1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "oops/verifyOopClosure.hpp"
  41 #include "prims/jvmtiThreadState.hpp"
  42 #include "runtime/biasedLocking.hpp"
  43 #include "runtime/compilationPolicy.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/interfaceSupport.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/signature.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/thread.hpp"
  50 #include "runtime/vframe.hpp"
  51 #include "runtime/vframeArray.hpp"
  52 #include "runtime/vframe_hp.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/xmlstream.hpp"
  55 
  56 bool DeoptimizationMarker::_is_active = false;
  57 
  58 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  59                                          int  caller_adjustment,
  60                                          int  caller_actual_parameters,
  61                                          int  number_of_frames,
  62                                          intptr_t* frame_sizes,
  63                                          address* frame_pcs,
  64                                          BasicType return_type) {
  65   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  66   _caller_adjustment         = caller_adjustment;
  67   _caller_actual_parameters  = caller_actual_parameters;
  68   _number_of_frames          = number_of_frames;
  69   _frame_sizes               = frame_sizes;
  70   _frame_pcs                 = frame_pcs;
  71   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  72   _return_type               = return_type;
  73   _initial_info              = 0;
  74   // PD (x86 only)
  75   _counter_temp              = 0;
  76   _unpack_kind               = 0;
  77   _sender_sp_temp            = 0;
  78 
  79   _total_frame_sizes         = size_of_frames();
  80 }
  81 
  82 
  83 Deoptimization::UnrollBlock::~UnrollBlock() {
  84   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  85   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  86   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  87 }
  88 
  89 
  90 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
  91   assert(register_number < RegisterMap::reg_count, "checking register number");
  92   return &_register_block[register_number * 2];
  93 }
  94 
  95 
  96 
  97 int Deoptimization::UnrollBlock::size_of_frames() const {
  98   // Acount first for the adjustment of the initial frame
  99   int result = _caller_adjustment;
 100   for (int index = 0; index < number_of_frames(); index++) {
 101     result += frame_sizes()[index];
 102   }
 103   return result;
 104 }
 105 
 106 
 107 void Deoptimization::UnrollBlock::print() {
 108   ttyLocker ttyl;
 109   tty->print_cr("UnrollBlock");
 110   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 111   tty->print(   "  frame_sizes: ");
 112   for (int index = 0; index < number_of_frames(); index++) {
 113     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 114   }
 115   tty->cr();
 116 }
 117 
 118 
 119 // In order to make fetch_unroll_info work properly with escape
 120 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 121 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 122 // of previously eliminated objects occurs in realloc_objects, which is
 123 // called from the method fetch_unroll_info_helper below.
 124 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
 125   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 126   // but makes the entry a little slower. There is however a little dance we have to
 127   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 128 
 129   // fetch_unroll_info() is called at the beginning of the deoptimization
 130   // handler. Note this fact before we start generating temporary frames
 131   // that can confuse an asynchronous stack walker. This counter is
 132   // decremented at the end of unpack_frames().
 133   thread->inc_in_deopt_handler();
 134 
 135   return fetch_unroll_info_helper(thread);
 136 JRT_END
 137 
 138 
 139 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 140 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 141 
 142   // Note: there is a safepoint safety issue here. No matter whether we enter
 143   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 144   // the vframeArray is created.
 145   //
 146 
 147   // Allocate our special deoptimization ResourceMark
 148   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 149   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 150   thread->set_deopt_mark(dmark);
 151 
 152   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 153   RegisterMap map(thread, true);
 154   RegisterMap dummy_map(thread, false);
 155   // Now get the deoptee with a valid map
 156   frame deoptee = stub_frame.sender(&map);
 157   // Set the deoptee nmethod
 158   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 159   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 160 
 161   if (VerifyStack) {
 162     thread->validate_frame_layout();
 163   }
 164 
 165   // Create a growable array of VFrames where each VFrame represents an inlined
 166   // Java frame.  This storage is allocated with the usual system arena.
 167   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 168   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 169   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 170   while (!vf->is_top()) {
 171     assert(vf->is_compiled_frame(), "Wrong frame type");
 172     chunk->push(compiledVFrame::cast(vf));
 173     vf = vf->sender();
 174   }
 175   assert(vf->is_compiled_frame(), "Wrong frame type");
 176   chunk->push(compiledVFrame::cast(vf));
 177 
 178   bool realloc_failures = false;
 179 
 180 #ifdef COMPILER2
 181   // Reallocate the non-escaping objects and restore their fields. Then
 182   // relock objects if synchronization on them was eliminated.
 183   if (DoEscapeAnalysis || EliminateNestedLocks) {
 184     if (EliminateAllocations) {
 185       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 186       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 187 
 188       // The flag return_oop() indicates call sites which return oop
 189       // in compiled code. Such sites include java method calls,
 190       // runtime calls (for example, used to allocate new objects/arrays
 191       // on slow code path) and any other calls generated in compiled code.
 192       // It is not guaranteed that we can get such information here only
 193       // by analyzing bytecode in deoptimized frames. This is why this flag
 194       // is set during method compilation (see Compile::Process_OopMap_Node()).
 195       // If the previous frame was popped, we don't have a result.
 196       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
 197       Handle return_value;
 198       if (save_oop_result) {
 199         // Reallocation may trigger GC. If deoptimization happened on return from
 200         // call which returns oop we need to save it since it is not in oopmap.
 201         oop result = deoptee.saved_oop_result(&map);
 202         assert(result == NULL || result->is_oop(), "must be oop");
 203         return_value = Handle(thread, result);
 204         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 205         if (TraceDeoptimization) {
 206           ttyLocker ttyl;
 207           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 208         }
 209       }
 210       if (objects != NULL) {
 211         JRT_BLOCK
 212           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 213         JRT_END
 214         reassign_fields(&deoptee, &map, objects, realloc_failures);
 215 #ifndef PRODUCT
 216         if (TraceDeoptimization) {
 217           ttyLocker ttyl;
 218           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 219           print_objects(objects, realloc_failures);
 220         }
 221 #endif
 222       }
 223       if (save_oop_result) {
 224         // Restore result.
 225         deoptee.set_saved_oop_result(&map, return_value());
 226       }
 227     }
 228     if (EliminateLocks) {
 229 #ifndef PRODUCT
 230       bool first = true;
 231 #endif
 232       for (int i = 0; i < chunk->length(); i++) {
 233         compiledVFrame* cvf = chunk->at(i);
 234         assert (cvf->scope() != NULL,"expect only compiled java frames");
 235         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 236         if (monitors->is_nonempty()) {
 237           relock_objects(monitors, thread, realloc_failures);
 238 #ifndef PRODUCT
 239           if (TraceDeoptimization) {
 240             ttyLocker ttyl;
 241             for (int j = 0; j < monitors->length(); j++) {
 242               MonitorInfo* mi = monitors->at(j);
 243               if (mi->eliminated()) {
 244                 if (first) {
 245                   first = false;
 246                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 247                 }
 248                 if (mi->owner_is_scalar_replaced()) {
 249                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 250                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 251                 } else {
 252                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 253                 }
 254               }
 255             }
 256           }
 257 #endif
 258         }
 259       }
 260     }
 261   }
 262 #endif // COMPILER2
 263   // Ensure that no safepoint is taken after pointers have been stored
 264   // in fields of rematerialized objects.  If a safepoint occurs from here on
 265   // out the java state residing in the vframeArray will be missed.
 266   No_Safepoint_Verifier no_safepoint;
 267 
 268   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 269 #ifdef COMPILER2
 270   if (realloc_failures) {
 271     pop_frames_failed_reallocs(thread, array);
 272   }
 273 #endif
 274 
 275   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 276   thread->set_vframe_array_head(array);
 277 
 278   // Now that the vframeArray has been created if we have any deferred local writes
 279   // added by jvmti then we can free up that structure as the data is now in the
 280   // vframeArray
 281 
 282   if (thread->deferred_locals() != NULL) {
 283     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 284     int i = 0;
 285     do {
 286       // Because of inlining we could have multiple vframes for a single frame
 287       // and several of the vframes could have deferred writes. Find them all.
 288       if (list->at(i)->id() == array->original().id()) {
 289         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 290         list->remove_at(i);
 291         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 292         delete dlv;
 293       } else {
 294         i++;
 295       }
 296     } while ( i < list->length() );
 297     if (list->length() == 0) {
 298       thread->set_deferred_locals(NULL);
 299       // free the list and elements back to C heap.
 300       delete list;
 301     }
 302 
 303   }
 304 
 305 #ifndef SHARK
 306   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 307   CodeBlob* cb = stub_frame.cb();
 308   // Verify we have the right vframeArray
 309   assert(cb->frame_size() >= 0, "Unexpected frame size");
 310   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 311 
 312   // If the deopt call site is a MethodHandle invoke call site we have
 313   // to adjust the unpack_sp.
 314   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 315   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 316     unpack_sp = deoptee.unextended_sp();
 317 
 318 #ifdef ASSERT
 319   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 320 #endif
 321 #else
 322   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 323 #endif // !SHARK
 324 
 325   // This is a guarantee instead of an assert because if vframe doesn't match
 326   // we will unpack the wrong deoptimized frame and wind up in strange places
 327   // where it will be very difficult to figure out what went wrong. Better
 328   // to die an early death here than some very obscure death later when the
 329   // trail is cold.
 330   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 331   // in that it will fail to detect a problem when there is one. This needs
 332   // more work in tiger timeframe.
 333   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 334 
 335   int number_of_frames = array->frames();
 336 
 337   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 338   // virtual activation, which is the reverse of the elements in the vframes array.
 339   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 340   // +1 because we always have an interpreter return address for the final slot.
 341   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 342   int popframe_extra_args = 0;
 343   // Create an interpreter return address for the stub to use as its return
 344   // address so the skeletal frames are perfectly walkable
 345   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 346 
 347   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 348   // activation be put back on the expression stack of the caller for reexecution
 349   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 350     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 351   }
 352 
 353   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 354   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 355   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 356   //
 357   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 358   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 359 
 360   // It's possible that the number of parameters at the call site is
 361   // different than number of arguments in the callee when method
 362   // handles are used.  If the caller is interpreted get the real
 363   // value so that the proper amount of space can be added to it's
 364   // frame.
 365   bool caller_was_method_handle = false;
 366   if (deopt_sender.is_interpreted_frame()) {
 367     methodHandle method = deopt_sender.interpreter_frame_method();
 368     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 369     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 370       // Method handle invokes may involve fairly arbitrary chains of
 371       // calls so it's impossible to know how much actual space the
 372       // caller has for locals.
 373       caller_was_method_handle = true;
 374     }
 375   }
 376 
 377   //
 378   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 379   // frame_sizes/frame_pcs[1] next oldest frame (int)
 380   // frame_sizes/frame_pcs[n] youngest frame (int)
 381   //
 382   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 383   // owns the space for the return address to it's caller).  Confusing ain't it.
 384   //
 385   // The vframe array can address vframes with indices running from
 386   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 387   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 388   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 389   // so things look a little strange in this loop.
 390   //
 391   int callee_parameters = 0;
 392   int callee_locals = 0;
 393   for (int index = 0; index < array->frames(); index++ ) {
 394     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 395     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 396     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 397     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 398                                                                                                     callee_locals,
 399                                                                                                     index == 0,
 400                                                                                                     popframe_extra_args);
 401     // This pc doesn't have to be perfect just good enough to identify the frame
 402     // as interpreted so the skeleton frame will be walkable
 403     // The correct pc will be set when the skeleton frame is completely filled out
 404     // The final pc we store in the loop is wrong and will be overwritten below
 405     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 406 
 407     callee_parameters = array->element(index)->method()->size_of_parameters();
 408     callee_locals = array->element(index)->method()->max_locals();
 409     popframe_extra_args = 0;
 410   }
 411 
 412   // Compute whether the root vframe returns a float or double value.
 413   BasicType return_type;
 414   {
 415     HandleMark hm;
 416     methodHandle method(thread, array->element(0)->method());
 417     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 418     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 419   }
 420 
 421   // Compute information for handling adapters and adjusting the frame size of the caller.
 422   int caller_adjustment = 0;
 423 
 424   // Compute the amount the oldest interpreter frame will have to adjust
 425   // its caller's stack by. If the caller is a compiled frame then
 426   // we pretend that the callee has no parameters so that the
 427   // extension counts for the full amount of locals and not just
 428   // locals-parms. This is because without a c2i adapter the parm
 429   // area as created by the compiled frame will not be usable by
 430   // the interpreter. (Depending on the calling convention there
 431   // may not even be enough space).
 432 
 433   // QQQ I'd rather see this pushed down into last_frame_adjust
 434   // and have it take the sender (aka caller).
 435 
 436   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 437     caller_adjustment = last_frame_adjust(0, callee_locals);
 438   } else if (callee_locals > callee_parameters) {
 439     // The caller frame may need extending to accommodate
 440     // non-parameter locals of the first unpacked interpreted frame.
 441     // Compute that adjustment.
 442     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 443   }
 444 
 445   // If the sender is deoptimized the we must retrieve the address of the handler
 446   // since the frame will "magically" show the original pc before the deopt
 447   // and we'd undo the deopt.
 448 
 449   frame_pcs[0] = deopt_sender.raw_pc();
 450 
 451 #ifndef SHARK
 452   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 453 #endif // SHARK
 454 
 455   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 456                                       caller_adjustment * BytesPerWord,
 457                                       caller_was_method_handle ? 0 : callee_parameters,
 458                                       number_of_frames,
 459                                       frame_sizes,
 460                                       frame_pcs,
 461                                       return_type);
 462   // On some platforms, we need a way to pass some platform dependent
 463   // information to the unpacking code so the skeletal frames come out
 464   // correct (initial fp value, unextended sp, ...)
 465   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 466 
 467   if (array->frames() > 1) {
 468     if (VerifyStack && TraceDeoptimization) {
 469       ttyLocker ttyl;
 470       tty->print_cr("Deoptimizing method containing inlining");
 471     }
 472   }
 473 
 474   array->set_unroll_block(info);
 475   return info;
 476 }
 477 
 478 // Called to cleanup deoptimization data structures in normal case
 479 // after unpacking to stack and when stack overflow error occurs
 480 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 481                                         vframeArray *array) {
 482 
 483   // Get array if coming from exception
 484   if (array == NULL) {
 485     array = thread->vframe_array_head();
 486   }
 487   thread->set_vframe_array_head(NULL);
 488 
 489   // Free the previous UnrollBlock
 490   vframeArray* old_array = thread->vframe_array_last();
 491   thread->set_vframe_array_last(array);
 492 
 493   if (old_array != NULL) {
 494     UnrollBlock* old_info = old_array->unroll_block();
 495     old_array->set_unroll_block(NULL);
 496     delete old_info;
 497     delete old_array;
 498   }
 499 
 500   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 501   // inside the vframeArray (StackValueCollections)
 502 
 503   delete thread->deopt_mark();
 504   thread->set_deopt_mark(NULL);
 505   thread->set_deopt_nmethod(NULL);
 506 
 507 
 508   if (JvmtiExport::can_pop_frame()) {
 509 #ifndef CC_INTERP
 510     // Regardless of whether we entered this routine with the pending
 511     // popframe condition bit set, we should always clear it now
 512     thread->clear_popframe_condition();
 513 #else
 514     // C++ interpreter will clear has_pending_popframe when it enters
 515     // with method_resume. For deopt_resume2 we clear it now.
 516     if (thread->popframe_forcing_deopt_reexecution())
 517         thread->clear_popframe_condition();
 518 #endif /* CC_INTERP */
 519   }
 520 
 521   // unpack_frames() is called at the end of the deoptimization handler
 522   // and (in C2) at the end of the uncommon trap handler. Note this fact
 523   // so that an asynchronous stack walker can work again. This counter is
 524   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 525   // the beginning of uncommon_trap().
 526   thread->dec_in_deopt_handler();
 527 }
 528 
 529 
 530 // Return BasicType of value being returned
 531 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 532 
 533   // We are already active int he special DeoptResourceMark any ResourceObj's we
 534   // allocate will be freed at the end of the routine.
 535 
 536   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 537   // but makes the entry a little slower. There is however a little dance we have to
 538   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 539   ResetNoHandleMark rnhm; // No-op in release/product versions
 540   HandleMark hm;
 541 
 542   frame stub_frame = thread->last_frame();
 543 
 544   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 545   // must point to the vframeArray for the unpack frame.
 546   vframeArray* array = thread->vframe_array_head();
 547 
 548 #ifndef PRODUCT
 549   if (TraceDeoptimization) {
 550     ttyLocker ttyl;
 551     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 552                   p2i(thread), p2i(array), exec_mode);
 553   }
 554 #endif
 555   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 556               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 557 
 558   UnrollBlock* info = array->unroll_block();
 559 
 560   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 561   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 562 
 563   BasicType bt = info->return_type();
 564 
 565   // If we have an exception pending, claim that the return type is an oop
 566   // so the deopt_blob does not overwrite the exception_oop.
 567 
 568   if (exec_mode == Unpack_exception)
 569     bt = T_OBJECT;
 570 
 571   // Cleanup thread deopt data
 572   cleanup_deopt_info(thread, array);
 573 
 574 #ifndef PRODUCT
 575   if (VerifyStack) {
 576     ResourceMark res_mark;
 577 
 578     thread->validate_frame_layout();
 579 
 580     // Verify that the just-unpacked frames match the interpreter's
 581     // notions of expression stack and locals
 582     vframeArray* cur_array = thread->vframe_array_last();
 583     RegisterMap rm(thread, false);
 584     rm.set_include_argument_oops(false);
 585     bool is_top_frame = true;
 586     int callee_size_of_parameters = 0;
 587     int callee_max_locals = 0;
 588     for (int i = 0; i < cur_array->frames(); i++) {
 589       vframeArrayElement* el = cur_array->element(i);
 590       frame* iframe = el->iframe();
 591       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 592 
 593       // Get the oop map for this bci
 594       InterpreterOopMap mask;
 595       int cur_invoke_parameter_size = 0;
 596       bool try_next_mask = false;
 597       int next_mask_expression_stack_size = -1;
 598       int top_frame_expression_stack_adjustment = 0;
 599       methodHandle mh(thread, iframe->interpreter_frame_method());
 600       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 601       BytecodeStream str(mh);
 602       str.set_start(iframe->interpreter_frame_bci());
 603       int max_bci = mh->code_size();
 604       // Get to the next bytecode if possible
 605       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 606       // Check to see if we can grab the number of outgoing arguments
 607       // at an uncommon trap for an invoke (where the compiler
 608       // generates debug info before the invoke has executed)
 609       Bytecodes::Code cur_code = str.next();
 610       if (cur_code == Bytecodes::_invokevirtual   ||
 611           cur_code == Bytecodes::_invokespecial   ||
 612           cur_code == Bytecodes::_invokestatic    ||
 613           cur_code == Bytecodes::_invokeinterface ||
 614           cur_code == Bytecodes::_invokedynamic) {
 615         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 616         Symbol* signature = invoke.signature();
 617         ArgumentSizeComputer asc(signature);
 618         cur_invoke_parameter_size = asc.size();
 619         if (invoke.has_receiver()) {
 620           // Add in receiver
 621           ++cur_invoke_parameter_size;
 622         }
 623         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 624           callee_size_of_parameters++;
 625         }
 626       }
 627       if (str.bci() < max_bci) {
 628         Bytecodes::Code bc = str.next();
 629         if (bc >= 0) {
 630           // The interpreter oop map generator reports results before
 631           // the current bytecode has executed except in the case of
 632           // calls. It seems to be hard to tell whether the compiler
 633           // has emitted debug information matching the "state before"
 634           // a given bytecode or the state after, so we try both
 635           switch (cur_code) {
 636             case Bytecodes::_invokevirtual:
 637             case Bytecodes::_invokespecial:
 638             case Bytecodes::_invokestatic:
 639             case Bytecodes::_invokeinterface:
 640             case Bytecodes::_invokedynamic:
 641             case Bytecodes::_athrow:
 642               break;
 643             default: {
 644               InterpreterOopMap next_mask;
 645               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 646               next_mask_expression_stack_size = next_mask.expression_stack_size();
 647               // Need to subtract off the size of the result type of
 648               // the bytecode because this is not described in the
 649               // debug info but returned to the interpreter in the TOS
 650               // caching register
 651               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 652               if (bytecode_result_type != T_ILLEGAL) {
 653                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 654               }
 655               assert(top_frame_expression_stack_adjustment >= 0, "");
 656               try_next_mask = true;
 657               break;
 658             }
 659           }
 660         }
 661       }
 662 
 663       // Verify stack depth and oops in frame
 664       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 665       if (!(
 666             /* SPARC */
 667             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 668             /* x86 */
 669             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 670             (try_next_mask &&
 671              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 672                                                                     top_frame_expression_stack_adjustment))) ||
 673             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 674             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 675              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 676             )) {
 677         ttyLocker ttyl;
 678 
 679         // Print out some information that will help us debug the problem
 680         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 681         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 682         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 683                       iframe->interpreter_frame_expression_stack_size());
 684         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 685         tty->print_cr("  try_next_mask = %d", try_next_mask);
 686         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 687         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 688         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 689         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 690         tty->print_cr("  exec_mode = %d", exec_mode);
 691         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 692         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 693         tty->print_cr("  Interpreted frames:");
 694         for (int k = 0; k < cur_array->frames(); k++) {
 695           vframeArrayElement* el = cur_array->element(k);
 696           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 697         }
 698         cur_array->print_on_2(tty);
 699         guarantee(false, "wrong number of expression stack elements during deopt");
 700       }
 701       VerifyOopClosure verify;
 702       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
 703       callee_size_of_parameters = mh->size_of_parameters();
 704       callee_max_locals = mh->max_locals();
 705       is_top_frame = false;
 706     }
 707   }
 708 #endif /* !PRODUCT */
 709 
 710 
 711   return bt;
 712 JRT_END
 713 
 714 
 715 int Deoptimization::deoptimize_dependents() {
 716   Threads::deoptimized_wrt_marked_nmethods();
 717   return 0;
 718 }
 719 
 720 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 721   = Deoptimization::Action_reinterpret;
 722 
 723 #ifdef COMPILER2
 724 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 725   Handle pending_exception(thread->pending_exception());
 726   const char* exception_file = thread->exception_file();
 727   int exception_line = thread->exception_line();
 728   thread->clear_pending_exception();
 729 
 730   bool failures = false;
 731 
 732   for (int i = 0; i < objects->length(); i++) {
 733     assert(objects->at(i)->is_object(), "invalid debug information");
 734     ObjectValue* sv = (ObjectValue*) objects->at(i);
 735 
 736     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 737     oop obj = NULL;
 738 
 739     if (k->oop_is_instance()) {
 740       InstanceKlass* ik = InstanceKlass::cast(k());
 741       obj = ik->allocate_instance(THREAD);
 742     } else if (k->oop_is_typeArray()) {
 743       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 744       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 745       int len = sv->field_size() / type2size[ak->element_type()];
 746       obj = ak->allocate(len, THREAD);
 747     } else if (k->oop_is_objArray()) {
 748       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
 749       obj = ak->allocate(sv->field_size(), THREAD);
 750     }
 751 
 752     if (obj == NULL) {
 753       failures = true;
 754     }
 755 
 756     assert(sv->value().is_null(), "redundant reallocation");
 757     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 758     CLEAR_PENDING_EXCEPTION;
 759     sv->set_value(obj);
 760   }
 761 
 762   if (failures) {
 763     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 764   } else if (pending_exception.not_null()) {
 765     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 766   }
 767 
 768   return failures;
 769 }
 770 
 771 // This assumes that the fields are stored in ObjectValue in the same order
 772 // they are yielded by do_nonstatic_fields.
 773 class FieldReassigner: public FieldClosure {
 774   frame* _fr;
 775   RegisterMap* _reg_map;
 776   ObjectValue* _sv;
 777   InstanceKlass* _ik;
 778   oop _obj;
 779 
 780   int _i;
 781 public:
 782   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 783     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 784 
 785   int i() const { return _i; }
 786 
 787 
 788   void do_field(fieldDescriptor* fd) {
 789     intptr_t val;
 790     StackValue* value =
 791       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 792     int offset = fd->offset();
 793     switch (fd->field_type()) {
 794     case T_OBJECT: case T_ARRAY:
 795       assert(value->type() == T_OBJECT, "Agreement.");
 796       _obj->obj_field_put(offset, value->get_obj()());
 797       break;
 798 
 799     case T_LONG: case T_DOUBLE: {
 800       assert(value->type() == T_INT, "Agreement.");
 801       StackValue* low =
 802         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 803 #ifdef _LP64
 804       jlong res = (jlong)low->get_int();
 805 #else
 806 #ifdef SPARC
 807       // For SPARC we have to swap high and low words.
 808       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 809 #else
 810       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 811 #endif //SPARC
 812 #endif
 813       _obj->long_field_put(offset, res);
 814       break;
 815     }
 816     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 817     case T_INT: case T_FLOAT: // 4 bytes.
 818       assert(value->type() == T_INT, "Agreement.");
 819       val = value->get_int();
 820       _obj->int_field_put(offset, (jint)*((jint*)&val));
 821       break;
 822 
 823     case T_SHORT: case T_CHAR: // 2 bytes
 824       assert(value->type() == T_INT, "Agreement.");
 825       val = value->get_int();
 826       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 827       break;
 828 
 829     case T_BOOLEAN: case T_BYTE: // 1 byte
 830       assert(value->type() == T_INT, "Agreement.");
 831       val = value->get_int();
 832       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 833       break;
 834 
 835     default:
 836       ShouldNotReachHere();
 837     }
 838     _i++;
 839   }
 840 };
 841 
 842 // restore elements of an eliminated type array
 843 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 844   int index = 0;
 845   intptr_t val;
 846 
 847   for (int i = 0; i < sv->field_size(); i++) {
 848     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 849     switch(type) {
 850     case T_LONG: case T_DOUBLE: {
 851       assert(value->type() == T_INT, "Agreement.");
 852       StackValue* low =
 853         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 854 #ifdef _LP64
 855       jlong res = (jlong)low->get_int();
 856 #else
 857 #ifdef SPARC
 858       // For SPARC we have to swap high and low words.
 859       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 860 #else
 861       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 862 #endif //SPARC
 863 #endif
 864       obj->long_at_put(index, res);
 865       break;
 866     }
 867 
 868     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 869     case T_INT: case T_FLOAT: // 4 bytes.
 870       assert(value->type() == T_INT, "Agreement.");
 871       val = value->get_int();
 872       obj->int_at_put(index, (jint)*((jint*)&val));
 873       break;
 874 
 875     case T_SHORT: case T_CHAR: // 2 bytes
 876       assert(value->type() == T_INT, "Agreement.");
 877       val = value->get_int();
 878       obj->short_at_put(index, (jshort)*((jint*)&val));
 879       break;
 880 
 881     case T_BOOLEAN: case T_BYTE: // 1 byte
 882       assert(value->type() == T_INT, "Agreement.");
 883       val = value->get_int();
 884       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 885       break;
 886 
 887       default:
 888         ShouldNotReachHere();
 889     }
 890     index++;
 891   }
 892 }
 893 
 894 
 895 // restore fields of an eliminated object array
 896 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 897   for (int i = 0; i < sv->field_size(); i++) {
 898     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 899     assert(value->type() == T_OBJECT, "object element expected");
 900     obj->obj_at_put(i, value->get_obj()());
 901   }
 902 }
 903 
 904 
 905 // restore fields of all eliminated objects and arrays
 906 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 907   for (int i = 0; i < objects->length(); i++) {
 908     ObjectValue* sv = (ObjectValue*) objects->at(i);
 909     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 910     Handle obj = sv->value();
 911     assert(obj.not_null() || realloc_failures, "reallocation was missed");
 912     if (obj.is_null()) {
 913       continue;
 914     }
 915 
 916     if (k->oop_is_instance()) {
 917       InstanceKlass* ik = InstanceKlass::cast(k());
 918       FieldReassigner reassign(fr, reg_map, sv, obj());
 919       ik->do_nonstatic_fields(&reassign);
 920     } else if (k->oop_is_typeArray()) {
 921       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 922       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 923     } else if (k->oop_is_objArray()) {
 924       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 925     }
 926   }
 927 }
 928 
 929 
 930 // relock objects for which synchronization was eliminated
 931 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
 932   for (int i = 0; i < monitors->length(); i++) {
 933     MonitorInfo* mon_info = monitors->at(i);
 934     if (mon_info->eliminated()) {
 935       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
 936       if (!mon_info->owner_is_scalar_replaced()) {
 937         Handle obj = Handle(mon_info->owner());
 938         markOop mark = obj->mark();
 939         if (UseBiasedLocking && mark->has_bias_pattern()) {
 940           // New allocated objects may have the mark set to anonymously biased.
 941           // Also the deoptimized method may called methods with synchronization
 942           // where the thread-local object is bias locked to the current thread.
 943           assert(mark->is_biased_anonymously() ||
 944                  mark->biased_locker() == thread, "should be locked to current thread");
 945           // Reset mark word to unbiased prototype.
 946           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 947           obj->set_mark(unbiased_prototype);
 948         }
 949         BasicLock* lock = mon_info->lock();
 950         ObjectSynchronizer::slow_enter(obj, lock, thread);
 951         assert(mon_info->owner()->is_locked(), "object must be locked now");
 952       }
 953     }
 954   }
 955 }
 956 
 957 
 958 #ifndef PRODUCT
 959 // print information about reallocated objects
 960 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 961   fieldDescriptor fd;
 962 
 963   for (int i = 0; i < objects->length(); i++) {
 964     ObjectValue* sv = (ObjectValue*) objects->at(i);
 965     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 966     Handle obj = sv->value();
 967 
 968     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 969     k->print_value();
 970     assert(obj.not_null() || realloc_failures, "reallocation was missed");
 971     if (obj.is_null()) {
 972       tty->print(" allocation failed");
 973     } else {
 974       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 975     }
 976     tty->cr();
 977 
 978     if (Verbose && !obj.is_null()) {
 979       k->oop_print_on(obj(), tty);
 980     }
 981   }
 982 }
 983 #endif
 984 #endif // COMPILER2
 985 
 986 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
 987   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
 988 
 989 #ifndef PRODUCT
 990   if (TraceDeoptimization) {
 991     ttyLocker ttyl;
 992     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
 993     fr.print_on(tty);
 994     tty->print_cr("     Virtual frames (innermost first):");
 995     for (int index = 0; index < chunk->length(); index++) {
 996       compiledVFrame* vf = chunk->at(index);
 997       tty->print("       %2d - ", index);
 998       vf->print_value();
 999       int bci = chunk->at(index)->raw_bci();
1000       const char* code_name;
1001       if (bci == SynchronizationEntryBCI) {
1002         code_name = "sync entry";
1003       } else {
1004         Bytecodes::Code code = vf->method()->code_at(bci);
1005         code_name = Bytecodes::name(code);
1006       }
1007       tty->print(" - %s", code_name);
1008       tty->print_cr(" @ bci %d ", bci);
1009       if (Verbose) {
1010         vf->print();
1011         tty->cr();
1012       }
1013     }
1014   }
1015 #endif
1016 
1017   // Register map for next frame (used for stack crawl).  We capture
1018   // the state of the deopt'ing frame's caller.  Thus if we need to
1019   // stuff a C2I adapter we can properly fill in the callee-save
1020   // register locations.
1021   frame caller = fr.sender(reg_map);
1022   int frame_size = caller.sp() - fr.sp();
1023 
1024   frame sender = caller;
1025 
1026   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1027   // the vframeArray containing the unpacking information is allocated in the C heap.
1028   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1029   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1030 
1031   // Compare the vframeArray to the collected vframes
1032   assert(array->structural_compare(thread, chunk), "just checking");
1033 
1034 #ifndef PRODUCT
1035   if (TraceDeoptimization) {
1036     ttyLocker ttyl;
1037     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1038   }
1039 #endif // PRODUCT
1040 
1041   return array;
1042 }
1043 
1044 #ifdef COMPILER2
1045 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1046   // Reallocation of some scalar replaced objects failed. Record
1047   // that we need to pop all the interpreter frames for the
1048   // deoptimized compiled frame.
1049   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1050   thread->set_frames_to_pop_failed_realloc(array->frames());
1051   // Unlock all monitors here otherwise the interpreter will see a
1052   // mix of locked and unlocked monitors (because of failed
1053   // reallocations of synchronized objects) and be confused.
1054   for (int i = 0; i < array->frames(); i++) {
1055     MonitorChunk* monitors = array->element(i)->monitors();
1056     if (monitors != NULL) {
1057       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1058         BasicObjectLock* src = monitors->at(j);
1059         if (src->obj() != NULL) {
1060           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1061         }
1062       }
1063       array->element(i)->free_monitors(thread);
1064 #ifdef ASSERT
1065       array->element(i)->set_removed_monitors();
1066 #endif
1067     }
1068   }
1069 }
1070 #endif
1071 
1072 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1073   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1074   for (int i = 0; i < monitors->length(); i++) {
1075     MonitorInfo* mon_info = monitors->at(i);
1076     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1077       objects_to_revoke->append(Handle(mon_info->owner()));
1078     }
1079   }
1080 }
1081 
1082 
1083 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1084   if (!UseBiasedLocking) {
1085     return;
1086   }
1087 
1088   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1089 
1090   // Unfortunately we don't have a RegisterMap available in most of
1091   // the places we want to call this routine so we need to walk the
1092   // stack again to update the register map.
1093   if (map == NULL || !map->update_map()) {
1094     StackFrameStream sfs(thread, true);
1095     bool found = false;
1096     while (!found && !sfs.is_done()) {
1097       frame* cur = sfs.current();
1098       sfs.next();
1099       found = cur->id() == fr.id();
1100     }
1101     assert(found, "frame to be deoptimized not found on target thread's stack");
1102     map = sfs.register_map();
1103   }
1104 
1105   vframe* vf = vframe::new_vframe(&fr, map, thread);
1106   compiledVFrame* cvf = compiledVFrame::cast(vf);
1107   // Revoke monitors' biases in all scopes
1108   while (!cvf->is_top()) {
1109     collect_monitors(cvf, objects_to_revoke);
1110     cvf = compiledVFrame::cast(cvf->sender());
1111   }
1112   collect_monitors(cvf, objects_to_revoke);
1113 
1114   if (SafepointSynchronize::is_at_safepoint()) {
1115     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1116   } else {
1117     BiasedLocking::revoke(objects_to_revoke);
1118   }
1119 }
1120 
1121 
1122 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1123   if (!UseBiasedLocking) {
1124     return;
1125   }
1126 
1127   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1128   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1129   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1130     if (jt->has_last_Java_frame()) {
1131       StackFrameStream sfs(jt, true);
1132       while (!sfs.is_done()) {
1133         frame* cur = sfs.current();
1134         if (cb->contains(cur->pc())) {
1135           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1136           compiledVFrame* cvf = compiledVFrame::cast(vf);
1137           // Revoke monitors' biases in all scopes
1138           while (!cvf->is_top()) {
1139             collect_monitors(cvf, objects_to_revoke);
1140             cvf = compiledVFrame::cast(cvf->sender());
1141           }
1142           collect_monitors(cvf, objects_to_revoke);
1143         }
1144         sfs.next();
1145       }
1146     }
1147   }
1148   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1149 }
1150 
1151 
1152 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1153   assert(fr.can_be_deoptimized(), "checking frame type");
1154 
1155   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1156 
1157   // Patch the nmethod so that when execution returns to it we will
1158   // deopt the execution state and return to the interpreter.
1159   fr.deoptimize(thread);
1160 }
1161 
1162 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1163   // Deoptimize only if the frame comes from compile code.
1164   // Do not deoptimize the frame which is already patched
1165   // during the execution of the loops below.
1166   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1167     return;
1168   }
1169   ResourceMark rm;
1170   DeoptimizationMarker dm;
1171   if (UseBiasedLocking) {
1172     revoke_biases_of_monitors(thread, fr, map);
1173   }
1174   deoptimize_single_frame(thread, fr);
1175 
1176 }
1177 
1178 
1179 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
1180   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1181          "can only deoptimize other thread at a safepoint");
1182   // Compute frame and register map based on thread and sp.
1183   RegisterMap reg_map(thread, UseBiasedLocking);
1184   frame fr = thread->last_frame();
1185   while (fr.id() != id) {
1186     fr = fr.sender(&reg_map);
1187   }
1188   deoptimize(thread, fr, &reg_map);
1189 }
1190 
1191 
1192 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1193   if (thread == Thread::current()) {
1194     Deoptimization::deoptimize_frame_internal(thread, id);
1195   } else {
1196     VM_DeoptimizeFrame deopt(thread, id);
1197     VMThread::execute(&deopt);
1198   }
1199 }
1200 
1201 
1202 // JVMTI PopFrame support
1203 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1204 {
1205   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1206 }
1207 JRT_END
1208 
1209 MethodData*
1210 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1211                                 bool create_if_missing) {
1212   Thread* THREAD = thread;
1213   MethodData* mdo = m()->method_data();
1214   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1215     // Build an MDO.  Ignore errors like OutOfMemory;
1216     // that simply means we won't have an MDO to update.
1217     Method::build_interpreter_method_data(m, THREAD);
1218     if (HAS_PENDING_EXCEPTION) {
1219       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1220       CLEAR_PENDING_EXCEPTION;
1221     }
1222     mdo = m()->method_data();
1223   }
1224   return mdo;
1225 }
1226 
1227 #if defined(COMPILER2) || defined(SHARK)
1228 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1229   // in case of an unresolved klass entry, load the class.
1230   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1231     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1232     return;
1233   }
1234 
1235   if (!constant_pool->tag_at(index).is_symbol()) return;
1236 
1237   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1238   Symbol*  symbol  = constant_pool->symbol_at(index);
1239 
1240   // class name?
1241   if (symbol->byte_at(0) != '(') {
1242     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1243     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1244     return;
1245   }
1246 
1247   // then it must be a signature!
1248   ResourceMark rm(THREAD);
1249   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1250     if (ss.is_object()) {
1251       Symbol* class_name = ss.as_symbol(CHECK);
1252       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1253       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1254     }
1255   }
1256 }
1257 
1258 
1259 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1260   EXCEPTION_MARK;
1261   load_class_by_index(constant_pool, index, THREAD);
1262   if (HAS_PENDING_EXCEPTION) {
1263     // Exception happened during classloading. We ignore the exception here, since it
1264     // is going to be rethrown since the current activation is going to be deoptimized and
1265     // the interpreter will re-execute the bytecode.
1266     CLEAR_PENDING_EXCEPTION;
1267     // Class loading called java code which may have caused a stack
1268     // overflow. If the exception was thrown right before the return
1269     // to the runtime the stack is no longer guarded. Reguard the
1270     // stack otherwise if we return to the uncommon trap blob and the
1271     // stack bang causes a stack overflow we crash.
1272     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1273     JavaThread* thread = (JavaThread*)THREAD;
1274     bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
1275     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1276     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1277   }
1278 }
1279 
1280 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1281   HandleMark hm;
1282 
1283   // uncommon_trap() is called at the beginning of the uncommon trap
1284   // handler. Note this fact before we start generating temporary frames
1285   // that can confuse an asynchronous stack walker. This counter is
1286   // decremented at the end of unpack_frames().
1287   thread->inc_in_deopt_handler();
1288 
1289   // We need to update the map if we have biased locking.
1290   RegisterMap reg_map(thread, UseBiasedLocking);
1291   frame stub_frame = thread->last_frame();
1292   frame fr = stub_frame.sender(&reg_map);
1293   // Make sure the calling nmethod is not getting deoptimized and removed
1294   // before we are done with it.
1295   nmethodLocker nl(fr.pc());
1296 
1297   // Log a message
1298   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
1299               trap_request, p2i(fr.pc()));
1300 
1301   {
1302     ResourceMark rm;
1303 
1304     // Revoke biases of any monitors in the frame to ensure we can migrate them
1305     revoke_biases_of_monitors(thread, fr, &reg_map);
1306 
1307     DeoptReason reason = trap_request_reason(trap_request);
1308     DeoptAction action = trap_request_action(trap_request);
1309     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1310 
1311     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1312     compiledVFrame* cvf = compiledVFrame::cast(vf);
1313 
1314     nmethod* nm = cvf->code();
1315 
1316     ScopeDesc*      trap_scope  = cvf->scope();
1317     methodHandle    trap_method = trap_scope->method();
1318     int             trap_bci    = trap_scope->bci();
1319     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1320 
1321     // Record this event in the histogram.
1322     gather_statistics(reason, action, trap_bc);
1323 
1324     // Ensure that we can record deopt. history:
1325     // Need MDO to record RTM code generation state.
1326     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1327 
1328     MethodData* trap_mdo =
1329       get_method_data(thread, trap_method, create_if_missing);
1330 
1331     // Log a message
1332     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1333                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1334                               trap_method->name_and_sig_as_C_string(), trap_bci);
1335 
1336     // Print a bunch of diagnostics, if requested.
1337     if (TraceDeoptimization || LogCompilation) {
1338       ResourceMark rm;
1339       ttyLocker ttyl;
1340       char buf[100];
1341       if (xtty != NULL) {
1342         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1343                          os::current_thread_id(),
1344                          format_trap_request(buf, sizeof(buf), trap_request));
1345         nm->log_identity(xtty);
1346       }
1347       Symbol* class_name = NULL;
1348       bool unresolved = false;
1349       if (unloaded_class_index >= 0) {
1350         constantPoolHandle constants (THREAD, trap_method->constants());
1351         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1352           class_name = constants->klass_name_at(unloaded_class_index);
1353           unresolved = true;
1354           if (xtty != NULL)
1355             xtty->print(" unresolved='1'");
1356         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1357           class_name = constants->symbol_at(unloaded_class_index);
1358         }
1359         if (xtty != NULL)
1360           xtty->name(class_name);
1361       }
1362       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1363         // Dump the relevant MDO state.
1364         // This is the deopt count for the current reason, any previous
1365         // reasons or recompiles seen at this point.
1366         int dcnt = trap_mdo->trap_count(reason);
1367         if (dcnt != 0)
1368           xtty->print(" count='%d'", dcnt);
1369         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1370         int dos = (pdata == NULL)? 0: pdata->trap_state();
1371         if (dos != 0) {
1372           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1373           if (trap_state_is_recompiled(dos)) {
1374             int recnt2 = trap_mdo->overflow_recompile_count();
1375             if (recnt2 != 0)
1376               xtty->print(" recompiles2='%d'", recnt2);
1377           }
1378         }
1379       }
1380       if (xtty != NULL) {
1381         xtty->stamp();
1382         xtty->end_head();
1383       }
1384       if (TraceDeoptimization) {  // make noise on the tty
1385         tty->print("Uncommon trap occurred in");
1386         nm->method()->print_short_name(tty);
1387         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
1388                    p2i(fr.pc()),
1389                    os::current_thread_id(),
1390                    trap_reason_name(reason),
1391                    trap_action_name(action),
1392                    unloaded_class_index);
1393         if (class_name != NULL) {
1394           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1395           class_name->print_symbol_on(tty);
1396         }
1397         tty->cr();
1398       }
1399       if (xtty != NULL) {
1400         // Log the precise location of the trap.
1401         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1402           xtty->begin_elem("jvms bci='%d'", sd->bci());
1403           xtty->method(sd->method());
1404           xtty->end_elem();
1405           if (sd->is_top())  break;
1406         }
1407         xtty->tail("uncommon_trap");
1408       }
1409     }
1410     // (End diagnostic printout.)
1411 
1412     // Load class if necessary
1413     if (unloaded_class_index >= 0) {
1414       constantPoolHandle constants(THREAD, trap_method->constants());
1415       load_class_by_index(constants, unloaded_class_index);
1416     }
1417 
1418     // Flush the nmethod if necessary and desirable.
1419     //
1420     // We need to avoid situations where we are re-flushing the nmethod
1421     // because of a hot deoptimization site.  Repeated flushes at the same
1422     // point need to be detected by the compiler and avoided.  If the compiler
1423     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1424     // module must take measures to avoid an infinite cycle of recompilation
1425     // and deoptimization.  There are several such measures:
1426     //
1427     //   1. If a recompilation is ordered a second time at some site X
1428     //   and for the same reason R, the action is adjusted to 'reinterpret',
1429     //   to give the interpreter time to exercise the method more thoroughly.
1430     //   If this happens, the method's overflow_recompile_count is incremented.
1431     //
1432     //   2. If the compiler fails to reduce the deoptimization rate, then
1433     //   the method's overflow_recompile_count will begin to exceed the set
1434     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1435     //   is adjusted to 'make_not_compilable', and the method is abandoned
1436     //   to the interpreter.  This is a performance hit for hot methods,
1437     //   but is better than a disastrous infinite cycle of recompilations.
1438     //   (Actually, only the method containing the site X is abandoned.)
1439     //
1440     //   3. In parallel with the previous measures, if the total number of
1441     //   recompilations of a method exceeds the much larger set limit
1442     //   PerMethodRecompilationCutoff, the method is abandoned.
1443     //   This should only happen if the method is very large and has
1444     //   many "lukewarm" deoptimizations.  The code which enforces this
1445     //   limit is elsewhere (class nmethod, class Method).
1446     //
1447     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1448     // to recompile at each bytecode independently of the per-BCI cutoff.
1449     //
1450     // The decision to update code is up to the compiler, and is encoded
1451     // in the Action_xxx code.  If the compiler requests Action_none
1452     // no trap state is changed, no compiled code is changed, and the
1453     // computation suffers along in the interpreter.
1454     //
1455     // The other action codes specify various tactics for decompilation
1456     // and recompilation.  Action_maybe_recompile is the loosest, and
1457     // allows the compiled code to stay around until enough traps are seen,
1458     // and until the compiler gets around to recompiling the trapping method.
1459     //
1460     // The other actions cause immediate removal of the present code.
1461 
1462     // Traps caused by injected profile shouldn't pollute trap counts.
1463     bool injected_profile_trap = trap_method->has_injected_profile() &&
1464                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1465 
1466     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1467     bool make_not_entrant = false;
1468     bool make_not_compilable = false;
1469     bool reprofile = false;
1470     switch (action) {
1471     case Action_none:
1472       // Keep the old code.
1473       update_trap_state = false;
1474       break;
1475     case Action_maybe_recompile:
1476       // Do not need to invalidate the present code, but we can
1477       // initiate another
1478       // Start compiler without (necessarily) invalidating the nmethod.
1479       // The system will tolerate the old code, but new code should be
1480       // generated when possible.
1481       break;
1482     case Action_reinterpret:
1483       // Go back into the interpreter for a while, and then consider
1484       // recompiling form scratch.
1485       make_not_entrant = true;
1486       // Reset invocation counter for outer most method.
1487       // This will allow the interpreter to exercise the bytecodes
1488       // for a while before recompiling.
1489       // By contrast, Action_make_not_entrant is immediate.
1490       //
1491       // Note that the compiler will track null_check, null_assert,
1492       // range_check, and class_check events and log them as if they
1493       // had been traps taken from compiled code.  This will update
1494       // the MDO trap history so that the next compilation will
1495       // properly detect hot trap sites.
1496       reprofile = true;
1497       break;
1498     case Action_make_not_entrant:
1499       // Request immediate recompilation, and get rid of the old code.
1500       // Make them not entrant, so next time they are called they get
1501       // recompiled.  Unloaded classes are loaded now so recompile before next
1502       // time they are called.  Same for uninitialized.  The interpreter will
1503       // link the missing class, if any.
1504       make_not_entrant = true;
1505       break;
1506     case Action_make_not_compilable:
1507       // Give up on compiling this method at all.
1508       make_not_entrant = true;
1509       make_not_compilable = true;
1510       break;
1511     default:
1512       ShouldNotReachHere();
1513     }
1514 
1515     // Setting +ProfileTraps fixes the following, on all platforms:
1516     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1517     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1518     // recompile relies on a MethodData* to record heroic opt failures.
1519 
1520     // Whether the interpreter is producing MDO data or not, we also need
1521     // to use the MDO to detect hot deoptimization points and control
1522     // aggressive optimization.
1523     bool inc_recompile_count = false;
1524     ProfileData* pdata = NULL;
1525     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1526       assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
1527       uint this_trap_count = 0;
1528       bool maybe_prior_trap = false;
1529       bool maybe_prior_recompile = false;
1530       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1531                                    nm->method(),
1532                                    //outputs:
1533                                    this_trap_count,
1534                                    maybe_prior_trap,
1535                                    maybe_prior_recompile);
1536       // Because the interpreter also counts null, div0, range, and class
1537       // checks, these traps from compiled code are double-counted.
1538       // This is harmless; it just means that the PerXTrapLimit values
1539       // are in effect a little smaller than they look.
1540 
1541       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1542       if (per_bc_reason != Reason_none) {
1543         // Now take action based on the partially known per-BCI history.
1544         if (maybe_prior_trap
1545             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1546           // If there are too many traps at this BCI, force a recompile.
1547           // This will allow the compiler to see the limit overflow, and
1548           // take corrective action, if possible.  The compiler generally
1549           // does not use the exact PerBytecodeTrapLimit value, but instead
1550           // changes its tactics if it sees any traps at all.  This provides
1551           // a little hysteresis, delaying a recompile until a trap happens
1552           // several times.
1553           //
1554           // Actually, since there is only one bit of counter per BCI,
1555           // the possible per-BCI counts are {0,1,(per-method count)}.
1556           // This produces accurate results if in fact there is only
1557           // one hot trap site, but begins to get fuzzy if there are
1558           // many sites.  For example, if there are ten sites each
1559           // trapping two or more times, they each get the blame for
1560           // all of their traps.
1561           make_not_entrant = true;
1562         }
1563 
1564         // Detect repeated recompilation at the same BCI, and enforce a limit.
1565         if (make_not_entrant && maybe_prior_recompile) {
1566           // More than one recompile at this point.
1567           inc_recompile_count = maybe_prior_trap;
1568         }
1569       } else {
1570         // For reasons which are not recorded per-bytecode, we simply
1571         // force recompiles unconditionally.
1572         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1573         make_not_entrant = true;
1574       }
1575 
1576       // Go back to the compiler if there are too many traps in this method.
1577       if (this_trap_count >= per_method_trap_limit(reason)) {
1578         // If there are too many traps in this method, force a recompile.
1579         // This will allow the compiler to see the limit overflow, and
1580         // take corrective action, if possible.
1581         // (This condition is an unlikely backstop only, because the
1582         // PerBytecodeTrapLimit is more likely to take effect first,
1583         // if it is applicable.)
1584         make_not_entrant = true;
1585       }
1586 
1587       // Here's more hysteresis:  If there has been a recompile at
1588       // this trap point already, run the method in the interpreter
1589       // for a while to exercise it more thoroughly.
1590       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1591         reprofile = true;
1592       }
1593     }
1594 
1595     // Take requested actions on the method:
1596 
1597     // Recompile
1598     if (make_not_entrant) {
1599       if (!nm->make_not_entrant()) {
1600         return; // the call did not change nmethod's state
1601       }
1602 
1603       if (pdata != NULL) {
1604         // Record the recompilation event, if any.
1605         int tstate0 = pdata->trap_state();
1606         int tstate1 = trap_state_set_recompiled(tstate0, true);
1607         if (tstate1 != tstate0)
1608           pdata->set_trap_state(tstate1);
1609       }
1610 
1611 #if INCLUDE_RTM_OPT
1612       // Restart collecting RTM locking abort statistic if the method
1613       // is recompiled for a reason other than RTM state change.
1614       // Assume that in new recompiled code the statistic could be different,
1615       // for example, due to different inlining.
1616       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1617           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
1618         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1619       }
1620 #endif
1621       // For code aging we count traps separately here, using make_not_entrant()
1622       // as a guard against simultaneous deopts in multiple threads.
1623       if (reason == Reason_tenured && trap_mdo != NULL) {
1624         trap_mdo->inc_tenure_traps();
1625       }
1626     }
1627 
1628     if (inc_recompile_count) {
1629       trap_mdo->inc_overflow_recompile_count();
1630       if ((uint)trap_mdo->overflow_recompile_count() >
1631           (uint)PerBytecodeRecompilationCutoff) {
1632         // Give up on the method containing the bad BCI.
1633         if (trap_method() == nm->method()) {
1634           make_not_compilable = true;
1635         } else {
1636           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1637           // But give grace to the enclosing nm->method().
1638         }
1639       }
1640     }
1641 
1642     // Reprofile
1643     if (reprofile) {
1644       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1645     }
1646 
1647     // Give up compiling
1648     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1649       assert(make_not_entrant, "consistent");
1650       nm->method()->set_not_compilable(CompLevel_full_optimization);
1651     }
1652 
1653   } // Free marked resources
1654 
1655 }
1656 JRT_END
1657 
1658 ProfileData*
1659 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1660                                          int trap_bci,
1661                                          Deoptimization::DeoptReason reason,
1662                                          Method* compiled_method,
1663                                          //outputs:
1664                                          uint& ret_this_trap_count,
1665                                          bool& ret_maybe_prior_trap,
1666                                          bool& ret_maybe_prior_recompile) {
1667   uint prior_trap_count = trap_mdo->trap_count(reason);
1668   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1669 
1670   // If the runtime cannot find a place to store trap history,
1671   // it is estimated based on the general condition of the method.
1672   // If the method has ever been recompiled, or has ever incurred
1673   // a trap with the present reason , then this BCI is assumed
1674   // (pessimistically) to be the culprit.
1675   bool maybe_prior_trap      = (prior_trap_count != 0);
1676   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1677   ProfileData* pdata = NULL;
1678 
1679 
1680   // For reasons which are recorded per bytecode, we check per-BCI data.
1681   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1682   if (per_bc_reason != Reason_none) {
1683     // Find the profile data for this BCI.  If there isn't one,
1684     // try to allocate one from the MDO's set of spares.
1685     // This will let us detect a repeated trap at this point.
1686     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1687 
1688     if (pdata != NULL) {
1689       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1690         if (LogCompilation && xtty != NULL) {
1691           ttyLocker ttyl;
1692           // no more room for speculative traps in this MDO
1693           xtty->elem("speculative_traps_oom");
1694         }
1695       }
1696       // Query the trap state of this profile datum.
1697       int tstate0 = pdata->trap_state();
1698       if (!trap_state_has_reason(tstate0, per_bc_reason))
1699         maybe_prior_trap = false;
1700       if (!trap_state_is_recompiled(tstate0))
1701         maybe_prior_recompile = false;
1702 
1703       // Update the trap state of this profile datum.
1704       int tstate1 = tstate0;
1705       // Record the reason.
1706       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1707       // Store the updated state on the MDO, for next time.
1708       if (tstate1 != tstate0)
1709         pdata->set_trap_state(tstate1);
1710     } else {
1711       if (LogCompilation && xtty != NULL) {
1712         ttyLocker ttyl;
1713         // Missing MDP?  Leave a small complaint in the log.
1714         xtty->elem("missing_mdp bci='%d'", trap_bci);
1715       }
1716     }
1717   }
1718 
1719   // Return results:
1720   ret_this_trap_count = this_trap_count;
1721   ret_maybe_prior_trap = maybe_prior_trap;
1722   ret_maybe_prior_recompile = maybe_prior_recompile;
1723   return pdata;
1724 }
1725 
1726 void
1727 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1728   ResourceMark rm;
1729   // Ignored outputs:
1730   uint ignore_this_trap_count;
1731   bool ignore_maybe_prior_trap;
1732   bool ignore_maybe_prior_recompile;
1733   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
1734   query_update_method_data(trap_mdo, trap_bci,
1735                            (DeoptReason)reason,
1736                            NULL,
1737                            ignore_this_trap_count,
1738                            ignore_maybe_prior_trap,
1739                            ignore_maybe_prior_recompile);
1740 }
1741 
1742 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1743 
1744   // Still in Java no safepoints
1745   {
1746     // This enters VM and may safepoint
1747     uncommon_trap_inner(thread, trap_request);
1748   }
1749   return fetch_unroll_info_helper(thread);
1750 }
1751 
1752 // Local derived constants.
1753 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1754 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1755 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1756 
1757 //---------------------------trap_state_reason---------------------------------
1758 Deoptimization::DeoptReason
1759 Deoptimization::trap_state_reason(int trap_state) {
1760   // This assert provides the link between the width of DataLayout::trap_bits
1761   // and the encoding of "recorded" reasons.  It ensures there are enough
1762   // bits to store all needed reasons in the per-BCI MDO profile.
1763   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1764   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1765   trap_state -= recompile_bit;
1766   if (trap_state == DS_REASON_MASK) {
1767     return Reason_many;
1768   } else {
1769     assert((int)Reason_none == 0, "state=0 => Reason_none");
1770     return (DeoptReason)trap_state;
1771   }
1772 }
1773 //-------------------------trap_state_has_reason-------------------------------
1774 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1775   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1776   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1777   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1778   trap_state -= recompile_bit;
1779   if (trap_state == DS_REASON_MASK) {
1780     return -1;  // true, unspecifically (bottom of state lattice)
1781   } else if (trap_state == reason) {
1782     return 1;   // true, definitely
1783   } else if (trap_state == 0) {
1784     return 0;   // false, definitely (top of state lattice)
1785   } else {
1786     return 0;   // false, definitely
1787   }
1788 }
1789 //-------------------------trap_state_add_reason-------------------------------
1790 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1791   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1792   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1793   trap_state -= recompile_bit;
1794   if (trap_state == DS_REASON_MASK) {
1795     return trap_state + recompile_bit;     // already at state lattice bottom
1796   } else if (trap_state == reason) {
1797     return trap_state + recompile_bit;     // the condition is already true
1798   } else if (trap_state == 0) {
1799     return reason + recompile_bit;          // no condition has yet been true
1800   } else {
1801     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1802   }
1803 }
1804 //-----------------------trap_state_is_recompiled------------------------------
1805 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1806   return (trap_state & DS_RECOMPILE_BIT) != 0;
1807 }
1808 //-----------------------trap_state_set_recompiled-----------------------------
1809 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1810   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1811   else    return trap_state & ~DS_RECOMPILE_BIT;
1812 }
1813 //---------------------------format_trap_state---------------------------------
1814 // This is used for debugging and diagnostics, including LogFile output.
1815 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1816                                               int trap_state) {
1817   DeoptReason reason      = trap_state_reason(trap_state);
1818   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1819   // Re-encode the state from its decoded components.
1820   int decoded_state = 0;
1821   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1822     decoded_state = trap_state_add_reason(decoded_state, reason);
1823   if (recomp_flag)
1824     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1825   // If the state re-encodes properly, format it symbolically.
1826   // Because this routine is used for debugging and diagnostics,
1827   // be robust even if the state is a strange value.
1828   size_t len;
1829   if (decoded_state != trap_state) {
1830     // Random buggy state that doesn't decode??
1831     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1832   } else {
1833     len = jio_snprintf(buf, buflen, "%s%s",
1834                        trap_reason_name(reason),
1835                        recomp_flag ? " recompiled" : "");
1836   }
1837   if (len >= buflen)
1838     buf[buflen-1] = '\0';
1839   return buf;
1840 }
1841 
1842 
1843 //--------------------------------statics--------------------------------------
1844 const char* Deoptimization::_trap_reason_name[] = {
1845   // Note:  Keep this in sync. with enum DeoptReason.
1846   "none",
1847   "null_check",
1848   "null_assert",
1849   "range_check",
1850   "class_check",
1851   "array_check",
1852   "intrinsic",
1853   "bimorphic",
1854   "unloaded",
1855   "uninitialized",
1856   "unreached",
1857   "unhandled",
1858   "constraint",
1859   "div0_check",
1860   "age",
1861   "predicate",
1862   "loop_limit_check",
1863   "speculate_class_check",
1864   "speculate_null_check",
1865   "rtm_state_change",
1866   "unstable_if",
1867   "unstable_fused_if",
1868   "tenured"
1869 };
1870 const char* Deoptimization::_trap_action_name[] = {
1871   // Note:  Keep this in sync. with enum DeoptAction.
1872   "none",
1873   "maybe_recompile",
1874   "reinterpret",
1875   "make_not_entrant",
1876   "make_not_compilable"
1877 };
1878 
1879 const char* Deoptimization::trap_reason_name(int reason) {
1880   // Check that every reason has a name
1881   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
1882 
1883   if (reason == Reason_many)  return "many";
1884   if ((uint)reason < Reason_LIMIT)
1885     return _trap_reason_name[reason];
1886   static char buf[20];
1887   sprintf(buf, "reason%d", reason);
1888   return buf;
1889 }
1890 const char* Deoptimization::trap_action_name(int action) {
1891   // Check that every action has a name
1892   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
1893 
1894   if ((uint)action < Action_LIMIT)
1895     return _trap_action_name[action];
1896   static char buf[20];
1897   sprintf(buf, "action%d", action);
1898   return buf;
1899 }
1900 
1901 // This is used for debugging and diagnostics, including LogFile output.
1902 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1903                                                 int trap_request) {
1904   jint unloaded_class_index = trap_request_index(trap_request);
1905   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1906   const char* action = trap_action_name(trap_request_action(trap_request));
1907   size_t len;
1908   if (unloaded_class_index < 0) {
1909     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1910                        reason, action);
1911   } else {
1912     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1913                        reason, action, unloaded_class_index);
1914   }
1915   if (len >= buflen)
1916     buf[buflen-1] = '\0';
1917   return buf;
1918 }
1919 
1920 juint Deoptimization::_deoptimization_hist
1921         [Deoptimization::Reason_LIMIT]
1922     [1 + Deoptimization::Action_LIMIT]
1923         [Deoptimization::BC_CASE_LIMIT]
1924   = {0};
1925 
1926 enum {
1927   LSB_BITS = 8,
1928   LSB_MASK = right_n_bits(LSB_BITS)
1929 };
1930 
1931 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1932                                        Bytecodes::Code bc) {
1933   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1934   assert(action >= 0 && action < Action_LIMIT, "oob");
1935   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1936   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1937   juint* cases = _deoptimization_hist[reason][1+action];
1938   juint* bc_counter_addr = NULL;
1939   juint  bc_counter      = 0;
1940   // Look for an unused counter, or an exact match to this BC.
1941   if (bc != Bytecodes::_illegal) {
1942     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1943       juint* counter_addr = &cases[bc_case];
1944       juint  counter = *counter_addr;
1945       if ((counter == 0 && bc_counter_addr == NULL)
1946           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1947         // this counter is either free or is already devoted to this BC
1948         bc_counter_addr = counter_addr;
1949         bc_counter = counter | bc;
1950       }
1951     }
1952   }
1953   if (bc_counter_addr == NULL) {
1954     // Overflow, or no given bytecode.
1955     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1956     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1957   }
1958   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1959 }
1960 
1961 jint Deoptimization::total_deoptimization_count() {
1962   return _deoptimization_hist[Reason_none][0][0];
1963 }
1964 
1965 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1966   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1967   return _deoptimization_hist[reason][0][0];
1968 }
1969 
1970 void Deoptimization::print_statistics() {
1971   juint total = total_deoptimization_count();
1972   juint account = total;
1973   if (total != 0) {
1974     ttyLocker ttyl;
1975     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1976     tty->print_cr("Deoptimization traps recorded:");
1977     #define PRINT_STAT_LINE(name, r) \
1978       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1979     PRINT_STAT_LINE("total", total);
1980     // For each non-zero entry in the histogram, print the reason,
1981     // the action, and (if specifically known) the type of bytecode.
1982     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1983       for (int action = 0; action < Action_LIMIT; action++) {
1984         juint* cases = _deoptimization_hist[reason][1+action];
1985         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1986           juint counter = cases[bc_case];
1987           if (counter != 0) {
1988             char name[1*K];
1989             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1990             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1991               bc = Bytecodes::_illegal;
1992             sprintf(name, "%s/%s/%s",
1993                     trap_reason_name(reason),
1994                     trap_action_name(action),
1995                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1996             juint r = counter >> LSB_BITS;
1997             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1998             account -= r;
1999           }
2000         }
2001       }
2002     }
2003     if (account != 0) {
2004       PRINT_STAT_LINE("unaccounted", account);
2005     }
2006     #undef PRINT_STAT_LINE
2007     if (xtty != NULL)  xtty->tail("statistics");
2008   }
2009 }
2010 #else // COMPILER2 || SHARK
2011 
2012 
2013 // Stubs for C1 only system.
2014 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2015   return false;
2016 }
2017 
2018 const char* Deoptimization::trap_reason_name(int reason) {
2019   return "unknown";
2020 }
2021 
2022 void Deoptimization::print_statistics() {
2023   // no output
2024 }
2025 
2026 void
2027 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2028   // no udpate
2029 }
2030 
2031 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2032   return 0;
2033 }
2034 
2035 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2036                                        Bytecodes::Code bc) {
2037   // no update
2038 }
2039 
2040 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2041                                               int trap_state) {
2042   jio_snprintf(buf, buflen, "#%d", trap_state);
2043   return buf;
2044 }
2045 
2046 #endif // COMPILER2 || SHARK