1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/cms/cmsCollectorPolicy.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/compactibleFreeListSpace.hpp"
  33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  34 #include "gc/cms/concurrentMarkSweepThread.hpp"
  35 #include "gc/cms/parNewGeneration.hpp"
  36 #include "gc/cms/vmCMSOperations.hpp"
  37 #include "gc/serial/genMarkSweep.hpp"
  38 #include "gc/serial/tenuredGeneration.hpp"
  39 #include "gc/shared/adaptiveSizePolicy.hpp"
  40 #include "gc/shared/cardGeneration.inline.hpp"
  41 #include "gc/shared/cardTableRS.hpp"
  42 #include "gc/shared/collectedHeap.inline.hpp"
  43 #include "gc/shared/collectorCounters.hpp"
  44 #include "gc/shared/collectorPolicy.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/genOopClosures.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/referencePolicy.hpp"
  54 #include "gc/shared/strongRootsScope.hpp"
  55 #include "gc/shared/taskqueue.inline.hpp"
  56 #include "memory/allocation.hpp"
  57 #include "memory/iterator.inline.hpp"
  58 #include "memory/padded.hpp"
  59 #include "memory/resourceArea.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "runtime/atomic.inline.hpp"
  63 #include "runtime/globals_extension.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/orderAccess.inline.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 // statics
  73 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  74 bool CMSCollector::_full_gc_requested = false;
  75 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  76 
  77 //////////////////////////////////////////////////////////////////
  78 // In support of CMS/VM thread synchronization
  79 //////////////////////////////////////////////////////////////////
  80 // We split use of the CGC_lock into 2 "levels".
  81 // The low-level locking is of the usual CGC_lock monitor. We introduce
  82 // a higher level "token" (hereafter "CMS token") built on top of the
  83 // low level monitor (hereafter "CGC lock").
  84 // The token-passing protocol gives priority to the VM thread. The
  85 // CMS-lock doesn't provide any fairness guarantees, but clients
  86 // should ensure that it is only held for very short, bounded
  87 // durations.
  88 //
  89 // When either of the CMS thread or the VM thread is involved in
  90 // collection operations during which it does not want the other
  91 // thread to interfere, it obtains the CMS token.
  92 //
  93 // If either thread tries to get the token while the other has
  94 // it, that thread waits. However, if the VM thread and CMS thread
  95 // both want the token, then the VM thread gets priority while the
  96 // CMS thread waits. This ensures, for instance, that the "concurrent"
  97 // phases of the CMS thread's work do not block out the VM thread
  98 // for long periods of time as the CMS thread continues to hog
  99 // the token. (See bug 4616232).
 100 //
 101 // The baton-passing functions are, however, controlled by the
 102 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 103 // and here the low-level CMS lock, not the high level token,
 104 // ensures mutual exclusion.
 105 //
 106 // Two important conditions that we have to satisfy:
 107 // 1. if a thread does a low-level wait on the CMS lock, then it
 108 //    relinquishes the CMS token if it were holding that token
 109 //    when it acquired the low-level CMS lock.
 110 // 2. any low-level notifications on the low-level lock
 111 //    should only be sent when a thread has relinquished the token.
 112 //
 113 // In the absence of either property, we'd have potential deadlock.
 114 //
 115 // We protect each of the CMS (concurrent and sequential) phases
 116 // with the CMS _token_, not the CMS _lock_.
 117 //
 118 // The only code protected by CMS lock is the token acquisition code
 119 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 120 // baton-passing code.
 121 //
 122 // Unfortunately, i couldn't come up with a good abstraction to factor and
 123 // hide the naked CGC_lock manipulation in the baton-passing code
 124 // further below. That's something we should try to do. Also, the proof
 125 // of correctness of this 2-level locking scheme is far from obvious,
 126 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 127 // that there may be a theoretical possibility of delay/starvation in the
 128 // low-level lock/wait/notify scheme used for the baton-passing because of
 129 // potential interference with the priority scheme embodied in the
 130 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 131 // invocation further below and marked with "XXX 20011219YSR".
 132 // Indeed, as we note elsewhere, this may become yet more slippery
 133 // in the presence of multiple CMS and/or multiple VM threads. XXX
 134 
 135 class CMSTokenSync: public StackObj {
 136  private:
 137   bool _is_cms_thread;
 138  public:
 139   CMSTokenSync(bool is_cms_thread):
 140     _is_cms_thread(is_cms_thread) {
 141     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 142            "Incorrect argument to constructor");
 143     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 144   }
 145 
 146   ~CMSTokenSync() {
 147     assert(_is_cms_thread ?
 148              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 149              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 150           "Incorrect state");
 151     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 152   }
 153 };
 154 
 155 // Convenience class that does a CMSTokenSync, and then acquires
 156 // upto three locks.
 157 class CMSTokenSyncWithLocks: public CMSTokenSync {
 158  private:
 159   // Note: locks are acquired in textual declaration order
 160   // and released in the opposite order
 161   MutexLockerEx _locker1, _locker2, _locker3;
 162  public:
 163   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 164                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 165     CMSTokenSync(is_cms_thread),
 166     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 167     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 168     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 169   { }
 170 };
 171 
 172 
 173 //////////////////////////////////////////////////////////////////
 174 //  Concurrent Mark-Sweep Generation /////////////////////////////
 175 //////////////////////////////////////////////////////////////////
 176 
 177 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 178 
 179 // This struct contains per-thread things necessary to support parallel
 180 // young-gen collection.
 181 class CMSParGCThreadState: public CHeapObj<mtGC> {
 182  public:
 183   CFLS_LAB lab;
 184   PromotionInfo promo;
 185 
 186   // Constructor.
 187   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 188     promo.setSpace(cfls);
 189   }
 190 };
 191 
 192 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 193      ReservedSpace rs, size_t initial_byte_size,
 194      CardTableRS* ct, bool use_adaptive_freelists,
 195      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 196   CardGeneration(rs, initial_byte_size, ct),
 197   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 198   _did_compact(false)
 199 {
 200   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 201   HeapWord* end    = (HeapWord*) _virtual_space.high();
 202 
 203   _direct_allocated_words = 0;
 204   NOT_PRODUCT(
 205     _numObjectsPromoted = 0;
 206     _numWordsPromoted = 0;
 207     _numObjectsAllocated = 0;
 208     _numWordsAllocated = 0;
 209   )
 210 
 211   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 212                                            use_adaptive_freelists,
 213                                            dictionaryChoice);
 214   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 215   _cmsSpace->_old_gen = this;
 216 
 217   _gc_stats = new CMSGCStats();
 218 
 219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 220   // offsets match. The ability to tell free chunks from objects
 221   // depends on this property.
 222   debug_only(
 223     FreeChunk* junk = NULL;
 224     assert(UseCompressedClassPointers ||
 225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 226            "Offset of FreeChunk::_prev within FreeChunk must match"
 227            "  that of OopDesc::_klass within OopDesc");
 228   )
 229 
 230   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 231   for (uint i = 0; i < ParallelGCThreads; i++) {
 232     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 233   }
 234 
 235   _incremental_collection_failed = false;
 236   // The "dilatation_factor" is the expansion that can occur on
 237   // account of the fact that the minimum object size in the CMS
 238   // generation may be larger than that in, say, a contiguous young
 239   //  generation.
 240   // Ideally, in the calculation below, we'd compute the dilatation
 241   // factor as: MinChunkSize/(promoting_gen's min object size)
 242   // Since we do not have such a general query interface for the
 243   // promoting generation, we'll instead just use the minimum
 244   // object size (which today is a header's worth of space);
 245   // note that all arithmetic is in units of HeapWords.
 246   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 247   assert(_dilatation_factor >= 1.0, "from previous assert");
 248 }
 249 
 250 
 251 // The field "_initiating_occupancy" represents the occupancy percentage
 252 // at which we trigger a new collection cycle.  Unless explicitly specified
 253 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 254 // is calculated by:
 255 //
 256 //   Let "f" be MinHeapFreeRatio in
 257 //
 258 //    _initiating_occupancy = 100-f +
 259 //                           f * (CMSTriggerRatio/100)
 260 //   where CMSTriggerRatio is the argument "tr" below.
 261 //
 262 // That is, if we assume the heap is at its desired maximum occupancy at the
 263 // end of a collection, we let CMSTriggerRatio of the (purported) free
 264 // space be allocated before initiating a new collection cycle.
 265 //
 266 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 267   assert(io <= 100 && tr <= 100, "Check the arguments");
 268   if (io >= 0) {
 269     _initiating_occupancy = (double)io / 100.0;
 270   } else {
 271     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 272                              (double)(tr * MinHeapFreeRatio) / 100.0)
 273                             / 100.0;
 274   }
 275 }
 276 
 277 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 278   assert(collector() != NULL, "no collector");
 279   collector()->ref_processor_init();
 280 }
 281 
 282 void CMSCollector::ref_processor_init() {
 283   if (_ref_processor == NULL) {
 284     // Allocate and initialize a reference processor
 285     _ref_processor =
 286       new ReferenceProcessor(_span,                               // span
 287                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 288                              ParallelGCThreads,                   // mt processing degree
 289                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 290                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 291                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 292                              &_is_alive_closure);                 // closure for liveness info
 293     // Initialize the _ref_processor field of CMSGen
 294     _cmsGen->set_ref_processor(_ref_processor);
 295 
 296   }
 297 }
 298 
 299 AdaptiveSizePolicy* CMSCollector::size_policy() {
 300   GenCollectedHeap* gch = GenCollectedHeap::heap();
 301   return gch->gen_policy()->size_policy();
 302 }
 303 
 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 305 
 306   const char* gen_name = "old";
 307   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 308   // Generation Counters - generation 1, 1 subspace
 309   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 310       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 311 
 312   _space_counters = new GSpaceCounters(gen_name, 0,
 313                                        _virtual_space.reserved_size(),
 314                                        this, _gen_counters);
 315 }
 316 
 317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 318   _cms_gen(cms_gen)
 319 {
 320   assert(alpha <= 100, "bad value");
 321   _saved_alpha = alpha;
 322 
 323   // Initialize the alphas to the bootstrap value of 100.
 324   _gc0_alpha = _cms_alpha = 100;
 325 
 326   _cms_begin_time.update();
 327   _cms_end_time.update();
 328 
 329   _gc0_duration = 0.0;
 330   _gc0_period = 0.0;
 331   _gc0_promoted = 0;
 332 
 333   _cms_duration = 0.0;
 334   _cms_period = 0.0;
 335   _cms_allocated = 0;
 336 
 337   _cms_used_at_gc0_begin = 0;
 338   _cms_used_at_gc0_end = 0;
 339   _allow_duty_cycle_reduction = false;
 340   _valid_bits = 0;
 341 }
 342 
 343 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 344   // TBD: CR 6909490
 345   return 1.0;
 346 }
 347 
 348 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 349 }
 350 
 351 // If promotion failure handling is on use
 352 // the padded average size of the promotion for each
 353 // young generation collection.
 354 double CMSStats::time_until_cms_gen_full() const {
 355   size_t cms_free = _cms_gen->cmsSpace()->free();
 356   GenCollectedHeap* gch = GenCollectedHeap::heap();
 357   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 358                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 359   if (cms_free > expected_promotion) {
 360     // Start a cms collection if there isn't enough space to promote
 361     // for the next young collection.  Use the padded average as
 362     // a safety factor.
 363     cms_free -= expected_promotion;
 364 
 365     // Adjust by the safety factor.
 366     double cms_free_dbl = (double)cms_free;
 367     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 368     // Apply a further correction factor which tries to adjust
 369     // for recent occurance of concurrent mode failures.
 370     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 371     cms_free_dbl = cms_free_dbl * cms_adjustment;
 372 
 373     if (PrintGCDetails && Verbose) {
 374       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 375         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 376         cms_free, expected_promotion);
 377       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 378         cms_free_dbl, cms_consumption_rate() + 1.0);
 379     }
 380     // Add 1 in case the consumption rate goes to zero.
 381     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 382   }
 383   return 0.0;
 384 }
 385 
 386 // Compare the duration of the cms collection to the
 387 // time remaining before the cms generation is empty.
 388 // Note that the time from the start of the cms collection
 389 // to the start of the cms sweep (less than the total
 390 // duration of the cms collection) can be used.  This
 391 // has been tried and some applications experienced
 392 // promotion failures early in execution.  This was
 393 // possibly because the averages were not accurate
 394 // enough at the beginning.
 395 double CMSStats::time_until_cms_start() const {
 396   // We add "gc0_period" to the "work" calculation
 397   // below because this query is done (mostly) at the
 398   // end of a scavenge, so we need to conservatively
 399   // account for that much possible delay
 400   // in the query so as to avoid concurrent mode failures
 401   // due to starting the collection just a wee bit too
 402   // late.
 403   double work = cms_duration() + gc0_period();
 404   double deadline = time_until_cms_gen_full();
 405   // If a concurrent mode failure occurred recently, we want to be
 406   // more conservative and halve our expected time_until_cms_gen_full()
 407   if (work > deadline) {
 408     if (Verbose && PrintGCDetails) {
 409       gclog_or_tty->print(
 410         " CMSCollector: collect because of anticipated promotion "
 411         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 412         gc0_period(), time_until_cms_gen_full());
 413     }
 414     return 0.0;
 415   }
 416   return work - deadline;
 417 }
 418 
 419 #ifndef PRODUCT
 420 void CMSStats::print_on(outputStream *st) const {
 421   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 422   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 423                gc0_duration(), gc0_period(), gc0_promoted());
 424   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 425             cms_duration(), cms_period(), cms_allocated());
 426   st->print(",cms_since_beg=%g,cms_since_end=%g",
 427             cms_time_since_begin(), cms_time_since_end());
 428   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 429             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 430 
 431   if (valid()) {
 432     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 433               promotion_rate(), cms_allocation_rate());
 434     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 435               cms_consumption_rate(), time_until_cms_gen_full());
 436   }
 437   st->print(" ");
 438 }
 439 #endif // #ifndef PRODUCT
 440 
 441 CMSCollector::CollectorState CMSCollector::_collectorState =
 442                              CMSCollector::Idling;
 443 bool CMSCollector::_foregroundGCIsActive = false;
 444 bool CMSCollector::_foregroundGCShouldWait = false;
 445 
 446 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 447                            CardTableRS*                   ct,
 448                            ConcurrentMarkSweepPolicy*     cp):
 449   _cmsGen(cmsGen),
 450   _ct(ct),
 451   _ref_processor(NULL),    // will be set later
 452   _conc_workers(NULL),     // may be set later
 453   _abort_preclean(false),
 454   _start_sampling(false),
 455   _between_prologue_and_epilogue(false),
 456   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 457   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 458                  -1 /* lock-free */, "No_lock" /* dummy */),
 459   _modUnionClosurePar(&_modUnionTable),
 460   // Adjust my span to cover old (cms) gen
 461   _span(cmsGen->reserved()),
 462   // Construct the is_alive_closure with _span & markBitMap
 463   _is_alive_closure(_span, &_markBitMap),
 464   _restart_addr(NULL),
 465   _overflow_list(NULL),
 466   _stats(cmsGen),
 467   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 468                              //verify that this lock should be acquired with safepoint check.
 469                              Monitor::_safepoint_check_sometimes)),
 470   _eden_chunk_array(NULL),     // may be set in ctor body
 471   _eden_chunk_capacity(0),     // -- ditto --
 472   _eden_chunk_index(0),        // -- ditto --
 473   _survivor_plab_array(NULL),  // -- ditto --
 474   _survivor_chunk_array(NULL), // -- ditto --
 475   _survivor_chunk_capacity(0), // -- ditto --
 476   _survivor_chunk_index(0),    // -- ditto --
 477   _ser_pmc_preclean_ovflw(0),
 478   _ser_kac_preclean_ovflw(0),
 479   _ser_pmc_remark_ovflw(0),
 480   _par_pmc_remark_ovflw(0),
 481   _ser_kac_ovflw(0),
 482   _par_kac_ovflw(0),
 483 #ifndef PRODUCT
 484   _num_par_pushes(0),
 485 #endif
 486   _collection_count_start(0),
 487   _verifying(false),
 488   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 489   _completed_initialization(false),
 490   _collector_policy(cp),
 491   _should_unload_classes(CMSClassUnloadingEnabled),
 492   _concurrent_cycles_since_last_unload(0),
 493   _roots_scanning_options(GenCollectedHeap::SO_None),
 494   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 495   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 496   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 497   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 498   _cms_start_registered(false)
 499 {
 500   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 501     ExplicitGCInvokesConcurrent = true;
 502   }
 503   // Now expand the span and allocate the collection support structures
 504   // (MUT, marking bit map etc.) to cover both generations subject to
 505   // collection.
 506 
 507   // For use by dirty card to oop closures.
 508   _cmsGen->cmsSpace()->set_collector(this);
 509 
 510   // Allocate MUT and marking bit map
 511   {
 512     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 513     if (!_markBitMap.allocate(_span)) {
 514       warning("Failed to allocate CMS Bit Map");
 515       return;
 516     }
 517     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 518   }
 519   {
 520     _modUnionTable.allocate(_span);
 521     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 522   }
 523 
 524   if (!_markStack.allocate(MarkStackSize)) {
 525     warning("Failed to allocate CMS Marking Stack");
 526     return;
 527   }
 528 
 529   // Support for multi-threaded concurrent phases
 530   if (CMSConcurrentMTEnabled) {
 531     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 532       // just for now
 533       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 534     }
 535     if (ConcGCThreads > 1) {
 536       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 537                                  ConcGCThreads, true);
 538       if (_conc_workers == NULL) {
 539         warning("GC/CMS: _conc_workers allocation failure: "
 540               "forcing -CMSConcurrentMTEnabled");
 541         CMSConcurrentMTEnabled = false;
 542       } else {
 543         _conc_workers->initialize_workers();
 544       }
 545     } else {
 546       CMSConcurrentMTEnabled = false;
 547     }
 548   }
 549   if (!CMSConcurrentMTEnabled) {
 550     ConcGCThreads = 0;
 551   } else {
 552     // Turn off CMSCleanOnEnter optimization temporarily for
 553     // the MT case where it's not fixed yet; see 6178663.
 554     CMSCleanOnEnter = false;
 555   }
 556   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 557          "Inconsistency");
 558 
 559   // Parallel task queues; these are shared for the
 560   // concurrent and stop-world phases of CMS, but
 561   // are not shared with parallel scavenge (ParNew).
 562   {
 563     uint i;
 564     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 565 
 566     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 567          || ParallelRefProcEnabled)
 568         && num_queues > 0) {
 569       _task_queues = new OopTaskQueueSet(num_queues);
 570       if (_task_queues == NULL) {
 571         warning("task_queues allocation failure.");
 572         return;
 573       }
 574       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 575       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 576       for (i = 0; i < num_queues; i++) {
 577         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 578         if (q == NULL) {
 579           warning("work_queue allocation failure.");
 580           return;
 581         }
 582         _task_queues->register_queue(i, q);
 583       }
 584       for (i = 0; i < num_queues; i++) {
 585         _task_queues->queue(i)->initialize();
 586         _hash_seed[i] = 17;  // copied from ParNew
 587       }
 588     }
 589   }
 590 
 591   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 592 
 593   // Clip CMSBootstrapOccupancy between 0 and 100.
 594   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 595 
 596   // Now tell CMS generations the identity of their collector
 597   ConcurrentMarkSweepGeneration::set_collector(this);
 598 
 599   // Create & start a CMS thread for this CMS collector
 600   _cmsThread = ConcurrentMarkSweepThread::start(this);
 601   assert(cmsThread() != NULL, "CMS Thread should have been created");
 602   assert(cmsThread()->collector() == this,
 603          "CMS Thread should refer to this gen");
 604   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 605 
 606   // Support for parallelizing young gen rescan
 607   GenCollectedHeap* gch = GenCollectedHeap::heap();
 608   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 609   _young_gen = (ParNewGeneration*)gch->young_gen();
 610   if (gch->supports_inline_contig_alloc()) {
 611     _top_addr = gch->top_addr();
 612     _end_addr = gch->end_addr();
 613     assert(_young_gen != NULL, "no _young_gen");
 614     _eden_chunk_index = 0;
 615     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 616     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 617   }
 618 
 619   // Support for parallelizing survivor space rescan
 620   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 621     const size_t max_plab_samples =
 622       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 623 
 624     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 625     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 626     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 627     _survivor_chunk_capacity = max_plab_samples;
 628     for (uint i = 0; i < ParallelGCThreads; i++) {
 629       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 630       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 631       assert(cur->end() == 0, "Should be 0");
 632       assert(cur->array() == vec, "Should be vec");
 633       assert(cur->capacity() == max_plab_samples, "Error");
 634     }
 635   }
 636 
 637   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 638   _gc_counters = new CollectorCounters("CMS", 1);
 639   _completed_initialization = true;
 640   _inter_sweep_timer.start();  // start of time
 641 }
 642 
 643 const char* ConcurrentMarkSweepGeneration::name() const {
 644   return "concurrent mark-sweep generation";
 645 }
 646 void ConcurrentMarkSweepGeneration::update_counters() {
 647   if (UsePerfData) {
 648     _space_counters->update_all();
 649     _gen_counters->update_all();
 650   }
 651 }
 652 
 653 // this is an optimized version of update_counters(). it takes the
 654 // used value as a parameter rather than computing it.
 655 //
 656 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 657   if (UsePerfData) {
 658     _space_counters->update_used(used);
 659     _space_counters->update_capacity();
 660     _gen_counters->update_all();
 661   }
 662 }
 663 
 664 void ConcurrentMarkSweepGeneration::print() const {
 665   Generation::print();
 666   cmsSpace()->print();
 667 }
 668 
 669 #ifndef PRODUCT
 670 void ConcurrentMarkSweepGeneration::print_statistics() {
 671   cmsSpace()->printFLCensus(0);
 672 }
 673 #endif
 674 
 675 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 676   GenCollectedHeap* gch = GenCollectedHeap::heap();
 677   if (PrintGCDetails) {
 678     // I didn't want to change the logging when removing the level concept,
 679     // but I guess this logging could say "old" or something instead of "1".
 680     assert(gch->is_old_gen(this),
 681            "The CMS generation should be the old generation");
 682     uint level = 1;
 683     if (Verbose) {
 684       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "(" SIZE_FORMAT ")]",
 685         level, short_name(), s, used(), capacity());
 686     } else {
 687       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)]",
 688         level, short_name(), s, used() / K, capacity() / K);
 689     }
 690   }
 691   if (Verbose) {
 692     gclog_or_tty->print(" " SIZE_FORMAT "(" SIZE_FORMAT ")",
 693               gch->used(), gch->capacity());
 694   } else {
 695     gclog_or_tty->print(" " SIZE_FORMAT "K(" SIZE_FORMAT "K)",
 696               gch->used() / K, gch->capacity() / K);
 697   }
 698 }
 699 
 700 size_t
 701 ConcurrentMarkSweepGeneration::contiguous_available() const {
 702   // dld proposes an improvement in precision here. If the committed
 703   // part of the space ends in a free block we should add that to
 704   // uncommitted size in the calculation below. Will make this
 705   // change later, staying with the approximation below for the
 706   // time being. -- ysr.
 707   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 708 }
 709 
 710 size_t
 711 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 712   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 713 }
 714 
 715 size_t ConcurrentMarkSweepGeneration::max_available() const {
 716   return free() + _virtual_space.uncommitted_size();
 717 }
 718 
 719 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 720   size_t available = max_available();
 721   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 722   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 723   if (Verbose && PrintGCDetails) {
 724     gclog_or_tty->print_cr(
 725       "CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "),"
 726       "max_promo(" SIZE_FORMAT ")",
 727       res? "":" not", available, res? ">=":"<",
 728       av_promo, max_promotion_in_bytes);
 729   }
 730   return res;
 731 }
 732 
 733 // At a promotion failure dump information on block layout in heap
 734 // (cms old generation).
 735 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 736   if (CMSDumpAtPromotionFailure) {
 737     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 738   }
 739 }
 740 
 741 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 742   // Clear the promotion information.  These pointers can be adjusted
 743   // along with all the other pointers into the heap but
 744   // compaction is expected to be a rare event with
 745   // a heap using cms so don't do it without seeing the need.
 746   for (uint i = 0; i < ParallelGCThreads; i++) {
 747     _par_gc_thread_states[i]->promo.reset();
 748   }
 749 }
 750 
 751 void ConcurrentMarkSweepGeneration::compute_new_size() {
 752   assert_locked_or_safepoint(Heap_lock);
 753 
 754   // If incremental collection failed, we just want to expand
 755   // to the limit.
 756   if (incremental_collection_failed()) {
 757     clear_incremental_collection_failed();
 758     grow_to_reserved();
 759     return;
 760   }
 761 
 762   // The heap has been compacted but not reset yet.
 763   // Any metric such as free() or used() will be incorrect.
 764 
 765   CardGeneration::compute_new_size();
 766 
 767   // Reset again after a possible resizing
 768   if (did_compact()) {
 769     cmsSpace()->reset_after_compaction();
 770   }
 771 }
 772 
 773 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 774   assert_locked_or_safepoint(Heap_lock);
 775 
 776   // If incremental collection failed, we just want to expand
 777   // to the limit.
 778   if (incremental_collection_failed()) {
 779     clear_incremental_collection_failed();
 780     grow_to_reserved();
 781     return;
 782   }
 783 
 784   double free_percentage = ((double) free()) / capacity();
 785   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 786   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 787 
 788   // compute expansion delta needed for reaching desired free percentage
 789   if (free_percentage < desired_free_percentage) {
 790     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 791     assert(desired_capacity >= capacity(), "invalid expansion size");
 792     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 793     if (PrintGCDetails && Verbose) {
 794       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 795       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 796       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 797       gclog_or_tty->print_cr("  Desired free fraction %f", desired_free_percentage);
 798       gclog_or_tty->print_cr("  Maximum free fraction %f", maximum_free_percentage);
 799       gclog_or_tty->print_cr("  Capacity " SIZE_FORMAT, capacity() / 1000);
 800       gclog_or_tty->print_cr("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 801       GenCollectedHeap* gch = GenCollectedHeap::heap();
 802       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 803       size_t young_size = gch->young_gen()->capacity();
 804       gclog_or_tty->print_cr("  Young gen size " SIZE_FORMAT, young_size / 1000);
 805       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 806       gclog_or_tty->print_cr("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 807       gclog_or_tty->print_cr("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 808     }
 809     // safe if expansion fails
 810     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 811     if (PrintGCDetails && Verbose) {
 812       gclog_or_tty->print_cr("  Expanded free fraction %f", ((double) free()) / capacity());
 813     }
 814   } else {
 815     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 816     assert(desired_capacity <= capacity(), "invalid expansion size");
 817     size_t shrink_bytes = capacity() - desired_capacity;
 818     // Don't shrink unless the delta is greater than the minimum shrink we want
 819     if (shrink_bytes >= MinHeapDeltaBytes) {
 820       shrink_free_list_by(shrink_bytes);
 821     }
 822   }
 823 }
 824 
 825 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 826   return cmsSpace()->freelistLock();
 827 }
 828 
 829 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 830   CMSSynchronousYieldRequest yr;
 831   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 832   return have_lock_and_allocate(size, tlab);
 833 }
 834 
 835 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 836                                                                 bool   tlab /* ignored */) {
 837   assert_lock_strong(freelistLock());
 838   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 839   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 840   // Allocate the object live (grey) if the background collector has
 841   // started marking. This is necessary because the marker may
 842   // have passed this address and consequently this object will
 843   // not otherwise be greyed and would be incorrectly swept up.
 844   // Note that if this object contains references, the writing
 845   // of those references will dirty the card containing this object
 846   // allowing the object to be blackened (and its references scanned)
 847   // either during a preclean phase or at the final checkpoint.
 848   if (res != NULL) {
 849     // We may block here with an uninitialized object with
 850     // its mark-bit or P-bits not yet set. Such objects need
 851     // to be safely navigable by block_start().
 852     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 853     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 854     collector()->direct_allocated(res, adjustedSize);
 855     _direct_allocated_words += adjustedSize;
 856     // allocation counters
 857     NOT_PRODUCT(
 858       _numObjectsAllocated++;
 859       _numWordsAllocated += (int)adjustedSize;
 860     )
 861   }
 862   return res;
 863 }
 864 
 865 // In the case of direct allocation by mutators in a generation that
 866 // is being concurrently collected, the object must be allocated
 867 // live (grey) if the background collector has started marking.
 868 // This is necessary because the marker may
 869 // have passed this address and consequently this object will
 870 // not otherwise be greyed and would be incorrectly swept up.
 871 // Note that if this object contains references, the writing
 872 // of those references will dirty the card containing this object
 873 // allowing the object to be blackened (and its references scanned)
 874 // either during a preclean phase or at the final checkpoint.
 875 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 876   assert(_markBitMap.covers(start, size), "Out of bounds");
 877   if (_collectorState >= Marking) {
 878     MutexLockerEx y(_markBitMap.lock(),
 879                     Mutex::_no_safepoint_check_flag);
 880     // [see comments preceding SweepClosure::do_blk() below for details]
 881     //
 882     // Can the P-bits be deleted now?  JJJ
 883     //
 884     // 1. need to mark the object as live so it isn't collected
 885     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 886     // 3. need to mark the end of the object so marking, precleaning or sweeping
 887     //    can skip over uninitialized or unparsable objects. An allocated
 888     //    object is considered uninitialized for our purposes as long as
 889     //    its klass word is NULL.  All old gen objects are parsable
 890     //    as soon as they are initialized.)
 891     _markBitMap.mark(start);          // object is live
 892     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 893     _markBitMap.mark(start + size - 1);
 894                                       // mark end of object
 895   }
 896   // check that oop looks uninitialized
 897   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 898 }
 899 
 900 void CMSCollector::promoted(bool par, HeapWord* start,
 901                             bool is_obj_array, size_t obj_size) {
 902   assert(_markBitMap.covers(start), "Out of bounds");
 903   // See comment in direct_allocated() about when objects should
 904   // be allocated live.
 905   if (_collectorState >= Marking) {
 906     // we already hold the marking bit map lock, taken in
 907     // the prologue
 908     if (par) {
 909       _markBitMap.par_mark(start);
 910     } else {
 911       _markBitMap.mark(start);
 912     }
 913     // We don't need to mark the object as uninitialized (as
 914     // in direct_allocated above) because this is being done with the
 915     // world stopped and the object will be initialized by the
 916     // time the marking, precleaning or sweeping get to look at it.
 917     // But see the code for copying objects into the CMS generation,
 918     // where we need to ensure that concurrent readers of the
 919     // block offset table are able to safely navigate a block that
 920     // is in flux from being free to being allocated (and in
 921     // transition while being copied into) and subsequently
 922     // becoming a bona-fide object when the copy/promotion is complete.
 923     assert(SafepointSynchronize::is_at_safepoint(),
 924            "expect promotion only at safepoints");
 925 
 926     if (_collectorState < Sweeping) {
 927       // Mark the appropriate cards in the modUnionTable, so that
 928       // this object gets scanned before the sweep. If this is
 929       // not done, CMS generation references in the object might
 930       // not get marked.
 931       // For the case of arrays, which are otherwise precisely
 932       // marked, we need to dirty the entire array, not just its head.
 933       if (is_obj_array) {
 934         // The [par_]mark_range() method expects mr.end() below to
 935         // be aligned to the granularity of a bit's representation
 936         // in the heap. In the case of the MUT below, that's a
 937         // card size.
 938         MemRegion mr(start,
 939                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 940                         CardTableModRefBS::card_size /* bytes */));
 941         if (par) {
 942           _modUnionTable.par_mark_range(mr);
 943         } else {
 944           _modUnionTable.mark_range(mr);
 945         }
 946       } else {  // not an obj array; we can just mark the head
 947         if (par) {
 948           _modUnionTable.par_mark(start);
 949         } else {
 950           _modUnionTable.mark(start);
 951         }
 952       }
 953     }
 954   }
 955 }
 956 
 957 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 958   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 959   // allocate, copy and if necessary update promoinfo --
 960   // delegate to underlying space.
 961   assert_lock_strong(freelistLock());
 962 
 963 #ifndef PRODUCT
 964   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 965     return NULL;
 966   }
 967 #endif  // #ifndef PRODUCT
 968 
 969   oop res = _cmsSpace->promote(obj, obj_size);
 970   if (res == NULL) {
 971     // expand and retry
 972     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 973     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 974     // Since this is the old generation, we don't try to promote
 975     // into a more senior generation.
 976     res = _cmsSpace->promote(obj, obj_size);
 977   }
 978   if (res != NULL) {
 979     // See comment in allocate() about when objects should
 980     // be allocated live.
 981     assert(obj->is_oop(), "Will dereference klass pointer below");
 982     collector()->promoted(false,           // Not parallel
 983                           (HeapWord*)res, obj->is_objArray(), obj_size);
 984     // promotion counters
 985     NOT_PRODUCT(
 986       _numObjectsPromoted++;
 987       _numWordsPromoted +=
 988         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 989     )
 990   }
 991   return res;
 992 }
 993 
 994 
 995 // IMPORTANT: Notes on object size recognition in CMS.
 996 // ---------------------------------------------------
 997 // A block of storage in the CMS generation is always in
 998 // one of three states. A free block (FREE), an allocated
 999 // object (OBJECT) whose size() method reports the correct size,
1000 // and an intermediate state (TRANSIENT) in which its size cannot
1001 // be accurately determined.
1002 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1003 // -----------------------------------------------------
1004 // FREE:      klass_word & 1 == 1; mark_word holds block size
1005 //
1006 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1007 //            obj->size() computes correct size
1008 //
1009 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1010 //
1011 // STATE IDENTIFICATION: (64 bit+COOPS)
1012 // ------------------------------------
1013 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1014 //
1015 // OBJECT:    klass_word installed; klass_word != 0;
1016 //            obj->size() computes correct size
1017 //
1018 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1019 //
1020 //
1021 // STATE TRANSITION DIAGRAM
1022 //
1023 //        mut / parnew                     mut  /  parnew
1024 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1025 //  ^                                                                   |
1026 //  |------------------------ DEAD <------------------------------------|
1027 //         sweep                            mut
1028 //
1029 // While a block is in TRANSIENT state its size cannot be determined
1030 // so readers will either need to come back later or stall until
1031 // the size can be determined. Note that for the case of direct
1032 // allocation, P-bits, when available, may be used to determine the
1033 // size of an object that may not yet have been initialized.
1034 
1035 // Things to support parallel young-gen collection.
1036 oop
1037 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1038                                            oop old, markOop m,
1039                                            size_t word_sz) {
1040 #ifndef PRODUCT
1041   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1042     return NULL;
1043   }
1044 #endif  // #ifndef PRODUCT
1045 
1046   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1047   PromotionInfo* promoInfo = &ps->promo;
1048   // if we are tracking promotions, then first ensure space for
1049   // promotion (including spooling space for saving header if necessary).
1050   // then allocate and copy, then track promoted info if needed.
1051   // When tracking (see PromotionInfo::track()), the mark word may
1052   // be displaced and in this case restoration of the mark word
1053   // occurs in the (oop_since_save_marks_)iterate phase.
1054   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1055     // Out of space for allocating spooling buffers;
1056     // try expanding and allocating spooling buffers.
1057     if (!expand_and_ensure_spooling_space(promoInfo)) {
1058       return NULL;
1059     }
1060   }
1061   assert(promoInfo->has_spooling_space(), "Control point invariant");
1062   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1063   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1064   if (obj_ptr == NULL) {
1065      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1066      if (obj_ptr == NULL) {
1067        return NULL;
1068      }
1069   }
1070   oop obj = oop(obj_ptr);
1071   OrderAccess::storestore();
1072   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1073   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1074   // IMPORTANT: See note on object initialization for CMS above.
1075   // Otherwise, copy the object.  Here we must be careful to insert the
1076   // klass pointer last, since this marks the block as an allocated object.
1077   // Except with compressed oops it's the mark word.
1078   HeapWord* old_ptr = (HeapWord*)old;
1079   // Restore the mark word copied above.
1080   obj->set_mark(m);
1081   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1082   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1083   OrderAccess::storestore();
1084 
1085   if (UseCompressedClassPointers) {
1086     // Copy gap missed by (aligned) header size calculation below
1087     obj->set_klass_gap(old->klass_gap());
1088   }
1089   if (word_sz > (size_t)oopDesc::header_size()) {
1090     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1091                                  obj_ptr + oopDesc::header_size(),
1092                                  word_sz - oopDesc::header_size());
1093   }
1094 
1095   // Now we can track the promoted object, if necessary.  We take care
1096   // to delay the transition from uninitialized to full object
1097   // (i.e., insertion of klass pointer) until after, so that it
1098   // atomically becomes a promoted object.
1099   if (promoInfo->tracking()) {
1100     promoInfo->track((PromotedObject*)obj, old->klass());
1101   }
1102   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1103   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1104   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1105 
1106   // Finally, install the klass pointer (this should be volatile).
1107   OrderAccess::storestore();
1108   obj->set_klass(old->klass());
1109   // We should now be able to calculate the right size for this object
1110   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1111 
1112   collector()->promoted(true,          // parallel
1113                         obj_ptr, old->is_objArray(), word_sz);
1114 
1115   NOT_PRODUCT(
1116     Atomic::inc_ptr(&_numObjectsPromoted);
1117     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1118   )
1119 
1120   return obj;
1121 }
1122 
1123 void
1124 ConcurrentMarkSweepGeneration::
1125 par_promote_alloc_done(int thread_num) {
1126   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1127   ps->lab.retire(thread_num);
1128 }
1129 
1130 void
1131 ConcurrentMarkSweepGeneration::
1132 par_oop_since_save_marks_iterate_done(int thread_num) {
1133   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1134   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1135   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1136 }
1137 
1138 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1139                                                    size_t size,
1140                                                    bool   tlab)
1141 {
1142   // We allow a STW collection only if a full
1143   // collection was requested.
1144   return full || should_allocate(size, tlab); // FIX ME !!!
1145   // This and promotion failure handling are connected at the
1146   // hip and should be fixed by untying them.
1147 }
1148 
1149 bool CMSCollector::shouldConcurrentCollect() {
1150   if (_full_gc_requested) {
1151     if (Verbose && PrintGCDetails) {
1152       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1153                              " gc request (or gc_locker)");
1154     }
1155     return true;
1156   }
1157 
1158   FreelistLocker x(this);
1159   // ------------------------------------------------------------------
1160   // Print out lots of information which affects the initiation of
1161   // a collection.
1162   if (PrintCMSInitiationStatistics && stats().valid()) {
1163     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1164     gclog_or_tty->stamp();
1165     gclog_or_tty->cr();
1166     stats().print_on(gclog_or_tty);
1167     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1168       stats().time_until_cms_gen_full());
1169     gclog_or_tty->print_cr("free=" SIZE_FORMAT, _cmsGen->free());
1170     gclog_or_tty->print_cr("contiguous_available=" SIZE_FORMAT,
1171                            _cmsGen->contiguous_available());
1172     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1173     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1174     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1175     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1176     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1177     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1178     gclog_or_tty->print_cr("metadata initialized %d",
1179       MetaspaceGC::should_concurrent_collect());
1180   }
1181   // ------------------------------------------------------------------
1182 
1183   // If the estimated time to complete a cms collection (cms_duration())
1184   // is less than the estimated time remaining until the cms generation
1185   // is full, start a collection.
1186   if (!UseCMSInitiatingOccupancyOnly) {
1187     if (stats().valid()) {
1188       if (stats().time_until_cms_start() == 0.0) {
1189         return true;
1190       }
1191     } else {
1192       // We want to conservatively collect somewhat early in order
1193       // to try and "bootstrap" our CMS/promotion statistics;
1194       // this branch will not fire after the first successful CMS
1195       // collection because the stats should then be valid.
1196       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1197         if (Verbose && PrintGCDetails) {
1198           gclog_or_tty->print_cr(
1199             " CMSCollector: collect for bootstrapping statistics:"
1200             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1201             _bootstrap_occupancy);
1202         }
1203         return true;
1204       }
1205     }
1206   }
1207 
1208   // Otherwise, we start a collection cycle if
1209   // old gen want a collection cycle started. Each may use
1210   // an appropriate criterion for making this decision.
1211   // XXX We need to make sure that the gen expansion
1212   // criterion dovetails well with this. XXX NEED TO FIX THIS
1213   if (_cmsGen->should_concurrent_collect()) {
1214     if (Verbose && PrintGCDetails) {
1215       gclog_or_tty->print_cr("CMS old gen initiated");
1216     }
1217     return true;
1218   }
1219 
1220   // We start a collection if we believe an incremental collection may fail;
1221   // this is not likely to be productive in practice because it's probably too
1222   // late anyway.
1223   GenCollectedHeap* gch = GenCollectedHeap::heap();
1224   assert(gch->collector_policy()->is_generation_policy(),
1225          "You may want to check the correctness of the following");
1226   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1227     if (Verbose && PrintGCDetails) {
1228       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1229     }
1230     return true;
1231   }
1232 
1233   if (MetaspaceGC::should_concurrent_collect()) {
1234     if (Verbose && PrintGCDetails) {
1235       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1236     }
1237     return true;
1238   }
1239 
1240   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1241   if (CMSTriggerInterval >= 0) {
1242     if (CMSTriggerInterval == 0) {
1243       // Trigger always
1244       return true;
1245     }
1246 
1247     // Check the CMS time since begin (we do not check the stats validity
1248     // as we want to be able to trigger the first CMS cycle as well)
1249     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1250       if (Verbose && PrintGCDetails) {
1251         if (stats().valid()) {
1252           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1253                                  stats().cms_time_since_begin());
1254         } else {
1255           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1256         }
1257       }
1258       return true;
1259     }
1260   }
1261 
1262   return false;
1263 }
1264 
1265 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1266 
1267 // Clear _expansion_cause fields of constituent generations
1268 void CMSCollector::clear_expansion_cause() {
1269   _cmsGen->clear_expansion_cause();
1270 }
1271 
1272 // We should be conservative in starting a collection cycle.  To
1273 // start too eagerly runs the risk of collecting too often in the
1274 // extreme.  To collect too rarely falls back on full collections,
1275 // which works, even if not optimum in terms of concurrent work.
1276 // As a work around for too eagerly collecting, use the flag
1277 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1278 // giving the user an easily understandable way of controlling the
1279 // collections.
1280 // We want to start a new collection cycle if any of the following
1281 // conditions hold:
1282 // . our current occupancy exceeds the configured initiating occupancy
1283 //   for this generation, or
1284 // . we recently needed to expand this space and have not, since that
1285 //   expansion, done a collection of this generation, or
1286 // . the underlying space believes that it may be a good idea to initiate
1287 //   a concurrent collection (this may be based on criteria such as the
1288 //   following: the space uses linear allocation and linear allocation is
1289 //   going to fail, or there is believed to be excessive fragmentation in
1290 //   the generation, etc... or ...
1291 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1292 //   the case of the old generation; see CR 6543076):
1293 //   we may be approaching a point at which allocation requests may fail because
1294 //   we will be out of sufficient free space given allocation rate estimates.]
1295 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1296 
1297   assert_lock_strong(freelistLock());
1298   if (occupancy() > initiating_occupancy()) {
1299     if (PrintGCDetails && Verbose) {
1300       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1301         short_name(), occupancy(), initiating_occupancy());
1302     }
1303     return true;
1304   }
1305   if (UseCMSInitiatingOccupancyOnly) {
1306     return false;
1307   }
1308   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1309     if (PrintGCDetails && Verbose) {
1310       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1311         short_name());
1312     }
1313     return true;
1314   }
1315   if (_cmsSpace->should_concurrent_collect()) {
1316     if (PrintGCDetails && Verbose) {
1317       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1318         short_name());
1319     }
1320     return true;
1321   }
1322   return false;
1323 }
1324 
1325 void ConcurrentMarkSweepGeneration::collect(bool   full,
1326                                             bool   clear_all_soft_refs,
1327                                             size_t size,
1328                                             bool   tlab)
1329 {
1330   collector()->collect(full, clear_all_soft_refs, size, tlab);
1331 }
1332 
1333 void CMSCollector::collect(bool   full,
1334                            bool   clear_all_soft_refs,
1335                            size_t size,
1336                            bool   tlab)
1337 {
1338   // The following "if" branch is present for defensive reasons.
1339   // In the current uses of this interface, it can be replaced with:
1340   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1341   // But I am not placing that assert here to allow future
1342   // generality in invoking this interface.
1343   if (GC_locker::is_active()) {
1344     // A consistency test for GC_locker
1345     assert(GC_locker::needs_gc(), "Should have been set already");
1346     // Skip this foreground collection, instead
1347     // expanding the heap if necessary.
1348     // Need the free list locks for the call to free() in compute_new_size()
1349     compute_new_size();
1350     return;
1351   }
1352   acquire_control_and_collect(full, clear_all_soft_refs);
1353 }
1354 
1355 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1356   GenCollectedHeap* gch = GenCollectedHeap::heap();
1357   unsigned int gc_count = gch->total_full_collections();
1358   if (gc_count == full_gc_count) {
1359     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1360     _full_gc_requested = true;
1361     _full_gc_cause = cause;
1362     CGC_lock->notify();   // nudge CMS thread
1363   } else {
1364     assert(gc_count > full_gc_count, "Error: causal loop");
1365   }
1366 }
1367 
1368 bool CMSCollector::is_external_interruption() {
1369   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1370   return GCCause::is_user_requested_gc(cause) ||
1371          GCCause::is_serviceability_requested_gc(cause);
1372 }
1373 
1374 void CMSCollector::report_concurrent_mode_interruption() {
1375   if (is_external_interruption()) {
1376     if (PrintGCDetails) {
1377       gclog_or_tty->print(" (concurrent mode interrupted)");
1378     }
1379   } else {
1380     if (PrintGCDetails) {
1381       gclog_or_tty->print(" (concurrent mode failure)");
1382     }
1383     _gc_tracer_cm->report_concurrent_mode_failure();
1384   }
1385 }
1386 
1387 
1388 // The foreground and background collectors need to coordinate in order
1389 // to make sure that they do not mutually interfere with CMS collections.
1390 // When a background collection is active,
1391 // the foreground collector may need to take over (preempt) and
1392 // synchronously complete an ongoing collection. Depending on the
1393 // frequency of the background collections and the heap usage
1394 // of the application, this preemption can be seldom or frequent.
1395 // There are only certain
1396 // points in the background collection that the "collection-baton"
1397 // can be passed to the foreground collector.
1398 //
1399 // The foreground collector will wait for the baton before
1400 // starting any part of the collection.  The foreground collector
1401 // will only wait at one location.
1402 //
1403 // The background collector will yield the baton before starting a new
1404 // phase of the collection (e.g., before initial marking, marking from roots,
1405 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1406 // of the loop which switches the phases. The background collector does some
1407 // of the phases (initial mark, final re-mark) with the world stopped.
1408 // Because of locking involved in stopping the world,
1409 // the foreground collector should not block waiting for the background
1410 // collector when it is doing a stop-the-world phase.  The background
1411 // collector will yield the baton at an additional point just before
1412 // it enters a stop-the-world phase.  Once the world is stopped, the
1413 // background collector checks the phase of the collection.  If the
1414 // phase has not changed, it proceeds with the collection.  If the
1415 // phase has changed, it skips that phase of the collection.  See
1416 // the comments on the use of the Heap_lock in collect_in_background().
1417 //
1418 // Variable used in baton passing.
1419 //   _foregroundGCIsActive - Set to true by the foreground collector when
1420 //      it wants the baton.  The foreground clears it when it has finished
1421 //      the collection.
1422 //   _foregroundGCShouldWait - Set to true by the background collector
1423 //        when it is running.  The foreground collector waits while
1424 //      _foregroundGCShouldWait is true.
1425 //  CGC_lock - monitor used to protect access to the above variables
1426 //      and to notify the foreground and background collectors.
1427 //  _collectorState - current state of the CMS collection.
1428 //
1429 // The foreground collector
1430 //   acquires the CGC_lock
1431 //   sets _foregroundGCIsActive
1432 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1433 //     various locks acquired in preparation for the collection
1434 //     are released so as not to block the background collector
1435 //     that is in the midst of a collection
1436 //   proceeds with the collection
1437 //   clears _foregroundGCIsActive
1438 //   returns
1439 //
1440 // The background collector in a loop iterating on the phases of the
1441 //      collection
1442 //   acquires the CGC_lock
1443 //   sets _foregroundGCShouldWait
1444 //   if _foregroundGCIsActive is set
1445 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1446 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1447 //     and exits the loop.
1448 //   otherwise
1449 //     proceed with that phase of the collection
1450 //     if the phase is a stop-the-world phase,
1451 //       yield the baton once more just before enqueueing
1452 //       the stop-world CMS operation (executed by the VM thread).
1453 //   returns after all phases of the collection are done
1454 //
1455 
1456 void CMSCollector::acquire_control_and_collect(bool full,
1457         bool clear_all_soft_refs) {
1458   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1459   assert(!Thread::current()->is_ConcurrentGC_thread(),
1460          "shouldn't try to acquire control from self!");
1461 
1462   // Start the protocol for acquiring control of the
1463   // collection from the background collector (aka CMS thread).
1464   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1465          "VM thread should have CMS token");
1466   // Remember the possibly interrupted state of an ongoing
1467   // concurrent collection
1468   CollectorState first_state = _collectorState;
1469 
1470   // Signal to a possibly ongoing concurrent collection that
1471   // we want to do a foreground collection.
1472   _foregroundGCIsActive = true;
1473 
1474   // release locks and wait for a notify from the background collector
1475   // releasing the locks in only necessary for phases which
1476   // do yields to improve the granularity of the collection.
1477   assert_lock_strong(bitMapLock());
1478   // We need to lock the Free list lock for the space that we are
1479   // currently collecting.
1480   assert(haveFreelistLocks(), "Must be holding free list locks");
1481   bitMapLock()->unlock();
1482   releaseFreelistLocks();
1483   {
1484     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1485     if (_foregroundGCShouldWait) {
1486       // We are going to be waiting for action for the CMS thread;
1487       // it had better not be gone (for instance at shutdown)!
1488       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1489              "CMS thread must be running");
1490       // Wait here until the background collector gives us the go-ahead
1491       ConcurrentMarkSweepThread::clear_CMS_flag(
1492         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1493       // Get a possibly blocked CMS thread going:
1494       //   Note that we set _foregroundGCIsActive true above,
1495       //   without protection of the CGC_lock.
1496       CGC_lock->notify();
1497       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1498              "Possible deadlock");
1499       while (_foregroundGCShouldWait) {
1500         // wait for notification
1501         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1502         // Possibility of delay/starvation here, since CMS token does
1503         // not know to give priority to VM thread? Actually, i think
1504         // there wouldn't be any delay/starvation, but the proof of
1505         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1506       }
1507       ConcurrentMarkSweepThread::set_CMS_flag(
1508         ConcurrentMarkSweepThread::CMS_vm_has_token);
1509     }
1510   }
1511   // The CMS_token is already held.  Get back the other locks.
1512   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1513          "VM thread should have CMS token");
1514   getFreelistLocks();
1515   bitMapLock()->lock_without_safepoint_check();
1516   if (TraceCMSState) {
1517     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1518       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1519     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1520   }
1521 
1522   // Inform cms gen if this was due to partial collection failing.
1523   // The CMS gen may use this fact to determine its expansion policy.
1524   GenCollectedHeap* gch = GenCollectedHeap::heap();
1525   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1526     assert(!_cmsGen->incremental_collection_failed(),
1527            "Should have been noticed, reacted to and cleared");
1528     _cmsGen->set_incremental_collection_failed();
1529   }
1530 
1531   if (first_state > Idling) {
1532     report_concurrent_mode_interruption();
1533   }
1534 
1535   set_did_compact(true);
1536 
1537   // If the collection is being acquired from the background
1538   // collector, there may be references on the discovered
1539   // references lists.  Abandon those references, since some
1540   // of them may have become unreachable after concurrent
1541   // discovery; the STW compacting collector will redo discovery
1542   // more precisely, without being subject to floating garbage.
1543   // Leaving otherwise unreachable references in the discovered
1544   // lists would require special handling.
1545   ref_processor()->disable_discovery();
1546   ref_processor()->abandon_partial_discovery();
1547   ref_processor()->verify_no_references_recorded();
1548 
1549   if (first_state > Idling) {
1550     save_heap_summary();
1551   }
1552 
1553   do_compaction_work(clear_all_soft_refs);
1554 
1555   // Has the GC time limit been exceeded?
1556   size_t max_eden_size = _young_gen->max_capacity() -
1557                          _young_gen->to()->capacity() -
1558                          _young_gen->from()->capacity();
1559   GCCause::Cause gc_cause = gch->gc_cause();
1560   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1561                                          _young_gen->eden()->used(),
1562                                          _cmsGen->max_capacity(),
1563                                          max_eden_size,
1564                                          full,
1565                                          gc_cause,
1566                                          gch->collector_policy());
1567 
1568   // Reset the expansion cause, now that we just completed
1569   // a collection cycle.
1570   clear_expansion_cause();
1571   _foregroundGCIsActive = false;
1572   return;
1573 }
1574 
1575 // Resize the tenured generation
1576 // after obtaining the free list locks for the
1577 // two generations.
1578 void CMSCollector::compute_new_size() {
1579   assert_locked_or_safepoint(Heap_lock);
1580   FreelistLocker z(this);
1581   MetaspaceGC::compute_new_size();
1582   _cmsGen->compute_new_size_free_list();
1583 }
1584 
1585 // A work method used by the foreground collector to do
1586 // a mark-sweep-compact.
1587 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1588   GenCollectedHeap* gch = GenCollectedHeap::heap();
1589 
1590   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1591   gc_timer->register_gc_start();
1592 
1593   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1594   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1595 
1596   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
1597 
1598   // Temporarily widen the span of the weak reference processing to
1599   // the entire heap.
1600   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1601   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1602   // Temporarily, clear the "is_alive_non_header" field of the
1603   // reference processor.
1604   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1605   // Temporarily make reference _processing_ single threaded (non-MT).
1606   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1607   // Temporarily make refs discovery atomic
1608   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1609   // Temporarily make reference _discovery_ single threaded (non-MT)
1610   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1611 
1612   ref_processor()->set_enqueuing_is_done(false);
1613   ref_processor()->enable_discovery();
1614   ref_processor()->setup_policy(clear_all_soft_refs);
1615   // If an asynchronous collection finishes, the _modUnionTable is
1616   // all clear.  If we are assuming the collection from an asynchronous
1617   // collection, clear the _modUnionTable.
1618   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1619     "_modUnionTable should be clear if the baton was not passed");
1620   _modUnionTable.clear_all();
1621   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1622     "mod union for klasses should be clear if the baton was passed");
1623   _ct->klass_rem_set()->clear_mod_union();
1624 
1625   // We must adjust the allocation statistics being maintained
1626   // in the free list space. We do so by reading and clearing
1627   // the sweep timer and updating the block flux rate estimates below.
1628   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1629   if (_inter_sweep_timer.is_active()) {
1630     _inter_sweep_timer.stop();
1631     // Note that we do not use this sample to update the _inter_sweep_estimate.
1632     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1633                                             _inter_sweep_estimate.padded_average(),
1634                                             _intra_sweep_estimate.padded_average());
1635   }
1636 
1637   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1638   #ifdef ASSERT
1639     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1640     size_t free_size = cms_space->free();
1641     assert(free_size ==
1642            pointer_delta(cms_space->end(), cms_space->compaction_top())
1643            * HeapWordSize,
1644       "All the free space should be compacted into one chunk at top");
1645     assert(cms_space->dictionary()->total_chunk_size(
1646                                       debug_only(cms_space->freelistLock())) == 0 ||
1647            cms_space->totalSizeInIndexedFreeLists() == 0,
1648       "All the free space should be in a single chunk");
1649     size_t num = cms_space->totalCount();
1650     assert((free_size == 0 && num == 0) ||
1651            (free_size > 0  && (num == 1 || num == 2)),
1652          "There should be at most 2 free chunks after compaction");
1653   #endif // ASSERT
1654   _collectorState = Resetting;
1655   assert(_restart_addr == NULL,
1656          "Should have been NULL'd before baton was passed");
1657   reset(false /* == !concurrent */);
1658   _cmsGen->reset_after_compaction();
1659   _concurrent_cycles_since_last_unload = 0;
1660 
1661   // Clear any data recorded in the PLAB chunk arrays.
1662   if (_survivor_plab_array != NULL) {
1663     reset_survivor_plab_arrays();
1664   }
1665 
1666   // Adjust the per-size allocation stats for the next epoch.
1667   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1668   // Restart the "inter sweep timer" for the next epoch.
1669   _inter_sweep_timer.reset();
1670   _inter_sweep_timer.start();
1671 
1672   gc_timer->register_gc_end();
1673 
1674   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1675 
1676   // For a mark-sweep-compact, compute_new_size() will be called
1677   // in the heap's do_collection() method.
1678 }
1679 
1680 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1681   ContiguousSpace* eden_space = _young_gen->eden();
1682   ContiguousSpace* from_space = _young_gen->from();
1683   ContiguousSpace* to_space   = _young_gen->to();
1684   // Eden
1685   if (_eden_chunk_array != NULL) {
1686     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1687                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1688                            p2i(eden_space->end()), eden_space->capacity());
1689     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1690                            "_eden_chunk_capacity=" SIZE_FORMAT,
1691                            _eden_chunk_index, _eden_chunk_capacity);
1692     for (size_t i = 0; i < _eden_chunk_index; i++) {
1693       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1694                              i, p2i(_eden_chunk_array[i]));
1695     }
1696   }
1697   // Survivor
1698   if (_survivor_chunk_array != NULL) {
1699     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1700                            p2i(from_space->bottom()), p2i(from_space->top()),
1701                            p2i(from_space->end()), from_space->capacity());
1702     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1703                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1704                            _survivor_chunk_index, _survivor_chunk_capacity);
1705     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1706       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1707                              i, p2i(_survivor_chunk_array[i]));
1708     }
1709   }
1710 }
1711 
1712 void CMSCollector::getFreelistLocks() const {
1713   // Get locks for all free lists in all generations that this
1714   // collector is responsible for
1715   _cmsGen->freelistLock()->lock_without_safepoint_check();
1716 }
1717 
1718 void CMSCollector::releaseFreelistLocks() const {
1719   // Release locks for all free lists in all generations that this
1720   // collector is responsible for
1721   _cmsGen->freelistLock()->unlock();
1722 }
1723 
1724 bool CMSCollector::haveFreelistLocks() const {
1725   // Check locks for all free lists in all generations that this
1726   // collector is responsible for
1727   assert_lock_strong(_cmsGen->freelistLock());
1728   PRODUCT_ONLY(ShouldNotReachHere());
1729   return true;
1730 }
1731 
1732 // A utility class that is used by the CMS collector to
1733 // temporarily "release" the foreground collector from its
1734 // usual obligation to wait for the background collector to
1735 // complete an ongoing phase before proceeding.
1736 class ReleaseForegroundGC: public StackObj {
1737  private:
1738   CMSCollector* _c;
1739  public:
1740   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1741     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1742     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1743     // allow a potentially blocked foreground collector to proceed
1744     _c->_foregroundGCShouldWait = false;
1745     if (_c->_foregroundGCIsActive) {
1746       CGC_lock->notify();
1747     }
1748     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1749            "Possible deadlock");
1750   }
1751 
1752   ~ReleaseForegroundGC() {
1753     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1754     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1755     _c->_foregroundGCShouldWait = true;
1756   }
1757 };
1758 
1759 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1760   assert(Thread::current()->is_ConcurrentGC_thread(),
1761     "A CMS asynchronous collection is only allowed on a CMS thread.");
1762 
1763   GenCollectedHeap* gch = GenCollectedHeap::heap();
1764   {
1765     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1766     MutexLockerEx hl(Heap_lock, safepoint_check);
1767     FreelistLocker fll(this);
1768     MutexLockerEx x(CGC_lock, safepoint_check);
1769     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1770       // The foreground collector is active or we're
1771       // not using asynchronous collections.  Skip this
1772       // background collection.
1773       assert(!_foregroundGCShouldWait, "Should be clear");
1774       return;
1775     } else {
1776       assert(_collectorState == Idling, "Should be idling before start.");
1777       _collectorState = InitialMarking;
1778       register_gc_start(cause);
1779       // Reset the expansion cause, now that we are about to begin
1780       // a new cycle.
1781       clear_expansion_cause();
1782 
1783       // Clear the MetaspaceGC flag since a concurrent collection
1784       // is starting but also clear it after the collection.
1785       MetaspaceGC::set_should_concurrent_collect(false);
1786     }
1787     // Decide if we want to enable class unloading as part of the
1788     // ensuing concurrent GC cycle.
1789     update_should_unload_classes();
1790     _full_gc_requested = false;           // acks all outstanding full gc requests
1791     _full_gc_cause = GCCause::_no_gc;
1792     // Signal that we are about to start a collection
1793     gch->increment_total_full_collections();  // ... starting a collection cycle
1794     _collection_count_start = gch->total_full_collections();
1795   }
1796 
1797   // Used for PrintGC
1798   size_t prev_used;
1799   if (PrintGC && Verbose) {
1800     prev_used = _cmsGen->used();
1801   }
1802 
1803   // The change of the collection state is normally done at this level;
1804   // the exceptions are phases that are executed while the world is
1805   // stopped.  For those phases the change of state is done while the
1806   // world is stopped.  For baton passing purposes this allows the
1807   // background collector to finish the phase and change state atomically.
1808   // The foreground collector cannot wait on a phase that is done
1809   // while the world is stopped because the foreground collector already
1810   // has the world stopped and would deadlock.
1811   while (_collectorState != Idling) {
1812     if (TraceCMSState) {
1813       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1814         p2i(Thread::current()), _collectorState);
1815     }
1816     // The foreground collector
1817     //   holds the Heap_lock throughout its collection.
1818     //   holds the CMS token (but not the lock)
1819     //     except while it is waiting for the background collector to yield.
1820     //
1821     // The foreground collector should be blocked (not for long)
1822     //   if the background collector is about to start a phase
1823     //   executed with world stopped.  If the background
1824     //   collector has already started such a phase, the
1825     //   foreground collector is blocked waiting for the
1826     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1827     //   are executed in the VM thread.
1828     //
1829     // The locking order is
1830     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1831     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1832     //   CMS token  (claimed in
1833     //                stop_world_and_do() -->
1834     //                  safepoint_synchronize() -->
1835     //                    CMSThread::synchronize())
1836 
1837     {
1838       // Check if the FG collector wants us to yield.
1839       CMSTokenSync x(true); // is cms thread
1840       if (waitForForegroundGC()) {
1841         // We yielded to a foreground GC, nothing more to be
1842         // done this round.
1843         assert(_foregroundGCShouldWait == false, "We set it to false in "
1844                "waitForForegroundGC()");
1845         if (TraceCMSState) {
1846           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1847             " exiting collection CMS state %d",
1848             p2i(Thread::current()), _collectorState);
1849         }
1850         return;
1851       } else {
1852         // The background collector can run but check to see if the
1853         // foreground collector has done a collection while the
1854         // background collector was waiting to get the CGC_lock
1855         // above.  If yes, break so that _foregroundGCShouldWait
1856         // is cleared before returning.
1857         if (_collectorState == Idling) {
1858           break;
1859         }
1860       }
1861     }
1862 
1863     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1864       "should be waiting");
1865 
1866     switch (_collectorState) {
1867       case InitialMarking:
1868         {
1869           ReleaseForegroundGC x(this);
1870           stats().record_cms_begin();
1871           VM_CMS_Initial_Mark initial_mark_op(this);
1872           VMThread::execute(&initial_mark_op);
1873         }
1874         // The collector state may be any legal state at this point
1875         // since the background collector may have yielded to the
1876         // foreground collector.
1877         break;
1878       case Marking:
1879         // initial marking in checkpointRootsInitialWork has been completed
1880         if (markFromRoots()) { // we were successful
1881           assert(_collectorState == Precleaning, "Collector state should "
1882             "have changed");
1883         } else {
1884           assert(_foregroundGCIsActive, "Internal state inconsistency");
1885         }
1886         break;
1887       case Precleaning:
1888         // marking from roots in markFromRoots has been completed
1889         preclean();
1890         assert(_collectorState == AbortablePreclean ||
1891                _collectorState == FinalMarking,
1892                "Collector state should have changed");
1893         break;
1894       case AbortablePreclean:
1895         abortable_preclean();
1896         assert(_collectorState == FinalMarking, "Collector state should "
1897           "have changed");
1898         break;
1899       case FinalMarking:
1900         {
1901           ReleaseForegroundGC x(this);
1902 
1903           VM_CMS_Final_Remark final_remark_op(this);
1904           VMThread::execute(&final_remark_op);
1905         }
1906         assert(_foregroundGCShouldWait, "block post-condition");
1907         break;
1908       case Sweeping:
1909         // final marking in checkpointRootsFinal has been completed
1910         sweep();
1911         assert(_collectorState == Resizing, "Collector state change "
1912           "to Resizing must be done under the free_list_lock");
1913 
1914       case Resizing: {
1915         // Sweeping has been completed...
1916         // At this point the background collection has completed.
1917         // Don't move the call to compute_new_size() down
1918         // into code that might be executed if the background
1919         // collection was preempted.
1920         {
1921           ReleaseForegroundGC x(this);   // unblock FG collection
1922           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1923           CMSTokenSync        z(true);   // not strictly needed.
1924           if (_collectorState == Resizing) {
1925             compute_new_size();
1926             save_heap_summary();
1927             _collectorState = Resetting;
1928           } else {
1929             assert(_collectorState == Idling, "The state should only change"
1930                    " because the foreground collector has finished the collection");
1931           }
1932         }
1933         break;
1934       }
1935       case Resetting:
1936         // CMS heap resizing has been completed
1937         reset(true);
1938         assert(_collectorState == Idling, "Collector state should "
1939           "have changed");
1940 
1941         MetaspaceGC::set_should_concurrent_collect(false);
1942 
1943         stats().record_cms_end();
1944         // Don't move the concurrent_phases_end() and compute_new_size()
1945         // calls to here because a preempted background collection
1946         // has it's state set to "Resetting".
1947         break;
1948       case Idling:
1949       default:
1950         ShouldNotReachHere();
1951         break;
1952     }
1953     if (TraceCMSState) {
1954       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1955         p2i(Thread::current()), _collectorState);
1956     }
1957     assert(_foregroundGCShouldWait, "block post-condition");
1958   }
1959 
1960   // Should this be in gc_epilogue?
1961   collector_policy()->counters()->update_counters();
1962 
1963   {
1964     // Clear _foregroundGCShouldWait and, in the event that the
1965     // foreground collector is waiting, notify it, before
1966     // returning.
1967     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1968     _foregroundGCShouldWait = false;
1969     if (_foregroundGCIsActive) {
1970       CGC_lock->notify();
1971     }
1972     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1973            "Possible deadlock");
1974   }
1975   if (TraceCMSState) {
1976     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1977       " exiting collection CMS state %d",
1978       p2i(Thread::current()), _collectorState);
1979   }
1980   if (PrintGC && Verbose) {
1981     _cmsGen->print_heap_change(prev_used);
1982   }
1983 }
1984 
1985 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1986   _cms_start_registered = true;
1987   _gc_timer_cm->register_gc_start();
1988   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1989 }
1990 
1991 void CMSCollector::register_gc_end() {
1992   if (_cms_start_registered) {
1993     report_heap_summary(GCWhen::AfterGC);
1994 
1995     _gc_timer_cm->register_gc_end();
1996     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1997     _cms_start_registered = false;
1998   }
1999 }
2000 
2001 void CMSCollector::save_heap_summary() {
2002   GenCollectedHeap* gch = GenCollectedHeap::heap();
2003   _last_heap_summary = gch->create_heap_summary();
2004   _last_metaspace_summary = gch->create_metaspace_summary();
2005 }
2006 
2007 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2008   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2009   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2010 }
2011 
2012 bool CMSCollector::waitForForegroundGC() {
2013   bool res = false;
2014   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2015          "CMS thread should have CMS token");
2016   // Block the foreground collector until the
2017   // background collectors decides whether to
2018   // yield.
2019   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2020   _foregroundGCShouldWait = true;
2021   if (_foregroundGCIsActive) {
2022     // The background collector yields to the
2023     // foreground collector and returns a value
2024     // indicating that it has yielded.  The foreground
2025     // collector can proceed.
2026     res = true;
2027     _foregroundGCShouldWait = false;
2028     ConcurrentMarkSweepThread::clear_CMS_flag(
2029       ConcurrentMarkSweepThread::CMS_cms_has_token);
2030     ConcurrentMarkSweepThread::set_CMS_flag(
2031       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2032     // Get a possibly blocked foreground thread going
2033     CGC_lock->notify();
2034     if (TraceCMSState) {
2035       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2036         p2i(Thread::current()), _collectorState);
2037     }
2038     while (_foregroundGCIsActive) {
2039       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2040     }
2041     ConcurrentMarkSweepThread::set_CMS_flag(
2042       ConcurrentMarkSweepThread::CMS_cms_has_token);
2043     ConcurrentMarkSweepThread::clear_CMS_flag(
2044       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2045   }
2046   if (TraceCMSState) {
2047     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2048       p2i(Thread::current()), _collectorState);
2049   }
2050   return res;
2051 }
2052 
2053 // Because of the need to lock the free lists and other structures in
2054 // the collector, common to all the generations that the collector is
2055 // collecting, we need the gc_prologues of individual CMS generations
2056 // delegate to their collector. It may have been simpler had the
2057 // current infrastructure allowed one to call a prologue on a
2058 // collector. In the absence of that we have the generation's
2059 // prologue delegate to the collector, which delegates back
2060 // some "local" work to a worker method in the individual generations
2061 // that it's responsible for collecting, while itself doing any
2062 // work common to all generations it's responsible for. A similar
2063 // comment applies to the  gc_epilogue()'s.
2064 // The role of the variable _between_prologue_and_epilogue is to
2065 // enforce the invocation protocol.
2066 void CMSCollector::gc_prologue(bool full) {
2067   // Call gc_prologue_work() for the CMSGen
2068   // we are responsible for.
2069 
2070   // The following locking discipline assumes that we are only called
2071   // when the world is stopped.
2072   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2073 
2074   // The CMSCollector prologue must call the gc_prologues for the
2075   // "generations" that it's responsible
2076   // for.
2077 
2078   assert(   Thread::current()->is_VM_thread()
2079          || (   CMSScavengeBeforeRemark
2080              && Thread::current()->is_ConcurrentGC_thread()),
2081          "Incorrect thread type for prologue execution");
2082 
2083   if (_between_prologue_and_epilogue) {
2084     // We have already been invoked; this is a gc_prologue delegation
2085     // from yet another CMS generation that we are responsible for, just
2086     // ignore it since all relevant work has already been done.
2087     return;
2088   }
2089 
2090   // set a bit saying prologue has been called; cleared in epilogue
2091   _between_prologue_and_epilogue = true;
2092   // Claim locks for common data structures, then call gc_prologue_work()
2093   // for each CMSGen.
2094 
2095   getFreelistLocks();   // gets free list locks on constituent spaces
2096   bitMapLock()->lock_without_safepoint_check();
2097 
2098   // Should call gc_prologue_work() for all cms gens we are responsible for
2099   bool duringMarking =    _collectorState >= Marking
2100                          && _collectorState < Sweeping;
2101 
2102   // The young collections clear the modified oops state, which tells if
2103   // there are any modified oops in the class. The remark phase also needs
2104   // that information. Tell the young collection to save the union of all
2105   // modified klasses.
2106   if (duringMarking) {
2107     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2108   }
2109 
2110   bool registerClosure = duringMarking;
2111 
2112   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2113 
2114   if (!full) {
2115     stats().record_gc0_begin();
2116   }
2117 }
2118 
2119 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2120 
2121   _capacity_at_prologue = capacity();
2122   _used_at_prologue = used();
2123 
2124   // Delegate to CMScollector which knows how to coordinate between
2125   // this and any other CMS generations that it is responsible for
2126   // collecting.
2127   collector()->gc_prologue(full);
2128 }
2129 
2130 // This is a "private" interface for use by this generation's CMSCollector.
2131 // Not to be called directly by any other entity (for instance,
2132 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2133 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2134   bool registerClosure, ModUnionClosure* modUnionClosure) {
2135   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2136   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2137     "Should be NULL");
2138   if (registerClosure) {
2139     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2140   }
2141   cmsSpace()->gc_prologue();
2142   // Clear stat counters
2143   NOT_PRODUCT(
2144     assert(_numObjectsPromoted == 0, "check");
2145     assert(_numWordsPromoted   == 0, "check");
2146     if (Verbose && PrintGC) {
2147       gclog_or_tty->print("Allocated " SIZE_FORMAT " objects, "
2148                           SIZE_FORMAT " bytes concurrently",
2149       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2150     }
2151     _numObjectsAllocated = 0;
2152     _numWordsAllocated   = 0;
2153   )
2154 }
2155 
2156 void CMSCollector::gc_epilogue(bool full) {
2157   // The following locking discipline assumes that we are only called
2158   // when the world is stopped.
2159   assert(SafepointSynchronize::is_at_safepoint(),
2160          "world is stopped assumption");
2161 
2162   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2163   // if linear allocation blocks need to be appropriately marked to allow the
2164   // the blocks to be parsable. We also check here whether we need to nudge the
2165   // CMS collector thread to start a new cycle (if it's not already active).
2166   assert(   Thread::current()->is_VM_thread()
2167          || (   CMSScavengeBeforeRemark
2168              && Thread::current()->is_ConcurrentGC_thread()),
2169          "Incorrect thread type for epilogue execution");
2170 
2171   if (!_between_prologue_and_epilogue) {
2172     // We have already been invoked; this is a gc_epilogue delegation
2173     // from yet another CMS generation that we are responsible for, just
2174     // ignore it since all relevant work has already been done.
2175     return;
2176   }
2177   assert(haveFreelistLocks(), "must have freelist locks");
2178   assert_lock_strong(bitMapLock());
2179 
2180   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2181 
2182   _cmsGen->gc_epilogue_work(full);
2183 
2184   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2185     // in case sampling was not already enabled, enable it
2186     _start_sampling = true;
2187   }
2188   // reset _eden_chunk_array so sampling starts afresh
2189   _eden_chunk_index = 0;
2190 
2191   size_t cms_used   = _cmsGen->cmsSpace()->used();
2192 
2193   // update performance counters - this uses a special version of
2194   // update_counters() that allows the utilization to be passed as a
2195   // parameter, avoiding multiple calls to used().
2196   //
2197   _cmsGen->update_counters(cms_used);
2198 
2199   bitMapLock()->unlock();
2200   releaseFreelistLocks();
2201 
2202   if (!CleanChunkPoolAsync) {
2203     Chunk::clean_chunk_pool();
2204   }
2205 
2206   set_did_compact(false);
2207   _between_prologue_and_epilogue = false;  // ready for next cycle
2208 }
2209 
2210 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2211   collector()->gc_epilogue(full);
2212 
2213   // Also reset promotion tracking in par gc thread states.
2214   for (uint i = 0; i < ParallelGCThreads; i++) {
2215     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2216   }
2217 }
2218 
2219 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2220   assert(!incremental_collection_failed(), "Should have been cleared");
2221   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2222   cmsSpace()->gc_epilogue();
2223     // Print stat counters
2224   NOT_PRODUCT(
2225     assert(_numObjectsAllocated == 0, "check");
2226     assert(_numWordsAllocated == 0, "check");
2227     if (Verbose && PrintGC) {
2228       gclog_or_tty->print("Promoted " SIZE_FORMAT " objects, "
2229                           SIZE_FORMAT " bytes",
2230                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2231     }
2232     _numObjectsPromoted = 0;
2233     _numWordsPromoted   = 0;
2234   )
2235 
2236   if (PrintGC && Verbose) {
2237     // Call down the chain in contiguous_available needs the freelistLock
2238     // so print this out before releasing the freeListLock.
2239     gclog_or_tty->print(" Contiguous available " SIZE_FORMAT " bytes ",
2240                         contiguous_available());
2241   }
2242 }
2243 
2244 #ifndef PRODUCT
2245 bool CMSCollector::have_cms_token() {
2246   Thread* thr = Thread::current();
2247   if (thr->is_VM_thread()) {
2248     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2249   } else if (thr->is_ConcurrentGC_thread()) {
2250     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2251   } else if (thr->is_GC_task_thread()) {
2252     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2253            ParGCRareEvent_lock->owned_by_self();
2254   }
2255   return false;
2256 }
2257 #endif
2258 
2259 // Check reachability of the given heap address in CMS generation,
2260 // treating all other generations as roots.
2261 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2262   // We could "guarantee" below, rather than assert, but I'll
2263   // leave these as "asserts" so that an adventurous debugger
2264   // could try this in the product build provided some subset of
2265   // the conditions were met, provided they were interested in the
2266   // results and knew that the computation below wouldn't interfere
2267   // with other concurrent computations mutating the structures
2268   // being read or written.
2269   assert(SafepointSynchronize::is_at_safepoint(),
2270          "Else mutations in object graph will make answer suspect");
2271   assert(have_cms_token(), "Should hold cms token");
2272   assert(haveFreelistLocks(), "must hold free list locks");
2273   assert_lock_strong(bitMapLock());
2274 
2275   // Clear the marking bit map array before starting, but, just
2276   // for kicks, first report if the given address is already marked
2277   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2278                 _markBitMap.isMarked(addr) ? "" : " not");
2279 
2280   if (verify_after_remark()) {
2281     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2282     bool result = verification_mark_bm()->isMarked(addr);
2283     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2284                            result ? "IS" : "is NOT");
2285     return result;
2286   } else {
2287     gclog_or_tty->print_cr("Could not compute result");
2288     return false;
2289   }
2290 }
2291 
2292 
2293 void
2294 CMSCollector::print_on_error(outputStream* st) {
2295   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2296   if (collector != NULL) {
2297     CMSBitMap* bitmap = &collector->_markBitMap;
2298     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2299     bitmap->print_on_error(st, " Bits: ");
2300 
2301     st->cr();
2302 
2303     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2304     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2305     mut_bitmap->print_on_error(st, " Bits: ");
2306   }
2307 }
2308 
2309 ////////////////////////////////////////////////////////
2310 // CMS Verification Support
2311 ////////////////////////////////////////////////////////
2312 // Following the remark phase, the following invariant
2313 // should hold -- each object in the CMS heap which is
2314 // marked in markBitMap() should be marked in the verification_mark_bm().
2315 
2316 class VerifyMarkedClosure: public BitMapClosure {
2317   CMSBitMap* _marks;
2318   bool       _failed;
2319 
2320  public:
2321   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2322 
2323   bool do_bit(size_t offset) {
2324     HeapWord* addr = _marks->offsetToHeapWord(offset);
2325     if (!_marks->isMarked(addr)) {
2326       oop(addr)->print_on(gclog_or_tty);
2327       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2328       _failed = true;
2329     }
2330     return true;
2331   }
2332 
2333   bool failed() { return _failed; }
2334 };
2335 
2336 bool CMSCollector::verify_after_remark(bool silent) {
2337   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2338   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2339   static bool init = false;
2340 
2341   assert(SafepointSynchronize::is_at_safepoint(),
2342          "Else mutations in object graph will make answer suspect");
2343   assert(have_cms_token(),
2344          "Else there may be mutual interference in use of "
2345          " verification data structures");
2346   assert(_collectorState > Marking && _collectorState <= Sweeping,
2347          "Else marking info checked here may be obsolete");
2348   assert(haveFreelistLocks(), "must hold free list locks");
2349   assert_lock_strong(bitMapLock());
2350 
2351 
2352   // Allocate marking bit map if not already allocated
2353   if (!init) { // first time
2354     if (!verification_mark_bm()->allocate(_span)) {
2355       return false;
2356     }
2357     init = true;
2358   }
2359 
2360   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2361 
2362   // Turn off refs discovery -- so we will be tracing through refs.
2363   // This is as intended, because by this time
2364   // GC must already have cleared any refs that need to be cleared,
2365   // and traced those that need to be marked; moreover,
2366   // the marking done here is not going to interfere in any
2367   // way with the marking information used by GC.
2368   NoRefDiscovery no_discovery(ref_processor());
2369 
2370   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2371 
2372   // Clear any marks from a previous round
2373   verification_mark_bm()->clear_all();
2374   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2375   verify_work_stacks_empty();
2376 
2377   GenCollectedHeap* gch = GenCollectedHeap::heap();
2378   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2379   // Update the saved marks which may affect the root scans.
2380   gch->save_marks();
2381 
2382   if (CMSRemarkVerifyVariant == 1) {
2383     // In this first variant of verification, we complete
2384     // all marking, then check if the new marks-vector is
2385     // a subset of the CMS marks-vector.
2386     verify_after_remark_work_1();
2387   } else if (CMSRemarkVerifyVariant == 2) {
2388     // In this second variant of verification, we flag an error
2389     // (i.e. an object reachable in the new marks-vector not reachable
2390     // in the CMS marks-vector) immediately, also indicating the
2391     // identify of an object (A) that references the unmarked object (B) --
2392     // presumably, a mutation to A failed to be picked up by preclean/remark?
2393     verify_after_remark_work_2();
2394   } else {
2395     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2396             CMSRemarkVerifyVariant);
2397   }
2398   if (!silent) gclog_or_tty->print(" done] ");
2399   return true;
2400 }
2401 
2402 void CMSCollector::verify_after_remark_work_1() {
2403   ResourceMark rm;
2404   HandleMark  hm;
2405   GenCollectedHeap* gch = GenCollectedHeap::heap();
2406 
2407   // Get a clear set of claim bits for the roots processing to work with.
2408   ClassLoaderDataGraph::clear_claimed_marks();
2409 
2410   // Mark from roots one level into CMS
2411   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2412   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2413 
2414   {
2415     StrongRootsScope srs(1);
2416 
2417     gch->gen_process_roots(&srs,
2418                            GenCollectedHeap::OldGen,
2419                            true,   // young gen as roots
2420                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2421                            should_unload_classes(),
2422                            &notOlder,
2423                            NULL,
2424                            NULL);
2425   }
2426 
2427   // Now mark from the roots
2428   MarkFromRootsClosure markFromRootsClosure(this, _span,
2429     verification_mark_bm(), verification_mark_stack(),
2430     false /* don't yield */, true /* verifying */);
2431   assert(_restart_addr == NULL, "Expected pre-condition");
2432   verification_mark_bm()->iterate(&markFromRootsClosure);
2433   while (_restart_addr != NULL) {
2434     // Deal with stack overflow: by restarting at the indicated
2435     // address.
2436     HeapWord* ra = _restart_addr;
2437     markFromRootsClosure.reset(ra);
2438     _restart_addr = NULL;
2439     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2440   }
2441   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2442   verify_work_stacks_empty();
2443 
2444   // Marking completed -- now verify that each bit marked in
2445   // verification_mark_bm() is also marked in markBitMap(); flag all
2446   // errors by printing corresponding objects.
2447   VerifyMarkedClosure vcl(markBitMap());
2448   verification_mark_bm()->iterate(&vcl);
2449   if (vcl.failed()) {
2450     gclog_or_tty->print("Verification failed");
2451     gch->print_on(gclog_or_tty);
2452     fatal("CMS: failed marking verification after remark");
2453   }
2454 }
2455 
2456 class VerifyKlassOopsKlassClosure : public KlassClosure {
2457   class VerifyKlassOopsClosure : public OopClosure {
2458     CMSBitMap* _bitmap;
2459    public:
2460     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2461     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2462     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2463   } _oop_closure;
2464  public:
2465   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2466   void do_klass(Klass* k) {
2467     k->oops_do(&_oop_closure);
2468   }
2469 };
2470 
2471 void CMSCollector::verify_after_remark_work_2() {
2472   ResourceMark rm;
2473   HandleMark  hm;
2474   GenCollectedHeap* gch = GenCollectedHeap::heap();
2475 
2476   // Get a clear set of claim bits for the roots processing to work with.
2477   ClassLoaderDataGraph::clear_claimed_marks();
2478 
2479   // Mark from roots one level into CMS
2480   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2481                                      markBitMap());
2482   CLDToOopClosure cld_closure(&notOlder, true);
2483 
2484   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2485 
2486   {
2487     StrongRootsScope srs(1);
2488 
2489     gch->gen_process_roots(&srs,
2490                            GenCollectedHeap::OldGen,
2491                            true,   // young gen as roots
2492                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2493                            should_unload_classes(),
2494                            &notOlder,
2495                            NULL,
2496                            &cld_closure);
2497   }
2498 
2499   // Now mark from the roots
2500   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2501     verification_mark_bm(), markBitMap(), verification_mark_stack());
2502   assert(_restart_addr == NULL, "Expected pre-condition");
2503   verification_mark_bm()->iterate(&markFromRootsClosure);
2504   while (_restart_addr != NULL) {
2505     // Deal with stack overflow: by restarting at the indicated
2506     // address.
2507     HeapWord* ra = _restart_addr;
2508     markFromRootsClosure.reset(ra);
2509     _restart_addr = NULL;
2510     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2511   }
2512   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2513   verify_work_stacks_empty();
2514 
2515   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2516   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2517 
2518   // Marking completed -- now verify that each bit marked in
2519   // verification_mark_bm() is also marked in markBitMap(); flag all
2520   // errors by printing corresponding objects.
2521   VerifyMarkedClosure vcl(markBitMap());
2522   verification_mark_bm()->iterate(&vcl);
2523   assert(!vcl.failed(), "Else verification above should not have succeeded");
2524 }
2525 
2526 void ConcurrentMarkSweepGeneration::save_marks() {
2527   // delegate to CMS space
2528   cmsSpace()->save_marks();
2529   for (uint i = 0; i < ParallelGCThreads; i++) {
2530     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2531   }
2532 }
2533 
2534 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2535   return cmsSpace()->no_allocs_since_save_marks();
2536 }
2537 
2538 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2539                                                                 \
2540 void ConcurrentMarkSweepGeneration::                            \
2541 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2542   cl->set_generation(this);                                     \
2543   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2544   cl->reset_generation();                                       \
2545   save_marks();                                                 \
2546 }
2547 
2548 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2549 
2550 void
2551 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2552   if (freelistLock()->owned_by_self()) {
2553     Generation::oop_iterate(cl);
2554   } else {
2555     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2556     Generation::oop_iterate(cl);
2557   }
2558 }
2559 
2560 void
2561 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2562   if (freelistLock()->owned_by_self()) {
2563     Generation::object_iterate(cl);
2564   } else {
2565     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2566     Generation::object_iterate(cl);
2567   }
2568 }
2569 
2570 void
2571 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2572   if (freelistLock()->owned_by_self()) {
2573     Generation::safe_object_iterate(cl);
2574   } else {
2575     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2576     Generation::safe_object_iterate(cl);
2577   }
2578 }
2579 
2580 void
2581 ConcurrentMarkSweepGeneration::post_compact() {
2582 }
2583 
2584 void
2585 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2586   // Fix the linear allocation blocks to look like free blocks.
2587 
2588   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2589   // are not called when the heap is verified during universe initialization and
2590   // at vm shutdown.
2591   if (freelistLock()->owned_by_self()) {
2592     cmsSpace()->prepare_for_verify();
2593   } else {
2594     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2595     cmsSpace()->prepare_for_verify();
2596   }
2597 }
2598 
2599 void
2600 ConcurrentMarkSweepGeneration::verify() {
2601   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2602   // are not called when the heap is verified during universe initialization and
2603   // at vm shutdown.
2604   if (freelistLock()->owned_by_self()) {
2605     cmsSpace()->verify();
2606   } else {
2607     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2608     cmsSpace()->verify();
2609   }
2610 }
2611 
2612 void CMSCollector::verify() {
2613   _cmsGen->verify();
2614 }
2615 
2616 #ifndef PRODUCT
2617 bool CMSCollector::overflow_list_is_empty() const {
2618   assert(_num_par_pushes >= 0, "Inconsistency");
2619   if (_overflow_list == NULL) {
2620     assert(_num_par_pushes == 0, "Inconsistency");
2621   }
2622   return _overflow_list == NULL;
2623 }
2624 
2625 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2626 // merely consolidate assertion checks that appear to occur together frequently.
2627 void CMSCollector::verify_work_stacks_empty() const {
2628   assert(_markStack.isEmpty(), "Marking stack should be empty");
2629   assert(overflow_list_is_empty(), "Overflow list should be empty");
2630 }
2631 
2632 void CMSCollector::verify_overflow_empty() const {
2633   assert(overflow_list_is_empty(), "Overflow list should be empty");
2634   assert(no_preserved_marks(), "No preserved marks");
2635 }
2636 #endif // PRODUCT
2637 
2638 // Decide if we want to enable class unloading as part of the
2639 // ensuing concurrent GC cycle. We will collect and
2640 // unload classes if it's the case that:
2641 // (1) an explicit gc request has been made and the flag
2642 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2643 // (2) (a) class unloading is enabled at the command line, and
2644 //     (b) old gen is getting really full
2645 // NOTE: Provided there is no change in the state of the heap between
2646 // calls to this method, it should have idempotent results. Moreover,
2647 // its results should be monotonically increasing (i.e. going from 0 to 1,
2648 // but not 1 to 0) between successive calls between which the heap was
2649 // not collected. For the implementation below, it must thus rely on
2650 // the property that concurrent_cycles_since_last_unload()
2651 // will not decrease unless a collection cycle happened and that
2652 // _cmsGen->is_too_full() are
2653 // themselves also monotonic in that sense. See check_monotonicity()
2654 // below.
2655 void CMSCollector::update_should_unload_classes() {
2656   _should_unload_classes = false;
2657   // Condition 1 above
2658   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2659     _should_unload_classes = true;
2660   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2661     // Disjuncts 2.b.(i,ii,iii) above
2662     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2663                               CMSClassUnloadingMaxInterval)
2664                            || _cmsGen->is_too_full();
2665   }
2666 }
2667 
2668 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2669   bool res = should_concurrent_collect();
2670   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2671   return res;
2672 }
2673 
2674 void CMSCollector::setup_cms_unloading_and_verification_state() {
2675   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2676                              || VerifyBeforeExit;
2677   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2678 
2679   // We set the proper root for this CMS cycle here.
2680   if (should_unload_classes()) {   // Should unload classes this cycle
2681     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2682     set_verifying(should_verify);    // Set verification state for this cycle
2683     return;                            // Nothing else needs to be done at this time
2684   }
2685 
2686   // Not unloading classes this cycle
2687   assert(!should_unload_classes(), "Inconsistency!");
2688 
2689   // If we are not unloading classes then add SO_AllCodeCache to root
2690   // scanning options.
2691   add_root_scanning_option(rso);
2692 
2693   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2694     set_verifying(true);
2695   } else if (verifying() && !should_verify) {
2696     // We were verifying, but some verification flags got disabled.
2697     set_verifying(false);
2698     // Exclude symbols, strings and code cache elements from root scanning to
2699     // reduce IM and RM pauses.
2700     remove_root_scanning_option(rso);
2701   }
2702 }
2703 
2704 
2705 #ifndef PRODUCT
2706 HeapWord* CMSCollector::block_start(const void* p) const {
2707   const HeapWord* addr = (HeapWord*)p;
2708   if (_span.contains(p)) {
2709     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2710       return _cmsGen->cmsSpace()->block_start(p);
2711     }
2712   }
2713   return NULL;
2714 }
2715 #endif
2716 
2717 HeapWord*
2718 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2719                                                    bool   tlab,
2720                                                    bool   parallel) {
2721   CMSSynchronousYieldRequest yr;
2722   assert(!tlab, "Can't deal with TLAB allocation");
2723   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2724   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2725   if (GCExpandToAllocateDelayMillis > 0) {
2726     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2727   }
2728   return have_lock_and_allocate(word_size, tlab);
2729 }
2730 
2731 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2732     size_t bytes,
2733     size_t expand_bytes,
2734     CMSExpansionCause::Cause cause)
2735 {
2736 
2737   bool success = expand(bytes, expand_bytes);
2738 
2739   // remember why we expanded; this information is used
2740   // by shouldConcurrentCollect() when making decisions on whether to start
2741   // a new CMS cycle.
2742   if (success) {
2743     set_expansion_cause(cause);
2744     if (PrintGCDetails && Verbose) {
2745       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2746         CMSExpansionCause::to_string(cause));
2747     }
2748   }
2749 }
2750 
2751 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2752   HeapWord* res = NULL;
2753   MutexLocker x(ParGCRareEvent_lock);
2754   while (true) {
2755     // Expansion by some other thread might make alloc OK now:
2756     res = ps->lab.alloc(word_sz);
2757     if (res != NULL) return res;
2758     // If there's not enough expansion space available, give up.
2759     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2760       return NULL;
2761     }
2762     // Otherwise, we try expansion.
2763     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2764     // Now go around the loop and try alloc again;
2765     // A competing par_promote might beat us to the expansion space,
2766     // so we may go around the loop again if promotion fails again.
2767     if (GCExpandToAllocateDelayMillis > 0) {
2768       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2769     }
2770   }
2771 }
2772 
2773 
2774 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2775   PromotionInfo* promo) {
2776   MutexLocker x(ParGCRareEvent_lock);
2777   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2778   while (true) {
2779     // Expansion by some other thread might make alloc OK now:
2780     if (promo->ensure_spooling_space()) {
2781       assert(promo->has_spooling_space(),
2782              "Post-condition of successful ensure_spooling_space()");
2783       return true;
2784     }
2785     // If there's not enough expansion space available, give up.
2786     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2787       return false;
2788     }
2789     // Otherwise, we try expansion.
2790     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2791     // Now go around the loop and try alloc again;
2792     // A competing allocation might beat us to the expansion space,
2793     // so we may go around the loop again if allocation fails again.
2794     if (GCExpandToAllocateDelayMillis > 0) {
2795       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2796     }
2797   }
2798 }
2799 
2800 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2801   // Only shrink if a compaction was done so that all the free space
2802   // in the generation is in a contiguous block at the end.
2803   if (did_compact()) {
2804     CardGeneration::shrink(bytes);
2805   }
2806 }
2807 
2808 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2809   assert_locked_or_safepoint(Heap_lock);
2810 }
2811 
2812 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2813   assert_locked_or_safepoint(Heap_lock);
2814   assert_lock_strong(freelistLock());
2815   if (PrintGCDetails && Verbose) {
2816     warning("Shrinking of CMS not yet implemented");
2817   }
2818   return;
2819 }
2820 
2821 
2822 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2823 // phases.
2824 class CMSPhaseAccounting: public StackObj {
2825  public:
2826   CMSPhaseAccounting(CMSCollector *collector,
2827                      const char *phase,
2828                      bool print_cr = true);
2829   ~CMSPhaseAccounting();
2830 
2831  private:
2832   CMSCollector *_collector;
2833   const char *_phase;
2834   elapsedTimer _wallclock;
2835   bool _print_cr;
2836 
2837  public:
2838   // Not MT-safe; so do not pass around these StackObj's
2839   // where they may be accessed by other threads.
2840   jlong wallclock_millis() {
2841     assert(_wallclock.is_active(), "Wall clock should not stop");
2842     _wallclock.stop();  // to record time
2843     jlong ret = _wallclock.milliseconds();
2844     _wallclock.start(); // restart
2845     return ret;
2846   }
2847 };
2848 
2849 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2850                                        const char *phase,
2851                                        bool print_cr) :
2852   _collector(collector), _phase(phase), _print_cr(print_cr) {
2853 
2854   if (PrintCMSStatistics != 0) {
2855     _collector->resetYields();
2856   }
2857   if (PrintGCDetails) {
2858     gclog_or_tty->gclog_stamp();
2859     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2860       _collector->cmsGen()->short_name(), _phase);
2861   }
2862   _collector->resetTimer();
2863   _wallclock.start();
2864   _collector->startTimer();
2865 }
2866 
2867 CMSPhaseAccounting::~CMSPhaseAccounting() {
2868   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2869   _collector->stopTimer();
2870   _wallclock.stop();
2871   if (PrintGCDetails) {
2872     gclog_or_tty->gclog_stamp();
2873     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2874                  _collector->cmsGen()->short_name(),
2875                  _phase, _collector->timerValue(), _wallclock.seconds());
2876     if (_print_cr) {
2877       gclog_or_tty->cr();
2878     }
2879     if (PrintCMSStatistics != 0) {
2880       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2881                     _collector->yields());
2882     }
2883   }
2884 }
2885 
2886 // CMS work
2887 
2888 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2889 class CMSParMarkTask : public AbstractGangTask {
2890  protected:
2891   CMSCollector*     _collector;
2892   uint              _n_workers;
2893   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2894       AbstractGangTask(name),
2895       _collector(collector),
2896       _n_workers(n_workers) {}
2897   // Work method in support of parallel rescan ... of young gen spaces
2898   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2899                              ContiguousSpace* space,
2900                              HeapWord** chunk_array, size_t chunk_top);
2901   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2902 };
2903 
2904 // Parallel initial mark task
2905 class CMSParInitialMarkTask: public CMSParMarkTask {
2906   StrongRootsScope* _strong_roots_scope;
2907  public:
2908   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2909       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2910       _strong_roots_scope(strong_roots_scope) {}
2911   void work(uint worker_id);
2912 };
2913 
2914 // Checkpoint the roots into this generation from outside
2915 // this generation. [Note this initial checkpoint need only
2916 // be approximate -- we'll do a catch up phase subsequently.]
2917 void CMSCollector::checkpointRootsInitial() {
2918   assert(_collectorState == InitialMarking, "Wrong collector state");
2919   check_correct_thread_executing();
2920   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2921 
2922   save_heap_summary();
2923   report_heap_summary(GCWhen::BeforeGC);
2924 
2925   ReferenceProcessor* rp = ref_processor();
2926   assert(_restart_addr == NULL, "Control point invariant");
2927   {
2928     // acquire locks for subsequent manipulations
2929     MutexLockerEx x(bitMapLock(),
2930                     Mutex::_no_safepoint_check_flag);
2931     checkpointRootsInitialWork();
2932     // enable ("weak") refs discovery
2933     rp->enable_discovery();
2934     _collectorState = Marking;
2935   }
2936 }
2937 
2938 void CMSCollector::checkpointRootsInitialWork() {
2939   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2940   assert(_collectorState == InitialMarking, "just checking");
2941 
2942   // Already have locks.
2943   assert_lock_strong(bitMapLock());
2944   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2945 
2946   // Setup the verification and class unloading state for this
2947   // CMS collection cycle.
2948   setup_cms_unloading_and_verification_state();
2949 
2950   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2951     PrintGCDetails && Verbose, true, _gc_timer_cm);)
2952 
2953   // Reset all the PLAB chunk arrays if necessary.
2954   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2955     reset_survivor_plab_arrays();
2956   }
2957 
2958   ResourceMark rm;
2959   HandleMark  hm;
2960 
2961   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2962   GenCollectedHeap* gch = GenCollectedHeap::heap();
2963 
2964   verify_work_stacks_empty();
2965   verify_overflow_empty();
2966 
2967   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2968   // Update the saved marks which may affect the root scans.
2969   gch->save_marks();
2970 
2971   // weak reference processing has not started yet.
2972   ref_processor()->set_enqueuing_is_done(false);
2973 
2974   // Need to remember all newly created CLDs,
2975   // so that we can guarantee that the remark finds them.
2976   ClassLoaderDataGraph::remember_new_clds(true);
2977 
2978   // Whenever a CLD is found, it will be claimed before proceeding to mark
2979   // the klasses. The claimed marks need to be cleared before marking starts.
2980   ClassLoaderDataGraph::clear_claimed_marks();
2981 
2982   if (CMSPrintEdenSurvivorChunks) {
2983     print_eden_and_survivor_chunk_arrays();
2984   }
2985 
2986   {
2987     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2988     if (CMSParallelInitialMarkEnabled) {
2989       // The parallel version.
2990       WorkGang* workers = gch->workers();
2991       assert(workers != NULL, "Need parallel worker threads.");
2992       uint n_workers = workers->active_workers();
2993 
2994       StrongRootsScope srs(n_workers);
2995 
2996       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2997       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2998       if (n_workers > 1) {
2999         workers->run_task(&tsk);
3000       } else {
3001         tsk.work(0);
3002       }
3003     } else {
3004       // The serial version.
3005       CLDToOopClosure cld_closure(&notOlder, true);
3006       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3007 
3008       StrongRootsScope srs(1);
3009 
3010       gch->gen_process_roots(&srs,
3011                              GenCollectedHeap::OldGen,
3012                              true,   // young gen as roots
3013                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3014                              should_unload_classes(),
3015                              &notOlder,
3016                              NULL,
3017                              &cld_closure);
3018     }
3019   }
3020 
3021   // Clear mod-union table; it will be dirtied in the prologue of
3022   // CMS generation per each young generation collection.
3023 
3024   assert(_modUnionTable.isAllClear(),
3025        "Was cleared in most recent final checkpoint phase"
3026        " or no bits are set in the gc_prologue before the start of the next "
3027        "subsequent marking phase.");
3028 
3029   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3030 
3031   // Save the end of the used_region of the constituent generations
3032   // to be used to limit the extent of sweep in each generation.
3033   save_sweep_limits();
3034   verify_overflow_empty();
3035 }
3036 
3037 bool CMSCollector::markFromRoots() {
3038   // we might be tempted to assert that:
3039   // assert(!SafepointSynchronize::is_at_safepoint(),
3040   //        "inconsistent argument?");
3041   // However that wouldn't be right, because it's possible that
3042   // a safepoint is indeed in progress as a young generation
3043   // stop-the-world GC happens even as we mark in this generation.
3044   assert(_collectorState == Marking, "inconsistent state?");
3045   check_correct_thread_executing();
3046   verify_overflow_empty();
3047 
3048   // Weak ref discovery note: We may be discovering weak
3049   // refs in this generation concurrent (but interleaved) with
3050   // weak ref discovery by the young generation collector.
3051 
3052   CMSTokenSyncWithLocks ts(true, bitMapLock());
3053   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3054   CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3055   bool res = markFromRootsWork();
3056   if (res) {
3057     _collectorState = Precleaning;
3058   } else { // We failed and a foreground collection wants to take over
3059     assert(_foregroundGCIsActive, "internal state inconsistency");
3060     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3061     if (PrintGCDetails) {
3062       gclog_or_tty->print_cr("bailing out to foreground collection");
3063     }
3064   }
3065   verify_overflow_empty();
3066   return res;
3067 }
3068 
3069 bool CMSCollector::markFromRootsWork() {
3070   // iterate over marked bits in bit map, doing a full scan and mark
3071   // from these roots using the following algorithm:
3072   // . if oop is to the right of the current scan pointer,
3073   //   mark corresponding bit (we'll process it later)
3074   // . else (oop is to left of current scan pointer)
3075   //   push oop on marking stack
3076   // . drain the marking stack
3077 
3078   // Note that when we do a marking step we need to hold the
3079   // bit map lock -- recall that direct allocation (by mutators)
3080   // and promotion (by the young generation collector) is also
3081   // marking the bit map. [the so-called allocate live policy.]
3082   // Because the implementation of bit map marking is not
3083   // robust wrt simultaneous marking of bits in the same word,
3084   // we need to make sure that there is no such interference
3085   // between concurrent such updates.
3086 
3087   // already have locks
3088   assert_lock_strong(bitMapLock());
3089 
3090   verify_work_stacks_empty();
3091   verify_overflow_empty();
3092   bool result = false;
3093   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3094     result = do_marking_mt();
3095   } else {
3096     result = do_marking_st();
3097   }
3098   return result;
3099 }
3100 
3101 // Forward decl
3102 class CMSConcMarkingTask;
3103 
3104 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3105   CMSCollector*       _collector;
3106   CMSConcMarkingTask* _task;
3107  public:
3108   virtual void yield();
3109 
3110   // "n_threads" is the number of threads to be terminated.
3111   // "queue_set" is a set of work queues of other threads.
3112   // "collector" is the CMS collector associated with this task terminator.
3113   // "yield" indicates whether we need the gang as a whole to yield.
3114   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3115     ParallelTaskTerminator(n_threads, queue_set),
3116     _collector(collector) { }
3117 
3118   void set_task(CMSConcMarkingTask* task) {
3119     _task = task;
3120   }
3121 };
3122 
3123 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3124   CMSConcMarkingTask* _task;
3125  public:
3126   bool should_exit_termination();
3127   void set_task(CMSConcMarkingTask* task) {
3128     _task = task;
3129   }
3130 };
3131 
3132 // MT Concurrent Marking Task
3133 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3134   CMSCollector* _collector;
3135   uint          _n_workers;       // requested/desired # workers
3136   bool          _result;
3137   CompactibleFreeListSpace*  _cms_space;
3138   char          _pad_front[64];   // padding to ...
3139   HeapWord*     _global_finger;   // ... avoid sharing cache line
3140   char          _pad_back[64];
3141   HeapWord*     _restart_addr;
3142 
3143   //  Exposed here for yielding support
3144   Mutex* const _bit_map_lock;
3145 
3146   // The per thread work queues, available here for stealing
3147   OopTaskQueueSet*  _task_queues;
3148 
3149   // Termination (and yielding) support
3150   CMSConcMarkingTerminator _term;
3151   CMSConcMarkingTerminatorTerminator _term_term;
3152 
3153  public:
3154   CMSConcMarkingTask(CMSCollector* collector,
3155                  CompactibleFreeListSpace* cms_space,
3156                  YieldingFlexibleWorkGang* workers,
3157                  OopTaskQueueSet* task_queues):
3158     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3159     _collector(collector),
3160     _cms_space(cms_space),
3161     _n_workers(0), _result(true),
3162     _task_queues(task_queues),
3163     _term(_n_workers, task_queues, _collector),
3164     _bit_map_lock(collector->bitMapLock())
3165   {
3166     _requested_size = _n_workers;
3167     _term.set_task(this);
3168     _term_term.set_task(this);
3169     _restart_addr = _global_finger = _cms_space->bottom();
3170   }
3171 
3172 
3173   OopTaskQueueSet* task_queues()  { return _task_queues; }
3174 
3175   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3176 
3177   HeapWord** global_finger_addr() { return &_global_finger; }
3178 
3179   CMSConcMarkingTerminator* terminator() { return &_term; }
3180 
3181   virtual void set_for_termination(uint active_workers) {
3182     terminator()->reset_for_reuse(active_workers);
3183   }
3184 
3185   void work(uint worker_id);
3186   bool should_yield() {
3187     return    ConcurrentMarkSweepThread::should_yield()
3188            && !_collector->foregroundGCIsActive();
3189   }
3190 
3191   virtual void coordinator_yield();  // stuff done by coordinator
3192   bool result() { return _result; }
3193 
3194   void reset(HeapWord* ra) {
3195     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3196     _restart_addr = _global_finger = ra;
3197     _term.reset_for_reuse();
3198   }
3199 
3200   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3201                                            OopTaskQueue* work_q);
3202 
3203  private:
3204   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3205   void do_work_steal(int i);
3206   void bump_global_finger(HeapWord* f);
3207 };
3208 
3209 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3210   assert(_task != NULL, "Error");
3211   return _task->yielding();
3212   // Note that we do not need the disjunct || _task->should_yield() above
3213   // because we want terminating threads to yield only if the task
3214   // is already in the midst of yielding, which happens only after at least one
3215   // thread has yielded.
3216 }
3217 
3218 void CMSConcMarkingTerminator::yield() {
3219   if (_task->should_yield()) {
3220     _task->yield();
3221   } else {
3222     ParallelTaskTerminator::yield();
3223   }
3224 }
3225 
3226 ////////////////////////////////////////////////////////////////
3227 // Concurrent Marking Algorithm Sketch
3228 ////////////////////////////////////////////////////////////////
3229 // Until all tasks exhausted (both spaces):
3230 // -- claim next available chunk
3231 // -- bump global finger via CAS
3232 // -- find first object that starts in this chunk
3233 //    and start scanning bitmap from that position
3234 // -- scan marked objects for oops
3235 // -- CAS-mark target, and if successful:
3236 //    . if target oop is above global finger (volatile read)
3237 //      nothing to do
3238 //    . if target oop is in chunk and above local finger
3239 //        then nothing to do
3240 //    . else push on work-queue
3241 // -- Deal with possible overflow issues:
3242 //    . local work-queue overflow causes stuff to be pushed on
3243 //      global (common) overflow queue
3244 //    . always first empty local work queue
3245 //    . then get a batch of oops from global work queue if any
3246 //    . then do work stealing
3247 // -- When all tasks claimed (both spaces)
3248 //    and local work queue empty,
3249 //    then in a loop do:
3250 //    . check global overflow stack; steal a batch of oops and trace
3251 //    . try to steal from other threads oif GOS is empty
3252 //    . if neither is available, offer termination
3253 // -- Terminate and return result
3254 //
3255 void CMSConcMarkingTask::work(uint worker_id) {
3256   elapsedTimer _timer;
3257   ResourceMark rm;
3258   HandleMark hm;
3259 
3260   DEBUG_ONLY(_collector->verify_overflow_empty();)
3261 
3262   // Before we begin work, our work queue should be empty
3263   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3264   // Scan the bitmap covering _cms_space, tracing through grey objects.
3265   _timer.start();
3266   do_scan_and_mark(worker_id, _cms_space);
3267   _timer.stop();
3268   if (PrintCMSStatistics != 0) {
3269     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3270       worker_id, _timer.seconds());
3271       // XXX: need xxx/xxx type of notation, two timers
3272   }
3273 
3274   // ... do work stealing
3275   _timer.reset();
3276   _timer.start();
3277   do_work_steal(worker_id);
3278   _timer.stop();
3279   if (PrintCMSStatistics != 0) {
3280     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3281       worker_id, _timer.seconds());
3282       // XXX: need xxx/xxx type of notation, two timers
3283   }
3284   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3285   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3286   // Note that under the current task protocol, the
3287   // following assertion is true even of the spaces
3288   // expanded since the completion of the concurrent
3289   // marking. XXX This will likely change under a strict
3290   // ABORT semantics.
3291   // After perm removal the comparison was changed to
3292   // greater than or equal to from strictly greater than.
3293   // Before perm removal the highest address sweep would
3294   // have been at the end of perm gen but now is at the
3295   // end of the tenured gen.
3296   assert(_global_finger >=  _cms_space->end(),
3297          "All tasks have been completed");
3298   DEBUG_ONLY(_collector->verify_overflow_empty();)
3299 }
3300 
3301 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3302   HeapWord* read = _global_finger;
3303   HeapWord* cur  = read;
3304   while (f > read) {
3305     cur = read;
3306     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3307     if (cur == read) {
3308       // our cas succeeded
3309       assert(_global_finger >= f, "protocol consistency");
3310       break;
3311     }
3312   }
3313 }
3314 
3315 // This is really inefficient, and should be redone by
3316 // using (not yet available) block-read and -write interfaces to the
3317 // stack and the work_queue. XXX FIX ME !!!
3318 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3319                                                       OopTaskQueue* work_q) {
3320   // Fast lock-free check
3321   if (ovflw_stk->length() == 0) {
3322     return false;
3323   }
3324   assert(work_q->size() == 0, "Shouldn't steal");
3325   MutexLockerEx ml(ovflw_stk->par_lock(),
3326                    Mutex::_no_safepoint_check_flag);
3327   // Grab up to 1/4 the size of the work queue
3328   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3329                     (size_t)ParGCDesiredObjsFromOverflowList);
3330   num = MIN2(num, ovflw_stk->length());
3331   for (int i = (int) num; i > 0; i--) {
3332     oop cur = ovflw_stk->pop();
3333     assert(cur != NULL, "Counted wrong?");
3334     work_q->push(cur);
3335   }
3336   return num > 0;
3337 }
3338 
3339 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3340   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3341   int n_tasks = pst->n_tasks();
3342   // We allow that there may be no tasks to do here because
3343   // we are restarting after a stack overflow.
3344   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3345   uint nth_task = 0;
3346 
3347   HeapWord* aligned_start = sp->bottom();
3348   if (sp->used_region().contains(_restart_addr)) {
3349     // Align down to a card boundary for the start of 0th task
3350     // for this space.
3351     aligned_start =
3352       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3353                                  CardTableModRefBS::card_size);
3354   }
3355 
3356   size_t chunk_size = sp->marking_task_size();
3357   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3358     // Having claimed the nth task in this space,
3359     // compute the chunk that it corresponds to:
3360     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3361                                aligned_start + (nth_task+1)*chunk_size);
3362     // Try and bump the global finger via a CAS;
3363     // note that we need to do the global finger bump
3364     // _before_ taking the intersection below, because
3365     // the task corresponding to that region will be
3366     // deemed done even if the used_region() expands
3367     // because of allocation -- as it almost certainly will
3368     // during start-up while the threads yield in the
3369     // closure below.
3370     HeapWord* finger = span.end();
3371     bump_global_finger(finger);   // atomically
3372     // There are null tasks here corresponding to chunks
3373     // beyond the "top" address of the space.
3374     span = span.intersection(sp->used_region());
3375     if (!span.is_empty()) {  // Non-null task
3376       HeapWord* prev_obj;
3377       assert(!span.contains(_restart_addr) || nth_task == 0,
3378              "Inconsistency");
3379       if (nth_task == 0) {
3380         // For the 0th task, we'll not need to compute a block_start.
3381         if (span.contains(_restart_addr)) {
3382           // In the case of a restart because of stack overflow,
3383           // we might additionally skip a chunk prefix.
3384           prev_obj = _restart_addr;
3385         } else {
3386           prev_obj = span.start();
3387         }
3388       } else {
3389         // We want to skip the first object because
3390         // the protocol is to scan any object in its entirety
3391         // that _starts_ in this span; a fortiori, any
3392         // object starting in an earlier span is scanned
3393         // as part of an earlier claimed task.
3394         // Below we use the "careful" version of block_start
3395         // so we do not try to navigate uninitialized objects.
3396         prev_obj = sp->block_start_careful(span.start());
3397         // Below we use a variant of block_size that uses the
3398         // Printezis bits to avoid waiting for allocated
3399         // objects to become initialized/parsable.
3400         while (prev_obj < span.start()) {
3401           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3402           if (sz > 0) {
3403             prev_obj += sz;
3404           } else {
3405             // In this case we may end up doing a bit of redundant
3406             // scanning, but that appears unavoidable, short of
3407             // locking the free list locks; see bug 6324141.
3408             break;
3409           }
3410         }
3411       }
3412       if (prev_obj < span.end()) {
3413         MemRegion my_span = MemRegion(prev_obj, span.end());
3414         // Do the marking work within a non-empty span --
3415         // the last argument to the constructor indicates whether the
3416         // iteration should be incremental with periodic yields.
3417         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3418                                     &_collector->_markBitMap,
3419                                     work_queue(i),
3420                                     &_collector->_markStack);
3421         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3422       } // else nothing to do for this task
3423     }   // else nothing to do for this task
3424   }
3425   // We'd be tempted to assert here that since there are no
3426   // more tasks left to claim in this space, the global_finger
3427   // must exceed space->top() and a fortiori space->end(). However,
3428   // that would not quite be correct because the bumping of
3429   // global_finger occurs strictly after the claiming of a task,
3430   // so by the time we reach here the global finger may not yet
3431   // have been bumped up by the thread that claimed the last
3432   // task.
3433   pst->all_tasks_completed();
3434 }
3435 
3436 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3437  private:
3438   CMSCollector* _collector;
3439   CMSConcMarkingTask* _task;
3440   MemRegion     _span;
3441   CMSBitMap*    _bit_map;
3442   CMSMarkStack* _overflow_stack;
3443   OopTaskQueue* _work_queue;
3444  protected:
3445   DO_OOP_WORK_DEFN
3446  public:
3447   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3448                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3449     MetadataAwareOopClosure(collector->ref_processor()),
3450     _collector(collector),
3451     _task(task),
3452     _span(collector->_span),
3453     _work_queue(work_queue),
3454     _bit_map(bit_map),
3455     _overflow_stack(overflow_stack)
3456   { }
3457   virtual void do_oop(oop* p);
3458   virtual void do_oop(narrowOop* p);
3459 
3460   void trim_queue(size_t max);
3461   void handle_stack_overflow(HeapWord* lost);
3462   void do_yield_check() {
3463     if (_task->should_yield()) {
3464       _task->yield();
3465     }
3466   }
3467 };
3468 
3469 // Grey object scanning during work stealing phase --
3470 // the salient assumption here is that any references
3471 // that are in these stolen objects being scanned must
3472 // already have been initialized (else they would not have
3473 // been published), so we do not need to check for
3474 // uninitialized objects before pushing here.
3475 void Par_ConcMarkingClosure::do_oop(oop obj) {
3476   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3477   HeapWord* addr = (HeapWord*)obj;
3478   // Check if oop points into the CMS generation
3479   // and is not marked
3480   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3481     // a white object ...
3482     // If we manage to "claim" the object, by being the
3483     // first thread to mark it, then we push it on our
3484     // marking stack
3485     if (_bit_map->par_mark(addr)) {     // ... now grey
3486       // push on work queue (grey set)
3487       bool simulate_overflow = false;
3488       NOT_PRODUCT(
3489         if (CMSMarkStackOverflowALot &&
3490             _collector->simulate_overflow()) {
3491           // simulate a stack overflow
3492           simulate_overflow = true;
3493         }
3494       )
3495       if (simulate_overflow ||
3496           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3497         // stack overflow
3498         if (PrintCMSStatistics != 0) {
3499           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3500                                  SIZE_FORMAT, _overflow_stack->capacity());
3501         }
3502         // We cannot assert that the overflow stack is full because
3503         // it may have been emptied since.
3504         assert(simulate_overflow ||
3505                _work_queue->size() == _work_queue->max_elems(),
3506               "Else push should have succeeded");
3507         handle_stack_overflow(addr);
3508       }
3509     } // Else, some other thread got there first
3510     do_yield_check();
3511   }
3512 }
3513 
3514 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3515 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3516 
3517 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3518   while (_work_queue->size() > max) {
3519     oop new_oop;
3520     if (_work_queue->pop_local(new_oop)) {
3521       assert(new_oop->is_oop(), "Should be an oop");
3522       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3523       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3524       new_oop->oop_iterate(this);  // do_oop() above
3525       do_yield_check();
3526     }
3527   }
3528 }
3529 
3530 // Upon stack overflow, we discard (part of) the stack,
3531 // remembering the least address amongst those discarded
3532 // in CMSCollector's _restart_address.
3533 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3534   // We need to do this under a mutex to prevent other
3535   // workers from interfering with the work done below.
3536   MutexLockerEx ml(_overflow_stack->par_lock(),
3537                    Mutex::_no_safepoint_check_flag);
3538   // Remember the least grey address discarded
3539   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3540   _collector->lower_restart_addr(ra);
3541   _overflow_stack->reset();  // discard stack contents
3542   _overflow_stack->expand(); // expand the stack if possible
3543 }
3544 
3545 
3546 void CMSConcMarkingTask::do_work_steal(int i) {
3547   OopTaskQueue* work_q = work_queue(i);
3548   oop obj_to_scan;
3549   CMSBitMap* bm = &(_collector->_markBitMap);
3550   CMSMarkStack* ovflw = &(_collector->_markStack);
3551   int* seed = _collector->hash_seed(i);
3552   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3553   while (true) {
3554     cl.trim_queue(0);
3555     assert(work_q->size() == 0, "Should have been emptied above");
3556     if (get_work_from_overflow_stack(ovflw, work_q)) {
3557       // Can't assert below because the work obtained from the
3558       // overflow stack may already have been stolen from us.
3559       // assert(work_q->size() > 0, "Work from overflow stack");
3560       continue;
3561     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3562       assert(obj_to_scan->is_oop(), "Should be an oop");
3563       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3564       obj_to_scan->oop_iterate(&cl);
3565     } else if (terminator()->offer_termination(&_term_term)) {
3566       assert(work_q->size() == 0, "Impossible!");
3567       break;
3568     } else if (yielding() || should_yield()) {
3569       yield();
3570     }
3571   }
3572 }
3573 
3574 // This is run by the CMS (coordinator) thread.
3575 void CMSConcMarkingTask::coordinator_yield() {
3576   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3577          "CMS thread should hold CMS token");
3578   // First give up the locks, then yield, then re-lock
3579   // We should probably use a constructor/destructor idiom to
3580   // do this unlock/lock or modify the MutexUnlocker class to
3581   // serve our purpose. XXX
3582   assert_lock_strong(_bit_map_lock);
3583   _bit_map_lock->unlock();
3584   ConcurrentMarkSweepThread::desynchronize(true);
3585   _collector->stopTimer();
3586   if (PrintCMSStatistics != 0) {
3587     _collector->incrementYields();
3588   }
3589 
3590   // It is possible for whichever thread initiated the yield request
3591   // not to get a chance to wake up and take the bitmap lock between
3592   // this thread releasing it and reacquiring it. So, while the
3593   // should_yield() flag is on, let's sleep for a bit to give the
3594   // other thread a chance to wake up. The limit imposed on the number
3595   // of iterations is defensive, to avoid any unforseen circumstances
3596   // putting us into an infinite loop. Since it's always been this
3597   // (coordinator_yield()) method that was observed to cause the
3598   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3599   // which is by default non-zero. For the other seven methods that
3600   // also perform the yield operation, as are using a different
3601   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3602   // can enable the sleeping for those methods too, if necessary.
3603   // See 6442774.
3604   //
3605   // We really need to reconsider the synchronization between the GC
3606   // thread and the yield-requesting threads in the future and we
3607   // should really use wait/notify, which is the recommended
3608   // way of doing this type of interaction. Additionally, we should
3609   // consolidate the eight methods that do the yield operation and they
3610   // are almost identical into one for better maintainability and
3611   // readability. See 6445193.
3612   //
3613   // Tony 2006.06.29
3614   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3615                    ConcurrentMarkSweepThread::should_yield() &&
3616                    !CMSCollector::foregroundGCIsActive(); ++i) {
3617     os::sleep(Thread::current(), 1, false);
3618   }
3619 
3620   ConcurrentMarkSweepThread::synchronize(true);
3621   _bit_map_lock->lock_without_safepoint_check();
3622   _collector->startTimer();
3623 }
3624 
3625 bool CMSCollector::do_marking_mt() {
3626   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3627   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3628                                                                   conc_workers()->active_workers(),
3629                                                                   Threads::number_of_non_daemon_threads());
3630   conc_workers()->set_active_workers(num_workers);
3631 
3632   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3633 
3634   CMSConcMarkingTask tsk(this,
3635                          cms_space,
3636                          conc_workers(),
3637                          task_queues());
3638 
3639   // Since the actual number of workers we get may be different
3640   // from the number we requested above, do we need to do anything different
3641   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3642   // class?? XXX
3643   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3644 
3645   // Refs discovery is already non-atomic.
3646   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3647   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3648   conc_workers()->start_task(&tsk);
3649   while (tsk.yielded()) {
3650     tsk.coordinator_yield();
3651     conc_workers()->continue_task(&tsk);
3652   }
3653   // If the task was aborted, _restart_addr will be non-NULL
3654   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3655   while (_restart_addr != NULL) {
3656     // XXX For now we do not make use of ABORTED state and have not
3657     // yet implemented the right abort semantics (even in the original
3658     // single-threaded CMS case). That needs some more investigation
3659     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3660     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3661     // If _restart_addr is non-NULL, a marking stack overflow
3662     // occurred; we need to do a fresh marking iteration from the
3663     // indicated restart address.
3664     if (_foregroundGCIsActive) {
3665       // We may be running into repeated stack overflows, having
3666       // reached the limit of the stack size, while making very
3667       // slow forward progress. It may be best to bail out and
3668       // let the foreground collector do its job.
3669       // Clear _restart_addr, so that foreground GC
3670       // works from scratch. This avoids the headache of
3671       // a "rescan" which would otherwise be needed because
3672       // of the dirty mod union table & card table.
3673       _restart_addr = NULL;
3674       return false;
3675     }
3676     // Adjust the task to restart from _restart_addr
3677     tsk.reset(_restart_addr);
3678     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3679                   _restart_addr);
3680     _restart_addr = NULL;
3681     // Get the workers going again
3682     conc_workers()->start_task(&tsk);
3683     while (tsk.yielded()) {
3684       tsk.coordinator_yield();
3685       conc_workers()->continue_task(&tsk);
3686     }
3687   }
3688   assert(tsk.completed(), "Inconsistency");
3689   assert(tsk.result() == true, "Inconsistency");
3690   return true;
3691 }
3692 
3693 bool CMSCollector::do_marking_st() {
3694   ResourceMark rm;
3695   HandleMark   hm;
3696 
3697   // Temporarily make refs discovery single threaded (non-MT)
3698   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3699   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3700     &_markStack, CMSYield);
3701   // the last argument to iterate indicates whether the iteration
3702   // should be incremental with periodic yields.
3703   _markBitMap.iterate(&markFromRootsClosure);
3704   // If _restart_addr is non-NULL, a marking stack overflow
3705   // occurred; we need to do a fresh iteration from the
3706   // indicated restart address.
3707   while (_restart_addr != NULL) {
3708     if (_foregroundGCIsActive) {
3709       // We may be running into repeated stack overflows, having
3710       // reached the limit of the stack size, while making very
3711       // slow forward progress. It may be best to bail out and
3712       // let the foreground collector do its job.
3713       // Clear _restart_addr, so that foreground GC
3714       // works from scratch. This avoids the headache of
3715       // a "rescan" which would otherwise be needed because
3716       // of the dirty mod union table & card table.
3717       _restart_addr = NULL;
3718       return false;  // indicating failure to complete marking
3719     }
3720     // Deal with stack overflow:
3721     // we restart marking from _restart_addr
3722     HeapWord* ra = _restart_addr;
3723     markFromRootsClosure.reset(ra);
3724     _restart_addr = NULL;
3725     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3726   }
3727   return true;
3728 }
3729 
3730 void CMSCollector::preclean() {
3731   check_correct_thread_executing();
3732   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3733   verify_work_stacks_empty();
3734   verify_overflow_empty();
3735   _abort_preclean = false;
3736   if (CMSPrecleaningEnabled) {
3737     if (!CMSEdenChunksRecordAlways) {
3738       _eden_chunk_index = 0;
3739     }
3740     size_t used = get_eden_used();
3741     size_t capacity = get_eden_capacity();
3742     // Don't start sampling unless we will get sufficiently
3743     // many samples.
3744     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3745                 * CMSScheduleRemarkEdenPenetration)) {
3746       _start_sampling = true;
3747     } else {
3748       _start_sampling = false;
3749     }
3750     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3751     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
3752     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3753   }
3754   CMSTokenSync x(true); // is cms thread
3755   if (CMSPrecleaningEnabled) {
3756     sample_eden();
3757     _collectorState = AbortablePreclean;
3758   } else {
3759     _collectorState = FinalMarking;
3760   }
3761   verify_work_stacks_empty();
3762   verify_overflow_empty();
3763 }
3764 
3765 // Try and schedule the remark such that young gen
3766 // occupancy is CMSScheduleRemarkEdenPenetration %.
3767 void CMSCollector::abortable_preclean() {
3768   check_correct_thread_executing();
3769   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3770   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3771 
3772   // If Eden's current occupancy is below this threshold,
3773   // immediately schedule the remark; else preclean
3774   // past the next scavenge in an effort to
3775   // schedule the pause as described above. By choosing
3776   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3777   // we will never do an actual abortable preclean cycle.
3778   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3779     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3780     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
3781     // We need more smarts in the abortable preclean
3782     // loop below to deal with cases where allocation
3783     // in young gen is very very slow, and our precleaning
3784     // is running a losing race against a horde of
3785     // mutators intent on flooding us with CMS updates
3786     // (dirty cards).
3787     // One, admittedly dumb, strategy is to give up
3788     // after a certain number of abortable precleaning loops
3789     // or after a certain maximum time. We want to make
3790     // this smarter in the next iteration.
3791     // XXX FIX ME!!! YSR
3792     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3793     while (!(should_abort_preclean() ||
3794              ConcurrentMarkSweepThread::should_terminate())) {
3795       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3796       cumworkdone += workdone;
3797       loops++;
3798       // Voluntarily terminate abortable preclean phase if we have
3799       // been at it for too long.
3800       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3801           loops >= CMSMaxAbortablePrecleanLoops) {
3802         if (PrintGCDetails) {
3803           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3804         }
3805         break;
3806       }
3807       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3808         if (PrintGCDetails) {
3809           gclog_or_tty->print(" CMS: abort preclean due to time ");
3810         }
3811         break;
3812       }
3813       // If we are doing little work each iteration, we should
3814       // take a short break.
3815       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3816         // Sleep for some time, waiting for work to accumulate
3817         stopTimer();
3818         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3819         startTimer();
3820         waited++;
3821       }
3822     }
3823     if (PrintCMSStatistics > 0) {
3824       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3825                           loops, waited, cumworkdone);
3826     }
3827   }
3828   CMSTokenSync x(true); // is cms thread
3829   if (_collectorState != Idling) {
3830     assert(_collectorState == AbortablePreclean,
3831            "Spontaneous state transition?");
3832     _collectorState = FinalMarking;
3833   } // Else, a foreground collection completed this CMS cycle.
3834   return;
3835 }
3836 
3837 // Respond to an Eden sampling opportunity
3838 void CMSCollector::sample_eden() {
3839   // Make sure a young gc cannot sneak in between our
3840   // reading and recording of a sample.
3841   assert(Thread::current()->is_ConcurrentGC_thread(),
3842          "Only the cms thread may collect Eden samples");
3843   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3844          "Should collect samples while holding CMS token");
3845   if (!_start_sampling) {
3846     return;
3847   }
3848   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3849   // is populated by the young generation.
3850   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3851     if (_eden_chunk_index < _eden_chunk_capacity) {
3852       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3853       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3854              "Unexpected state of Eden");
3855       // We'd like to check that what we just sampled is an oop-start address;
3856       // however, we cannot do that here since the object may not yet have been
3857       // initialized. So we'll instead do the check when we _use_ this sample
3858       // later.
3859       if (_eden_chunk_index == 0 ||
3860           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3861                          _eden_chunk_array[_eden_chunk_index-1])
3862            >= CMSSamplingGrain)) {
3863         _eden_chunk_index++;  // commit sample
3864       }
3865     }
3866   }
3867   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3868     size_t used = get_eden_used();
3869     size_t capacity = get_eden_capacity();
3870     assert(used <= capacity, "Unexpected state of Eden");
3871     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3872       _abort_preclean = true;
3873     }
3874   }
3875 }
3876 
3877 
3878 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3879   assert(_collectorState == Precleaning ||
3880          _collectorState == AbortablePreclean, "incorrect state");
3881   ResourceMark rm;
3882   HandleMark   hm;
3883 
3884   // Precleaning is currently not MT but the reference processor
3885   // may be set for MT.  Disable it temporarily here.
3886   ReferenceProcessor* rp = ref_processor();
3887   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3888 
3889   // Do one pass of scrubbing the discovered reference lists
3890   // to remove any reference objects with strongly-reachable
3891   // referents.
3892   if (clean_refs) {
3893     CMSPrecleanRefsYieldClosure yield_cl(this);
3894     assert(rp->span().equals(_span), "Spans should be equal");
3895     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3896                                    &_markStack, true /* preclean */);
3897     CMSDrainMarkingStackClosure complete_trace(this,
3898                                    _span, &_markBitMap, &_markStack,
3899                                    &keep_alive, true /* preclean */);
3900 
3901     // We don't want this step to interfere with a young
3902     // collection because we don't want to take CPU
3903     // or memory bandwidth away from the young GC threads
3904     // (which may be as many as there are CPUs).
3905     // Note that we don't need to protect ourselves from
3906     // interference with mutators because they can't
3907     // manipulate the discovered reference lists nor affect
3908     // the computed reachability of the referents, the
3909     // only properties manipulated by the precleaning
3910     // of these reference lists.
3911     stopTimer();
3912     CMSTokenSyncWithLocks x(true /* is cms thread */,
3913                             bitMapLock());
3914     startTimer();
3915     sample_eden();
3916 
3917     // The following will yield to allow foreground
3918     // collection to proceed promptly. XXX YSR:
3919     // The code in this method may need further
3920     // tweaking for better performance and some restructuring
3921     // for cleaner interfaces.
3922     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3923     rp->preclean_discovered_references(
3924           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3925           gc_timer);
3926   }
3927 
3928   if (clean_survivor) {  // preclean the active survivor space(s)
3929     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3930                              &_markBitMap, &_modUnionTable,
3931                              &_markStack, true /* precleaning phase */);
3932     stopTimer();
3933     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3934                              bitMapLock());
3935     startTimer();
3936     unsigned int before_count =
3937       GenCollectedHeap::heap()->total_collections();
3938     SurvivorSpacePrecleanClosure
3939       sss_cl(this, _span, &_markBitMap, &_markStack,
3940              &pam_cl, before_count, CMSYield);
3941     _young_gen->from()->object_iterate_careful(&sss_cl);
3942     _young_gen->to()->object_iterate_careful(&sss_cl);
3943   }
3944   MarkRefsIntoAndScanClosure
3945     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3946              &_markStack, this, CMSYield,
3947              true /* precleaning phase */);
3948   // CAUTION: The following closure has persistent state that may need to
3949   // be reset upon a decrease in the sequence of addresses it
3950   // processes.
3951   ScanMarkedObjectsAgainCarefullyClosure
3952     smoac_cl(this, _span,
3953       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3954 
3955   // Preclean dirty cards in ModUnionTable and CardTable using
3956   // appropriate convergence criterion;
3957   // repeat CMSPrecleanIter times unless we find that
3958   // we are losing.
3959   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3960   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3961          "Bad convergence multiplier");
3962   assert(CMSPrecleanThreshold >= 100,
3963          "Unreasonably low CMSPrecleanThreshold");
3964 
3965   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3966   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3967        numIter < CMSPrecleanIter;
3968        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3969     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3970     if (Verbose && PrintGCDetails) {
3971       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3972     }
3973     // Either there are very few dirty cards, so re-mark
3974     // pause will be small anyway, or our pre-cleaning isn't
3975     // that much faster than the rate at which cards are being
3976     // dirtied, so we might as well stop and re-mark since
3977     // precleaning won't improve our re-mark time by much.
3978     if (curNumCards <= CMSPrecleanThreshold ||
3979         (numIter > 0 &&
3980          (curNumCards * CMSPrecleanDenominator >
3981          lastNumCards * CMSPrecleanNumerator))) {
3982       numIter++;
3983       cumNumCards += curNumCards;
3984       break;
3985     }
3986   }
3987 
3988   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3989 
3990   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3991   cumNumCards += curNumCards;
3992   if (PrintGCDetails && PrintCMSStatistics != 0) {
3993     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3994                   curNumCards, cumNumCards, numIter);
3995   }
3996   return cumNumCards;   // as a measure of useful work done
3997 }
3998 
3999 // PRECLEANING NOTES:
4000 // Precleaning involves:
4001 // . reading the bits of the modUnionTable and clearing the set bits.
4002 // . For the cards corresponding to the set bits, we scan the
4003 //   objects on those cards. This means we need the free_list_lock
4004 //   so that we can safely iterate over the CMS space when scanning
4005 //   for oops.
4006 // . When we scan the objects, we'll be both reading and setting
4007 //   marks in the marking bit map, so we'll need the marking bit map.
4008 // . For protecting _collector_state transitions, we take the CGC_lock.
4009 //   Note that any races in the reading of of card table entries by the
4010 //   CMS thread on the one hand and the clearing of those entries by the
4011 //   VM thread or the setting of those entries by the mutator threads on the
4012 //   other are quite benign. However, for efficiency it makes sense to keep
4013 //   the VM thread from racing with the CMS thread while the latter is
4014 //   dirty card info to the modUnionTable. We therefore also use the
4015 //   CGC_lock to protect the reading of the card table and the mod union
4016 //   table by the CM thread.
4017 // . We run concurrently with mutator updates, so scanning
4018 //   needs to be done carefully  -- we should not try to scan
4019 //   potentially uninitialized objects.
4020 //
4021 // Locking strategy: While holding the CGC_lock, we scan over and
4022 // reset a maximal dirty range of the mod union / card tables, then lock
4023 // the free_list_lock and bitmap lock to do a full marking, then
4024 // release these locks; and repeat the cycle. This allows for a
4025 // certain amount of fairness in the sharing of these locks between
4026 // the CMS collector on the one hand, and the VM thread and the
4027 // mutators on the other.
4028 
4029 // NOTE: preclean_mod_union_table() and preclean_card_table()
4030 // further below are largely identical; if you need to modify
4031 // one of these methods, please check the other method too.
4032 
4033 size_t CMSCollector::preclean_mod_union_table(
4034   ConcurrentMarkSweepGeneration* old_gen,
4035   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4036   verify_work_stacks_empty();
4037   verify_overflow_empty();
4038 
4039   // strategy: starting with the first card, accumulate contiguous
4040   // ranges of dirty cards; clear these cards, then scan the region
4041   // covered by these cards.
4042 
4043   // Since all of the MUT is committed ahead, we can just use
4044   // that, in case the generations expand while we are precleaning.
4045   // It might also be fine to just use the committed part of the
4046   // generation, but we might potentially miss cards when the
4047   // generation is rapidly expanding while we are in the midst
4048   // of precleaning.
4049   HeapWord* startAddr = old_gen->reserved().start();
4050   HeapWord* endAddr   = old_gen->reserved().end();
4051 
4052   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4053 
4054   size_t numDirtyCards, cumNumDirtyCards;
4055   HeapWord *nextAddr, *lastAddr;
4056   for (cumNumDirtyCards = numDirtyCards = 0,
4057        nextAddr = lastAddr = startAddr;
4058        nextAddr < endAddr;
4059        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4060 
4061     ResourceMark rm;
4062     HandleMark   hm;
4063 
4064     MemRegion dirtyRegion;
4065     {
4066       stopTimer();
4067       // Potential yield point
4068       CMSTokenSync ts(true);
4069       startTimer();
4070       sample_eden();
4071       // Get dirty region starting at nextOffset (inclusive),
4072       // simultaneously clearing it.
4073       dirtyRegion =
4074         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4075       assert(dirtyRegion.start() >= nextAddr,
4076              "returned region inconsistent?");
4077     }
4078     // Remember where the next search should begin.
4079     // The returned region (if non-empty) is a right open interval,
4080     // so lastOffset is obtained from the right end of that
4081     // interval.
4082     lastAddr = dirtyRegion.end();
4083     // Should do something more transparent and less hacky XXX
4084     numDirtyCards =
4085       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4086 
4087     // We'll scan the cards in the dirty region (with periodic
4088     // yields for foreground GC as needed).
4089     if (!dirtyRegion.is_empty()) {
4090       assert(numDirtyCards > 0, "consistency check");
4091       HeapWord* stop_point = NULL;
4092       stopTimer();
4093       // Potential yield point
4094       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
4095                                bitMapLock());
4096       startTimer();
4097       {
4098         verify_work_stacks_empty();
4099         verify_overflow_empty();
4100         sample_eden();
4101         stop_point =
4102           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4103       }
4104       if (stop_point != NULL) {
4105         // The careful iteration stopped early either because it found an
4106         // uninitialized object, or because we were in the midst of an
4107         // "abortable preclean", which should now be aborted. Redirty
4108         // the bits corresponding to the partially-scanned or unscanned
4109         // cards. We'll either restart at the next block boundary or
4110         // abort the preclean.
4111         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4112                "Should only be AbortablePreclean.");
4113         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4114         if (should_abort_preclean()) {
4115           break; // out of preclean loop
4116         } else {
4117           // Compute the next address at which preclean should pick up;
4118           // might need bitMapLock in order to read P-bits.
4119           lastAddr = next_card_start_after_block(stop_point);
4120         }
4121       }
4122     } else {
4123       assert(lastAddr == endAddr, "consistency check");
4124       assert(numDirtyCards == 0, "consistency check");
4125       break;
4126     }
4127   }
4128   verify_work_stacks_empty();
4129   verify_overflow_empty();
4130   return cumNumDirtyCards;
4131 }
4132 
4133 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4134 // below are largely identical; if you need to modify
4135 // one of these methods, please check the other method too.
4136 
4137 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4138   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4139   // strategy: it's similar to precleamModUnionTable above, in that
4140   // we accumulate contiguous ranges of dirty cards, mark these cards
4141   // precleaned, then scan the region covered by these cards.
4142   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4143   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4144 
4145   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4146 
4147   size_t numDirtyCards, cumNumDirtyCards;
4148   HeapWord *lastAddr, *nextAddr;
4149 
4150   for (cumNumDirtyCards = numDirtyCards = 0,
4151        nextAddr = lastAddr = startAddr;
4152        nextAddr < endAddr;
4153        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4154 
4155     ResourceMark rm;
4156     HandleMark   hm;
4157 
4158     MemRegion dirtyRegion;
4159     {
4160       // See comments in "Precleaning notes" above on why we
4161       // do this locking. XXX Could the locking overheads be
4162       // too high when dirty cards are sparse? [I don't think so.]
4163       stopTimer();
4164       CMSTokenSync x(true); // is cms thread
4165       startTimer();
4166       sample_eden();
4167       // Get and clear dirty region from card table
4168       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4169                                     MemRegion(nextAddr, endAddr),
4170                                     true,
4171                                     CardTableModRefBS::precleaned_card_val());
4172 
4173       assert(dirtyRegion.start() >= nextAddr,
4174              "returned region inconsistent?");
4175     }
4176     lastAddr = dirtyRegion.end();
4177     numDirtyCards =
4178       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4179 
4180     if (!dirtyRegion.is_empty()) {
4181       stopTimer();
4182       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4183       startTimer();
4184       sample_eden();
4185       verify_work_stacks_empty();
4186       verify_overflow_empty();
4187       HeapWord* stop_point =
4188         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4189       if (stop_point != NULL) {
4190         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4191                "Should only be AbortablePreclean.");
4192         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4193         if (should_abort_preclean()) {
4194           break; // out of preclean loop
4195         } else {
4196           // Compute the next address at which preclean should pick up.
4197           lastAddr = next_card_start_after_block(stop_point);
4198         }
4199       }
4200     } else {
4201       break;
4202     }
4203   }
4204   verify_work_stacks_empty();
4205   verify_overflow_empty();
4206   return cumNumDirtyCards;
4207 }
4208 
4209 class PrecleanKlassClosure : public KlassClosure {
4210   KlassToOopClosure _cm_klass_closure;
4211  public:
4212   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4213   void do_klass(Klass* k) {
4214     if (k->has_accumulated_modified_oops()) {
4215       k->clear_accumulated_modified_oops();
4216 
4217       _cm_klass_closure.do_klass(k);
4218     }
4219   }
4220 };
4221 
4222 // The freelist lock is needed to prevent asserts, is it really needed?
4223 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4224 
4225   cl->set_freelistLock(freelistLock);
4226 
4227   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4228 
4229   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4230   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4231   PrecleanKlassClosure preclean_klass_closure(cl);
4232   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4233 
4234   verify_work_stacks_empty();
4235   verify_overflow_empty();
4236 }
4237 
4238 void CMSCollector::checkpointRootsFinal() {
4239   assert(_collectorState == FinalMarking, "incorrect state transition?");
4240   check_correct_thread_executing();
4241   // world is stopped at this checkpoint
4242   assert(SafepointSynchronize::is_at_safepoint(),
4243          "world should be stopped");
4244   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4245 
4246   verify_work_stacks_empty();
4247   verify_overflow_empty();
4248 
4249   if (PrintGCDetails) {
4250     gclog_or_tty->print("[YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)]",
4251                         _young_gen->used() / K,
4252                         _young_gen->capacity() / K);
4253   }
4254   {
4255     if (CMSScavengeBeforeRemark) {
4256       GenCollectedHeap* gch = GenCollectedHeap::heap();
4257       // Temporarily set flag to false, GCH->do_collection will
4258       // expect it to be false and set to true
4259       FlagSetting fl(gch->_is_gc_active, false);
4260       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4261         PrintGCDetails && Verbose, true, _gc_timer_cm);)
4262       gch->do_collection(true,                      // full (i.e. force, see below)
4263                          false,                     // !clear_all_soft_refs
4264                          0,                         // size
4265                          false,                     // is_tlab
4266                          GenCollectedHeap::YoungGen // type
4267         );
4268     }
4269     FreelistLocker x(this);
4270     MutexLockerEx y(bitMapLock(),
4271                     Mutex::_no_safepoint_check_flag);
4272     checkpointRootsFinalWork();
4273   }
4274   verify_work_stacks_empty();
4275   verify_overflow_empty();
4276 }
4277 
4278 void CMSCollector::checkpointRootsFinalWork() {
4279   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
4280 
4281   assert(haveFreelistLocks(), "must have free list locks");
4282   assert_lock_strong(bitMapLock());
4283 
4284   ResourceMark rm;
4285   HandleMark   hm;
4286 
4287   GenCollectedHeap* gch = GenCollectedHeap::heap();
4288 
4289   if (should_unload_classes()) {
4290     CodeCache::gc_prologue();
4291   }
4292   assert(haveFreelistLocks(), "must have free list locks");
4293   assert_lock_strong(bitMapLock());
4294 
4295   // We might assume that we need not fill TLAB's when
4296   // CMSScavengeBeforeRemark is set, because we may have just done
4297   // a scavenge which would have filled all TLAB's -- and besides
4298   // Eden would be empty. This however may not always be the case --
4299   // for instance although we asked for a scavenge, it may not have
4300   // happened because of a JNI critical section. We probably need
4301   // a policy for deciding whether we can in that case wait until
4302   // the critical section releases and then do the remark following
4303   // the scavenge, and skip it here. In the absence of that policy,
4304   // or of an indication of whether the scavenge did indeed occur,
4305   // we cannot rely on TLAB's having been filled and must do
4306   // so here just in case a scavenge did not happen.
4307   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4308   // Update the saved marks which may affect the root scans.
4309   gch->save_marks();
4310 
4311   if (CMSPrintEdenSurvivorChunks) {
4312     print_eden_and_survivor_chunk_arrays();
4313   }
4314 
4315   {
4316     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4317 
4318     // Note on the role of the mod union table:
4319     // Since the marker in "markFromRoots" marks concurrently with
4320     // mutators, it is possible for some reachable objects not to have been
4321     // scanned. For instance, an only reference to an object A was
4322     // placed in object B after the marker scanned B. Unless B is rescanned,
4323     // A would be collected. Such updates to references in marked objects
4324     // are detected via the mod union table which is the set of all cards
4325     // dirtied since the first checkpoint in this GC cycle and prior to
4326     // the most recent young generation GC, minus those cleaned up by the
4327     // concurrent precleaning.
4328     if (CMSParallelRemarkEnabled) {
4329       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
4330       do_remark_parallel();
4331     } else {
4332       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false, _gc_timer_cm);
4333       do_remark_non_parallel();
4334     }
4335   }
4336   verify_work_stacks_empty();
4337   verify_overflow_empty();
4338 
4339   {
4340     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
4341     refProcessingWork();
4342   }
4343   verify_work_stacks_empty();
4344   verify_overflow_empty();
4345 
4346   if (should_unload_classes()) {
4347     CodeCache::gc_epilogue();
4348   }
4349   JvmtiExport::gc_epilogue();
4350 
4351   // If we encountered any (marking stack / work queue) overflow
4352   // events during the current CMS cycle, take appropriate
4353   // remedial measures, where possible, so as to try and avoid
4354   // recurrence of that condition.
4355   assert(_markStack.isEmpty(), "No grey objects");
4356   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4357                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4358   if (ser_ovflw > 0) {
4359     if (PrintCMSStatistics != 0) {
4360       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4361         "(pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT
4362         ", kac_preclean=" SIZE_FORMAT ")",
4363         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4364         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4365     }
4366     _markStack.expand();
4367     _ser_pmc_remark_ovflw = 0;
4368     _ser_pmc_preclean_ovflw = 0;
4369     _ser_kac_preclean_ovflw = 0;
4370     _ser_kac_ovflw = 0;
4371   }
4372   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4373     if (PrintCMSStatistics != 0) {
4374       gclog_or_tty->print_cr("Work queue overflow (benign) "
4375         "(pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4376         _par_pmc_remark_ovflw, _par_kac_ovflw);
4377     }
4378     _par_pmc_remark_ovflw = 0;
4379     _par_kac_ovflw = 0;
4380   }
4381   if (PrintCMSStatistics != 0) {
4382      if (_markStack._hit_limit > 0) {
4383        gclog_or_tty->print_cr(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4384                               _markStack._hit_limit);
4385      }
4386      if (_markStack._failed_double > 0) {
4387        gclog_or_tty->print_cr(" (benign) Failed stack doubling (" SIZE_FORMAT "),"
4388                               " current capacity " SIZE_FORMAT,
4389                               _markStack._failed_double,
4390                               _markStack.capacity());
4391      }
4392   }
4393   _markStack._hit_limit = 0;
4394   _markStack._failed_double = 0;
4395 
4396   if ((VerifyAfterGC || VerifyDuringGC) &&
4397       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4398     verify_after_remark();
4399   }
4400 
4401   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4402 
4403   // Change under the freelistLocks.
4404   _collectorState = Sweeping;
4405   // Call isAllClear() under bitMapLock
4406   assert(_modUnionTable.isAllClear(),
4407       "Should be clear by end of the final marking");
4408   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4409       "Should be clear by end of the final marking");
4410 }
4411 
4412 void CMSParInitialMarkTask::work(uint worker_id) {
4413   elapsedTimer _timer;
4414   ResourceMark rm;
4415   HandleMark   hm;
4416 
4417   // ---------- scan from roots --------------
4418   _timer.start();
4419   GenCollectedHeap* gch = GenCollectedHeap::heap();
4420   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4421 
4422   // ---------- young gen roots --------------
4423   {
4424     work_on_young_gen_roots(worker_id, &par_mri_cl);
4425     _timer.stop();
4426     if (PrintCMSStatistics != 0) {
4427       gclog_or_tty->print_cr(
4428         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4429         worker_id, _timer.seconds());
4430     }
4431   }
4432 
4433   // ---------- remaining roots --------------
4434   _timer.reset();
4435   _timer.start();
4436 
4437   CLDToOopClosure cld_closure(&par_mri_cl, true);
4438 
4439   gch->gen_process_roots(_strong_roots_scope,
4440                          GenCollectedHeap::OldGen,
4441                          false,     // yg was scanned above
4442                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4443                          _collector->should_unload_classes(),
4444                          &par_mri_cl,
4445                          NULL,
4446                          &cld_closure);
4447   assert(_collector->should_unload_classes()
4448          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4449          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4450   _timer.stop();
4451   if (PrintCMSStatistics != 0) {
4452     gclog_or_tty->print_cr(
4453       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4454       worker_id, _timer.seconds());
4455   }
4456 }
4457 
4458 // Parallel remark task
4459 class CMSParRemarkTask: public CMSParMarkTask {
4460   CompactibleFreeListSpace* _cms_space;
4461 
4462   // The per-thread work queues, available here for stealing.
4463   OopTaskQueueSet*       _task_queues;
4464   ParallelTaskTerminator _term;
4465   StrongRootsScope*      _strong_roots_scope;
4466 
4467  public:
4468   // A value of 0 passed to n_workers will cause the number of
4469   // workers to be taken from the active workers in the work gang.
4470   CMSParRemarkTask(CMSCollector* collector,
4471                    CompactibleFreeListSpace* cms_space,
4472                    uint n_workers, WorkGang* workers,
4473                    OopTaskQueueSet* task_queues,
4474                    StrongRootsScope* strong_roots_scope):
4475     CMSParMarkTask("Rescan roots and grey objects in parallel",
4476                    collector, n_workers),
4477     _cms_space(cms_space),
4478     _task_queues(task_queues),
4479     _term(n_workers, task_queues),
4480     _strong_roots_scope(strong_roots_scope) { }
4481 
4482   OopTaskQueueSet* task_queues() { return _task_queues; }
4483 
4484   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4485 
4486   ParallelTaskTerminator* terminator() { return &_term; }
4487   uint n_workers() { return _n_workers; }
4488 
4489   void work(uint worker_id);
4490 
4491  private:
4492   // ... of  dirty cards in old space
4493   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4494                                   Par_MarkRefsIntoAndScanClosure* cl);
4495 
4496   // ... work stealing for the above
4497   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4498 };
4499 
4500 class RemarkKlassClosure : public KlassClosure {
4501   KlassToOopClosure _cm_klass_closure;
4502  public:
4503   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4504   void do_klass(Klass* k) {
4505     // Check if we have modified any oops in the Klass during the concurrent marking.
4506     if (k->has_accumulated_modified_oops()) {
4507       k->clear_accumulated_modified_oops();
4508 
4509       // We could have transfered the current modified marks to the accumulated marks,
4510       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4511     } else if (k->has_modified_oops()) {
4512       // Don't clear anything, this info is needed by the next young collection.
4513     } else {
4514       // No modified oops in the Klass.
4515       return;
4516     }
4517 
4518     // The klass has modified fields, need to scan the klass.
4519     _cm_klass_closure.do_klass(k);
4520   }
4521 };
4522 
4523 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4524   ParNewGeneration* young_gen = _collector->_young_gen;
4525   ContiguousSpace* eden_space = young_gen->eden();
4526   ContiguousSpace* from_space = young_gen->from();
4527   ContiguousSpace* to_space   = young_gen->to();
4528 
4529   HeapWord** eca = _collector->_eden_chunk_array;
4530   size_t     ect = _collector->_eden_chunk_index;
4531   HeapWord** sca = _collector->_survivor_chunk_array;
4532   size_t     sct = _collector->_survivor_chunk_index;
4533 
4534   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4535   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4536 
4537   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4538   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4539   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4540 }
4541 
4542 // work_queue(i) is passed to the closure
4543 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4544 // also is passed to do_dirty_card_rescan_tasks() and to
4545 // do_work_steal() to select the i-th task_queue.
4546 
4547 void CMSParRemarkTask::work(uint worker_id) {
4548   elapsedTimer _timer;
4549   ResourceMark rm;
4550   HandleMark   hm;
4551 
4552   // ---------- rescan from roots --------------
4553   _timer.start();
4554   GenCollectedHeap* gch = GenCollectedHeap::heap();
4555   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4556     _collector->_span, _collector->ref_processor(),
4557     &(_collector->_markBitMap),
4558     work_queue(worker_id));
4559 
4560   // Rescan young gen roots first since these are likely
4561   // coarsely partitioned and may, on that account, constitute
4562   // the critical path; thus, it's best to start off that
4563   // work first.
4564   // ---------- young gen roots --------------
4565   {
4566     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4567     _timer.stop();
4568     if (PrintCMSStatistics != 0) {
4569       gclog_or_tty->print_cr(
4570         "Finished young gen rescan work in %dth thread: %3.3f sec",
4571         worker_id, _timer.seconds());
4572     }
4573   }
4574 
4575   // ---------- remaining roots --------------
4576   _timer.reset();
4577   _timer.start();
4578   gch->gen_process_roots(_strong_roots_scope,
4579                          GenCollectedHeap::OldGen,
4580                          false,     // yg was scanned above
4581                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4582                          _collector->should_unload_classes(),
4583                          &par_mrias_cl,
4584                          NULL,
4585                          NULL);     // The dirty klasses will be handled below
4586 
4587   assert(_collector->should_unload_classes()
4588          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4589          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4590   _timer.stop();
4591   if (PrintCMSStatistics != 0) {
4592     gclog_or_tty->print_cr(
4593       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4594       worker_id, _timer.seconds());
4595   }
4596 
4597   // ---------- unhandled CLD scanning ----------
4598   if (worker_id == 0) { // Single threaded at the moment.
4599     _timer.reset();
4600     _timer.start();
4601 
4602     // Scan all new class loader data objects and new dependencies that were
4603     // introduced during concurrent marking.
4604     ResourceMark rm;
4605     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4606     for (int i = 0; i < array->length(); i++) {
4607       par_mrias_cl.do_cld_nv(array->at(i));
4608     }
4609 
4610     // We don't need to keep track of new CLDs anymore.
4611     ClassLoaderDataGraph::remember_new_clds(false);
4612 
4613     _timer.stop();
4614     if (PrintCMSStatistics != 0) {
4615       gclog_or_tty->print_cr(
4616           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4617           worker_id, _timer.seconds());
4618     }
4619   }
4620 
4621   // ---------- dirty klass scanning ----------
4622   if (worker_id == 0) { // Single threaded at the moment.
4623     _timer.reset();
4624     _timer.start();
4625 
4626     // Scan all classes that was dirtied during the concurrent marking phase.
4627     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4628     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4629 
4630     _timer.stop();
4631     if (PrintCMSStatistics != 0) {
4632       gclog_or_tty->print_cr(
4633           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4634           worker_id, _timer.seconds());
4635     }
4636   }
4637 
4638   // We might have added oops to ClassLoaderData::_handles during the
4639   // concurrent marking phase. These oops point to newly allocated objects
4640   // that are guaranteed to be kept alive. Either by the direct allocation
4641   // code, or when the young collector processes the roots. Hence,
4642   // we don't have to revisit the _handles block during the remark phase.
4643 
4644   // ---------- rescan dirty cards ------------
4645   _timer.reset();
4646   _timer.start();
4647 
4648   // Do the rescan tasks for each of the two spaces
4649   // (cms_space) in turn.
4650   // "worker_id" is passed to select the task_queue for "worker_id"
4651   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4652   _timer.stop();
4653   if (PrintCMSStatistics != 0) {
4654     gclog_or_tty->print_cr(
4655       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4656       worker_id, _timer.seconds());
4657   }
4658 
4659   // ---------- steal work from other threads ...
4660   // ---------- ... and drain overflow list.
4661   _timer.reset();
4662   _timer.start();
4663   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4664   _timer.stop();
4665   if (PrintCMSStatistics != 0) {
4666     gclog_or_tty->print_cr(
4667       "Finished work stealing in %dth thread: %3.3f sec",
4668       worker_id, _timer.seconds());
4669   }
4670 }
4671 
4672 // Note that parameter "i" is not used.
4673 void
4674 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4675   OopsInGenClosure* cl, ContiguousSpace* space,
4676   HeapWord** chunk_array, size_t chunk_top) {
4677   // Until all tasks completed:
4678   // . claim an unclaimed task
4679   // . compute region boundaries corresponding to task claimed
4680   //   using chunk_array
4681   // . par_oop_iterate(cl) over that region
4682 
4683   ResourceMark rm;
4684   HandleMark   hm;
4685 
4686   SequentialSubTasksDone* pst = space->par_seq_tasks();
4687 
4688   uint nth_task = 0;
4689   uint n_tasks  = pst->n_tasks();
4690 
4691   if (n_tasks > 0) {
4692     assert(pst->valid(), "Uninitialized use?");
4693     HeapWord *start, *end;
4694     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4695       // We claimed task # nth_task; compute its boundaries.
4696       if (chunk_top == 0) {  // no samples were taken
4697         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4698         start = space->bottom();
4699         end   = space->top();
4700       } else if (nth_task == 0) {
4701         start = space->bottom();
4702         end   = chunk_array[nth_task];
4703       } else if (nth_task < (uint)chunk_top) {
4704         assert(nth_task >= 1, "Control point invariant");
4705         start = chunk_array[nth_task - 1];
4706         end   = chunk_array[nth_task];
4707       } else {
4708         assert(nth_task == (uint)chunk_top, "Control point invariant");
4709         start = chunk_array[chunk_top - 1];
4710         end   = space->top();
4711       }
4712       MemRegion mr(start, end);
4713       // Verify that mr is in space
4714       assert(mr.is_empty() || space->used_region().contains(mr),
4715              "Should be in space");
4716       // Verify that "start" is an object boundary
4717       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4718              "Should be an oop");
4719       space->par_oop_iterate(mr, cl);
4720     }
4721     pst->all_tasks_completed();
4722   }
4723 }
4724 
4725 void
4726 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4727   CompactibleFreeListSpace* sp, int i,
4728   Par_MarkRefsIntoAndScanClosure* cl) {
4729   // Until all tasks completed:
4730   // . claim an unclaimed task
4731   // . compute region boundaries corresponding to task claimed
4732   // . transfer dirty bits ct->mut for that region
4733   // . apply rescanclosure to dirty mut bits for that region
4734 
4735   ResourceMark rm;
4736   HandleMark   hm;
4737 
4738   OopTaskQueue* work_q = work_queue(i);
4739   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4740   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4741   // CAUTION: This closure has state that persists across calls to
4742   // the work method dirty_range_iterate_clear() in that it has
4743   // embedded in it a (subtype of) UpwardsObjectClosure. The
4744   // use of that state in the embedded UpwardsObjectClosure instance
4745   // assumes that the cards are always iterated (even if in parallel
4746   // by several threads) in monotonically increasing order per each
4747   // thread. This is true of the implementation below which picks
4748   // card ranges (chunks) in monotonically increasing order globally
4749   // and, a-fortiori, in monotonically increasing order per thread
4750   // (the latter order being a subsequence of the former).
4751   // If the work code below is ever reorganized into a more chaotic
4752   // work-partitioning form than the current "sequential tasks"
4753   // paradigm, the use of that persistent state will have to be
4754   // revisited and modified appropriately. See also related
4755   // bug 4756801 work on which should examine this code to make
4756   // sure that the changes there do not run counter to the
4757   // assumptions made here and necessary for correctness and
4758   // efficiency. Note also that this code might yield inefficient
4759   // behavior in the case of very large objects that span one or
4760   // more work chunks. Such objects would potentially be scanned
4761   // several times redundantly. Work on 4756801 should try and
4762   // address that performance anomaly if at all possible. XXX
4763   MemRegion  full_span  = _collector->_span;
4764   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4765   MarkFromDirtyCardsClosure
4766     greyRescanClosure(_collector, full_span, // entire span of interest
4767                       sp, bm, work_q, cl);
4768 
4769   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4770   assert(pst->valid(), "Uninitialized use?");
4771   uint nth_task = 0;
4772   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4773   MemRegion span = sp->used_region();
4774   HeapWord* start_addr = span.start();
4775   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4776                                            alignment);
4777   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4778   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4779          start_addr, "Check alignment");
4780   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4781          chunk_size, "Check alignment");
4782 
4783   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4784     // Having claimed the nth_task, compute corresponding mem-region,
4785     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4786     // The alignment restriction ensures that we do not need any
4787     // synchronization with other gang-workers while setting or
4788     // clearing bits in thus chunk of the MUT.
4789     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4790                                     start_addr + (nth_task+1)*chunk_size);
4791     // The last chunk's end might be way beyond end of the
4792     // used region. In that case pull back appropriately.
4793     if (this_span.end() > end_addr) {
4794       this_span.set_end(end_addr);
4795       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4796     }
4797     // Iterate over the dirty cards covering this chunk, marking them
4798     // precleaned, and setting the corresponding bits in the mod union
4799     // table. Since we have been careful to partition at Card and MUT-word
4800     // boundaries no synchronization is needed between parallel threads.
4801     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4802                                                  &modUnionClosure);
4803 
4804     // Having transferred these marks into the modUnionTable,
4805     // rescan the marked objects on the dirty cards in the modUnionTable.
4806     // Even if this is at a synchronous collection, the initial marking
4807     // may have been done during an asynchronous collection so there
4808     // may be dirty bits in the mod-union table.
4809     _collector->_modUnionTable.dirty_range_iterate_clear(
4810                   this_span, &greyRescanClosure);
4811     _collector->_modUnionTable.verifyNoOneBitsInRange(
4812                                  this_span.start(),
4813                                  this_span.end());
4814   }
4815   pst->all_tasks_completed();  // declare that i am done
4816 }
4817 
4818 // . see if we can share work_queues with ParNew? XXX
4819 void
4820 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4821                                 int* seed) {
4822   OopTaskQueue* work_q = work_queue(i);
4823   NOT_PRODUCT(int num_steals = 0;)
4824   oop obj_to_scan;
4825   CMSBitMap* bm = &(_collector->_markBitMap);
4826 
4827   while (true) {
4828     // Completely finish any left over work from (an) earlier round(s)
4829     cl->trim_queue(0);
4830     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4831                                          (size_t)ParGCDesiredObjsFromOverflowList);
4832     // Now check if there's any work in the overflow list
4833     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4834     // only affects the number of attempts made to get work from the
4835     // overflow list and does not affect the number of workers.  Just
4836     // pass ParallelGCThreads so this behavior is unchanged.
4837     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4838                                                 work_q,
4839                                                 ParallelGCThreads)) {
4840       // found something in global overflow list;
4841       // not yet ready to go stealing work from others.
4842       // We'd like to assert(work_q->size() != 0, ...)
4843       // because we just took work from the overflow list,
4844       // but of course we can't since all of that could have
4845       // been already stolen from us.
4846       // "He giveth and He taketh away."
4847       continue;
4848     }
4849     // Verify that we have no work before we resort to stealing
4850     assert(work_q->size() == 0, "Have work, shouldn't steal");
4851     // Try to steal from other queues that have work
4852     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4853       NOT_PRODUCT(num_steals++;)
4854       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4855       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4856       // Do scanning work
4857       obj_to_scan->oop_iterate(cl);
4858       // Loop around, finish this work, and try to steal some more
4859     } else if (terminator()->offer_termination()) {
4860         break;  // nirvana from the infinite cycle
4861     }
4862   }
4863   NOT_PRODUCT(
4864     if (PrintCMSStatistics != 0) {
4865       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4866     }
4867   )
4868   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4869          "Else our work is not yet done");
4870 }
4871 
4872 // Record object boundaries in _eden_chunk_array by sampling the eden
4873 // top in the slow-path eden object allocation code path and record
4874 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4875 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4876 // sampling in sample_eden() that activates during the part of the
4877 // preclean phase.
4878 void CMSCollector::sample_eden_chunk() {
4879   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4880     if (_eden_chunk_lock->try_lock()) {
4881       // Record a sample. This is the critical section. The contents
4882       // of the _eden_chunk_array have to be non-decreasing in the
4883       // address order.
4884       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4885       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4886              "Unexpected state of Eden");
4887       if (_eden_chunk_index == 0 ||
4888           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4889            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4890                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4891         _eden_chunk_index++;  // commit sample
4892       }
4893       _eden_chunk_lock->unlock();
4894     }
4895   }
4896 }
4897 
4898 // Return a thread-local PLAB recording array, as appropriate.
4899 void* CMSCollector::get_data_recorder(int thr_num) {
4900   if (_survivor_plab_array != NULL &&
4901       (CMSPLABRecordAlways ||
4902        (_collectorState > Marking && _collectorState < FinalMarking))) {
4903     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4904     ChunkArray* ca = &_survivor_plab_array[thr_num];
4905     ca->reset();   // clear it so that fresh data is recorded
4906     return (void*) ca;
4907   } else {
4908     return NULL;
4909   }
4910 }
4911 
4912 // Reset all the thread-local PLAB recording arrays
4913 void CMSCollector::reset_survivor_plab_arrays() {
4914   for (uint i = 0; i < ParallelGCThreads; i++) {
4915     _survivor_plab_array[i].reset();
4916   }
4917 }
4918 
4919 // Merge the per-thread plab arrays into the global survivor chunk
4920 // array which will provide the partitioning of the survivor space
4921 // for CMS initial scan and rescan.
4922 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4923                                               int no_of_gc_threads) {
4924   assert(_survivor_plab_array  != NULL, "Error");
4925   assert(_survivor_chunk_array != NULL, "Error");
4926   assert(_collectorState == FinalMarking ||
4927          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4928   for (int j = 0; j < no_of_gc_threads; j++) {
4929     _cursor[j] = 0;
4930   }
4931   HeapWord* top = surv->top();
4932   size_t i;
4933   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4934     HeapWord* min_val = top;          // Higher than any PLAB address
4935     uint      min_tid = 0;            // position of min_val this round
4936     for (int j = 0; j < no_of_gc_threads; j++) {
4937       ChunkArray* cur_sca = &_survivor_plab_array[j];
4938       if (_cursor[j] == cur_sca->end()) {
4939         continue;
4940       }
4941       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4942       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4943       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4944       if (cur_val < min_val) {
4945         min_tid = j;
4946         min_val = cur_val;
4947       } else {
4948         assert(cur_val < top, "All recorded addresses should be less");
4949       }
4950     }
4951     // At this point min_val and min_tid are respectively
4952     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4953     // and the thread (j) that witnesses that address.
4954     // We record this address in the _survivor_chunk_array[i]
4955     // and increment _cursor[min_tid] prior to the next round i.
4956     if (min_val == top) {
4957       break;
4958     }
4959     _survivor_chunk_array[i] = min_val;
4960     _cursor[min_tid]++;
4961   }
4962   // We are all done; record the size of the _survivor_chunk_array
4963   _survivor_chunk_index = i; // exclusive: [0, i)
4964   if (PrintCMSStatistics > 0) {
4965     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4966   }
4967   // Verify that we used up all the recorded entries
4968   #ifdef ASSERT
4969     size_t total = 0;
4970     for (int j = 0; j < no_of_gc_threads; j++) {
4971       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4972       total += _cursor[j];
4973     }
4974     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4975     // Check that the merged array is in sorted order
4976     if (total > 0) {
4977       for (size_t i = 0; i < total - 1; i++) {
4978         if (PrintCMSStatistics > 0) {
4979           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4980                               i, p2i(_survivor_chunk_array[i]));
4981         }
4982         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4983                "Not sorted");
4984       }
4985     }
4986   #endif // ASSERT
4987 }
4988 
4989 // Set up the space's par_seq_tasks structure for work claiming
4990 // for parallel initial scan and rescan of young gen.
4991 // See ParRescanTask where this is currently used.
4992 void
4993 CMSCollector::
4994 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4995   assert(n_threads > 0, "Unexpected n_threads argument");
4996 
4997   // Eden space
4998   if (!_young_gen->eden()->is_empty()) {
4999     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5000     assert(!pst->valid(), "Clobbering existing data?");
5001     // Each valid entry in [0, _eden_chunk_index) represents a task.
5002     size_t n_tasks = _eden_chunk_index + 1;
5003     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5004     // Sets the condition for completion of the subtask (how many threads
5005     // need to finish in order to be done).
5006     pst->set_n_threads(n_threads);
5007     pst->set_n_tasks((int)n_tasks);
5008   }
5009 
5010   // Merge the survivor plab arrays into _survivor_chunk_array
5011   if (_survivor_plab_array != NULL) {
5012     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5013   } else {
5014     assert(_survivor_chunk_index == 0, "Error");
5015   }
5016 
5017   // To space
5018   {
5019     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5020     assert(!pst->valid(), "Clobbering existing data?");
5021     // Sets the condition for completion of the subtask (how many threads
5022     // need to finish in order to be done).
5023     pst->set_n_threads(n_threads);
5024     pst->set_n_tasks(1);
5025     assert(pst->valid(), "Error");
5026   }
5027 
5028   // From space
5029   {
5030     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5031     assert(!pst->valid(), "Clobbering existing data?");
5032     size_t n_tasks = _survivor_chunk_index + 1;
5033     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5034     // Sets the condition for completion of the subtask (how many threads
5035     // need to finish in order to be done).
5036     pst->set_n_threads(n_threads);
5037     pst->set_n_tasks((int)n_tasks);
5038     assert(pst->valid(), "Error");
5039   }
5040 }
5041 
5042 // Parallel version of remark
5043 void CMSCollector::do_remark_parallel() {
5044   GenCollectedHeap* gch = GenCollectedHeap::heap();
5045   WorkGang* workers = gch->workers();
5046   assert(workers != NULL, "Need parallel worker threads.");
5047   // Choose to use the number of GC workers most recently set
5048   // into "active_workers".
5049   uint n_workers = workers->active_workers();
5050 
5051   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5052 
5053   StrongRootsScope srs(n_workers);
5054 
5055   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
5056 
5057   // We won't be iterating over the cards in the card table updating
5058   // the younger_gen cards, so we shouldn't call the following else
5059   // the verification code as well as subsequent younger_refs_iterate
5060   // code would get confused. XXX
5061   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5062 
5063   // The young gen rescan work will not be done as part of
5064   // process_roots (which currently doesn't know how to
5065   // parallelize such a scan), but rather will be broken up into
5066   // a set of parallel tasks (via the sampling that the [abortable]
5067   // preclean phase did of eden, plus the [two] tasks of
5068   // scanning the [two] survivor spaces. Further fine-grain
5069   // parallelization of the scanning of the survivor spaces
5070   // themselves, and of precleaning of the young gen itself
5071   // is deferred to the future.
5072   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5073 
5074   // The dirty card rescan work is broken up into a "sequence"
5075   // of parallel tasks (per constituent space) that are dynamically
5076   // claimed by the parallel threads.
5077   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5078 
5079   // It turns out that even when we're using 1 thread, doing the work in a
5080   // separate thread causes wide variance in run times.  We can't help this
5081   // in the multi-threaded case, but we special-case n=1 here to get
5082   // repeatable measurements of the 1-thread overhead of the parallel code.
5083   if (n_workers > 1) {
5084     // Make refs discovery MT-safe, if it isn't already: it may not
5085     // necessarily be so, since it's possible that we are doing
5086     // ST marking.
5087     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5088     workers->run_task(&tsk);
5089   } else {
5090     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5091     tsk.work(0);
5092   }
5093 
5094   // restore, single-threaded for now, any preserved marks
5095   // as a result of work_q overflow
5096   restore_preserved_marks_if_any();
5097 }
5098 
5099 // Non-parallel version of remark
5100 void CMSCollector::do_remark_non_parallel() {
5101   ResourceMark rm;
5102   HandleMark   hm;
5103   GenCollectedHeap* gch = GenCollectedHeap::heap();
5104   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5105 
5106   MarkRefsIntoAndScanClosure
5107     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5108              &_markStack, this,
5109              false /* should_yield */, false /* not precleaning */);
5110   MarkFromDirtyCardsClosure
5111     markFromDirtyCardsClosure(this, _span,
5112                               NULL,  // space is set further below
5113                               &_markBitMap, &_markStack, &mrias_cl);
5114   {
5115     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5116     // Iterate over the dirty cards, setting the corresponding bits in the
5117     // mod union table.
5118     {
5119       ModUnionClosure modUnionClosure(&_modUnionTable);
5120       _ct->ct_bs()->dirty_card_iterate(
5121                       _cmsGen->used_region(),
5122                       &modUnionClosure);
5123     }
5124     // Having transferred these marks into the modUnionTable, we just need
5125     // to rescan the marked objects on the dirty cards in the modUnionTable.
5126     // The initial marking may have been done during an asynchronous
5127     // collection so there may be dirty bits in the mod-union table.
5128     const int alignment =
5129       CardTableModRefBS::card_size * BitsPerWord;
5130     {
5131       // ... First handle dirty cards in CMS gen
5132       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5133       MemRegion ur = _cmsGen->used_region();
5134       HeapWord* lb = ur.start();
5135       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5136       MemRegion cms_span(lb, ub);
5137       _modUnionTable.dirty_range_iterate_clear(cms_span,
5138                                                &markFromDirtyCardsClosure);
5139       verify_work_stacks_empty();
5140       if (PrintCMSStatistics != 0) {
5141         gclog_or_tty->print(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ",
5142           markFromDirtyCardsClosure.num_dirty_cards());
5143       }
5144     }
5145   }
5146   if (VerifyDuringGC &&
5147       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5148     HandleMark hm;  // Discard invalid handles created during verification
5149     Universe::verify();
5150   }
5151   {
5152     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5153 
5154     verify_work_stacks_empty();
5155 
5156     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5157     StrongRootsScope srs(1);
5158 
5159     gch->gen_process_roots(&srs,
5160                            GenCollectedHeap::OldGen,
5161                            true,  // young gen as roots
5162                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5163                            should_unload_classes(),
5164                            &mrias_cl,
5165                            NULL,
5166                            NULL); // The dirty klasses will be handled below
5167 
5168     assert(should_unload_classes()
5169            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5170            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5171   }
5172 
5173   {
5174     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5175 
5176     verify_work_stacks_empty();
5177 
5178     // Scan all class loader data objects that might have been introduced
5179     // during concurrent marking.
5180     ResourceMark rm;
5181     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5182     for (int i = 0; i < array->length(); i++) {
5183       mrias_cl.do_cld_nv(array->at(i));
5184     }
5185 
5186     // We don't need to keep track of new CLDs anymore.
5187     ClassLoaderDataGraph::remember_new_clds(false);
5188 
5189     verify_work_stacks_empty();
5190   }
5191 
5192   {
5193     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
5194 
5195     verify_work_stacks_empty();
5196 
5197     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5198     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5199 
5200     verify_work_stacks_empty();
5201   }
5202 
5203   // We might have added oops to ClassLoaderData::_handles during the
5204   // concurrent marking phase. These oops point to newly allocated objects
5205   // that are guaranteed to be kept alive. Either by the direct allocation
5206   // code, or when the young collector processes the roots. Hence,
5207   // we don't have to revisit the _handles block during the remark phase.
5208 
5209   verify_work_stacks_empty();
5210   // Restore evacuated mark words, if any, used for overflow list links
5211   if (!CMSOverflowEarlyRestoration) {
5212     restore_preserved_marks_if_any();
5213   }
5214   verify_overflow_empty();
5215 }
5216 
5217 ////////////////////////////////////////////////////////
5218 // Parallel Reference Processing Task Proxy Class
5219 ////////////////////////////////////////////////////////
5220 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5221   OopTaskQueueSet*       _queues;
5222   ParallelTaskTerminator _terminator;
5223  public:
5224   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5225     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5226   ParallelTaskTerminator* terminator() { return &_terminator; }
5227   OopTaskQueueSet* queues() { return _queues; }
5228 };
5229 
5230 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5231   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5232   CMSCollector*          _collector;
5233   CMSBitMap*             _mark_bit_map;
5234   const MemRegion        _span;
5235   ProcessTask&           _task;
5236 
5237 public:
5238   CMSRefProcTaskProxy(ProcessTask&     task,
5239                       CMSCollector*    collector,
5240                       const MemRegion& span,
5241                       CMSBitMap*       mark_bit_map,
5242                       AbstractWorkGang* workers,
5243                       OopTaskQueueSet* task_queues):
5244     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5245       task_queues,
5246       workers->active_workers()),
5247     _task(task),
5248     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5249   {
5250     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5251            "Inconsistency in _span");
5252   }
5253 
5254   OopTaskQueueSet* task_queues() { return queues(); }
5255 
5256   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5257 
5258   void do_work_steal(int i,
5259                      CMSParDrainMarkingStackClosure* drain,
5260                      CMSParKeepAliveClosure* keep_alive,
5261                      int* seed);
5262 
5263   virtual void work(uint worker_id);
5264 };
5265 
5266 void CMSRefProcTaskProxy::work(uint worker_id) {
5267   ResourceMark rm;
5268   HandleMark hm;
5269   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5270   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5271                                         _mark_bit_map,
5272                                         work_queue(worker_id));
5273   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5274                                                  _mark_bit_map,
5275                                                  work_queue(worker_id));
5276   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5277   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5278   if (_task.marks_oops_alive()) {
5279     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5280                   _collector->hash_seed(worker_id));
5281   }
5282   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5283   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5284 }
5285 
5286 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5287   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5288   EnqueueTask& _task;
5289 
5290 public:
5291   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5292     : AbstractGangTask("Enqueue reference objects in parallel"),
5293       _task(task)
5294   { }
5295 
5296   virtual void work(uint worker_id)
5297   {
5298     _task.work(worker_id);
5299   }
5300 };
5301 
5302 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5303   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5304    _span(span),
5305    _bit_map(bit_map),
5306    _work_queue(work_queue),
5307    _mark_and_push(collector, span, bit_map, work_queue),
5308    _low_water_mark(MIN2((work_queue->max_elems()/4),
5309                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5310 { }
5311 
5312 // . see if we can share work_queues with ParNew? XXX
5313 void CMSRefProcTaskProxy::do_work_steal(int i,
5314   CMSParDrainMarkingStackClosure* drain,
5315   CMSParKeepAliveClosure* keep_alive,
5316   int* seed) {
5317   OopTaskQueue* work_q = work_queue(i);
5318   NOT_PRODUCT(int num_steals = 0;)
5319   oop obj_to_scan;
5320 
5321   while (true) {
5322     // Completely finish any left over work from (an) earlier round(s)
5323     drain->trim_queue(0);
5324     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5325                                          (size_t)ParGCDesiredObjsFromOverflowList);
5326     // Now check if there's any work in the overflow list
5327     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5328     // only affects the number of attempts made to get work from the
5329     // overflow list and does not affect the number of workers.  Just
5330     // pass ParallelGCThreads so this behavior is unchanged.
5331     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5332                                                 work_q,
5333                                                 ParallelGCThreads)) {
5334       // Found something in global overflow list;
5335       // not yet ready to go stealing work from others.
5336       // We'd like to assert(work_q->size() != 0, ...)
5337       // because we just took work from the overflow list,
5338       // but of course we can't, since all of that might have
5339       // been already stolen from us.
5340       continue;
5341     }
5342     // Verify that we have no work before we resort to stealing
5343     assert(work_q->size() == 0, "Have work, shouldn't steal");
5344     // Try to steal from other queues that have work
5345     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5346       NOT_PRODUCT(num_steals++;)
5347       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5348       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5349       // Do scanning work
5350       obj_to_scan->oop_iterate(keep_alive);
5351       // Loop around, finish this work, and try to steal some more
5352     } else if (terminator()->offer_termination()) {
5353       break;  // nirvana from the infinite cycle
5354     }
5355   }
5356   NOT_PRODUCT(
5357     if (PrintCMSStatistics != 0) {
5358       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5359     }
5360   )
5361 }
5362 
5363 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5364 {
5365   GenCollectedHeap* gch = GenCollectedHeap::heap();
5366   WorkGang* workers = gch->workers();
5367   assert(workers != NULL, "Need parallel worker threads.");
5368   CMSRefProcTaskProxy rp_task(task, &_collector,
5369                               _collector.ref_processor()->span(),
5370                               _collector.markBitMap(),
5371                               workers, _collector.task_queues());
5372   workers->run_task(&rp_task);
5373 }
5374 
5375 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5376 {
5377 
5378   GenCollectedHeap* gch = GenCollectedHeap::heap();
5379   WorkGang* workers = gch->workers();
5380   assert(workers != NULL, "Need parallel worker threads.");
5381   CMSRefEnqueueTaskProxy enq_task(task);
5382   workers->run_task(&enq_task);
5383 }
5384 
5385 void CMSCollector::refProcessingWork() {
5386   ResourceMark rm;
5387   HandleMark   hm;
5388 
5389   ReferenceProcessor* rp = ref_processor();
5390   assert(rp->span().equals(_span), "Spans should be equal");
5391   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5392   // Process weak references.
5393   rp->setup_policy(false);
5394   verify_work_stacks_empty();
5395 
5396   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5397                                           &_markStack, false /* !preclean */);
5398   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5399                                 _span, &_markBitMap, &_markStack,
5400                                 &cmsKeepAliveClosure, false /* !preclean */);
5401   {
5402     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
5403 
5404     ReferenceProcessorStats stats;
5405     if (rp->processing_is_mt()) {
5406       // Set the degree of MT here.  If the discovery is done MT, there
5407       // may have been a different number of threads doing the discovery
5408       // and a different number of discovered lists may have Ref objects.
5409       // That is OK as long as the Reference lists are balanced (see
5410       // balance_all_queues() and balance_queues()).
5411       GenCollectedHeap* gch = GenCollectedHeap::heap();
5412       uint active_workers = ParallelGCThreads;
5413       WorkGang* workers = gch->workers();
5414       if (workers != NULL) {
5415         active_workers = workers->active_workers();
5416         // The expectation is that active_workers will have already
5417         // been set to a reasonable value.  If it has not been set,
5418         // investigate.
5419         assert(active_workers > 0, "Should have been set during scavenge");
5420       }
5421       rp->set_active_mt_degree(active_workers);
5422       CMSRefProcTaskExecutor task_executor(*this);
5423       stats = rp->process_discovered_references(&_is_alive_closure,
5424                                         &cmsKeepAliveClosure,
5425                                         &cmsDrainMarkingStackClosure,
5426                                         &task_executor,
5427                                         _gc_timer_cm);
5428     } else {
5429       stats = rp->process_discovered_references(&_is_alive_closure,
5430                                         &cmsKeepAliveClosure,
5431                                         &cmsDrainMarkingStackClosure,
5432                                         NULL,
5433                                         _gc_timer_cm);
5434     }
5435     _gc_tracer_cm->report_gc_reference_stats(stats);
5436 
5437   }
5438 
5439   // This is the point where the entire marking should have completed.
5440   verify_work_stacks_empty();
5441 
5442   if (should_unload_classes()) {
5443     {
5444       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
5445 
5446       // Unload classes and purge the SystemDictionary.
5447       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5448 
5449       // Unload nmethods.
5450       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5451 
5452       // Prune dead klasses from subklass/sibling/implementor lists.
5453       Klass::clean_weak_klass_links(&_is_alive_closure);
5454     }
5455 
5456     {
5457       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
5458       // Clean up unreferenced symbols in symbol table.
5459       SymbolTable::unlink();
5460     }
5461 
5462     {
5463       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
5464       // Delete entries for dead interned strings.
5465       StringTable::unlink(&_is_alive_closure);
5466     }
5467   }
5468 
5469 
5470   // Restore any preserved marks as a result of mark stack or
5471   // work queue overflow
5472   restore_preserved_marks_if_any();  // done single-threaded for now
5473 
5474   rp->set_enqueuing_is_done(true);
5475   if (rp->processing_is_mt()) {
5476     rp->balance_all_queues();
5477     CMSRefProcTaskExecutor task_executor(*this);
5478     rp->enqueue_discovered_references(&task_executor);
5479   } else {
5480     rp->enqueue_discovered_references(NULL);
5481   }
5482   rp->verify_no_references_recorded();
5483   assert(!rp->discovery_enabled(), "should have been disabled");
5484 }
5485 
5486 #ifndef PRODUCT
5487 void CMSCollector::check_correct_thread_executing() {
5488   Thread* t = Thread::current();
5489   // Only the VM thread or the CMS thread should be here.
5490   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5491          "Unexpected thread type");
5492   // If this is the vm thread, the foreground process
5493   // should not be waiting.  Note that _foregroundGCIsActive is
5494   // true while the foreground collector is waiting.
5495   if (_foregroundGCShouldWait) {
5496     // We cannot be the VM thread
5497     assert(t->is_ConcurrentGC_thread(),
5498            "Should be CMS thread");
5499   } else {
5500     // We can be the CMS thread only if we are in a stop-world
5501     // phase of CMS collection.
5502     if (t->is_ConcurrentGC_thread()) {
5503       assert(_collectorState == InitialMarking ||
5504              _collectorState == FinalMarking,
5505              "Should be a stop-world phase");
5506       // The CMS thread should be holding the CMS_token.
5507       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5508              "Potential interference with concurrently "
5509              "executing VM thread");
5510     }
5511   }
5512 }
5513 #endif
5514 
5515 void CMSCollector::sweep() {
5516   assert(_collectorState == Sweeping, "just checking");
5517   check_correct_thread_executing();
5518   verify_work_stacks_empty();
5519   verify_overflow_empty();
5520   increment_sweep_count();
5521   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5522 
5523   _inter_sweep_timer.stop();
5524   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5525 
5526   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5527   _intra_sweep_timer.reset();
5528   _intra_sweep_timer.start();
5529   {
5530     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5531     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
5532     // First sweep the old gen
5533     {
5534       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5535                                bitMapLock());
5536       sweepWork(_cmsGen);
5537     }
5538 
5539     // Update Universe::_heap_*_at_gc figures.
5540     // We need all the free list locks to make the abstract state
5541     // transition from Sweeping to Resetting. See detailed note
5542     // further below.
5543     {
5544       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5545       // Update heap occupancy information which is used as
5546       // input to soft ref clearing policy at the next gc.
5547       Universe::update_heap_info_at_gc();
5548       _collectorState = Resizing;
5549     }
5550   }
5551   verify_work_stacks_empty();
5552   verify_overflow_empty();
5553 
5554   if (should_unload_classes()) {
5555     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5556     // requires that the virtual spaces are stable and not deleted.
5557     ClassLoaderDataGraph::set_should_purge(true);
5558   }
5559 
5560   _intra_sweep_timer.stop();
5561   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5562 
5563   _inter_sweep_timer.reset();
5564   _inter_sweep_timer.start();
5565 
5566   // We need to use a monotonically non-decreasing time in ms
5567   // or we will see time-warp warnings and os::javaTimeMillis()
5568   // does not guarantee monotonicity.
5569   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5570   update_time_of_last_gc(now);
5571 
5572   // NOTE on abstract state transitions:
5573   // Mutators allocate-live and/or mark the mod-union table dirty
5574   // based on the state of the collection.  The former is done in
5575   // the interval [Marking, Sweeping] and the latter in the interval
5576   // [Marking, Sweeping).  Thus the transitions into the Marking state
5577   // and out of the Sweeping state must be synchronously visible
5578   // globally to the mutators.
5579   // The transition into the Marking state happens with the world
5580   // stopped so the mutators will globally see it.  Sweeping is
5581   // done asynchronously by the background collector so the transition
5582   // from the Sweeping state to the Resizing state must be done
5583   // under the freelistLock (as is the check for whether to
5584   // allocate-live and whether to dirty the mod-union table).
5585   assert(_collectorState == Resizing, "Change of collector state to"
5586     " Resizing must be done under the freelistLocks (plural)");
5587 
5588   // Now that sweeping has been completed, we clear
5589   // the incremental_collection_failed flag,
5590   // thus inviting a younger gen collection to promote into
5591   // this generation. If such a promotion may still fail,
5592   // the flag will be set again when a young collection is
5593   // attempted.
5594   GenCollectedHeap* gch = GenCollectedHeap::heap();
5595   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5596   gch->update_full_collections_completed(_collection_count_start);
5597 }
5598 
5599 // FIX ME!!! Looks like this belongs in CFLSpace, with
5600 // CMSGen merely delegating to it.
5601 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5602   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5603   HeapWord*  minAddr        = _cmsSpace->bottom();
5604   HeapWord*  largestAddr    =
5605     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5606   if (largestAddr == NULL) {
5607     // The dictionary appears to be empty.  In this case
5608     // try to coalesce at the end of the heap.
5609     largestAddr = _cmsSpace->end();
5610   }
5611   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5612   size_t nearLargestOffset =
5613     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5614   if (PrintFLSStatistics != 0) {
5615     gclog_or_tty->print_cr(
5616       "CMS: Large Block: " PTR_FORMAT ";"
5617       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5618       p2i(largestAddr),
5619       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5620   }
5621   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5622 }
5623 
5624 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5625   return addr >= _cmsSpace->nearLargestChunk();
5626 }
5627 
5628 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5629   return _cmsSpace->find_chunk_at_end();
5630 }
5631 
5632 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5633                                                     bool full) {
5634   // If the young generation has been collected, gather any statistics
5635   // that are of interest at this point.
5636   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5637   if (!full && current_is_young) {
5638     // Gather statistics on the young generation collection.
5639     collector()->stats().record_gc0_end(used());
5640   }
5641 }
5642 
5643 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5644   // We iterate over the space(s) underlying this generation,
5645   // checking the mark bit map to see if the bits corresponding
5646   // to specific blocks are marked or not. Blocks that are
5647   // marked are live and are not swept up. All remaining blocks
5648   // are swept up, with coalescing on-the-fly as we sweep up
5649   // contiguous free and/or garbage blocks:
5650   // We need to ensure that the sweeper synchronizes with allocators
5651   // and stop-the-world collectors. In particular, the following
5652   // locks are used:
5653   // . CMS token: if this is held, a stop the world collection cannot occur
5654   // . freelistLock: if this is held no allocation can occur from this
5655   //                 generation by another thread
5656   // . bitMapLock: if this is held, no other thread can access or update
5657   //
5658 
5659   // Note that we need to hold the freelistLock if we use
5660   // block iterate below; else the iterator might go awry if
5661   // a mutator (or promotion) causes block contents to change
5662   // (for instance if the allocator divvies up a block).
5663   // If we hold the free list lock, for all practical purposes
5664   // young generation GC's can't occur (they'll usually need to
5665   // promote), so we might as well prevent all young generation
5666   // GC's while we do a sweeping step. For the same reason, we might
5667   // as well take the bit map lock for the entire duration
5668 
5669   // check that we hold the requisite locks
5670   assert(have_cms_token(), "Should hold cms token");
5671   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5672   assert_lock_strong(old_gen->freelistLock());
5673   assert_lock_strong(bitMapLock());
5674 
5675   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5676   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5677   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5678                                           _inter_sweep_estimate.padded_average(),
5679                                           _intra_sweep_estimate.padded_average());
5680   old_gen->setNearLargestChunk();
5681 
5682   {
5683     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5684     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5685     // We need to free-up/coalesce garbage/blocks from a
5686     // co-terminal free run. This is done in the SweepClosure
5687     // destructor; so, do not remove this scope, else the
5688     // end-of-sweep-census below will be off by a little bit.
5689   }
5690   old_gen->cmsSpace()->sweep_completed();
5691   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5692   if (should_unload_classes()) {                // unloaded classes this cycle,
5693     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5694   } else {                                      // did not unload classes,
5695     _concurrent_cycles_since_last_unload++;     // ... increment count
5696   }
5697 }
5698 
5699 // Reset CMS data structures (for now just the marking bit map)
5700 // preparatory for the next cycle.
5701 void CMSCollector::reset(bool concurrent) {
5702   if (concurrent) {
5703     CMSTokenSyncWithLocks ts(true, bitMapLock());
5704 
5705     // If the state is not "Resetting", the foreground  thread
5706     // has done a collection and the resetting.
5707     if (_collectorState != Resetting) {
5708       assert(_collectorState == Idling, "The state should only change"
5709         " because the foreground collector has finished the collection");
5710       return;
5711     }
5712 
5713     // Clear the mark bitmap (no grey objects to start with)
5714     // for the next cycle.
5715     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5716     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
5717 
5718     HeapWord* curAddr = _markBitMap.startWord();
5719     while (curAddr < _markBitMap.endWord()) {
5720       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5721       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5722       _markBitMap.clear_large_range(chunk);
5723       if (ConcurrentMarkSweepThread::should_yield() &&
5724           !foregroundGCIsActive() &&
5725           CMSYield) {
5726         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5727                "CMS thread should hold CMS token");
5728         assert_lock_strong(bitMapLock());
5729         bitMapLock()->unlock();
5730         ConcurrentMarkSweepThread::desynchronize(true);
5731         stopTimer();
5732         if (PrintCMSStatistics != 0) {
5733           incrementYields();
5734         }
5735 
5736         // See the comment in coordinator_yield()
5737         for (unsigned i = 0; i < CMSYieldSleepCount &&
5738                          ConcurrentMarkSweepThread::should_yield() &&
5739                          !CMSCollector::foregroundGCIsActive(); ++i) {
5740           os::sleep(Thread::current(), 1, false);
5741         }
5742 
5743         ConcurrentMarkSweepThread::synchronize(true);
5744         bitMapLock()->lock_without_safepoint_check();
5745         startTimer();
5746       }
5747       curAddr = chunk.end();
5748     }
5749     // A successful mostly concurrent collection has been done.
5750     // Because only the full (i.e., concurrent mode failure) collections
5751     // are being measured for gc overhead limits, clean the "near" flag
5752     // and count.
5753     size_policy()->reset_gc_overhead_limit_count();
5754     _collectorState = Idling;
5755   } else {
5756     // already have the lock
5757     assert(_collectorState == Resetting, "just checking");
5758     assert_lock_strong(bitMapLock());
5759     _markBitMap.clear_all();
5760     _collectorState = Idling;
5761   }
5762 
5763   register_gc_end();
5764 }
5765 
5766 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5767   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5768   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
5769   TraceCollectorStats tcs(counters());
5770 
5771   switch (op) {
5772     case CMS_op_checkpointRootsInitial: {
5773       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5774       checkpointRootsInitial();
5775       if (PrintGC) {
5776         _cmsGen->printOccupancy("initial-mark");
5777       }
5778       break;
5779     }
5780     case CMS_op_checkpointRootsFinal: {
5781       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5782       checkpointRootsFinal();
5783       if (PrintGC) {
5784         _cmsGen->printOccupancy("remark");
5785       }
5786       break;
5787     }
5788     default:
5789       fatal("No such CMS_op");
5790   }
5791 }
5792 
5793 #ifndef PRODUCT
5794 size_t const CMSCollector::skip_header_HeapWords() {
5795   return FreeChunk::header_size();
5796 }
5797 
5798 // Try and collect here conditions that should hold when
5799 // CMS thread is exiting. The idea is that the foreground GC
5800 // thread should not be blocked if it wants to terminate
5801 // the CMS thread and yet continue to run the VM for a while
5802 // after that.
5803 void CMSCollector::verify_ok_to_terminate() const {
5804   assert(Thread::current()->is_ConcurrentGC_thread(),
5805          "should be called by CMS thread");
5806   assert(!_foregroundGCShouldWait, "should be false");
5807   // We could check here that all the various low-level locks
5808   // are not held by the CMS thread, but that is overkill; see
5809   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5810   // is checked.
5811 }
5812 #endif
5813 
5814 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5815    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5816           "missing Printezis mark?");
5817   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5818   size_t size = pointer_delta(nextOneAddr + 1, addr);
5819   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5820          "alignment problem");
5821   assert(size >= 3, "Necessary for Printezis marks to work");
5822   return size;
5823 }
5824 
5825 // A variant of the above (block_size_using_printezis_bits()) except
5826 // that we return 0 if the P-bits are not yet set.
5827 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5828   if (_markBitMap.isMarked(addr + 1)) {
5829     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5830     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5831     size_t size = pointer_delta(nextOneAddr + 1, addr);
5832     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5833            "alignment problem");
5834     assert(size >= 3, "Necessary for Printezis marks to work");
5835     return size;
5836   }
5837   return 0;
5838 }
5839 
5840 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5841   size_t sz = 0;
5842   oop p = (oop)addr;
5843   if (p->klass_or_null() != NULL) {
5844     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5845   } else {
5846     sz = block_size_using_printezis_bits(addr);
5847   }
5848   assert(sz > 0, "size must be nonzero");
5849   HeapWord* next_block = addr + sz;
5850   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5851                                              CardTableModRefBS::card_size);
5852   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5853          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5854          "must be different cards");
5855   return next_card;
5856 }
5857 
5858 
5859 // CMS Bit Map Wrapper /////////////////////////////////////////
5860 
5861 // Construct a CMS bit map infrastructure, but don't create the
5862 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5863 // further below.
5864 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5865   _bm(),
5866   _shifter(shifter),
5867   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5868                                     Monitor::_safepoint_check_sometimes) : NULL)
5869 {
5870   _bmStartWord = 0;
5871   _bmWordSize  = 0;
5872 }
5873 
5874 bool CMSBitMap::allocate(MemRegion mr) {
5875   _bmStartWord = mr.start();
5876   _bmWordSize  = mr.word_size();
5877   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5878                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5879   if (!brs.is_reserved()) {
5880     warning("CMS bit map allocation failure");
5881     return false;
5882   }
5883   // For now we'll just commit all of the bit map up front.
5884   // Later on we'll try to be more parsimonious with swap.
5885   if (!_virtual_space.initialize(brs, brs.size())) {
5886     warning("CMS bit map backing store failure");
5887     return false;
5888   }
5889   assert(_virtual_space.committed_size() == brs.size(),
5890          "didn't reserve backing store for all of CMS bit map?");
5891   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5892   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5893          _bmWordSize, "inconsistency in bit map sizing");
5894   _bm.set_size(_bmWordSize >> _shifter);
5895 
5896   // bm.clear(); // can we rely on getting zero'd memory? verify below
5897   assert(isAllClear(),
5898          "Expected zero'd memory from ReservedSpace constructor");
5899   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5900          "consistency check");
5901   return true;
5902 }
5903 
5904 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5905   HeapWord *next_addr, *end_addr, *last_addr;
5906   assert_locked();
5907   assert(covers(mr), "out-of-range error");
5908   // XXX assert that start and end are appropriately aligned
5909   for (next_addr = mr.start(), end_addr = mr.end();
5910        next_addr < end_addr; next_addr = last_addr) {
5911     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5912     last_addr = dirty_region.end();
5913     if (!dirty_region.is_empty()) {
5914       cl->do_MemRegion(dirty_region);
5915     } else {
5916       assert(last_addr == end_addr, "program logic");
5917       return;
5918     }
5919   }
5920 }
5921 
5922 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5923   _bm.print_on_error(st, prefix);
5924 }
5925 
5926 #ifndef PRODUCT
5927 void CMSBitMap::assert_locked() const {
5928   CMSLockVerifier::assert_locked(lock());
5929 }
5930 
5931 bool CMSBitMap::covers(MemRegion mr) const {
5932   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5933   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5934          "size inconsistency");
5935   return (mr.start() >= _bmStartWord) &&
5936          (mr.end()   <= endWord());
5937 }
5938 
5939 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5940     return (start >= _bmStartWord && (start + size) <= endWord());
5941 }
5942 
5943 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5944   // verify that there are no 1 bits in the interval [left, right)
5945   FalseBitMapClosure falseBitMapClosure;
5946   iterate(&falseBitMapClosure, left, right);
5947 }
5948 
5949 void CMSBitMap::region_invariant(MemRegion mr)
5950 {
5951   assert_locked();
5952   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5953   assert(!mr.is_empty(), "unexpected empty region");
5954   assert(covers(mr), "mr should be covered by bit map");
5955   // convert address range into offset range
5956   size_t start_ofs = heapWordToOffset(mr.start());
5957   // Make sure that end() is appropriately aligned
5958   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5959                         (1 << (_shifter+LogHeapWordSize))),
5960          "Misaligned mr.end()");
5961   size_t end_ofs   = heapWordToOffset(mr.end());
5962   assert(end_ofs > start_ofs, "Should mark at least one bit");
5963 }
5964 
5965 #endif
5966 
5967 bool CMSMarkStack::allocate(size_t size) {
5968   // allocate a stack of the requisite depth
5969   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5970                    size * sizeof(oop)));
5971   if (!rs.is_reserved()) {
5972     warning("CMSMarkStack allocation failure");
5973     return false;
5974   }
5975   if (!_virtual_space.initialize(rs, rs.size())) {
5976     warning("CMSMarkStack backing store failure");
5977     return false;
5978   }
5979   assert(_virtual_space.committed_size() == rs.size(),
5980          "didn't reserve backing store for all of CMS stack?");
5981   _base = (oop*)(_virtual_space.low());
5982   _index = 0;
5983   _capacity = size;
5984   NOT_PRODUCT(_max_depth = 0);
5985   return true;
5986 }
5987 
5988 // XXX FIX ME !!! In the MT case we come in here holding a
5989 // leaf lock. For printing we need to take a further lock
5990 // which has lower rank. We need to recalibrate the two
5991 // lock-ranks involved in order to be able to print the
5992 // messages below. (Or defer the printing to the caller.
5993 // For now we take the expedient path of just disabling the
5994 // messages for the problematic case.)
5995 void CMSMarkStack::expand() {
5996   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5997   if (_capacity == MarkStackSizeMax) {
5998     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
5999       // We print a warning message only once per CMS cycle.
6000       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6001     }
6002     return;
6003   }
6004   // Double capacity if possible
6005   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6006   // Do not give up existing stack until we have managed to
6007   // get the double capacity that we desired.
6008   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6009                    new_capacity * sizeof(oop)));
6010   if (rs.is_reserved()) {
6011     // Release the backing store associated with old stack
6012     _virtual_space.release();
6013     // Reinitialize virtual space for new stack
6014     if (!_virtual_space.initialize(rs, rs.size())) {
6015       fatal("Not enough swap for expanded marking stack");
6016     }
6017     _base = (oop*)(_virtual_space.low());
6018     _index = 0;
6019     _capacity = new_capacity;
6020   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6021     // Failed to double capacity, continue;
6022     // we print a detail message only once per CMS cycle.
6023     gclog_or_tty->print(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to "
6024             SIZE_FORMAT "K",
6025             _capacity / K, new_capacity / K);
6026   }
6027 }
6028 
6029 
6030 // Closures
6031 // XXX: there seems to be a lot of code  duplication here;
6032 // should refactor and consolidate common code.
6033 
6034 // This closure is used to mark refs into the CMS generation in
6035 // the CMS bit map. Called at the first checkpoint. This closure
6036 // assumes that we do not need to re-mark dirty cards; if the CMS
6037 // generation on which this is used is not an oldest
6038 // generation then this will lose younger_gen cards!
6039 
6040 MarkRefsIntoClosure::MarkRefsIntoClosure(
6041   MemRegion span, CMSBitMap* bitMap):
6042     _span(span),
6043     _bitMap(bitMap)
6044 {
6045     assert(_ref_processor == NULL, "deliberately left NULL");
6046     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6047 }
6048 
6049 void MarkRefsIntoClosure::do_oop(oop obj) {
6050   // if p points into _span, then mark corresponding bit in _markBitMap
6051   assert(obj->is_oop(), "expected an oop");
6052   HeapWord* addr = (HeapWord*)obj;
6053   if (_span.contains(addr)) {
6054     // this should be made more efficient
6055     _bitMap->mark(addr);
6056   }
6057 }
6058 
6059 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6060 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6061 
6062 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6063   MemRegion span, CMSBitMap* bitMap):
6064     _span(span),
6065     _bitMap(bitMap)
6066 {
6067     assert(_ref_processor == NULL, "deliberately left NULL");
6068     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6069 }
6070 
6071 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6072   // if p points into _span, then mark corresponding bit in _markBitMap
6073   assert(obj->is_oop(), "expected an oop");
6074   HeapWord* addr = (HeapWord*)obj;
6075   if (_span.contains(addr)) {
6076     // this should be made more efficient
6077     _bitMap->par_mark(addr);
6078   }
6079 }
6080 
6081 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6082 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6083 
6084 // A variant of the above, used for CMS marking verification.
6085 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6086   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6087     _span(span),
6088     _verification_bm(verification_bm),
6089     _cms_bm(cms_bm)
6090 {
6091     assert(_ref_processor == NULL, "deliberately left NULL");
6092     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6093 }
6094 
6095 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6096   // if p points into _span, then mark corresponding bit in _markBitMap
6097   assert(obj->is_oop(), "expected an oop");
6098   HeapWord* addr = (HeapWord*)obj;
6099   if (_span.contains(addr)) {
6100     _verification_bm->mark(addr);
6101     if (!_cms_bm->isMarked(addr)) {
6102       oop(addr)->print();
6103       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6104       fatal("... aborting");
6105     }
6106   }
6107 }
6108 
6109 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6110 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6111 
6112 //////////////////////////////////////////////////
6113 // MarkRefsIntoAndScanClosure
6114 //////////////////////////////////////////////////
6115 
6116 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6117                                                        ReferenceProcessor* rp,
6118                                                        CMSBitMap* bit_map,
6119                                                        CMSBitMap* mod_union_table,
6120                                                        CMSMarkStack*  mark_stack,
6121                                                        CMSCollector* collector,
6122                                                        bool should_yield,
6123                                                        bool concurrent_precleaning):
6124   _collector(collector),
6125   _span(span),
6126   _bit_map(bit_map),
6127   _mark_stack(mark_stack),
6128   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6129                       mark_stack, concurrent_precleaning),
6130   _yield(should_yield),
6131   _concurrent_precleaning(concurrent_precleaning),
6132   _freelistLock(NULL)
6133 {
6134   _ref_processor = rp;
6135   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6136 }
6137 
6138 // This closure is used to mark refs into the CMS generation at the
6139 // second (final) checkpoint, and to scan and transitively follow
6140 // the unmarked oops. It is also used during the concurrent precleaning
6141 // phase while scanning objects on dirty cards in the CMS generation.
6142 // The marks are made in the marking bit map and the marking stack is
6143 // used for keeping the (newly) grey objects during the scan.
6144 // The parallel version (Par_...) appears further below.
6145 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6146   if (obj != NULL) {
6147     assert(obj->is_oop(), "expected an oop");
6148     HeapWord* addr = (HeapWord*)obj;
6149     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6150     assert(_collector->overflow_list_is_empty(),
6151            "overflow list should be empty");
6152     if (_span.contains(addr) &&
6153         !_bit_map->isMarked(addr)) {
6154       // mark bit map (object is now grey)
6155       _bit_map->mark(addr);
6156       // push on marking stack (stack should be empty), and drain the
6157       // stack by applying this closure to the oops in the oops popped
6158       // from the stack (i.e. blacken the grey objects)
6159       bool res = _mark_stack->push(obj);
6160       assert(res, "Should have space to push on empty stack");
6161       do {
6162         oop new_oop = _mark_stack->pop();
6163         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6164         assert(_bit_map->isMarked((HeapWord*)new_oop),
6165                "only grey objects on this stack");
6166         // iterate over the oops in this oop, marking and pushing
6167         // the ones in CMS heap (i.e. in _span).
6168         new_oop->oop_iterate(&_pushAndMarkClosure);
6169         // check if it's time to yield
6170         do_yield_check();
6171       } while (!_mark_stack->isEmpty() ||
6172                (!_concurrent_precleaning && take_from_overflow_list()));
6173         // if marking stack is empty, and we are not doing this
6174         // during precleaning, then check the overflow list
6175     }
6176     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6177     assert(_collector->overflow_list_is_empty(),
6178            "overflow list was drained above");
6179     // We could restore evacuated mark words, if any, used for
6180     // overflow list links here because the overflow list is
6181     // provably empty here. That would reduce the maximum
6182     // size requirements for preserved_{oop,mark}_stack.
6183     // But we'll just postpone it until we are all done
6184     // so we can just stream through.
6185     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6186       _collector->restore_preserved_marks_if_any();
6187       assert(_collector->no_preserved_marks(), "No preserved marks");
6188     }
6189     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6190            "All preserved marks should have been restored above");
6191   }
6192 }
6193 
6194 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6195 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6196 
6197 void MarkRefsIntoAndScanClosure::do_yield_work() {
6198   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6199          "CMS thread should hold CMS token");
6200   assert_lock_strong(_freelistLock);
6201   assert_lock_strong(_bit_map->lock());
6202   // relinquish the free_list_lock and bitMaplock()
6203   _bit_map->lock()->unlock();
6204   _freelistLock->unlock();
6205   ConcurrentMarkSweepThread::desynchronize(true);
6206   _collector->stopTimer();
6207   if (PrintCMSStatistics != 0) {
6208     _collector->incrementYields();
6209   }
6210 
6211   // See the comment in coordinator_yield()
6212   for (unsigned i = 0;
6213        i < CMSYieldSleepCount &&
6214        ConcurrentMarkSweepThread::should_yield() &&
6215        !CMSCollector::foregroundGCIsActive();
6216        ++i) {
6217     os::sleep(Thread::current(), 1, false);
6218   }
6219 
6220   ConcurrentMarkSweepThread::synchronize(true);
6221   _freelistLock->lock_without_safepoint_check();
6222   _bit_map->lock()->lock_without_safepoint_check();
6223   _collector->startTimer();
6224 }
6225 
6226 ///////////////////////////////////////////////////////////
6227 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6228 //                                 MarkRefsIntoAndScanClosure
6229 ///////////////////////////////////////////////////////////
6230 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6231   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6232   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6233   _span(span),
6234   _bit_map(bit_map),
6235   _work_queue(work_queue),
6236   _low_water_mark(MIN2((work_queue->max_elems()/4),
6237                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6238   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6239 {
6240   _ref_processor = rp;
6241   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6242 }
6243 
6244 // This closure is used to mark refs into the CMS generation at the
6245 // second (final) checkpoint, and to scan and transitively follow
6246 // the unmarked oops. The marks are made in the marking bit map and
6247 // the work_queue is used for keeping the (newly) grey objects during
6248 // the scan phase whence they are also available for stealing by parallel
6249 // threads. Since the marking bit map is shared, updates are
6250 // synchronized (via CAS).
6251 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6252   if (obj != NULL) {
6253     // Ignore mark word because this could be an already marked oop
6254     // that may be chained at the end of the overflow list.
6255     assert(obj->is_oop(true), "expected an oop");
6256     HeapWord* addr = (HeapWord*)obj;
6257     if (_span.contains(addr) &&
6258         !_bit_map->isMarked(addr)) {
6259       // mark bit map (object will become grey):
6260       // It is possible for several threads to be
6261       // trying to "claim" this object concurrently;
6262       // the unique thread that succeeds in marking the
6263       // object first will do the subsequent push on
6264       // to the work queue (or overflow list).
6265       if (_bit_map->par_mark(addr)) {
6266         // push on work_queue (which may not be empty), and trim the
6267         // queue to an appropriate length by applying this closure to
6268         // the oops in the oops popped from the stack (i.e. blacken the
6269         // grey objects)
6270         bool res = _work_queue->push(obj);
6271         assert(res, "Low water mark should be less than capacity?");
6272         trim_queue(_low_water_mark);
6273       } // Else, another thread claimed the object
6274     }
6275   }
6276 }
6277 
6278 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6279 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6280 
6281 // This closure is used to rescan the marked objects on the dirty cards
6282 // in the mod union table and the card table proper.
6283 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6284   oop p, MemRegion mr) {
6285 
6286   size_t size = 0;
6287   HeapWord* addr = (HeapWord*)p;
6288   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6289   assert(_span.contains(addr), "we are scanning the CMS generation");
6290   // check if it's time to yield
6291   if (do_yield_check()) {
6292     // We yielded for some foreground stop-world work,
6293     // and we have been asked to abort this ongoing preclean cycle.
6294     return 0;
6295   }
6296   if (_bitMap->isMarked(addr)) {
6297     // it's marked; is it potentially uninitialized?
6298     if (p->klass_or_null() != NULL) {
6299         // an initialized object; ignore mark word in verification below
6300         // since we are running concurrent with mutators
6301         assert(p->is_oop(true), "should be an oop");
6302         if (p->is_objArray()) {
6303           // objArrays are precisely marked; restrict scanning
6304           // to dirty cards only.
6305           size = CompactibleFreeListSpace::adjustObjectSize(
6306                    p->oop_iterate_size(_scanningClosure, mr));
6307         } else {
6308           // A non-array may have been imprecisely marked; we need
6309           // to scan object in its entirety.
6310           size = CompactibleFreeListSpace::adjustObjectSize(
6311                    p->oop_iterate_size(_scanningClosure));
6312         }
6313         #ifdef ASSERT
6314           size_t direct_size =
6315             CompactibleFreeListSpace::adjustObjectSize(p->size());
6316           assert(size == direct_size, "Inconsistency in size");
6317           assert(size >= 3, "Necessary for Printezis marks to work");
6318           if (!_bitMap->isMarked(addr+1)) {
6319             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6320           } else {
6321             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6322             assert(_bitMap->isMarked(addr+size-1),
6323                    "inconsistent Printezis mark");
6324           }
6325         #endif // ASSERT
6326     } else {
6327       // An uninitialized object.
6328       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6329       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6330       size = pointer_delta(nextOneAddr + 1, addr);
6331       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6332              "alignment problem");
6333       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6334       // will dirty the card when the klass pointer is installed in the
6335       // object (signaling the completion of initialization).
6336     }
6337   } else {
6338     // Either a not yet marked object or an uninitialized object
6339     if (p->klass_or_null() == NULL) {
6340       // An uninitialized object, skip to the next card, since
6341       // we may not be able to read its P-bits yet.
6342       assert(size == 0, "Initial value");
6343     } else {
6344       // An object not (yet) reached by marking: we merely need to
6345       // compute its size so as to go look at the next block.
6346       assert(p->is_oop(true), "should be an oop");
6347       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6348     }
6349   }
6350   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6351   return size;
6352 }
6353 
6354 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6355   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6356          "CMS thread should hold CMS token");
6357   assert_lock_strong(_freelistLock);
6358   assert_lock_strong(_bitMap->lock());
6359   // relinquish the free_list_lock and bitMaplock()
6360   _bitMap->lock()->unlock();
6361   _freelistLock->unlock();
6362   ConcurrentMarkSweepThread::desynchronize(true);
6363   _collector->stopTimer();
6364   if (PrintCMSStatistics != 0) {
6365     _collector->incrementYields();
6366   }
6367 
6368   // See the comment in coordinator_yield()
6369   for (unsigned i = 0; i < CMSYieldSleepCount &&
6370                    ConcurrentMarkSweepThread::should_yield() &&
6371                    !CMSCollector::foregroundGCIsActive(); ++i) {
6372     os::sleep(Thread::current(), 1, false);
6373   }
6374 
6375   ConcurrentMarkSweepThread::synchronize(true);
6376   _freelistLock->lock_without_safepoint_check();
6377   _bitMap->lock()->lock_without_safepoint_check();
6378   _collector->startTimer();
6379 }
6380 
6381 
6382 //////////////////////////////////////////////////////////////////
6383 // SurvivorSpacePrecleanClosure
6384 //////////////////////////////////////////////////////////////////
6385 // This (single-threaded) closure is used to preclean the oops in
6386 // the survivor spaces.
6387 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6388 
6389   HeapWord* addr = (HeapWord*)p;
6390   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6391   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6392   assert(p->klass_or_null() != NULL, "object should be initialized");
6393   // an initialized object; ignore mark word in verification below
6394   // since we are running concurrent with mutators
6395   assert(p->is_oop(true), "should be an oop");
6396   // Note that we do not yield while we iterate over
6397   // the interior oops of p, pushing the relevant ones
6398   // on our marking stack.
6399   size_t size = p->oop_iterate_size(_scanning_closure);
6400   do_yield_check();
6401   // Observe that below, we do not abandon the preclean
6402   // phase as soon as we should; rather we empty the
6403   // marking stack before returning. This is to satisfy
6404   // some existing assertions. In general, it may be a
6405   // good idea to abort immediately and complete the marking
6406   // from the grey objects at a later time.
6407   while (!_mark_stack->isEmpty()) {
6408     oop new_oop = _mark_stack->pop();
6409     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6410     assert(_bit_map->isMarked((HeapWord*)new_oop),
6411            "only grey objects on this stack");
6412     // iterate over the oops in this oop, marking and pushing
6413     // the ones in CMS heap (i.e. in _span).
6414     new_oop->oop_iterate(_scanning_closure);
6415     // check if it's time to yield
6416     do_yield_check();
6417   }
6418   unsigned int after_count =
6419     GenCollectedHeap::heap()->total_collections();
6420   bool abort = (_before_count != after_count) ||
6421                _collector->should_abort_preclean();
6422   return abort ? 0 : size;
6423 }
6424 
6425 void SurvivorSpacePrecleanClosure::do_yield_work() {
6426   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6427          "CMS thread should hold CMS token");
6428   assert_lock_strong(_bit_map->lock());
6429   // Relinquish the bit map lock
6430   _bit_map->lock()->unlock();
6431   ConcurrentMarkSweepThread::desynchronize(true);
6432   _collector->stopTimer();
6433   if (PrintCMSStatistics != 0) {
6434     _collector->incrementYields();
6435   }
6436 
6437   // See the comment in coordinator_yield()
6438   for (unsigned i = 0; i < CMSYieldSleepCount &&
6439                        ConcurrentMarkSweepThread::should_yield() &&
6440                        !CMSCollector::foregroundGCIsActive(); ++i) {
6441     os::sleep(Thread::current(), 1, false);
6442   }
6443 
6444   ConcurrentMarkSweepThread::synchronize(true);
6445   _bit_map->lock()->lock_without_safepoint_check();
6446   _collector->startTimer();
6447 }
6448 
6449 // This closure is used to rescan the marked objects on the dirty cards
6450 // in the mod union table and the card table proper. In the parallel
6451 // case, although the bitMap is shared, we do a single read so the
6452 // isMarked() query is "safe".
6453 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6454   // Ignore mark word because we are running concurrent with mutators
6455   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6456   HeapWord* addr = (HeapWord*)p;
6457   assert(_span.contains(addr), "we are scanning the CMS generation");
6458   bool is_obj_array = false;
6459   #ifdef ASSERT
6460     if (!_parallel) {
6461       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6462       assert(_collector->overflow_list_is_empty(),
6463              "overflow list should be empty");
6464 
6465     }
6466   #endif // ASSERT
6467   if (_bit_map->isMarked(addr)) {
6468     // Obj arrays are precisely marked, non-arrays are not;
6469     // so we scan objArrays precisely and non-arrays in their
6470     // entirety.
6471     if (p->is_objArray()) {
6472       is_obj_array = true;
6473       if (_parallel) {
6474         p->oop_iterate(_par_scan_closure, mr);
6475       } else {
6476         p->oop_iterate(_scan_closure, mr);
6477       }
6478     } else {
6479       if (_parallel) {
6480         p->oop_iterate(_par_scan_closure);
6481       } else {
6482         p->oop_iterate(_scan_closure);
6483       }
6484     }
6485   }
6486   #ifdef ASSERT
6487     if (!_parallel) {
6488       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6489       assert(_collector->overflow_list_is_empty(),
6490              "overflow list should be empty");
6491 
6492     }
6493   #endif // ASSERT
6494   return is_obj_array;
6495 }
6496 
6497 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6498                         MemRegion span,
6499                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6500                         bool should_yield, bool verifying):
6501   _collector(collector),
6502   _span(span),
6503   _bitMap(bitMap),
6504   _mut(&collector->_modUnionTable),
6505   _markStack(markStack),
6506   _yield(should_yield),
6507   _skipBits(0)
6508 {
6509   assert(_markStack->isEmpty(), "stack should be empty");
6510   _finger = _bitMap->startWord();
6511   _threshold = _finger;
6512   assert(_collector->_restart_addr == NULL, "Sanity check");
6513   assert(_span.contains(_finger), "Out of bounds _finger?");
6514   DEBUG_ONLY(_verifying = verifying;)
6515 }
6516 
6517 void MarkFromRootsClosure::reset(HeapWord* addr) {
6518   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6519   assert(_span.contains(addr), "Out of bounds _finger?");
6520   _finger = addr;
6521   _threshold = (HeapWord*)round_to(
6522                  (intptr_t)_finger, CardTableModRefBS::card_size);
6523 }
6524 
6525 // Should revisit to see if this should be restructured for
6526 // greater efficiency.
6527 bool MarkFromRootsClosure::do_bit(size_t offset) {
6528   if (_skipBits > 0) {
6529     _skipBits--;
6530     return true;
6531   }
6532   // convert offset into a HeapWord*
6533   HeapWord* addr = _bitMap->startWord() + offset;
6534   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6535          "address out of range");
6536   assert(_bitMap->isMarked(addr), "tautology");
6537   if (_bitMap->isMarked(addr+1)) {
6538     // this is an allocated but not yet initialized object
6539     assert(_skipBits == 0, "tautology");
6540     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6541     oop p = oop(addr);
6542     if (p->klass_or_null() == NULL) {
6543       DEBUG_ONLY(if (!_verifying) {)
6544         // We re-dirty the cards on which this object lies and increase
6545         // the _threshold so that we'll come back to scan this object
6546         // during the preclean or remark phase. (CMSCleanOnEnter)
6547         if (CMSCleanOnEnter) {
6548           size_t sz = _collector->block_size_using_printezis_bits(addr);
6549           HeapWord* end_card_addr   = (HeapWord*)round_to(
6550                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6551           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6552           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6553           // Bump _threshold to end_card_addr; note that
6554           // _threshold cannot possibly exceed end_card_addr, anyhow.
6555           // This prevents future clearing of the card as the scan proceeds
6556           // to the right.
6557           assert(_threshold <= end_card_addr,
6558                  "Because we are just scanning into this object");
6559           if (_threshold < end_card_addr) {
6560             _threshold = end_card_addr;
6561           }
6562           if (p->klass_or_null() != NULL) {
6563             // Redirty the range of cards...
6564             _mut->mark_range(redirty_range);
6565           } // ...else the setting of klass will dirty the card anyway.
6566         }
6567       DEBUG_ONLY(})
6568       return true;
6569     }
6570   }
6571   scanOopsInOop(addr);
6572   return true;
6573 }
6574 
6575 // We take a break if we've been at this for a while,
6576 // so as to avoid monopolizing the locks involved.
6577 void MarkFromRootsClosure::do_yield_work() {
6578   // First give up the locks, then yield, then re-lock
6579   // We should probably use a constructor/destructor idiom to
6580   // do this unlock/lock or modify the MutexUnlocker class to
6581   // serve our purpose. XXX
6582   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6583          "CMS thread should hold CMS token");
6584   assert_lock_strong(_bitMap->lock());
6585   _bitMap->lock()->unlock();
6586   ConcurrentMarkSweepThread::desynchronize(true);
6587   _collector->stopTimer();
6588   if (PrintCMSStatistics != 0) {
6589     _collector->incrementYields();
6590   }
6591 
6592   // See the comment in coordinator_yield()
6593   for (unsigned i = 0; i < CMSYieldSleepCount &&
6594                        ConcurrentMarkSweepThread::should_yield() &&
6595                        !CMSCollector::foregroundGCIsActive(); ++i) {
6596     os::sleep(Thread::current(), 1, false);
6597   }
6598 
6599   ConcurrentMarkSweepThread::synchronize(true);
6600   _bitMap->lock()->lock_without_safepoint_check();
6601   _collector->startTimer();
6602 }
6603 
6604 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6605   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6606   assert(_markStack->isEmpty(),
6607          "should drain stack to limit stack usage");
6608   // convert ptr to an oop preparatory to scanning
6609   oop obj = oop(ptr);
6610   // Ignore mark word in verification below, since we
6611   // may be running concurrent with mutators.
6612   assert(obj->is_oop(true), "should be an oop");
6613   assert(_finger <= ptr, "_finger runneth ahead");
6614   // advance the finger to right end of this object
6615   _finger = ptr + obj->size();
6616   assert(_finger > ptr, "we just incremented it above");
6617   // On large heaps, it may take us some time to get through
6618   // the marking phase. During
6619   // this time it's possible that a lot of mutations have
6620   // accumulated in the card table and the mod union table --
6621   // these mutation records are redundant until we have
6622   // actually traced into the corresponding card.
6623   // Here, we check whether advancing the finger would make
6624   // us cross into a new card, and if so clear corresponding
6625   // cards in the MUT (preclean them in the card-table in the
6626   // future).
6627 
6628   DEBUG_ONLY(if (!_verifying) {)
6629     // The clean-on-enter optimization is disabled by default,
6630     // until we fix 6178663.
6631     if (CMSCleanOnEnter && (_finger > _threshold)) {
6632       // [_threshold, _finger) represents the interval
6633       // of cards to be cleared  in MUT (or precleaned in card table).
6634       // The set of cards to be cleared is all those that overlap
6635       // with the interval [_threshold, _finger); note that
6636       // _threshold is always kept card-aligned but _finger isn't
6637       // always card-aligned.
6638       HeapWord* old_threshold = _threshold;
6639       assert(old_threshold == (HeapWord*)round_to(
6640               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6641              "_threshold should always be card-aligned");
6642       _threshold = (HeapWord*)round_to(
6643                      (intptr_t)_finger, CardTableModRefBS::card_size);
6644       MemRegion mr(old_threshold, _threshold);
6645       assert(!mr.is_empty(), "Control point invariant");
6646       assert(_span.contains(mr), "Should clear within span");
6647       _mut->clear_range(mr);
6648     }
6649   DEBUG_ONLY(})
6650   // Note: the finger doesn't advance while we drain
6651   // the stack below.
6652   PushOrMarkClosure pushOrMarkClosure(_collector,
6653                                       _span, _bitMap, _markStack,
6654                                       _finger, this);
6655   bool res = _markStack->push(obj);
6656   assert(res, "Empty non-zero size stack should have space for single push");
6657   while (!_markStack->isEmpty()) {
6658     oop new_oop = _markStack->pop();
6659     // Skip verifying header mark word below because we are
6660     // running concurrent with mutators.
6661     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6662     // now scan this oop's oops
6663     new_oop->oop_iterate(&pushOrMarkClosure);
6664     do_yield_check();
6665   }
6666   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6667 }
6668 
6669 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6670                        CMSCollector* collector, MemRegion span,
6671                        CMSBitMap* bit_map,
6672                        OopTaskQueue* work_queue,
6673                        CMSMarkStack*  overflow_stack):
6674   _collector(collector),
6675   _whole_span(collector->_span),
6676   _span(span),
6677   _bit_map(bit_map),
6678   _mut(&collector->_modUnionTable),
6679   _work_queue(work_queue),
6680   _overflow_stack(overflow_stack),
6681   _skip_bits(0),
6682   _task(task)
6683 {
6684   assert(_work_queue->size() == 0, "work_queue should be empty");
6685   _finger = span.start();
6686   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6687   assert(_span.contains(_finger), "Out of bounds _finger?");
6688 }
6689 
6690 // Should revisit to see if this should be restructured for
6691 // greater efficiency.
6692 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6693   if (_skip_bits > 0) {
6694     _skip_bits--;
6695     return true;
6696   }
6697   // convert offset into a HeapWord*
6698   HeapWord* addr = _bit_map->startWord() + offset;
6699   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6700          "address out of range");
6701   assert(_bit_map->isMarked(addr), "tautology");
6702   if (_bit_map->isMarked(addr+1)) {
6703     // this is an allocated object that might not yet be initialized
6704     assert(_skip_bits == 0, "tautology");
6705     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6706     oop p = oop(addr);
6707     if (p->klass_or_null() == NULL) {
6708       // in the case of Clean-on-Enter optimization, redirty card
6709       // and avoid clearing card by increasing  the threshold.
6710       return true;
6711     }
6712   }
6713   scan_oops_in_oop(addr);
6714   return true;
6715 }
6716 
6717 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6718   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6719   // Should we assert that our work queue is empty or
6720   // below some drain limit?
6721   assert(_work_queue->size() == 0,
6722          "should drain stack to limit stack usage");
6723   // convert ptr to an oop preparatory to scanning
6724   oop obj = oop(ptr);
6725   // Ignore mark word in verification below, since we
6726   // may be running concurrent with mutators.
6727   assert(obj->is_oop(true), "should be an oop");
6728   assert(_finger <= ptr, "_finger runneth ahead");
6729   // advance the finger to right end of this object
6730   _finger = ptr + obj->size();
6731   assert(_finger > ptr, "we just incremented it above");
6732   // On large heaps, it may take us some time to get through
6733   // the marking phase. During
6734   // this time it's possible that a lot of mutations have
6735   // accumulated in the card table and the mod union table --
6736   // these mutation records are redundant until we have
6737   // actually traced into the corresponding card.
6738   // Here, we check whether advancing the finger would make
6739   // us cross into a new card, and if so clear corresponding
6740   // cards in the MUT (preclean them in the card-table in the
6741   // future).
6742 
6743   // The clean-on-enter optimization is disabled by default,
6744   // until we fix 6178663.
6745   if (CMSCleanOnEnter && (_finger > _threshold)) {
6746     // [_threshold, _finger) represents the interval
6747     // of cards to be cleared  in MUT (or precleaned in card table).
6748     // The set of cards to be cleared is all those that overlap
6749     // with the interval [_threshold, _finger); note that
6750     // _threshold is always kept card-aligned but _finger isn't
6751     // always card-aligned.
6752     HeapWord* old_threshold = _threshold;
6753     assert(old_threshold == (HeapWord*)round_to(
6754             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6755            "_threshold should always be card-aligned");
6756     _threshold = (HeapWord*)round_to(
6757                    (intptr_t)_finger, CardTableModRefBS::card_size);
6758     MemRegion mr(old_threshold, _threshold);
6759     assert(!mr.is_empty(), "Control point invariant");
6760     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6761     _mut->clear_range(mr);
6762   }
6763 
6764   // Note: the local finger doesn't advance while we drain
6765   // the stack below, but the global finger sure can and will.
6766   HeapWord** gfa = _task->global_finger_addr();
6767   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6768                                       _span, _bit_map,
6769                                       _work_queue,
6770                                       _overflow_stack,
6771                                       _finger,
6772                                       gfa, this);
6773   bool res = _work_queue->push(obj);   // overflow could occur here
6774   assert(res, "Will hold once we use workqueues");
6775   while (true) {
6776     oop new_oop;
6777     if (!_work_queue->pop_local(new_oop)) {
6778       // We emptied our work_queue; check if there's stuff that can
6779       // be gotten from the overflow stack.
6780       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6781             _overflow_stack, _work_queue)) {
6782         do_yield_check();
6783         continue;
6784       } else {  // done
6785         break;
6786       }
6787     }
6788     // Skip verifying header mark word below because we are
6789     // running concurrent with mutators.
6790     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6791     // now scan this oop's oops
6792     new_oop->oop_iterate(&pushOrMarkClosure);
6793     do_yield_check();
6794   }
6795   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6796 }
6797 
6798 // Yield in response to a request from VM Thread or
6799 // from mutators.
6800 void Par_MarkFromRootsClosure::do_yield_work() {
6801   assert(_task != NULL, "sanity");
6802   _task->yield();
6803 }
6804 
6805 // A variant of the above used for verifying CMS marking work.
6806 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6807                         MemRegion span,
6808                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6809                         CMSMarkStack*  mark_stack):
6810   _collector(collector),
6811   _span(span),
6812   _verification_bm(verification_bm),
6813   _cms_bm(cms_bm),
6814   _mark_stack(mark_stack),
6815   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6816                       mark_stack)
6817 {
6818   assert(_mark_stack->isEmpty(), "stack should be empty");
6819   _finger = _verification_bm->startWord();
6820   assert(_collector->_restart_addr == NULL, "Sanity check");
6821   assert(_span.contains(_finger), "Out of bounds _finger?");
6822 }
6823 
6824 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6825   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6826   assert(_span.contains(addr), "Out of bounds _finger?");
6827   _finger = addr;
6828 }
6829 
6830 // Should revisit to see if this should be restructured for
6831 // greater efficiency.
6832 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6833   // convert offset into a HeapWord*
6834   HeapWord* addr = _verification_bm->startWord() + offset;
6835   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6836          "address out of range");
6837   assert(_verification_bm->isMarked(addr), "tautology");
6838   assert(_cms_bm->isMarked(addr), "tautology");
6839 
6840   assert(_mark_stack->isEmpty(),
6841          "should drain stack to limit stack usage");
6842   // convert addr to an oop preparatory to scanning
6843   oop obj = oop(addr);
6844   assert(obj->is_oop(), "should be an oop");
6845   assert(_finger <= addr, "_finger runneth ahead");
6846   // advance the finger to right end of this object
6847   _finger = addr + obj->size();
6848   assert(_finger > addr, "we just incremented it above");
6849   // Note: the finger doesn't advance while we drain
6850   // the stack below.
6851   bool res = _mark_stack->push(obj);
6852   assert(res, "Empty non-zero size stack should have space for single push");
6853   while (!_mark_stack->isEmpty()) {
6854     oop new_oop = _mark_stack->pop();
6855     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6856     // now scan this oop's oops
6857     new_oop->oop_iterate(&_pam_verify_closure);
6858   }
6859   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6860   return true;
6861 }
6862 
6863 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6864   CMSCollector* collector, MemRegion span,
6865   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6866   CMSMarkStack*  mark_stack):
6867   MetadataAwareOopClosure(collector->ref_processor()),
6868   _collector(collector),
6869   _span(span),
6870   _verification_bm(verification_bm),
6871   _cms_bm(cms_bm),
6872   _mark_stack(mark_stack)
6873 { }
6874 
6875 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6876 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6877 
6878 // Upon stack overflow, we discard (part of) the stack,
6879 // remembering the least address amongst those discarded
6880 // in CMSCollector's _restart_address.
6881 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6882   // Remember the least grey address discarded
6883   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6884   _collector->lower_restart_addr(ra);
6885   _mark_stack->reset();  // discard stack contents
6886   _mark_stack->expand(); // expand the stack if possible
6887 }
6888 
6889 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6890   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6891   HeapWord* addr = (HeapWord*)obj;
6892   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6893     // Oop lies in _span and isn't yet grey or black
6894     _verification_bm->mark(addr);            // now grey
6895     if (!_cms_bm->isMarked(addr)) {
6896       oop(addr)->print();
6897       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6898                              p2i(addr));
6899       fatal("... aborting");
6900     }
6901 
6902     if (!_mark_stack->push(obj)) { // stack overflow
6903       if (PrintCMSStatistics != 0) {
6904         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6905                                SIZE_FORMAT, _mark_stack->capacity());
6906       }
6907       assert(_mark_stack->isFull(), "Else push should have succeeded");
6908       handle_stack_overflow(addr);
6909     }
6910     // anything including and to the right of _finger
6911     // will be scanned as we iterate over the remainder of the
6912     // bit map
6913   }
6914 }
6915 
6916 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6917                      MemRegion span,
6918                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6919                      HeapWord* finger, MarkFromRootsClosure* parent) :
6920   MetadataAwareOopClosure(collector->ref_processor()),
6921   _collector(collector),
6922   _span(span),
6923   _bitMap(bitMap),
6924   _markStack(markStack),
6925   _finger(finger),
6926   _parent(parent)
6927 { }
6928 
6929 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6930                      MemRegion span,
6931                      CMSBitMap* bit_map,
6932                      OopTaskQueue* work_queue,
6933                      CMSMarkStack*  overflow_stack,
6934                      HeapWord* finger,
6935                      HeapWord** global_finger_addr,
6936                      Par_MarkFromRootsClosure* parent) :
6937   MetadataAwareOopClosure(collector->ref_processor()),
6938   _collector(collector),
6939   _whole_span(collector->_span),
6940   _span(span),
6941   _bit_map(bit_map),
6942   _work_queue(work_queue),
6943   _overflow_stack(overflow_stack),
6944   _finger(finger),
6945   _global_finger_addr(global_finger_addr),
6946   _parent(parent)
6947 { }
6948 
6949 // Assumes thread-safe access by callers, who are
6950 // responsible for mutual exclusion.
6951 void CMSCollector::lower_restart_addr(HeapWord* low) {
6952   assert(_span.contains(low), "Out of bounds addr");
6953   if (_restart_addr == NULL) {
6954     _restart_addr = low;
6955   } else {
6956     _restart_addr = MIN2(_restart_addr, low);
6957   }
6958 }
6959 
6960 // Upon stack overflow, we discard (part of) the stack,
6961 // remembering the least address amongst those discarded
6962 // in CMSCollector's _restart_address.
6963 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6964   // Remember the least grey address discarded
6965   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6966   _collector->lower_restart_addr(ra);
6967   _markStack->reset();  // discard stack contents
6968   _markStack->expand(); // expand the stack if possible
6969 }
6970 
6971 // Upon stack overflow, we discard (part of) the stack,
6972 // remembering the least address amongst those discarded
6973 // in CMSCollector's _restart_address.
6974 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6975   // We need to do this under a mutex to prevent other
6976   // workers from interfering with the work done below.
6977   MutexLockerEx ml(_overflow_stack->par_lock(),
6978                    Mutex::_no_safepoint_check_flag);
6979   // Remember the least grey address discarded
6980   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6981   _collector->lower_restart_addr(ra);
6982   _overflow_stack->reset();  // discard stack contents
6983   _overflow_stack->expand(); // expand the stack if possible
6984 }
6985 
6986 void PushOrMarkClosure::do_oop(oop obj) {
6987   // Ignore mark word because we are running concurrent with mutators.
6988   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6989   HeapWord* addr = (HeapWord*)obj;
6990   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6991     // Oop lies in _span and isn't yet grey or black
6992     _bitMap->mark(addr);            // now grey
6993     if (addr < _finger) {
6994       // the bit map iteration has already either passed, or
6995       // sampled, this bit in the bit map; we'll need to
6996       // use the marking stack to scan this oop's oops.
6997       bool simulate_overflow = false;
6998       NOT_PRODUCT(
6999         if (CMSMarkStackOverflowALot &&
7000             _collector->simulate_overflow()) {
7001           // simulate a stack overflow
7002           simulate_overflow = true;
7003         }
7004       )
7005       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7006         if (PrintCMSStatistics != 0) {
7007           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7008                                  SIZE_FORMAT, _markStack->capacity());
7009         }
7010         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7011         handle_stack_overflow(addr);
7012       }
7013     }
7014     // anything including and to the right of _finger
7015     // will be scanned as we iterate over the remainder of the
7016     // bit map
7017     do_yield_check();
7018   }
7019 }
7020 
7021 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7022 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7023 
7024 void Par_PushOrMarkClosure::do_oop(oop obj) {
7025   // Ignore mark word because we are running concurrent with mutators.
7026   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7027   HeapWord* addr = (HeapWord*)obj;
7028   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7029     // Oop lies in _span and isn't yet grey or black
7030     // We read the global_finger (volatile read) strictly after marking oop
7031     bool res = _bit_map->par_mark(addr);    // now grey
7032     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7033     // Should we push this marked oop on our stack?
7034     // -- if someone else marked it, nothing to do
7035     // -- if target oop is above global finger nothing to do
7036     // -- if target oop is in chunk and above local finger
7037     //      then nothing to do
7038     // -- else push on work queue
7039     if (   !res       // someone else marked it, they will deal with it
7040         || (addr >= *gfa)  // will be scanned in a later task
7041         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7042       return;
7043     }
7044     // the bit map iteration has already either passed, or
7045     // sampled, this bit in the bit map; we'll need to
7046     // use the marking stack to scan this oop's oops.
7047     bool simulate_overflow = false;
7048     NOT_PRODUCT(
7049       if (CMSMarkStackOverflowALot &&
7050           _collector->simulate_overflow()) {
7051         // simulate a stack overflow
7052         simulate_overflow = true;
7053       }
7054     )
7055     if (simulate_overflow ||
7056         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7057       // stack overflow
7058       if (PrintCMSStatistics != 0) {
7059         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7060                                SIZE_FORMAT, _overflow_stack->capacity());
7061       }
7062       // We cannot assert that the overflow stack is full because
7063       // it may have been emptied since.
7064       assert(simulate_overflow ||
7065              _work_queue->size() == _work_queue->max_elems(),
7066             "Else push should have succeeded");
7067       handle_stack_overflow(addr);
7068     }
7069     do_yield_check();
7070   }
7071 }
7072 
7073 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7074 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7075 
7076 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7077                                        MemRegion span,
7078                                        ReferenceProcessor* rp,
7079                                        CMSBitMap* bit_map,
7080                                        CMSBitMap* mod_union_table,
7081                                        CMSMarkStack*  mark_stack,
7082                                        bool           concurrent_precleaning):
7083   MetadataAwareOopClosure(rp),
7084   _collector(collector),
7085   _span(span),
7086   _bit_map(bit_map),
7087   _mod_union_table(mod_union_table),
7088   _mark_stack(mark_stack),
7089   _concurrent_precleaning(concurrent_precleaning)
7090 {
7091   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7092 }
7093 
7094 // Grey object rescan during pre-cleaning and second checkpoint phases --
7095 // the non-parallel version (the parallel version appears further below.)
7096 void PushAndMarkClosure::do_oop(oop obj) {
7097   // Ignore mark word verification. If during concurrent precleaning,
7098   // the object monitor may be locked. If during the checkpoint
7099   // phases, the object may already have been reached by a  different
7100   // path and may be at the end of the global overflow list (so
7101   // the mark word may be NULL).
7102   assert(obj->is_oop_or_null(true /* ignore mark word */),
7103          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7104   HeapWord* addr = (HeapWord*)obj;
7105   // Check if oop points into the CMS generation
7106   // and is not marked
7107   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7108     // a white object ...
7109     _bit_map->mark(addr);         // ... now grey
7110     // push on the marking stack (grey set)
7111     bool simulate_overflow = false;
7112     NOT_PRODUCT(
7113       if (CMSMarkStackOverflowALot &&
7114           _collector->simulate_overflow()) {
7115         // simulate a stack overflow
7116         simulate_overflow = true;
7117       }
7118     )
7119     if (simulate_overflow || !_mark_stack->push(obj)) {
7120       if (_concurrent_precleaning) {
7121          // During precleaning we can just dirty the appropriate card(s)
7122          // in the mod union table, thus ensuring that the object remains
7123          // in the grey set  and continue. In the case of object arrays
7124          // we need to dirty all of the cards that the object spans,
7125          // since the rescan of object arrays will be limited to the
7126          // dirty cards.
7127          // Note that no one can be interfering with us in this action
7128          // of dirtying the mod union table, so no locking or atomics
7129          // are required.
7130          if (obj->is_objArray()) {
7131            size_t sz = obj->size();
7132            HeapWord* end_card_addr = (HeapWord*)round_to(
7133                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7134            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7135            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7136            _mod_union_table->mark_range(redirty_range);
7137          } else {
7138            _mod_union_table->mark(addr);
7139          }
7140          _collector->_ser_pmc_preclean_ovflw++;
7141       } else {
7142          // During the remark phase, we need to remember this oop
7143          // in the overflow list.
7144          _collector->push_on_overflow_list(obj);
7145          _collector->_ser_pmc_remark_ovflw++;
7146       }
7147     }
7148   }
7149 }
7150 
7151 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7152                                                MemRegion span,
7153                                                ReferenceProcessor* rp,
7154                                                CMSBitMap* bit_map,
7155                                                OopTaskQueue* work_queue):
7156   MetadataAwareOopClosure(rp),
7157   _collector(collector),
7158   _span(span),
7159   _bit_map(bit_map),
7160   _work_queue(work_queue)
7161 {
7162   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7163 }
7164 
7165 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7166 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7167 
7168 // Grey object rescan during second checkpoint phase --
7169 // the parallel version.
7170 void Par_PushAndMarkClosure::do_oop(oop obj) {
7171   // In the assert below, we ignore the mark word because
7172   // this oop may point to an already visited object that is
7173   // on the overflow stack (in which case the mark word has
7174   // been hijacked for chaining into the overflow stack --
7175   // if this is the last object in the overflow stack then
7176   // its mark word will be NULL). Because this object may
7177   // have been subsequently popped off the global overflow
7178   // stack, and the mark word possibly restored to the prototypical
7179   // value, by the time we get to examined this failing assert in
7180   // the debugger, is_oop_or_null(false) may subsequently start
7181   // to hold.
7182   assert(obj->is_oop_or_null(true),
7183          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7184   HeapWord* addr = (HeapWord*)obj;
7185   // Check if oop points into the CMS generation
7186   // and is not marked
7187   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7188     // a white object ...
7189     // If we manage to "claim" the object, by being the
7190     // first thread to mark it, then we push it on our
7191     // marking stack
7192     if (_bit_map->par_mark(addr)) {     // ... now grey
7193       // push on work queue (grey set)
7194       bool simulate_overflow = false;
7195       NOT_PRODUCT(
7196         if (CMSMarkStackOverflowALot &&
7197             _collector->par_simulate_overflow()) {
7198           // simulate a stack overflow
7199           simulate_overflow = true;
7200         }
7201       )
7202       if (simulate_overflow || !_work_queue->push(obj)) {
7203         _collector->par_push_on_overflow_list(obj);
7204         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7205       }
7206     } // Else, some other thread got there first
7207   }
7208 }
7209 
7210 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7211 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7212 
7213 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7214   Mutex* bml = _collector->bitMapLock();
7215   assert_lock_strong(bml);
7216   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7217          "CMS thread should hold CMS token");
7218 
7219   bml->unlock();
7220   ConcurrentMarkSweepThread::desynchronize(true);
7221 
7222   _collector->stopTimer();
7223   if (PrintCMSStatistics != 0) {
7224     _collector->incrementYields();
7225   }
7226 
7227   // See the comment in coordinator_yield()
7228   for (unsigned i = 0; i < CMSYieldSleepCount &&
7229                        ConcurrentMarkSweepThread::should_yield() &&
7230                        !CMSCollector::foregroundGCIsActive(); ++i) {
7231     os::sleep(Thread::current(), 1, false);
7232   }
7233 
7234   ConcurrentMarkSweepThread::synchronize(true);
7235   bml->lock();
7236 
7237   _collector->startTimer();
7238 }
7239 
7240 bool CMSPrecleanRefsYieldClosure::should_return() {
7241   if (ConcurrentMarkSweepThread::should_yield()) {
7242     do_yield_work();
7243   }
7244   return _collector->foregroundGCIsActive();
7245 }
7246 
7247 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7248   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7249          "mr should be aligned to start at a card boundary");
7250   // We'd like to assert:
7251   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7252   //        "mr should be a range of cards");
7253   // However, that would be too strong in one case -- the last
7254   // partition ends at _unallocated_block which, in general, can be
7255   // an arbitrary boundary, not necessarily card aligned.
7256   if (PrintCMSStatistics != 0) {
7257     _num_dirty_cards +=
7258          mr.word_size()/CardTableModRefBS::card_size_in_words;
7259   }
7260   _space->object_iterate_mem(mr, &_scan_cl);
7261 }
7262 
7263 SweepClosure::SweepClosure(CMSCollector* collector,
7264                            ConcurrentMarkSweepGeneration* g,
7265                            CMSBitMap* bitMap, bool should_yield) :
7266   _collector(collector),
7267   _g(g),
7268   _sp(g->cmsSpace()),
7269   _limit(_sp->sweep_limit()),
7270   _freelistLock(_sp->freelistLock()),
7271   _bitMap(bitMap),
7272   _yield(should_yield),
7273   _inFreeRange(false),           // No free range at beginning of sweep
7274   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7275   _lastFreeRangeCoalesced(false),
7276   _freeFinger(g->used_region().start())
7277 {
7278   NOT_PRODUCT(
7279     _numObjectsFreed = 0;
7280     _numWordsFreed   = 0;
7281     _numObjectsLive = 0;
7282     _numWordsLive = 0;
7283     _numObjectsAlreadyFree = 0;
7284     _numWordsAlreadyFree = 0;
7285     _last_fc = NULL;
7286 
7287     _sp->initializeIndexedFreeListArrayReturnedBytes();
7288     _sp->dictionary()->initialize_dict_returned_bytes();
7289   )
7290   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7291          "sweep _limit out of bounds");
7292   if (CMSTraceSweeper) {
7293     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7294                         p2i(_limit));
7295   }
7296 }
7297 
7298 void SweepClosure::print_on(outputStream* st) const {
7299   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7300                 p2i(_sp->bottom()), p2i(_sp->end()));
7301   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7302   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7303   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7304   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7305                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7306 }
7307 
7308 #ifndef PRODUCT
7309 // Assertion checking only:  no useful work in product mode --
7310 // however, if any of the flags below become product flags,
7311 // you may need to review this code to see if it needs to be
7312 // enabled in product mode.
7313 SweepClosure::~SweepClosure() {
7314   assert_lock_strong(_freelistLock);
7315   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7316          "sweep _limit out of bounds");
7317   if (inFreeRange()) {
7318     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7319     print();
7320     ShouldNotReachHere();
7321   }
7322   if (Verbose && PrintGC) {
7323     gclog_or_tty->print("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7324                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7325     gclog_or_tty->print_cr("\nLive " SIZE_FORMAT " objects,  "
7326                            SIZE_FORMAT " bytes  "
7327       "Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7328       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7329       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7330     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7331                         * sizeof(HeapWord);
7332     gclog_or_tty->print_cr("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7333 
7334     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7335       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7336       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7337       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7338       gclog_or_tty->print("Returned " SIZE_FORMAT " bytes", returned_bytes);
7339       gclog_or_tty->print("   Indexed List Returned " SIZE_FORMAT " bytes",
7340         indexListReturnedBytes);
7341       gclog_or_tty->print_cr("        Dictionary Returned " SIZE_FORMAT " bytes",
7342         dict_returned_bytes);
7343     }
7344   }
7345   if (CMSTraceSweeper) {
7346     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7347                            p2i(_limit));
7348   }
7349 }
7350 #endif  // PRODUCT
7351 
7352 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7353     bool freeRangeInFreeLists) {
7354   if (CMSTraceSweeper) {
7355     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7356                p2i(freeFinger), freeRangeInFreeLists);
7357   }
7358   assert(!inFreeRange(), "Trampling existing free range");
7359   set_inFreeRange(true);
7360   set_lastFreeRangeCoalesced(false);
7361 
7362   set_freeFinger(freeFinger);
7363   set_freeRangeInFreeLists(freeRangeInFreeLists);
7364   if (CMSTestInFreeList) {
7365     if (freeRangeInFreeLists) {
7366       FreeChunk* fc = (FreeChunk*) freeFinger;
7367       assert(fc->is_free(), "A chunk on the free list should be free.");
7368       assert(fc->size() > 0, "Free range should have a size");
7369       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7370     }
7371   }
7372 }
7373 
7374 // Note that the sweeper runs concurrently with mutators. Thus,
7375 // it is possible for direct allocation in this generation to happen
7376 // in the middle of the sweep. Note that the sweeper also coalesces
7377 // contiguous free blocks. Thus, unless the sweeper and the allocator
7378 // synchronize appropriately freshly allocated blocks may get swept up.
7379 // This is accomplished by the sweeper locking the free lists while
7380 // it is sweeping. Thus blocks that are determined to be free are
7381 // indeed free. There is however one additional complication:
7382 // blocks that have been allocated since the final checkpoint and
7383 // mark, will not have been marked and so would be treated as
7384 // unreachable and swept up. To prevent this, the allocator marks
7385 // the bit map when allocating during the sweep phase. This leads,
7386 // however, to a further complication -- objects may have been allocated
7387 // but not yet initialized -- in the sense that the header isn't yet
7388 // installed. The sweeper can not then determine the size of the block
7389 // in order to skip over it. To deal with this case, we use a technique
7390 // (due to Printezis) to encode such uninitialized block sizes in the
7391 // bit map. Since the bit map uses a bit per every HeapWord, but the
7392 // CMS generation has a minimum object size of 3 HeapWords, it follows
7393 // that "normal marks" won't be adjacent in the bit map (there will
7394 // always be at least two 0 bits between successive 1 bits). We make use
7395 // of these "unused" bits to represent uninitialized blocks -- the bit
7396 // corresponding to the start of the uninitialized object and the next
7397 // bit are both set. Finally, a 1 bit marks the end of the object that
7398 // started with the two consecutive 1 bits to indicate its potentially
7399 // uninitialized state.
7400 
7401 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7402   FreeChunk* fc = (FreeChunk*)addr;
7403   size_t res;
7404 
7405   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7406   // than "addr == _limit" because although _limit was a block boundary when
7407   // we started the sweep, it may no longer be one because heap expansion
7408   // may have caused us to coalesce the block ending at the address _limit
7409   // with a newly expanded chunk (this happens when _limit was set to the
7410   // previous _end of the space), so we may have stepped past _limit:
7411   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7412   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7413     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7414            "sweep _limit out of bounds");
7415     assert(addr < _sp->end(), "addr out of bounds");
7416     // Flush any free range we might be holding as a single
7417     // coalesced chunk to the appropriate free list.
7418     if (inFreeRange()) {
7419       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7420              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7421       flush_cur_free_chunk(freeFinger(),
7422                            pointer_delta(addr, freeFinger()));
7423       if (CMSTraceSweeper) {
7424         gclog_or_tty->print("Sweep: last chunk: ");
7425         gclog_or_tty->print("put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") "
7426                    "[coalesced:%d]\n",
7427                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7428                    lastFreeRangeCoalesced() ? 1 : 0);
7429       }
7430     }
7431 
7432     // help the iterator loop finish
7433     return pointer_delta(_sp->end(), addr);
7434   }
7435 
7436   assert(addr < _limit, "sweep invariant");
7437   // check if we should yield
7438   do_yield_check(addr);
7439   if (fc->is_free()) {
7440     // Chunk that is already free
7441     res = fc->size();
7442     do_already_free_chunk(fc);
7443     debug_only(_sp->verifyFreeLists());
7444     // If we flush the chunk at hand in lookahead_and_flush()
7445     // and it's coalesced with a preceding chunk, then the
7446     // process of "mangling" the payload of the coalesced block
7447     // will cause erasure of the size information from the
7448     // (erstwhile) header of all the coalesced blocks but the
7449     // first, so the first disjunct in the assert will not hold
7450     // in that specific case (in which case the second disjunct
7451     // will hold).
7452     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7453            "Otherwise the size info doesn't change at this step");
7454     NOT_PRODUCT(
7455       _numObjectsAlreadyFree++;
7456       _numWordsAlreadyFree += res;
7457     )
7458     NOT_PRODUCT(_last_fc = fc;)
7459   } else if (!_bitMap->isMarked(addr)) {
7460     // Chunk is fresh garbage
7461     res = do_garbage_chunk(fc);
7462     debug_only(_sp->verifyFreeLists());
7463     NOT_PRODUCT(
7464       _numObjectsFreed++;
7465       _numWordsFreed += res;
7466     )
7467   } else {
7468     // Chunk that is alive.
7469     res = do_live_chunk(fc);
7470     debug_only(_sp->verifyFreeLists());
7471     NOT_PRODUCT(
7472         _numObjectsLive++;
7473         _numWordsLive += res;
7474     )
7475   }
7476   return res;
7477 }
7478 
7479 // For the smart allocation, record following
7480 //  split deaths - a free chunk is removed from its free list because
7481 //      it is being split into two or more chunks.
7482 //  split birth - a free chunk is being added to its free list because
7483 //      a larger free chunk has been split and resulted in this free chunk.
7484 //  coal death - a free chunk is being removed from its free list because
7485 //      it is being coalesced into a large free chunk.
7486 //  coal birth - a free chunk is being added to its free list because
7487 //      it was created when two or more free chunks where coalesced into
7488 //      this free chunk.
7489 //
7490 // These statistics are used to determine the desired number of free
7491 // chunks of a given size.  The desired number is chosen to be relative
7492 // to the end of a CMS sweep.  The desired number at the end of a sweep
7493 // is the
7494 //      count-at-end-of-previous-sweep (an amount that was enough)
7495 //              - count-at-beginning-of-current-sweep  (the excess)
7496 //              + split-births  (gains in this size during interval)
7497 //              - split-deaths  (demands on this size during interval)
7498 // where the interval is from the end of one sweep to the end of the
7499 // next.
7500 //
7501 // When sweeping the sweeper maintains an accumulated chunk which is
7502 // the chunk that is made up of chunks that have been coalesced.  That
7503 // will be termed the left-hand chunk.  A new chunk of garbage that
7504 // is being considered for coalescing will be referred to as the
7505 // right-hand chunk.
7506 //
7507 // When making a decision on whether to coalesce a right-hand chunk with
7508 // the current left-hand chunk, the current count vs. the desired count
7509 // of the left-hand chunk is considered.  Also if the right-hand chunk
7510 // is near the large chunk at the end of the heap (see
7511 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7512 // left-hand chunk is coalesced.
7513 //
7514 // When making a decision about whether to split a chunk, the desired count
7515 // vs. the current count of the candidate to be split is also considered.
7516 // If the candidate is underpopulated (currently fewer chunks than desired)
7517 // a chunk of an overpopulated (currently more chunks than desired) size may
7518 // be chosen.  The "hint" associated with a free list, if non-null, points
7519 // to a free list which may be overpopulated.
7520 //
7521 
7522 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7523   const size_t size = fc->size();
7524   // Chunks that cannot be coalesced are not in the
7525   // free lists.
7526   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7527     assert(_sp->verify_chunk_in_free_list(fc),
7528       "free chunk should be in free lists");
7529   }
7530   // a chunk that is already free, should not have been
7531   // marked in the bit map
7532   HeapWord* const addr = (HeapWord*) fc;
7533   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7534   // Verify that the bit map has no bits marked between
7535   // addr and purported end of this block.
7536   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7537 
7538   // Some chunks cannot be coalesced under any circumstances.
7539   // See the definition of cantCoalesce().
7540   if (!fc->cantCoalesce()) {
7541     // This chunk can potentially be coalesced.
7542     if (_sp->adaptive_freelists()) {
7543       // All the work is done in
7544       do_post_free_or_garbage_chunk(fc, size);
7545     } else {  // Not adaptive free lists
7546       // this is a free chunk that can potentially be coalesced by the sweeper;
7547       if (!inFreeRange()) {
7548         // if the next chunk is a free block that can't be coalesced
7549         // it doesn't make sense to remove this chunk from the free lists
7550         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7551         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7552         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7553             nextChunk->is_free()               &&     // ... which is free...
7554             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7555           // nothing to do
7556         } else {
7557           // Potentially the start of a new free range:
7558           // Don't eagerly remove it from the free lists.
7559           // No need to remove it if it will just be put
7560           // back again.  (Also from a pragmatic point of view
7561           // if it is a free block in a region that is beyond
7562           // any allocated blocks, an assertion will fail)
7563           // Remember the start of a free run.
7564           initialize_free_range(addr, true);
7565           // end - can coalesce with next chunk
7566         }
7567       } else {
7568         // the midst of a free range, we are coalescing
7569         print_free_block_coalesced(fc);
7570         if (CMSTraceSweeper) {
7571           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7572         }
7573         // remove it from the free lists
7574         _sp->removeFreeChunkFromFreeLists(fc);
7575         set_lastFreeRangeCoalesced(true);
7576         // If the chunk is being coalesced and the current free range is
7577         // in the free lists, remove the current free range so that it
7578         // will be returned to the free lists in its entirety - all
7579         // the coalesced pieces included.
7580         if (freeRangeInFreeLists()) {
7581           FreeChunk* ffc = (FreeChunk*) freeFinger();
7582           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7583             "Size of free range is inconsistent with chunk size.");
7584           if (CMSTestInFreeList) {
7585             assert(_sp->verify_chunk_in_free_list(ffc),
7586               "free range is not in free lists");
7587           }
7588           _sp->removeFreeChunkFromFreeLists(ffc);
7589           set_freeRangeInFreeLists(false);
7590         }
7591       }
7592     }
7593     // Note that if the chunk is not coalescable (the else arm
7594     // below), we unconditionally flush, without needing to do
7595     // a "lookahead," as we do below.
7596     if (inFreeRange()) lookahead_and_flush(fc, size);
7597   } else {
7598     // Code path common to both original and adaptive free lists.
7599 
7600     // cant coalesce with previous block; this should be treated
7601     // as the end of a free run if any
7602     if (inFreeRange()) {
7603       // we kicked some butt; time to pick up the garbage
7604       assert(freeFinger() < addr, "freeFinger points too high");
7605       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7606     }
7607     // else, nothing to do, just continue
7608   }
7609 }
7610 
7611 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7612   // This is a chunk of garbage.  It is not in any free list.
7613   // Add it to a free list or let it possibly be coalesced into
7614   // a larger chunk.
7615   HeapWord* const addr = (HeapWord*) fc;
7616   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7617 
7618   if (_sp->adaptive_freelists()) {
7619     // Verify that the bit map has no bits marked between
7620     // addr and purported end of just dead object.
7621     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7622 
7623     do_post_free_or_garbage_chunk(fc, size);
7624   } else {
7625     if (!inFreeRange()) {
7626       // start of a new free range
7627       assert(size > 0, "A free range should have a size");
7628       initialize_free_range(addr, false);
7629     } else {
7630       // this will be swept up when we hit the end of the
7631       // free range
7632       if (CMSTraceSweeper) {
7633         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7634       }
7635       // If the chunk is being coalesced and the current free range is
7636       // in the free lists, remove the current free range so that it
7637       // will be returned to the free lists in its entirety - all
7638       // the coalesced pieces included.
7639       if (freeRangeInFreeLists()) {
7640         FreeChunk* ffc = (FreeChunk*)freeFinger();
7641         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7642           "Size of free range is inconsistent with chunk size.");
7643         if (CMSTestInFreeList) {
7644           assert(_sp->verify_chunk_in_free_list(ffc),
7645             "free range is not in free lists");
7646         }
7647         _sp->removeFreeChunkFromFreeLists(ffc);
7648         set_freeRangeInFreeLists(false);
7649       }
7650       set_lastFreeRangeCoalesced(true);
7651     }
7652     // this will be swept up when we hit the end of the free range
7653 
7654     // Verify that the bit map has no bits marked between
7655     // addr and purported end of just dead object.
7656     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7657   }
7658   assert(_limit >= addr + size,
7659          "A freshly garbage chunk can't possibly straddle over _limit");
7660   if (inFreeRange()) lookahead_and_flush(fc, size);
7661   return size;
7662 }
7663 
7664 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7665   HeapWord* addr = (HeapWord*) fc;
7666   // The sweeper has just found a live object. Return any accumulated
7667   // left hand chunk to the free lists.
7668   if (inFreeRange()) {
7669     assert(freeFinger() < addr, "freeFinger points too high");
7670     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7671   }
7672 
7673   // This object is live: we'd normally expect this to be
7674   // an oop, and like to assert the following:
7675   // assert(oop(addr)->is_oop(), "live block should be an oop");
7676   // However, as we commented above, this may be an object whose
7677   // header hasn't yet been initialized.
7678   size_t size;
7679   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7680   if (_bitMap->isMarked(addr + 1)) {
7681     // Determine the size from the bit map, rather than trying to
7682     // compute it from the object header.
7683     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7684     size = pointer_delta(nextOneAddr + 1, addr);
7685     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7686            "alignment problem");
7687 
7688 #ifdef ASSERT
7689       if (oop(addr)->klass_or_null() != NULL) {
7690         // Ignore mark word because we are running concurrent with mutators
7691         assert(oop(addr)->is_oop(true), "live block should be an oop");
7692         assert(size ==
7693                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7694                "P-mark and computed size do not agree");
7695       }
7696 #endif
7697 
7698   } else {
7699     // This should be an initialized object that's alive.
7700     assert(oop(addr)->klass_or_null() != NULL,
7701            "Should be an initialized object");
7702     // Ignore mark word because we are running concurrent with mutators
7703     assert(oop(addr)->is_oop(true), "live block should be an oop");
7704     // Verify that the bit map has no bits marked between
7705     // addr and purported end of this block.
7706     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7707     assert(size >= 3, "Necessary for Printezis marks to work");
7708     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7709     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7710   }
7711   return size;
7712 }
7713 
7714 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7715                                                  size_t chunkSize) {
7716   // do_post_free_or_garbage_chunk() should only be called in the case
7717   // of the adaptive free list allocator.
7718   const bool fcInFreeLists = fc->is_free();
7719   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7720   assert((HeapWord*)fc <= _limit, "sweep invariant");
7721   if (CMSTestInFreeList && fcInFreeLists) {
7722     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7723   }
7724 
7725   if (CMSTraceSweeper) {
7726     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7727   }
7728 
7729   HeapWord* const fc_addr = (HeapWord*) fc;
7730 
7731   bool coalesce;
7732   const size_t left  = pointer_delta(fc_addr, freeFinger());
7733   const size_t right = chunkSize;
7734   switch (FLSCoalescePolicy) {
7735     // numeric value forms a coalition aggressiveness metric
7736     case 0:  { // never coalesce
7737       coalesce = false;
7738       break;
7739     }
7740     case 1: { // coalesce if left & right chunks on overpopulated lists
7741       coalesce = _sp->coalOverPopulated(left) &&
7742                  _sp->coalOverPopulated(right);
7743       break;
7744     }
7745     case 2: { // coalesce if left chunk on overpopulated list (default)
7746       coalesce = _sp->coalOverPopulated(left);
7747       break;
7748     }
7749     case 3: { // coalesce if left OR right chunk on overpopulated list
7750       coalesce = _sp->coalOverPopulated(left) ||
7751                  _sp->coalOverPopulated(right);
7752       break;
7753     }
7754     case 4: { // always coalesce
7755       coalesce = true;
7756       break;
7757     }
7758     default:
7759      ShouldNotReachHere();
7760   }
7761 
7762   // Should the current free range be coalesced?
7763   // If the chunk is in a free range and either we decided to coalesce above
7764   // or the chunk is near the large block at the end of the heap
7765   // (isNearLargestChunk() returns true), then coalesce this chunk.
7766   const bool doCoalesce = inFreeRange()
7767                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7768   if (doCoalesce) {
7769     // Coalesce the current free range on the left with the new
7770     // chunk on the right.  If either is on a free list,
7771     // it must be removed from the list and stashed in the closure.
7772     if (freeRangeInFreeLists()) {
7773       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7774       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7775         "Size of free range is inconsistent with chunk size.");
7776       if (CMSTestInFreeList) {
7777         assert(_sp->verify_chunk_in_free_list(ffc),
7778           "Chunk is not in free lists");
7779       }
7780       _sp->coalDeath(ffc->size());
7781       _sp->removeFreeChunkFromFreeLists(ffc);
7782       set_freeRangeInFreeLists(false);
7783     }
7784     if (fcInFreeLists) {
7785       _sp->coalDeath(chunkSize);
7786       assert(fc->size() == chunkSize,
7787         "The chunk has the wrong size or is not in the free lists");
7788       _sp->removeFreeChunkFromFreeLists(fc);
7789     }
7790     set_lastFreeRangeCoalesced(true);
7791     print_free_block_coalesced(fc);
7792   } else {  // not in a free range and/or should not coalesce
7793     // Return the current free range and start a new one.
7794     if (inFreeRange()) {
7795       // In a free range but cannot coalesce with the right hand chunk.
7796       // Put the current free range into the free lists.
7797       flush_cur_free_chunk(freeFinger(),
7798                            pointer_delta(fc_addr, freeFinger()));
7799     }
7800     // Set up for new free range.  Pass along whether the right hand
7801     // chunk is in the free lists.
7802     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7803   }
7804 }
7805 
7806 // Lookahead flush:
7807 // If we are tracking a free range, and this is the last chunk that
7808 // we'll look at because its end crosses past _limit, we'll preemptively
7809 // flush it along with any free range we may be holding on to. Note that
7810 // this can be the case only for an already free or freshly garbage
7811 // chunk. If this block is an object, it can never straddle
7812 // over _limit. The "straddling" occurs when _limit is set at
7813 // the previous end of the space when this cycle started, and
7814 // a subsequent heap expansion caused the previously co-terminal
7815 // free block to be coalesced with the newly expanded portion,
7816 // thus rendering _limit a non-block-boundary making it dangerous
7817 // for the sweeper to step over and examine.
7818 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7819   assert(inFreeRange(), "Should only be called if currently in a free range.");
7820   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7821   assert(_sp->used_region().contains(eob - 1),
7822          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7823          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7824          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7825          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7826   if (eob >= _limit) {
7827     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7828     if (CMSTraceSweeper) {
7829       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7830                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7831                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7832                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7833     }
7834     // Return the storage we are tracking back into the free lists.
7835     if (CMSTraceSweeper) {
7836       gclog_or_tty->print_cr("Flushing ... ");
7837     }
7838     assert(freeFinger() < eob, "Error");
7839     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7840   }
7841 }
7842 
7843 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7844   assert(inFreeRange(), "Should only be called if currently in a free range.");
7845   assert(size > 0,
7846     "A zero sized chunk cannot be added to the free lists.");
7847   if (!freeRangeInFreeLists()) {
7848     if (CMSTestInFreeList) {
7849       FreeChunk* fc = (FreeChunk*) chunk;
7850       fc->set_size(size);
7851       assert(!_sp->verify_chunk_in_free_list(fc),
7852         "chunk should not be in free lists yet");
7853     }
7854     if (CMSTraceSweeper) {
7855       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7856                     p2i(chunk), size);
7857     }
7858     // A new free range is going to be starting.  The current
7859     // free range has not been added to the free lists yet or
7860     // was removed so add it back.
7861     // If the current free range was coalesced, then the death
7862     // of the free range was recorded.  Record a birth now.
7863     if (lastFreeRangeCoalesced()) {
7864       _sp->coalBirth(size);
7865     }
7866     _sp->addChunkAndRepairOffsetTable(chunk, size,
7867             lastFreeRangeCoalesced());
7868   } else if (CMSTraceSweeper) {
7869     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7870   }
7871   set_inFreeRange(false);
7872   set_freeRangeInFreeLists(false);
7873 }
7874 
7875 // We take a break if we've been at this for a while,
7876 // so as to avoid monopolizing the locks involved.
7877 void SweepClosure::do_yield_work(HeapWord* addr) {
7878   // Return current free chunk being used for coalescing (if any)
7879   // to the appropriate freelist.  After yielding, the next
7880   // free block encountered will start a coalescing range of
7881   // free blocks.  If the next free block is adjacent to the
7882   // chunk just flushed, they will need to wait for the next
7883   // sweep to be coalesced.
7884   if (inFreeRange()) {
7885     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7886   }
7887 
7888   // First give up the locks, then yield, then re-lock.
7889   // We should probably use a constructor/destructor idiom to
7890   // do this unlock/lock or modify the MutexUnlocker class to
7891   // serve our purpose. XXX
7892   assert_lock_strong(_bitMap->lock());
7893   assert_lock_strong(_freelistLock);
7894   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7895          "CMS thread should hold CMS token");
7896   _bitMap->lock()->unlock();
7897   _freelistLock->unlock();
7898   ConcurrentMarkSweepThread::desynchronize(true);
7899   _collector->stopTimer();
7900   if (PrintCMSStatistics != 0) {
7901     _collector->incrementYields();
7902   }
7903 
7904   // See the comment in coordinator_yield()
7905   for (unsigned i = 0; i < CMSYieldSleepCount &&
7906                        ConcurrentMarkSweepThread::should_yield() &&
7907                        !CMSCollector::foregroundGCIsActive(); ++i) {
7908     os::sleep(Thread::current(), 1, false);
7909   }
7910 
7911   ConcurrentMarkSweepThread::synchronize(true);
7912   _freelistLock->lock();
7913   _bitMap->lock()->lock_without_safepoint_check();
7914   _collector->startTimer();
7915 }
7916 
7917 #ifndef PRODUCT
7918 // This is actually very useful in a product build if it can
7919 // be called from the debugger.  Compile it into the product
7920 // as needed.
7921 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7922   return debug_cms_space->verify_chunk_in_free_list(fc);
7923 }
7924 #endif
7925 
7926 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7927   if (CMSTraceSweeper) {
7928     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7929                            p2i(fc), fc->size());
7930   }
7931 }
7932 
7933 // CMSIsAliveClosure
7934 bool CMSIsAliveClosure::do_object_b(oop obj) {
7935   HeapWord* addr = (HeapWord*)obj;
7936   return addr != NULL &&
7937          (!_span.contains(addr) || _bit_map->isMarked(addr));
7938 }
7939 
7940 
7941 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7942                       MemRegion span,
7943                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7944                       bool cpc):
7945   _collector(collector),
7946   _span(span),
7947   _bit_map(bit_map),
7948   _mark_stack(mark_stack),
7949   _concurrent_precleaning(cpc) {
7950   assert(!_span.is_empty(), "Empty span could spell trouble");
7951 }
7952 
7953 
7954 // CMSKeepAliveClosure: the serial version
7955 void CMSKeepAliveClosure::do_oop(oop obj) {
7956   HeapWord* addr = (HeapWord*)obj;
7957   if (_span.contains(addr) &&
7958       !_bit_map->isMarked(addr)) {
7959     _bit_map->mark(addr);
7960     bool simulate_overflow = false;
7961     NOT_PRODUCT(
7962       if (CMSMarkStackOverflowALot &&
7963           _collector->simulate_overflow()) {
7964         // simulate a stack overflow
7965         simulate_overflow = true;
7966       }
7967     )
7968     if (simulate_overflow || !_mark_stack->push(obj)) {
7969       if (_concurrent_precleaning) {
7970         // We dirty the overflown object and let the remark
7971         // phase deal with it.
7972         assert(_collector->overflow_list_is_empty(), "Error");
7973         // In the case of object arrays, we need to dirty all of
7974         // the cards that the object spans. No locking or atomics
7975         // are needed since no one else can be mutating the mod union
7976         // table.
7977         if (obj->is_objArray()) {
7978           size_t sz = obj->size();
7979           HeapWord* end_card_addr =
7980             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7981           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7982           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7983           _collector->_modUnionTable.mark_range(redirty_range);
7984         } else {
7985           _collector->_modUnionTable.mark(addr);
7986         }
7987         _collector->_ser_kac_preclean_ovflw++;
7988       } else {
7989         _collector->push_on_overflow_list(obj);
7990         _collector->_ser_kac_ovflw++;
7991       }
7992     }
7993   }
7994 }
7995 
7996 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7997 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7998 
7999 // CMSParKeepAliveClosure: a parallel version of the above.
8000 // The work queues are private to each closure (thread),
8001 // but (may be) available for stealing by other threads.
8002 void CMSParKeepAliveClosure::do_oop(oop obj) {
8003   HeapWord* addr = (HeapWord*)obj;
8004   if (_span.contains(addr) &&
8005       !_bit_map->isMarked(addr)) {
8006     // In general, during recursive tracing, several threads
8007     // may be concurrently getting here; the first one to
8008     // "tag" it, claims it.
8009     if (_bit_map->par_mark(addr)) {
8010       bool res = _work_queue->push(obj);
8011       assert(res, "Low water mark should be much less than capacity");
8012       // Do a recursive trim in the hope that this will keep
8013       // stack usage lower, but leave some oops for potential stealers
8014       trim_queue(_low_water_mark);
8015     } // Else, another thread got there first
8016   }
8017 }
8018 
8019 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8020 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8021 
8022 void CMSParKeepAliveClosure::trim_queue(uint max) {
8023   while (_work_queue->size() > max) {
8024     oop new_oop;
8025     if (_work_queue->pop_local(new_oop)) {
8026       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8027       assert(_bit_map->isMarked((HeapWord*)new_oop),
8028              "no white objects on this stack!");
8029       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8030       // iterate over the oops in this oop, marking and pushing
8031       // the ones in CMS heap (i.e. in _span).
8032       new_oop->oop_iterate(&_mark_and_push);
8033     }
8034   }
8035 }
8036 
8037 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8038                                 CMSCollector* collector,
8039                                 MemRegion span, CMSBitMap* bit_map,
8040                                 OopTaskQueue* work_queue):
8041   _collector(collector),
8042   _span(span),
8043   _bit_map(bit_map),
8044   _work_queue(work_queue) { }
8045 
8046 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8047   HeapWord* addr = (HeapWord*)obj;
8048   if (_span.contains(addr) &&
8049       !_bit_map->isMarked(addr)) {
8050     if (_bit_map->par_mark(addr)) {
8051       bool simulate_overflow = false;
8052       NOT_PRODUCT(
8053         if (CMSMarkStackOverflowALot &&
8054             _collector->par_simulate_overflow()) {
8055           // simulate a stack overflow
8056           simulate_overflow = true;
8057         }
8058       )
8059       if (simulate_overflow || !_work_queue->push(obj)) {
8060         _collector->par_push_on_overflow_list(obj);
8061         _collector->_par_kac_ovflw++;
8062       }
8063     } // Else another thread got there already
8064   }
8065 }
8066 
8067 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8068 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8069 
8070 //////////////////////////////////////////////////////////////////
8071 //  CMSExpansionCause                /////////////////////////////
8072 //////////////////////////////////////////////////////////////////
8073 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8074   switch (cause) {
8075     case _no_expansion:
8076       return "No expansion";
8077     case _satisfy_free_ratio:
8078       return "Free ratio";
8079     case _satisfy_promotion:
8080       return "Satisfy promotion";
8081     case _satisfy_allocation:
8082       return "allocation";
8083     case _allocate_par_lab:
8084       return "Par LAB";
8085     case _allocate_par_spooling_space:
8086       return "Par Spooling Space";
8087     case _adaptive_size_policy:
8088       return "Ergonomics";
8089     default:
8090       return "unknown";
8091   }
8092 }
8093 
8094 void CMSDrainMarkingStackClosure::do_void() {
8095   // the max number to take from overflow list at a time
8096   const size_t num = _mark_stack->capacity()/4;
8097   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8098          "Overflow list should be NULL during concurrent phases");
8099   while (!_mark_stack->isEmpty() ||
8100          // if stack is empty, check the overflow list
8101          _collector->take_from_overflow_list(num, _mark_stack)) {
8102     oop obj = _mark_stack->pop();
8103     HeapWord* addr = (HeapWord*)obj;
8104     assert(_span.contains(addr), "Should be within span");
8105     assert(_bit_map->isMarked(addr), "Should be marked");
8106     assert(obj->is_oop(), "Should be an oop");
8107     obj->oop_iterate(_keep_alive);
8108   }
8109 }
8110 
8111 void CMSParDrainMarkingStackClosure::do_void() {
8112   // drain queue
8113   trim_queue(0);
8114 }
8115 
8116 // Trim our work_queue so its length is below max at return
8117 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8118   while (_work_queue->size() > max) {
8119     oop new_oop;
8120     if (_work_queue->pop_local(new_oop)) {
8121       assert(new_oop->is_oop(), "Expected an oop");
8122       assert(_bit_map->isMarked((HeapWord*)new_oop),
8123              "no white objects on this stack!");
8124       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8125       // iterate over the oops in this oop, marking and pushing
8126       // the ones in CMS heap (i.e. in _span).
8127       new_oop->oop_iterate(&_mark_and_push);
8128     }
8129   }
8130 }
8131 
8132 ////////////////////////////////////////////////////////////////////
8133 // Support for Marking Stack Overflow list handling and related code
8134 ////////////////////////////////////////////////////////////////////
8135 // Much of the following code is similar in shape and spirit to the
8136 // code used in ParNewGC. We should try and share that code
8137 // as much as possible in the future.
8138 
8139 #ifndef PRODUCT
8140 // Debugging support for CMSStackOverflowALot
8141 
8142 // It's OK to call this multi-threaded;  the worst thing
8143 // that can happen is that we'll get a bunch of closely
8144 // spaced simulated overflows, but that's OK, in fact
8145 // probably good as it would exercise the overflow code
8146 // under contention.
8147 bool CMSCollector::simulate_overflow() {
8148   if (_overflow_counter-- <= 0) { // just being defensive
8149     _overflow_counter = CMSMarkStackOverflowInterval;
8150     return true;
8151   } else {
8152     return false;
8153   }
8154 }
8155 
8156 bool CMSCollector::par_simulate_overflow() {
8157   return simulate_overflow();
8158 }
8159 #endif
8160 
8161 // Single-threaded
8162 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8163   assert(stack->isEmpty(), "Expected precondition");
8164   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8165   size_t i = num;
8166   oop  cur = _overflow_list;
8167   const markOop proto = markOopDesc::prototype();
8168   NOT_PRODUCT(ssize_t n = 0;)
8169   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8170     next = oop(cur->mark());
8171     cur->set_mark(proto);   // until proven otherwise
8172     assert(cur->is_oop(), "Should be an oop");
8173     bool res = stack->push(cur);
8174     assert(res, "Bit off more than can chew?");
8175     NOT_PRODUCT(n++;)
8176   }
8177   _overflow_list = cur;
8178 #ifndef PRODUCT
8179   assert(_num_par_pushes >= n, "Too many pops?");
8180   _num_par_pushes -=n;
8181 #endif
8182   return !stack->isEmpty();
8183 }
8184 
8185 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8186 // (MT-safe) Get a prefix of at most "num" from the list.
8187 // The overflow list is chained through the mark word of
8188 // each object in the list. We fetch the entire list,
8189 // break off a prefix of the right size and return the
8190 // remainder. If other threads try to take objects from
8191 // the overflow list at that time, they will wait for
8192 // some time to see if data becomes available. If (and
8193 // only if) another thread places one or more object(s)
8194 // on the global list before we have returned the suffix
8195 // to the global list, we will walk down our local list
8196 // to find its end and append the global list to
8197 // our suffix before returning it. This suffix walk can
8198 // prove to be expensive (quadratic in the amount of traffic)
8199 // when there are many objects in the overflow list and
8200 // there is much producer-consumer contention on the list.
8201 // *NOTE*: The overflow list manipulation code here and
8202 // in ParNewGeneration:: are very similar in shape,
8203 // except that in the ParNew case we use the old (from/eden)
8204 // copy of the object to thread the list via its klass word.
8205 // Because of the common code, if you make any changes in
8206 // the code below, please check the ParNew version to see if
8207 // similar changes might be needed.
8208 // CR 6797058 has been filed to consolidate the common code.
8209 bool CMSCollector::par_take_from_overflow_list(size_t num,
8210                                                OopTaskQueue* work_q,
8211                                                int no_of_gc_threads) {
8212   assert(work_q->size() == 0, "First empty local work queue");
8213   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8214   if (_overflow_list == NULL) {
8215     return false;
8216   }
8217   // Grab the entire list; we'll put back a suffix
8218   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8219   Thread* tid = Thread::current();
8220   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8221   // set to ParallelGCThreads.
8222   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8223   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8224   // If the list is busy, we spin for a short while,
8225   // sleeping between attempts to get the list.
8226   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8227     os::sleep(tid, sleep_time_millis, false);
8228     if (_overflow_list == NULL) {
8229       // Nothing left to take
8230       return false;
8231     } else if (_overflow_list != BUSY) {
8232       // Try and grab the prefix
8233       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8234     }
8235   }
8236   // If the list was found to be empty, or we spun long
8237   // enough, we give up and return empty-handed. If we leave
8238   // the list in the BUSY state below, it must be the case that
8239   // some other thread holds the overflow list and will set it
8240   // to a non-BUSY state in the future.
8241   if (prefix == NULL || prefix == BUSY) {
8242      // Nothing to take or waited long enough
8243      if (prefix == NULL) {
8244        // Write back the NULL in case we overwrote it with BUSY above
8245        // and it is still the same value.
8246        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8247      }
8248      return false;
8249   }
8250   assert(prefix != NULL && prefix != BUSY, "Error");
8251   size_t i = num;
8252   oop cur = prefix;
8253   // Walk down the first "num" objects, unless we reach the end.
8254   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8255   if (cur->mark() == NULL) {
8256     // We have "num" or fewer elements in the list, so there
8257     // is nothing to return to the global list.
8258     // Write back the NULL in lieu of the BUSY we wrote
8259     // above, if it is still the same value.
8260     if (_overflow_list == BUSY) {
8261       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8262     }
8263   } else {
8264     // Chop off the suffix and return it to the global list.
8265     assert(cur->mark() != BUSY, "Error");
8266     oop suffix_head = cur->mark(); // suffix will be put back on global list
8267     cur->set_mark(NULL);           // break off suffix
8268     // It's possible that the list is still in the empty(busy) state
8269     // we left it in a short while ago; in that case we may be
8270     // able to place back the suffix without incurring the cost
8271     // of a walk down the list.
8272     oop observed_overflow_list = _overflow_list;
8273     oop cur_overflow_list = observed_overflow_list;
8274     bool attached = false;
8275     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8276       observed_overflow_list =
8277         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8278       if (cur_overflow_list == observed_overflow_list) {
8279         attached = true;
8280         break;
8281       } else cur_overflow_list = observed_overflow_list;
8282     }
8283     if (!attached) {
8284       // Too bad, someone else sneaked in (at least) an element; we'll need
8285       // to do a splice. Find tail of suffix so we can prepend suffix to global
8286       // list.
8287       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8288       oop suffix_tail = cur;
8289       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8290              "Tautology");
8291       observed_overflow_list = _overflow_list;
8292       do {
8293         cur_overflow_list = observed_overflow_list;
8294         if (cur_overflow_list != BUSY) {
8295           // Do the splice ...
8296           suffix_tail->set_mark(markOop(cur_overflow_list));
8297         } else { // cur_overflow_list == BUSY
8298           suffix_tail->set_mark(NULL);
8299         }
8300         // ... and try to place spliced list back on overflow_list ...
8301         observed_overflow_list =
8302           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8303       } while (cur_overflow_list != observed_overflow_list);
8304       // ... until we have succeeded in doing so.
8305     }
8306   }
8307 
8308   // Push the prefix elements on work_q
8309   assert(prefix != NULL, "control point invariant");
8310   const markOop proto = markOopDesc::prototype();
8311   oop next;
8312   NOT_PRODUCT(ssize_t n = 0;)
8313   for (cur = prefix; cur != NULL; cur = next) {
8314     next = oop(cur->mark());
8315     cur->set_mark(proto);   // until proven otherwise
8316     assert(cur->is_oop(), "Should be an oop");
8317     bool res = work_q->push(cur);
8318     assert(res, "Bit off more than we can chew?");
8319     NOT_PRODUCT(n++;)
8320   }
8321 #ifndef PRODUCT
8322   assert(_num_par_pushes >= n, "Too many pops?");
8323   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8324 #endif
8325   return true;
8326 }
8327 
8328 // Single-threaded
8329 void CMSCollector::push_on_overflow_list(oop p) {
8330   NOT_PRODUCT(_num_par_pushes++;)
8331   assert(p->is_oop(), "Not an oop");
8332   preserve_mark_if_necessary(p);
8333   p->set_mark((markOop)_overflow_list);
8334   _overflow_list = p;
8335 }
8336 
8337 // Multi-threaded; use CAS to prepend to overflow list
8338 void CMSCollector::par_push_on_overflow_list(oop p) {
8339   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8340   assert(p->is_oop(), "Not an oop");
8341   par_preserve_mark_if_necessary(p);
8342   oop observed_overflow_list = _overflow_list;
8343   oop cur_overflow_list;
8344   do {
8345     cur_overflow_list = observed_overflow_list;
8346     if (cur_overflow_list != BUSY) {
8347       p->set_mark(markOop(cur_overflow_list));
8348     } else {
8349       p->set_mark(NULL);
8350     }
8351     observed_overflow_list =
8352       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8353   } while (cur_overflow_list != observed_overflow_list);
8354 }
8355 #undef BUSY
8356 
8357 // Single threaded
8358 // General Note on GrowableArray: pushes may silently fail
8359 // because we are (temporarily) out of C-heap for expanding
8360 // the stack. The problem is quite ubiquitous and affects
8361 // a lot of code in the JVM. The prudent thing for GrowableArray
8362 // to do (for now) is to exit with an error. However, that may
8363 // be too draconian in some cases because the caller may be
8364 // able to recover without much harm. For such cases, we
8365 // should probably introduce a "soft_push" method which returns
8366 // an indication of success or failure with the assumption that
8367 // the caller may be able to recover from a failure; code in
8368 // the VM can then be changed, incrementally, to deal with such
8369 // failures where possible, thus, incrementally hardening the VM
8370 // in such low resource situations.
8371 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8372   _preserved_oop_stack.push(p);
8373   _preserved_mark_stack.push(m);
8374   assert(m == p->mark(), "Mark word changed");
8375   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8376          "bijection");
8377 }
8378 
8379 // Single threaded
8380 void CMSCollector::preserve_mark_if_necessary(oop p) {
8381   markOop m = p->mark();
8382   if (m->must_be_preserved(p)) {
8383     preserve_mark_work(p, m);
8384   }
8385 }
8386 
8387 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8388   markOop m = p->mark();
8389   if (m->must_be_preserved(p)) {
8390     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8391     // Even though we read the mark word without holding
8392     // the lock, we are assured that it will not change
8393     // because we "own" this oop, so no other thread can
8394     // be trying to push it on the overflow list; see
8395     // the assertion in preserve_mark_work() that checks
8396     // that m == p->mark().
8397     preserve_mark_work(p, m);
8398   }
8399 }
8400 
8401 // We should be able to do this multi-threaded,
8402 // a chunk of stack being a task (this is
8403 // correct because each oop only ever appears
8404 // once in the overflow list. However, it's
8405 // not very easy to completely overlap this with
8406 // other operations, so will generally not be done
8407 // until all work's been completed. Because we
8408 // expect the preserved oop stack (set) to be small,
8409 // it's probably fine to do this single-threaded.
8410 // We can explore cleverer concurrent/overlapped/parallel
8411 // processing of preserved marks if we feel the
8412 // need for this in the future. Stack overflow should
8413 // be so rare in practice and, when it happens, its
8414 // effect on performance so great that this will
8415 // likely just be in the noise anyway.
8416 void CMSCollector::restore_preserved_marks_if_any() {
8417   assert(SafepointSynchronize::is_at_safepoint(),
8418          "world should be stopped");
8419   assert(Thread::current()->is_ConcurrentGC_thread() ||
8420          Thread::current()->is_VM_thread(),
8421          "should be single-threaded");
8422   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8423          "bijection");
8424 
8425   while (!_preserved_oop_stack.is_empty()) {
8426     oop p = _preserved_oop_stack.pop();
8427     assert(p->is_oop(), "Should be an oop");
8428     assert(_span.contains(p), "oop should be in _span");
8429     assert(p->mark() == markOopDesc::prototype(),
8430            "Set when taken from overflow list");
8431     markOop m = _preserved_mark_stack.pop();
8432     p->set_mark(m);
8433   }
8434   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8435          "stacks were cleared above");
8436 }
8437 
8438 #ifndef PRODUCT
8439 bool CMSCollector::no_preserved_marks() const {
8440   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8441 }
8442 #endif
8443 
8444 // Transfer some number of overflown objects to usual marking
8445 // stack. Return true if some objects were transferred.
8446 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8447   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8448                     (size_t)ParGCDesiredObjsFromOverflowList);
8449 
8450   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8451   assert(_collector->overflow_list_is_empty() || res,
8452          "If list is not empty, we should have taken something");
8453   assert(!res || !_mark_stack->isEmpty(),
8454          "If we took something, it should now be on our stack");
8455   return res;
8456 }
8457 
8458 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8459   size_t res = _sp->block_size_no_stall(addr, _collector);
8460   if (_sp->block_is_obj(addr)) {
8461     if (_live_bit_map->isMarked(addr)) {
8462       // It can't have been dead in a previous cycle
8463       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8464     } else {
8465       _dead_bit_map->mark(addr);      // mark the dead object
8466     }
8467   }
8468   // Could be 0, if the block size could not be computed without stalling.
8469   return res;
8470 }
8471 
8472 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8473 
8474   switch (phase) {
8475     case CMSCollector::InitialMarking:
8476       initialize(true  /* fullGC */ ,
8477                  cause /* cause of the GC */,
8478                  true  /* recordGCBeginTime */,
8479                  true  /* recordPreGCUsage */,
8480                  false /* recordPeakUsage */,
8481                  false /* recordPostGCusage */,
8482                  true  /* recordAccumulatedGCTime */,
8483                  false /* recordGCEndTime */,
8484                  false /* countCollection */  );
8485       break;
8486 
8487     case CMSCollector::FinalMarking:
8488       initialize(true  /* fullGC */ ,
8489                  cause /* cause of the GC */,
8490                  false /* recordGCBeginTime */,
8491                  false /* recordPreGCUsage */,
8492                  false /* recordPeakUsage */,
8493                  false /* recordPostGCusage */,
8494                  true  /* recordAccumulatedGCTime */,
8495                  false /* recordGCEndTime */,
8496                  false /* countCollection */  );
8497       break;
8498 
8499     case CMSCollector::Sweeping:
8500       initialize(true  /* fullGC */ ,
8501                  cause /* cause of the GC */,
8502                  false /* recordGCBeginTime */,
8503                  false /* recordPreGCUsage */,
8504                  true  /* recordPeakUsage */,
8505                  true  /* recordPostGCusage */,
8506                  false /* recordAccumulatedGCTime */,
8507                  true  /* recordGCEndTime */,
8508                  true  /* countCollection */  );
8509       break;
8510 
8511     default:
8512       ShouldNotReachHere();
8513   }
8514 }