1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_sparc
  66 # include "nativeInst_sparc.hpp"
  67 # include "vmreg_sparc.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_zero
  70 # include "nativeInst_zero.hpp"
  71 # include "vmreg_zero.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_arm
  74 # include "nativeInst_arm.hpp"
  75 # include "vmreg_arm.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_ppc
  78 # include "nativeInst_ppc.hpp"
  79 # include "vmreg_ppc.inline.hpp"
  80 #endif
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 
  85 // Shared stub locations
  86 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  87 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  91 
  92 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  96 
  97 #ifdef COMPILER2
  98 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  99 #endif // COMPILER2
 100 
 101 
 102 //----------------------------generate_stubs-----------------------------------
 103 void SharedRuntime::generate_stubs() {
 104   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
 105   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
 106   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
 107   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
 108   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
 109 
 110 #ifdef COMPILER2
 111   // Vectors are generated only by C2.
 112   if (is_wide_vector(MaxVectorSize)) {
 113     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 114   }
 115 #endif // COMPILER2
 116   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 117   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 118 
 119   generate_deopt_blob();
 120 
 121 #ifdef COMPILER2
 122   generate_uncommon_trap_blob();
 123 #endif // COMPILER2
 124 }
 125 
 126 #include <math.h>
 127 
 128 #ifndef USDT2
 129 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 130 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 131                       char*, int, char*, int, char*, int);
 132 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 133                       char*, int, char*, int, char*, int);
 134 #endif /* !USDT2 */
 135 
 136 // Implementation of SharedRuntime
 137 
 138 #ifndef PRODUCT
 139 // For statistics
 140 int SharedRuntime::_ic_miss_ctr = 0;
 141 int SharedRuntime::_wrong_method_ctr = 0;
 142 int SharedRuntime::_resolve_static_ctr = 0;
 143 int SharedRuntime::_resolve_virtual_ctr = 0;
 144 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 145 int SharedRuntime::_implicit_null_throws = 0;
 146 int SharedRuntime::_implicit_div0_throws = 0;
 147 int SharedRuntime::_throw_null_ctr = 0;
 148 
 149 int SharedRuntime::_nof_normal_calls = 0;
 150 int SharedRuntime::_nof_optimized_calls = 0;
 151 int SharedRuntime::_nof_inlined_calls = 0;
 152 int SharedRuntime::_nof_megamorphic_calls = 0;
 153 int SharedRuntime::_nof_static_calls = 0;
 154 int SharedRuntime::_nof_inlined_static_calls = 0;
 155 int SharedRuntime::_nof_interface_calls = 0;
 156 int SharedRuntime::_nof_optimized_interface_calls = 0;
 157 int SharedRuntime::_nof_inlined_interface_calls = 0;
 158 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 159 int SharedRuntime::_nof_removable_exceptions = 0;
 160 
 161 int SharedRuntime::_new_instance_ctr=0;
 162 int SharedRuntime::_new_array_ctr=0;
 163 int SharedRuntime::_multi1_ctr=0;
 164 int SharedRuntime::_multi2_ctr=0;
 165 int SharedRuntime::_multi3_ctr=0;
 166 int SharedRuntime::_multi4_ctr=0;
 167 int SharedRuntime::_multi5_ctr=0;
 168 int SharedRuntime::_mon_enter_stub_ctr=0;
 169 int SharedRuntime::_mon_exit_stub_ctr=0;
 170 int SharedRuntime::_mon_enter_ctr=0;
 171 int SharedRuntime::_mon_exit_ctr=0;
 172 int SharedRuntime::_partial_subtype_ctr=0;
 173 int SharedRuntime::_jbyte_array_copy_ctr=0;
 174 int SharedRuntime::_jshort_array_copy_ctr=0;
 175 int SharedRuntime::_jint_array_copy_ctr=0;
 176 int SharedRuntime::_jlong_array_copy_ctr=0;
 177 int SharedRuntime::_oop_array_copy_ctr=0;
 178 int SharedRuntime::_checkcast_array_copy_ctr=0;
 179 int SharedRuntime::_unsafe_array_copy_ctr=0;
 180 int SharedRuntime::_generic_array_copy_ctr=0;
 181 int SharedRuntime::_slow_array_copy_ctr=0;
 182 int SharedRuntime::_find_handler_ctr=0;
 183 int SharedRuntime::_rethrow_ctr=0;
 184 
 185 int     SharedRuntime::_ICmiss_index                    = 0;
 186 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 187 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 188 
 189 
 190 void SharedRuntime::trace_ic_miss(address at) {
 191   for (int i = 0; i < _ICmiss_index; i++) {
 192     if (_ICmiss_at[i] == at) {
 193       _ICmiss_count[i]++;
 194       return;
 195     }
 196   }
 197   int index = _ICmiss_index++;
 198   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 199   _ICmiss_at[index] = at;
 200   _ICmiss_count[index] = 1;
 201 }
 202 
 203 void SharedRuntime::print_ic_miss_histogram() {
 204   if (ICMissHistogram) {
 205     tty->print_cr ("IC Miss Histogram:");
 206     int tot_misses = 0;
 207     for (int i = 0; i < _ICmiss_index; i++) {
 208       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 209       tot_misses += _ICmiss_count[i];
 210     }
 211     tty->print_cr ("Total IC misses: %7d", tot_misses);
 212   }
 213 }
 214 #endif // PRODUCT
 215 
 216 #if INCLUDE_ALL_GCS
 217 
 218 // G1 write-barrier pre: executed before a pointer store.
 219 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 220   if (orig == NULL) {
 221     assert(false, "should be optimized out");
 222     return;
 223   }
 224   assert(orig->is_oop(true /* ignore mark word */), "Error");
 225   // store the original value that was in the field reference
 226   thread->satb_mark_queue().enqueue(orig);
 227 JRT_END
 228 
 229 // G1 write-barrier post: executed after a pointer store.
 230 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 231   thread->dirty_card_queue().enqueue(card_addr);
 232 JRT_END
 233 
 234 #endif // INCLUDE_ALL_GCS
 235 
 236 
 237 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 238   return x * y;
 239 JRT_END
 240 
 241 
 242 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 243   if (x == min_jlong && y == CONST64(-1)) {
 244     return x;
 245   } else {
 246     return x / y;
 247   }
 248 JRT_END
 249 
 250 
 251 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 252   if (x == min_jlong && y == CONST64(-1)) {
 253     return 0;
 254   } else {
 255     return x % y;
 256   }
 257 JRT_END
 258 
 259 
 260 const juint  float_sign_mask  = 0x7FFFFFFF;
 261 const juint  float_infinity   = 0x7F800000;
 262 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 263 const julong double_infinity  = CONST64(0x7FF0000000000000);
 264 
 265 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 266 #ifdef _WIN64
 267   // 64-bit Windows on amd64 returns the wrong values for
 268   // infinity operands.
 269   union { jfloat f; juint i; } xbits, ybits;
 270   xbits.f = x;
 271   ybits.f = y;
 272   // x Mod Infinity == x unless x is infinity
 273   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 274        ((ybits.i & float_sign_mask) == float_infinity) ) {
 275     return x;
 276   }
 277 #endif
 278   return ((jfloat)fmod((double)x,(double)y));
 279 JRT_END
 280 
 281 
 282 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 283 #ifdef _WIN64
 284   union { jdouble d; julong l; } xbits, ybits;
 285   xbits.d = x;
 286   ybits.d = y;
 287   // x Mod Infinity == x unless x is infinity
 288   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 289        ((ybits.l & double_sign_mask) == double_infinity) ) {
 290     return x;
 291   }
 292 #endif
 293   return ((jdouble)fmod((double)x,(double)y));
 294 JRT_END
 295 
 296 #ifdef __SOFTFP__
 297 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 298   return x + y;
 299 JRT_END
 300 
 301 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 302   return x - y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 306   return x * y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 310   return x / y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 314   return x + y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 318   return x - y;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 322   return x * y;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 326   return x / y;
 327 JRT_END
 328 
 329 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 330   return (jfloat)x;
 331 JRT_END
 332 
 333 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 334   return (jdouble)x;
 335 JRT_END
 336 
 337 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 338   return (jdouble)x;
 339 JRT_END
 340 
 341 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 342   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 346   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 347 JRT_END
 348 
 349 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 350   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 351 JRT_END
 352 
 353 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 354   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 355 JRT_END
 356 
 357 // Functions to return the opposite of the aeabi functions for nan.
 358 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 359   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 363   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 367   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 371   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 375   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 379   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 383   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 384 JRT_END
 385 
 386 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 387   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 388 JRT_END
 389 
 390 // Intrinsics make gcc generate code for these.
 391 float  SharedRuntime::fneg(float f)   {
 392   return -f;
 393 }
 394 
 395 double SharedRuntime::dneg(double f)  {
 396   return -f;
 397 }
 398 
 399 #endif // __SOFTFP__
 400 
 401 #if defined(__SOFTFP__) || defined(E500V2)
 402 // Intrinsics make gcc generate code for these.
 403 double SharedRuntime::dabs(double f)  {
 404   return (f <= (double)0.0) ? (double)0.0 - f : f;
 405 }
 406 
 407 #endif
 408 
 409 #if defined(__SOFTFP__) || defined(PPC)
 410 double SharedRuntime::dsqrt(double f) {
 411   return sqrt(f);
 412 }
 413 #endif
 414 
 415 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 416   if (g_isnan(x))
 417     return 0;
 418   if (x >= (jfloat) max_jint)
 419     return max_jint;
 420   if (x <= (jfloat) min_jint)
 421     return min_jint;
 422   return (jint) x;
 423 JRT_END
 424 
 425 
 426 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 427   if (g_isnan(x))
 428     return 0;
 429   if (x >= (jfloat) max_jlong)
 430     return max_jlong;
 431   if (x <= (jfloat) min_jlong)
 432     return min_jlong;
 433   return (jlong) x;
 434 JRT_END
 435 
 436 
 437 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 438   if (g_isnan(x))
 439     return 0;
 440   if (x >= (jdouble) max_jint)
 441     return max_jint;
 442   if (x <= (jdouble) min_jint)
 443     return min_jint;
 444   return (jint) x;
 445 JRT_END
 446 
 447 
 448 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 449   if (g_isnan(x))
 450     return 0;
 451   if (x >= (jdouble) max_jlong)
 452     return max_jlong;
 453   if (x <= (jdouble) min_jlong)
 454     return min_jlong;
 455   return (jlong) x;
 456 JRT_END
 457 
 458 
 459 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 460   return (jfloat)x;
 461 JRT_END
 462 
 463 
 464 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 465   return (jfloat)x;
 466 JRT_END
 467 
 468 
 469 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 470   return (jdouble)x;
 471 JRT_END
 472 
 473 // Exception handling accross interpreter/compiler boundaries
 474 //
 475 // exception_handler_for_return_address(...) returns the continuation address.
 476 // The continuation address is the entry point of the exception handler of the
 477 // previous frame depending on the return address.
 478 
 479 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 480   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 481 
 482   // Reset method handle flag.
 483   thread->set_is_method_handle_return(false);
 484 
 485   // The fastest case first
 486   CodeBlob* blob = CodeCache::find_blob(return_address);
 487   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 488   if (nm != NULL) {
 489     // Set flag if return address is a method handle call site.
 490     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 491     // native nmethods don't have exception handlers
 492     assert(!nm->is_native_method(), "no exception handler");
 493     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 494     if (nm->is_deopt_pc(return_address)) {
 495       return SharedRuntime::deopt_blob()->unpack_with_exception();
 496     } else {
 497       return nm->exception_begin();
 498     }
 499   }
 500 
 501   // Entry code
 502   if (StubRoutines::returns_to_call_stub(return_address)) {
 503     return StubRoutines::catch_exception_entry();
 504   }
 505   // Interpreted code
 506   if (Interpreter::contains(return_address)) {
 507     return Interpreter::rethrow_exception_entry();
 508   }
 509 
 510   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 511   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 512 
 513 #ifndef PRODUCT
 514   { ResourceMark rm;
 515     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 516     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 517     tty->print_cr("b) other problem");
 518   }
 519 #endif // PRODUCT
 520 
 521   ShouldNotReachHere();
 522   return NULL;
 523 }
 524 
 525 
 526 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 527   return raw_exception_handler_for_return_address(thread, return_address);
 528 JRT_END
 529 
 530 
 531 address SharedRuntime::get_poll_stub(address pc) {
 532   address stub;
 533   // Look up the code blob
 534   CodeBlob *cb = CodeCache::find_blob(pc);
 535 
 536   // Should be an nmethod
 537   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 538 
 539   // Look up the relocation information
 540   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 541     "safepoint polling: type must be poll" );
 542 
 543   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 544     "Only polling locations are used for safepoint");
 545 
 546   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 547   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 548   if (at_poll_return) {
 549     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 550            "polling page return stub not created yet");
 551     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 552   } else if (has_wide_vectors) {
 553     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 554            "polling page vectors safepoint stub not created yet");
 555     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 556   } else {
 557     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 558            "polling page safepoint stub not created yet");
 559     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 560   }
 561 #ifndef PRODUCT
 562   if( TraceSafepoint ) {
 563     char buf[256];
 564     jio_snprintf(buf, sizeof(buf),
 565                  "... found polling page %s exception at pc = "
 566                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 567                  at_poll_return ? "return" : "loop",
 568                  (intptr_t)pc, (intptr_t)stub);
 569     tty->print_raw_cr(buf);
 570   }
 571 #endif // PRODUCT
 572   return stub;
 573 }
 574 
 575 
 576 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 577   assert(caller.is_interpreted_frame(), "");
 578   int args_size = ArgumentSizeComputer(sig).size() + 1;
 579   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 580   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 581   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 582   return result;
 583 }
 584 
 585 
 586 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 587   if (JvmtiExport::can_post_on_exceptions()) {
 588     vframeStream vfst(thread, true);
 589     methodHandle method = methodHandle(thread, vfst.method());
 590     address bcp = method()->bcp_from(vfst.bci());
 591     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 592   }
 593   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 594 }
 595 
 596 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 597   Handle h_exception = Exceptions::new_exception(thread, name, message);
 598   throw_and_post_jvmti_exception(thread, h_exception);
 599 }
 600 
 601 // The interpreter code to call this tracing function is only
 602 // called/generated when TraceRedefineClasses has the right bits
 603 // set. Since obsolete methods are never compiled, we don't have
 604 // to modify the compilers to generate calls to this function.
 605 //
 606 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 607     JavaThread* thread, Method* method))
 608   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 609 
 610   if (method->is_obsolete()) {
 611     // We are calling an obsolete method, but this is not necessarily
 612     // an error. Our method could have been redefined just after we
 613     // fetched the Method* from the constant pool.
 614 
 615     // RC_TRACE macro has an embedded ResourceMark
 616     RC_TRACE_WITH_THREAD(0x00001000, thread,
 617                          ("calling obsolete method '%s'",
 618                           method->name_and_sig_as_C_string()));
 619     if (RC_TRACE_ENABLED(0x00002000)) {
 620       // this option is provided to debug calls to obsolete methods
 621       guarantee(false, "faulting at call to an obsolete method.");
 622     }
 623   }
 624   return 0;
 625 JRT_END
 626 
 627 // ret_pc points into caller; we are returning caller's exception handler
 628 // for given exception
 629 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 630                                                     bool force_unwind, bool top_frame_only) {
 631   assert(nm != NULL, "must exist");
 632   ResourceMark rm;
 633 
 634   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 635   // determine handler bci, if any
 636   EXCEPTION_MARK;
 637 
 638   int handler_bci = -1;
 639   int scope_depth = 0;
 640   if (!force_unwind) {
 641     int bci = sd->bci();
 642     bool recursive_exception = false;
 643     do {
 644       bool skip_scope_increment = false;
 645       // exception handler lookup
 646       KlassHandle ek (THREAD, exception->klass());
 647       methodHandle mh(THREAD, sd->method());
 648       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 649       if (HAS_PENDING_EXCEPTION) {
 650         recursive_exception = true;
 651         // We threw an exception while trying to find the exception handler.
 652         // Transfer the new exception to the exception handle which will
 653         // be set into thread local storage, and do another lookup for an
 654         // exception handler for this exception, this time starting at the
 655         // BCI of the exception handler which caused the exception to be
 656         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 657         // argument to ensure that the correct exception is thrown (4870175).
 658         exception = Handle(THREAD, PENDING_EXCEPTION);
 659         CLEAR_PENDING_EXCEPTION;
 660         if (handler_bci >= 0) {
 661           bci = handler_bci;
 662           handler_bci = -1;
 663           skip_scope_increment = true;
 664         }
 665       }
 666       else {
 667         recursive_exception = false;
 668       }
 669       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 670         sd = sd->sender();
 671         if (sd != NULL) {
 672           bci = sd->bci();
 673         }
 674         ++scope_depth;
 675       }
 676     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 677   }
 678 
 679   // found handling method => lookup exception handler
 680   int catch_pco = ret_pc - nm->code_begin();
 681 
 682   ExceptionHandlerTable table(nm);
 683   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 684   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 685     // Allow abbreviated catch tables.  The idea is to allow a method
 686     // to materialize its exceptions without committing to the exact
 687     // routing of exceptions.  In particular this is needed for adding
 688     // a synthethic handler to unlock monitors when inlining
 689     // synchonized methods since the unlock path isn't represented in
 690     // the bytecodes.
 691     t = table.entry_for(catch_pco, -1, 0);
 692   }
 693 
 694 #ifdef COMPILER1
 695   if (t == NULL && nm->is_compiled_by_c1()) {
 696     assert(nm->unwind_handler_begin() != NULL, "");
 697     return nm->unwind_handler_begin();
 698   }
 699 #endif
 700 
 701   if (t == NULL) {
 702     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 703     tty->print_cr("   Exception:");
 704     exception->print();
 705     tty->cr();
 706     tty->print_cr(" Compiled exception table :");
 707     table.print();
 708     nm->print_code();
 709     guarantee(false, "missing exception handler");
 710     return NULL;
 711   }
 712 
 713   return nm->code_begin() + t->pco();
 714 }
 715 
 716 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 717   // These errors occur only at call sites
 718   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 719 JRT_END
 720 
 721 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 722   // These errors occur only at call sites
 723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 724 JRT_END
 725 
 726 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 727   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 728 JRT_END
 729 
 730 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 731   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 732 JRT_END
 733 
 734 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 735   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 736   // cache sites (when the callee activation is not yet set up) so we are at a call site
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 741   // We avoid using the normal exception construction in this case because
 742   // it performs an upcall to Java, and we're already out of stack space.
 743   Klass* k = SystemDictionary::StackOverflowError_klass();
 744   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 745   Handle exception (thread, exception_oop);
 746   if (StackTraceInThrowable) {
 747     java_lang_Throwable::fill_in_stack_trace(exception);
 748   }
 749   throw_and_post_jvmti_exception(thread, exception);
 750 JRT_END
 751 
 752 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 753                                                            address pc,
 754                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 755 {
 756   address target_pc = NULL;
 757 
 758   if (Interpreter::contains(pc)) {
 759 #ifdef CC_INTERP
 760     // C++ interpreter doesn't throw implicit exceptions
 761     ShouldNotReachHere();
 762 #else
 763     switch (exception_kind) {
 764       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 765       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 766       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 767       default:                      ShouldNotReachHere();
 768     }
 769 #endif // !CC_INTERP
 770   } else {
 771     switch (exception_kind) {
 772       case STACK_OVERFLOW: {
 773         // Stack overflow only occurs upon frame setup; the callee is
 774         // going to be unwound. Dispatch to a shared runtime stub
 775         // which will cause the StackOverflowError to be fabricated
 776         // and processed.
 777         // For stack overflow in deoptimization blob, cleanup thread.
 778         if (thread->deopt_mark() != NULL) {
 779           Deoptimization::cleanup_deopt_info(thread, NULL);
 780         }
 781         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 782         return StubRoutines::throw_StackOverflowError_entry();
 783       }
 784 
 785       case IMPLICIT_NULL: {
 786         if (VtableStubs::contains(pc)) {
 787           // We haven't yet entered the callee frame. Fabricate an
 788           // exception and begin dispatching it in the caller. Since
 789           // the caller was at a call site, it's safe to destroy all
 790           // caller-saved registers, as these entry points do.
 791           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 792 
 793           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 794           if (vt_stub == NULL) return NULL;
 795 
 796           if (vt_stub->is_abstract_method_error(pc)) {
 797             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 798             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 799             return StubRoutines::throw_AbstractMethodError_entry();
 800           } else {
 801             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 802             return StubRoutines::throw_NullPointerException_at_call_entry();
 803           }
 804         } else {
 805           CodeBlob* cb = CodeCache::find_blob(pc);
 806 
 807           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 808           if (cb == NULL) return NULL;
 809 
 810           // Exception happened in CodeCache. Must be either:
 811           // 1. Inline-cache check in C2I handler blob,
 812           // 2. Inline-cache check in nmethod, or
 813           // 3. Implict null exception in nmethod
 814 
 815           if (!cb->is_nmethod()) {
 816             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 817                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 818             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 819             // There is no handler here, so we will simply unwind.
 820             return StubRoutines::throw_NullPointerException_at_call_entry();
 821           }
 822 
 823           // Otherwise, it's an nmethod.  Consult its exception handlers.
 824           nmethod* nm = (nmethod*)cb;
 825           if (nm->inlinecache_check_contains(pc)) {
 826             // exception happened inside inline-cache check code
 827             // => the nmethod is not yet active (i.e., the frame
 828             // is not set up yet) => use return address pushed by
 829             // caller => don't push another return address
 830             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 831             return StubRoutines::throw_NullPointerException_at_call_entry();
 832           }
 833 
 834           if (nm->method()->is_method_handle_intrinsic()) {
 835             // exception happened inside MH dispatch code, similar to a vtable stub
 836             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 837             return StubRoutines::throw_NullPointerException_at_call_entry();
 838           }
 839 
 840 #ifndef PRODUCT
 841           _implicit_null_throws++;
 842 #endif
 843           target_pc = nm->continuation_for_implicit_exception(pc);
 844           // If there's an unexpected fault, target_pc might be NULL,
 845           // in which case we want to fall through into the normal
 846           // error handling code.
 847         }
 848 
 849         break; // fall through
 850       }
 851 
 852 
 853       case IMPLICIT_DIVIDE_BY_ZERO: {
 854         nmethod* nm = CodeCache::find_nmethod(pc);
 855         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 856 #ifndef PRODUCT
 857         _implicit_div0_throws++;
 858 #endif
 859         target_pc = nm->continuation_for_implicit_exception(pc);
 860         // If there's an unexpected fault, target_pc might be NULL,
 861         // in which case we want to fall through into the normal
 862         // error handling code.
 863         break; // fall through
 864       }
 865 
 866       default: ShouldNotReachHere();
 867     }
 868 
 869     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 870 
 871     // for AbortVMOnException flag
 872     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 873     if (exception_kind == IMPLICIT_NULL) {
 874       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 875     } else {
 876       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 877     }
 878     return target_pc;
 879   }
 880 
 881   ShouldNotReachHere();
 882   return NULL;
 883 }
 884 
 885 
 886 /**
 887  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 888  * installed in the native function entry of all native Java methods before
 889  * they get linked to their actual native methods.
 890  *
 891  * \note
 892  * This method actually never gets called!  The reason is because
 893  * the interpreter's native entries call NativeLookup::lookup() which
 894  * throws the exception when the lookup fails.  The exception is then
 895  * caught and forwarded on the return from NativeLookup::lookup() call
 896  * before the call to the native function.  This might change in the future.
 897  */
 898 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 899 {
 900   // We return a bad value here to make sure that the exception is
 901   // forwarded before we look at the return value.
 902   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 903 }
 904 JNI_END
 905 
 906 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 907   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 908 }
 909 
 910 
 911 #ifndef PRODUCT
 912 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 913   const frame f = thread->last_frame();
 914   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 915 #ifndef PRODUCT
 916   methodHandle mh(THREAD, f.interpreter_frame_method());
 917   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 918 #endif // !PRODUCT
 919   return preserve_this_value;
 920 JRT_END
 921 #endif // !PRODUCT
 922 
 923 
 924 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 925   os::yield_all(attempts);
 926 JRT_END
 927 
 928 
 929 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 930   assert(obj->is_oop(), "must be a valid oop");
 931   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 932   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 933 JRT_END
 934 
 935 
 936 jlong SharedRuntime::get_java_tid(Thread* thread) {
 937   if (thread != NULL) {
 938     if (thread->is_Java_thread()) {
 939       oop obj = ((JavaThread*)thread)->threadObj();
 940       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 941     }
 942   }
 943   return 0;
 944 }
 945 
 946 /**
 947  * This function ought to be a void function, but cannot be because
 948  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 949  * 6254741.  Once that is fixed we can remove the dummy return value.
 950  */
 951 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 952   return dtrace_object_alloc_base(Thread::current(), o);
 953 }
 954 
 955 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 956   assert(DTraceAllocProbes, "wrong call");
 957   Klass* klass = o->klass();
 958   int size = o->size();
 959   Symbol* name = klass->name();
 960 #ifndef USDT2
 961   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 962                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 963 #else /* USDT2 */
 964   HOTSPOT_OBJECT_ALLOC(
 965                    get_java_tid(thread),
 966                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 967 #endif /* USDT2 */
 968   return 0;
 969 }
 970 
 971 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 972     JavaThread* thread, Method* method))
 973   assert(DTraceMethodProbes, "wrong call");
 974   Symbol* kname = method->klass_name();
 975   Symbol* name = method->name();
 976   Symbol* sig = method->signature();
 977 #ifndef USDT2
 978   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 979       kname->bytes(), kname->utf8_length(),
 980       name->bytes(), name->utf8_length(),
 981       sig->bytes(), sig->utf8_length());
 982 #else /* USDT2 */
 983   HOTSPOT_METHOD_ENTRY(
 984       get_java_tid(thread),
 985       (char *) kname->bytes(), kname->utf8_length(),
 986       (char *) name->bytes(), name->utf8_length(),
 987       (char *) sig->bytes(), sig->utf8_length());
 988 #endif /* USDT2 */
 989   return 0;
 990 JRT_END
 991 
 992 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 993     JavaThread* thread, Method* method))
 994   assert(DTraceMethodProbes, "wrong call");
 995   Symbol* kname = method->klass_name();
 996   Symbol* name = method->name();
 997   Symbol* sig = method->signature();
 998 #ifndef USDT2
 999   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1000       kname->bytes(), kname->utf8_length(),
1001       name->bytes(), name->utf8_length(),
1002       sig->bytes(), sig->utf8_length());
1003 #else /* USDT2 */
1004   HOTSPOT_METHOD_RETURN(
1005       get_java_tid(thread),
1006       (char *) kname->bytes(), kname->utf8_length(),
1007       (char *) name->bytes(), name->utf8_length(),
1008       (char *) sig->bytes(), sig->utf8_length());
1009 #endif /* USDT2 */
1010   return 0;
1011 JRT_END
1012 
1013 
1014 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1015 // for a call current in progress, i.e., arguments has been pushed on stack
1016 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1017 // vtable updates, etc.  Caller frame must be compiled.
1018 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1019   ResourceMark rm(THREAD);
1020 
1021   // last java frame on stack (which includes native call frames)
1022   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1023 
1024   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1025 }
1026 
1027 
1028 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1029 // for a call current in progress, i.e., arguments has been pushed on stack
1030 // but callee has not been invoked yet.  Caller frame must be compiled.
1031 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1032                                               vframeStream& vfst,
1033                                               Bytecodes::Code& bc,
1034                                               CallInfo& callinfo, TRAPS) {
1035   Handle receiver;
1036   Handle nullHandle;  //create a handy null handle for exception returns
1037 
1038   assert(!vfst.at_end(), "Java frame must exist");
1039 
1040   // Find caller and bci from vframe
1041   methodHandle caller(THREAD, vfst.method());
1042   int          bci   = vfst.bci();
1043 
1044   // Find bytecode
1045   Bytecode_invoke bytecode(caller, bci);
1046   bc = bytecode.invoke_code();
1047   int bytecode_index = bytecode.index();
1048 
1049   // Find receiver for non-static call
1050   if (bc != Bytecodes::_invokestatic &&
1051       bc != Bytecodes::_invokedynamic) {
1052     // This register map must be update since we need to find the receiver for
1053     // compiled frames. The receiver might be in a register.
1054     RegisterMap reg_map2(thread);
1055     frame stubFrame   = thread->last_frame();
1056     // Caller-frame is a compiled frame
1057     frame callerFrame = stubFrame.sender(&reg_map2);
1058 
1059     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1060     if (callee.is_null()) {
1061       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1062     }
1063     // Retrieve from a compiled argument list
1064     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1065 
1066     if (receiver.is_null()) {
1067       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1068     }
1069   }
1070 
1071   // Resolve method. This is parameterized by bytecode.
1072   constantPoolHandle constants(THREAD, caller->constants());
1073   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1074   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1075 
1076 #ifdef ASSERT
1077   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1078   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
1079     assert(receiver.not_null(), "should have thrown exception");
1080     KlassHandle receiver_klass(THREAD, receiver->klass());
1081     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1082                             // klass is already loaded
1083     KlassHandle static_receiver_klass(THREAD, rk);
1084     // Method handle invokes might have been optimized to a direct call
1085     // so don't check for the receiver class.
1086     // FIXME this weakens the assert too much
1087     methodHandle callee = callinfo.selected_method();
1088     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1089            callee->is_method_handle_intrinsic() ||
1090            callee->is_compiled_lambda_form(),
1091            "actual receiver must be subclass of static receiver klass");
1092     if (receiver_klass->oop_is_instance()) {
1093       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1094         tty->print_cr("ERROR: Klass not yet initialized!!");
1095         receiver_klass()->print();
1096       }
1097       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1098     }
1099   }
1100 #endif
1101 
1102   return receiver;
1103 }
1104 
1105 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1106   ResourceMark rm(THREAD);
1107   // We need first to check if any Java activations (compiled, interpreted)
1108   // exist on the stack since last JavaCall.  If not, we need
1109   // to get the target method from the JavaCall wrapper.
1110   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1111   methodHandle callee_method;
1112   if (vfst.at_end()) {
1113     // No Java frames were found on stack since we did the JavaCall.
1114     // Hence the stack can only contain an entry_frame.  We need to
1115     // find the target method from the stub frame.
1116     RegisterMap reg_map(thread, false);
1117     frame fr = thread->last_frame();
1118     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1119     fr = fr.sender(&reg_map);
1120     assert(fr.is_entry_frame(), "must be");
1121     // fr is now pointing to the entry frame.
1122     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1123     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1124   } else {
1125     Bytecodes::Code bc;
1126     CallInfo callinfo;
1127     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1128     callee_method = callinfo.selected_method();
1129   }
1130   assert(callee_method()->is_method(), "must be");
1131   return callee_method;
1132 }
1133 
1134 // Resolves a call.
1135 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1136                                            bool is_virtual,
1137                                            bool is_optimized, TRAPS) {
1138   methodHandle callee_method;
1139   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1140   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1141     int retry_count = 0;
1142     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1143            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1144       // If has a pending exception then there is no need to re-try to
1145       // resolve this method.
1146       // If the method has been redefined, we need to try again.
1147       // Hack: we have no way to update the vtables of arrays, so don't
1148       // require that java.lang.Object has been updated.
1149 
1150       // It is very unlikely that method is redefined more than 100 times
1151       // in the middle of resolve. If it is looping here more than 100 times
1152       // means then there could be a bug here.
1153       guarantee((retry_count++ < 100),
1154                 "Could not resolve to latest version of redefined method");
1155       // method is redefined in the middle of resolve so re-try.
1156       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1157     }
1158   }
1159   return callee_method;
1160 }
1161 
1162 // Resolves a call.  The compilers generate code for calls that go here
1163 // and are patched with the real destination of the call.
1164 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1165                                            bool is_virtual,
1166                                            bool is_optimized, TRAPS) {
1167 
1168   ResourceMark rm(thread);
1169   RegisterMap cbl_map(thread, false);
1170   frame caller_frame = thread->last_frame().sender(&cbl_map);
1171 
1172   CodeBlob* caller_cb = caller_frame.cb();
1173   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1174   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1175   // make sure caller is not getting deoptimized
1176   // and removed before we are done with it.
1177   // CLEANUP - with lazy deopt shouldn't need this lock
1178   nmethodLocker caller_lock(caller_nm);
1179 
1180 
1181   // determine call info & receiver
1182   // note: a) receiver is NULL for static calls
1183   //       b) an exception is thrown if receiver is NULL for non-static calls
1184   CallInfo call_info;
1185   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1186   Handle receiver = find_callee_info(thread, invoke_code,
1187                                      call_info, CHECK_(methodHandle()));
1188   methodHandle callee_method = call_info.selected_method();
1189 
1190   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1191          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1192          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1193          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1194 
1195 #ifndef PRODUCT
1196   // tracing/debugging/statistics
1197   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1198                 (is_virtual) ? (&_resolve_virtual_ctr) :
1199                                (&_resolve_static_ctr);
1200   Atomic::inc(addr);
1201 
1202   if (TraceCallFixup) {
1203     ResourceMark rm(thread);
1204     tty->print("resolving %s%s (%s) call to",
1205       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1206       Bytecodes::name(invoke_code));
1207     callee_method->print_short_name(tty);
1208     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1209   }
1210 #endif
1211 
1212   // JSR 292 key invariant:
1213   // If the resolved method is a MethodHandle invoke target the call
1214   // site must be a MethodHandle call site, because the lambda form might tail-call
1215   // leaving the stack in a state unknown to either caller or callee
1216   // TODO detune for now but we might need it again
1217 //  assert(!callee_method->is_compiled_lambda_form() ||
1218 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1219 
1220   // Compute entry points. This might require generation of C2I converter
1221   // frames, so we cannot be holding any locks here. Furthermore, the
1222   // computation of the entry points is independent of patching the call.  We
1223   // always return the entry-point, but we only patch the stub if the call has
1224   // not been deoptimized.  Return values: For a virtual call this is an
1225   // (cached_oop, destination address) pair. For a static call/optimized
1226   // virtual this is just a destination address.
1227 
1228   StaticCallInfo static_call_info;
1229   CompiledICInfo virtual_call_info;
1230 
1231   // Make sure the callee nmethod does not get deoptimized and removed before
1232   // we are done patching the code.
1233   nmethod* callee_nm = callee_method->code();
1234   nmethodLocker nl_callee(callee_nm);
1235 #ifdef ASSERT
1236   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1237 #endif
1238 
1239   if (is_virtual) {
1240     assert(receiver.not_null(), "sanity check");
1241     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1242     KlassHandle h_klass(THREAD, receiver->klass());
1243     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1244                      is_optimized, static_bound, virtual_call_info,
1245                      CHECK_(methodHandle()));
1246   } else {
1247     // static call
1248     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1249   }
1250 
1251   // grab lock, check for deoptimization and potentially patch caller
1252   {
1253     MutexLocker ml_patch(CompiledIC_lock);
1254 
1255     // Now that we are ready to patch if the Method* was redefined then
1256     // don't update call site and let the caller retry.
1257 
1258     if (!callee_method->is_old()) {
1259 #ifdef ASSERT
1260       // We must not try to patch to jump to an already unloaded method.
1261       if (dest_entry_point != 0) {
1262         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1263                "should not unload nmethod while locked");
1264       }
1265 #endif
1266       if (is_virtual) {
1267         nmethod* nm = callee_nm;
1268         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1269         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1270         if (inline_cache->is_clean()) {
1271           inline_cache->set_to_monomorphic(virtual_call_info);
1272         }
1273       } else {
1274         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1275         if (ssc->is_clean()) ssc->set(static_call_info);
1276       }
1277     }
1278 
1279   } // unlock CompiledIC_lock
1280 
1281   return callee_method;
1282 }
1283 
1284 
1285 // Inline caches exist only in compiled code
1286 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1287 #ifdef ASSERT
1288   RegisterMap reg_map(thread, false);
1289   frame stub_frame = thread->last_frame();
1290   assert(stub_frame.is_runtime_frame(), "sanity check");
1291   frame caller_frame = stub_frame.sender(&reg_map);
1292   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1293 #endif /* ASSERT */
1294 
1295   methodHandle callee_method;
1296   JRT_BLOCK
1297     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1298     // Return Method* through TLS
1299     thread->set_vm_result_2(callee_method());
1300   JRT_BLOCK_END
1301   // return compiled code entry point after potential safepoints
1302   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1303   return callee_method->verified_code_entry();
1304 JRT_END
1305 
1306 
1307 // Handle call site that has been made non-entrant
1308 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1309   // 6243940 We might end up in here if the callee is deoptimized
1310   // as we race to call it.  We don't want to take a safepoint if
1311   // the caller was interpreted because the caller frame will look
1312   // interpreted to the stack walkers and arguments are now
1313   // "compiled" so it is much better to make this transition
1314   // invisible to the stack walking code. The i2c path will
1315   // place the callee method in the callee_target. It is stashed
1316   // there because if we try and find the callee by normal means a
1317   // safepoint is possible and have trouble gc'ing the compiled args.
1318   RegisterMap reg_map(thread, false);
1319   frame stub_frame = thread->last_frame();
1320   assert(stub_frame.is_runtime_frame(), "sanity check");
1321   frame caller_frame = stub_frame.sender(&reg_map);
1322 
1323   if (caller_frame.is_interpreted_frame() ||
1324       caller_frame.is_entry_frame()) {
1325     Method* callee = thread->callee_target();
1326     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1327     thread->set_vm_result_2(callee);
1328     thread->set_callee_target(NULL);
1329     return callee->get_c2i_entry();
1330   }
1331 
1332   // Must be compiled to compiled path which is safe to stackwalk
1333   methodHandle callee_method;
1334   JRT_BLOCK
1335     // Force resolving of caller (if we called from compiled frame)
1336     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1337     thread->set_vm_result_2(callee_method());
1338   JRT_BLOCK_END
1339   // return compiled code entry point after potential safepoints
1340   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1341   return callee_method->verified_code_entry();
1342 JRT_END
1343 
1344 
1345 // resolve a static call and patch code
1346 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1347   methodHandle callee_method;
1348   JRT_BLOCK
1349     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1350     thread->set_vm_result_2(callee_method());
1351   JRT_BLOCK_END
1352   // return compiled code entry point after potential safepoints
1353   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1354   return callee_method->verified_code_entry();
1355 JRT_END
1356 
1357 
1358 // resolve virtual call and update inline cache to monomorphic
1359 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1360   methodHandle callee_method;
1361   JRT_BLOCK
1362     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1363     thread->set_vm_result_2(callee_method());
1364   JRT_BLOCK_END
1365   // return compiled code entry point after potential safepoints
1366   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1367   return callee_method->verified_code_entry();
1368 JRT_END
1369 
1370 
1371 // Resolve a virtual call that can be statically bound (e.g., always
1372 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1373 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1374   methodHandle callee_method;
1375   JRT_BLOCK
1376     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1377     thread->set_vm_result_2(callee_method());
1378   JRT_BLOCK_END
1379   // return compiled code entry point after potential safepoints
1380   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1381   return callee_method->verified_code_entry();
1382 JRT_END
1383 
1384 
1385 
1386 
1387 
1388 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1389   ResourceMark rm(thread);
1390   CallInfo call_info;
1391   Bytecodes::Code bc;
1392 
1393   // receiver is NULL for static calls. An exception is thrown for NULL
1394   // receivers for non-static calls
1395   Handle receiver = find_callee_info(thread, bc, call_info,
1396                                      CHECK_(methodHandle()));
1397   // Compiler1 can produce virtual call sites that can actually be statically bound
1398   // If we fell thru to below we would think that the site was going megamorphic
1399   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1400   // we'd try and do a vtable dispatch however methods that can be statically bound
1401   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1402   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1403   // plain ic_miss) and the site will be converted to an optimized virtual call site
1404   // never to miss again. I don't believe C2 will produce code like this but if it
1405   // did this would still be the correct thing to do for it too, hence no ifdef.
1406   //
1407   if (call_info.resolved_method()->can_be_statically_bound()) {
1408     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1409     if (TraceCallFixup) {
1410       RegisterMap reg_map(thread, false);
1411       frame caller_frame = thread->last_frame().sender(&reg_map);
1412       ResourceMark rm(thread);
1413       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1414       callee_method->print_short_name(tty);
1415       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1416       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1417     }
1418     return callee_method;
1419   }
1420 
1421   methodHandle callee_method = call_info.selected_method();
1422 
1423   bool should_be_mono = false;
1424 
1425 #ifndef PRODUCT
1426   Atomic::inc(&_ic_miss_ctr);
1427 
1428   // Statistics & Tracing
1429   if (TraceCallFixup) {
1430     ResourceMark rm(thread);
1431     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1432     callee_method->print_short_name(tty);
1433     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1434   }
1435 
1436   if (ICMissHistogram) {
1437     MutexLocker m(VMStatistic_lock);
1438     RegisterMap reg_map(thread, false);
1439     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1440     // produce statistics under the lock
1441     trace_ic_miss(f.pc());
1442   }
1443 #endif
1444 
1445   // install an event collector so that when a vtable stub is created the
1446   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1447   // event can't be posted when the stub is created as locks are held
1448   // - instead the event will be deferred until the event collector goes
1449   // out of scope.
1450   JvmtiDynamicCodeEventCollector event_collector;
1451 
1452   // Update inline cache to megamorphic. Skip update if caller has been
1453   // made non-entrant or we are called from interpreted.
1454   { MutexLocker ml_patch (CompiledIC_lock);
1455     RegisterMap reg_map(thread, false);
1456     frame caller_frame = thread->last_frame().sender(&reg_map);
1457     CodeBlob* cb = caller_frame.cb();
1458     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1459       // Not a non-entrant nmethod, so find inline_cache
1460       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1461       bool should_be_mono = false;
1462       if (inline_cache->is_optimized()) {
1463         if (TraceCallFixup) {
1464           ResourceMark rm(thread);
1465           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1466           callee_method->print_short_name(tty);
1467           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1468         }
1469         should_be_mono = true;
1470       } else if (inline_cache->is_icholder_call()) {
1471         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1472         if ( ic_oop != NULL) {
1473 
1474           if (receiver()->klass() == ic_oop->holder_klass()) {
1475             // This isn't a real miss. We must have seen that compiled code
1476             // is now available and we want the call site converted to a
1477             // monomorphic compiled call site.
1478             // We can't assert for callee_method->code() != NULL because it
1479             // could have been deoptimized in the meantime
1480             if (TraceCallFixup) {
1481               ResourceMark rm(thread);
1482               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1483               callee_method->print_short_name(tty);
1484               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1485             }
1486             should_be_mono = true;
1487           }
1488         }
1489       }
1490 
1491       if (should_be_mono) {
1492 
1493         // We have a path that was monomorphic but was going interpreted
1494         // and now we have (or had) a compiled entry. We correct the IC
1495         // by using a new icBuffer.
1496         CompiledICInfo info;
1497         KlassHandle receiver_klass(THREAD, receiver()->klass());
1498         inline_cache->compute_monomorphic_entry(callee_method,
1499                                                 receiver_klass,
1500                                                 inline_cache->is_optimized(),
1501                                                 false,
1502                                                 info, CHECK_(methodHandle()));
1503         inline_cache->set_to_monomorphic(info);
1504       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1505         // Change to megamorphic
1506         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1507       } else {
1508         // Either clean or megamorphic
1509       }
1510     }
1511   } // Release CompiledIC_lock
1512 
1513   return callee_method;
1514 }
1515 
1516 //
1517 // Resets a call-site in compiled code so it will get resolved again.
1518 // This routines handles both virtual call sites, optimized virtual call
1519 // sites, and static call sites. Typically used to change a call sites
1520 // destination from compiled to interpreted.
1521 //
1522 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1523   ResourceMark rm(thread);
1524   RegisterMap reg_map(thread, false);
1525   frame stub_frame = thread->last_frame();
1526   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1527   frame caller = stub_frame.sender(&reg_map);
1528 
1529   // Do nothing if the frame isn't a live compiled frame.
1530   // nmethod could be deoptimized by the time we get here
1531   // so no update to the caller is needed.
1532 
1533   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1534 
1535     address pc = caller.pc();
1536 
1537     // Default call_addr is the location of the "basic" call.
1538     // Determine the address of the call we a reresolving. With
1539     // Inline Caches we will always find a recognizable call.
1540     // With Inline Caches disabled we may or may not find a
1541     // recognizable call. We will always find a call for static
1542     // calls and for optimized virtual calls. For vanilla virtual
1543     // calls it depends on the state of the UseInlineCaches switch.
1544     //
1545     // With Inline Caches disabled we can get here for a virtual call
1546     // for two reasons:
1547     //   1 - calling an abstract method. The vtable for abstract methods
1548     //       will run us thru handle_wrong_method and we will eventually
1549     //       end up in the interpreter to throw the ame.
1550     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1551     //       call and between the time we fetch the entry address and
1552     //       we jump to it the target gets deoptimized. Similar to 1
1553     //       we will wind up in the interprter (thru a c2i with c2).
1554     //
1555     address call_addr = NULL;
1556     {
1557       // Get call instruction under lock because another thread may be
1558       // busy patching it.
1559       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1560       // Location of call instruction
1561       if (NativeCall::is_call_before(pc)) {
1562         NativeCall *ncall = nativeCall_before(pc);
1563         call_addr = ncall->instruction_address();
1564       }
1565     }
1566 
1567     // Check for static or virtual call
1568     bool is_static_call = false;
1569     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1570     // Make sure nmethod doesn't get deoptimized and removed until
1571     // this is done with it.
1572     // CLEANUP - with lazy deopt shouldn't need this lock
1573     nmethodLocker nmlock(caller_nm);
1574 
1575     if (call_addr != NULL) {
1576       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1577       int ret = iter.next(); // Get item
1578       if (ret) {
1579         assert(iter.addr() == call_addr, "must find call");
1580         if (iter.type() == relocInfo::static_call_type) {
1581           is_static_call = true;
1582         } else {
1583           assert(iter.type() == relocInfo::virtual_call_type ||
1584                  iter.type() == relocInfo::opt_virtual_call_type
1585                 , "unexpected relocInfo. type");
1586         }
1587       } else {
1588         assert(!UseInlineCaches, "relocation info. must exist for this address");
1589       }
1590 
1591       // Cleaning the inline cache will force a new resolve. This is more robust
1592       // than directly setting it to the new destination, since resolving of calls
1593       // is always done through the same code path. (experience shows that it
1594       // leads to very hard to track down bugs, if an inline cache gets updated
1595       // to a wrong method). It should not be performance critical, since the
1596       // resolve is only done once.
1597 
1598       MutexLocker ml(CompiledIC_lock);
1599       //
1600       // We do not patch the call site if the nmethod has been made non-entrant
1601       // as it is a waste of time
1602       //
1603       if (caller_nm->is_in_use()) {
1604         if (is_static_call) {
1605           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1606           ssc->set_to_clean();
1607         } else {
1608           // compiled, dispatched call (which used to call an interpreted method)
1609           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1610           inline_cache->set_to_clean();
1611         }
1612       }
1613     }
1614 
1615   }
1616 
1617   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1618 
1619 
1620 #ifndef PRODUCT
1621   Atomic::inc(&_wrong_method_ctr);
1622 
1623   if (TraceCallFixup) {
1624     ResourceMark rm(thread);
1625     tty->print("handle_wrong_method reresolving call to");
1626     callee_method->print_short_name(tty);
1627     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1628   }
1629 #endif
1630 
1631   return callee_method;
1632 }
1633 
1634 #ifdef ASSERT
1635 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1636                                                                 const BasicType* sig_bt,
1637                                                                 const VMRegPair* regs) {
1638   ResourceMark rm;
1639   const int total_args_passed = method->size_of_parameters();
1640   const VMRegPair*    regs_with_member_name = regs;
1641         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1642 
1643   const int member_arg_pos = total_args_passed - 1;
1644   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1645   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1646 
1647   const bool is_outgoing = method->is_method_handle_intrinsic();
1648   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1649 
1650   for (int i = 0; i < member_arg_pos; i++) {
1651     VMReg a =    regs_with_member_name[i].first();
1652     VMReg b = regs_without_member_name[i].first();
1653     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1654   }
1655   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1656 }
1657 #endif
1658 
1659 // ---------------------------------------------------------------------------
1660 // We are calling the interpreter via a c2i. Normally this would mean that
1661 // we were called by a compiled method. However we could have lost a race
1662 // where we went int -> i2c -> c2i and so the caller could in fact be
1663 // interpreted. If the caller is compiled we attempt to patch the caller
1664 // so he no longer calls into the interpreter.
1665 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1666   Method* moop(method);
1667 
1668   address entry_point = moop->from_compiled_entry();
1669 
1670   // It's possible that deoptimization can occur at a call site which hasn't
1671   // been resolved yet, in which case this function will be called from
1672   // an nmethod that has been patched for deopt and we can ignore the
1673   // request for a fixup.
1674   // Also it is possible that we lost a race in that from_compiled_entry
1675   // is now back to the i2c in that case we don't need to patch and if
1676   // we did we'd leap into space because the callsite needs to use
1677   // "to interpreter" stub in order to load up the Method*. Don't
1678   // ask me how I know this...
1679 
1680   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1681   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1682     return;
1683   }
1684 
1685   // The check above makes sure this is a nmethod.
1686   nmethod* nm = cb->as_nmethod_or_null();
1687   assert(nm, "must be");
1688 
1689   // Get the return PC for the passed caller PC.
1690   address return_pc = caller_pc + frame::pc_return_offset;
1691 
1692   // There is a benign race here. We could be attempting to patch to a compiled
1693   // entry point at the same time the callee is being deoptimized. If that is
1694   // the case then entry_point may in fact point to a c2i and we'd patch the
1695   // call site with the same old data. clear_code will set code() to NULL
1696   // at the end of it. If we happen to see that NULL then we can skip trying
1697   // to patch. If we hit the window where the callee has a c2i in the
1698   // from_compiled_entry and the NULL isn't present yet then we lose the race
1699   // and patch the code with the same old data. Asi es la vida.
1700 
1701   if (moop->code() == NULL) return;
1702 
1703   if (nm->is_in_use()) {
1704 
1705     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1706     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1707     if (NativeCall::is_call_before(return_pc)) {
1708       NativeCall *call = nativeCall_before(return_pc);
1709       //
1710       // bug 6281185. We might get here after resolving a call site to a vanilla
1711       // virtual call. Because the resolvee uses the verified entry it may then
1712       // see compiled code and attempt to patch the site by calling us. This would
1713       // then incorrectly convert the call site to optimized and its downhill from
1714       // there. If you're lucky you'll get the assert in the bugid, if not you've
1715       // just made a call site that could be megamorphic into a monomorphic site
1716       // for the rest of its life! Just another racing bug in the life of
1717       // fixup_callers_callsite ...
1718       //
1719       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1720       iter.next();
1721       assert(iter.has_current(), "must have a reloc at java call site");
1722       relocInfo::relocType typ = iter.reloc()->type();
1723       if ( typ != relocInfo::static_call_type &&
1724            typ != relocInfo::opt_virtual_call_type &&
1725            typ != relocInfo::static_stub_type) {
1726         return;
1727       }
1728       address destination = call->destination();
1729       if (destination != entry_point) {
1730         CodeBlob* callee = CodeCache::find_blob(destination);
1731         // callee == cb seems weird. It means calling interpreter thru stub.
1732         if (callee == cb || callee->is_adapter_blob()) {
1733           // static call or optimized virtual
1734           if (TraceCallFixup) {
1735             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1736             moop->print_short_name(tty);
1737             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1738           }
1739           call->set_destination_mt_safe(entry_point);
1740         } else {
1741           if (TraceCallFixup) {
1742             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1743             moop->print_short_name(tty);
1744             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1745           }
1746           // assert is too strong could also be resolve destinations.
1747           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1748         }
1749       } else {
1750           if (TraceCallFixup) {
1751             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1752             moop->print_short_name(tty);
1753             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1754           }
1755       }
1756     }
1757   }
1758 IRT_END
1759 
1760 
1761 // same as JVM_Arraycopy, but called directly from compiled code
1762 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1763                                                 oopDesc* dest, jint dest_pos,
1764                                                 jint length,
1765                                                 JavaThread* thread)) {
1766 #ifndef PRODUCT
1767   _slow_array_copy_ctr++;
1768 #endif
1769   // Check if we have null pointers
1770   if (src == NULL || dest == NULL) {
1771     THROW(vmSymbols::java_lang_NullPointerException());
1772   }
1773   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1774   // even though the copy_array API also performs dynamic checks to ensure
1775   // that src and dest are truly arrays (and are conformable).
1776   // The copy_array mechanism is awkward and could be removed, but
1777   // the compilers don't call this function except as a last resort,
1778   // so it probably doesn't matter.
1779   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1780                                         (arrayOopDesc*)dest, dest_pos,
1781                                         length, thread);
1782 }
1783 JRT_END
1784 
1785 char* SharedRuntime::generate_class_cast_message(
1786     JavaThread* thread, const char* objName) {
1787 
1788   // Get target class name from the checkcast instruction
1789   vframeStream vfst(thread, true);
1790   assert(!vfst.at_end(), "Java frame must exist");
1791   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1792   Klass* targetKlass = vfst.method()->constants()->klass_at(
1793     cc.index(), thread);
1794   return generate_class_cast_message(objName, targetKlass->external_name());
1795 }
1796 
1797 char* SharedRuntime::generate_class_cast_message(
1798     const char* objName, const char* targetKlassName, const char* desc) {
1799   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1800 
1801   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1802   if (NULL == message) {
1803     // Shouldn't happen, but don't cause even more problems if it does
1804     message = const_cast<char*>(objName);
1805   } else {
1806     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1807   }
1808   return message;
1809 }
1810 
1811 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1812   (void) JavaThread::current()->reguard_stack();
1813 JRT_END
1814 
1815 
1816 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1817 #ifndef PRODUCT
1818 int SharedRuntime::_monitor_enter_ctr=0;
1819 #endif
1820 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1821   oop obj(_obj);
1822 #ifndef PRODUCT
1823   _monitor_enter_ctr++;             // monitor enter slow
1824 #endif
1825   if (PrintBiasedLockingStatistics) {
1826     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1827   }
1828   Handle h_obj(THREAD, obj);
1829   if (UseBiasedLocking) {
1830     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1831     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1832   } else {
1833     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1834   }
1835   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1836 JRT_END
1837 
1838 #ifndef PRODUCT
1839 int SharedRuntime::_monitor_exit_ctr=0;
1840 #endif
1841 // Handles the uncommon cases of monitor unlocking in compiled code
1842 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1843    oop obj(_obj);
1844 #ifndef PRODUCT
1845   _monitor_exit_ctr++;              // monitor exit slow
1846 #endif
1847   Thread* THREAD = JavaThread::current();
1848   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1849   // testing was unable to ever fire the assert that guarded it so I have removed it.
1850   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1851 #undef MIGHT_HAVE_PENDING
1852 #ifdef MIGHT_HAVE_PENDING
1853   // Save and restore any pending_exception around the exception mark.
1854   // While the slow_exit must not throw an exception, we could come into
1855   // this routine with one set.
1856   oop pending_excep = NULL;
1857   const char* pending_file;
1858   int pending_line;
1859   if (HAS_PENDING_EXCEPTION) {
1860     pending_excep = PENDING_EXCEPTION;
1861     pending_file  = THREAD->exception_file();
1862     pending_line  = THREAD->exception_line();
1863     CLEAR_PENDING_EXCEPTION;
1864   }
1865 #endif /* MIGHT_HAVE_PENDING */
1866 
1867   {
1868     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1869     EXCEPTION_MARK;
1870     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1871   }
1872 
1873 #ifdef MIGHT_HAVE_PENDING
1874   if (pending_excep != NULL) {
1875     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1876   }
1877 #endif /* MIGHT_HAVE_PENDING */
1878 JRT_END
1879 
1880 #ifndef PRODUCT
1881 
1882 void SharedRuntime::print_statistics() {
1883   ttyLocker ttyl;
1884   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1885 
1886   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1887   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1888   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1889 
1890   SharedRuntime::print_ic_miss_histogram();
1891 
1892   if (CountRemovableExceptions) {
1893     if (_nof_removable_exceptions > 0) {
1894       Unimplemented(); // this counter is not yet incremented
1895       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1896     }
1897   }
1898 
1899   // Dump the JRT_ENTRY counters
1900   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1901   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1902   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1903   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1904   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1905   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1906   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1907 
1908   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1909   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1910   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1911   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1912   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1913 
1914   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1915   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1916   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1917   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1918   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1919   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1920   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1921   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1922   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1923   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1924   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1925   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1926   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1927   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1928   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1929   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1930 
1931   AdapterHandlerLibrary::print_statistics();
1932 
1933   if (xtty != NULL)  xtty->tail("statistics");
1934 }
1935 
1936 inline double percent(int x, int y) {
1937   return 100.0 * x / MAX2(y, 1);
1938 }
1939 
1940 class MethodArityHistogram {
1941  public:
1942   enum { MAX_ARITY = 256 };
1943  private:
1944   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1945   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1946   static int _max_arity;                      // max. arity seen
1947   static int _max_size;                       // max. arg size seen
1948 
1949   static void add_method_to_histogram(nmethod* nm) {
1950     Method* m = nm->method();
1951     ArgumentCount args(m->signature());
1952     int arity   = args.size() + (m->is_static() ? 0 : 1);
1953     int argsize = m->size_of_parameters();
1954     arity   = MIN2(arity, MAX_ARITY-1);
1955     argsize = MIN2(argsize, MAX_ARITY-1);
1956     int count = nm->method()->compiled_invocation_count();
1957     _arity_histogram[arity]  += count;
1958     _size_histogram[argsize] += count;
1959     _max_arity = MAX2(_max_arity, arity);
1960     _max_size  = MAX2(_max_size, argsize);
1961   }
1962 
1963   void print_histogram_helper(int n, int* histo, const char* name) {
1964     const int N = MIN2(5, n);
1965     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1966     double sum = 0;
1967     double weighted_sum = 0;
1968     int i;
1969     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1970     double rest = sum;
1971     double percent = sum / 100;
1972     for (i = 0; i <= N; i++) {
1973       rest -= histo[i];
1974       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1975     }
1976     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1977     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1978   }
1979 
1980   void print_histogram() {
1981     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1982     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1983     tty->print_cr("\nSame for parameter size (in words):");
1984     print_histogram_helper(_max_size, _size_histogram, "size");
1985     tty->cr();
1986   }
1987 
1988  public:
1989   MethodArityHistogram() {
1990     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1991     _max_arity = _max_size = 0;
1992     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1993     CodeCache::nmethods_do(add_method_to_histogram);
1994     print_histogram();
1995   }
1996 };
1997 
1998 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1999 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2000 int MethodArityHistogram::_max_arity;
2001 int MethodArityHistogram::_max_size;
2002 
2003 void SharedRuntime::print_call_statistics(int comp_total) {
2004   tty->print_cr("Calls from compiled code:");
2005   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2006   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2007   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2008   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2009   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2010   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2011   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2012   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2013   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2014   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2015   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2016   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2017   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2018   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2019   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2020   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2021   tty->cr();
2022   tty->print_cr("Note 1: counter updates are not MT-safe.");
2023   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2024   tty->print_cr("        %% in nested categories are relative to their category");
2025   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2026   tty->cr();
2027 
2028   MethodArityHistogram h;
2029 }
2030 #endif
2031 
2032 
2033 // A simple wrapper class around the calling convention information
2034 // that allows sharing of adapters for the same calling convention.
2035 class AdapterFingerPrint : public CHeapObj<mtCode> {
2036  private:
2037   enum {
2038     _basic_type_bits = 4,
2039     _basic_type_mask = right_n_bits(_basic_type_bits),
2040     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2041     _compact_int_count = 3
2042   };
2043   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2044   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2045 
2046   union {
2047     int  _compact[_compact_int_count];
2048     int* _fingerprint;
2049   } _value;
2050   int _length; // A negative length indicates the fingerprint is in the compact form,
2051                // Otherwise _value._fingerprint is the array.
2052 
2053   // Remap BasicTypes that are handled equivalently by the adapters.
2054   // These are correct for the current system but someday it might be
2055   // necessary to make this mapping platform dependent.
2056   static int adapter_encoding(BasicType in) {
2057     switch(in) {
2058       case T_BOOLEAN:
2059       case T_BYTE:
2060       case T_SHORT:
2061       case T_CHAR:
2062         // There are all promoted to T_INT in the calling convention
2063         return T_INT;
2064 
2065       case T_OBJECT:
2066       case T_ARRAY:
2067         // In other words, we assume that any register good enough for
2068         // an int or long is good enough for a managed pointer.
2069 #ifdef _LP64
2070         return T_LONG;
2071 #else
2072         return T_INT;
2073 #endif
2074 
2075       case T_INT:
2076       case T_LONG:
2077       case T_FLOAT:
2078       case T_DOUBLE:
2079       case T_VOID:
2080         return in;
2081 
2082       default:
2083         ShouldNotReachHere();
2084         return T_CONFLICT;
2085     }
2086   }
2087 
2088  public:
2089   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2090     // The fingerprint is based on the BasicType signature encoded
2091     // into an array of ints with eight entries per int.
2092     int* ptr;
2093     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2094     if (len <= _compact_int_count) {
2095       assert(_compact_int_count == 3, "else change next line");
2096       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2097       // Storing the signature encoded as signed chars hits about 98%
2098       // of the time.
2099       _length = -len;
2100       ptr = _value._compact;
2101     } else {
2102       _length = len;
2103       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2104       ptr = _value._fingerprint;
2105     }
2106 
2107     // Now pack the BasicTypes with 8 per int
2108     int sig_index = 0;
2109     for (int index = 0; index < len; index++) {
2110       int value = 0;
2111       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2112         int bt = ((sig_index < total_args_passed)
2113                   ? adapter_encoding(sig_bt[sig_index++])
2114                   : 0);
2115         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2116         value = (value << _basic_type_bits) | bt;
2117       }
2118       ptr[index] = value;
2119     }
2120   }
2121 
2122   ~AdapterFingerPrint() {
2123     if (_length > 0) {
2124       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2125     }
2126   }
2127 
2128   int value(int index) {
2129     if (_length < 0) {
2130       return _value._compact[index];
2131     }
2132     return _value._fingerprint[index];
2133   }
2134   int length() {
2135     if (_length < 0) return -_length;
2136     return _length;
2137   }
2138 
2139   bool is_compact() {
2140     return _length <= 0;
2141   }
2142 
2143   unsigned int compute_hash() {
2144     int hash = 0;
2145     for (int i = 0; i < length(); i++) {
2146       int v = value(i);
2147       hash = (hash << 8) ^ v ^ (hash >> 5);
2148     }
2149     return (unsigned int)hash;
2150   }
2151 
2152   const char* as_string() {
2153     stringStream st;
2154     st.print("0x");
2155     for (int i = 0; i < length(); i++) {
2156       st.print("%08x", value(i));
2157     }
2158     return st.as_string();
2159   }
2160 
2161   bool equals(AdapterFingerPrint* other) {
2162     if (other->_length != _length) {
2163       return false;
2164     }
2165     if (_length < 0) {
2166       assert(_compact_int_count == 3, "else change next line");
2167       return _value._compact[0] == other->_value._compact[0] &&
2168              _value._compact[1] == other->_value._compact[1] &&
2169              _value._compact[2] == other->_value._compact[2];
2170     } else {
2171       for (int i = 0; i < _length; i++) {
2172         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2173           return false;
2174         }
2175       }
2176     }
2177     return true;
2178   }
2179 };
2180 
2181 
2182 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2183 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2184   friend class AdapterHandlerTableIterator;
2185 
2186  private:
2187 
2188 #ifndef PRODUCT
2189   static int _lookups; // number of calls to lookup
2190   static int _buckets; // number of buckets checked
2191   static int _equals;  // number of buckets checked with matching hash
2192   static int _hits;    // number of successful lookups
2193   static int _compact; // number of equals calls with compact signature
2194 #endif
2195 
2196   AdapterHandlerEntry* bucket(int i) {
2197     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2198   }
2199 
2200  public:
2201   AdapterHandlerTable()
2202     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2203 
2204   // Create a new entry suitable for insertion in the table
2205   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2206     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2207     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2208     return entry;
2209   }
2210 
2211   // Insert an entry into the table
2212   void add(AdapterHandlerEntry* entry) {
2213     int index = hash_to_index(entry->hash());
2214     add_entry(index, entry);
2215   }
2216 
2217   void free_entry(AdapterHandlerEntry* entry) {
2218     entry->deallocate();
2219     BasicHashtable<mtCode>::free_entry(entry);
2220   }
2221 
2222   // Find a entry with the same fingerprint if it exists
2223   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2224     NOT_PRODUCT(_lookups++);
2225     AdapterFingerPrint fp(total_args_passed, sig_bt);
2226     unsigned int hash = fp.compute_hash();
2227     int index = hash_to_index(hash);
2228     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2229       NOT_PRODUCT(_buckets++);
2230       if (e->hash() == hash) {
2231         NOT_PRODUCT(_equals++);
2232         if (fp.equals(e->fingerprint())) {
2233 #ifndef PRODUCT
2234           if (fp.is_compact()) _compact++;
2235           _hits++;
2236 #endif
2237           return e;
2238         }
2239       }
2240     }
2241     return NULL;
2242   }
2243 
2244 #ifndef PRODUCT
2245   void print_statistics() {
2246     ResourceMark rm;
2247     int longest = 0;
2248     int empty = 0;
2249     int total = 0;
2250     int nonempty = 0;
2251     for (int index = 0; index < table_size(); index++) {
2252       int count = 0;
2253       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2254         count++;
2255       }
2256       if (count != 0) nonempty++;
2257       if (count == 0) empty++;
2258       if (count > longest) longest = count;
2259       total += count;
2260     }
2261     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2262                   empty, longest, total, total / (double)nonempty);
2263     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2264                   _lookups, _buckets, _equals, _hits, _compact);
2265   }
2266 #endif
2267 };
2268 
2269 
2270 #ifndef PRODUCT
2271 
2272 int AdapterHandlerTable::_lookups;
2273 int AdapterHandlerTable::_buckets;
2274 int AdapterHandlerTable::_equals;
2275 int AdapterHandlerTable::_hits;
2276 int AdapterHandlerTable::_compact;
2277 
2278 #endif
2279 
2280 class AdapterHandlerTableIterator : public StackObj {
2281  private:
2282   AdapterHandlerTable* _table;
2283   int _index;
2284   AdapterHandlerEntry* _current;
2285 
2286   void scan() {
2287     while (_index < _table->table_size()) {
2288       AdapterHandlerEntry* a = _table->bucket(_index);
2289       _index++;
2290       if (a != NULL) {
2291         _current = a;
2292         return;
2293       }
2294     }
2295   }
2296 
2297  public:
2298   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2299     scan();
2300   }
2301   bool has_next() {
2302     return _current != NULL;
2303   }
2304   AdapterHandlerEntry* next() {
2305     if (_current != NULL) {
2306       AdapterHandlerEntry* result = _current;
2307       _current = _current->next();
2308       if (_current == NULL) scan();
2309       return result;
2310     } else {
2311       return NULL;
2312     }
2313   }
2314 };
2315 
2316 
2317 // ---------------------------------------------------------------------------
2318 // Implementation of AdapterHandlerLibrary
2319 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2320 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2321 const int AdapterHandlerLibrary_size = 16*K;
2322 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2323 
2324 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2325   // Should be called only when AdapterHandlerLibrary_lock is active.
2326   if (_buffer == NULL) // Initialize lazily
2327       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2328   return _buffer;
2329 }
2330 
2331 void AdapterHandlerLibrary::initialize() {
2332   if (_adapters != NULL) return;
2333   _adapters = new AdapterHandlerTable();
2334 
2335   // Create a special handler for abstract methods.  Abstract methods
2336   // are never compiled so an i2c entry is somewhat meaningless, but
2337   // fill it in with something appropriate just in case.  Pass handle
2338   // wrong method for the c2i transitions.
2339   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2340   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2341                                                               StubRoutines::throw_AbstractMethodError_entry(),
2342                                                               wrong_method, wrong_method);
2343 }
2344 
2345 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2346                                                       address i2c_entry,
2347                                                       address c2i_entry,
2348                                                       address c2i_unverified_entry) {
2349   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2350 }
2351 
2352 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2353   // Use customized signature handler.  Need to lock around updates to
2354   // the AdapterHandlerTable (it is not safe for concurrent readers
2355   // and a single writer: this could be fixed if it becomes a
2356   // problem).
2357 
2358   // Get the address of the ic_miss handlers before we grab the
2359   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2360   // was caused by the initialization of the stubs happening
2361   // while we held the lock and then notifying jvmti while
2362   // holding it. This just forces the initialization to be a little
2363   // earlier.
2364   address ic_miss = SharedRuntime::get_ic_miss_stub();
2365   assert(ic_miss != NULL, "must have handler");
2366 
2367   ResourceMark rm;
2368 
2369   NOT_PRODUCT(int insts_size);
2370   AdapterBlob* B = NULL;
2371   AdapterHandlerEntry* entry = NULL;
2372   AdapterFingerPrint* fingerprint = NULL;
2373   {
2374     MutexLocker mu(AdapterHandlerLibrary_lock);
2375     // make sure data structure is initialized
2376     initialize();
2377 
2378     if (method->is_abstract()) {
2379       return _abstract_method_handler;
2380     }
2381 
2382     // Fill in the signature array, for the calling-convention call.
2383     int total_args_passed = method->size_of_parameters(); // All args on stack
2384 
2385     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2386     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2387     int i = 0;
2388     if (!method->is_static())  // Pass in receiver first
2389       sig_bt[i++] = T_OBJECT;
2390     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2391       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2392       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2393         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2394     }
2395     assert(i == total_args_passed, "");
2396 
2397     // Lookup method signature's fingerprint
2398     entry = _adapters->lookup(total_args_passed, sig_bt);
2399 
2400 #ifdef ASSERT
2401     AdapterHandlerEntry* shared_entry = NULL;
2402     if (VerifyAdapterSharing && entry != NULL) {
2403       shared_entry = entry;
2404       entry = NULL;
2405     }
2406 #endif
2407 
2408     if (entry != NULL) {
2409       return entry;
2410     }
2411 
2412     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2413     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2414 
2415     // Make a C heap allocated version of the fingerprint to store in the adapter
2416     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2417 
2418     // Create I2C & C2I handlers
2419 
2420     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2421     if (buf != NULL) {
2422       CodeBuffer buffer(buf);
2423       short buffer_locs[20];
2424       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2425                                              sizeof(buffer_locs)/sizeof(relocInfo));
2426       MacroAssembler _masm(&buffer);
2427 
2428       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2429                                                      total_args_passed,
2430                                                      comp_args_on_stack,
2431                                                      sig_bt,
2432                                                      regs,
2433                                                      fingerprint);
2434 
2435 #ifdef ASSERT
2436       if (VerifyAdapterSharing) {
2437         if (shared_entry != NULL) {
2438           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2439                  "code must match");
2440           // Release the one just created and return the original
2441           _adapters->free_entry(entry);
2442           return shared_entry;
2443         } else  {
2444           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2445         }
2446       }
2447 #endif
2448 
2449       B = AdapterBlob::create(&buffer);
2450       NOT_PRODUCT(insts_size = buffer.insts_size());
2451     }
2452     if (B == NULL) {
2453       // CodeCache is full, disable compilation
2454       // Ought to log this but compile log is only per compile thread
2455       // and we're some non descript Java thread.
2456       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2457       CompileBroker::handle_full_code_cache();
2458       return NULL; // Out of CodeCache space
2459     }
2460     entry->relocate(B->content_begin());
2461 #ifndef PRODUCT
2462     // debugging suppport
2463     if (PrintAdapterHandlers || PrintStubCode) {
2464       ttyLocker ttyl;
2465       entry->print_adapter_on(tty);
2466       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2467                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2468                     method->signature()->as_C_string(), insts_size);
2469       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2470       if (Verbose || PrintStubCode) {
2471         address first_pc = entry->base_address();
2472         if (first_pc != NULL) {
2473           Disassembler::decode(first_pc, first_pc + insts_size);
2474           tty->cr();
2475         }
2476       }
2477     }
2478 #endif
2479 
2480     _adapters->add(entry);
2481   }
2482   // Outside of the lock
2483   if (B != NULL) {
2484     char blob_id[256];
2485     jio_snprintf(blob_id,
2486                  sizeof(blob_id),
2487                  "%s(%s)@" PTR_FORMAT,
2488                  B->name(),
2489                  fingerprint->as_string(),
2490                  B->content_begin());
2491     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2492 
2493     if (JvmtiExport::should_post_dynamic_code_generated()) {
2494       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2495     }
2496   }
2497   return entry;
2498 }
2499 
2500 address AdapterHandlerEntry::base_address() {
2501   address base = _i2c_entry;
2502   if (base == NULL)  base = _c2i_entry;
2503   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2504   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2505   return base;
2506 }
2507 
2508 void AdapterHandlerEntry::relocate(address new_base) {
2509   address old_base = base_address();
2510   assert(old_base != NULL, "");
2511   ptrdiff_t delta = new_base - old_base;
2512   if (_i2c_entry != NULL)
2513     _i2c_entry += delta;
2514   if (_c2i_entry != NULL)
2515     _c2i_entry += delta;
2516   if (_c2i_unverified_entry != NULL)
2517     _c2i_unverified_entry += delta;
2518   assert(base_address() == new_base, "");
2519 }
2520 
2521 
2522 void AdapterHandlerEntry::deallocate() {
2523   delete _fingerprint;
2524 #ifdef ASSERT
2525   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2526   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
2527 #endif
2528 }
2529 
2530 
2531 #ifdef ASSERT
2532 // Capture the code before relocation so that it can be compared
2533 // against other versions.  If the code is captured after relocation
2534 // then relative instructions won't be equivalent.
2535 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2536   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2537   _code_length = length;
2538   memcpy(_saved_code, buffer, length);
2539   _total_args_passed = total_args_passed;
2540   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
2541   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2542 }
2543 
2544 
2545 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2546   if (length != _code_length) {
2547     return false;
2548   }
2549   for (int i = 0; i < length; i++) {
2550     if (buffer[i] != _saved_code[i]) {
2551       return false;
2552     }
2553   }
2554   return true;
2555 }
2556 #endif
2557 
2558 
2559 // Create a native wrapper for this native method.  The wrapper converts the
2560 // java compiled calling convention to the native convention, handlizes
2561 // arguments, and transitions to native.  On return from the native we transition
2562 // back to java blocking if a safepoint is in progress.
2563 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2564   ResourceMark rm;
2565   nmethod* nm = NULL;
2566 
2567   assert(method->is_native(), "must be native");
2568   assert(method->is_method_handle_intrinsic() ||
2569          method->has_native_function(), "must have something valid to call!");
2570 
2571   {
2572     // perform the work while holding the lock, but perform any printing outside the lock
2573     MutexLocker mu(AdapterHandlerLibrary_lock);
2574     // See if somebody beat us to it
2575     nm = method->code();
2576     if (nm) {
2577       return nm;
2578     }
2579 
2580     ResourceMark rm;
2581 
2582     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2583     if (buf != NULL) {
2584       CodeBuffer buffer(buf);
2585       double locs_buf[20];
2586       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2587       MacroAssembler _masm(&buffer);
2588 
2589       // Fill in the signature array, for the calling-convention call.
2590       const int total_args_passed = method->size_of_parameters();
2591 
2592       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2593       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2594       int i=0;
2595       if( !method->is_static() )  // Pass in receiver first
2596         sig_bt[i++] = T_OBJECT;
2597       SignatureStream ss(method->signature());
2598       for( ; !ss.at_return_type(); ss.next()) {
2599         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2600         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2601           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2602       }
2603       assert(i == total_args_passed, "");
2604       BasicType ret_type = ss.type();
2605 
2606       // Now get the compiled-Java layout as input (or output) arguments.
2607       // NOTE: Stubs for compiled entry points of method handle intrinsics
2608       // are just trampolines so the argument registers must be outgoing ones.
2609       const bool is_outgoing = method->is_method_handle_intrinsic();
2610       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2611 
2612       // Generate the compiled-to-native wrapper code
2613       nm = SharedRuntime::generate_native_wrapper(&_masm,
2614                                                   method,
2615                                                   compile_id,
2616                                                   sig_bt,
2617                                                   regs,
2618                                                   ret_type);
2619     }
2620   }
2621 
2622   // Must unlock before calling set_code
2623 
2624   // Install the generated code.
2625   if (nm != NULL) {
2626     if (PrintCompilation) {
2627       ttyLocker ttyl;
2628       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2629     }
2630     method->set_code(method, nm);
2631     nm->post_compiled_method_load_event();
2632   } else {
2633     // CodeCache is full, disable compilation
2634     CompileBroker::handle_full_code_cache();
2635   }
2636   return nm;
2637 }
2638 
2639 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2640   assert(thread == JavaThread::current(), "must be");
2641   // The code is about to enter a JNI lazy critical native method and
2642   // _needs_gc is true, so if this thread is already in a critical
2643   // section then just return, otherwise this thread should block
2644   // until needs_gc has been cleared.
2645   if (thread->in_critical()) {
2646     return;
2647   }
2648   // Lock and unlock a critical section to give the system a chance to block
2649   GC_locker::lock_critical(thread);
2650   GC_locker::unlock_critical(thread);
2651 JRT_END
2652 
2653 #ifdef HAVE_DTRACE_H
2654 // Create a dtrace nmethod for this method.  The wrapper converts the
2655 // java compiled calling convention to the native convention, makes a dummy call
2656 // (actually nops for the size of the call instruction, which become a trap if
2657 // probe is enabled). The returns to the caller. Since this all looks like a
2658 // leaf no thread transition is needed.
2659 
2660 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2661   ResourceMark rm;
2662   nmethod* nm = NULL;
2663 
2664   if (PrintCompilation) {
2665     ttyLocker ttyl;
2666     tty->print("---   n%s  ");
2667     method->print_short_name(tty);
2668     if (method->is_static()) {
2669       tty->print(" (static)");
2670     }
2671     tty->cr();
2672   }
2673 
2674   {
2675     // perform the work while holding the lock, but perform any printing
2676     // outside the lock
2677     MutexLocker mu(AdapterHandlerLibrary_lock);
2678     // See if somebody beat us to it
2679     nm = method->code();
2680     if (nm) {
2681       return nm;
2682     }
2683 
2684     ResourceMark rm;
2685 
2686     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2687     if (buf != NULL) {
2688       CodeBuffer buffer(buf);
2689       // Need a few relocation entries
2690       double locs_buf[20];
2691       buffer.insts()->initialize_shared_locs(
2692         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2693       MacroAssembler _masm(&buffer);
2694 
2695       // Generate the compiled-to-native wrapper code
2696       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2697     }
2698   }
2699   return nm;
2700 }
2701 
2702 // the dtrace method needs to convert java lang string to utf8 string.
2703 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2704   typeArrayOop jlsValue  = java_lang_String::value(src);
2705   int          jlsOffset = java_lang_String::offset(src);
2706   int          jlsLen    = java_lang_String::length(src);
2707   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2708                                            jlsValue->char_at_addr(jlsOffset);
2709   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2710   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2711 }
2712 #endif // ndef HAVE_DTRACE_H
2713 
2714 // -------------------------------------------------------------------------
2715 // Java-Java calling convention
2716 // (what you use when Java calls Java)
2717 
2718 //------------------------------name_for_receiver----------------------------------
2719 // For a given signature, return the VMReg for parameter 0.
2720 VMReg SharedRuntime::name_for_receiver() {
2721   VMRegPair regs;
2722   BasicType sig_bt = T_OBJECT;
2723   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2724   // Return argument 0 register.  In the LP64 build pointers
2725   // take 2 registers, but the VM wants only the 'main' name.
2726   return regs.first();
2727 }
2728 
2729 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
2730   // This method is returning a data structure allocating as a
2731   // ResourceObject, so do not put any ResourceMarks in here.
2732   char *s = sig->as_C_string();
2733   int len = (int)strlen(s);
2734   *s++; len--;                  // Skip opening paren
2735   char *t = s+len;
2736   while( *(--t) != ')' ) ;      // Find close paren
2737 
2738   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2739   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2740   int cnt = 0;
2741   if (has_receiver) {
2742     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2743   }
2744 
2745   while( s < t ) {
2746     switch( *s++ ) {            // Switch on signature character
2747     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2748     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2749     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2750     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2751     case 'I': sig_bt[cnt++] = T_INT;     break;
2752     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2753     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2754     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2755     case 'V': sig_bt[cnt++] = T_VOID;    break;
2756     case 'L':                   // Oop
2757       while( *s++ != ';'  ) ;   // Skip signature
2758       sig_bt[cnt++] = T_OBJECT;
2759       break;
2760     case '[': {                 // Array
2761       do {                      // Skip optional size
2762         while( *s >= '0' && *s <= '9' ) s++;
2763       } while( *s++ == '[' );   // Nested arrays?
2764       // Skip element type
2765       if( s[-1] == 'L' )
2766         while( *s++ != ';'  ) ; // Skip signature
2767       sig_bt[cnt++] = T_ARRAY;
2768       break;
2769     }
2770     default : ShouldNotReachHere();
2771     }
2772   }
2773   assert( cnt < 256, "grow table size" );
2774 
2775   int comp_args_on_stack;
2776   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2777 
2778   // the calling convention doesn't count out_preserve_stack_slots so
2779   // we must add that in to get "true" stack offsets.
2780 
2781   if (comp_args_on_stack) {
2782     for (int i = 0; i < cnt; i++) {
2783       VMReg reg1 = regs[i].first();
2784       if( reg1->is_stack()) {
2785         // Yuck
2786         reg1 = reg1->bias(out_preserve_stack_slots());
2787       }
2788       VMReg reg2 = regs[i].second();
2789       if( reg2->is_stack()) {
2790         // Yuck
2791         reg2 = reg2->bias(out_preserve_stack_slots());
2792       }
2793       regs[i].set_pair(reg2, reg1);
2794     }
2795   }
2796 
2797   // results
2798   *arg_size = cnt;
2799   return regs;
2800 }
2801 
2802 // OSR Migration Code
2803 //
2804 // This code is used convert interpreter frames into compiled frames.  It is
2805 // called from very start of a compiled OSR nmethod.  A temp array is
2806 // allocated to hold the interesting bits of the interpreter frame.  All
2807 // active locks are inflated to allow them to move.  The displaced headers and
2808 // active interpeter locals are copied into the temp buffer.  Then we return
2809 // back to the compiled code.  The compiled code then pops the current
2810 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2811 // copies the interpreter locals and displaced headers where it wants.
2812 // Finally it calls back to free the temp buffer.
2813 //
2814 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2815 
2816 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2817 
2818   //
2819   // This code is dependent on the memory layout of the interpreter local
2820   // array and the monitors. On all of our platforms the layout is identical
2821   // so this code is shared. If some platform lays the their arrays out
2822   // differently then this code could move to platform specific code or
2823   // the code here could be modified to copy items one at a time using
2824   // frame accessor methods and be platform independent.
2825 
2826   frame fr = thread->last_frame();
2827   assert( fr.is_interpreted_frame(), "" );
2828   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2829 
2830   // Figure out how many monitors are active.
2831   int active_monitor_count = 0;
2832   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2833        kptr < fr.interpreter_frame_monitor_begin();
2834        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2835     if( kptr->obj() != NULL ) active_monitor_count++;
2836   }
2837 
2838   // QQQ we could place number of active monitors in the array so that compiled code
2839   // could double check it.
2840 
2841   Method* moop = fr.interpreter_frame_method();
2842   int max_locals = moop->max_locals();
2843   // Allocate temp buffer, 1 word per local & 2 per active monitor
2844   int buf_size_words = max_locals + active_monitor_count*2;
2845   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2846 
2847   // Copy the locals.  Order is preserved so that loading of longs works.
2848   // Since there's no GC I can copy the oops blindly.
2849   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2850   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2851                        (HeapWord*)&buf[0],
2852                        max_locals);
2853 
2854   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2855   int i = max_locals;
2856   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2857        kptr2 < fr.interpreter_frame_monitor_begin();
2858        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2859     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2860       BasicLock *lock = kptr2->lock();
2861       // Inflate so the displaced header becomes position-independent
2862       if (lock->displaced_header()->is_unlocked())
2863         ObjectSynchronizer::inflate_helper(kptr2->obj());
2864       // Now the displaced header is free to move
2865       buf[i++] = (intptr_t)lock->displaced_header();
2866       buf[i++] = (intptr_t)kptr2->obj();
2867     }
2868   }
2869   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2870 
2871   return buf;
2872 JRT_END
2873 
2874 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2875   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2876 JRT_END
2877 
2878 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2879   AdapterHandlerTableIterator iter(_adapters);
2880   while (iter.has_next()) {
2881     AdapterHandlerEntry* a = iter.next();
2882     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2883   }
2884   return false;
2885 }
2886 
2887 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2888   AdapterHandlerTableIterator iter(_adapters);
2889   while (iter.has_next()) {
2890     AdapterHandlerEntry* a = iter.next();
2891     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2892       st->print("Adapter for signature: ");
2893       a->print_adapter_on(tty);
2894       return;
2895     }
2896   }
2897   assert(false, "Should have found handler");
2898 }
2899 
2900 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2901   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2902                (intptr_t) this, fingerprint()->as_string(),
2903                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2904 
2905 }
2906 
2907 #ifndef PRODUCT
2908 
2909 void AdapterHandlerLibrary::print_statistics() {
2910   _adapters->print_statistics();
2911 }
2912 
2913 #endif /* PRODUCT */