1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/vm_version.hpp"
  41 #include "utilities/bitMap.inline.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/heapRegion.hpp"
  45 #endif // INCLUDE_ALL_GCS
  46 
  47 #ifdef ASSERT
  48 #define __ gen()->lir(__FILE__, __LINE__)->
  49 #else
  50 #define __ gen()->lir()->
  51 #endif
  52 
  53 #ifndef PATCHED_ADDR
  54 #define PATCHED_ADDR  (max_jint)
  55 #endif
  56 
  57 void PhiResolverState::reset(int max_vregs) {
  58   // Initialize array sizes
  59   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  60   _virtual_operands.trunc_to(0);
  61   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  62   _other_operands.trunc_to(0);
  63   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  64   _vreg_table.trunc_to(0);
  65 }
  66 
  67 
  68 
  69 //--------------------------------------------------------------
  70 // PhiResolver
  71 
  72 // Resolves cycles:
  73 //
  74 //  r1 := r2  becomes  temp := r1
  75 //  r2 := r1           r1 := r2
  76 //                     r2 := temp
  77 // and orders moves:
  78 //
  79 //  r2 := r3  becomes  r1 := r2
  80 //  r1 := r2           r2 := r3
  81 
  82 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  83  : _gen(gen)
  84  , _state(gen->resolver_state())
  85  , _temp(LIR_OprFact::illegalOpr)
  86 {
  87   // reinitialize the shared state arrays
  88   _state.reset(max_vregs);
  89 }
  90 
  91 
  92 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  93   assert(src->is_valid(), "");
  94   assert(dest->is_valid(), "");
  95   __ move(src, dest);
  96 }
  97 
  98 
  99 void PhiResolver::move_temp_to(LIR_Opr dest) {
 100   assert(_temp->is_valid(), "");
 101   emit_move(_temp, dest);
 102   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 103 }
 104 
 105 
 106 void PhiResolver::move_to_temp(LIR_Opr src) {
 107   assert(_temp->is_illegal(), "");
 108   _temp = _gen->new_register(src->type());
 109   emit_move(src, _temp);
 110 }
 111 
 112 
 113 // Traverse assignment graph in depth first order and generate moves in post order
 114 // ie. two assignments: b := c, a := b start with node c:
 115 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 116 // Generates moves in this order: move b to a and move c to b
 117 // ie. cycle a := b, b := a start with node a
 118 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 119 // Generates moves in this order: move b to temp, move a to b, move temp to a
 120 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 121   if (!dest->visited()) {
 122     dest->set_visited();
 123     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 124       move(dest, dest->destination_at(i));
 125     }
 126   } else if (!dest->start_node()) {
 127     // cylce in graph detected
 128     assert(_loop == NULL, "only one loop valid!");
 129     _loop = dest;
 130     move_to_temp(src->operand());
 131     return;
 132   } // else dest is a start node
 133 
 134   if (!dest->assigned()) {
 135     if (_loop == dest) {
 136       move_temp_to(dest->operand());
 137       dest->set_assigned();
 138     } else if (src != NULL) {
 139       emit_move(src->operand(), dest->operand());
 140       dest->set_assigned();
 141     }
 142   }
 143 }
 144 
 145 
 146 PhiResolver::~PhiResolver() {
 147   int i;
 148   // resolve any cycles in moves from and to virtual registers
 149   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 150     ResolveNode* node = virtual_operands()[i];
 151     if (!node->visited()) {
 152       _loop = NULL;
 153       move(NULL, node);
 154       node->set_start_node();
 155       assert(_temp->is_illegal(), "move_temp_to() call missing");
 156     }
 157   }
 158 
 159   // generate move for move from non virtual register to abitrary destination
 160   for (i = other_operands().length() - 1; i >= 0; i --) {
 161     ResolveNode* node = other_operands()[i];
 162     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 163       emit_move(node->operand(), node->destination_at(j)->operand());
 164     }
 165   }
 166 }
 167 
 168 
 169 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 170   ResolveNode* node;
 171   if (opr->is_virtual()) {
 172     int vreg_num = opr->vreg_number();
 173     node = vreg_table().at_grow(vreg_num, NULL);
 174     assert(node == NULL || node->operand() == opr, "");
 175     if (node == NULL) {
 176       node = new ResolveNode(opr);
 177       vreg_table()[vreg_num] = node;
 178     }
 179     // Make sure that all virtual operands show up in the list when
 180     // they are used as the source of a move.
 181     if (source && !virtual_operands().contains(node)) {
 182       virtual_operands().append(node);
 183     }
 184   } else {
 185     assert(source, "");
 186     node = new ResolveNode(opr);
 187     other_operands().append(node);
 188   }
 189   return node;
 190 }
 191 
 192 
 193 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 194   assert(dest->is_virtual(), "");
 195   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 196   assert(src->is_valid(), "");
 197   assert(dest->is_valid(), "");
 198   ResolveNode* source = source_node(src);
 199   source->append(destination_node(dest));
 200 }
 201 
 202 
 203 //--------------------------------------------------------------
 204 // LIRItem
 205 
 206 void LIRItem::set_result(LIR_Opr opr) {
 207   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 208   value()->set_operand(opr);
 209 
 210   if (opr->is_virtual()) {
 211     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 212   }
 213 
 214   _result = opr;
 215 }
 216 
 217 void LIRItem::load_item() {
 218   if (result()->is_illegal()) {
 219     // update the items result
 220     _result = value()->operand();
 221   }
 222   if (!result()->is_register()) {
 223     LIR_Opr reg = _gen->new_register(value()->type());
 224     __ move(result(), reg);
 225     if (result()->is_constant()) {
 226       _result = reg;
 227     } else {
 228       set_result(reg);
 229     }
 230   }
 231 }
 232 
 233 
 234 void LIRItem::load_for_store(BasicType type) {
 235   if (_gen->can_store_as_constant(value(), type)) {
 236     _result = value()->operand();
 237     if (!_result->is_constant()) {
 238       _result = LIR_OprFact::value_type(value()->type());
 239     }
 240   } else if (type == T_BYTE || type == T_BOOLEAN) {
 241     load_byte_item();
 242   } else {
 243     load_item();
 244   }
 245 }
 246 
 247 void LIRItem::load_item_force(LIR_Opr reg) {
 248   LIR_Opr r = result();
 249   if (r != reg) {
 250 #if !defined(ARM) && !defined(E500V2)
 251     if (r->type() != reg->type()) {
 252       // moves between different types need an intervening spill slot
 253       r = _gen->force_to_spill(r, reg->type());
 254     }
 255 #endif
 256     __ move(r, reg);
 257     _result = reg;
 258   }
 259 }
 260 
 261 ciObject* LIRItem::get_jobject_constant() const {
 262   ObjectType* oc = type()->as_ObjectType();
 263   if (oc) {
 264     return oc->constant_value();
 265   }
 266   return NULL;
 267 }
 268 
 269 
 270 jint LIRItem::get_jint_constant() const {
 271   assert(is_constant() && value() != NULL, "");
 272   assert(type()->as_IntConstant() != NULL, "type check");
 273   return type()->as_IntConstant()->value();
 274 }
 275 
 276 
 277 jint LIRItem::get_address_constant() const {
 278   assert(is_constant() && value() != NULL, "");
 279   assert(type()->as_AddressConstant() != NULL, "type check");
 280   return type()->as_AddressConstant()->value();
 281 }
 282 
 283 
 284 jfloat LIRItem::get_jfloat_constant() const {
 285   assert(is_constant() && value() != NULL, "");
 286   assert(type()->as_FloatConstant() != NULL, "type check");
 287   return type()->as_FloatConstant()->value();
 288 }
 289 
 290 
 291 jdouble LIRItem::get_jdouble_constant() const {
 292   assert(is_constant() && value() != NULL, "");
 293   assert(type()->as_DoubleConstant() != NULL, "type check");
 294   return type()->as_DoubleConstant()->value();
 295 }
 296 
 297 
 298 jlong LIRItem::get_jlong_constant() const {
 299   assert(is_constant() && value() != NULL, "");
 300   assert(type()->as_LongConstant() != NULL, "type check");
 301   return type()->as_LongConstant()->value();
 302 }
 303 
 304 
 305 
 306 //--------------------------------------------------------------
 307 
 308 
 309 void LIRGenerator::init() {
 310   _bs = Universe::heap()->barrier_set();
 311 }
 312 
 313 
 314 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 315 #ifndef PRODUCT
 316   if (PrintIRWithLIR) {
 317     block->print();
 318   }
 319 #endif
 320 
 321   // set up the list of LIR instructions
 322   assert(block->lir() == NULL, "LIR list already computed for this block");
 323   _lir = new LIR_List(compilation(), block);
 324   block->set_lir(_lir);
 325 
 326   __ branch_destination(block->label());
 327 
 328   if (LIRTraceExecution &&
 329       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 330       !block->is_set(BlockBegin::exception_entry_flag)) {
 331     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 332     trace_block_entry(block);
 333   }
 334 }
 335 
 336 
 337 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 338 #ifndef PRODUCT
 339   if (PrintIRWithLIR) {
 340     tty->cr();
 341   }
 342 #endif
 343 
 344   // LIR_Opr for unpinned constants shouldn't be referenced by other
 345   // blocks so clear them out after processing the block.
 346   for (int i = 0; i < _unpinned_constants.length(); i++) {
 347     _unpinned_constants.at(i)->clear_operand();
 348   }
 349   _unpinned_constants.trunc_to(0);
 350 
 351   // clear our any registers for other local constants
 352   _constants.trunc_to(0);
 353   _reg_for_constants.trunc_to(0);
 354 }
 355 
 356 
 357 void LIRGenerator::block_do(BlockBegin* block) {
 358   CHECK_BAILOUT();
 359 
 360   block_do_prolog(block);
 361   set_block(block);
 362 
 363   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 364     if (instr->is_pinned()) do_root(instr);
 365   }
 366 
 367   set_block(NULL);
 368   block_do_epilog(block);
 369 }
 370 
 371 
 372 //-------------------------LIRGenerator-----------------------------
 373 
 374 // This is where the tree-walk starts; instr must be root;
 375 void LIRGenerator::do_root(Value instr) {
 376   CHECK_BAILOUT();
 377 
 378   InstructionMark im(compilation(), instr);
 379 
 380   assert(instr->is_pinned(), "use only with roots");
 381   assert(instr->subst() == instr, "shouldn't have missed substitution");
 382 
 383   instr->visit(this);
 384 
 385   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 386          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 387 }
 388 
 389 
 390 // This is called for each node in tree; the walk stops if a root is reached
 391 void LIRGenerator::walk(Value instr) {
 392   InstructionMark im(compilation(), instr);
 393   //stop walk when encounter a root
 394   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 395     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 396   } else {
 397     assert(instr->subst() == instr, "shouldn't have missed substitution");
 398     instr->visit(this);
 399     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 400   }
 401 }
 402 
 403 
 404 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 405   assert(state != NULL, "state must be defined");
 406 
 407 #ifndef PRODUCT
 408   state->verify();
 409 #endif
 410 
 411   ValueStack* s = state;
 412   for_each_state(s) {
 413     if (s->kind() == ValueStack::EmptyExceptionState) {
 414       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 415       continue;
 416     }
 417 
 418     int index;
 419     Value value;
 420     for_each_stack_value(s, index, value) {
 421       assert(value->subst() == value, "missed substitution");
 422       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 423         walk(value);
 424         assert(value->operand()->is_valid(), "must be evaluated now");
 425       }
 426     }
 427 
 428     int bci = s->bci();
 429     IRScope* scope = s->scope();
 430     ciMethod* method = scope->method();
 431 
 432     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 433     if (bci == SynchronizationEntryBCI) {
 434       if (x->as_ExceptionObject() || x->as_Throw()) {
 435         // all locals are dead on exit from the synthetic unlocker
 436         liveness.clear();
 437       } else {
 438         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 439       }
 440     }
 441     if (!liveness.is_valid()) {
 442       // Degenerate or breakpointed method.
 443       bailout("Degenerate or breakpointed method");
 444     } else {
 445       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 446       for_each_local_value(s, index, value) {
 447         assert(value->subst() == value, "missed substition");
 448         if (liveness.at(index) && !value->type()->is_illegal()) {
 449           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 450             walk(value);
 451             assert(value->operand()->is_valid(), "must be evaluated now");
 452           }
 453         } else {
 454           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 455           s->invalidate_local(index);
 456         }
 457       }
 458     }
 459   }
 460 
 461   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 462 }
 463 
 464 
 465 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 466   return state_for(x, x->exception_state());
 467 }
 468 
 469 
 470 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 471   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 472    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 473    * the class. */
 474   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 475     assert(info != NULL, "info must be set if class is not loaded");
 476     __ klass2reg_patch(NULL, r, info);
 477   } else {
 478     // no patching needed
 479     __ metadata2reg(obj->constant_encoding(), r);
 480   }
 481 }
 482 
 483 
 484 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 485                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 486   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 487   if (index->is_constant()) {
 488     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 489                 index->as_jint(), null_check_info);
 490     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 491   } else {
 492     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 493                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 494     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 495   }
 496 }
 497 
 498 
 499 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 500   CodeStub* stub = new RangeCheckStub(info, index, true);
 501   if (index->is_constant()) {
 502     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 503     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 504   } else {
 505     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 506                 java_nio_Buffer::limit_offset(), T_INT, info);
 507     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 508   }
 509   __ move(index, result);
 510 }
 511 
 512 
 513 
 514 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 515   LIR_Opr result_op = result;
 516   LIR_Opr left_op   = left;
 517   LIR_Opr right_op  = right;
 518 
 519   if (TwoOperandLIRForm && left_op != result_op) {
 520     assert(right_op != result_op, "malformed");
 521     __ move(left_op, result_op);
 522     left_op = result_op;
 523   }
 524 
 525   switch(code) {
 526     case Bytecodes::_dadd:
 527     case Bytecodes::_fadd:
 528     case Bytecodes::_ladd:
 529     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 530     case Bytecodes::_fmul:
 531     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 532 
 533     case Bytecodes::_dmul:
 534       {
 535         if (is_strictfp) {
 536           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 537         } else {
 538           __ mul(left_op, right_op, result_op); break;
 539         }
 540       }
 541       break;
 542 
 543     case Bytecodes::_imul:
 544       {
 545         bool    did_strength_reduce = false;
 546 
 547         if (right->is_constant()) {
 548           int c = right->as_jint();
 549           if (is_power_of_2(c)) {
 550             // do not need tmp here
 551             __ shift_left(left_op, exact_log2(c), result_op);
 552             did_strength_reduce = true;
 553           } else {
 554             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 555           }
 556         }
 557         // we couldn't strength reduce so just emit the multiply
 558         if (!did_strength_reduce) {
 559           __ mul(left_op, right_op, result_op);
 560         }
 561       }
 562       break;
 563 
 564     case Bytecodes::_dsub:
 565     case Bytecodes::_fsub:
 566     case Bytecodes::_lsub:
 567     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 568 
 569     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 570     // ldiv and lrem are implemented with a direct runtime call
 571 
 572     case Bytecodes::_ddiv:
 573       {
 574         if (is_strictfp) {
 575           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 576         } else {
 577           __ div (left_op, right_op, result_op); break;
 578         }
 579       }
 580       break;
 581 
 582     case Bytecodes::_drem:
 583     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 584 
 585     default: ShouldNotReachHere();
 586   }
 587 }
 588 
 589 
 590 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 591   arithmetic_op(code, result, left, right, false, tmp);
 592 }
 593 
 594 
 595 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 596   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 597 }
 598 
 599 
 600 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 601   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 602 }
 603 
 604 
 605 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 606   if (TwoOperandLIRForm && value != result_op) {
 607     assert(count != result_op, "malformed");
 608     __ move(value, result_op);
 609     value = result_op;
 610   }
 611 
 612   assert(count->is_constant() || count->is_register(), "must be");
 613   switch(code) {
 614   case Bytecodes::_ishl:
 615   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 616   case Bytecodes::_ishr:
 617   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 618   case Bytecodes::_iushr:
 619   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 620   default: ShouldNotReachHere();
 621   }
 622 }
 623 
 624 
 625 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 626   if (TwoOperandLIRForm && left_op != result_op) {
 627     assert(right_op != result_op, "malformed");
 628     __ move(left_op, result_op);
 629     left_op = result_op;
 630   }
 631 
 632   switch(code) {
 633     case Bytecodes::_iand:
 634     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 635 
 636     case Bytecodes::_ior:
 637     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 638 
 639     case Bytecodes::_ixor:
 640     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 641 
 642     default: ShouldNotReachHere();
 643   }
 644 }
 645 
 646 
 647 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 648   if (!GenerateSynchronizationCode) return;
 649   // for slow path, use debug info for state after successful locking
 650   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 651   __ load_stack_address_monitor(monitor_no, lock);
 652   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 653   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 654 }
 655 
 656 
 657 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 658   if (!GenerateSynchronizationCode) return;
 659   // setup registers
 660   LIR_Opr hdr = lock;
 661   lock = new_hdr;
 662   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 663   __ load_stack_address_monitor(monitor_no, lock);
 664   __ unlock_object(hdr, object, lock, scratch, slow_path);
 665 }
 666 
 667 #ifndef PRODUCT
 668 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 669   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 670     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 671   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 672     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 673   }
 674 }
 675 #endif
 676 
 677 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 678   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 679   // If klass is not loaded we do not know if the klass has finalizers:
 680   if (UseFastNewInstance && klass->is_loaded()
 681       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 682 
 683     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 684 
 685     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 686 
 687     assert(klass->is_loaded(), "must be loaded");
 688     // allocate space for instance
 689     assert(klass->size_helper() >= 0, "illegal instance size");
 690     const int instance_size = align_object_size(klass->size_helper());
 691     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 692                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 693   } else {
 694     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 695     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 696     __ branch_destination(slow_path->continuation());
 697   }
 698 }
 699 
 700 
 701 static bool is_constant_zero(Instruction* inst) {
 702   IntConstant* c = inst->type()->as_IntConstant();
 703   if (c) {
 704     return (c->value() == 0);
 705   }
 706   return false;
 707 }
 708 
 709 
 710 static bool positive_constant(Instruction* inst) {
 711   IntConstant* c = inst->type()->as_IntConstant();
 712   if (c) {
 713     return (c->value() >= 0);
 714   }
 715   return false;
 716 }
 717 
 718 
 719 static ciArrayKlass* as_array_klass(ciType* type) {
 720   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 721     return (ciArrayKlass*)type;
 722   } else {
 723     return NULL;
 724   }
 725 }
 726 
 727 static ciType* phi_declared_type(Phi* phi) {
 728   ciType* t = phi->operand_at(0)->declared_type();
 729   if (t == NULL) {
 730     return NULL;
 731   }
 732   for(int i = 1; i < phi->operand_count(); i++) {
 733     if (t != phi->operand_at(i)->declared_type()) {
 734       return NULL;
 735     }
 736   }
 737   return t;
 738 }
 739 
 740 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 741   Instruction* src     = x->argument_at(0);
 742   Instruction* src_pos = x->argument_at(1);
 743   Instruction* dst     = x->argument_at(2);
 744   Instruction* dst_pos = x->argument_at(3);
 745   Instruction* length  = x->argument_at(4);
 746 
 747   // first try to identify the likely type of the arrays involved
 748   ciArrayKlass* expected_type = NULL;
 749   bool is_exact = false, src_objarray = false, dst_objarray = false;
 750   {
 751     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 752     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 753     Phi* phi;
 754     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 755       src_declared_type = as_array_klass(phi_declared_type(phi));
 756     }
 757     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 758     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 759     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 760       dst_declared_type = as_array_klass(phi_declared_type(phi));
 761     }
 762 
 763     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 764       // the types exactly match so the type is fully known
 765       is_exact = true;
 766       expected_type = src_exact_type;
 767     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 768       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 769       ciArrayKlass* src_type = NULL;
 770       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 771         src_type = (ciArrayKlass*) src_exact_type;
 772       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 773         src_type = (ciArrayKlass*) src_declared_type;
 774       }
 775       if (src_type != NULL) {
 776         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 777           is_exact = true;
 778           expected_type = dst_type;
 779         }
 780       }
 781     }
 782     // at least pass along a good guess
 783     if (expected_type == NULL) expected_type = dst_exact_type;
 784     if (expected_type == NULL) expected_type = src_declared_type;
 785     if (expected_type == NULL) expected_type = dst_declared_type;
 786 
 787     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 788     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 789   }
 790 
 791   // if a probable array type has been identified, figure out if any
 792   // of the required checks for a fast case can be elided.
 793   int flags = LIR_OpArrayCopy::all_flags;
 794 
 795   if (!src_objarray)
 796     flags &= ~LIR_OpArrayCopy::src_objarray;
 797   if (!dst_objarray)
 798     flags &= ~LIR_OpArrayCopy::dst_objarray;
 799 
 800   if (!x->arg_needs_null_check(0))
 801     flags &= ~LIR_OpArrayCopy::src_null_check;
 802   if (!x->arg_needs_null_check(2))
 803     flags &= ~LIR_OpArrayCopy::dst_null_check;
 804 
 805 
 806   if (expected_type != NULL) {
 807     Value length_limit = NULL;
 808 
 809     IfOp* ifop = length->as_IfOp();
 810     if (ifop != NULL) {
 811       // look for expressions like min(v, a.length) which ends up as
 812       //   x > y ? y : x  or  x >= y ? y : x
 813       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 814           ifop->x() == ifop->fval() &&
 815           ifop->y() == ifop->tval()) {
 816         length_limit = ifop->y();
 817       }
 818     }
 819 
 820     // try to skip null checks and range checks
 821     NewArray* src_array = src->as_NewArray();
 822     if (src_array != NULL) {
 823       flags &= ~LIR_OpArrayCopy::src_null_check;
 824       if (length_limit != NULL &&
 825           src_array->length() == length_limit &&
 826           is_constant_zero(src_pos)) {
 827         flags &= ~LIR_OpArrayCopy::src_range_check;
 828       }
 829     }
 830 
 831     NewArray* dst_array = dst->as_NewArray();
 832     if (dst_array != NULL) {
 833       flags &= ~LIR_OpArrayCopy::dst_null_check;
 834       if (length_limit != NULL &&
 835           dst_array->length() == length_limit &&
 836           is_constant_zero(dst_pos)) {
 837         flags &= ~LIR_OpArrayCopy::dst_range_check;
 838       }
 839     }
 840 
 841     // check from incoming constant values
 842     if (positive_constant(src_pos))
 843       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 844     if (positive_constant(dst_pos))
 845       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 846     if (positive_constant(length))
 847       flags &= ~LIR_OpArrayCopy::length_positive_check;
 848 
 849     // see if the range check can be elided, which might also imply
 850     // that src or dst is non-null.
 851     ArrayLength* al = length->as_ArrayLength();
 852     if (al != NULL) {
 853       if (al->array() == src) {
 854         // it's the length of the source array
 855         flags &= ~LIR_OpArrayCopy::length_positive_check;
 856         flags &= ~LIR_OpArrayCopy::src_null_check;
 857         if (is_constant_zero(src_pos))
 858           flags &= ~LIR_OpArrayCopy::src_range_check;
 859       }
 860       if (al->array() == dst) {
 861         // it's the length of the destination array
 862         flags &= ~LIR_OpArrayCopy::length_positive_check;
 863         flags &= ~LIR_OpArrayCopy::dst_null_check;
 864         if (is_constant_zero(dst_pos))
 865           flags &= ~LIR_OpArrayCopy::dst_range_check;
 866       }
 867     }
 868     if (is_exact) {
 869       flags &= ~LIR_OpArrayCopy::type_check;
 870     }
 871   }
 872 
 873   IntConstant* src_int = src_pos->type()->as_IntConstant();
 874   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 875   if (src_int && dst_int) {
 876     int s_offs = src_int->value();
 877     int d_offs = dst_int->value();
 878     if (src_int->value() >= dst_int->value()) {
 879       flags &= ~LIR_OpArrayCopy::overlapping;
 880     }
 881     if (expected_type != NULL) {
 882       BasicType t = expected_type->element_type()->basic_type();
 883       int element_size = type2aelembytes(t);
 884       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 885           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 886         flags &= ~LIR_OpArrayCopy::unaligned;
 887       }
 888     }
 889   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 890     // src and dest positions are the same, or dst is zero so assume
 891     // nonoverlapping copy.
 892     flags &= ~LIR_OpArrayCopy::overlapping;
 893   }
 894 
 895   if (src == dst) {
 896     // moving within a single array so no type checks are needed
 897     if (flags & LIR_OpArrayCopy::type_check) {
 898       flags &= ~LIR_OpArrayCopy::type_check;
 899     }
 900   }
 901   *flagsp = flags;
 902   *expected_typep = (ciArrayKlass*)expected_type;
 903 }
 904 
 905 
 906 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 907   assert(opr->is_register(), "why spill if item is not register?");
 908 
 909   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 910     LIR_Opr result = new_register(T_FLOAT);
 911     set_vreg_flag(result, must_start_in_memory);
 912     assert(opr->is_register(), "only a register can be spilled");
 913     assert(opr->value_type()->is_float(), "rounding only for floats available");
 914     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 915     return result;
 916   }
 917   return opr;
 918 }
 919 
 920 
 921 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 922   assert(type2size[t] == type2size[value->type()],
 923          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 924   if (!value->is_register()) {
 925     // force into a register
 926     LIR_Opr r = new_register(value->type());
 927     __ move(value, r);
 928     value = r;
 929   }
 930 
 931   // create a spill location
 932   LIR_Opr tmp = new_register(t);
 933   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 934 
 935   // move from register to spill
 936   __ move(value, tmp);
 937   return tmp;
 938 }
 939 
 940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 941   if (if_instr->should_profile()) {
 942     ciMethod* method = if_instr->profiled_method();
 943     assert(method != NULL, "method should be set if branch is profiled");
 944     ciMethodData* md = method->method_data_or_null();
 945     assert(md != NULL, "Sanity");
 946     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 947     assert(data != NULL, "must have profiling data");
 948     assert(data->is_BranchData(), "need BranchData for two-way branches");
 949     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 950     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 951     if (if_instr->is_swapped()) {
 952       int t = taken_count_offset;
 953       taken_count_offset = not_taken_count_offset;
 954       not_taken_count_offset = t;
 955     }
 956 
 957     LIR_Opr md_reg = new_register(T_METADATA);
 958     __ metadata2reg(md->constant_encoding(), md_reg);
 959 
 960     LIR_Opr data_offset_reg = new_pointer_register();
 961     __ cmove(lir_cond(cond),
 962              LIR_OprFact::intptrConst(taken_count_offset),
 963              LIR_OprFact::intptrConst(not_taken_count_offset),
 964              data_offset_reg, as_BasicType(if_instr->x()->type()));
 965 
 966     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 967     LIR_Opr data_reg = new_pointer_register();
 968     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 969     __ move(data_addr, data_reg);
 970     // Use leal instead of add to avoid destroying condition codes on x86
 971     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 972     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 973     __ move(data_reg, data_addr);
 974   }
 975 }
 976 
 977 // Phi technique:
 978 // This is about passing live values from one basic block to the other.
 979 // In code generated with Java it is rather rare that more than one
 980 // value is on the stack from one basic block to the other.
 981 // We optimize our technique for efficient passing of one value
 982 // (of type long, int, double..) but it can be extended.
 983 // When entering or leaving a basic block, all registers and all spill
 984 // slots are release and empty. We use the released registers
 985 // and spill slots to pass the live values from one block
 986 // to the other. The topmost value, i.e., the value on TOS of expression
 987 // stack is passed in registers. All other values are stored in spilling
 988 // area. Every Phi has an index which designates its spill slot
 989 // At exit of a basic block, we fill the register(s) and spill slots.
 990 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 991 // and locks necessary registers and spilling slots.
 992 
 993 
 994 // move current value to referenced phi function
 995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 996   Phi* phi = sux_val->as_Phi();
 997   // cur_val can be null without phi being null in conjunction with inlining
 998   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 999     LIR_Opr operand = cur_val->operand();
1000     if (cur_val->operand()->is_illegal()) {
1001       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1002              "these can be produced lazily");
1003       operand = operand_for_instruction(cur_val);
1004     }
1005     resolver->move(operand, operand_for_instruction(phi));
1006   }
1007 }
1008 
1009 
1010 // Moves all stack values into their PHI position
1011 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1012   BlockBegin* bb = block();
1013   if (bb->number_of_sux() == 1) {
1014     BlockBegin* sux = bb->sux_at(0);
1015     assert(sux->number_of_preds() > 0, "invalid CFG");
1016 
1017     // a block with only one predecessor never has phi functions
1018     if (sux->number_of_preds() > 1) {
1019       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1020       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1021 
1022       ValueStack* sux_state = sux->state();
1023       Value sux_value;
1024       int index;
1025 
1026       assert(cur_state->scope() == sux_state->scope(), "not matching");
1027       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1028       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1029 
1030       for_each_stack_value(sux_state, index, sux_value) {
1031         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1032       }
1033 
1034       for_each_local_value(sux_state, index, sux_value) {
1035         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1036       }
1037 
1038       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1039     }
1040   }
1041 }
1042 
1043 
1044 LIR_Opr LIRGenerator::new_register(BasicType type) {
1045   int vreg = _virtual_register_number;
1046   // add a little fudge factor for the bailout, since the bailout is
1047   // only checked periodically.  This gives a few extra registers to
1048   // hand out before we really run out, which helps us keep from
1049   // tripping over assertions.
1050   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1051     bailout("out of virtual registers");
1052     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1053       // wrap it around
1054       _virtual_register_number = LIR_OprDesc::vreg_base;
1055     }
1056   }
1057   _virtual_register_number += 1;
1058   return LIR_OprFact::virtual_register(vreg, type);
1059 }
1060 
1061 
1062 // Try to lock using register in hint
1063 LIR_Opr LIRGenerator::rlock(Value instr) {
1064   return new_register(instr->type());
1065 }
1066 
1067 
1068 // does an rlock and sets result
1069 LIR_Opr LIRGenerator::rlock_result(Value x) {
1070   LIR_Opr reg = rlock(x);
1071   set_result(x, reg);
1072   return reg;
1073 }
1074 
1075 
1076 // does an rlock and sets result
1077 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1078   LIR_Opr reg;
1079   switch (type) {
1080   case T_BYTE:
1081   case T_BOOLEAN:
1082     reg = rlock_byte(type);
1083     break;
1084   default:
1085     reg = rlock(x);
1086     break;
1087   }
1088 
1089   set_result(x, reg);
1090   return reg;
1091 }
1092 
1093 
1094 //---------------------------------------------------------------------
1095 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1096   ObjectType* oc = value->type()->as_ObjectType();
1097   if (oc) {
1098     return oc->constant_value();
1099   }
1100   return NULL;
1101 }
1102 
1103 
1104 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1105   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1106   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1107 
1108   // no moves are created for phi functions at the begin of exception
1109   // handlers, so assign operands manually here
1110   for_each_phi_fun(block(), phi,
1111                    operand_for_instruction(phi));
1112 
1113   LIR_Opr thread_reg = getThreadPointer();
1114   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1115                exceptionOopOpr());
1116   __ move_wide(LIR_OprFact::oopConst(NULL),
1117                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1118   __ move_wide(LIR_OprFact::oopConst(NULL),
1119                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1120 
1121   LIR_Opr result = new_register(T_OBJECT);
1122   __ move(exceptionOopOpr(), result);
1123   set_result(x, result);
1124 }
1125 
1126 
1127 //----------------------------------------------------------------------
1128 //----------------------------------------------------------------------
1129 //----------------------------------------------------------------------
1130 //----------------------------------------------------------------------
1131 //                        visitor functions
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 
1137 void LIRGenerator::do_Phi(Phi* x) {
1138   // phi functions are never visited directly
1139   ShouldNotReachHere();
1140 }
1141 
1142 
1143 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1144 void LIRGenerator::do_Constant(Constant* x) {
1145   if (x->state_before() != NULL) {
1146     // Any constant with a ValueStack requires patching so emit the patch here
1147     LIR_Opr reg = rlock_result(x);
1148     CodeEmitInfo* info = state_for(x, x->state_before());
1149     __ oop2reg_patch(NULL, reg, info);
1150   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1151     if (!x->is_pinned()) {
1152       // unpinned constants are handled specially so that they can be
1153       // put into registers when they are used multiple times within a
1154       // block.  After the block completes their operand will be
1155       // cleared so that other blocks can't refer to that register.
1156       set_result(x, load_constant(x));
1157     } else {
1158       LIR_Opr res = x->operand();
1159       if (!res->is_valid()) {
1160         res = LIR_OprFact::value_type(x->type());
1161       }
1162       if (res->is_constant()) {
1163         LIR_Opr reg = rlock_result(x);
1164         __ move(res, reg);
1165       } else {
1166         set_result(x, res);
1167       }
1168     }
1169   } else {
1170     set_result(x, LIR_OprFact::value_type(x->type()));
1171   }
1172 }
1173 
1174 
1175 void LIRGenerator::do_Local(Local* x) {
1176   // operand_for_instruction has the side effect of setting the result
1177   // so there's no need to do it here.
1178   operand_for_instruction(x);
1179 }
1180 
1181 
1182 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1183   Unimplemented();
1184 }
1185 
1186 
1187 void LIRGenerator::do_Return(Return* x) {
1188   if (compilation()->env()->dtrace_method_probes()) {
1189     BasicTypeList signature;
1190     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1191     signature.append(T_METADATA); // Method*
1192     LIR_OprList* args = new LIR_OprList();
1193     args->append(getThreadPointer());
1194     LIR_Opr meth = new_register(T_METADATA);
1195     __ metadata2reg(method()->constant_encoding(), meth);
1196     args->append(meth);
1197     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1198   }
1199 
1200   if (x->type()->is_void()) {
1201     __ return_op(LIR_OprFact::illegalOpr);
1202   } else {
1203     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1204     LIRItem result(x->result(), this);
1205 
1206     result.load_item_force(reg);
1207     __ return_op(result.result());
1208   }
1209   set_no_result(x);
1210 }
1211 
1212 // Examble: ref.get()
1213 // Combination of LoadField and g1 pre-write barrier
1214 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1215 
1216   const int referent_offset = java_lang_ref_Reference::referent_offset;
1217   guarantee(referent_offset > 0, "referent offset not initialized");
1218 
1219   assert(x->number_of_arguments() == 1, "wrong type");
1220 
1221   LIRItem reference(x->argument_at(0), this);
1222   reference.load_item();
1223 
1224   // need to perform the null check on the reference objecy
1225   CodeEmitInfo* info = NULL;
1226   if (x->needs_null_check()) {
1227     info = state_for(x);
1228   }
1229 
1230   LIR_Address* referent_field_adr =
1231     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1232 
1233   LIR_Opr result = rlock_result(x);
1234 
1235   __ load(referent_field_adr, result, info);
1236 
1237   // Register the value in the referent field with the pre-barrier
1238   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1239               result /* pre_val */,
1240               false  /* do_load */,
1241               false  /* patch */,
1242               NULL   /* info */);
1243 }
1244 
1245 // Example: clazz.isInstance(object)
1246 void LIRGenerator::do_isInstance(Intrinsic* x) {
1247   assert(x->number_of_arguments() == 2, "wrong type");
1248 
1249   // TODO could try to substitute this node with an equivalent InstanceOf
1250   // if clazz is known to be a constant Class. This will pick up newly found
1251   // constants after HIR construction. I'll leave this to a future change.
1252 
1253   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1254   // could follow the aastore example in a future change.
1255 
1256   LIRItem clazz(x->argument_at(0), this);
1257   LIRItem object(x->argument_at(1), this);
1258   clazz.load_item();
1259   object.load_item();
1260   LIR_Opr result = rlock_result(x);
1261 
1262   // need to perform null check on clazz
1263   if (x->needs_null_check()) {
1264     CodeEmitInfo* info = state_for(x);
1265     __ null_check(clazz.result(), info);
1266   }
1267 
1268   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1269                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1270                                      x->type(),
1271                                      NULL); // NULL CodeEmitInfo results in a leaf call
1272   __ move(call_result, result);
1273 }
1274 
1275 // Example: object.getClass ()
1276 void LIRGenerator::do_getClass(Intrinsic* x) {
1277   assert(x->number_of_arguments() == 1, "wrong type");
1278 
1279   LIRItem rcvr(x->argument_at(0), this);
1280   rcvr.load_item();
1281   LIR_Opr temp = new_register(T_METADATA);
1282   LIR_Opr result = rlock_result(x);
1283 
1284   // need to perform the null check on the rcvr
1285   CodeEmitInfo* info = NULL;
1286   if (x->needs_null_check()) {
1287     info = state_for(x);
1288   }
1289 
1290   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1291   // meaning of these two is mixed up (see JDK-8026837).
1292   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1293   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1294 }
1295 
1296 
1297 // Example: Thread.currentThread()
1298 void LIRGenerator::do_currentThread(Intrinsic* x) {
1299   assert(x->number_of_arguments() == 0, "wrong type");
1300   LIR_Opr reg = rlock_result(x);
1301   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1302 }
1303 
1304 
1305 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1306   assert(x->number_of_arguments() == 1, "wrong type");
1307   LIRItem receiver(x->argument_at(0), this);
1308 
1309   receiver.load_item();
1310   BasicTypeList signature;
1311   signature.append(T_OBJECT); // receiver
1312   LIR_OprList* args = new LIR_OprList();
1313   args->append(receiver.result());
1314   CodeEmitInfo* info = state_for(x, x->state());
1315   call_runtime(&signature, args,
1316                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1317                voidType, info);
1318 
1319   set_no_result(x);
1320 }
1321 
1322 
1323 //------------------------local access--------------------------------------
1324 
1325 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1326   if (x->operand()->is_illegal()) {
1327     Constant* c = x->as_Constant();
1328     if (c != NULL) {
1329       x->set_operand(LIR_OprFact::value_type(c->type()));
1330     } else {
1331       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1332       // allocate a virtual register for this local or phi
1333       x->set_operand(rlock(x));
1334       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1335     }
1336   }
1337   return x->operand();
1338 }
1339 
1340 
1341 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1342   if (opr->is_virtual()) {
1343     return instruction_for_vreg(opr->vreg_number());
1344   }
1345   return NULL;
1346 }
1347 
1348 
1349 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1350   if (reg_num < _instruction_for_operand.length()) {
1351     return _instruction_for_operand.at(reg_num);
1352   }
1353   return NULL;
1354 }
1355 
1356 
1357 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1358   if (_vreg_flags.size_in_bits() == 0) {
1359     BitMap2D temp(100, num_vreg_flags);
1360     temp.clear();
1361     _vreg_flags = temp;
1362   }
1363   _vreg_flags.at_put_grow(vreg_num, f, true);
1364 }
1365 
1366 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1367   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1368     return false;
1369   }
1370   return _vreg_flags.at(vreg_num, f);
1371 }
1372 
1373 
1374 // Block local constant handling.  This code is useful for keeping
1375 // unpinned constants and constants which aren't exposed in the IR in
1376 // registers.  Unpinned Constant instructions have their operands
1377 // cleared when the block is finished so that other blocks can't end
1378 // up referring to their registers.
1379 
1380 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1381   assert(!x->is_pinned(), "only for unpinned constants");
1382   _unpinned_constants.append(x);
1383   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1384 }
1385 
1386 
1387 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1388   BasicType t = c->type();
1389   for (int i = 0; i < _constants.length(); i++) {
1390     LIR_Const* other = _constants.at(i);
1391     if (t == other->type()) {
1392       switch (t) {
1393       case T_INT:
1394       case T_FLOAT:
1395         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1396         break;
1397       case T_LONG:
1398       case T_DOUBLE:
1399         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1400         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1401         break;
1402       case T_OBJECT:
1403         if (c->as_jobject() != other->as_jobject()) continue;
1404         break;
1405       }
1406       return _reg_for_constants.at(i);
1407     }
1408   }
1409 
1410   LIR_Opr result = new_register(t);
1411   __ move((LIR_Opr)c, result);
1412   _constants.append(c);
1413   _reg_for_constants.append(result);
1414   return result;
1415 }
1416 
1417 // Various barriers
1418 
1419 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1420                                bool do_load, bool patch, CodeEmitInfo* info) {
1421   // Do the pre-write barrier, if any.
1422   switch (_bs->kind()) {
1423 #if INCLUDE_ALL_GCS
1424     case BarrierSet::G1SATBCTLogging:
1425       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1426       break;
1427 #endif // INCLUDE_ALL_GCS
1428     case BarrierSet::CardTableForRS:
1429     case BarrierSet::CardTableExtension:
1430       // No pre barriers
1431       break;
1432     case BarrierSet::ModRef:
1433       // No pre barriers
1434       break;
1435     default      :
1436       ShouldNotReachHere();
1437 
1438   }
1439 }
1440 
1441 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1442   switch (_bs->kind()) {
1443 #if INCLUDE_ALL_GCS
1444     case BarrierSet::G1SATBCTLogging:
1445       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1446       break;
1447 #endif // INCLUDE_ALL_GCS
1448     case BarrierSet::CardTableForRS:
1449     case BarrierSet::CardTableExtension:
1450       CardTableModRef_post_barrier(addr,  new_val);
1451       break;
1452     case BarrierSet::ModRef:
1453       // No post barriers
1454       break;
1455     default      :
1456       ShouldNotReachHere();
1457     }
1458 }
1459 
1460 ////////////////////////////////////////////////////////////////////////
1461 #if INCLUDE_ALL_GCS
1462 
1463 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1464                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1465   // First we test whether marking is in progress.
1466   BasicType flag_type;
1467   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1468     flag_type = T_INT;
1469   } else {
1470     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1471               "Assumption");
1472     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1473     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1474     flag_type = T_BOOLEAN;
1475   }
1476   LIR_Opr thrd = getThreadPointer();
1477   LIR_Address* mark_active_flag_addr =
1478     new LIR_Address(thrd,
1479                     in_bytes(JavaThread::satb_mark_queue_offset() +
1480                              PtrQueue::byte_offset_of_active()),
1481                     flag_type);
1482   // Read the marking-in-progress flag.
1483   LIR_Opr flag_val = new_register(T_INT);
1484   __ load(mark_active_flag_addr, flag_val);
1485   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1486 
1487   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1488 
1489   CodeStub* slow;
1490 
1491   if (do_load) {
1492     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1493     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1494 
1495     if (patch)
1496       pre_val_patch_code = lir_patch_normal;
1497 
1498     pre_val = new_register(T_OBJECT);
1499 
1500     if (!addr_opr->is_address()) {
1501       assert(addr_opr->is_register(), "must be");
1502       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1503     }
1504     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1505   } else {
1506     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1507     assert(pre_val->is_register(), "must be");
1508     assert(pre_val->type() == T_OBJECT, "must be an object");
1509     assert(info == NULL, "sanity");
1510 
1511     slow = new G1PreBarrierStub(pre_val);
1512   }
1513 
1514   __ branch(lir_cond_notEqual, T_INT, slow);
1515   __ branch_destination(slow->continuation());
1516 }
1517 
1518 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1519   // If the "new_val" is a constant NULL, no barrier is necessary.
1520   if (new_val->is_constant() &&
1521       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1522 
1523   if (!new_val->is_register()) {
1524     LIR_Opr new_val_reg = new_register(T_OBJECT);
1525     if (new_val->is_constant()) {
1526       __ move(new_val, new_val_reg);
1527     } else {
1528       __ leal(new_val, new_val_reg);
1529     }
1530     new_val = new_val_reg;
1531   }
1532   assert(new_val->is_register(), "must be a register at this point");
1533 
1534   if (addr->is_address()) {
1535     LIR_Address* address = addr->as_address_ptr();
1536     LIR_Opr ptr = new_pointer_register();
1537     if (!address->index()->is_valid() && address->disp() == 0) {
1538       __ move(address->base(), ptr);
1539     } else {
1540       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1541       __ leal(addr, ptr);
1542     }
1543     addr = ptr;
1544   }
1545   assert(addr->is_register(), "must be a register at this point");
1546 
1547   LIR_Opr xor_res = new_pointer_register();
1548   LIR_Opr xor_shift_res = new_pointer_register();
1549   if (TwoOperandLIRForm ) {
1550     __ move(addr, xor_res);
1551     __ logical_xor(xor_res, new_val, xor_res);
1552     __ move(xor_res, xor_shift_res);
1553     __ unsigned_shift_right(xor_shift_res,
1554                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1555                             xor_shift_res,
1556                             LIR_OprDesc::illegalOpr());
1557   } else {
1558     __ logical_xor(addr, new_val, xor_res);
1559     __ unsigned_shift_right(xor_res,
1560                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1561                             xor_shift_res,
1562                             LIR_OprDesc::illegalOpr());
1563   }
1564 
1565   if (!new_val->is_register()) {
1566     LIR_Opr new_val_reg = new_register(T_OBJECT);
1567     __ leal(new_val, new_val_reg);
1568     new_val = new_val_reg;
1569   }
1570   assert(new_val->is_register(), "must be a register at this point");
1571 
1572   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1573 
1574   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1575   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1576   __ branch_destination(slow->continuation());
1577 }
1578 
1579 #endif // INCLUDE_ALL_GCS
1580 ////////////////////////////////////////////////////////////////////////
1581 
1582 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1583   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1584   assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1585   LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1586   if (addr->is_address()) {
1587     LIR_Address* address = addr->as_address_ptr();
1588     // ptr cannot be an object because we use this barrier for array card marks
1589     // and addr can point in the middle of an array.
1590     LIR_Opr ptr = new_pointer_register();
1591     if (!address->index()->is_valid() && address->disp() == 0) {
1592       __ move(address->base(), ptr);
1593     } else {
1594       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1595       __ leal(addr, ptr);
1596     }
1597     addr = ptr;
1598   }
1599   assert(addr->is_register(), "must be a register at this point");
1600 
1601 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1602   CardTableModRef_post_barrier_helper(addr, card_table_base);
1603 #else
1604   LIR_Opr tmp = new_pointer_register();
1605   if (TwoOperandLIRForm) {
1606     __ move(addr, tmp);
1607     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1608   } else {
1609     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1610   }
1611 
1612   LIR_Address* card_addr;
1613   if (can_inline_as_constant(card_table_base)) {
1614     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1615   } else {
1616     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1617   }
1618 
1619   LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
1620   if (UseCondCardMark) {
1621     LIR_Opr cur_value = new_register(T_INT);
1622     if (UseConcMarkSweepGC) {
1623       __ membar_storeload();
1624     }
1625     __ move(card_addr, cur_value);
1626 
1627     LabelObj* L_already_dirty = new LabelObj();
1628     __ cmp(lir_cond_equal, cur_value, dirty);
1629     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1630     __ move(dirty, card_addr);
1631     __ branch_destination(L_already_dirty->label());
1632   } else {
1633     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1634       __ membar_storestore();
1635     }
1636     __ move(dirty, card_addr);
1637   }
1638 #endif
1639 }
1640 
1641 
1642 //------------------------field access--------------------------------------
1643 
1644 // Comment copied form templateTable_i486.cpp
1645 // ----------------------------------------------------------------------------
1646 // Volatile variables demand their effects be made known to all CPU's in
1647 // order.  Store buffers on most chips allow reads & writes to reorder; the
1648 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1649 // memory barrier (i.e., it's not sufficient that the interpreter does not
1650 // reorder volatile references, the hardware also must not reorder them).
1651 //
1652 // According to the new Java Memory Model (JMM):
1653 // (1) All volatiles are serialized wrt to each other.
1654 // ALSO reads & writes act as aquire & release, so:
1655 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1656 // the read float up to before the read.  It's OK for non-volatile memory refs
1657 // that happen before the volatile read to float down below it.
1658 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1659 // that happen BEFORE the write float down to after the write.  It's OK for
1660 // non-volatile memory refs that happen after the volatile write to float up
1661 // before it.
1662 //
1663 // We only put in barriers around volatile refs (they are expensive), not
1664 // _between_ memory refs (that would require us to track the flavor of the
1665 // previous memory refs).  Requirements (2) and (3) require some barriers
1666 // before volatile stores and after volatile loads.  These nearly cover
1667 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1668 // case is placed after volatile-stores although it could just as well go
1669 // before volatile-loads.
1670 
1671 
1672 void LIRGenerator::do_StoreField(StoreField* x) {
1673   bool needs_patching = x->needs_patching();
1674   bool is_volatile = x->field()->is_volatile();
1675   BasicType field_type = x->field_type();
1676   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1677 
1678   CodeEmitInfo* info = NULL;
1679   if (needs_patching) {
1680     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1681     info = state_for(x, x->state_before());
1682   } else if (x->needs_null_check()) {
1683     NullCheck* nc = x->explicit_null_check();
1684     if (nc == NULL) {
1685       info = state_for(x);
1686     } else {
1687       info = state_for(nc);
1688     }
1689   }
1690 
1691 
1692   LIRItem object(x->obj(), this);
1693   LIRItem value(x->value(),  this);
1694 
1695   object.load_item();
1696 
1697   if (is_volatile || needs_patching) {
1698     // load item if field is volatile (fewer special cases for volatiles)
1699     // load item if field not initialized
1700     // load item if field not constant
1701     // because of code patching we cannot inline constants
1702     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1703       value.load_byte_item();
1704     } else  {
1705       value.load_item();
1706     }
1707   } else {
1708     value.load_for_store(field_type);
1709   }
1710 
1711   set_no_result(x);
1712 
1713 #ifndef PRODUCT
1714   if (PrintNotLoaded && needs_patching) {
1715     tty->print_cr("   ###class not loaded at store_%s bci %d",
1716                   x->is_static() ?  "static" : "field", x->printable_bci());
1717   }
1718 #endif
1719 
1720   if (x->needs_null_check() &&
1721       (needs_patching ||
1722        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1723     // emit an explicit null check because the offset is too large
1724     __ null_check(object.result(), new CodeEmitInfo(info));
1725   }
1726 
1727   LIR_Address* address;
1728   if (needs_patching) {
1729     // we need to patch the offset in the instruction so don't allow
1730     // generate_address to try to be smart about emitting the -1.
1731     // Otherwise the patching code won't know how to find the
1732     // instruction to patch.
1733     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1734   } else {
1735     address = generate_address(object.result(), x->offset(), field_type);
1736   }
1737 
1738   if (is_volatile && os::is_MP()) {
1739     __ membar_release();
1740   }
1741 
1742   if (is_oop) {
1743     // Do the pre-write barrier, if any.
1744     pre_barrier(LIR_OprFact::address(address),
1745                 LIR_OprFact::illegalOpr /* pre_val */,
1746                 true /* do_load*/,
1747                 needs_patching,
1748                 (info ? new CodeEmitInfo(info) : NULL));
1749   }
1750 
1751   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1752   if (needs_atomic_access && !needs_patching) {
1753     volatile_field_store(value.result(), address, info);
1754   } else {
1755     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1756     __ store(value.result(), address, info, patch_code);
1757   }
1758 
1759   if (is_oop) {
1760     // Store to object so mark the card of the header
1761     post_barrier(object.result(), value.result());
1762   }
1763 
1764   if (is_volatile && os::is_MP()) {
1765     __ membar();
1766   }
1767 }
1768 
1769 
1770 void LIRGenerator::do_LoadField(LoadField* x) {
1771   bool needs_patching = x->needs_patching();
1772   bool is_volatile = x->field()->is_volatile();
1773   BasicType field_type = x->field_type();
1774 
1775   CodeEmitInfo* info = NULL;
1776   if (needs_patching) {
1777     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1778     info = state_for(x, x->state_before());
1779   } else if (x->needs_null_check()) {
1780     NullCheck* nc = x->explicit_null_check();
1781     if (nc == NULL) {
1782       info = state_for(x);
1783     } else {
1784       info = state_for(nc);
1785     }
1786   }
1787 
1788   LIRItem object(x->obj(), this);
1789 
1790   object.load_item();
1791 
1792 #ifndef PRODUCT
1793   if (PrintNotLoaded && needs_patching) {
1794     tty->print_cr("   ###class not loaded at load_%s bci %d",
1795                   x->is_static() ?  "static" : "field", x->printable_bci());
1796   }
1797 #endif
1798 
1799   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1800   if (x->needs_null_check() &&
1801       (needs_patching ||
1802        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1803        stress_deopt)) {
1804     LIR_Opr obj = object.result();
1805     if (stress_deopt) {
1806       obj = new_register(T_OBJECT);
1807       __ move(LIR_OprFact::oopConst(NULL), obj);
1808     }
1809     // emit an explicit null check because the offset is too large
1810     __ null_check(obj, new CodeEmitInfo(info));
1811   }
1812 
1813   LIR_Opr reg = rlock_result(x, field_type);
1814   LIR_Address* address;
1815   if (needs_patching) {
1816     // we need to patch the offset in the instruction so don't allow
1817     // generate_address to try to be smart about emitting the -1.
1818     // Otherwise the patching code won't know how to find the
1819     // instruction to patch.
1820     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1821   } else {
1822     address = generate_address(object.result(), x->offset(), field_type);
1823   }
1824 
1825   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1826   if (needs_atomic_access && !needs_patching) {
1827     volatile_field_load(address, reg, info);
1828   } else {
1829     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1830     __ load(address, reg, info, patch_code);
1831   }
1832 
1833   if (is_volatile && os::is_MP()) {
1834     __ membar_acquire();
1835   }
1836 }
1837 
1838 
1839 //------------------------java.nio.Buffer.checkIndex------------------------
1840 
1841 // int java.nio.Buffer.checkIndex(int)
1842 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1843   // NOTE: by the time we are in checkIndex() we are guaranteed that
1844   // the buffer is non-null (because checkIndex is package-private and
1845   // only called from within other methods in the buffer).
1846   assert(x->number_of_arguments() == 2, "wrong type");
1847   LIRItem buf  (x->argument_at(0), this);
1848   LIRItem index(x->argument_at(1), this);
1849   buf.load_item();
1850   index.load_item();
1851 
1852   LIR_Opr result = rlock_result(x);
1853   if (GenerateRangeChecks) {
1854     CodeEmitInfo* info = state_for(x);
1855     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1856     if (index.result()->is_constant()) {
1857       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1858       __ branch(lir_cond_belowEqual, T_INT, stub);
1859     } else {
1860       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1861                   java_nio_Buffer::limit_offset(), T_INT, info);
1862       __ branch(lir_cond_aboveEqual, T_INT, stub);
1863     }
1864     __ move(index.result(), result);
1865   } else {
1866     // Just load the index into the result register
1867     __ move(index.result(), result);
1868   }
1869 }
1870 
1871 
1872 //------------------------array access--------------------------------------
1873 
1874 
1875 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1876   LIRItem array(x->array(), this);
1877   array.load_item();
1878   LIR_Opr reg = rlock_result(x);
1879 
1880   CodeEmitInfo* info = NULL;
1881   if (x->needs_null_check()) {
1882     NullCheck* nc = x->explicit_null_check();
1883     if (nc == NULL) {
1884       info = state_for(x);
1885     } else {
1886       info = state_for(nc);
1887     }
1888     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1889       LIR_Opr obj = new_register(T_OBJECT);
1890       __ move(LIR_OprFact::oopConst(NULL), obj);
1891       __ null_check(obj, new CodeEmitInfo(info));
1892     }
1893   }
1894   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1895 }
1896 
1897 
1898 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1899   bool use_length = x->length() != NULL;
1900   LIRItem array(x->array(), this);
1901   LIRItem index(x->index(), this);
1902   LIRItem length(this);
1903   bool needs_range_check = x->compute_needs_range_check();
1904 
1905   if (use_length && needs_range_check) {
1906     length.set_instruction(x->length());
1907     length.load_item();
1908   }
1909 
1910   array.load_item();
1911   if (index.is_constant() && can_inline_as_constant(x->index())) {
1912     // let it be a constant
1913     index.dont_load_item();
1914   } else {
1915     index.load_item();
1916   }
1917 
1918   CodeEmitInfo* range_check_info = state_for(x);
1919   CodeEmitInfo* null_check_info = NULL;
1920   if (x->needs_null_check()) {
1921     NullCheck* nc = x->explicit_null_check();
1922     if (nc != NULL) {
1923       null_check_info = state_for(nc);
1924     } else {
1925       null_check_info = range_check_info;
1926     }
1927     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1928       LIR_Opr obj = new_register(T_OBJECT);
1929       __ move(LIR_OprFact::oopConst(NULL), obj);
1930       __ null_check(obj, new CodeEmitInfo(null_check_info));
1931     }
1932   }
1933 
1934   // emit array address setup early so it schedules better
1935   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1936 
1937   if (GenerateRangeChecks && needs_range_check) {
1938     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1939       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1940     } else if (use_length) {
1941       // TODO: use a (modified) version of array_range_check that does not require a
1942       //       constant length to be loaded to a register
1943       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1944       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1945     } else {
1946       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1947       // The range check performs the null check, so clear it out for the load
1948       null_check_info = NULL;
1949     }
1950   }
1951 
1952   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1953 }
1954 
1955 
1956 void LIRGenerator::do_NullCheck(NullCheck* x) {
1957   if (x->can_trap()) {
1958     LIRItem value(x->obj(), this);
1959     value.load_item();
1960     CodeEmitInfo* info = state_for(x);
1961     __ null_check(value.result(), info);
1962   }
1963 }
1964 
1965 
1966 void LIRGenerator::do_TypeCast(TypeCast* x) {
1967   LIRItem value(x->obj(), this);
1968   value.load_item();
1969   // the result is the same as from the node we are casting
1970   set_result(x, value.result());
1971 }
1972 
1973 
1974 void LIRGenerator::do_Throw(Throw* x) {
1975   LIRItem exception(x->exception(), this);
1976   exception.load_item();
1977   set_no_result(x);
1978   LIR_Opr exception_opr = exception.result();
1979   CodeEmitInfo* info = state_for(x, x->state());
1980 
1981 #ifndef PRODUCT
1982   if (PrintC1Statistics) {
1983     increment_counter(Runtime1::throw_count_address(), T_INT);
1984   }
1985 #endif
1986 
1987   // check if the instruction has an xhandler in any of the nested scopes
1988   bool unwind = false;
1989   if (info->exception_handlers()->length() == 0) {
1990     // this throw is not inside an xhandler
1991     unwind = true;
1992   } else {
1993     // get some idea of the throw type
1994     bool type_is_exact = true;
1995     ciType* throw_type = x->exception()->exact_type();
1996     if (throw_type == NULL) {
1997       type_is_exact = false;
1998       throw_type = x->exception()->declared_type();
1999     }
2000     if (throw_type != NULL && throw_type->is_instance_klass()) {
2001       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2002       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2003     }
2004   }
2005 
2006   // do null check before moving exception oop into fixed register
2007   // to avoid a fixed interval with an oop during the null check.
2008   // Use a copy of the CodeEmitInfo because debug information is
2009   // different for null_check and throw.
2010   if (GenerateCompilerNullChecks &&
2011       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
2012     // if the exception object wasn't created using new then it might be null.
2013     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2014   }
2015 
2016   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2017     // we need to go through the exception lookup path to get JVMTI
2018     // notification done
2019     unwind = false;
2020   }
2021 
2022   // move exception oop into fixed register
2023   __ move(exception_opr, exceptionOopOpr());
2024 
2025   if (unwind) {
2026     __ unwind_exception(exceptionOopOpr());
2027   } else {
2028     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2029   }
2030 }
2031 
2032 
2033 void LIRGenerator::do_RoundFP(RoundFP* x) {
2034   LIRItem input(x->input(), this);
2035   input.load_item();
2036   LIR_Opr input_opr = input.result();
2037   assert(input_opr->is_register(), "why round if value is not in a register?");
2038   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2039   if (input_opr->is_single_fpu()) {
2040     set_result(x, round_item(input_opr)); // This code path not currently taken
2041   } else {
2042     LIR_Opr result = new_register(T_DOUBLE);
2043     set_vreg_flag(result, must_start_in_memory);
2044     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2045     set_result(x, result);
2046   }
2047 }
2048 
2049 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2050 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2051 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2052   LIRItem base(x->base(), this);
2053   LIRItem idx(this);
2054 
2055   base.load_item();
2056   if (x->has_index()) {
2057     idx.set_instruction(x->index());
2058     idx.load_nonconstant();
2059   }
2060 
2061   LIR_Opr reg = rlock_result(x, x->basic_type());
2062 
2063   int   log2_scale = 0;
2064   if (x->has_index()) {
2065     log2_scale = x->log2_scale();
2066   }
2067 
2068   assert(!x->has_index() || idx.value() == x->index(), "should match");
2069 
2070   LIR_Opr base_op = base.result();
2071   LIR_Opr index_op = idx.result();
2072 #ifndef _LP64
2073   if (base_op->type() == T_LONG) {
2074     base_op = new_register(T_INT);
2075     __ convert(Bytecodes::_l2i, base.result(), base_op);
2076   }
2077   if (x->has_index()) {
2078     if (index_op->type() == T_LONG) {
2079       LIR_Opr long_index_op = index_op;
2080       if (index_op->is_constant()) {
2081         long_index_op = new_register(T_LONG);
2082         __ move(index_op, long_index_op);
2083       }
2084       index_op = new_register(T_INT);
2085       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2086     } else {
2087       assert(x->index()->type()->tag() == intTag, "must be");
2088     }
2089   }
2090   // At this point base and index should be all ints.
2091   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2092   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2093 #else
2094   if (x->has_index()) {
2095     if (index_op->type() == T_INT) {
2096       if (!index_op->is_constant()) {
2097         index_op = new_register(T_LONG);
2098         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2099       }
2100     } else {
2101       assert(index_op->type() == T_LONG, "must be");
2102       if (index_op->is_constant()) {
2103         index_op = new_register(T_LONG);
2104         __ move(idx.result(), index_op);
2105       }
2106     }
2107   }
2108   // At this point base is a long non-constant
2109   // Index is a long register or a int constant.
2110   // We allow the constant to stay an int because that would allow us a more compact encoding by
2111   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2112   // move it into a register first.
2113   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2114   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2115                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2116 #endif
2117 
2118   BasicType dst_type = x->basic_type();
2119 
2120   LIR_Address* addr;
2121   if (index_op->is_constant()) {
2122     assert(log2_scale == 0, "must not have a scale");
2123     assert(index_op->type() == T_INT, "only int constants supported");
2124     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2125   } else {
2126 #ifdef X86
2127     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2128 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2129     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2130 #else
2131     if (index_op->is_illegal() || log2_scale == 0) {
2132       addr = new LIR_Address(base_op, index_op, dst_type);
2133     } else {
2134       LIR_Opr tmp = new_pointer_register();
2135       __ shift_left(index_op, log2_scale, tmp);
2136       addr = new LIR_Address(base_op, tmp, dst_type);
2137     }
2138 #endif
2139   }
2140 
2141   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2142     __ unaligned_move(addr, reg);
2143   } else {
2144     if (dst_type == T_OBJECT && x->is_wide()) {
2145       __ move_wide(addr, reg);
2146     } else {
2147       __ move(addr, reg);
2148     }
2149   }
2150 }
2151 
2152 
2153 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2154   int  log2_scale = 0;
2155   BasicType type = x->basic_type();
2156 
2157   if (x->has_index()) {
2158     log2_scale = x->log2_scale();
2159   }
2160 
2161   LIRItem base(x->base(), this);
2162   LIRItem value(x->value(), this);
2163   LIRItem idx(this);
2164 
2165   base.load_item();
2166   if (x->has_index()) {
2167     idx.set_instruction(x->index());
2168     idx.load_item();
2169   }
2170 
2171   if (type == T_BYTE || type == T_BOOLEAN) {
2172     value.load_byte_item();
2173   } else {
2174     value.load_item();
2175   }
2176 
2177   set_no_result(x);
2178 
2179   LIR_Opr base_op = base.result();
2180   LIR_Opr index_op = idx.result();
2181 
2182 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2183   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2184 #else
2185 #ifndef _LP64
2186   if (base_op->type() == T_LONG) {
2187     base_op = new_register(T_INT);
2188     __ convert(Bytecodes::_l2i, base.result(), base_op);
2189   }
2190   if (x->has_index()) {
2191     if (index_op->type() == T_LONG) {
2192       index_op = new_register(T_INT);
2193       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2194     }
2195   }
2196   // At this point base and index should be all ints and not constants
2197   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2198   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2199 #else
2200   if (x->has_index()) {
2201     if (index_op->type() == T_INT) {
2202       index_op = new_register(T_LONG);
2203       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2204     }
2205   }
2206   // At this point base and index are long and non-constant
2207   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2208   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2209 #endif
2210 
2211   if (log2_scale != 0) {
2212     // temporary fix (platform dependent code without shift on Intel would be better)
2213     // TODO: ARM also allows embedded shift in the address
2214     LIR_Opr tmp = new_pointer_register();
2215     if (TwoOperandLIRForm) {
2216       __ move(index_op, tmp);
2217       index_op = tmp;
2218     }
2219     __ shift_left(index_op, log2_scale, tmp);
2220     if (!TwoOperandLIRForm) {
2221       index_op = tmp;
2222     }
2223   }
2224 
2225   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2226 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2227   __ move(value.result(), addr);
2228 }
2229 
2230 
2231 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2232   BasicType type = x->basic_type();
2233   LIRItem src(x->object(), this);
2234   LIRItem off(x->offset(), this);
2235 
2236   off.load_item();
2237   src.load_item();
2238 
2239   LIR_Opr value = rlock_result(x, x->basic_type());
2240 
2241   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2242 
2243 #if INCLUDE_ALL_GCS
2244   // We might be reading the value of the referent field of a
2245   // Reference object in order to attach it back to the live
2246   // object graph. If G1 is enabled then we need to record
2247   // the value that is being returned in an SATB log buffer.
2248   //
2249   // We need to generate code similar to the following...
2250   //
2251   // if (offset == java_lang_ref_Reference::referent_offset) {
2252   //   if (src != NULL) {
2253   //     if (klass(src)->reference_type() != REF_NONE) {
2254   //       pre_barrier(..., value, ...);
2255   //     }
2256   //   }
2257   // }
2258 
2259   if (UseG1GC && type == T_OBJECT) {
2260     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2261     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2262     bool gen_source_check = true;    // Assume we need to check the src object for null.
2263     bool gen_type_check = true;      // Assume we need to check the reference_type.
2264 
2265     if (off.is_constant()) {
2266       jlong off_con = (off.type()->is_int() ?
2267                         (jlong) off.get_jint_constant() :
2268                         off.get_jlong_constant());
2269 
2270 
2271       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2272         // The constant offset is something other than referent_offset.
2273         // We can skip generating/checking the remaining guards and
2274         // skip generation of the code stub.
2275         gen_pre_barrier = false;
2276       } else {
2277         // The constant offset is the same as referent_offset -
2278         // we do not need to generate a runtime offset check.
2279         gen_offset_check = false;
2280       }
2281     }
2282 
2283     // We don't need to generate stub if the source object is an array
2284     if (gen_pre_barrier && src.type()->is_array()) {
2285       gen_pre_barrier = false;
2286     }
2287 
2288     if (gen_pre_barrier) {
2289       // We still need to continue with the checks.
2290       if (src.is_constant()) {
2291         ciObject* src_con = src.get_jobject_constant();
2292         guarantee(src_con != NULL, "no source constant");
2293 
2294         if (src_con->is_null_object()) {
2295           // The constant src object is null - We can skip
2296           // generating the code stub.
2297           gen_pre_barrier = false;
2298         } else {
2299           // Non-null constant source object. We still have to generate
2300           // the slow stub - but we don't need to generate the runtime
2301           // null object check.
2302           gen_source_check = false;
2303         }
2304       }
2305     }
2306     if (gen_pre_barrier && !PatchALot) {
2307       // Can the klass of object be statically determined to be
2308       // a sub-class of Reference?
2309       ciType* type = src.value()->declared_type();
2310       if ((type != NULL) && type->is_loaded()) {
2311         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2312           gen_type_check = false;
2313         } else if (type->is_klass() &&
2314                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2315           // Not Reference and not Object klass.
2316           gen_pre_barrier = false;
2317         }
2318       }
2319     }
2320 
2321     if (gen_pre_barrier) {
2322       LabelObj* Lcont = new LabelObj();
2323 
2324       // We can have generate one runtime check here. Let's start with
2325       // the offset check.
2326       if (gen_offset_check) {
2327         // if (offset != referent_offset) -> continue
2328         // If offset is an int then we can do the comparison with the
2329         // referent_offset constant; otherwise we need to move
2330         // referent_offset into a temporary register and generate
2331         // a reg-reg compare.
2332 
2333         LIR_Opr referent_off;
2334 
2335         if (off.type()->is_int()) {
2336           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2337         } else {
2338           assert(off.type()->is_long(), "what else?");
2339           referent_off = new_register(T_LONG);
2340           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2341         }
2342         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2343         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2344       }
2345       if (gen_source_check) {
2346         // offset is a const and equals referent offset
2347         // if (source == null) -> continue
2348         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2349         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2350       }
2351       LIR_Opr src_klass = new_register(T_OBJECT);
2352       if (gen_type_check) {
2353         // We have determined that offset == referent_offset && src != null.
2354         // if (src->_klass->_reference_type == REF_NONE) -> continue
2355         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2356         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2357         LIR_Opr reference_type = new_register(T_INT);
2358         __ move(reference_type_addr, reference_type);
2359         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2360         __ branch(lir_cond_equal, T_INT, Lcont->label());
2361       }
2362       {
2363         // We have determined that src->_klass->_reference_type != REF_NONE
2364         // so register the value in the referent field with the pre-barrier.
2365         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2366                     value  /* pre_val */,
2367                     false  /* do_load */,
2368                     false  /* patch */,
2369                     NULL   /* info */);
2370       }
2371       __ branch_destination(Lcont->label());
2372     }
2373   }
2374 #endif // INCLUDE_ALL_GCS
2375 
2376   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2377 }
2378 
2379 
2380 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2381   BasicType type = x->basic_type();
2382   LIRItem src(x->object(), this);
2383   LIRItem off(x->offset(), this);
2384   LIRItem data(x->value(), this);
2385 
2386   src.load_item();
2387   if (type == T_BOOLEAN || type == T_BYTE) {
2388     data.load_byte_item();
2389   } else {
2390     data.load_item();
2391   }
2392   off.load_item();
2393 
2394   set_no_result(x);
2395 
2396   if (x->is_volatile() && os::is_MP()) __ membar_release();
2397   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2398   if (x->is_volatile() && os::is_MP()) __ membar();
2399 }
2400 
2401 
2402 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2403   int lng = x->length();
2404 
2405   for (int i = 0; i < lng; i++) {
2406     SwitchRange* one_range = x->at(i);
2407     int low_key = one_range->low_key();
2408     int high_key = one_range->high_key();
2409     BlockBegin* dest = one_range->sux();
2410     if (low_key == high_key) {
2411       __ cmp(lir_cond_equal, value, low_key);
2412       __ branch(lir_cond_equal, T_INT, dest);
2413     } else if (high_key - low_key == 1) {
2414       __ cmp(lir_cond_equal, value, low_key);
2415       __ branch(lir_cond_equal, T_INT, dest);
2416       __ cmp(lir_cond_equal, value, high_key);
2417       __ branch(lir_cond_equal, T_INT, dest);
2418     } else {
2419       LabelObj* L = new LabelObj();
2420       __ cmp(lir_cond_less, value, low_key);
2421       __ branch(lir_cond_less, T_INT, L->label());
2422       __ cmp(lir_cond_lessEqual, value, high_key);
2423       __ branch(lir_cond_lessEqual, T_INT, dest);
2424       __ branch_destination(L->label());
2425     }
2426   }
2427   __ jump(default_sux);
2428 }
2429 
2430 
2431 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2432   SwitchRangeList* res = new SwitchRangeList();
2433   int len = x->length();
2434   if (len > 0) {
2435     BlockBegin* sux = x->sux_at(0);
2436     int key = x->lo_key();
2437     BlockBegin* default_sux = x->default_sux();
2438     SwitchRange* range = new SwitchRange(key, sux);
2439     for (int i = 0; i < len; i++, key++) {
2440       BlockBegin* new_sux = x->sux_at(i);
2441       if (sux == new_sux) {
2442         // still in same range
2443         range->set_high_key(key);
2444       } else {
2445         // skip tests which explicitly dispatch to the default
2446         if (sux != default_sux) {
2447           res->append(range);
2448         }
2449         range = new SwitchRange(key, new_sux);
2450       }
2451       sux = new_sux;
2452     }
2453     if (res->length() == 0 || res->last() != range)  res->append(range);
2454   }
2455   return res;
2456 }
2457 
2458 
2459 // we expect the keys to be sorted by increasing value
2460 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2461   SwitchRangeList* res = new SwitchRangeList();
2462   int len = x->length();
2463   if (len > 0) {
2464     BlockBegin* default_sux = x->default_sux();
2465     int key = x->key_at(0);
2466     BlockBegin* sux = x->sux_at(0);
2467     SwitchRange* range = new SwitchRange(key, sux);
2468     for (int i = 1; i < len; i++) {
2469       int new_key = x->key_at(i);
2470       BlockBegin* new_sux = x->sux_at(i);
2471       if (key+1 == new_key && sux == new_sux) {
2472         // still in same range
2473         range->set_high_key(new_key);
2474       } else {
2475         // skip tests which explicitly dispatch to the default
2476         if (range->sux() != default_sux) {
2477           res->append(range);
2478         }
2479         range = new SwitchRange(new_key, new_sux);
2480       }
2481       key = new_key;
2482       sux = new_sux;
2483     }
2484     if (res->length() == 0 || res->last() != range)  res->append(range);
2485   }
2486   return res;
2487 }
2488 
2489 
2490 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2491   LIRItem tag(x->tag(), this);
2492   tag.load_item();
2493   set_no_result(x);
2494 
2495   if (x->is_safepoint()) {
2496     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2497   }
2498 
2499   // move values into phi locations
2500   move_to_phi(x->state());
2501 
2502   int lo_key = x->lo_key();
2503   int hi_key = x->hi_key();
2504   int len = x->length();
2505   LIR_Opr value = tag.result();
2506   if (UseTableRanges) {
2507     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2508   } else {
2509     for (int i = 0; i < len; i++) {
2510       __ cmp(lir_cond_equal, value, i + lo_key);
2511       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2512     }
2513     __ jump(x->default_sux());
2514   }
2515 }
2516 
2517 
2518 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2519   LIRItem tag(x->tag(), this);
2520   tag.load_item();
2521   set_no_result(x);
2522 
2523   if (x->is_safepoint()) {
2524     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2525   }
2526 
2527   // move values into phi locations
2528   move_to_phi(x->state());
2529 
2530   LIR_Opr value = tag.result();
2531   if (UseTableRanges) {
2532     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2533   } else {
2534     int len = x->length();
2535     for (int i = 0; i < len; i++) {
2536       __ cmp(lir_cond_equal, value, x->key_at(i));
2537       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2538     }
2539     __ jump(x->default_sux());
2540   }
2541 }
2542 
2543 
2544 void LIRGenerator::do_Goto(Goto* x) {
2545   set_no_result(x);
2546 
2547   if (block()->next()->as_OsrEntry()) {
2548     // need to free up storage used for OSR entry point
2549     LIR_Opr osrBuffer = block()->next()->operand();
2550     BasicTypeList signature;
2551     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2552     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2553     __ move(osrBuffer, cc->args()->at(0));
2554     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2555                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2556   }
2557 
2558   if (x->is_safepoint()) {
2559     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2560 
2561     // increment backedge counter if needed
2562     CodeEmitInfo* info = state_for(x, state);
2563     increment_backedge_counter(info, x->profiled_bci());
2564     CodeEmitInfo* safepoint_info = state_for(x, state);
2565     __ safepoint(safepoint_poll_register(), safepoint_info);
2566   }
2567 
2568   // Gotos can be folded Ifs, handle this case.
2569   if (x->should_profile()) {
2570     ciMethod* method = x->profiled_method();
2571     assert(method != NULL, "method should be set if branch is profiled");
2572     ciMethodData* md = method->method_data_or_null();
2573     assert(md != NULL, "Sanity");
2574     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2575     assert(data != NULL, "must have profiling data");
2576     int offset;
2577     if (x->direction() == Goto::taken) {
2578       assert(data->is_BranchData(), "need BranchData for two-way branches");
2579       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2580     } else if (x->direction() == Goto::not_taken) {
2581       assert(data->is_BranchData(), "need BranchData for two-way branches");
2582       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2583     } else {
2584       assert(data->is_JumpData(), "need JumpData for branches");
2585       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2586     }
2587     LIR_Opr md_reg = new_register(T_METADATA);
2588     __ metadata2reg(md->constant_encoding(), md_reg);
2589 
2590     increment_counter(new LIR_Address(md_reg, offset,
2591                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2592   }
2593 
2594   // emit phi-instruction move after safepoint since this simplifies
2595   // describing the state as the safepoint.
2596   move_to_phi(x->state());
2597 
2598   __ jump(x->default_sux());
2599 }
2600 
2601 /**
2602  * Emit profiling code if needed for arguments, parameters, return value types
2603  *
2604  * @param md                    MDO the code will update at runtime
2605  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2606  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2607  * @param profiled_k            current profile
2608  * @param obj                   IR node for the object to be profiled
2609  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2610  *                              Set once we find an update to make and use for next ones.
2611  * @param not_null              true if we know obj cannot be null
2612  * @param signature_at_call_k   signature at call for obj
2613  * @param callee_signature_k    signature of callee for obj
2614  *                              at call and callee signatures differ at method handle call
2615  * @return                      the only klass we know will ever be seen at this profile point
2616  */
2617 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2618                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2619                                     ciKlass* callee_signature_k) {
2620   ciKlass* result = NULL;
2621   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2622   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2623   // known not to be null or null bit already set and already set to
2624   // unknown: nothing we can do to improve profiling
2625   if (!do_null && !do_update) {
2626     return result;
2627   }
2628 
2629   ciKlass* exact_klass = NULL;
2630   Compilation* comp = Compilation::current();
2631   if (do_update) {
2632     // try to find exact type, using CHA if possible, so that loading
2633     // the klass from the object can be avoided
2634     ciType* type = obj->exact_type();
2635     if (type == NULL) {
2636       type = obj->declared_type();
2637       type = comp->cha_exact_type(type);
2638     }
2639     assert(type == NULL || type->is_klass(), "type should be class");
2640     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2641 
2642     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2643   }
2644 
2645   if (!do_null && !do_update) {
2646     return result;
2647   }
2648 
2649   ciKlass* exact_signature_k = NULL;
2650   if (do_update) {
2651     // Is the type from the signature exact (the only one possible)?
2652     exact_signature_k = signature_at_call_k->exact_klass();
2653     if (exact_signature_k == NULL) {
2654       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2655     } else {
2656       result = exact_signature_k;
2657       // Known statically. No need to emit any code: prevent
2658       // LIR_Assembler::emit_profile_type() from emitting useless code
2659       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2660     }
2661     // exact_klass and exact_signature_k can be both non NULL but
2662     // different if exact_klass is loaded after the ciObject for
2663     // exact_signature_k is created.
2664     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2665       // sometimes the type of the signature is better than the best type
2666       // the compiler has
2667       exact_klass = exact_signature_k;
2668     }
2669     if (callee_signature_k != NULL &&
2670         callee_signature_k != signature_at_call_k) {
2671       ciKlass* improved_klass = callee_signature_k->exact_klass();
2672       if (improved_klass == NULL) {
2673         improved_klass = comp->cha_exact_type(callee_signature_k);
2674       }
2675       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2676         exact_klass = exact_signature_k;
2677       }
2678     }
2679     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2680   }
2681 
2682   if (!do_null && !do_update) {
2683     return result;
2684   }
2685 
2686   if (mdp == LIR_OprFact::illegalOpr) {
2687     mdp = new_register(T_METADATA);
2688     __ metadata2reg(md->constant_encoding(), mdp);
2689     if (md_base_offset != 0) {
2690       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2691       mdp = new_pointer_register();
2692       __ leal(LIR_OprFact::address(base_type_address), mdp);
2693     }
2694   }
2695   LIRItem value(obj, this);
2696   value.load_item();
2697   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2698                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2699   return result;
2700 }
2701 
2702 // profile parameters on entry to the root of the compilation
2703 void LIRGenerator::profile_parameters(Base* x) {
2704   if (compilation()->profile_parameters()) {
2705     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2706     ciMethodData* md = scope()->method()->method_data_or_null();
2707     assert(md != NULL, "Sanity");
2708 
2709     if (md->parameters_type_data() != NULL) {
2710       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2711       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2712       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2713       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2714         LIR_Opr src = args->at(i);
2715         assert(!src->is_illegal(), "check");
2716         BasicType t = src->type();
2717         if (t == T_OBJECT || t == T_ARRAY) {
2718           intptr_t profiled_k = parameters->type(j);
2719           Local* local = x->state()->local_at(java_index)->as_Local();
2720           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2721                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2722                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2723           // If the profile is known statically set it once for all and do not emit any code
2724           if (exact != NULL) {
2725             md->set_parameter_type(j, exact);
2726           }
2727           j++;
2728         }
2729         java_index += type2size[t];
2730       }
2731     }
2732   }
2733 }
2734 
2735 void LIRGenerator::do_Base(Base* x) {
2736   __ std_entry(LIR_OprFact::illegalOpr);
2737   // Emit moves from physical registers / stack slots to virtual registers
2738   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2739   IRScope* irScope = compilation()->hir()->top_scope();
2740   int java_index = 0;
2741   for (int i = 0; i < args->length(); i++) {
2742     LIR_Opr src = args->at(i);
2743     assert(!src->is_illegal(), "check");
2744     BasicType t = src->type();
2745 
2746     // Types which are smaller than int are passed as int, so
2747     // correct the type which passed.
2748     switch (t) {
2749     case T_BYTE:
2750     case T_BOOLEAN:
2751     case T_SHORT:
2752     case T_CHAR:
2753       t = T_INT;
2754       break;
2755     }
2756 
2757     LIR_Opr dest = new_register(t);
2758     __ move(src, dest);
2759 
2760     // Assign new location to Local instruction for this local
2761     Local* local = x->state()->local_at(java_index)->as_Local();
2762     assert(local != NULL, "Locals for incoming arguments must have been created");
2763 #ifndef __SOFTFP__
2764     // The java calling convention passes double as long and float as int.
2765     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2766 #endif // __SOFTFP__
2767     local->set_operand(dest);
2768     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2769     java_index += type2size[t];
2770   }
2771 
2772   if (compilation()->env()->dtrace_method_probes()) {
2773     BasicTypeList signature;
2774     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2775     signature.append(T_METADATA); // Method*
2776     LIR_OprList* args = new LIR_OprList();
2777     args->append(getThreadPointer());
2778     LIR_Opr meth = new_register(T_METADATA);
2779     __ metadata2reg(method()->constant_encoding(), meth);
2780     args->append(meth);
2781     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2782   }
2783 
2784   if (method()->is_synchronized()) {
2785     LIR_Opr obj;
2786     if (method()->is_static()) {
2787       obj = new_register(T_OBJECT);
2788       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2789     } else {
2790       Local* receiver = x->state()->local_at(0)->as_Local();
2791       assert(receiver != NULL, "must already exist");
2792       obj = receiver->operand();
2793     }
2794     assert(obj->is_valid(), "must be valid");
2795 
2796     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2797       LIR_Opr lock = new_register(T_INT);
2798       __ load_stack_address_monitor(0, lock);
2799 
2800       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2801       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2802 
2803       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2804       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2805     }
2806   }
2807   if (compilation()->age_code()) {
2808     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2809     decrement_age(info);
2810   }
2811   // increment invocation counters if needed
2812   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2813     profile_parameters(x);
2814     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2815     increment_invocation_counter(info);
2816   }
2817 
2818   // all blocks with a successor must end with an unconditional jump
2819   // to the successor even if they are consecutive
2820   __ jump(x->default_sux());
2821 }
2822 
2823 
2824 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2825   // construct our frame and model the production of incoming pointer
2826   // to the OSR buffer.
2827   __ osr_entry(LIR_Assembler::osrBufferPointer());
2828   LIR_Opr result = rlock_result(x);
2829   __ move(LIR_Assembler::osrBufferPointer(), result);
2830 }
2831 
2832 
2833 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2834   assert(args->length() == arg_list->length(),
2835          "args=%d, arg_list=%d", args->length(), arg_list->length());
2836   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2837     LIRItem* param = args->at(i);
2838     LIR_Opr loc = arg_list->at(i);
2839     if (loc->is_register()) {
2840       param->load_item_force(loc);
2841     } else {
2842       LIR_Address* addr = loc->as_address_ptr();
2843       param->load_for_store(addr->type());
2844       if (addr->type() == T_OBJECT) {
2845         __ move_wide(param->result(), addr);
2846       } else
2847         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2848           __ unaligned_move(param->result(), addr);
2849         } else {
2850           __ move(param->result(), addr);
2851         }
2852     }
2853   }
2854 
2855   if (x->has_receiver()) {
2856     LIRItem* receiver = args->at(0);
2857     LIR_Opr loc = arg_list->at(0);
2858     if (loc->is_register()) {
2859       receiver->load_item_force(loc);
2860     } else {
2861       assert(loc->is_address(), "just checking");
2862       receiver->load_for_store(T_OBJECT);
2863       __ move_wide(receiver->result(), loc->as_address_ptr());
2864     }
2865   }
2866 }
2867 
2868 
2869 // Visits all arguments, returns appropriate items without loading them
2870 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2871   LIRItemList* argument_items = new LIRItemList();
2872   if (x->has_receiver()) {
2873     LIRItem* receiver = new LIRItem(x->receiver(), this);
2874     argument_items->append(receiver);
2875   }
2876   for (int i = 0; i < x->number_of_arguments(); i++) {
2877     LIRItem* param = new LIRItem(x->argument_at(i), this);
2878     argument_items->append(param);
2879   }
2880   return argument_items;
2881 }
2882 
2883 
2884 // The invoke with receiver has following phases:
2885 //   a) traverse and load/lock receiver;
2886 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2887 //   c) push receiver on stack
2888 //   d) load each of the items and push on stack
2889 //   e) unlock receiver
2890 //   f) move receiver into receiver-register %o0
2891 //   g) lock result registers and emit call operation
2892 //
2893 // Before issuing a call, we must spill-save all values on stack
2894 // that are in caller-save register. "spill-save" moves those registers
2895 // either in a free callee-save register or spills them if no free
2896 // callee save register is available.
2897 //
2898 // The problem is where to invoke spill-save.
2899 // - if invoked between e) and f), we may lock callee save
2900 //   register in "spill-save" that destroys the receiver register
2901 //   before f) is executed
2902 // - if we rearrange f) to be earlier (by loading %o0) it
2903 //   may destroy a value on the stack that is currently in %o0
2904 //   and is waiting to be spilled
2905 // - if we keep the receiver locked while doing spill-save,
2906 //   we cannot spill it as it is spill-locked
2907 //
2908 void LIRGenerator::do_Invoke(Invoke* x) {
2909   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2910 
2911   LIR_OprList* arg_list = cc->args();
2912   LIRItemList* args = invoke_visit_arguments(x);
2913   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2914 
2915   // setup result register
2916   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2917   if (x->type() != voidType) {
2918     result_register = result_register_for(x->type());
2919   }
2920 
2921   CodeEmitInfo* info = state_for(x, x->state());
2922 
2923   invoke_load_arguments(x, args, arg_list);
2924 
2925   if (x->has_receiver()) {
2926     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2927     receiver = args->at(0)->result();
2928   }
2929 
2930   // emit invoke code
2931   bool optimized = x->target_is_loaded() && x->target_is_final();
2932   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2933 
2934   // JSR 292
2935   // Preserve the SP over MethodHandle call sites, if needed.
2936   ciMethod* target = x->target();
2937   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2938                                   target->is_method_handle_intrinsic() ||
2939                                   target->is_compiled_lambda_form());
2940   if (is_method_handle_invoke) {
2941     info->set_is_method_handle_invoke(true);
2942     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2943         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2944     }
2945   }
2946 
2947   switch (x->code()) {
2948     case Bytecodes::_invokestatic:
2949       __ call_static(target, result_register,
2950                      SharedRuntime::get_resolve_static_call_stub(),
2951                      arg_list, info);
2952       break;
2953     case Bytecodes::_invokespecial:
2954     case Bytecodes::_invokevirtual:
2955     case Bytecodes::_invokeinterface:
2956       // for final target we still produce an inline cache, in order
2957       // to be able to call mixed mode
2958       if (x->code() == Bytecodes::_invokespecial || optimized) {
2959         __ call_opt_virtual(target, receiver, result_register,
2960                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2961                             arg_list, info);
2962       } else if (x->vtable_index() < 0) {
2963         __ call_icvirtual(target, receiver, result_register,
2964                           SharedRuntime::get_resolve_virtual_call_stub(),
2965                           arg_list, info);
2966       } else {
2967         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2968         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2969         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2970       }
2971       break;
2972     case Bytecodes::_invokedynamic: {
2973       __ call_dynamic(target, receiver, result_register,
2974                       SharedRuntime::get_resolve_static_call_stub(),
2975                       arg_list, info);
2976       break;
2977     }
2978     default:
2979       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2980       break;
2981   }
2982 
2983   // JSR 292
2984   // Restore the SP after MethodHandle call sites, if needed.
2985   if (is_method_handle_invoke
2986       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2987     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2988   }
2989 
2990   if (x->type()->is_float() || x->type()->is_double()) {
2991     // Force rounding of results from non-strictfp when in strictfp
2992     // scope (or when we don't know the strictness of the callee, to
2993     // be safe.)
2994     if (method()->is_strict()) {
2995       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2996         result_register = round_item(result_register);
2997       }
2998     }
2999   }
3000 
3001   if (result_register->is_valid()) {
3002     LIR_Opr result = rlock_result(x);
3003     __ move(result_register, result);
3004   }
3005 }
3006 
3007 
3008 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3009   assert(x->number_of_arguments() == 1, "wrong type");
3010   LIRItem value       (x->argument_at(0), this);
3011   LIR_Opr reg = rlock_result(x);
3012   value.load_item();
3013   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3014   __ move(tmp, reg);
3015 }
3016 
3017 
3018 
3019 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3020 void LIRGenerator::do_IfOp(IfOp* x) {
3021 #ifdef ASSERT
3022   {
3023     ValueTag xtag = x->x()->type()->tag();
3024     ValueTag ttag = x->tval()->type()->tag();
3025     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3026     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3027     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3028   }
3029 #endif
3030 
3031   LIRItem left(x->x(), this);
3032   LIRItem right(x->y(), this);
3033   left.load_item();
3034   if (can_inline_as_constant(right.value())) {
3035     right.dont_load_item();
3036   } else {
3037     right.load_item();
3038   }
3039 
3040   LIRItem t_val(x->tval(), this);
3041   LIRItem f_val(x->fval(), this);
3042   t_val.dont_load_item();
3043   f_val.dont_load_item();
3044   LIR_Opr reg = rlock_result(x);
3045 
3046   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3047   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3048 }
3049 
3050 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3051     assert(x->number_of_arguments() == expected_arguments, "wrong type");
3052     LIR_Opr reg = result_register_for(x->type());
3053     __ call_runtime_leaf(routine, getThreadTemp(),
3054                          reg, new LIR_OprList());
3055     LIR_Opr result = rlock_result(x);
3056     __ move(reg, result);
3057 }
3058 
3059 #ifdef TRACE_HAVE_INTRINSICS
3060 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3061     LIR_Opr thread = getThreadPointer();
3062     LIR_Opr osthread = new_pointer_register();
3063     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3064     size_t thread_id_size = OSThread::thread_id_size();
3065     if (thread_id_size == (size_t) BytesPerLong) {
3066       LIR_Opr id = new_register(T_LONG);
3067       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3068       __ convert(Bytecodes::_l2i, id, rlock_result(x));
3069     } else if (thread_id_size == (size_t) BytesPerInt) {
3070       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3071     } else {
3072       ShouldNotReachHere();
3073     }
3074 }
3075 
3076 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3077     CodeEmitInfo* info = state_for(x);
3078     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3079     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3080     assert(info != NULL, "must have info");
3081     LIRItem arg(x->argument_at(1), this);
3082     arg.load_item();
3083     LIR_Opr klass = new_pointer_register();
3084     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3085     LIR_Opr id = new_register(T_LONG);
3086     ByteSize offset = TRACE_ID_OFFSET;
3087     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3088     __ move(trace_id_addr, id);
3089     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3090     __ store(id, trace_id_addr);
3091     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3092     __ move(id, rlock_result(x));
3093 }
3094 #endif
3095 
3096 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3097   switch (x->id()) {
3098   case vmIntrinsics::_intBitsToFloat      :
3099   case vmIntrinsics::_doubleToRawLongBits :
3100   case vmIntrinsics::_longBitsToDouble    :
3101   case vmIntrinsics::_floatToRawIntBits   : {
3102     do_FPIntrinsics(x);
3103     break;
3104   }
3105 
3106 #ifdef TRACE_HAVE_INTRINSICS
3107   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
3108   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
3109   case vmIntrinsics::_counterTime:
3110     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
3111     break;
3112 #endif
3113 
3114   case vmIntrinsics::_currentTimeMillis:
3115     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3116     break;
3117 
3118   case vmIntrinsics::_nanoTime:
3119     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3120     break;
3121 
3122   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3123   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3124   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3125   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3126 
3127   case vmIntrinsics::_dlog:           // fall through
3128   case vmIntrinsics::_dlog10:         // fall through
3129   case vmIntrinsics::_dabs:           // fall through
3130   case vmIntrinsics::_dsqrt:          // fall through
3131   case vmIntrinsics::_dtan:           // fall through
3132   case vmIntrinsics::_dsin :          // fall through
3133   case vmIntrinsics::_dcos :          // fall through
3134   case vmIntrinsics::_dexp :          // fall through
3135   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3136   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3137 
3138   // java.nio.Buffer.checkIndex
3139   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3140 
3141   case vmIntrinsics::_compareAndSwapObject:
3142     do_CompareAndSwap(x, objectType);
3143     break;
3144   case vmIntrinsics::_compareAndSwapInt:
3145     do_CompareAndSwap(x, intType);
3146     break;
3147   case vmIntrinsics::_compareAndSwapLong:
3148     do_CompareAndSwap(x, longType);
3149     break;
3150 
3151   case vmIntrinsics::_loadFence :
3152     if (os::is_MP()) __ membar_acquire();
3153     break;
3154   case vmIntrinsics::_storeFence:
3155     if (os::is_MP()) __ membar_release();
3156     break;
3157   case vmIntrinsics::_fullFence :
3158     if (os::is_MP()) __ membar();
3159     break;
3160 
3161   case vmIntrinsics::_Reference_get:
3162     do_Reference_get(x);
3163     break;
3164 
3165   case vmIntrinsics::_updateCRC32:
3166   case vmIntrinsics::_updateBytesCRC32:
3167   case vmIntrinsics::_updateByteBufferCRC32:
3168     do_update_CRC32(x);
3169     break;
3170 
3171   default: ShouldNotReachHere(); break;
3172   }
3173 }
3174 
3175 void LIRGenerator::profile_arguments(ProfileCall* x) {
3176   if (compilation()->profile_arguments()) {
3177     int bci = x->bci_of_invoke();
3178     ciMethodData* md = x->method()->method_data_or_null();
3179     ciProfileData* data = md->bci_to_data(bci);
3180     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3181         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3182       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3183       int base_offset = md->byte_offset_of_slot(data, extra);
3184       LIR_Opr mdp = LIR_OprFact::illegalOpr;
3185       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3186 
3187       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3188       int start = 0;
3189       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3190       if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3191         // first argument is not profiled at call (method handle invoke)
3192         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3193         start = 1;
3194       }
3195       ciSignature* callee_signature = x->callee()->signature();
3196       // method handle call to virtual method
3197       bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3198       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3199 
3200       bool ignored_will_link;
3201       ciSignature* signature_at_call = NULL;
3202       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3203       ciSignatureStream signature_at_call_stream(signature_at_call);
3204 
3205       // if called through method handle invoke, some arguments may have been popped
3206       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3207         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3208         ciKlass* exact = profile_type(md, base_offset, off,
3209                                       args->type(i), x->profiled_arg_at(i+start), mdp,
3210                                       !x->arg_needs_null_check(i+start),
3211                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3212         if (exact != NULL) {
3213           md->set_argument_type(bci, i, exact);
3214         }
3215       }
3216     } else {
3217 #ifdef ASSERT
3218       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3219       int n = x->nb_profiled_args();
3220       assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3221                                                   (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3222              "only at JSR292 bytecodes");
3223 #endif
3224     }
3225   }
3226 }
3227 
3228 // profile parameters on entry to an inlined method
3229 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3230   if (compilation()->profile_parameters() && x->inlined()) {
3231     ciMethodData* md = x->callee()->method_data_or_null();
3232     if (md != NULL) {
3233       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3234       if (parameters_type_data != NULL) {
3235         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3236         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3237         bool has_receiver = !x->callee()->is_static();
3238         ciSignature* sig = x->callee()->signature();
3239         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3240         int i = 0; // to iterate on the Instructions
3241         Value arg = x->recv();
3242         bool not_null = false;
3243         int bci = x->bci_of_invoke();
3244         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3245         // The first parameter is the receiver so that's what we start
3246         // with if it exists. One exception is method handle call to
3247         // virtual method: the receiver is in the args list
3248         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3249           i = 1;
3250           arg = x->profiled_arg_at(0);
3251           not_null = !x->arg_needs_null_check(0);
3252         }
3253         int k = 0; // to iterate on the profile data
3254         for (;;) {
3255           intptr_t profiled_k = parameters->type(k);
3256           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3257                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3258                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3259           // If the profile is known statically set it once for all and do not emit any code
3260           if (exact != NULL) {
3261             md->set_parameter_type(k, exact);
3262           }
3263           k++;
3264           if (k >= parameters_type_data->number_of_parameters()) {
3265 #ifdef ASSERT
3266             int extra = 0;
3267             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3268                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3269                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3270               extra += 1;
3271             }
3272             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3273 #endif
3274             break;
3275           }
3276           arg = x->profiled_arg_at(i);
3277           not_null = !x->arg_needs_null_check(i);
3278           i++;
3279         }
3280       }
3281     }
3282   }
3283 }
3284 
3285 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3286   // Need recv in a temporary register so it interferes with the other temporaries
3287   LIR_Opr recv = LIR_OprFact::illegalOpr;
3288   LIR_Opr mdo = new_register(T_OBJECT);
3289   // tmp is used to hold the counters on SPARC
3290   LIR_Opr tmp = new_pointer_register();
3291 
3292   if (x->nb_profiled_args() > 0) {
3293     profile_arguments(x);
3294   }
3295 
3296   // profile parameters on inlined method entry including receiver
3297   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3298     profile_parameters_at_call(x);
3299   }
3300 
3301   if (x->recv() != NULL) {
3302     LIRItem value(x->recv(), this);
3303     value.load_item();
3304     recv = new_register(T_OBJECT);
3305     __ move(value.result(), recv);
3306   }
3307   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3308 }
3309 
3310 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3311   int bci = x->bci_of_invoke();
3312   ciMethodData* md = x->method()->method_data_or_null();
3313   ciProfileData* data = md->bci_to_data(bci);
3314   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3315   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3316   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3317 
3318   bool ignored_will_link;
3319   ciSignature* signature_at_call = NULL;
3320   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3321 
3322   // The offset within the MDO of the entry to update may be too large
3323   // to be used in load/store instructions on some platforms. So have
3324   // profile_type() compute the address of the profile in a register.
3325   ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3326                                 ret->type(), x->ret(), mdp,
3327                                 !x->needs_null_check(),
3328                                 signature_at_call->return_type()->as_klass(),
3329                                 x->callee()->signature()->return_type()->as_klass());
3330   if (exact != NULL) {
3331     md->set_return_type(bci, exact);
3332   }
3333 }
3334 
3335 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3336   // We can safely ignore accessors here, since c2 will inline them anyway,
3337   // accessors are also always mature.
3338   if (!x->inlinee()->is_accessor()) {
3339     CodeEmitInfo* info = state_for(x, x->state(), true);
3340     // Notify the runtime very infrequently only to take care of counter overflows
3341     int freq_log = Tier23InlineeNotifyFreqLog;
3342     double scale;
3343     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3344       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3345     }
3346     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3347   }
3348 }
3349 
3350 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3351   int freq_log;
3352   int level = compilation()->env()->comp_level();
3353   if (level == CompLevel_limited_profile) {
3354     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3355   } else if (level == CompLevel_full_profile) {
3356     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3357   } else {
3358     ShouldNotReachHere();
3359   }
3360   // Increment the appropriate invocation/backedge counter and notify the runtime.
3361   double scale;
3362   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3363     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3364   }
3365   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3366 }
3367 
3368 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3369   ciMethod* method = info->scope()->method();
3370   MethodCounters* mc_adr = method->ensure_method_counters();
3371   if (mc_adr != NULL) {
3372     LIR_Opr mc = new_pointer_register();
3373     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3374     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3375     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3376     LIR_Opr result = new_register(T_INT);
3377     __ load(counter, result);
3378     __ sub(result, LIR_OprFact::intConst(1), result);
3379     __ store(result, counter);
3380     // DeoptimizeStub will reexecute from the current state in code info.
3381     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3382                                          Deoptimization::Action_make_not_entrant);
3383     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3384     __ branch(lir_cond_lessEqual, T_INT, deopt);
3385   }
3386 }
3387 
3388 
3389 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3390                                                 ciMethod *method, int frequency,
3391                                                 int bci, bool backedge, bool notify) {
3392   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3393   int level = _compilation->env()->comp_level();
3394   assert(level > CompLevel_simple, "Shouldn't be here");
3395 
3396   int offset = -1;
3397   LIR_Opr counter_holder;
3398   if (level == CompLevel_limited_profile) {
3399     MethodCounters* counters_adr = method->ensure_method_counters();
3400     if (counters_adr == NULL) {
3401       bailout("method counters allocation failed");
3402       return;
3403     }
3404     counter_holder = new_pointer_register();
3405     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3406     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3407                                  MethodCounters::invocation_counter_offset());
3408   } else if (level == CompLevel_full_profile) {
3409     counter_holder = new_register(T_METADATA);
3410     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3411                                  MethodData::invocation_counter_offset());
3412     ciMethodData* md = method->method_data_or_null();
3413     assert(md != NULL, "Sanity");
3414     __ metadata2reg(md->constant_encoding(), counter_holder);
3415   } else {
3416     ShouldNotReachHere();
3417   }
3418   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3419   LIR_Opr result = new_register(T_INT);
3420   __ load(counter, result);
3421   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3422   __ store(result, counter);
3423   if (notify) {
3424     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3425     LIR_Opr meth = new_register(T_METADATA);
3426     __ metadata2reg(method->constant_encoding(), meth);
3427     __ logical_and(result, mask, result);
3428     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3429     // The bci for info can point to cmp for if's we want the if bci
3430     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3431     __ branch(lir_cond_equal, T_INT, overflow);
3432     __ branch_destination(overflow->continuation());
3433   }
3434 }
3435 
3436 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3437   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3438   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3439 
3440   if (x->pass_thread()) {
3441     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3442     args->append(getThreadPointer());
3443   }
3444 
3445   for (int i = 0; i < x->number_of_arguments(); i++) {
3446     Value a = x->argument_at(i);
3447     LIRItem* item = new LIRItem(a, this);
3448     item->load_item();
3449     args->append(item->result());
3450     signature->append(as_BasicType(a->type()));
3451   }
3452 
3453   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3454   if (x->type() == voidType) {
3455     set_no_result(x);
3456   } else {
3457     __ move(result, rlock_result(x));
3458   }
3459 }
3460 
3461 #ifdef ASSERT
3462 void LIRGenerator::do_Assert(Assert *x) {
3463   ValueTag tag = x->x()->type()->tag();
3464   If::Condition cond = x->cond();
3465 
3466   LIRItem xitem(x->x(), this);
3467   LIRItem yitem(x->y(), this);
3468   LIRItem* xin = &xitem;
3469   LIRItem* yin = &yitem;
3470 
3471   assert(tag == intTag, "Only integer assertions are valid!");
3472 
3473   xin->load_item();
3474   yin->dont_load_item();
3475 
3476   set_no_result(x);
3477 
3478   LIR_Opr left = xin->result();
3479   LIR_Opr right = yin->result();
3480 
3481   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3482 }
3483 #endif
3484 
3485 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3486 
3487 
3488   Instruction *a = x->x();
3489   Instruction *b = x->y();
3490   if (!a || StressRangeCheckElimination) {
3491     assert(!b || StressRangeCheckElimination, "B must also be null");
3492 
3493     CodeEmitInfo *info = state_for(x, x->state());
3494     CodeStub* stub = new PredicateFailedStub(info);
3495 
3496     __ jump(stub);
3497   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3498     int a_int = a->type()->as_IntConstant()->value();
3499     int b_int = b->type()->as_IntConstant()->value();
3500 
3501     bool ok = false;
3502 
3503     switch(x->cond()) {
3504       case Instruction::eql: ok = (a_int == b_int); break;
3505       case Instruction::neq: ok = (a_int != b_int); break;
3506       case Instruction::lss: ok = (a_int < b_int); break;
3507       case Instruction::leq: ok = (a_int <= b_int); break;
3508       case Instruction::gtr: ok = (a_int > b_int); break;
3509       case Instruction::geq: ok = (a_int >= b_int); break;
3510       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3511       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3512       default: ShouldNotReachHere();
3513     }
3514 
3515     if (ok) {
3516 
3517       CodeEmitInfo *info = state_for(x, x->state());
3518       CodeStub* stub = new PredicateFailedStub(info);
3519 
3520       __ jump(stub);
3521     }
3522   } else {
3523 
3524     ValueTag tag = x->x()->type()->tag();
3525     If::Condition cond = x->cond();
3526     LIRItem xitem(x->x(), this);
3527     LIRItem yitem(x->y(), this);
3528     LIRItem* xin = &xitem;
3529     LIRItem* yin = &yitem;
3530 
3531     assert(tag == intTag, "Only integer deoptimizations are valid!");
3532 
3533     xin->load_item();
3534     yin->dont_load_item();
3535     set_no_result(x);
3536 
3537     LIR_Opr left = xin->result();
3538     LIR_Opr right = yin->result();
3539 
3540     CodeEmitInfo *info = state_for(x, x->state());
3541     CodeStub* stub = new PredicateFailedStub(info);
3542 
3543     __ cmp(lir_cond(cond), left, right);
3544     __ branch(lir_cond(cond), right->type(), stub);
3545   }
3546 }
3547 
3548 
3549 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3550   LIRItemList args(1);
3551   LIRItem value(arg1, this);
3552   args.append(&value);
3553   BasicTypeList signature;
3554   signature.append(as_BasicType(arg1->type()));
3555 
3556   return call_runtime(&signature, &args, entry, result_type, info);
3557 }
3558 
3559 
3560 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3561   LIRItemList args(2);
3562   LIRItem value1(arg1, this);
3563   LIRItem value2(arg2, this);
3564   args.append(&value1);
3565   args.append(&value2);
3566   BasicTypeList signature;
3567   signature.append(as_BasicType(arg1->type()));
3568   signature.append(as_BasicType(arg2->type()));
3569 
3570   return call_runtime(&signature, &args, entry, result_type, info);
3571 }
3572 
3573 
3574 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3575                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3576   // get a result register
3577   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3578   LIR_Opr result = LIR_OprFact::illegalOpr;
3579   if (result_type->tag() != voidTag) {
3580     result = new_register(result_type);
3581     phys_reg = result_register_for(result_type);
3582   }
3583 
3584   // move the arguments into the correct location
3585   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3586   assert(cc->length() == args->length(), "argument mismatch");
3587   for (int i = 0; i < args->length(); i++) {
3588     LIR_Opr arg = args->at(i);
3589     LIR_Opr loc = cc->at(i);
3590     if (loc->is_register()) {
3591       __ move(arg, loc);
3592     } else {
3593       LIR_Address* addr = loc->as_address_ptr();
3594 //           if (!can_store_as_constant(arg)) {
3595 //             LIR_Opr tmp = new_register(arg->type());
3596 //             __ move(arg, tmp);
3597 //             arg = tmp;
3598 //           }
3599       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3600         __ unaligned_move(arg, addr);
3601       } else {
3602         __ move(arg, addr);
3603       }
3604     }
3605   }
3606 
3607   if (info) {
3608     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3609   } else {
3610     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3611   }
3612   if (result->is_valid()) {
3613     __ move(phys_reg, result);
3614   }
3615   return result;
3616 }
3617 
3618 
3619 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3620                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3621   // get a result register
3622   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3623   LIR_Opr result = LIR_OprFact::illegalOpr;
3624   if (result_type->tag() != voidTag) {
3625     result = new_register(result_type);
3626     phys_reg = result_register_for(result_type);
3627   }
3628 
3629   // move the arguments into the correct location
3630   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3631 
3632   assert(cc->length() == args->length(), "argument mismatch");
3633   for (int i = 0; i < args->length(); i++) {
3634     LIRItem* arg = args->at(i);
3635     LIR_Opr loc = cc->at(i);
3636     if (loc->is_register()) {
3637       arg->load_item_force(loc);
3638     } else {
3639       LIR_Address* addr = loc->as_address_ptr();
3640       arg->load_for_store(addr->type());
3641       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3642         __ unaligned_move(arg->result(), addr);
3643       } else {
3644         __ move(arg->result(), addr);
3645       }
3646     }
3647   }
3648 
3649   if (info) {
3650     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3651   } else {
3652     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3653   }
3654   if (result->is_valid()) {
3655     __ move(phys_reg, result);
3656   }
3657   return result;
3658 }
3659 
3660 void LIRGenerator::do_MemBar(MemBar* x) {
3661   if (os::is_MP()) {
3662     LIR_Code code = x->code();
3663     switch(code) {
3664       case lir_membar_acquire   : __ membar_acquire(); break;
3665       case lir_membar_release   : __ membar_release(); break;
3666       case lir_membar           : __ membar(); break;
3667       case lir_membar_loadload  : __ membar_loadload(); break;
3668       case lir_membar_storestore: __ membar_storestore(); break;
3669       case lir_membar_loadstore : __ membar_loadstore(); break;
3670       case lir_membar_storeload : __ membar_storeload(); break;
3671       default                   : ShouldNotReachHere(); break;
3672     }
3673   }
3674 }