630   uint tsize = 0;
1631   switch(state) {
1632   case ftos:
1633     bname = "trace_code_ftos {";
1634     tsize = 2;
1635     break;
1636   case btos:
1637     bname = "trace_code_btos {";
1638     tsize = 2;
1639     break;
1640   case ctos:
1641     bname = "trace_code_ctos {";
1642     tsize = 2;
1643     break;
1644   case stos:
1645     bname = "trace_code_stos {";
1646     tsize = 2;
1647     break;
1648   case itos:
1649     bname = "trace_code_itos {";
1650     tsize = 2;
1651     break;
1652   case ltos:
1653     bname = "trace_code_ltos {";
1654     tsize = 3;
1655     break;
1656   case atos:
1657     bname = "trace_code_atos {";
1658     tsize = 2;
1659     break;
1660   case vtos:
1661     // Note: In case of vtos, the topmost of stack value could be a int or doubl
1662     // In case of a double (2 slots) we won't see the 2nd stack value.
1663     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
1664     bname = "trace_code_vtos {";
1665     tsize = 2;
1666 
1667     break;
1668   case dtos:
1669     bname = "trace_code_dtos {";
1670     tsize = 3;
1671     break;
1672   default:
1673     ShouldNotReachHere();
1674   }
1675   BLOCK_COMMENT(bname);
1676 
1677   // Support short-cut for TraceBytecodesAt.
1678   // Don't call into the VM if we don't want to trace to speed up things.
1679   Label Lskip_vm_call;
1680   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
1681     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
1682     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
1683     __ ld(R11_scratch1, offs1, R11_scratch1);
1684     __ lwa(R12_scratch2, offs2, R12_scratch2);
1685     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
1686     __ blt(CCR0, Lskip_vm_call);
1687   }
1688 
1689   __ push(state);
1690   // Load 2 topmost expression stack values.
1691   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
1692   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
1693   __ mflr(R31);
1694   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
1695   __ mtlr(R31);
1696   __ pop(state);
1697 
1698   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
1699     __ bind(Lskip_vm_call);
1700   }
1701   __ blr();
1702   BLOCK_COMMENT("} trace_code");
1703   return entry;
1704 }
1705 
1706 void TemplateInterpreterGenerator::count_bytecode() {
1707   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
1708   __ lwz(R12_scratch2, offs, R11_scratch1);
1709   __ addi(R12_scratch2, R12_scratch2, 1);
1710   __ stw(R12_scratch2, offs, R11_scratch1);
1711 }
1712 
1713 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1714   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
1715   __ lwz(R12_scratch2, offs, R11_scratch1);
1716   __ addi(R12_scratch2, R12_scratch2, 1);
1717   __ stw(R12_scratch2, offs, R11_scratch1);
1718 }
1719 
1720 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1721   const Register addr = R11_scratch1,
1722                  tmp  = R12_scratch2;
1723   // Get index, shift out old bytecode, bring in new bytecode, and store it.
1724   // _index = (_index >> log2_number_of_codes) |
1725   //          (bytecode << log2_number_of_codes);
1726   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
1727   __ lwz(tmp, offs1, addr);
1728   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
1729   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
1730   __ stw(tmp, offs1, addr);
1731 
1732   // Bump bucket contents.
1733   // _counters[_index] ++;
1734   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
1735   __ sldi(tmp, tmp, LogBytesPerInt);
1736   __ add(addr, tmp, addr);
1737   __ lwz(tmp, offs2, addr);
1738   __ addi(tmp, tmp, 1);
1739   __ stw(tmp, offs2, addr);
1740 }
1741 
1742 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1743   // Call a little run-time stub to avoid blow-up for each bytecode.
1744   // The run-time runtime saves the right registers, depending on
1745   // the tosca in-state for the given template.
1746 
1747   assert(Interpreter::trace_code(t->tos_in()) != NULL,
1748          "entry must have been generated");
1749 
1750   // Note: we destroy LR here.
1751   __ bl(Interpreter::trace_code(t->tos_in()));
1752 }
1753 
1754 void TemplateInterpreterGenerator::stop_interpreter_at() {
1755   Label L;
1756   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
1757   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
1758   __ ld(R11_scratch1, offs1, R11_scratch1);
1759   __ lwa(R12_scratch2, offs2, R12_scratch2);
1760   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
1761   __ bne(CCR0, L);
1762   __ illtrap();
1763   __ bind(L);
1764 }
1765 
1766 #endif // !PRODUCT
1767 #endif // !CC_INTERP