< prev index next >

src/cpu/ppc/vm/templateInterpreter_ppc.cpp

Print this page
rev 8685 : 8131048: ppc: implement CRC32 intrinsic
Contributed-by: lutz.schmidt@sap.com


  41 #include "runtime/arguments.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/synchronizer.hpp"
  47 #include "runtime/timer.hpp"
  48 #include "runtime/vframeArray.hpp"
  49 #include "utilities/debug.hpp"
  50 #include "utilities/macros.hpp"
  51 
  52 #undef __
  53 #define __ _masm->
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str) /* nothing */
  57 #else
  58 #define BLOCK_COMMENT(str) __ block_comment(str)
  59 #endif
  60 
  61 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  62 
  63 //-----------------------------------------------------------------------------
  64 
  65 // Actually we should never reach here since we do stack overflow checks before pushing any frame.
  66 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
  67   address entry = __ pc();
  68   __ unimplemented("generate_StackOverflowError_handler");
  69   return entry;
  70 }
  71 
  72 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
  73   address entry = __ pc();
  74   __ empty_expression_stack();
  75   __ load_const_optimized(R4_ARG2, (address) name);
  76   // Index is in R17_tos.
  77   __ mr(R5_ARG3, R17_tos);
  78   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
  79   return entry;
  80 }
  81 


 708 
 709   //=============================================================================
 710   // Increment invocation counter. On overflow, entry to JNI method
 711   // will be compiled.
 712   Label invocation_counter_overflow, continue_after_compile;
 713   if (inc_counter) {
 714     if (synchronized) {
 715       // Since at this point in the method invocation the exception handler
 716       // would try to exit the monitor of synchronized methods which hasn't
 717       // been entered yet, we set the thread local variable
 718       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 719       // runtime, exception handling i.e. unlock_if_synchronized_method will
 720       // check this thread local flag.
 721       // This flag has two effects, one is to force an unwind in the topmost
 722       // interpreter frame and not perform an unlock while doing so.
 723       __ li(R0, 1);
 724       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
 725     }
 726     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 727 
 728     __ BIND(continue_after_compile);
 729     // Reset the _do_not_unlock_if_synchronized flag.
 730     if (synchronized) {
 731       __ li(R0, 0);
 732       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
 733     }
 734   }
 735 
 736   // access_flags = method->access_flags();
 737   // Load access flags.
 738   assert(access_flags->is_nonvolatile(),
 739          "access_flags must be in a non-volatile register");
 740   // Type check.
 741   assert(4 == sizeof(AccessFlags), "unexpected field size");
 742   __ lwz(access_flags, method_(access_flags));
 743 
 744   // We don't want to reload R19_method and access_flags after calls
 745   // to some helper functions.
 746   assert(R19_method->is_nonvolatile(),
 747          "R19_method must be a non-volatile register");
 748 


 768 
 769   __ cmpdi(CCR0, signature_handler_fd, 0);
 770   __ bne(CCR0, call_signature_handler);
 771 
 772   // Method has never been called. Either generate a specialized
 773   // handler or point to the slow one.
 774   //
 775   // Pass parameter 'false' to avoid exception check in call_VM.
 776   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
 777 
 778   // Check for an exception while looking up the target method. If we
 779   // incurred one, bail.
 780   __ ld(pending_exception, thread_(pending_exception));
 781   __ cmpdi(CCR0, pending_exception, 0);
 782   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
 783 
 784   // Reload signature handler, it may have been created/assigned in the meanwhile.
 785   __ ld(signature_handler_fd, method_(signature_handler));
 786   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
 787 
 788   __ BIND(call_signature_handler);
 789 
 790   // Before we call the signature handler we push a new frame to
 791   // protect the interpreter frame volatile registers when we return
 792   // from jni but before we can get back to Java.
 793 
 794   // First set the frame anchor while the SP/FP registers are
 795   // convenient and the slow signature handler can use this same frame
 796   // anchor.
 797 
 798   // We have a TOP_IJAVA_FRAME here, which belongs to us.
 799   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
 800 
 801   // Now the interpreter frame (and its call chain) have been
 802   // invalidated and flushed. We are now protected against eager
 803   // being enabled in native code. Even if it goes eager the
 804   // registers will be reloaded as clean and we will invalidate after
 805   // the call so no spurious flush should be possible.
 806 
 807   // Call signature handler and pass locals address.
 808   //


 838     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
 839     __ bfalse(CCR0, method_is_not_static);
 840 
 841     // constants = method->constants();
 842     __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
 843     __ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1);
 844     // pool_holder = method->constants()->pool_holder();
 845     __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(),
 846           R11_scratch1/*constants*/);
 847 
 848     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 849 
 850     // mirror = pool_holder->klass_part()->java_mirror();
 851     __ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/);
 852     // state->_native_mirror = mirror;
 853 
 854     __ ld(R11_scratch1, 0, R1_SP);
 855     __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
 856     // R4_ARG2 = &state->_oop_temp;
 857     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
 858     __ BIND(method_is_not_static);
 859   }
 860 
 861   // At this point, arguments have been copied off the stack into
 862   // their JNI positions. Oops are boxed in-place on the stack, with
 863   // handles copied to arguments. The result handler address is in a
 864   // register.
 865 
 866   // Pass JNIEnv address as first parameter.
 867   __ addir(R3_ARG1, thread_(jni_environment));
 868 
 869   // Load the native_method entry before we change the thread state.
 870   __ ld(native_method_fd, method_(native_function));
 871 
 872   //=============================================================================
 873   // Transition from _thread_in_Java to _thread_in_native. As soon as
 874   // we make this change the safepoint code needs to be certain that
 875   // the last Java frame we established is good. The pc in that frame
 876   // just needs to be near here not an actual return address.
 877 
 878   // We use release_store_fence to update values like the thread state, where


1051   // Move native method result back into proper registers and return.
1052   // Invoke result handler (may unbox/promote).
1053   __ ld(R11_scratch1, 0, R1_SP);
1054   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1055   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1056   __ call_stub(result_handler_addr);
1057 
1058   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1059 
1060   // Must use the return pc which was loaded from the caller's frame
1061   // as the VM uses return-pc-patching for deoptimization.
1062   __ mtlr(R0);
1063   __ blr();
1064 
1065   //-----------------------------------------------------------------------------
1066   // An exception is pending. We call into the runtime only if the
1067   // caller was not interpreted. If it was interpreted the
1068   // interpreter will do the correct thing. If it isn't interpreted
1069   // (call stub/compiled code) we will change our return and continue.
1070 
1071   __ BIND(exception_return_sync_check);
1072 
1073   if (synchronized) {
1074     // Don't check for exceptions since we're still in the i2n frame. Do that
1075     // manually afterwards.
1076     unlock_method(false);
1077   }
1078   __ BIND(exception_return_sync_check_already_unlocked);
1079 
1080   const Register return_pc = R31;
1081 
1082   __ ld(return_pc, 0, R1_SP);
1083   __ ld(return_pc, _abi(lr), return_pc);
1084 
1085   // Get the address of the exception handler.
1086   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1087                   R16_thread,
1088                   return_pc /* return pc */);
1089   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1090 
1091   // Load the PC of the the exception handler into LR.
1092   __ mtlr(R3_RET);
1093 
1094   // Load exception into R3_ARG1 and clear pending exception in thread.
1095   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1096   __ li(R4_ARG2, 0);
1097   __ std(R4_ARG2, thread_(pending_exception));
1098 


1221   // --------------------------------------------------------------------------
1222   // Start executing instructions.
1223   __ dispatch_next(vtos);
1224 
1225   // --------------------------------------------------------------------------
1226   // Out of line counter overflow and MDO creation code.
1227   if (ProfileInterpreter) {
1228     // We have decided to profile this method in the interpreter.
1229     __ bind(profile_method);
1230     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1231     __ set_method_data_pointer_for_bcp();
1232     __ b(profile_method_continue);
1233   }
1234 
1235   if (inc_counter) {
1236     // Handle invocation counter overflow.
1237     __ bind(invocation_counter_overflow);
1238     generate_counter_overflow(profile_method_continue);
1239   }
1240   return entry;




















































































































































































1241 }
1242 
1243 // These should never be compiled since the interpreter will prefer
1244 // the compiled version to the intrinsic version.
1245 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
1246   return !math_entry_available(method_kind(m));
1247 }
1248 
1249 // How much stack a method activation needs in stack slots.
1250 // We must calc this exactly like in generate_fixed_frame.
1251 // Note: This returns the conservative size assuming maximum alignment.
1252 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
1253   const int max_alignment_size = 2;
1254   const int abi_scratch = frame::abi_reg_args_size;
1255   return method->max_locals() + method->max_stack() +
1256          frame::interpreter_frame_monitor_size() + max_alignment_size + abi_scratch;
1257 }
1258 
1259 // Returns number of stackElementWords needed for the interpreter frame with the
1260 // given sections.




  41 #include "runtime/arguments.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/synchronizer.hpp"
  47 #include "runtime/timer.hpp"
  48 #include "runtime/vframeArray.hpp"
  49 #include "utilities/debug.hpp"
  50 #include "utilities/macros.hpp"
  51 
  52 #undef __
  53 #define __ _masm->
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str) /* nothing */
  57 #else
  58 #define BLOCK_COMMENT(str) __ block_comment(str)
  59 #endif
  60 
  61 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  62 
  63 //-----------------------------------------------------------------------------
  64 
  65 // Actually we should never reach here since we do stack overflow checks before pushing any frame.
  66 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
  67   address entry = __ pc();
  68   __ unimplemented("generate_StackOverflowError_handler");
  69   return entry;
  70 }
  71 
  72 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
  73   address entry = __ pc();
  74   __ empty_expression_stack();
  75   __ load_const_optimized(R4_ARG2, (address) name);
  76   // Index is in R17_tos.
  77   __ mr(R5_ARG3, R17_tos);
  78   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
  79   return entry;
  80 }
  81 


 708 
 709   //=============================================================================
 710   // Increment invocation counter. On overflow, entry to JNI method
 711   // will be compiled.
 712   Label invocation_counter_overflow, continue_after_compile;
 713   if (inc_counter) {
 714     if (synchronized) {
 715       // Since at this point in the method invocation the exception handler
 716       // would try to exit the monitor of synchronized methods which hasn't
 717       // been entered yet, we set the thread local variable
 718       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 719       // runtime, exception handling i.e. unlock_if_synchronized_method will
 720       // check this thread local flag.
 721       // This flag has two effects, one is to force an unwind in the topmost
 722       // interpreter frame and not perform an unlock while doing so.
 723       __ li(R0, 1);
 724       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
 725     }
 726     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 727 
 728     BIND(continue_after_compile);
 729     // Reset the _do_not_unlock_if_synchronized flag.
 730     if (synchronized) {
 731       __ li(R0, 0);
 732       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
 733     }
 734   }
 735 
 736   // access_flags = method->access_flags();
 737   // Load access flags.
 738   assert(access_flags->is_nonvolatile(),
 739          "access_flags must be in a non-volatile register");
 740   // Type check.
 741   assert(4 == sizeof(AccessFlags), "unexpected field size");
 742   __ lwz(access_flags, method_(access_flags));
 743 
 744   // We don't want to reload R19_method and access_flags after calls
 745   // to some helper functions.
 746   assert(R19_method->is_nonvolatile(),
 747          "R19_method must be a non-volatile register");
 748 


 768 
 769   __ cmpdi(CCR0, signature_handler_fd, 0);
 770   __ bne(CCR0, call_signature_handler);
 771 
 772   // Method has never been called. Either generate a specialized
 773   // handler or point to the slow one.
 774   //
 775   // Pass parameter 'false' to avoid exception check in call_VM.
 776   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
 777 
 778   // Check for an exception while looking up the target method. If we
 779   // incurred one, bail.
 780   __ ld(pending_exception, thread_(pending_exception));
 781   __ cmpdi(CCR0, pending_exception, 0);
 782   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
 783 
 784   // Reload signature handler, it may have been created/assigned in the meanwhile.
 785   __ ld(signature_handler_fd, method_(signature_handler));
 786   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
 787 
 788   BIND(call_signature_handler);
 789 
 790   // Before we call the signature handler we push a new frame to
 791   // protect the interpreter frame volatile registers when we return
 792   // from jni but before we can get back to Java.
 793 
 794   // First set the frame anchor while the SP/FP registers are
 795   // convenient and the slow signature handler can use this same frame
 796   // anchor.
 797 
 798   // We have a TOP_IJAVA_FRAME here, which belongs to us.
 799   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
 800 
 801   // Now the interpreter frame (and its call chain) have been
 802   // invalidated and flushed. We are now protected against eager
 803   // being enabled in native code. Even if it goes eager the
 804   // registers will be reloaded as clean and we will invalidate after
 805   // the call so no spurious flush should be possible.
 806 
 807   // Call signature handler and pass locals address.
 808   //


 838     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
 839     __ bfalse(CCR0, method_is_not_static);
 840 
 841     // constants = method->constants();
 842     __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
 843     __ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1);
 844     // pool_holder = method->constants()->pool_holder();
 845     __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(),
 846           R11_scratch1/*constants*/);
 847 
 848     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 849 
 850     // mirror = pool_holder->klass_part()->java_mirror();
 851     __ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/);
 852     // state->_native_mirror = mirror;
 853 
 854     __ ld(R11_scratch1, 0, R1_SP);
 855     __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
 856     // R4_ARG2 = &state->_oop_temp;
 857     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
 858     BIND(method_is_not_static);
 859   }
 860 
 861   // At this point, arguments have been copied off the stack into
 862   // their JNI positions. Oops are boxed in-place on the stack, with
 863   // handles copied to arguments. The result handler address is in a
 864   // register.
 865 
 866   // Pass JNIEnv address as first parameter.
 867   __ addir(R3_ARG1, thread_(jni_environment));
 868 
 869   // Load the native_method entry before we change the thread state.
 870   __ ld(native_method_fd, method_(native_function));
 871 
 872   //=============================================================================
 873   // Transition from _thread_in_Java to _thread_in_native. As soon as
 874   // we make this change the safepoint code needs to be certain that
 875   // the last Java frame we established is good. The pc in that frame
 876   // just needs to be near here not an actual return address.
 877 
 878   // We use release_store_fence to update values like the thread state, where


1051   // Move native method result back into proper registers and return.
1052   // Invoke result handler (may unbox/promote).
1053   __ ld(R11_scratch1, 0, R1_SP);
1054   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1055   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1056   __ call_stub(result_handler_addr);
1057 
1058   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1059 
1060   // Must use the return pc which was loaded from the caller's frame
1061   // as the VM uses return-pc-patching for deoptimization.
1062   __ mtlr(R0);
1063   __ blr();
1064 
1065   //-----------------------------------------------------------------------------
1066   // An exception is pending. We call into the runtime only if the
1067   // caller was not interpreted. If it was interpreted the
1068   // interpreter will do the correct thing. If it isn't interpreted
1069   // (call stub/compiled code) we will change our return and continue.
1070 
1071   BIND(exception_return_sync_check);
1072 
1073   if (synchronized) {
1074     // Don't check for exceptions since we're still in the i2n frame. Do that
1075     // manually afterwards.
1076     unlock_method(false);
1077   }
1078   BIND(exception_return_sync_check_already_unlocked);
1079 
1080   const Register return_pc = R31;
1081 
1082   __ ld(return_pc, 0, R1_SP);
1083   __ ld(return_pc, _abi(lr), return_pc);
1084 
1085   // Get the address of the exception handler.
1086   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1087                   R16_thread,
1088                   return_pc /* return pc */);
1089   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1090 
1091   // Load the PC of the the exception handler into LR.
1092   __ mtlr(R3_RET);
1093 
1094   // Load exception into R3_ARG1 and clear pending exception in thread.
1095   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1096   __ li(R4_ARG2, 0);
1097   __ std(R4_ARG2, thread_(pending_exception));
1098 


1221   // --------------------------------------------------------------------------
1222   // Start executing instructions.
1223   __ dispatch_next(vtos);
1224 
1225   // --------------------------------------------------------------------------
1226   // Out of line counter overflow and MDO creation code.
1227   if (ProfileInterpreter) {
1228     // We have decided to profile this method in the interpreter.
1229     __ bind(profile_method);
1230     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1231     __ set_method_data_pointer_for_bcp();
1232     __ b(profile_method_continue);
1233   }
1234 
1235   if (inc_counter) {
1236     // Handle invocation counter overflow.
1237     __ bind(invocation_counter_overflow);
1238     generate_counter_overflow(profile_method_continue);
1239   }
1240   return entry;
1241 }
1242 // CRC32 Intrinsics.
1243 //
1244 // Contract on scratch and work registers.
1245 // =======================================
1246 //
1247 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
1248 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
1249 // You can't rely on these registers across calls.
1250 //
1251 // The generators for CRC32_update and for CRC32_updateBytes use the
1252 // scratch/work register set internally, passing the work registers
1253 // as arguments to the MacroAssembler emitters as required.
1254 //
1255 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
1256 // Their contents is not constant but may change according to the requirements
1257 // of the emitted code.
1258 //
1259 // All other registers from the scratch/work register set are used "internally"
1260 // and contain garbage (i.e. unpredictable values) once blr() is reached.
1261 // Basically, only R3_RET contains a defined value which is the function result.
1262 //
1263 /**
1264  * Method entry for static native methods:
1265  *   int java.util.zip.CRC32.update(int crc, int b)
1266  */
1267 address InterpreterGenerator::generate_CRC32_update_entry() {
1268   address start = __ function_entry();  // Remember stub start address (is rtn value).
1269 
1270   if (UseCRC32Intrinsics) {
1271     Label slow_path;
1272 
1273     // Safepoint check
1274     const Register sync_state = R11_scratch1;
1275     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1276     __ lwz(sync_state, sync_state_offs, sync_state);
1277     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1278     __ bne(CCR0, slow_path);
1279 
1280     // We don't generate local frame and don't align stack because
1281     // we not even call stub code (we generate the code inline)
1282     // and there is no safepoint on this path.
1283 
1284     // Load java parameters.
1285     // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
1286     const Register argP    = R15_esp;
1287     const Register crc     = R3_ARG1;  // crc value
1288     const Register data    = R4_ARG2;  // address of java byte value (kernel_crc32 needs address)
1289     const Register dataLen = R5_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1290     const Register table   = R6_ARG4;  // address of crc32 table
1291     const Register tmp     = dataLen;  // Reuse unused len register to show we don't actually need a separate tmp here.
1292 
1293     BLOCK_COMMENT("CRC32_update {");
1294 
1295     // Arguments are reversed on java expression stack
1296 #ifdef VM_LITTLE_ENDIAN
1297     __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1298                                        // Being passed as an int, the single byte is at offset +0.
1299 #else
1300     __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1301                                        // Being passed from java as an int, the single byte is at offset +3.
1302 #endif
1303     __ lwz(crc,  2*wordSize, argP);    // Current crc state, zero extend to 64 bit to have a clean register.
1304 
1305     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1306     __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp);
1307 
1308     // Restore caller sp for c2i case and return.
1309     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1310     __ blr();
1311 
1312     // Generate a vanilla native entry as the slow path.
1313     BLOCK_COMMENT("} CRC32_update");
1314     BIND(slow_path);
1315   }
1316 
1317   (void) generate_native_entry(false);
1318 
1319 #if defined(ABI_ELFv2)
1320   return start;
1321 #else
1322   return *(address*)start;
1323 #endif
1324 }
1325 
1326 // CRC32 Intrinsics.
1327 /**
1328  * Method entry for static native methods:
1329  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1330  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1331  */
1332 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1333   address start = __ function_entry();  // Remember stub start address (is rtn value).
1334 
1335   if (UseCRC32Intrinsics) {
1336     Label slow_path;
1337 
1338     // Safepoint check
1339     const Register sync_state = R11_scratch1;
1340     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1341     __ lwz(sync_state, sync_state_offs, sync_state);
1342     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1343     __ bne(CCR0, slow_path);
1344 
1345     // We don't generate local frame and don't align stack because
1346     // we not even call stub code (we generate the code inline)
1347     // and there is no safepoint on this path.
1348 
1349     // Load parameters.
1350     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1351     const Register argP    = R15_esp;
1352     const Register crc     = R3_ARG1;  // crc value
1353     const Register data    = R4_ARG2;  // address of java byte array
1354     const Register dataLen = R5_ARG3;  // source data len
1355     const Register table   = R6_ARG4;  // address of crc32 table
1356 
1357     const Register t0      = R9;       // scratch registers for crc calculation
1358     const Register t1      = R10;
1359     const Register t2      = R11;
1360     const Register t3      = R12;
1361 
1362     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
1363     const Register tc1     = R7;
1364     const Register tc2     = R8;
1365     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
1366 
1367     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
1368 
1369     // Arguments are reversed on java expression stack.
1370     // Calculate address of start element.
1371     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1372       BLOCK_COMMENT("CRC32_updateByteBuffer {");
1373       // crc     @ (SP + 5W) (32bit)
1374       // buf     @ (SP + 3W) (64bit ptr to long array)
1375       // off     @ (SP + 2W) (32bit)
1376       // dataLen @ (SP + 1W) (32bit)
1377       // data = buf + off
1378       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1379       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1380       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1381       __ lwz( crc,     5*wordSize, argP);  // current crc state
1382       __ add( data, data, tmp);            // Add byte buffer offset.
1383     } else {                                                         // Used for "updateBytes update".
1384       BLOCK_COMMENT("CRC32_updateBytes {");
1385       // crc     @ (SP + 4W) (32bit)
1386       // buf     @ (SP + 3W) (64bit ptr to byte array)
1387       // off     @ (SP + 2W) (32bit)
1388       // dataLen @ (SP + 1W) (32bit)
1389       // data = buf + off + base_offset
1390       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1391       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1392       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1393       __ add( data, data, tmp);            // add byte buffer offset
1394       __ lwz( crc,     4*wordSize, argP);  // current crc state
1395       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1396     }
1397 
1398     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1399 
1400     // Performance measurements show the 1word and 2word variants to be almost equivalent,
1401     // with very light advantages for the 1word variant. We chose the 1word variant for
1402     // code compactness.
1403     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3);
1404 
1405     // Restore caller sp for c2i case and return.
1406     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1407     __ blr();
1408 
1409     // Generate a vanilla native entry as the slow path.
1410     BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
1411     BIND(slow_path);
1412   }
1413 
1414   (void) generate_native_entry(false);
1415 
1416 #if defined(ABI_ELFv2)
1417   return start;
1418 #else
1419   return *(address*)start;
1420 #endif
1421 }
1422 
1423 // These should never be compiled since the interpreter will prefer
1424 // the compiled version to the intrinsic version.
1425 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
1426   return !math_entry_available(method_kind(m));
1427 }
1428 
1429 // How much stack a method activation needs in stack slots.
1430 // We must calc this exactly like in generate_fixed_frame.
1431 // Note: This returns the conservative size assuming maximum alignment.
1432 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
1433   const int max_alignment_size = 2;
1434   const int abi_scratch = frame::abi_reg_args_size;
1435   return method->max_locals() + method->max_stack() +
1436          frame::interpreter_frame_monitor_size() + max_alignment_size + abi_scratch;
1437 }
1438 
1439 // Returns number of stackElementWords needed for the interpreter frame with the
1440 // given sections.


< prev index next >