1 /*
   2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2013, 2015 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/templateInterpreter.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "memory/universe.inline.hpp"
  34 #include "oops/objArrayKlass.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/methodHandles.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "runtime/synchronizer.hpp"
  40 #include "utilities/macros.hpp"
  41 
  42 #ifndef CC_INTERP
  43 
  44 #undef __
  45 #define __ _masm->
  46 
  47 // ============================================================================
  48 // Misc helpers
  49 
  50 // Do an oop store like *(base + index) = val OR *(base + offset) = val
  51 // (only one of both variants is possible at the same time).
  52 // Index can be noreg.
  53 // Kills:
  54 //   Rbase, Rtmp
  55 static void do_oop_store(InterpreterMacroAssembler* _masm,
  56                          Register           Rbase,
  57                          RegisterOrConstant offset,
  58                          Register           Rval,         // Noreg means always null.
  59                          Register           Rtmp1,
  60                          Register           Rtmp2,
  61                          Register           Rtmp3,
  62                          BarrierSet::Name   barrier,
  63                          bool               precise,
  64                          bool               check_null) {
  65   assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase);
  66 
  67   switch (barrier) {
  68 #if INCLUDE_ALL_GCS
  69     case BarrierSet::G1SATBCTLogging:
  70       {
  71         // Load and record the previous value.
  72         __ g1_write_barrier_pre(Rbase, offset,
  73                                 Rtmp3, /* holder of pre_val ? */
  74                                 Rtmp1, Rtmp2, false /* frame */);
  75 
  76         Label Lnull, Ldone;
  77         if (Rval != noreg) {
  78           if (check_null) {
  79             __ cmpdi(CCR0, Rval, 0);
  80             __ beq(CCR0, Lnull);
  81           }
  82           __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1);
  83           // Mark the card.
  84           if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
  85             __ add(Rbase, offset, Rbase);
  86           }
  87           __ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone);
  88           if (check_null) { __ b(Ldone); }
  89         }
  90 
  91         if (Rval == noreg || check_null) { // Store null oop.
  92           Register Rnull = Rval;
  93           __ bind(Lnull);
  94           if (Rval == noreg) {
  95             Rnull = Rtmp1;
  96             __ li(Rnull, 0);
  97           }
  98           if (UseCompressedOops) {
  99             __ stw(Rnull, offset, Rbase);
 100           } else {
 101             __ std(Rnull, offset, Rbase);
 102           }
 103         }
 104         __ bind(Ldone);
 105       }
 106       break;
 107 #endif // INCLUDE_ALL_GCS
 108     case BarrierSet::CardTableModRef:
 109     case BarrierSet::CardTableExtension:
 110       {
 111         Label Lnull, Ldone;
 112         if (Rval != noreg) {
 113           if (check_null) {
 114             __ cmpdi(CCR0, Rval, 0);
 115             __ beq(CCR0, Lnull);
 116           }
 117           __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1);
 118           // Mark the card.
 119           if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
 120             __ add(Rbase, offset, Rbase);
 121           }
 122           __ card_write_barrier_post(Rbase, Rval, Rtmp1);
 123           if (check_null) {
 124             __ b(Ldone);
 125           }
 126         }
 127 
 128         if (Rval == noreg || check_null) { // Store null oop.
 129           Register Rnull = Rval;
 130           __ bind(Lnull);
 131           if (Rval == noreg) {
 132             Rnull = Rtmp1;
 133             __ li(Rnull, 0);
 134           }
 135           if (UseCompressedOops) {
 136             __ stw(Rnull, offset, Rbase);
 137           } else {
 138             __ std(Rnull, offset, Rbase);
 139           }
 140         }
 141         __ bind(Ldone);
 142       }
 143       break;
 144     case BarrierSet::ModRef:
 145       ShouldNotReachHere();
 146       break;
 147     default:
 148       ShouldNotReachHere();
 149   }
 150 }
 151 
 152 // ============================================================================
 153 // Platform-dependent initialization
 154 
 155 void TemplateTable::pd_initialize() {
 156   // No ppc64 specific initialization.
 157 }
 158 
 159 Address TemplateTable::at_bcp(int offset) {
 160   // Not used on ppc.
 161   ShouldNotReachHere();
 162   return Address();
 163 }
 164 
 165 // Patches the current bytecode (ptr to it located in bcp)
 166 // in the bytecode stream with a new one.
 167 void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) {
 168   // With sharing on, may need to test method flag.
 169   if (!RewriteBytecodes) return;
 170   Label L_patch_done;
 171 
 172   switch (new_bc) {
 173     case Bytecodes::_fast_aputfield:
 174     case Bytecodes::_fast_bputfield:
 175     case Bytecodes::_fast_cputfield:
 176     case Bytecodes::_fast_dputfield:
 177     case Bytecodes::_fast_fputfield:
 178     case Bytecodes::_fast_iputfield:
 179     case Bytecodes::_fast_lputfield:
 180     case Bytecodes::_fast_sputfield:
 181     {
 182       // We skip bytecode quickening for putfield instructions when
 183       // the put_code written to the constant pool cache is zero.
 184       // This is required so that every execution of this instruction
 185       // calls out to InterpreterRuntime::resolve_get_put to do
 186       // additional, required work.
 187       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 188       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 189       __ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1);
 190       // ((*(cache+indices))>>((1+byte_no)*8))&0xFF:
 191 #if defined(VM_LITTLE_ENDIAN)
 192       __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 1 + byte_no, Rtemp);
 193 #else
 194       __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp);
 195 #endif
 196       __ cmpwi(CCR0, Rnew_bc, 0);
 197       __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
 198       __ beq(CCR0, L_patch_done);
 199       // __ isync(); // acquire not needed
 200       break;
 201     }
 202 
 203     default:
 204       assert(byte_no == -1, "sanity");
 205       if (load_bc_into_bc_reg) {
 206         __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
 207       }
 208   }
 209 
 210   if (JvmtiExport::can_post_breakpoint()) {
 211     Label L_fast_patch;
 212     __ lbz(Rtemp, 0, R14_bcp);
 213     __ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint);
 214     __ bne(CCR0, L_fast_patch);
 215     // Perform the quickening, slowly, in the bowels of the breakpoint table.
 216     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc);
 217     __ b(L_patch_done);
 218     __ bind(L_fast_patch);
 219   }
 220 
 221   // Patch bytecode.
 222   __ stb(Rnew_bc, 0, R14_bcp);
 223 
 224   __ bind(L_patch_done);
 225 }
 226 
 227 // ============================================================================
 228 // Individual instructions
 229 
 230 void TemplateTable::nop() {
 231   transition(vtos, vtos);
 232   // Nothing to do.
 233 }
 234 
 235 void TemplateTable::shouldnotreachhere() {
 236   transition(vtos, vtos);
 237   __ stop("shouldnotreachhere bytecode");
 238 }
 239 
 240 void TemplateTable::aconst_null() {
 241   transition(vtos, atos);
 242   __ li(R17_tos, 0);
 243 }
 244 
 245 void TemplateTable::iconst(int value) {
 246   transition(vtos, itos);
 247   assert(value >= -1 && value <= 5, "");
 248   __ li(R17_tos, value);
 249 }
 250 
 251 void TemplateTable::lconst(int value) {
 252   transition(vtos, ltos);
 253   assert(value >= -1 && value <= 5, "");
 254   __ li(R17_tos, value);
 255 }
 256 
 257 void TemplateTable::fconst(int value) {
 258   transition(vtos, ftos);
 259   static float zero = 0.0;
 260   static float one  = 1.0;
 261   static float two  = 2.0;
 262   switch (value) {
 263     default: ShouldNotReachHere();
 264     case 0: {
 265       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
 266       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 267       break;
 268     }
 269     case 1: {
 270       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
 271       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 272       break;
 273     }
 274     case 2: {
 275       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0, true);
 276       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 277       break;
 278     }
 279   }
 280 }
 281 
 282 void TemplateTable::dconst(int value) {
 283   transition(vtos, dtos);
 284   static double zero = 0.0;
 285   static double one  = 1.0;
 286   switch (value) {
 287     case 0: {
 288       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
 289       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
 290       break;
 291     }
 292     case 1: {
 293       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
 294       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
 295       break;
 296     }
 297     default: ShouldNotReachHere();
 298   }
 299 }
 300 
 301 void TemplateTable::bipush() {
 302   transition(vtos, itos);
 303   __ lbz(R17_tos, 1, R14_bcp);
 304   __ extsb(R17_tos, R17_tos);
 305 }
 306 
 307 void TemplateTable::sipush() {
 308   transition(vtos, itos);
 309   __ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed);
 310 }
 311 
 312 void TemplateTable::ldc(bool wide) {
 313   Register Rscratch1 = R11_scratch1,
 314            Rscratch2 = R12_scratch2,
 315            Rcpool    = R3_ARG1;
 316 
 317   transition(vtos, vtos);
 318   Label notInt, notClass, exit;
 319 
 320   __ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags.
 321   if (wide) { // Read index.
 322     __ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned);
 323   } else {
 324     __ lbz(Rscratch1, 1, R14_bcp);
 325   }
 326 
 327   const int base_offset = ConstantPool::header_size() * wordSize;
 328   const int tags_offset = Array<u1>::base_offset_in_bytes();
 329 
 330   // Get type from tags.
 331   __ addi(Rscratch2, Rscratch2, tags_offset);
 332   __ lbzx(Rscratch2, Rscratch2, Rscratch1);
 333 
 334   __ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class?
 335   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state?
 336   __ cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
 337 
 338   // Resolved class - need to call vm to get java mirror of the class.
 339   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class);
 340   __ crnor(CCR0, Assembler::equal, CCR1, Assembler::equal); // Neither resolved class nor unresolved case from above?
 341   __ beq(CCR0, notClass);
 342 
 343   __ li(R4, wide ? 1 : 0);
 344   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4);
 345   __ push(atos);
 346   __ b(exit);
 347 
 348   __ align(32, 12);
 349   __ bind(notClass);
 350   __ addi(Rcpool, Rcpool, base_offset);
 351   __ sldi(Rscratch1, Rscratch1, LogBytesPerWord);
 352   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer);
 353   __ bne(CCR0, notInt);
 354   __ lwax(R17_tos, Rcpool, Rscratch1);
 355   __ push(itos);
 356   __ b(exit);
 357 
 358   __ align(32, 12);
 359   __ bind(notInt);
 360 #ifdef ASSERT
 361   // String and Object are rewritten to fast_aldc
 362   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float);
 363   __ asm_assert_eq("unexpected type", 0x8765);
 364 #endif
 365   __ lfsx(F15_ftos, Rcpool, Rscratch1);
 366   __ push(ftos);
 367 
 368   __ align(32, 12);
 369   __ bind(exit);
 370 }
 371 
 372 // Fast path for caching oop constants.
 373 void TemplateTable::fast_aldc(bool wide) {
 374   transition(vtos, atos);
 375 
 376   int index_size = wide ? sizeof(u2) : sizeof(u1);
 377   const Register Rscratch = R11_scratch1;
 378   Label is_null;
 379 
 380   // We are resolved if the resolved reference cache entry contains a
 381   // non-null object (CallSite, etc.)
 382   __ get_cache_index_at_bcp(Rscratch, 1, index_size);  // Load index.
 383   __ load_resolved_reference_at_index(R17_tos, Rscratch, &is_null);
 384   __ verify_oop(R17_tos);
 385   __ dispatch_epilog(atos, Bytecodes::length_for(bytecode()));
 386 
 387   __ bind(is_null);
 388   __ load_const_optimized(R3_ARG1, (int)bytecode());
 389 
 390   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 391 
 392   // First time invocation - must resolve first.
 393   __ call_VM(R17_tos, entry, R3_ARG1);
 394   __ verify_oop(R17_tos);
 395 }
 396 
 397 void TemplateTable::ldc2_w() {
 398   transition(vtos, vtos);
 399   Label Llong, Lexit;
 400 
 401   Register Rindex = R11_scratch1,
 402            Rcpool = R12_scratch2,
 403            Rtag   = R3_ARG1;
 404   __ get_cpool_and_tags(Rcpool, Rtag);
 405   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
 406 
 407   const int base_offset = ConstantPool::header_size() * wordSize;
 408   const int tags_offset = Array<u1>::base_offset_in_bytes();
 409   // Get type from tags.
 410   __ addi(Rcpool, Rcpool, base_offset);
 411   __ addi(Rtag, Rtag, tags_offset);
 412 
 413   __ lbzx(Rtag, Rtag, Rindex);
 414 
 415   __ sldi(Rindex, Rindex, LogBytesPerWord);
 416   __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double);
 417   __ bne(CCR0, Llong);
 418   // A double can be placed at word-aligned locations in the constant pool.
 419   // Check out Conversions.java for an example.
 420   // Also ConstantPool::header_size() is 20, which makes it very difficult
 421   // to double-align double on the constant pool. SG, 11/7/97
 422   __ lfdx(F15_ftos, Rcpool, Rindex);
 423   __ push(dtos);
 424   __ b(Lexit);
 425 
 426   __ bind(Llong);
 427   __ ldx(R17_tos, Rcpool, Rindex);
 428   __ push(ltos);
 429 
 430   __ bind(Lexit);
 431 }
 432 
 433 // Get the locals index located in the bytecode stream at bcp + offset.
 434 void TemplateTable::locals_index(Register Rdst, int offset) {
 435   __ lbz(Rdst, offset, R14_bcp);
 436 }
 437 
 438 void TemplateTable::iload() {
 439   transition(vtos, itos);
 440 
 441   // Get the local value into tos
 442   const Register Rindex = R22_tmp2;
 443   locals_index(Rindex);
 444 
 445   // Rewrite iload,iload  pair into fast_iload2
 446   //         iload,caload pair into fast_icaload
 447   if (RewriteFrequentPairs) {
 448     Label Lrewrite, Ldone;
 449     Register Rnext_byte  = R3_ARG1,
 450              Rrewrite_to = R6_ARG4,
 451              Rscratch    = R11_scratch1;
 452 
 453     // get next byte
 454     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp);
 455 
 456     // if _iload, wait to rewrite to iload2. We only want to rewrite the
 457     // last two iloads in a pair. Comparing against fast_iload means that
 458     // the next bytecode is neither an iload or a caload, and therefore
 459     // an iload pair.
 460     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload);
 461     __ beq(CCR0, Ldone);
 462 
 463     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
 464     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2);
 465     __ beq(CCR1, Lrewrite);
 466 
 467     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload);
 468     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload);
 469     __ beq(CCR0, Lrewrite);
 470 
 471     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
 472 
 473     __ bind(Lrewrite);
 474     patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false);
 475     __ bind(Ldone);
 476   }
 477 
 478   __ load_local_int(R17_tos, Rindex, Rindex);
 479 }
 480 
 481 // Load 2 integers in a row without dispatching
 482 void TemplateTable::fast_iload2() {
 483   transition(vtos, itos);
 484 
 485   __ lbz(R3_ARG1, 1, R14_bcp);
 486   __ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp);
 487 
 488   __ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1);
 489   __ load_local_int(R17_tos, R12_scratch2, R17_tos);
 490   __ push_i(R3_ARG1);
 491 }
 492 
 493 void TemplateTable::fast_iload() {
 494   transition(vtos, itos);
 495   // Get the local value into tos
 496 
 497   const Register Rindex = R11_scratch1;
 498   locals_index(Rindex);
 499   __ load_local_int(R17_tos, Rindex, Rindex);
 500 }
 501 
 502 // Load a local variable type long from locals area to TOS cache register.
 503 // Local index resides in bytecodestream.
 504 void TemplateTable::lload() {
 505   transition(vtos, ltos);
 506 
 507   const Register Rindex = R11_scratch1;
 508   locals_index(Rindex);
 509   __ load_local_long(R17_tos, Rindex, Rindex);
 510 }
 511 
 512 void TemplateTable::fload() {
 513   transition(vtos, ftos);
 514 
 515   const Register Rindex = R11_scratch1;
 516   locals_index(Rindex);
 517   __ load_local_float(F15_ftos, Rindex, Rindex);
 518 }
 519 
 520 void TemplateTable::dload() {
 521   transition(vtos, dtos);
 522 
 523   const Register Rindex = R11_scratch1;
 524   locals_index(Rindex);
 525   __ load_local_double(F15_ftos, Rindex, Rindex);
 526 }
 527 
 528 void TemplateTable::aload() {
 529   transition(vtos, atos);
 530 
 531   const Register Rindex = R11_scratch1;
 532   locals_index(Rindex);
 533   __ load_local_ptr(R17_tos, Rindex, Rindex);
 534 }
 535 
 536 void TemplateTable::locals_index_wide(Register Rdst) {
 537   // Offset is 2, not 1, because Lbcp points to wide prefix code.
 538   __ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned);
 539 }
 540 
 541 void TemplateTable::wide_iload() {
 542   // Get the local value into tos.
 543 
 544   const Register Rindex = R11_scratch1;
 545   locals_index_wide(Rindex);
 546   __ load_local_int(R17_tos, Rindex, Rindex);
 547 }
 548 
 549 void TemplateTable::wide_lload() {
 550   transition(vtos, ltos);
 551 
 552   const Register Rindex = R11_scratch1;
 553   locals_index_wide(Rindex);
 554   __ load_local_long(R17_tos, Rindex, Rindex);
 555 }
 556 
 557 void TemplateTable::wide_fload() {
 558   transition(vtos, ftos);
 559 
 560   const Register Rindex = R11_scratch1;
 561   locals_index_wide(Rindex);
 562   __ load_local_float(F15_ftos, Rindex, Rindex);
 563 }
 564 
 565 void TemplateTable::wide_dload() {
 566   transition(vtos, dtos);
 567 
 568   const Register Rindex = R11_scratch1;
 569   locals_index_wide(Rindex);
 570   __ load_local_double(F15_ftos, Rindex, Rindex);
 571 }
 572 
 573 void TemplateTable::wide_aload() {
 574   transition(vtos, atos);
 575 
 576   const Register Rindex = R11_scratch1;
 577   locals_index_wide(Rindex);
 578   __ load_local_ptr(R17_tos, Rindex, Rindex);
 579 }
 580 
 581 void TemplateTable::iaload() {
 582   transition(itos, itos);
 583 
 584   const Register Rload_addr = R3_ARG1,
 585                  Rarray     = R4_ARG2,
 586                  Rtemp      = R5_ARG3;
 587   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
 588   __ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr);
 589 }
 590 
 591 void TemplateTable::laload() {
 592   transition(itos, ltos);
 593 
 594   const Register Rload_addr = R3_ARG1,
 595                  Rarray     = R4_ARG2,
 596                  Rtemp      = R5_ARG3;
 597   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
 598   __ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr);
 599 }
 600 
 601 void TemplateTable::faload() {
 602   transition(itos, ftos);
 603 
 604   const Register Rload_addr = R3_ARG1,
 605                  Rarray     = R4_ARG2,
 606                  Rtemp      = R5_ARG3;
 607   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
 608   __ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr);
 609 }
 610 
 611 void TemplateTable::daload() {
 612   transition(itos, dtos);
 613 
 614   const Register Rload_addr = R3_ARG1,
 615                  Rarray     = R4_ARG2,
 616                  Rtemp      = R5_ARG3;
 617   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
 618   __ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr);
 619 }
 620 
 621 void TemplateTable::aaload() {
 622   transition(itos, atos);
 623 
 624   // tos: index
 625   // result tos: array
 626   const Register Rload_addr = R3_ARG1,
 627                  Rarray     = R4_ARG2,
 628                  Rtemp      = R5_ARG3;
 629   __ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr);
 630   __ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr);
 631   __ verify_oop(R17_tos);
 632   //__ dcbt(R17_tos); // prefetch
 633 }
 634 
 635 void TemplateTable::baload() {
 636   transition(itos, itos);
 637 
 638   const Register Rload_addr = R3_ARG1,
 639                  Rarray     = R4_ARG2,
 640                  Rtemp      = R5_ARG3;
 641   __ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr);
 642   __ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr);
 643   __ extsb(R17_tos, R17_tos);
 644 }
 645 
 646 void TemplateTable::caload() {
 647   transition(itos, itos);
 648 
 649   const Register Rload_addr = R3_ARG1,
 650                  Rarray     = R4_ARG2,
 651                  Rtemp      = R5_ARG3;
 652   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 653   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
 654 }
 655 
 656 // Iload followed by caload frequent pair.
 657 void TemplateTable::fast_icaload() {
 658   transition(vtos, itos);
 659 
 660   const Register Rload_addr = R3_ARG1,
 661                  Rarray     = R4_ARG2,
 662                  Rtemp      = R11_scratch1;
 663 
 664   locals_index(R17_tos);
 665   __ load_local_int(R17_tos, Rtemp, R17_tos);
 666   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 667   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
 668 }
 669 
 670 void TemplateTable::saload() {
 671   transition(itos, itos);
 672 
 673   const Register Rload_addr = R11_scratch1,
 674                  Rarray     = R12_scratch2,
 675                  Rtemp      = R3_ARG1;
 676   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 677   __ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr);
 678 }
 679 
 680 void TemplateTable::iload(int n) {
 681   transition(vtos, itos);
 682 
 683   __ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 684 }
 685 
 686 void TemplateTable::lload(int n) {
 687   transition(vtos, ltos);
 688 
 689   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
 690 }
 691 
 692 void TemplateTable::fload(int n) {
 693   transition(vtos, ftos);
 694 
 695   __ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
 696 }
 697 
 698 void TemplateTable::dload(int n) {
 699   transition(vtos, dtos);
 700 
 701   __ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
 702 }
 703 
 704 void TemplateTable::aload(int n) {
 705   transition(vtos, atos);
 706 
 707   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 708 }
 709 
 710 void TemplateTable::aload_0() {
 711   transition(vtos, atos);
 712   // According to bytecode histograms, the pairs:
 713   //
 714   // _aload_0, _fast_igetfield
 715   // _aload_0, _fast_agetfield
 716   // _aload_0, _fast_fgetfield
 717   //
 718   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 719   // _aload_0 bytecode checks if the next bytecode is either
 720   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 721   // rewrites the current bytecode into a pair bytecode; otherwise it
 722   // rewrites the current bytecode into _0 that doesn't do
 723   // the pair check anymore.
 724   //
 725   // Note: If the next bytecode is _getfield, the rewrite must be
 726   //       delayed, otherwise we may miss an opportunity for a pair.
 727   //
 728   // Also rewrite frequent pairs
 729   //   aload_0, aload_1
 730   //   aload_0, iload_1
 731   // These bytecodes with a small amount of code are most profitable
 732   // to rewrite.
 733 
 734   if (RewriteFrequentPairs) {
 735 
 736     Label Lrewrite, Ldont_rewrite;
 737     Register Rnext_byte  = R3_ARG1,
 738              Rrewrite_to = R6_ARG4,
 739              Rscratch    = R11_scratch1;
 740 
 741     // Get next byte.
 742     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp);
 743 
 744     // If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair.
 745     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield);
 746     __ beq(CCR0, Ldont_rewrite);
 747 
 748     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield);
 749     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0);
 750     __ beq(CCR1, Lrewrite);
 751 
 752     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield);
 753     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0);
 754     __ beq(CCR0, Lrewrite);
 755 
 756     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield);
 757     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0);
 758     __ beq(CCR1, Lrewrite);
 759 
 760     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0);
 761 
 762     __ bind(Lrewrite);
 763     patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false);
 764     __ bind(Ldont_rewrite);
 765   }
 766 
 767   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
 768   aload(0);
 769 }
 770 
 771 void TemplateTable::istore() {
 772   transition(itos, vtos);
 773 
 774   const Register Rindex = R11_scratch1;
 775   locals_index(Rindex);
 776   __ store_local_int(R17_tos, Rindex);
 777 }
 778 
 779 void TemplateTable::lstore() {
 780   transition(ltos, vtos);
 781   const Register Rindex = R11_scratch1;
 782   locals_index(Rindex);
 783   __ store_local_long(R17_tos, Rindex);
 784 }
 785 
 786 void TemplateTable::fstore() {
 787   transition(ftos, vtos);
 788 
 789   const Register Rindex = R11_scratch1;
 790   locals_index(Rindex);
 791   __ store_local_float(F15_ftos, Rindex);
 792 }
 793 
 794 void TemplateTable::dstore() {
 795   transition(dtos, vtos);
 796 
 797   const Register Rindex = R11_scratch1;
 798   locals_index(Rindex);
 799   __ store_local_double(F15_ftos, Rindex);
 800 }
 801 
 802 void TemplateTable::astore() {
 803   transition(vtos, vtos);
 804 
 805   const Register Rindex = R11_scratch1;
 806   __ pop_ptr();
 807   __ verify_oop_or_return_address(R17_tos, Rindex);
 808   locals_index(Rindex);
 809   __ store_local_ptr(R17_tos, Rindex);
 810 }
 811 
 812 void TemplateTable::wide_istore() {
 813   transition(vtos, vtos);
 814 
 815   const Register Rindex = R11_scratch1;
 816   __ pop_i();
 817   locals_index_wide(Rindex);
 818   __ store_local_int(R17_tos, Rindex);
 819 }
 820 
 821 void TemplateTable::wide_lstore() {
 822   transition(vtos, vtos);
 823 
 824   const Register Rindex = R11_scratch1;
 825   __ pop_l();
 826   locals_index_wide(Rindex);
 827   __ store_local_long(R17_tos, Rindex);
 828 }
 829 
 830 void TemplateTable::wide_fstore() {
 831   transition(vtos, vtos);
 832 
 833   const Register Rindex = R11_scratch1;
 834   __ pop_f();
 835   locals_index_wide(Rindex);
 836   __ store_local_float(F15_ftos, Rindex);
 837 }
 838 
 839 void TemplateTable::wide_dstore() {
 840   transition(vtos, vtos);
 841 
 842   const Register Rindex = R11_scratch1;
 843   __ pop_d();
 844   locals_index_wide(Rindex);
 845   __ store_local_double(F15_ftos, Rindex);
 846 }
 847 
 848 void TemplateTable::wide_astore() {
 849   transition(vtos, vtos);
 850 
 851   const Register Rindex = R11_scratch1;
 852   __ pop_ptr();
 853   __ verify_oop_or_return_address(R17_tos, Rindex);
 854   locals_index_wide(Rindex);
 855   __ store_local_ptr(R17_tos, Rindex);
 856 }
 857 
 858 void TemplateTable::iastore() {
 859   transition(itos, vtos);
 860 
 861   const Register Rindex      = R3_ARG1,
 862                  Rstore_addr = R4_ARG2,
 863                  Rarray      = R5_ARG3,
 864                  Rtemp       = R6_ARG4;
 865   __ pop_i(Rindex);
 866   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
 867   __ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr);
 868   }
 869 
 870 void TemplateTable::lastore() {
 871   transition(ltos, vtos);
 872 
 873   const Register Rindex      = R3_ARG1,
 874                  Rstore_addr = R4_ARG2,
 875                  Rarray      = R5_ARG3,
 876                  Rtemp       = R6_ARG4;
 877   __ pop_i(Rindex);
 878   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
 879   __ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr);
 880   }
 881 
 882 void TemplateTable::fastore() {
 883   transition(ftos, vtos);
 884 
 885   const Register Rindex      = R3_ARG1,
 886                  Rstore_addr = R4_ARG2,
 887                  Rarray      = R5_ARG3,
 888                  Rtemp       = R6_ARG4;
 889   __ pop_i(Rindex);
 890   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
 891   __ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr);
 892   }
 893 
 894 void TemplateTable::dastore() {
 895   transition(dtos, vtos);
 896 
 897   const Register Rindex      = R3_ARG1,
 898                  Rstore_addr = R4_ARG2,
 899                  Rarray      = R5_ARG3,
 900                  Rtemp       = R6_ARG4;
 901   __ pop_i(Rindex);
 902   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
 903   __ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr);
 904   }
 905 
 906 // Pop 3 values from the stack and...
 907 void TemplateTable::aastore() {
 908   transition(vtos, vtos);
 909 
 910   Label Lstore_ok, Lis_null, Ldone;
 911   const Register Rindex    = R3_ARG1,
 912                  Rarray    = R4_ARG2,
 913                  Rscratch  = R11_scratch1,
 914                  Rscratch2 = R12_scratch2,
 915                  Rarray_klass = R5_ARG3,
 916                  Rarray_element_klass = Rarray_klass,
 917                  Rvalue_klass = R6_ARG4,
 918                  Rstore_addr = R31;    // Use register which survives VM call.
 919 
 920   __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store.
 921   __ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index.
 922   __ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp);  // Get array.
 923 
 924   __ verify_oop(R17_tos);
 925   __ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr);
 926   // Rindex is dead!
 927   Register Rscratch3 = Rindex;
 928 
 929   // Do array store check - check for NULL value first.
 930   __ cmpdi(CCR0, R17_tos, 0);
 931   __ beq(CCR0, Lis_null);
 932 
 933   __ load_klass(Rarray_klass, Rarray);
 934   __ load_klass(Rvalue_klass, R17_tos);
 935 
 936   // Do fast instanceof cache test.
 937   __ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass);
 938 
 939   // Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure.
 940   __ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok);
 941 
 942   // Fell through: subtype check failed => throw an exception.
 943   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry);
 944   __ mtctr(R11_scratch1);
 945   __ bctr();
 946 
 947   __ bind(Lis_null);
 948   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */,
 949                Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
 950   __ profile_null_seen(Rscratch, Rscratch2);
 951   __ b(Ldone);
 952 
 953   // Store is OK.
 954   __ bind(Lstore_ok);
 955   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */,
 956                Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
 957 
 958   __ bind(Ldone);
 959   // Adjust sp (pops array, index and value).
 960   __ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize);
 961 }
 962 
 963 void TemplateTable::bastore() {
 964   transition(itos, vtos);
 965 
 966   const Register Rindex   = R11_scratch1,
 967                  Rarray   = R12_scratch2,
 968                  Rscratch = R3_ARG1;
 969   __ pop_i(Rindex);
 970   // tos: val
 971   // Rarray: array ptr (popped by index_check)
 972   __ index_check(Rarray, Rindex, 0, Rscratch, Rarray);
 973   __ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray);
 974 }
 975 
 976 void TemplateTable::castore() {
 977   transition(itos, vtos);
 978 
 979   const Register Rindex   = R11_scratch1,
 980                  Rarray   = R12_scratch2,
 981                  Rscratch = R3_ARG1;
 982   __ pop_i(Rindex);
 983   // tos: val
 984   // Rarray: array ptr (popped by index_check)
 985   __ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray);
 986   __ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray);
 987 }
 988 
 989 void TemplateTable::sastore() {
 990   castore();
 991 }
 992 
 993 void TemplateTable::istore(int n) {
 994   transition(itos, vtos);
 995   __ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 996 }
 997 
 998 void TemplateTable::lstore(int n) {
 999   transition(ltos, vtos);
1000   __ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1001 }
1002 
1003 void TemplateTable::fstore(int n) {
1004   transition(ftos, vtos);
1005   __ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
1006 }
1007 
1008 void TemplateTable::dstore(int n) {
1009   transition(dtos, vtos);
1010   __ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1011 }
1012 
1013 void TemplateTable::astore(int n) {
1014   transition(vtos, vtos);
1015 
1016   __ pop_ptr();
1017   __ verify_oop_or_return_address(R17_tos, R11_scratch1);
1018   __ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
1019 }
1020 
1021 void TemplateTable::pop() {
1022   transition(vtos, vtos);
1023 
1024   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize);
1025 }
1026 
1027 void TemplateTable::pop2() {
1028   transition(vtos, vtos);
1029 
1030   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2);
1031 }
1032 
1033 void TemplateTable::dup() {
1034   transition(vtos, vtos);
1035 
1036   __ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp);
1037   __ push_ptr(R11_scratch1);
1038 }
1039 
1040 void TemplateTable::dup_x1() {
1041   transition(vtos, vtos);
1042 
1043   Register Ra = R11_scratch1,
1044            Rb = R12_scratch2;
1045   // stack: ..., a, b
1046   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1047   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1048   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1049   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1050   __ push_ptr(Rb);
1051   // stack: ..., b, a, b
1052 }
1053 
1054 void TemplateTable::dup_x2() {
1055   transition(vtos, vtos);
1056 
1057   Register Ra = R11_scratch1,
1058            Rb = R12_scratch2,
1059            Rc = R3_ARG1;
1060 
1061   // stack: ..., a, b, c
1062   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);  // load c
1063   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);  // load a
1064   __ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a
1065   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);  // load b
1066   // stack: ..., c, b, c
1067   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b
1068   // stack: ..., c, a, c
1069   __ std(Rb, Interpreter::stackElementSize,     R15_esp); // store b in c
1070   __ push_ptr(Rc);                                        // push c
1071   // stack: ..., c, a, b, c
1072 }
1073 
1074 void TemplateTable::dup2() {
1075   transition(vtos, vtos);
1076 
1077   Register Ra = R11_scratch1,
1078            Rb = R12_scratch2;
1079   // stack: ..., a, b
1080   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1081   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1082   __ push_2ptrs(Ra, Rb);
1083   // stack: ..., a, b, a, b
1084 }
1085 
1086 void TemplateTable::dup2_x1() {
1087   transition(vtos, vtos);
1088 
1089   Register Ra = R11_scratch1,
1090            Rb = R12_scratch2,
1091            Rc = R3_ARG1;
1092   // stack: ..., a, b, c
1093   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);
1094   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);
1095   __ std(Rc, Interpreter::stackElementSize * 2, R15_esp);
1096   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);
1097   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1098   __ std(Rb, Interpreter::stackElementSize * 3, R15_esp);
1099   // stack: ..., b, c, a
1100   __ push_2ptrs(Rb, Rc);
1101   // stack: ..., b, c, a, b, c
1102 }
1103 
1104 void TemplateTable::dup2_x2() {
1105   transition(vtos, vtos);
1106 
1107   Register Ra = R11_scratch1,
1108            Rb = R12_scratch2,
1109            Rc = R3_ARG1,
1110            Rd = R4_ARG2;
1111   // stack: ..., a, b, c, d
1112   __ ld(Rb, Interpreter::stackElementSize * 3, R15_esp);
1113   __ ld(Rd, Interpreter::stackElementSize,     R15_esp);
1114   __ std(Rb, Interpreter::stackElementSize,     R15_esp);  // store b in d
1115   __ std(Rd, Interpreter::stackElementSize * 3, R15_esp);  // store d in b
1116   __ ld(Ra, Interpreter::stackElementSize * 4, R15_esp);
1117   __ ld(Rc, Interpreter::stackElementSize * 2, R15_esp);
1118   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp);  // store a in c
1119   __ std(Rc, Interpreter::stackElementSize * 4, R15_esp);  // store c in a
1120   // stack: ..., c, d, a, b
1121   __ push_2ptrs(Rc, Rd);
1122   // stack: ..., c, d, a, b, c, d
1123 }
1124 
1125 void TemplateTable::swap() {
1126   transition(vtos, vtos);
1127   // stack: ..., a, b
1128 
1129   Register Ra = R11_scratch1,
1130            Rb = R12_scratch2;
1131   // stack: ..., a, b
1132   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1133   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1134   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1135   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1136   // stack: ..., b, a
1137 }
1138 
1139 void TemplateTable::iop2(Operation op) {
1140   transition(itos, itos);
1141 
1142   Register Rscratch = R11_scratch1;
1143 
1144   __ pop_i(Rscratch);
1145   // tos  = number of bits to shift
1146   // Rscratch = value to shift
1147   switch (op) {
1148     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1149     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1150     case  mul:   __ mullw(R17_tos, Rscratch, R17_tos); break;
1151     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1152     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1153     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1154     case  shl:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break;
1155     case  shr:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break;
1156     case  ushr:  __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break;
1157     default:     ShouldNotReachHere();
1158   }
1159 }
1160 
1161 void TemplateTable::lop2(Operation op) {
1162   transition(ltos, ltos);
1163 
1164   Register Rscratch = R11_scratch1;
1165   __ pop_l(Rscratch);
1166   switch (op) {
1167     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1168     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1169     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1170     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1171     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1172     default:     ShouldNotReachHere();
1173   }
1174 }
1175 
1176 void TemplateTable::idiv() {
1177   transition(itos, itos);
1178 
1179   Label Lnormal, Lexception, Ldone;
1180   Register Rdividend = R11_scratch1; // Used by irem.
1181 
1182   __ addi(R0, R17_tos, 1);
1183   __ cmplwi(CCR0, R0, 2);
1184   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1185 
1186   __ cmpwi(CCR1, R17_tos, 0);
1187   __ beq(CCR1, Lexception); // divisor == 0
1188 
1189   __ pop_i(Rdividend);
1190   __ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1
1191   __ b(Ldone);
1192 
1193   __ bind(Lexception);
1194   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1195   __ mtctr(R11_scratch1);
1196   __ bctr();
1197 
1198   __ align(32, 12);
1199   __ bind(Lnormal);
1200   __ pop_i(Rdividend);
1201   __ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1202   __ bind(Ldone);
1203 }
1204 
1205 void TemplateTable::irem() {
1206   transition(itos, itos);
1207 
1208   __ mr(R12_scratch2, R17_tos);
1209   idiv();
1210   __ mullw(R17_tos, R17_tos, R12_scratch2);
1211   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv.
1212 }
1213 
1214 void TemplateTable::lmul() {
1215   transition(ltos, ltos);
1216 
1217   __ pop_l(R11_scratch1);
1218   __ mulld(R17_tos, R11_scratch1, R17_tos);
1219 }
1220 
1221 void TemplateTable::ldiv() {
1222   transition(ltos, ltos);
1223 
1224   Label Lnormal, Lexception, Ldone;
1225   Register Rdividend = R11_scratch1; // Used by lrem.
1226 
1227   __ addi(R0, R17_tos, 1);
1228   __ cmpldi(CCR0, R0, 2);
1229   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1230 
1231   __ cmpdi(CCR1, R17_tos, 0);
1232   __ beq(CCR1, Lexception); // divisor == 0
1233 
1234   __ pop_l(Rdividend);
1235   __ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1
1236   __ b(Ldone);
1237 
1238   __ bind(Lexception);
1239   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1240   __ mtctr(R11_scratch1);
1241   __ bctr();
1242 
1243   __ align(32, 12);
1244   __ bind(Lnormal);
1245   __ pop_l(Rdividend);
1246   __ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1247   __ bind(Ldone);
1248 }
1249 
1250 void TemplateTable::lrem() {
1251   transition(ltos, ltos);
1252 
1253   __ mr(R12_scratch2, R17_tos);
1254   ldiv();
1255   __ mulld(R17_tos, R17_tos, R12_scratch2);
1256   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv.
1257 }
1258 
1259 void TemplateTable::lshl() {
1260   transition(itos, ltos);
1261 
1262   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1263   __ pop_l(R11_scratch1);
1264   __ sld(R17_tos, R11_scratch1, R17_tos);
1265 }
1266 
1267 void TemplateTable::lshr() {
1268   transition(itos, ltos);
1269 
1270   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1271   __ pop_l(R11_scratch1);
1272   __ srad(R17_tos, R11_scratch1, R17_tos);
1273 }
1274 
1275 void TemplateTable::lushr() {
1276   transition(itos, ltos);
1277 
1278   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1279   __ pop_l(R11_scratch1);
1280   __ srd(R17_tos, R11_scratch1, R17_tos);
1281 }
1282 
1283 void TemplateTable::fop2(Operation op) {
1284   transition(ftos, ftos);
1285 
1286   switch (op) {
1287     case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break;
1288     case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1289     case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break;
1290     case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1291     case rem:
1292       __ pop_f(F1_ARG1);
1293       __ fmr(F2_ARG2, F15_ftos);
1294       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1295       __ fmr(F15_ftos, F1_RET);
1296       break;
1297 
1298     default: ShouldNotReachHere();
1299   }
1300 }
1301 
1302 void TemplateTable::dop2(Operation op) {
1303   transition(dtos, dtos);
1304 
1305   switch (op) {
1306     case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break;
1307     case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break;
1308     case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break;
1309     case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break;
1310     case rem:
1311       __ pop_d(F1_ARG1);
1312       __ fmr(F2_ARG2, F15_ftos);
1313       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1314       __ fmr(F15_ftos, F1_RET);
1315       break;
1316 
1317     default: ShouldNotReachHere();
1318   }
1319 }
1320 
1321 // Negate the value in the TOS cache.
1322 void TemplateTable::ineg() {
1323   transition(itos, itos);
1324 
1325   __ neg(R17_tos, R17_tos);
1326 }
1327 
1328 // Negate the value in the TOS cache.
1329 void TemplateTable::lneg() {
1330   transition(ltos, ltos);
1331 
1332   __ neg(R17_tos, R17_tos);
1333 }
1334 
1335 void TemplateTable::fneg() {
1336   transition(ftos, ftos);
1337 
1338   __ fneg(F15_ftos, F15_ftos);
1339 }
1340 
1341 void TemplateTable::dneg() {
1342   transition(dtos, dtos);
1343 
1344   __ fneg(F15_ftos, F15_ftos);
1345 }
1346 
1347 // Increments a local variable in place.
1348 void TemplateTable::iinc() {
1349   transition(vtos, vtos);
1350 
1351   const Register Rindex     = R11_scratch1,
1352                  Rincrement = R0,
1353                  Rvalue     = R12_scratch2;
1354 
1355   locals_index(Rindex);              // Load locals index from bytecode stream.
1356   __ lbz(Rincrement, 2, R14_bcp);    // Load increment from the bytecode stream.
1357   __ extsb(Rincrement, Rincrement);
1358 
1359   __ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex.
1360 
1361   __ add(Rvalue, Rincrement, Rvalue);
1362   __ stw(Rvalue, 0, Rindex);
1363 }
1364 
1365 void TemplateTable::wide_iinc() {
1366   transition(vtos, vtos);
1367 
1368   Register Rindex       = R11_scratch1,
1369            Rlocals_addr = Rindex,
1370            Rincr        = R12_scratch2;
1371   locals_index_wide(Rindex);
1372   __ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed);
1373   __ load_local_int(R17_tos, Rlocals_addr, Rindex);
1374   __ add(R17_tos, Rincr, R17_tos);
1375   __ stw(R17_tos, 0, Rlocals_addr);
1376 }
1377 
1378 void TemplateTable::convert() {
1379   // %%%%% Factor this first part accross platforms
1380 #ifdef ASSERT
1381   TosState tos_in  = ilgl;
1382   TosState tos_out = ilgl;
1383   switch (bytecode()) {
1384     case Bytecodes::_i2l: // fall through
1385     case Bytecodes::_i2f: // fall through
1386     case Bytecodes::_i2d: // fall through
1387     case Bytecodes::_i2b: // fall through
1388     case Bytecodes::_i2c: // fall through
1389     case Bytecodes::_i2s: tos_in = itos; break;
1390     case Bytecodes::_l2i: // fall through
1391     case Bytecodes::_l2f: // fall through
1392     case Bytecodes::_l2d: tos_in = ltos; break;
1393     case Bytecodes::_f2i: // fall through
1394     case Bytecodes::_f2l: // fall through
1395     case Bytecodes::_f2d: tos_in = ftos; break;
1396     case Bytecodes::_d2i: // fall through
1397     case Bytecodes::_d2l: // fall through
1398     case Bytecodes::_d2f: tos_in = dtos; break;
1399     default             : ShouldNotReachHere();
1400   }
1401   switch (bytecode()) {
1402     case Bytecodes::_l2i: // fall through
1403     case Bytecodes::_f2i: // fall through
1404     case Bytecodes::_d2i: // fall through
1405     case Bytecodes::_i2b: // fall through
1406     case Bytecodes::_i2c: // fall through
1407     case Bytecodes::_i2s: tos_out = itos; break;
1408     case Bytecodes::_i2l: // fall through
1409     case Bytecodes::_f2l: // fall through
1410     case Bytecodes::_d2l: tos_out = ltos; break;
1411     case Bytecodes::_i2f: // fall through
1412     case Bytecodes::_l2f: // fall through
1413     case Bytecodes::_d2f: tos_out = ftos; break;
1414     case Bytecodes::_i2d: // fall through
1415     case Bytecodes::_l2d: // fall through
1416     case Bytecodes::_f2d: tos_out = dtos; break;
1417     default             : ShouldNotReachHere();
1418   }
1419   transition(tos_in, tos_out);
1420 #endif
1421 
1422   // Conversion
1423   Label done;
1424   switch (bytecode()) {
1425     case Bytecodes::_i2l:
1426       __ extsw(R17_tos, R17_tos);
1427       break;
1428 
1429     case Bytecodes::_l2i:
1430       // Nothing to do, we'll continue to work with the lower bits.
1431       break;
1432 
1433     case Bytecodes::_i2b:
1434       __ extsb(R17_tos, R17_tos);
1435       break;
1436 
1437     case Bytecodes::_i2c:
1438       __ rldicl(R17_tos, R17_tos, 0, 64-2*8);
1439       break;
1440 
1441     case Bytecodes::_i2s:
1442       __ extsh(R17_tos, R17_tos);
1443       break;
1444 
1445     case Bytecodes::_i2d:
1446       __ extsw(R17_tos, R17_tos);
1447     case Bytecodes::_l2d:
1448       __ push_l_pop_d();
1449       __ fcfid(F15_ftos, F15_ftos);
1450       break;
1451 
1452     case Bytecodes::_i2f:
1453       __ extsw(R17_tos, R17_tos);
1454       __ push_l_pop_d();
1455       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1456         // Comment: alternatively, load with sign extend could be done by lfiwax.
1457         __ fcfids(F15_ftos, F15_ftos);
1458       } else {
1459         __ fcfid(F15_ftos, F15_ftos);
1460         __ frsp(F15_ftos, F15_ftos);
1461       }
1462       break;
1463 
1464     case Bytecodes::_l2f:
1465       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1466         __ push_l_pop_d();
1467         __ fcfids(F15_ftos, F15_ftos);
1468       } else {
1469         // Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp.
1470         __ mr(R3_ARG1, R17_tos);
1471         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f));
1472         __ fmr(F15_ftos, F1_RET);
1473       }
1474       break;
1475 
1476     case Bytecodes::_f2d:
1477       // empty
1478       break;
1479 
1480     case Bytecodes::_d2f:
1481       __ frsp(F15_ftos, F15_ftos);
1482       break;
1483 
1484     case Bytecodes::_d2i:
1485     case Bytecodes::_f2i:
1486       __ fcmpu(CCR0, F15_ftos, F15_ftos);
1487       __ li(R17_tos, 0); // 0 in case of NAN
1488       __ bso(CCR0, done);
1489       __ fctiwz(F15_ftos, F15_ftos);
1490       __ push_d_pop_l();
1491       break;
1492 
1493     case Bytecodes::_d2l:
1494     case Bytecodes::_f2l:
1495       __ fcmpu(CCR0, F15_ftos, F15_ftos);
1496       __ li(R17_tos, 0); // 0 in case of NAN
1497       __ bso(CCR0, done);
1498       __ fctidz(F15_ftos, F15_ftos);
1499       __ push_d_pop_l();
1500       break;
1501 
1502     default: ShouldNotReachHere();
1503   }
1504   __ bind(done);
1505 }
1506 
1507 // Long compare
1508 void TemplateTable::lcmp() {
1509   transition(ltos, itos);
1510 
1511   const Register Rscratch = R11_scratch1;
1512   __ pop_l(Rscratch); // first operand, deeper in stack
1513 
1514   __ cmpd(CCR0, Rscratch, R17_tos); // compare
1515   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1516   __ srwi(Rscratch, R17_tos, 30);
1517   __ srawi(R17_tos, R17_tos, 31);
1518   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1519 }
1520 
1521 // fcmpl/fcmpg and dcmpl/dcmpg bytecodes
1522 // unordered_result == -1 => fcmpl or dcmpl
1523 // unordered_result ==  1 => fcmpg or dcmpg
1524 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1525   const FloatRegister Rfirst  = F0_SCRATCH,
1526                       Rsecond = F15_ftos;
1527   const Register Rscratch = R11_scratch1;
1528 
1529   if (is_float) {
1530     __ pop_f(Rfirst);
1531   } else {
1532     __ pop_d(Rfirst);
1533   }
1534 
1535   Label Lunordered, Ldone;
1536   __ fcmpu(CCR0, Rfirst, Rsecond); // compare
1537   if (unordered_result) {
1538     __ bso(CCR0, Lunordered);
1539   }
1540   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1541   __ srwi(Rscratch, R17_tos, 30);
1542   __ srawi(R17_tos, R17_tos, 31);
1543   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1544   if (unordered_result) {
1545     __ b(Ldone);
1546     __ bind(Lunordered);
1547     __ load_const_optimized(R17_tos, unordered_result);
1548   }
1549   __ bind(Ldone);
1550 }
1551 
1552 // Branch_conditional which takes TemplateTable::Condition.
1553 void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) {
1554   bool positive = false;
1555   Assembler::Condition cond = Assembler::equal;
1556   switch (cc) {
1557     case TemplateTable::equal:         positive = true ; cond = Assembler::equal  ; break;
1558     case TemplateTable::not_equal:     positive = false; cond = Assembler::equal  ; break;
1559     case TemplateTable::less:          positive = true ; cond = Assembler::less   ; break;
1560     case TemplateTable::less_equal:    positive = false; cond = Assembler::greater; break;
1561     case TemplateTable::greater:       positive = true ; cond = Assembler::greater; break;
1562     case TemplateTable::greater_equal: positive = false; cond = Assembler::less   ; break;
1563     default: ShouldNotReachHere();
1564   }
1565   int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
1566   int bi = Assembler::bi0(crx, cond);
1567   __ bc(bo, bi, L);
1568 }
1569 
1570 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1571 
1572   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1573   __ verify_thread();
1574 
1575   const Register Rscratch1    = R11_scratch1,
1576                  Rscratch2    = R12_scratch2,
1577                  Rscratch3    = R3_ARG1,
1578                  R4_counters  = R4_ARG2,
1579                  bumped_count = R31,
1580                  Rdisp        = R22_tmp2;
1581 
1582   __ profile_taken_branch(Rscratch1, bumped_count);
1583 
1584   // Get (wide) offset.
1585   if (is_wide) {
1586     __ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1587   } else {
1588     __ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1589   }
1590 
1591   // --------------------------------------------------------------------------
1592   // Handle all the JSR stuff here, then exit.
1593   // It's much shorter and cleaner than intermingling with the
1594   // non-JSR normal-branch stuff occurring below.
1595   if (is_jsr) {
1596     // Compute return address as bci in Otos_i.
1597     __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1598     __ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3));
1599     __ subf(R17_tos, Rscratch1, Rscratch2);
1600 
1601     // Bump bcp to target of JSR.
1602     __ add(R14_bcp, Rdisp, R14_bcp);
1603     // Push returnAddress for "ret" on stack.
1604     __ push_ptr(R17_tos);
1605     // And away we go!
1606     __ dispatch_next(vtos);
1607     return;
1608   }
1609 
1610   // --------------------------------------------------------------------------
1611   // Normal (non-jsr) branch handling
1612 
1613   const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1614   if (increment_invocation_counter_for_backward_branches) {
1615     //__ unimplemented("branch invocation counter");
1616 
1617     Label Lforward;
1618     __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
1619 
1620     // Check branch direction.
1621     __ cmpdi(CCR0, Rdisp, 0);
1622     __ bgt(CCR0, Lforward);
1623 
1624     __ get_method_counters(R19_method, R4_counters, Lforward);
1625 
1626     if (TieredCompilation) {
1627       Label Lno_mdo, Loverflow;
1628       const int increment = InvocationCounter::count_increment;
1629       const int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1630       if (ProfileInterpreter) {
1631         Register Rmdo = Rscratch1;
1632 
1633         // If no method data exists, go to profile_continue.
1634         __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
1635         __ cmpdi(CCR0, Rmdo, 0);
1636         __ beq(CCR0, Lno_mdo);
1637 
1638         // Increment backedge counter in the MDO.
1639         const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1640         __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
1641         __ load_const_optimized(Rscratch3, mask, R0);
1642         __ addi(Rscratch2, Rscratch2, increment);
1643         __ stw(Rscratch2, mdo_bc_offs, Rmdo);
1644         __ and_(Rscratch3, Rscratch2, Rscratch3);
1645         __ bne(CCR0, Lforward);
1646         __ b(Loverflow);
1647       }
1648 
1649       // If there's no MDO, increment counter in method.
1650       const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1651       __ bind(Lno_mdo);
1652       __ lwz(Rscratch2, mo_bc_offs, R4_counters);
1653       __ load_const_optimized(Rscratch3, mask, R0);
1654       __ addi(Rscratch2, Rscratch2, increment);
1655       __ stw(Rscratch2, mo_bc_offs, R19_method);
1656       __ and_(Rscratch3, Rscratch2, Rscratch3);
1657       __ bne(CCR0, Lforward);
1658 
1659       __ bind(Loverflow);
1660 
1661       // Notify point for loop, pass branch bytecode.
1662       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R14_bcp, true);
1663 
1664       // Was an OSR adapter generated?
1665       // O0 = osr nmethod
1666       __ cmpdi(CCR0, R3_RET, 0);
1667       __ beq(CCR0, Lforward);
1668 
1669       // Has the nmethod been invalidated already?
1670       __ lbz(R0, nmethod::state_offset(), R3_RET);
1671       __ cmpwi(CCR0, R0, nmethod::in_use);
1672       __ bne(CCR0, Lforward);
1673 
1674       // Migrate the interpreter frame off of the stack.
1675       // We can use all registers because we will not return to interpreter from this point.
1676 
1677       // Save nmethod.
1678       const Register osr_nmethod = R31;
1679       __ mr(osr_nmethod, R3_RET);
1680       __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1681       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1682       __ reset_last_Java_frame();
1683       // OSR buffer is in ARG1.
1684 
1685       // Remove the interpreter frame.
1686       __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1687 
1688       // Jump to the osr code.
1689       __ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1690       __ mtlr(R0);
1691       __ mtctr(R11_scratch1);
1692       __ bctr();
1693 
1694     } else {
1695 
1696       const Register invoke_ctr = Rscratch1;
1697       // Update Backedge branch separately from invocations.
1698       __ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3);
1699 
1700       if (ProfileInterpreter) {
1701         __ test_invocation_counter_for_mdp(invoke_ctr, Rscratch2, Lforward);
1702         if (UseOnStackReplacement) {
1703           __ test_backedge_count_for_osr(bumped_count, R14_bcp, Rscratch2);
1704         }
1705       } else {
1706         if (UseOnStackReplacement) {
1707           __ test_backedge_count_for_osr(invoke_ctr, R14_bcp, Rscratch2);
1708         }
1709       }
1710     }
1711 
1712     __ bind(Lforward);
1713 
1714   } else {
1715     // Bump bytecode pointer by displacement (take the branch).
1716     __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
1717   }
1718   // Continue with bytecode @ target.
1719   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1720   // %%%%% and changing dispatch_next to dispatch_only.
1721   __ dispatch_next(vtos);
1722 }
1723 
1724 // Helper function for if_cmp* methods below.
1725 // Factored out common compare and branch code.
1726 void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) {
1727   Label Lnot_taken;
1728   // Note: The condition code we get is the condition under which we
1729   // *fall through*! So we have to inverse the CC here.
1730 
1731   if (is_jint) {
1732     if (cmp0) {
1733       __ cmpwi(CCR0, Rfirst, 0);
1734     } else {
1735       __ cmpw(CCR0, Rfirst, Rsecond);
1736     }
1737   } else {
1738     if (cmp0) {
1739       __ cmpdi(CCR0, Rfirst, 0);
1740     } else {
1741       __ cmpd(CCR0, Rfirst, Rsecond);
1742     }
1743   }
1744   branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true);
1745 
1746   // Conition is false => Jump!
1747   branch(false, false);
1748 
1749   // Condition is not true => Continue.
1750   __ align(32, 12);
1751   __ bind(Lnot_taken);
1752   __ profile_not_taken_branch(Rscratch1, Rscratch2);
1753 }
1754 
1755 // Compare integer values with zero and fall through if CC holds, branch away otherwise.
1756 void TemplateTable::if_0cmp(Condition cc) {
1757   transition(itos, vtos);
1758 
1759   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true);
1760 }
1761 
1762 // Compare integer values and fall through if CC holds, branch away otherwise.
1763 //
1764 // Interface:
1765 //  - Rfirst: First operand  (older stack value)
1766 //  - tos:    Second operand (younger stack value)
1767 void TemplateTable::if_icmp(Condition cc) {
1768   transition(itos, vtos);
1769 
1770   const Register Rfirst  = R0,
1771                  Rsecond = R17_tos;
1772 
1773   __ pop_i(Rfirst);
1774   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false);
1775 }
1776 
1777 void TemplateTable::if_nullcmp(Condition cc) {
1778   transition(atos, vtos);
1779 
1780   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true);
1781 }
1782 
1783 void TemplateTable::if_acmp(Condition cc) {
1784   transition(atos, vtos);
1785 
1786   const Register Rfirst  = R0,
1787                  Rsecond = R17_tos;
1788 
1789   __ pop_ptr(Rfirst);
1790   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false);
1791 }
1792 
1793 void TemplateTable::ret() {
1794   locals_index(R11_scratch1);
1795   __ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1);
1796 
1797   __ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2);
1798 
1799   __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
1800   __ add(R11_scratch1, R17_tos, R11_scratch1);
1801   __ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1802   __ dispatch_next(vtos);
1803 }
1804 
1805 void TemplateTable::wide_ret() {
1806   transition(vtos, vtos);
1807 
1808   const Register Rindex = R3_ARG1,
1809                  Rscratch1 = R11_scratch1,
1810                  Rscratch2 = R12_scratch2;
1811 
1812   locals_index_wide(Rindex);
1813   __ load_local_ptr(R17_tos, R17_tos, Rindex);
1814   __ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2);
1815   // Tos now contains the bci, compute the bcp from that.
1816   __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1817   __ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset()));
1818   __ add(R14_bcp, Rscratch1, Rscratch2);
1819   __ dispatch_next(vtos);
1820 }
1821 
1822 void TemplateTable::tableswitch() {
1823   transition(itos, vtos);
1824 
1825   Label Ldispatch, Ldefault_case;
1826   Register Rlow_byte         = R3_ARG1,
1827            Rindex            = Rlow_byte,
1828            Rhigh_byte        = R4_ARG2,
1829            Rdef_offset_addr  = R5_ARG3, // is going to contain address of default offset
1830            Rscratch1         = R11_scratch1,
1831            Rscratch2         = R12_scratch2,
1832            Roffset           = R6_ARG4;
1833 
1834   // Align bcp.
1835   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
1836   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
1837 
1838   // Load lo & hi.
1839   __ get_u4(Rlow_byte, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
1840   __ get_u4(Rhigh_byte, Rdef_offset_addr, 2 *BytesPerInt, InterpreterMacroAssembler::Unsigned);
1841 
1842   // Check for default case (=index outside [low,high]).
1843   __ cmpw(CCR0, R17_tos, Rlow_byte);
1844   __ cmpw(CCR1, R17_tos, Rhigh_byte);
1845   __ blt(CCR0, Ldefault_case);
1846   __ bgt(CCR1, Ldefault_case);
1847 
1848   // Lookup dispatch offset.
1849   __ sub(Rindex, R17_tos, Rlow_byte);
1850   __ extsw(Rindex, Rindex);
1851   __ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2);
1852   __ sldi(Rindex, Rindex, LogBytesPerInt);
1853   __ addi(Rindex, Rindex, 3 * BytesPerInt);
1854 #if defined(VM_LITTLE_ENDIAN)
1855   __ lwbrx(Roffset, Rdef_offset_addr, Rindex);
1856   __ extsw(Roffset, Roffset);
1857 #else
1858   __ lwax(Roffset, Rdef_offset_addr, Rindex);
1859 #endif
1860   __ b(Ldispatch);
1861 
1862   __ bind(Ldefault_case);
1863   __ profile_switch_default(Rhigh_byte, Rscratch1);
1864   __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
1865 
1866   __ bind(Ldispatch);
1867 
1868   __ add(R14_bcp, Roffset, R14_bcp);
1869   __ dispatch_next(vtos);
1870 }
1871 
1872 void TemplateTable::lookupswitch() {
1873   transition(itos, itos);
1874   __ stop("lookupswitch bytecode should have been rewritten");
1875 }
1876 
1877 // Table switch using linear search through cases.
1878 // Bytecode stream format:
1879 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
1880 // Note: Everything is big-endian format here.
1881 void TemplateTable::fast_linearswitch() {
1882   transition(itos, vtos);
1883 
1884   Label Lloop_entry, Lsearch_loop, Lcontinue_execution, Ldefault_case;
1885   Register Rcount           = R3_ARG1,
1886            Rcurrent_pair    = R4_ARG2,
1887            Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset.
1888            Roffset          = R31,     // Might need to survive C call.
1889            Rvalue           = R12_scratch2,
1890            Rscratch         = R11_scratch1,
1891            Rcmp_value       = R17_tos;
1892 
1893   // Align bcp.
1894   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
1895   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
1896 
1897   // Setup loop counter and limit.
1898   __ get_u4(Rcount, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
1899   __ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair.
1900 
1901   __ mtctr(Rcount);
1902   __ cmpwi(CCR0, Rcount, 0);
1903   __ bne(CCR0, Lloop_entry);
1904 
1905   // Default case
1906   __ bind(Ldefault_case);
1907   __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
1908   if (ProfileInterpreter) {
1909     __ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */);
1910   }
1911   __ b(Lcontinue_execution);
1912 
1913   // Next iteration
1914   __ bind(Lsearch_loop);
1915   __ bdz(Ldefault_case);
1916   __ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt);
1917   __ bind(Lloop_entry);
1918   __ get_u4(Rvalue, Rcurrent_pair, 0, InterpreterMacroAssembler::Unsigned);
1919   __ cmpw(CCR0, Rvalue, Rcmp_value);
1920   __ bne(CCR0, Lsearch_loop);
1921 
1922   // Found, load offset.
1923   __ get_u4(Roffset, Rcurrent_pair, BytesPerInt, InterpreterMacroAssembler::Signed);
1924   // Calculate case index and profile
1925   __ mfctr(Rcurrent_pair);
1926   if (ProfileInterpreter) {
1927     __ sub(Rcurrent_pair, Rcount, Rcurrent_pair);
1928     __ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch);
1929   }
1930 
1931   __ bind(Lcontinue_execution);
1932   __ add(R14_bcp, Roffset, R14_bcp);
1933   __ dispatch_next(vtos);
1934 }
1935 
1936 // Table switch using binary search (value/offset pairs are ordered).
1937 // Bytecode stream format:
1938 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
1939 // Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
1940 void TemplateTable::fast_binaryswitch() {
1941 
1942   transition(itos, vtos);
1943   // Implementation using the following core algorithm: (copied from Intel)
1944   //
1945   // int binary_search(int key, LookupswitchPair* array, int n) {
1946   //   // Binary search according to "Methodik des Programmierens" by
1947   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1948   //   int i = 0;
1949   //   int j = n;
1950   //   while (i+1 < j) {
1951   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1952   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1953   //     // where a stands for the array and assuming that the (inexisting)
1954   //     // element a[n] is infinitely big.
1955   //     int h = (i + j) >> 1;
1956   //     // i < h < j
1957   //     if (key < array[h].fast_match()) {
1958   //       j = h;
1959   //     } else {
1960   //       i = h;
1961   //     }
1962   //   }
1963   //   // R: a[i] <= key < a[i+1] or Q
1964   //   // (i.e., if key is within array, i is the correct index)
1965   //   return i;
1966   // }
1967 
1968   // register allocation
1969   const Register Rkey     = R17_tos;          // already set (tosca)
1970   const Register Rarray   = R3_ARG1;
1971   const Register Ri       = R4_ARG2;
1972   const Register Rj       = R5_ARG3;
1973   const Register Rh       = R6_ARG4;
1974   const Register Rscratch = R11_scratch1;
1975 
1976   const int log_entry_size = 3;
1977   const int entry_size = 1 << log_entry_size;
1978 
1979   Label found;
1980 
1981   // Find Array start,
1982   __ addi(Rarray, R14_bcp, 3 * BytesPerInt);
1983   __ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt));
1984 
1985   // initialize i & j
1986   __ li(Ri,0);
1987   __ get_u4(Rj, Rarray, -BytesPerInt, InterpreterMacroAssembler::Unsigned);
1988 
1989   // and start.
1990   Label entry;
1991   __ b(entry);
1992 
1993   // binary search loop
1994   { Label loop;
1995     __ bind(loop);
1996     // int h = (i + j) >> 1;
1997     __ srdi(Rh, Rh, 1);
1998     // if (key < array[h].fast_match()) {
1999     //   j = h;
2000     // } else {
2001     //   i = h;
2002     // }
2003     __ sldi(Rscratch, Rh, log_entry_size);
2004 #if defined(VM_LITTLE_ENDIAN)
2005     __ lwbrx(Rscratch, Rscratch, Rarray);
2006 #else
2007     __ lwzx(Rscratch, Rscratch, Rarray);
2008 #endif
2009 
2010     // if (key < current value)
2011     //   Rh = Rj
2012     // else
2013     //   Rh = Ri
2014     Label Lgreater;
2015     __ cmpw(CCR0, Rkey, Rscratch);
2016     __ bge(CCR0, Lgreater);
2017     __ mr(Rj, Rh);
2018     __ b(entry);
2019     __ bind(Lgreater);
2020     __ mr(Ri, Rh);
2021 
2022     // while (i+1 < j)
2023     __ bind(entry);
2024     __ addi(Rscratch, Ri, 1);
2025     __ cmpw(CCR0, Rscratch, Rj);
2026     __ add(Rh, Ri, Rj); // start h = i + j >> 1;
2027 
2028     __ blt(CCR0, loop);
2029   }
2030 
2031   // End of binary search, result index is i (must check again!).
2032   Label default_case;
2033   Label continue_execution;
2034   if (ProfileInterpreter) {
2035     __ mr(Rh, Ri);              // Save index in i for profiling.
2036   }
2037   // Ri = value offset
2038   __ sldi(Ri, Ri, log_entry_size);
2039   __ add(Ri, Ri, Rarray);
2040   __ get_u4(Rscratch, Ri, 0, InterpreterMacroAssembler::Unsigned);
2041 
2042   Label not_found;
2043   // Ri = offset offset
2044   __ cmpw(CCR0, Rkey, Rscratch);
2045   __ beq(CCR0, not_found);
2046   // entry not found -> j = default offset
2047   __ get_u4(Rj, Rarray, -2 * BytesPerInt, InterpreterMacroAssembler::Unsigned);
2048   __ b(default_case);
2049 
2050   __ bind(not_found);
2051   // entry found -> j = offset
2052   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
2053   __ get_u4(Rj, Ri, BytesPerInt, InterpreterMacroAssembler::Unsigned);
2054 
2055   if (ProfileInterpreter) {
2056     __ b(continue_execution);
2057   }
2058 
2059   __ bind(default_case); // fall through (if not profiling)
2060   __ profile_switch_default(Ri, Rscratch);
2061 
2062   __ bind(continue_execution);
2063 
2064   __ extsw(Rj, Rj);
2065   __ add(R14_bcp, Rj, R14_bcp);
2066   __ dispatch_next(vtos);
2067 }
2068 
2069 void TemplateTable::_return(TosState state) {
2070   transition(state, state);
2071   assert(_desc->calls_vm(),
2072          "inconsistent calls_vm information"); // call in remove_activation
2073 
2074   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2075 
2076     Register Rscratch     = R11_scratch1,
2077              Rklass       = R12_scratch2,
2078              Rklass_flags = Rklass;
2079     Label Lskip_register_finalizer;
2080 
2081     // Check if the method has the FINALIZER flag set and call into the VM to finalize in this case.
2082     assert(state == vtos, "only valid state");
2083     __ ld(R17_tos, 0, R18_locals);
2084 
2085     // Load klass of this obj.
2086     __ load_klass(Rklass, R17_tos);
2087     __ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass);
2088     __ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER));
2089     __ bfalse(CCR0, Lskip_register_finalizer);
2090 
2091     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */);
2092 
2093     __ align(32, 12);
2094     __ bind(Lskip_register_finalizer);
2095   }
2096 
2097   // Move the result value into the correct register and remove memory stack frame.
2098   __ remove_activation(state, /* throw_monitor_exception */ true);
2099   // Restoration of lr done by remove_activation.
2100   switch (state) {
2101     case ltos:
2102     case btos:
2103     case ctos:
2104     case stos:
2105     case atos:
2106     case itos: __ mr(R3_RET, R17_tos); break;
2107     case ftos:
2108     case dtos: __ fmr(F1_RET, F15_ftos); break;
2109     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2110                // to get visible before the reference to the object gets stored anywhere.
2111                __ membar(Assembler::StoreStore); break;
2112     default  : ShouldNotReachHere();
2113   }
2114   __ blr();
2115 }
2116 
2117 // ============================================================================
2118 // Constant pool cache access
2119 //
2120 // Memory ordering:
2121 //
2122 // Like done in C++ interpreter, we load the fields
2123 //   - _indices
2124 //   - _f12_oop
2125 // acquired, because these are asked if the cache is already resolved. We don't
2126 // want to float loads above this check.
2127 // See also comments in ConstantPoolCacheEntry::bytecode_1(),
2128 // ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1();
2129 
2130 // Call into the VM if call site is not yet resolved
2131 //
2132 // Input regs:
2133 //   - None, all passed regs are outputs.
2134 //
2135 // Returns:
2136 //   - Rcache:  The const pool cache entry that contains the resolved result.
2137 //   - Rresult: Either noreg or output for f1/f2.
2138 //
2139 // Kills:
2140 //   - Rscratch
2141 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) {
2142 
2143   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2144   Label Lresolved, Ldone;
2145 
2146   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2147   // We are resolved if the indices offset contains the current bytecode.
2148 #if defined(VM_LITTLE_ENDIAN)
2149   __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + byte_no + 1, Rcache);
2150 #else
2151   __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache);
2152 #endif
2153   // Acquire by cmp-br-isync (see below).
2154   __ cmpdi(CCR0, Rscratch, (int)bytecode());
2155   __ beq(CCR0, Lresolved);
2156 
2157   address entry = NULL;
2158   switch (bytecode()) {
2159     case Bytecodes::_getstatic      : // fall through
2160     case Bytecodes::_putstatic      : // fall through
2161     case Bytecodes::_getfield       : // fall through
2162     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2163     case Bytecodes::_invokevirtual  : // fall through
2164     case Bytecodes::_invokespecial  : // fall through
2165     case Bytecodes::_invokestatic   : // fall through
2166     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break;
2167     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break;
2168     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
2169     default                         : ShouldNotReachHere(); break;
2170   }
2171   __ li(R4_ARG2, (int)bytecode());
2172   __ call_VM(noreg, entry, R4_ARG2, true);
2173 
2174   // Update registers with resolved info.
2175   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2176   __ b(Ldone);
2177 
2178   __ bind(Lresolved);
2179   __ isync(); // Order load wrt. succeeding loads.
2180   __ bind(Ldone);
2181 }
2182 
2183 // Load the constant pool cache entry at field accesses into registers.
2184 // The Rcache and Rindex registers must be set before call.
2185 // Input:
2186 //   - Rcache, Rindex
2187 // Output:
2188 //   - Robj, Roffset, Rflags
2189 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2190                                               Register Rcache,
2191                                               Register Rindex /* unused on PPC64 */,
2192                                               Register Roffset,
2193                                               Register Rflags,
2194                                               bool is_static = false) {
2195   assert_different_registers(Rcache, Rflags, Roffset);
2196   // assert(Rindex == noreg, "parameter not used on PPC64");
2197 
2198   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2199   __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache);
2200   __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache);
2201   if (is_static) {
2202     __ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache);
2203     __ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj);
2204     // Acquire not needed here. Following access has an address dependency on this value.
2205   }
2206 }
2207 
2208 // Load the constant pool cache entry at invokes into registers.
2209 // Resolve if necessary.
2210 
2211 // Input Registers:
2212 //   - None, bcp is used, though
2213 //
2214 // Return registers:
2215 //   - Rmethod       (f1 field or f2 if invokevirtual)
2216 //   - Ritable_index (f2 field)
2217 //   - Rflags        (flags field)
2218 //
2219 // Kills:
2220 //   - R21
2221 //
2222 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2223                                                Register Rmethod,
2224                                                Register Ritable_index,
2225                                                Register Rflags,
2226                                                bool is_invokevirtual,
2227                                                bool is_invokevfinal,
2228                                                bool is_invokedynamic) {
2229 
2230   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2231   // Determine constant pool cache field offsets.
2232   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2233   const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset()));
2234   const int flags_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset());
2235   // Access constant pool cache fields.
2236   const int index_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset());
2237 
2238   Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP.
2239 
2240   if (is_invokevfinal) {
2241     assert(Ritable_index == noreg, "register not used");
2242     // Already resolved.
2243     __ get_cache_and_index_at_bcp(Rcache, 1);
2244   } else {
2245     resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2));
2246   }
2247 
2248   __ ld(Rmethod, method_offset, Rcache);
2249   __ ld(Rflags, flags_offset, Rcache);
2250 
2251   if (Ritable_index != noreg) {
2252     __ ld(Ritable_index, index_offset, Rcache);
2253   }
2254 }
2255 
2256 // ============================================================================
2257 // Field access
2258 
2259 // Volatile variables demand their effects be made known to all CPU's
2260 // in order. Store buffers on most chips allow reads & writes to
2261 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2262 // without some kind of memory barrier (i.e., it's not sufficient that
2263 // the interpreter does not reorder volatile references, the hardware
2264 // also must not reorder them).
2265 //
2266 // According to the new Java Memory Model (JMM):
2267 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2268 //     writes act as aquire & release, so:
2269 // (2) A read cannot let unrelated NON-volatile memory refs that
2270 //     happen after the read float up to before the read. It's OK for
2271 //     non-volatile memory refs that happen before the volatile read to
2272 //     float down below it.
2273 // (3) Similar a volatile write cannot let unrelated NON-volatile
2274 //     memory refs that happen BEFORE the write float down to after the
2275 //     write. It's OK for non-volatile memory refs that happen after the
2276 //     volatile write to float up before it.
2277 //
2278 // We only put in barriers around volatile refs (they are expensive),
2279 // not _between_ memory refs (that would require us to track the
2280 // flavor of the previous memory refs). Requirements (2) and (3)
2281 // require some barriers before volatile stores and after volatile
2282 // loads. These nearly cover requirement (1) but miss the
2283 // volatile-store-volatile-load case.  This final case is placed after
2284 // volatile-stores although it could just as well go before
2285 // volatile-loads.
2286 
2287 // The registers cache and index expected to be set before call.
2288 // Correct values of the cache and index registers are preserved.
2289 // Kills:
2290 //   Rcache (if has_tos)
2291 //   Rscratch
2292 void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) {
2293 
2294   assert_different_registers(Rcache, Rscratch);
2295 
2296   if (JvmtiExport::can_post_field_access()) {
2297     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2298     Label Lno_field_access_post;
2299 
2300     // Check if post field access in enabled.
2301     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true);
2302     __ lwz(Rscratch, offs, Rscratch);
2303 
2304     __ cmpwi(CCR0, Rscratch, 0);
2305     __ beq(CCR0, Lno_field_access_post);
2306 
2307     // Post access enabled - do it!
2308     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2309     if (is_static) {
2310       __ li(R17_tos, 0);
2311     } else {
2312       if (has_tos) {
2313         // The fast bytecode versions have obj ptr in register.
2314         // Thus, save object pointer before call_VM() clobbers it
2315         // put object on tos where GC wants it.
2316         __ push_ptr(R17_tos);
2317       } else {
2318         // Load top of stack (do not pop the value off the stack).
2319         __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp);
2320       }
2321       __ verify_oop(R17_tos);
2322     }
2323     // tos:   object pointer or NULL if static
2324     // cache: cache entry pointer
2325     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache);
2326     if (!is_static && has_tos) {
2327       // Restore object pointer.
2328       __ pop_ptr(R17_tos);
2329       __ verify_oop(R17_tos);
2330     } else {
2331       // Cache is still needed to get class or obj.
2332       __ get_cache_and_index_at_bcp(Rcache, 1);
2333     }
2334 
2335     __ align(32, 12);
2336     __ bind(Lno_field_access_post);
2337   }
2338 }
2339 
2340 // kills R11_scratch1
2341 void TemplateTable::pop_and_check_object(Register Roop) {
2342   Register Rtmp = R11_scratch1;
2343 
2344   assert_different_registers(Rtmp, Roop);
2345   __ pop_ptr(Roop);
2346   // For field access must check obj.
2347   __ null_check_throw(Roop, -1, Rtmp);
2348   __ verify_oop(Roop);
2349 }
2350 
2351 // PPC64: implement volatile loads as fence-store-acquire.
2352 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2353   transition(vtos, vtos);
2354 
2355   Label Lacquire, Lisync;
2356 
2357   const Register Rcache        = R3_ARG1,
2358                  Rclass_or_obj = R22_tmp2,
2359                  Roffset       = R23_tmp3,
2360                  Rflags        = R31,
2361                  Rbtable       = R5_ARG3,
2362                  Rbc           = R6_ARG4,
2363                  Rscratch      = R12_scratch2;
2364 
2365   static address field_branch_table[number_of_states],
2366                  static_branch_table[number_of_states];
2367 
2368   address* branch_table = is_static ? static_branch_table : field_branch_table;
2369 
2370   // Get field offset.
2371   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2372 
2373   // JVMTI support
2374   jvmti_post_field_access(Rcache, Rscratch, is_static, false);
2375 
2376   // Load after possible GC.
2377   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2378 
2379   // Load pointer to branch table.
2380   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2381 
2382   // Get volatile flag.
2383   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2384   // Note: sync is needed before volatile load on PPC64.
2385 
2386   // Check field type.
2387   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2388 
2389 #ifdef ASSERT
2390   Label LFlagInvalid;
2391   __ cmpldi(CCR0, Rflags, number_of_states);
2392   __ bge(CCR0, LFlagInvalid);
2393 #endif
2394 
2395   // Load from branch table and dispatch (volatile case: one instruction ahead).
2396   __ sldi(Rflags, Rflags, LogBytesPerWord);
2397   __ cmpwi(CCR6, Rscratch, 1); // Volatile?
2398   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2399     __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0.
2400   }
2401   __ ldx(Rbtable, Rbtable, Rflags);
2402 
2403   // Get the obj from stack.
2404   if (!is_static) {
2405     pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
2406   } else {
2407     __ verify_oop(Rclass_or_obj);
2408   }
2409 
2410   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2411     __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2412   }
2413   __ mtctr(Rbtable);
2414   __ bctr();
2415 
2416 #ifdef ASSERT
2417   __ bind(LFlagInvalid);
2418   __ stop("got invalid flag", 0x654);
2419 
2420   // __ bind(Lvtos);
2421   address pc_before_fence = __ pc();
2422   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2423   assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2424   assert(branch_table[vtos] == 0, "can't compute twice");
2425   branch_table[vtos] = __ pc(); // non-volatile_entry point
2426   __ stop("vtos unexpected", 0x655);
2427 #endif
2428 
2429   __ align(32, 28, 28); // Align load.
2430   // __ bind(Ldtos);
2431   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2432   assert(branch_table[dtos] == 0, "can't compute twice");
2433   branch_table[dtos] = __ pc(); // non-volatile_entry point
2434   __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
2435   __ push(dtos);
2436   if (!is_static) patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch);
2437   {
2438     Label acquire_double;
2439     __ beq(CCR6, acquire_double); // Volatile?
2440     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2441 
2442     __ bind(acquire_double);
2443     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2444     __ beq_predict_taken(CCR0, Lisync);
2445     __ b(Lisync); // In case of NAN.
2446   }
2447 
2448   __ align(32, 28, 28); // Align load.
2449   // __ bind(Lftos);
2450   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2451   assert(branch_table[ftos] == 0, "can't compute twice");
2452   branch_table[ftos] = __ pc(); // non-volatile_entry point
2453   __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
2454   __ push(ftos);
2455   if (!is_static) { patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch); }
2456   {
2457     Label acquire_float;
2458     __ beq(CCR6, acquire_float); // Volatile?
2459     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2460 
2461     __ bind(acquire_float);
2462     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2463     __ beq_predict_taken(CCR0, Lisync);
2464     __ b(Lisync); // In case of NAN.
2465   }
2466 
2467   __ align(32, 28, 28); // Align load.
2468   // __ bind(Litos);
2469   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2470   assert(branch_table[itos] == 0, "can't compute twice");
2471   branch_table[itos] = __ pc(); // non-volatile_entry point
2472   __ lwax(R17_tos, Rclass_or_obj, Roffset);
2473   __ push(itos);
2474   if (!is_static) patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch);
2475   __ beq(CCR6, Lacquire); // Volatile?
2476   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2477 
2478   __ align(32, 28, 28); // Align load.
2479   // __ bind(Lltos);
2480   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2481   assert(branch_table[ltos] == 0, "can't compute twice");
2482   branch_table[ltos] = __ pc(); // non-volatile_entry point
2483   __ ldx(R17_tos, Rclass_or_obj, Roffset);
2484   __ push(ltos);
2485   if (!is_static) patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch);
2486   __ beq(CCR6, Lacquire); // Volatile?
2487   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2488 
2489   __ align(32, 28, 28); // Align load.
2490   // __ bind(Lbtos);
2491   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2492   assert(branch_table[btos] == 0, "can't compute twice");
2493   branch_table[btos] = __ pc(); // non-volatile_entry point
2494   __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2495   __ extsb(R17_tos, R17_tos);
2496   __ push(btos);
2497   if (!is_static) patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
2498   __ beq(CCR6, Lacquire); // Volatile?
2499   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2500 
2501   __ align(32, 28, 28); // Align load.
2502   // __ bind(Lctos);
2503   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2504   assert(branch_table[ctos] == 0, "can't compute twice");
2505   branch_table[ctos] = __ pc(); // non-volatile_entry point
2506   __ lhzx(R17_tos, Rclass_or_obj, Roffset);
2507   __ push(ctos);
2508   if (!is_static) patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch);
2509   __ beq(CCR6, Lacquire); // Volatile?
2510   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2511 
2512   __ align(32, 28, 28); // Align load.
2513   // __ bind(Lstos);
2514   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2515   assert(branch_table[stos] == 0, "can't compute twice");
2516   branch_table[stos] = __ pc(); // non-volatile_entry point
2517   __ lhax(R17_tos, Rclass_or_obj, Roffset);
2518   __ push(stos);
2519   if (!is_static) patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch);
2520   __ beq(CCR6, Lacquire); // Volatile?
2521   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2522 
2523   __ align(32, 28, 28); // Align load.
2524   // __ bind(Latos);
2525   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2526   assert(branch_table[atos] == 0, "can't compute twice");
2527   branch_table[atos] = __ pc(); // non-volatile_entry point
2528   __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2529   __ verify_oop(R17_tos);
2530   __ push(atos);
2531   //__ dcbt(R17_tos); // prefetch
2532   if (!is_static) patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch);
2533   __ beq(CCR6, Lacquire); // Volatile?
2534   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2535 
2536   __ align(32, 12);
2537   __ bind(Lacquire);
2538   __ twi_0(R17_tos);
2539   __ bind(Lisync);
2540   __ isync(); // acquire
2541 
2542 #ifdef ASSERT
2543   for (int i = 0; i<number_of_states; ++i) {
2544     assert(branch_table[i], "get initialization");
2545     //tty->print_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
2546     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
2547   }
2548 #endif
2549 }
2550 
2551 void TemplateTable::getfield(int byte_no) {
2552   getfield_or_static(byte_no, false);
2553 }
2554 
2555 void TemplateTable::getstatic(int byte_no) {
2556   getfield_or_static(byte_no, true);
2557 }
2558 
2559 // The registers cache and index expected to be set before call.
2560 // The function may destroy various registers, just not the cache and index registers.
2561 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) {
2562 
2563   assert_different_registers(Rcache, Rscratch, R6_ARG4);
2564 
2565   if (JvmtiExport::can_post_field_modification()) {
2566     Label Lno_field_mod_post;
2567 
2568     // Check if post field access in enabled.
2569     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true);
2570     __ lwz(Rscratch, offs, Rscratch);
2571 
2572     __ cmpwi(CCR0, Rscratch, 0);
2573     __ beq(CCR0, Lno_field_mod_post);
2574 
2575     // Do the post
2576     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2577     const Register Robj = Rscratch;
2578 
2579     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2580     if (is_static) {
2581       // Life is simple. Null out the object pointer.
2582       __ li(Robj, 0);
2583     } else {
2584       // In case of the fast versions, value lives in registers => put it back on tos.
2585       int offs = Interpreter::expr_offset_in_bytes(0);
2586       Register base = R15_esp;
2587       switch(bytecode()) {
2588         case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break;
2589         case Bytecodes::_fast_iputfield: // Fall through
2590         case Bytecodes::_fast_bputfield: // Fall through
2591         case Bytecodes::_fast_cputfield: // Fall through
2592         case Bytecodes::_fast_sputfield: __ push_i(); offs+=  Interpreter::stackElementSize; break;
2593         case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break;
2594         case Bytecodes::_fast_fputfield: __ push_f(); offs+=  Interpreter::stackElementSize; break;
2595         case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break;
2596         default: {
2597           offs = 0;
2598           base = Robj;
2599           const Register Rflags = Robj;
2600           Label is_one_slot;
2601           // Life is harder. The stack holds the value on top, followed by the
2602           // object. We don't know the size of the value, though; it could be
2603           // one or two words depending on its type. As a result, we must find
2604           // the type to determine where the object is.
2605           __ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian
2606           __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2607 
2608           __ cmpwi(CCR0, Rflags, ltos);
2609           __ cmpwi(CCR1, Rflags, dtos);
2610           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1));
2611           __ crnor(CCR0, Assembler::equal, CCR1, Assembler::equal);
2612           __ beq(CCR0, is_one_slot);
2613           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2));
2614           __ bind(is_one_slot);
2615           break;
2616         }
2617       }
2618       __ ld(Robj, offs, base);
2619       __ verify_oop(Robj);
2620     }
2621 
2622     __ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0));
2623     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4);
2624     __ get_cache_and_index_at_bcp(Rcache, 1);
2625 
2626     // In case of the fast versions, value lives in registers => put it back on tos.
2627     switch(bytecode()) {
2628       case Bytecodes::_fast_aputfield: __ pop_ptr(); break;
2629       case Bytecodes::_fast_iputfield: // Fall through
2630       case Bytecodes::_fast_bputfield: // Fall through
2631       case Bytecodes::_fast_cputfield: // Fall through
2632       case Bytecodes::_fast_sputfield: __ pop_i(); break;
2633       case Bytecodes::_fast_lputfield: __ pop_l(); break;
2634       case Bytecodes::_fast_fputfield: __ pop_f(); break;
2635       case Bytecodes::_fast_dputfield: __ pop_d(); break;
2636       default: break; // Nothin' to do.
2637     }
2638 
2639     __ align(32, 12);
2640     __ bind(Lno_field_mod_post);
2641   }
2642 }
2643 
2644 // PPC64: implement volatile stores as release-store (return bytecode contains an additional release).
2645 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2646   Label Lvolatile;
2647 
2648   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
2649                  Rclass_or_obj = R31,      // Needs to survive C call.
2650                  Roffset       = R22_tmp2, // Needs to survive C call.
2651                  Rflags        = R3_ARG1,
2652                  Rbtable       = R4_ARG2,
2653                  Rscratch      = R11_scratch1,
2654                  Rscratch2     = R12_scratch2,
2655                  Rscratch3     = R6_ARG4,
2656                  Rbc           = Rscratch3;
2657   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
2658 
2659   static address field_branch_table[number_of_states],
2660                  static_branch_table[number_of_states];
2661 
2662   address* branch_table = is_static ? static_branch_table : field_branch_table;
2663 
2664   // Stack (grows up):
2665   //  value
2666   //  obj
2667 
2668   // Load the field offset.
2669   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2670   jvmti_post_field_mod(Rcache, Rscratch, is_static);
2671   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2672 
2673   // Load pointer to branch table.
2674   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2675 
2676   // Get volatile flag.
2677   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2678 
2679   // Check the field type.
2680   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2681 
2682 #ifdef ASSERT
2683   Label LFlagInvalid;
2684   __ cmpldi(CCR0, Rflags, number_of_states);
2685   __ bge(CCR0, LFlagInvalid);
2686 #endif
2687 
2688   // Load from branch table and dispatch (volatile case: one instruction ahead).
2689   __ sldi(Rflags, Rflags, LogBytesPerWord);
2690   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpwi(CR_is_vol, Rscratch, 1); } // Volatile?
2691   __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0.
2692   __ ldx(Rbtable, Rbtable, Rflags);
2693 
2694   __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2695   __ mtctr(Rbtable);
2696   __ bctr();
2697 
2698 #ifdef ASSERT
2699   __ bind(LFlagInvalid);
2700   __ stop("got invalid flag", 0x656);
2701 
2702   // __ bind(Lvtos);
2703   address pc_before_release = __ pc();
2704   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2705   assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2706   assert(branch_table[vtos] == 0, "can't compute twice");
2707   branch_table[vtos] = __ pc(); // non-volatile_entry point
2708   __ stop("vtos unexpected", 0x657);
2709 #endif
2710 
2711   __ align(32, 28, 28); // Align pop.
2712   // __ bind(Ldtos);
2713   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2714   assert(branch_table[dtos] == 0, "can't compute twice");
2715   branch_table[dtos] = __ pc(); // non-volatile_entry point
2716   __ pop(dtos);
2717   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2718   __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
2719   if (!is_static) { patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no); }
2720   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2721     __ beq(CR_is_vol, Lvolatile); // Volatile?
2722   }
2723   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2724 
2725   __ align(32, 28, 28); // Align pop.
2726   // __ bind(Lftos);
2727   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2728   assert(branch_table[ftos] == 0, "can't compute twice");
2729   branch_table[ftos] = __ pc(); // non-volatile_entry point
2730   __ pop(ftos);
2731   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2732   __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
2733   if (!is_static) { patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no); }
2734   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2735     __ beq(CR_is_vol, Lvolatile); // Volatile?
2736   }
2737   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2738 
2739   __ align(32, 28, 28); // Align pop.
2740   // __ bind(Litos);
2741   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2742   assert(branch_table[itos] == 0, "can't compute twice");
2743   branch_table[itos] = __ pc(); // non-volatile_entry point
2744   __ pop(itos);
2745   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2746   __ stwx(R17_tos, Rclass_or_obj, Roffset);
2747   if (!is_static) { patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no); }
2748   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2749     __ beq(CR_is_vol, Lvolatile); // Volatile?
2750   }
2751   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2752 
2753   __ align(32, 28, 28); // Align pop.
2754   // __ bind(Lltos);
2755   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2756   assert(branch_table[ltos] == 0, "can't compute twice");
2757   branch_table[ltos] = __ pc(); // non-volatile_entry point
2758   __ pop(ltos);
2759   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2760   __ stdx(R17_tos, Rclass_or_obj, Roffset);
2761   if (!is_static) { patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no); }
2762   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2763     __ beq(CR_is_vol, Lvolatile); // Volatile?
2764   }
2765   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2766 
2767   __ align(32, 28, 28); // Align pop.
2768   // __ bind(Lbtos);
2769   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2770   assert(branch_table[btos] == 0, "can't compute twice");
2771   branch_table[btos] = __ pc(); // non-volatile_entry point
2772   __ pop(btos);
2773   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2774   __ stbx(R17_tos, Rclass_or_obj, Roffset);
2775   if (!is_static) { patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no); }
2776   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2777     __ beq(CR_is_vol, Lvolatile); // Volatile?
2778   }
2779   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2780 
2781   __ align(32, 28, 28); // Align pop.
2782   // __ bind(Lctos);
2783   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2784   assert(branch_table[ctos] == 0, "can't compute twice");
2785   branch_table[ctos] = __ pc(); // non-volatile_entry point
2786   __ pop(ctos);
2787   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1..
2788   __ sthx(R17_tos, Rclass_or_obj, Roffset);
2789   if (!is_static) { patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no); }
2790   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2791     __ beq(CR_is_vol, Lvolatile); // Volatile?
2792   }
2793   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2794 
2795   __ align(32, 28, 28); // Align pop.
2796   // __ bind(Lstos);
2797   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2798   assert(branch_table[stos] == 0, "can't compute twice");
2799   branch_table[stos] = __ pc(); // non-volatile_entry point
2800   __ pop(stos);
2801   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2802   __ sthx(R17_tos, Rclass_or_obj, Roffset);
2803   if (!is_static) { patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no); }
2804   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2805     __ beq(CR_is_vol, Lvolatile); // Volatile?
2806   }
2807   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2808 
2809   __ align(32, 28, 28); // Align pop.
2810   // __ bind(Latos);
2811   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2812   assert(branch_table[atos] == 0, "can't compute twice");
2813   branch_table[atos] = __ pc(); // non-volatile_entry point
2814   __ pop(atos);
2815   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1
2816   do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
2817   if (!is_static) { patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no); }
2818   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2819     __ beq(CR_is_vol, Lvolatile); // Volatile?
2820     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2821 
2822     __ align(32, 12);
2823     __ bind(Lvolatile);
2824     __ fence();
2825   }
2826   // fallthru: __ b(Lexit);
2827 
2828 #ifdef ASSERT
2829   for (int i = 0; i<number_of_states; ++i) {
2830     assert(branch_table[i], "put initialization");
2831     //tty->print_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
2832     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
2833   }
2834 #endif
2835 }
2836 
2837 void TemplateTable::putfield(int byte_no) {
2838   putfield_or_static(byte_no, false);
2839 }
2840 
2841 void TemplateTable::putstatic(int byte_no) {
2842   putfield_or_static(byte_no, true);
2843 }
2844 
2845 // See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job.
2846 void TemplateTable::jvmti_post_fast_field_mod() {
2847   __ should_not_reach_here();
2848 }
2849 
2850 void TemplateTable::fast_storefield(TosState state) {
2851   transition(state, vtos);
2852 
2853   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
2854                  Rclass_or_obj = R31,      // Needs to survive C call.
2855                  Roffset       = R22_tmp2, // Needs to survive C call.
2856                  Rflags        = R3_ARG1,
2857                  Rscratch      = R11_scratch1,
2858                  Rscratch2     = R12_scratch2,
2859                  Rscratch3     = R4_ARG2;
2860   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
2861 
2862   // Constant pool already resolved => Load flags and offset of field.
2863   __ get_cache_and_index_at_bcp(Rcache, 1);
2864   jvmti_post_field_mod(Rcache, Rscratch, false /* not static */);
2865   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
2866 
2867   // Get the obj and the final store addr.
2868   pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
2869 
2870   // Get volatile flag.
2871   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2872   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); }
2873   {
2874     Label LnotVolatile;
2875     __ beq(CCR0, LnotVolatile);
2876     __ release();
2877     __ align(32, 12);
2878     __ bind(LnotVolatile);
2879   }
2880 
2881   // Do the store and fencing.
2882   switch(bytecode()) {
2883     case Bytecodes::_fast_aputfield:
2884       // Store into the field.
2885       do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
2886       break;
2887 
2888     case Bytecodes::_fast_iputfield:
2889       __ stwx(R17_tos, Rclass_or_obj, Roffset);
2890       break;
2891 
2892     case Bytecodes::_fast_lputfield:
2893       __ stdx(R17_tos, Rclass_or_obj, Roffset);
2894       break;
2895 
2896     case Bytecodes::_fast_bputfield:
2897       __ stbx(R17_tos, Rclass_or_obj, Roffset);
2898       break;
2899 
2900     case Bytecodes::_fast_cputfield:
2901     case Bytecodes::_fast_sputfield:
2902       __ sthx(R17_tos, Rclass_or_obj, Roffset);
2903       break;
2904 
2905     case Bytecodes::_fast_fputfield:
2906       __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
2907       break;
2908 
2909     case Bytecodes::_fast_dputfield:
2910       __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
2911       break;
2912 
2913     default: ShouldNotReachHere();
2914   }
2915 
2916   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2917     Label LVolatile;
2918     __ beq(CR_is_vol, LVolatile);
2919     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2920 
2921     __ align(32, 12);
2922     __ bind(LVolatile);
2923     __ fence();
2924   }
2925 }
2926 
2927 void TemplateTable::fast_accessfield(TosState state) {
2928   transition(atos, state);
2929 
2930   Label LisVolatile;
2931   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2932 
2933   const Register Rcache        = R3_ARG1,
2934                  Rclass_or_obj = R17_tos,
2935                  Roffset       = R22_tmp2,
2936                  Rflags        = R23_tmp3,
2937                  Rscratch      = R12_scratch2;
2938 
2939   // Constant pool already resolved. Get the field offset.
2940   __ get_cache_and_index_at_bcp(Rcache, 1);
2941   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
2942 
2943   // JVMTI support
2944   jvmti_post_field_access(Rcache, Rscratch, false, true);
2945 
2946   // Get the load address.
2947   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
2948 
2949   // Get volatile flag.
2950   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2951   __ bne(CCR0, LisVolatile);
2952 
2953   switch(bytecode()) {
2954     case Bytecodes::_fast_agetfield:
2955     {
2956       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2957       __ verify_oop(R17_tos);
2958       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2959 
2960       __ bind(LisVolatile);
2961       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2962       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2963       __ verify_oop(R17_tos);
2964       __ twi_0(R17_tos);
2965       __ isync();
2966       break;
2967     }
2968     case Bytecodes::_fast_igetfield:
2969     {
2970       __ lwax(R17_tos, Rclass_or_obj, Roffset);
2971       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2972 
2973       __ bind(LisVolatile);
2974       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2975       __ lwax(R17_tos, Rclass_or_obj, Roffset);
2976       __ twi_0(R17_tos);
2977       __ isync();
2978       break;
2979     }
2980     case Bytecodes::_fast_lgetfield:
2981     {
2982       __ ldx(R17_tos, Rclass_or_obj, Roffset);
2983       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2984 
2985       __ bind(LisVolatile);
2986       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2987       __ ldx(R17_tos, Rclass_or_obj, Roffset);
2988       __ twi_0(R17_tos);
2989       __ isync();
2990       break;
2991     }
2992     case Bytecodes::_fast_bgetfield:
2993     {
2994       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2995       __ extsb(R17_tos, R17_tos);
2996       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2997 
2998       __ bind(LisVolatile);
2999       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3000       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
3001       __ twi_0(R17_tos);
3002       __ extsb(R17_tos, R17_tos);
3003       __ isync();
3004       break;
3005     }
3006     case Bytecodes::_fast_cgetfield:
3007     {
3008       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3009       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3010 
3011       __ bind(LisVolatile);
3012       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3013       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3014       __ twi_0(R17_tos);
3015       __ isync();
3016       break;
3017     }
3018     case Bytecodes::_fast_sgetfield:
3019     {
3020       __ lhax(R17_tos, Rclass_or_obj, Roffset);
3021       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3022 
3023       __ bind(LisVolatile);
3024       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3025       __ lhax(R17_tos, Rclass_or_obj, Roffset);
3026       __ twi_0(R17_tos);
3027       __ isync();
3028       break;
3029     }
3030     case Bytecodes::_fast_fgetfield:
3031     {
3032       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3033       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3034 
3035       __ bind(LisVolatile);
3036       Label Ldummy;
3037       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3038       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3039       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3040       __ bne_predict_not_taken(CCR0, Ldummy);
3041       __ bind(Ldummy);
3042       __ isync();
3043       break;
3044     }
3045     case Bytecodes::_fast_dgetfield:
3046     {
3047       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3048       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3049 
3050       __ bind(LisVolatile);
3051       Label Ldummy;
3052       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3053       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3054       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3055       __ bne_predict_not_taken(CCR0, Ldummy);
3056       __ bind(Ldummy);
3057       __ isync();
3058       break;
3059     }
3060     default: ShouldNotReachHere();
3061   }
3062 }
3063 
3064 void TemplateTable::fast_xaccess(TosState state) {
3065   transition(vtos, state);
3066 
3067   Label LisVolatile;
3068   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3069   const Register Rcache        = R3_ARG1,
3070                  Rclass_or_obj = R17_tos,
3071                  Roffset       = R22_tmp2,
3072                  Rflags        = R23_tmp3,
3073                  Rscratch      = R12_scratch2;
3074 
3075   __ ld(Rclass_or_obj, 0, R18_locals);
3076 
3077   // Constant pool already resolved. Get the field offset.
3078   __ get_cache_and_index_at_bcp(Rcache, 2);
3079   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
3080 
3081   // JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches.
3082 
3083   // Needed to report exception at the correct bcp.
3084   __ addi(R14_bcp, R14_bcp, 1);
3085 
3086   // Get the load address.
3087   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
3088 
3089   // Get volatile flag.
3090   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
3091   __ bne(CCR0, LisVolatile);
3092 
3093   switch(state) {
3094   case atos:
3095     {
3096       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3097       __ verify_oop(R17_tos);
3098       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3099 
3100       __ bind(LisVolatile);
3101       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3102       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3103       __ verify_oop(R17_tos);
3104       __ twi_0(R17_tos);
3105       __ isync();
3106       break;
3107     }
3108   case itos:
3109     {
3110       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3111       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3112 
3113       __ bind(LisVolatile);
3114       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3115       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3116       __ twi_0(R17_tos);
3117       __ isync();
3118       break;
3119     }
3120   case ftos:
3121     {
3122       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3123       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3124 
3125       __ bind(LisVolatile);
3126       Label Ldummy;
3127       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3128       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3129       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3130       __ bne_predict_not_taken(CCR0, Ldummy);
3131       __ bind(Ldummy);
3132       __ isync();
3133       break;
3134     }
3135   default: ShouldNotReachHere();
3136   }
3137   __ addi(R14_bcp, R14_bcp, -1);
3138 }
3139 
3140 // ============================================================================
3141 // Calls
3142 
3143 // Common code for invoke
3144 //
3145 // Input:
3146 //   - byte_no
3147 //
3148 // Output:
3149 //   - Rmethod:        The method to invoke next.
3150 //   - Rret_addr:      The return address to return to.
3151 //   - Rindex:         MethodType (invokehandle) or CallSite obj (invokedynamic)
3152 //   - Rrecv:          Cache for "this" pointer, might be noreg if static call.
3153 //   - Rflags:         Method flags from const pool cache.
3154 //
3155 //  Kills:
3156 //   - Rscratch1
3157 //
3158 void TemplateTable::prepare_invoke(int byte_no,
3159                                    Register Rmethod,  // linked method (or i-klass)
3160                                    Register Rret_addr,// return address
3161                                    Register Rindex,   // itable index, MethodType, etc.
3162                                    Register Rrecv,    // If caller wants to see it.
3163                                    Register Rflags,   // If caller wants to test it.
3164                                    Register Rscratch
3165                                    ) {
3166   // Determine flags.
3167   const Bytecodes::Code code = bytecode();
3168   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3169   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3170   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3171   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3172   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3173   const bool load_receiver       = (Rrecv != noreg);
3174   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3175 
3176   assert_different_registers(Rmethod, Rindex, Rflags, Rscratch);
3177   assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch);
3178   assert_different_registers(Rret_addr, Rscratch);
3179 
3180   load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic);
3181 
3182   // Saving of SP done in call_from_interpreter.
3183 
3184   // Maybe push "appendix" to arguments.
3185   if (is_invokedynamic || is_invokehandle) {
3186     Label Ldone;
3187     __ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63);
3188     __ beq(CCR0, Ldone);
3189     // Push "appendix" (MethodType, CallSite, etc.).
3190     // This must be done before we get the receiver,
3191     // since the parameter_size includes it.
3192     __ load_resolved_reference_at_index(Rscratch, Rindex);
3193     __ verify_oop(Rscratch);
3194     __ push_ptr(Rscratch);
3195     __ bind(Ldone);
3196   }
3197 
3198   // Load receiver if needed (after appendix is pushed so parameter size is correct).
3199   if (load_receiver) {
3200     const Register Rparam_count = Rscratch;
3201     __ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask);
3202     __ load_receiver(Rparam_count, Rrecv);
3203     __ verify_oop(Rrecv);
3204   }
3205 
3206   // Get return address.
3207   {
3208     Register Rtable_addr = Rscratch;
3209     Register Rret_type = Rret_addr;
3210     address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3211 
3212     // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3213     __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3214     __ load_dispatch_table(Rtable_addr, (address*)table_addr);
3215     __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3216     // Get return address.
3217     __ ldx(Rret_addr, Rtable_addr, Rret_type);
3218   }
3219 }
3220 
3221 // Helper for virtual calls. Load target out of vtable and jump off!
3222 // Kills all passed registers.
3223 void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) {
3224 
3225   assert_different_registers(Rrecv_klass, Rtemp, Rret);
3226   const Register Rtarget_method = Rindex;
3227 
3228   // Get target method & entry point.
3229   const int base = InstanceKlass::vtable_start_offset() * wordSize;
3230   // Calc vtable addr scale the vtable index by 8.
3231   __ sldi(Rindex, Rindex, exact_log2(vtableEntry::size() * wordSize));
3232   // Load target.
3233   __ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes());
3234   __ ldx(Rtarget_method, Rindex, Rrecv_klass);
3235   // Argument and return type profiling.
3236   __ profile_arguments_type(Rtarget_method, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */, true);
3237   __ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */);
3238 }
3239 
3240 // Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time.
3241 void TemplateTable::invokevirtual(int byte_no) {
3242   transition(vtos, vtos);
3243 
3244   Register Rtable_addr = R11_scratch1,
3245            Rret_type = R12_scratch2,
3246            Rret_addr = R5_ARG3,
3247            Rflags = R22_tmp2, // Should survive C call.
3248            Rrecv = R3_ARG1,
3249            Rrecv_klass = Rrecv,
3250            Rvtableindex_or_method = R31, // Should survive C call.
3251            Rnum_params = R4_ARG2,
3252            Rnew_bc = R6_ARG4;
3253 
3254   Label LnotFinal;
3255 
3256   load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false);
3257 
3258   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3259   __ bfalse(CCR0, LnotFinal);
3260 
3261   patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2);
3262   invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2);
3263 
3264   __ align(32, 12);
3265   __ bind(LnotFinal);
3266   // Load "this" pointer (receiver).
3267   __ rldicl(Rnum_params, Rflags, 64, 48);
3268   __ load_receiver(Rnum_params, Rrecv);
3269   __ verify_oop(Rrecv);
3270 
3271   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3272   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3273   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3274   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3275   __ ldx(Rret_addr, Rret_type, Rtable_addr);
3276   __ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1);
3277   __ load_klass(Rrecv_klass, Rrecv);
3278   __ verify_klass_ptr(Rrecv_klass);
3279   __ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false);
3280 
3281   generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1);
3282 }
3283 
3284 void TemplateTable::fast_invokevfinal(int byte_no) {
3285   transition(vtos, vtos);
3286 
3287   assert(byte_no == f2_byte, "use this argument");
3288   Register Rflags  = R22_tmp2,
3289            Rmethod = R31;
3290   load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false);
3291   invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2);
3292 }
3293 
3294 void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) {
3295 
3296   assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2);
3297 
3298   // Load receiver from stack slot.
3299   Register Rrecv = Rscratch2;
3300   Register Rnum_params = Rrecv;
3301 
3302   __ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod);
3303   __ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params);
3304 
3305   // Get return address.
3306   Register Rtable_addr = Rscratch1,
3307            Rret_addr   = Rflags,
3308            Rret_type   = Rret_addr;
3309   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3310   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3311   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3312   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3313   __ ldx(Rret_addr, Rret_type, Rtable_addr);
3314 
3315   // Load receiver and receiver NULL check.
3316   __ load_receiver(Rnum_params, Rrecv);
3317   __ null_check_throw(Rrecv, -1, Rscratch1);
3318 
3319   __ profile_final_call(Rrecv, Rscratch1);
3320   // Argument and return type profiling.
3321   __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
3322 
3323   // Do the call.
3324   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2);
3325 }
3326 
3327 void TemplateTable::invokespecial(int byte_no) {
3328   assert(byte_no == f1_byte, "use this argument");
3329   transition(vtos, vtos);
3330 
3331   Register Rtable_addr = R3_ARG1,
3332            Rret_addr   = R4_ARG2,
3333            Rflags      = R5_ARG3,
3334            Rreceiver   = R6_ARG4,
3335            Rmethod     = R31;
3336 
3337   prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1);
3338 
3339   // Receiver NULL check.
3340   __ null_check_throw(Rreceiver, -1, R11_scratch1);
3341 
3342   __ profile_call(R11_scratch1, R12_scratch2);
3343   // Argument and return type profiling.
3344   __ profile_arguments_type(Rmethod, R11_scratch1, R12_scratch2, false);
3345   __ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2);
3346 }
3347 
3348 void TemplateTable::invokestatic(int byte_no) {
3349   assert(byte_no == f1_byte, "use this argument");
3350   transition(vtos, vtos);
3351 
3352   Register Rtable_addr = R3_ARG1,
3353            Rret_addr   = R4_ARG2,
3354            Rflags      = R5_ARG3;
3355 
3356   prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1);
3357 
3358   __ profile_call(R11_scratch1, R12_scratch2);
3359   // Argument and return type profiling.
3360   __ profile_arguments_type(R19_method, R11_scratch1, R12_scratch2, false);
3361   __ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2);
3362 }
3363 
3364 void TemplateTable::invokeinterface_object_method(Register Rrecv_klass,
3365                                                   Register Rret,
3366                                                   Register Rflags,
3367                                                   Register Rindex,
3368                                                   Register Rtemp1,
3369                                                   Register Rtemp2) {
3370 
3371   assert_different_registers(Rindex, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2);
3372   Label LnotFinal;
3373 
3374   // Check for vfinal.
3375   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3376   __ bfalse(CCR0, LnotFinal);
3377 
3378   Register Rscratch = Rflags; // Rflags is dead now.
3379 
3380   // Final call case.
3381   __ profile_final_call(Rtemp1, Rscratch);
3382   // Argument and return type profiling.
3383   __ profile_arguments_type(Rindex, Rscratch, Rrecv_klass /* scratch */, true);
3384   // Do the final call - the index (f2) contains the method.
3385   __ call_from_interpreter(Rindex, Rret, Rscratch, Rrecv_klass /* scratch */);
3386 
3387   // Non-final callc case.
3388   __ bind(LnotFinal);
3389   __ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false);
3390   generate_vtable_call(Rrecv_klass, Rindex, Rret, Rscratch);
3391 }
3392 
3393 void TemplateTable::invokeinterface(int byte_no) {
3394   assert(byte_no == f1_byte, "use this argument");
3395   transition(vtos, vtos);
3396 
3397   const Register Rscratch1        = R11_scratch1,
3398                  Rscratch2        = R12_scratch2,
3399                  Rscratch3        = R9_ARG7,
3400                  Rscratch4        = R10_ARG8,
3401                  Rtable_addr      = Rscratch2,
3402                  Rinterface_klass = R5_ARG3,
3403                  Rret_type        = R8_ARG6,
3404                  Rret_addr        = Rret_type,
3405                  Rindex           = R6_ARG4,
3406                  Rreceiver        = R4_ARG2,
3407                  Rrecv_klass      = Rreceiver,
3408                  Rflags           = R7_ARG5;
3409 
3410   prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rindex, Rreceiver, Rflags, Rscratch1);
3411 
3412   // Get receiver klass.
3413   __ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch3);
3414   __ load_klass(Rrecv_klass, Rreceiver);
3415 
3416   // Check corner case object method.
3417   Label LobjectMethod;
3418 
3419   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift);
3420   __ btrue(CCR0, LobjectMethod);
3421 
3422   // Fallthrough: The normal invokeinterface case.
3423   __ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false);
3424 
3425   // Find entry point to call.
3426   Label Lthrow_icc, Lthrow_ame;
3427   // Result will be returned in Rindex.
3428   __ mr(Rscratch4, Rrecv_klass);
3429   __ mr(Rscratch3, Rindex);
3430   __ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rindex, Rscratch1, Rscratch2, Lthrow_icc);
3431 
3432   __ cmpdi(CCR0, Rindex, 0);
3433   __ beq(CCR0, Lthrow_ame);
3434   // Found entry. Jump off!
3435   // Argument and return type profiling.
3436   __ profile_arguments_type(Rindex, Rscratch1, Rscratch2, true);
3437   __ call_from_interpreter(Rindex, Rret_addr, Rscratch1, Rscratch2);
3438 
3439   // Vtable entry was NULL => Throw abstract method error.
3440   __ bind(Lthrow_ame);
3441   __ mr(Rrecv_klass, Rscratch4);
3442   __ mr(Rindex, Rscratch3);
3443   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3444 
3445   // Interface was not found => Throw incompatible class change error.
3446   __ bind(Lthrow_icc);
3447   __ mr(Rrecv_klass, Rscratch4);
3448   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3449 
3450   __ should_not_reach_here();
3451 
3452   // Special case of invokeinterface called for virtual method of
3453   // java.lang.Object. See ConstantPoolCacheEntry::set_method() for details:
3454   // The invokeinterface was rewritten to a invokevirtual, hence we have
3455   // to handle this corner case. This code isn't produced by javac, but could
3456   // be produced by another compliant java compiler.
3457   __ bind(LobjectMethod);
3458   invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rindex, Rscratch1, Rscratch2);
3459 }
3460 
3461 void TemplateTable::invokedynamic(int byte_no) {
3462   transition(vtos, vtos);
3463 
3464   const Register Rret_addr = R3_ARG1,
3465                  Rflags    = R4_ARG2,
3466                  Rmethod   = R22_tmp2,
3467                  Rscratch1 = R11_scratch1,
3468                  Rscratch2 = R12_scratch2;
3469 
3470   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2);
3471 
3472   // Profile this call.
3473   __ profile_call(Rscratch1, Rscratch2);
3474 
3475   // Off we go. With the new method handles, we don't jump to a method handle
3476   // entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens
3477   // to be the callsite object the bootstrap method returned. This is passed to a
3478   // "link" method which does the dispatch (Most likely just grabs the MH stored
3479   // inside the callsite and does an invokehandle).
3480   // Argument and return type profiling.
3481   __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, false);
3482   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3483 }
3484 
3485 void TemplateTable::invokehandle(int byte_no) {
3486   transition(vtos, vtos);
3487 
3488   const Register Rret_addr = R3_ARG1,
3489                  Rflags    = R4_ARG2,
3490                  Rrecv     = R5_ARG3,
3491                  Rmethod   = R22_tmp2,
3492                  Rscratch1 = R11_scratch1,
3493                  Rscratch2 = R12_scratch2;
3494 
3495   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2);
3496   __ verify_method_ptr(Rmethod);
3497   __ null_check_throw(Rrecv, -1, Rscratch2);
3498 
3499   __ profile_final_call(Rrecv, Rscratch1);
3500 
3501   // Still no call from handle => We call the method handle interpreter here.
3502   // Argument and return type profiling.
3503   __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
3504   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3505 }
3506 
3507 // =============================================================================
3508 // Allocation
3509 
3510 // Puts allocated obj ref onto the expression stack.
3511 void TemplateTable::_new() {
3512   transition(vtos, atos);
3513 
3514   Label Lslow_case,
3515         Ldone,
3516         Linitialize_header,
3517         Lallocate_shared,
3518         Linitialize_object;  // Including clearing the fields.
3519 
3520   const Register RallocatedObject = R17_tos,
3521                  RinstanceKlass   = R9_ARG7,
3522                  Rscratch         = R11_scratch1,
3523                  Roffset          = R8_ARG6,
3524                  Rinstance_size   = Roffset,
3525                  Rcpool           = R4_ARG2,
3526                  Rtags            = R3_ARG1,
3527                  Rindex           = R5_ARG3;
3528 
3529   const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc();
3530 
3531   // --------------------------------------------------------------------------
3532   // Check if fast case is possible.
3533 
3534   // Load pointers to const pool and const pool's tags array.
3535   __ get_cpool_and_tags(Rcpool, Rtags);
3536   // Load index of constant pool entry.
3537   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
3538 
3539   if (UseTLAB) {
3540     // Make sure the class we're about to instantiate has been resolved
3541     // This is done before loading instanceKlass to be consistent with the order
3542     // how Constant Pool is updated (see ConstantPoolCache::klass_at_put).
3543     __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3544     __ lbzx(Rtags, Rindex, Rtags);
3545 
3546     __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3547     __ bne(CCR0, Lslow_case);
3548 
3549     // Get instanceKlass (load from Rcpool + sizeof(ConstantPool) + Rindex*BytesPerWord).
3550     __ sldi(Roffset, Rindex, LogBytesPerWord);
3551     __ addi(Rscratch, Rcpool, sizeof(ConstantPool));
3552     __ isync(); // Order load of instance Klass wrt. tags.
3553     __ ldx(RinstanceKlass, Roffset, Rscratch);
3554 
3555     // Make sure klass is fully initialized and get instance_size.
3556     __ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass);
3557     __ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass);
3558 
3559     __ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized);
3560     // Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class.
3561     __ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0?
3562 
3563     __ crnand(CCR0, Assembler::equal, CCR1, Assembler::equal); // slow path bit set or not fully initialized?
3564     __ beq(CCR0, Lslow_case);
3565 
3566     // --------------------------------------------------------------------------
3567     // Fast case:
3568     // Allocate the instance.
3569     // 1) Try to allocate in the TLAB.
3570     // 2) If fail, and the TLAB is not full enough to discard, allocate in the shared Eden.
3571     // 3) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.).
3572 
3573     Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits.
3574     Register RnewTopValue = R6_ARG4;
3575     Register RendValue    = R7_ARG5;
3576 
3577     // Check if we can allocate in the TLAB.
3578     __ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3579     __ ld(RendValue,    in_bytes(JavaThread::tlab_end_offset()), R16_thread);
3580 
3581     __ add(RnewTopValue, Rinstance_size, RoldTopValue);
3582 
3583     // If there is enough space, we do not CAS and do not clear.
3584     __ cmpld(CCR0, RnewTopValue, RendValue);
3585     __ bgt(CCR0, allow_shared_alloc ? Lallocate_shared : Lslow_case);
3586 
3587     __ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3588 
3589     if (ZeroTLAB) {
3590       // The fields have already been cleared.
3591       __ b(Linitialize_header);
3592     } else {
3593       // Initialize both the header and fields.
3594       __ b(Linitialize_object);
3595     }
3596 
3597     // Fall through: TLAB was too small.
3598     if (allow_shared_alloc) {
3599       Register RtlabWasteLimitValue = R10_ARG8;
3600       Register RfreeValue = RnewTopValue;
3601 
3602       __ bind(Lallocate_shared);
3603       // Check if tlab should be discarded (refill_waste_limit >= free).
3604       __ ld(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
3605       __ subf(RfreeValue, RoldTopValue, RendValue);
3606       __ srdi(RfreeValue, RfreeValue, LogHeapWordSize); // in dwords
3607       __ cmpld(CCR0, RtlabWasteLimitValue, RfreeValue);
3608       __ bge(CCR0, Lslow_case);
3609 
3610       // Increment waste limit to prevent getting stuck on this slow path.
3611       __ addi(RtlabWasteLimitValue, RtlabWasteLimitValue, (int)ThreadLocalAllocBuffer::refill_waste_limit_increment());
3612       __ std(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
3613     }
3614     // else: No allocation in the shared eden. // fallthru: __ b(Lslow_case);
3615   }
3616   // else: Always go the slow path.
3617 
3618   // --------------------------------------------------------------------------
3619   // slow case
3620   __ bind(Lslow_case);
3621   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex);
3622 
3623   if (UseTLAB) {
3624     __ b(Ldone);
3625     // --------------------------------------------------------------------------
3626     // Init1: Zero out newly allocated memory.
3627 
3628     if (!ZeroTLAB || allow_shared_alloc) {
3629       // Clear object fields.
3630       __ bind(Linitialize_object);
3631 
3632       // Initialize remaining object fields.
3633       Register Rbase = Rtags;
3634       __ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc));
3635       __ addi(Rbase, RallocatedObject, sizeof(oopDesc));
3636       __ srdi(Rinstance_size, Rinstance_size, 3);
3637 
3638       // Clear out object skipping header. Takes also care of the zero length case.
3639       __ clear_memory_doubleword(Rbase, Rinstance_size);
3640       // fallthru: __ b(Linitialize_header);
3641     }
3642 
3643     // --------------------------------------------------------------------------
3644     // Init2: Initialize the header: mark, klass
3645     __ bind(Linitialize_header);
3646 
3647     // Init mark.
3648     if (UseBiasedLocking) {
3649       __ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass);
3650     } else {
3651       __ load_const_optimized(Rscratch, markOopDesc::prototype(), R0);
3652     }
3653     __ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject);
3654 
3655     // Init klass.
3656     __ store_klass_gap(RallocatedObject);
3657     __ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms)
3658 
3659     // Check and trigger dtrace event.
3660     {
3661       SkipIfEqualZero skip_if(_masm, Rscratch, &DTraceAllocProbes);
3662       __ push(atos);
3663       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc));
3664       __ pop(atos);
3665     }
3666   }
3667 
3668   // continue
3669   __ bind(Ldone);
3670 
3671   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3672   __ membar(Assembler::StoreStore);
3673 }
3674 
3675 void TemplateTable::newarray() {
3676   transition(itos, atos);
3677 
3678   __ lbz(R4, 1, R14_bcp);
3679   __ extsw(R5, R17_tos);
3680   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */);
3681 
3682   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3683   __ membar(Assembler::StoreStore);
3684 }
3685 
3686 void TemplateTable::anewarray() {
3687   transition(itos, atos);
3688 
3689   __ get_constant_pool(R4);
3690   __ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned);
3691   __ extsw(R6, R17_tos); // size
3692   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */);
3693 
3694   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3695   __ membar(Assembler::StoreStore);
3696 }
3697 
3698 // Allocate a multi dimensional array
3699 void TemplateTable::multianewarray() {
3700   transition(vtos, atos);
3701 
3702   Register Rptr = R31; // Needs to survive C call.
3703 
3704   // Put ndims * wordSize into frame temp slot
3705   __ lbz(Rptr, 3, R14_bcp);
3706   __ sldi(Rptr, Rptr, Interpreter::logStackElementSize);
3707   // Esp points past last_dim, so set to R4 to first_dim address.
3708   __ add(R4, Rptr, R15_esp);
3709   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */);
3710   // Pop all dimensions off the stack.
3711   __ add(R15_esp, Rptr, R15_esp);
3712 
3713   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3714   __ membar(Assembler::StoreStore);
3715 }
3716 
3717 void TemplateTable::arraylength() {
3718   transition(atos, itos);
3719 
3720   Label LnoException;
3721   __ verify_oop(R17_tos);
3722   __ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1);
3723   __ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos);
3724 }
3725 
3726 // ============================================================================
3727 // Typechecks
3728 
3729 void TemplateTable::checkcast() {
3730   transition(atos, atos);
3731 
3732   Label Ldone, Lis_null, Lquicked, Lresolved;
3733   Register Roffset         = R6_ARG4,
3734            RobjKlass       = R4_ARG2,
3735            RspecifiedKlass = R5_ARG3, // Generate_ClassCastException_verbose_handler will read value from this register.
3736            Rcpool          = R11_scratch1,
3737            Rtags           = R12_scratch2;
3738 
3739   // Null does not pass.
3740   __ cmpdi(CCR0, R17_tos, 0);
3741   __ beq(CCR0, Lis_null);
3742 
3743   // Get constant pool tag to find out if the bytecode has already been "quickened".
3744   __ get_cpool_and_tags(Rcpool, Rtags);
3745 
3746   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
3747 
3748   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3749   __ lbzx(Rtags, Rtags, Roffset);
3750 
3751   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3752   __ beq(CCR0, Lquicked);
3753 
3754   // Call into the VM to "quicken" instanceof.
3755   __ push_ptr();  // for GC
3756   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3757   __ get_vm_result_2(RspecifiedKlass);
3758   __ pop_ptr();   // Restore receiver.
3759   __ b(Lresolved);
3760 
3761   // Extract target class from constant pool.
3762   __ bind(Lquicked);
3763   __ sldi(Roffset, Roffset, LogBytesPerWord);
3764   __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
3765   __ isync(); // Order load of specified Klass wrt. tags.
3766   __ ldx(RspecifiedKlass, Rcpool, Roffset);
3767 
3768   // Do the checkcast.
3769   __ bind(Lresolved);
3770   // Get value klass in RobjKlass.
3771   __ load_klass(RobjKlass, R17_tos);
3772   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
3773   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
3774 
3775   // Not a subtype; so must throw exception
3776   // Target class oop is in register R6_ARG4 == RspecifiedKlass by convention.
3777   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry);
3778   __ mtctr(R11_scratch1);
3779   __ bctr();
3780 
3781   // Profile the null case.
3782   __ align(32, 12);
3783   __ bind(Lis_null);
3784   __ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch.
3785 
3786   __ align(32, 12);
3787   __ bind(Ldone);
3788 }
3789 
3790 // Output:
3791 //   - tos == 0: Obj was null or not an instance of class.
3792 //   - tos == 1: Obj was an instance of class.
3793 void TemplateTable::instanceof() {
3794   transition(atos, itos);
3795 
3796   Label Ldone, Lis_null, Lquicked, Lresolved;
3797   Register Roffset         = R6_ARG4,
3798            RobjKlass       = R4_ARG2,
3799            RspecifiedKlass = R5_ARG3,
3800            Rcpool          = R11_scratch1,
3801            Rtags           = R12_scratch2;
3802 
3803   // Null does not pass.
3804   __ cmpdi(CCR0, R17_tos, 0);
3805   __ beq(CCR0, Lis_null);
3806 
3807   // Get constant pool tag to find out if the bytecode has already been "quickened".
3808   __ get_cpool_and_tags(Rcpool, Rtags);
3809 
3810   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
3811 
3812   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3813   __ lbzx(Rtags, Rtags, Roffset);
3814 
3815   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3816   __ beq(CCR0, Lquicked);
3817 
3818   // Call into the VM to "quicken" instanceof.
3819   __ push_ptr();  // for GC
3820   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3821   __ get_vm_result_2(RspecifiedKlass);
3822   __ pop_ptr();   // Restore receiver.
3823   __ b(Lresolved);
3824 
3825   // Extract target class from constant pool.
3826   __ bind(Lquicked);
3827   __ sldi(Roffset, Roffset, LogBytesPerWord);
3828   __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
3829   __ isync(); // Order load of specified Klass wrt. tags.
3830   __ ldx(RspecifiedKlass, Rcpool, Roffset);
3831 
3832   // Do the checkcast.
3833   __ bind(Lresolved);
3834   // Get value klass in RobjKlass.
3835   __ load_klass(RobjKlass, R17_tos);
3836   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
3837   __ li(R17_tos, 1);
3838   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
3839   __ li(R17_tos, 0);
3840 
3841   if (ProfileInterpreter) {
3842     __ b(Ldone);
3843   }
3844 
3845   // Profile the null case.
3846   __ align(32, 12);
3847   __ bind(Lis_null);
3848   __ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch.
3849 
3850   __ align(32, 12);
3851   __ bind(Ldone);
3852 }
3853 
3854 // =============================================================================
3855 // Breakpoints
3856 
3857 void TemplateTable::_breakpoint() {
3858   transition(vtos, vtos);
3859 
3860   // Get the unpatched byte code.
3861   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp);
3862   __ mr(R31, R3_RET);
3863 
3864   // Post the breakpoint event.
3865   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp);
3866 
3867   // Complete the execution of original bytecode.
3868   __ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos));
3869 }
3870 
3871 // =============================================================================
3872 // Exceptions
3873 
3874 void TemplateTable::athrow() {
3875   transition(atos, vtos);
3876 
3877   // Exception oop is in tos
3878   __ verify_oop(R17_tos);
3879 
3880   __ null_check_throw(R17_tos, -1, R11_scratch1);
3881 
3882   // Throw exception interpreter entry expects exception oop to be in R3.
3883   __ mr(R3_RET, R17_tos);
3884   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry());
3885   __ mtctr(R11_scratch1);
3886   __ bctr();
3887 }
3888 
3889 // =============================================================================
3890 // Synchronization
3891 // Searches the basic object lock list on the stack for a free slot
3892 // and uses it to lock the obect in tos.
3893 //
3894 // Recursive locking is enabled by exiting the search if the same
3895 // object is already found in the list. Thus, a new basic lock obj lock
3896 // is allocated "higher up" in the stack and thus is found first
3897 // at next monitor exit.
3898 void TemplateTable::monitorenter() {
3899   transition(atos, vtos);
3900 
3901   __ verify_oop(R17_tos);
3902 
3903   Register Rcurrent_monitor  = R11_scratch1,
3904            Rcurrent_obj      = R12_scratch2,
3905            Robj_to_lock      = R17_tos,
3906            Rscratch1         = R3_ARG1,
3907            Rscratch2         = R4_ARG2,
3908            Rscratch3         = R5_ARG3,
3909            Rcurrent_obj_addr = R6_ARG4;
3910 
3911   // ------------------------------------------------------------------------------
3912   // Null pointer exception.
3913   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
3914 
3915   // Try to acquire a lock on the object.
3916   // Repeat until succeeded (i.e., until monitorenter returns true).
3917 
3918   // ------------------------------------------------------------------------------
3919   // Find a free slot in the monitor block.
3920   Label Lfound, Lexit, Lallocate_new;
3921   ConditionRegister found_free_slot = CCR0,
3922                     found_same_obj  = CCR1,
3923                     reached_limit   = CCR6;
3924   {
3925     Label Lloop, Lentry;
3926     Register Rlimit = Rcurrent_monitor;
3927 
3928     // Set up search loop - start with topmost monitor.
3929     __ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
3930 
3931     __ ld(Rlimit, 0, R1_SP);
3932     __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base
3933 
3934     // Check if any slot is present => short cut to allocation if not.
3935     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
3936     __ bgt(reached_limit, Lallocate_new);
3937 
3938     // Pre-load topmost slot.
3939     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
3940     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
3941     // The search loop.
3942     __ bind(Lloop);
3943     // Found free slot?
3944     __ cmpdi(found_free_slot, Rcurrent_obj, 0);
3945     // Is this entry for same obj? If so, stop the search and take the found
3946     // free slot or allocate a new one to enable recursive locking.
3947     __ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock);
3948     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
3949     __ beq(found_free_slot, Lexit);
3950     __ beq(found_same_obj, Lallocate_new);
3951     __ bgt(reached_limit, Lallocate_new);
3952     // Check if last allocated BasicLockObj reached.
3953     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
3954     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
3955     // Next iteration if unchecked BasicObjectLocks exist on the stack.
3956     __ b(Lloop);
3957   }
3958 
3959   // ------------------------------------------------------------------------------
3960   // Check if we found a free slot.
3961   __ bind(Lexit);
3962 
3963   __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
3964   __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize);
3965   __ b(Lfound);
3966 
3967   // We didn't find a free BasicObjLock => allocate one.
3968   __ align(32, 12);
3969   __ bind(Lallocate_new);
3970   __ add_monitor_to_stack(false, Rscratch1, Rscratch2);
3971   __ mr(Rcurrent_monitor, R26_monitor);
3972   __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
3973 
3974   // ------------------------------------------------------------------------------
3975   // We now have a slot to lock.
3976   __ bind(Lfound);
3977 
3978   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3979   // The object has already been poped from the stack, so the expression stack looks correct.
3980   __ addi(R14_bcp, R14_bcp, 1);
3981 
3982   __ std(Robj_to_lock, 0, Rcurrent_obj_addr);
3983   __ lock_object(Rcurrent_monitor, Robj_to_lock);
3984 
3985   // Check if there's enough space on the stack for the monitors after locking.
3986   Label Lskip_stack_check;
3987   // Optimization: If the monitors stack section is less then a std page size (4K) don't run
3988   // the stack check. There should be enough shadow pages to fit that in.
3989   __ ld(Rscratch3, 0, R1_SP);
3990   __ sub(Rscratch3, Rscratch3, R26_monitor);
3991   __ cmpdi(CCR0, Rscratch3, 4*K);
3992   __ blt(CCR0, Lskip_stack_check);
3993 
3994   DEBUG_ONLY(__ untested("stack overflow check during monitor enter");)
3995   __ li(Rscratch1, 0);
3996   __ generate_stack_overflow_check_with_compare_and_throw(Rscratch1, Rscratch2);
3997 
3998   __ align(32, 12);
3999   __ bind(Lskip_stack_check);
4000 
4001   // The bcp has already been incremented. Just need to dispatch to next instruction.
4002   __ dispatch_next(vtos);
4003 }
4004 
4005 void TemplateTable::monitorexit() {
4006   transition(atos, vtos);
4007   __ verify_oop(R17_tos);
4008 
4009   Register Rcurrent_monitor  = R11_scratch1,
4010            Rcurrent_obj      = R12_scratch2,
4011            Robj_to_lock      = R17_tos,
4012            Rcurrent_obj_addr = R3_ARG1,
4013            Rlimit            = R4_ARG2;
4014   Label Lfound, Lillegal_monitor_state;
4015 
4016   // Check corner case: unbalanced monitorEnter / Exit.
4017   __ ld(Rlimit, 0, R1_SP);
4018   __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
4019 
4020   // Null pointer check.
4021   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
4022 
4023   __ cmpld(CCR0, R26_monitor, Rlimit);
4024   __ bgt(CCR0, Lillegal_monitor_state);
4025 
4026   // Find the corresponding slot in the monitors stack section.
4027   {
4028     Label Lloop;
4029 
4030     // Start with topmost monitor.
4031     __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
4032     __ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes());
4033     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4034     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4035 
4036     __ bind(Lloop);
4037     // Is this entry for same obj?
4038     __ cmpd(CCR0, Rcurrent_obj, Robj_to_lock);
4039     __ beq(CCR0, Lfound);
4040 
4041     // Check if last allocated BasicLockObj reached.
4042 
4043     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4044     __ cmpld(CCR0, Rcurrent_obj_addr, Rlimit);
4045     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4046 
4047     // Next iteration if unchecked BasicObjectLocks exist on the stack.
4048     __ ble(CCR0, Lloop);
4049   }
4050 
4051   // Fell through without finding the basic obj lock => throw up!
4052   __ bind(Lillegal_monitor_state);
4053   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
4054   __ should_not_reach_here();
4055 
4056   __ align(32, 12);
4057   __ bind(Lfound);
4058   __ addi(Rcurrent_monitor, Rcurrent_obj_addr,
4059           -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
4060   __ unlock_object(Rcurrent_monitor);
4061 }
4062 
4063 // ============================================================================
4064 // Wide bytecodes
4065 
4066 // Wide instructions. Simply redirects to the wide entry point for that instruction.
4067 void TemplateTable::wide() {
4068   transition(vtos, vtos);
4069 
4070   const Register Rtable = R11_scratch1,
4071                  Rindex = R12_scratch2,
4072                  Rtmp   = R0;
4073 
4074   __ lbz(Rindex, 1, R14_bcp);
4075 
4076   __ load_dispatch_table(Rtable, Interpreter::_wentry_point);
4077 
4078   __ slwi(Rindex, Rindex, LogBytesPerWord);
4079   __ ldx(Rtmp, Rtable, Rindex);
4080   __ mtctr(Rtmp);
4081   __ bctr();
4082   // Note: the bcp increment step is part of the individual wide bytecode implementations.
4083 }
4084 #endif // !CC_INTERP