1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "utilities/macros.hpp"
  27 #include "gc_implementation/shared/allocationStats.hpp"
  28 #include "memory/binaryTreeDictionary.hpp"
  29 #include "memory/freeList.hpp"
  30 #include "memory/freeBlockDictionary.hpp"
  31 #include "memory/metachunk.hpp"
  32 #include "runtime/globals.hpp"
  33 #include "utilities/ostream.hpp"
  34 #include "utilities/macros.hpp"
  35 #include "gc_implementation/shared/spaceDecorator.hpp"
  36 #if INCLUDE_ALL_GCS
  37 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
  38 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
  39 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
  40 #endif // INCLUDE_ALL_GCS
  41 
  42 ////////////////////////////////////////////////////////////////////////////////
  43 // A binary tree based search structure for free blocks.
  44 // This is currently used in the Concurrent Mark&Sweep implementation.
  45 ////////////////////////////////////////////////////////////////////////////////
  46 
  47 template <class Chunk_t, template <class> class FreeList_t>
  48 size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t,  FreeList_t>)/HeapWordSize;
  49 
  50 template <class Chunk_t, template <class> class FreeList_t>
  51 TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
  52   // Do some assertion checking here.
  53   return (TreeChunk<Chunk_t, FreeList_t>*) fc;
  54 }
  55 
  56 template <class Chunk_t, template <class> class FreeList_t>
  57 void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
  58   TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
  59   if (prev() != NULL) { // interior list node shouldn't have tree fields
  60     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
  61               embedded_list()->right()  == NULL, "should be clear");
  62   }
  63   if (nextTC != NULL) {
  64     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
  65     guarantee(nextTC->size() == size(), "wrong size");
  66     nextTC->verify_tree_chunk_list();
  67   }
  68 }
  69 
  70 template <class Chunk_t, template <class> class FreeList_t>
  71 TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
  72   _left(NULL), _right(NULL) {}
  73 
  74 template <class Chunk_t, template <class> class FreeList_t>
  75 TreeList<Chunk_t, FreeList_t>*
  76 TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
  77   // This first free chunk in the list will be the tree list.
  78   assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
  79     "Chunk is too small for a TreeChunk");
  80   TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
  81   tl->initialize();
  82   tc->set_list(tl);
  83   tl->set_size(tc->size());
  84   tl->link_head(tc);
  85   tl->link_tail(tc);
  86   tl->set_count(1);
  87   assert(tl->parent() == NULL, "Should be clear");
  88   return tl;
  89 }
  90 
  91 
  92 template <class Chunk_t, template <class> class FreeList_t>
  93 TreeList<Chunk_t, FreeList_t>*
  94 get_chunk(size_t size, enum FreeBlockDictionary<Chunk_t>::Dither dither) {
  95   FreeBlockDictionary<Chunk_t>::verify_par_locked();
  96   Chunk_t* res = get_chunk_from_tree(size, dither);
  97   assert(res == NULL || res->is_free(),
  98          "Should be returning a free chunk");
  99   assert(dither != FreeBlockDictionary<Chunk_t>::exactly ||
 100          res->size() == size, "Not correct size");
 101   return res;
 102 }
 103 
 104 template <class Chunk_t, template <class> class FreeList_t>
 105 TreeList<Chunk_t, FreeList_t>*
 106 TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
 107   TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
 108   assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
 109     "Chunk is too small for a TreeChunk");
 110   // The space will have been mangled initially but
 111   // is not remangled when a Chunk_t is returned to the free list
 112   // (since it is used to maintain the chunk on the free list).
 113   tc->assert_is_mangled();
 114   tc->set_size(size);
 115   tc->link_prev(NULL);
 116   tc->link_next(NULL);
 117   TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
 118   return tl;
 119 }
 120 
 121 
 122 #if INCLUDE_ALL_GCS
 123 // Specialize for AdaptiveFreeList which tries to avoid
 124 // splitting a chunk of a size that is under populated in favor of
 125 // an over populated size.  The general get_better_list() just returns
 126 // the current list.
 127 template <>
 128 TreeList<FreeChunk, AdaptiveFreeList>*
 129 TreeList<FreeChunk, AdaptiveFreeList>::get_better_list(
 130   BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList>* dictionary) {
 131   // A candidate chunk has been found.  If it is already under
 132   // populated, get a chunk associated with the hint for this
 133   // chunk.
 134 
 135   TreeList<FreeChunk, ::AdaptiveFreeList>* curTL = this;
 136   if (surplus() <= 0) {
 137     /* Use the hint to find a size with a surplus, and reset the hint. */
 138     TreeList<FreeChunk, ::AdaptiveFreeList>* hintTL = this;
 139     while (hintTL->hint() != 0) {
 140       assert(hintTL->hint() > hintTL->size(),
 141         "hint points in the wrong direction");
 142       hintTL = dictionary->find_list(hintTL->hint());
 143       assert(curTL != hintTL, "Infinite loop");
 144       if (hintTL == NULL ||
 145           hintTL == curTL /* Should not happen but protect against it */ ) {
 146         // No useful hint.  Set the hint to NULL and go on.
 147         curTL->set_hint(0);
 148         break;
 149       }
 150       assert(hintTL->size() > curTL->size(), "hint is inconsistent");
 151       if (hintTL->surplus() > 0) {
 152         // The hint led to a list that has a surplus.  Use it.
 153         // Set the hint for the candidate to an overpopulated
 154         // size.
 155         curTL->set_hint(hintTL->size());
 156         // Change the candidate.
 157         curTL = hintTL;
 158         break;
 159       }
 160     }
 161   }
 162   return curTL;
 163 }
 164 #endif // INCLUDE_ALL_GCS
 165 
 166 template <class Chunk_t, template <class> class FreeList_t>
 167 TreeList<Chunk_t, FreeList_t>*
 168 TreeList<Chunk_t, FreeList_t>::get_better_list(
 169   BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
 170   return this;
 171 }
 172 
 173 template <class Chunk_t, template <class> class FreeList_t>
 174 TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
 175 
 176   TreeList<Chunk_t, FreeList_t>* retTL = this;
 177   Chunk_t* list = head();
 178   assert(!list || list != list->next(), "Chunk on list twice");
 179   assert(tc != NULL, "Chunk being removed is NULL");
 180   assert(parent() == NULL || this == parent()->left() ||
 181     this == parent()->right(), "list is inconsistent");
 182   assert(tc->is_free(), "Header is not marked correctly");
 183   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 184   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 185 
 186   Chunk_t* prevFC = tc->prev();
 187   TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
 188   assert(list != NULL, "should have at least the target chunk");
 189 
 190   // Is this the first item on the list?
 191   if (tc == list) {
 192     // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
 193     // first chunk in the list unless it is the last chunk in the list
 194     // because the first chunk is also acting as the tree node.
 195     // When coalescing happens, however, the first chunk in the a tree
 196     // list can be the start of a free range.  Free ranges are removed
 197     // from the free lists so that they are not available to be
 198     // allocated when the sweeper yields (giving up the free list lock)
 199     // to allow mutator activity.  If this chunk is the first in the
 200     // list and is not the last in the list, do the work to copy the
 201     // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
 202     // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
 203     if (nextTC == NULL) {
 204       assert(prevFC == NULL, "Not last chunk in the list");
 205       set_tail(NULL);
 206       set_head(NULL);
 207     } else {
 208       // copy embedded list.
 209       nextTC->set_embedded_list(tc->embedded_list());
 210       retTL = nextTC->embedded_list();
 211       // Fix the pointer to the list in each chunk in the list.
 212       // This can be slow for a long list.  Consider having
 213       // an option that does not allow the first chunk on the
 214       // list to be coalesced.
 215       for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
 216           curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
 217         curTC->set_list(retTL);
 218       }
 219       // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
 220       if (retTL->parent() != NULL) {
 221         if (this == retTL->parent()->left()) {
 222           retTL->parent()->set_left(retTL);
 223         } else {
 224           assert(this == retTL->parent()->right(), "Parent is incorrect");
 225           retTL->parent()->set_right(retTL);
 226         }
 227       }
 228       // Fix the children's parent pointers to point to the
 229       // new list.
 230       assert(right() == retTL->right(), "Should have been copied");
 231       if (retTL->right() != NULL) {
 232         retTL->right()->set_parent(retTL);
 233       }
 234       assert(left() == retTL->left(), "Should have been copied");
 235       if (retTL->left() != NULL) {
 236         retTL->left()->set_parent(retTL);
 237       }
 238       retTL->link_head(nextTC);
 239       assert(nextTC->is_free(), "Should be a free chunk");
 240     }
 241   } else {
 242     if (nextTC == NULL) {
 243       // Removing chunk at tail of list
 244       this->link_tail(prevFC);
 245     }
 246     // Chunk is interior to the list
 247     prevFC->link_after(nextTC);
 248   }
 249 
 250   // Below this point the embedded TreeList<Chunk_t, FreeList_t> being used for the
 251   // tree node may have changed. Don't use "this"
 252   // TreeList<Chunk_t, FreeList_t>*.
 253   // chunk should still be a free chunk (bit set in _prev)
 254   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
 255     "Wrong sized chunk in list");
 256   debug_only(
 257     tc->link_prev(NULL);
 258     tc->link_next(NULL);
 259     tc->set_list(NULL);
 260     bool prev_found = false;
 261     bool next_found = false;
 262     for (Chunk_t* curFC = retTL->head();
 263          curFC != NULL; curFC = curFC->next()) {
 264       assert(curFC != tc, "Chunk is still in list");
 265       if (curFC == prevFC) {
 266         prev_found = true;
 267       }
 268       if (curFC == nextTC) {
 269         next_found = true;
 270       }
 271     }
 272     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
 273     assert(nextTC == NULL || next_found, "Chunk was lost from list");
 274     assert(retTL->parent() == NULL ||
 275            retTL == retTL->parent()->left() ||
 276            retTL == retTL->parent()->right(),
 277            "list is inconsistent");
 278   )
 279   retTL->decrement_count();
 280 
 281   assert(tc->is_free(), "Should still be a free chunk");
 282   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
 283     "list invariant");
 284   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
 285     "list invariant");
 286   return retTL;
 287 }
 288 
 289 template <class Chunk_t, template <class> class FreeList_t>
 290 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
 291   assert(chunk != NULL, "returning NULL chunk");
 292   assert(chunk->list() == this, "list should be set for chunk");
 293   assert(tail() != NULL, "The tree list is embedded in the first chunk");
 294   // which means that the list can never be empty.
 295   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
 296   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 297   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 298 
 299   Chunk_t* fc = tail();
 300   fc->link_after(chunk);
 301   this->link_tail(chunk);
 302 
 303   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
 304   FreeList_t<Chunk_t>::increment_count();
 305   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
 306   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 307   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 308 }
 309 
 310 // Add this chunk at the head of the list.  "At the head of the list"
 311 // is defined to be after the chunk pointer to by head().  This is
 312 // because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
 313 // list.  See the definition of TreeChunk<Chunk_t, FreeList_t>.
 314 template <class Chunk_t, template <class> class FreeList_t>
 315 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
 316   assert(chunk->list() == this, "list should be set for chunk");
 317   assert(head() != NULL, "The tree list is embedded in the first chunk");
 318   assert(chunk != NULL, "returning NULL chunk");
 319   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
 320   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 321   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 322 
 323   Chunk_t* fc = head()->next();
 324   if (fc != NULL) {
 325     chunk->link_after(fc);
 326   } else {
 327     assert(tail() == NULL, "List is inconsistent");
 328     this->link_tail(chunk);
 329   }
 330   head()->link_after(chunk);
 331   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
 332   FreeList_t<Chunk_t>::increment_count();
 333   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
 334   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 335   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 336 }
 337 
 338 template <class Chunk_t, template <class> class FreeList_t>
 339 void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
 340   assert((ZapUnusedHeapArea &&
 341           SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
 342           SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
 343           SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
 344           (size() == 0 && prev() == NULL && next() == NULL),
 345     "Space should be clear or mangled");
 346 }
 347 
 348 template <class Chunk_t, template <class> class FreeList_t>
 349 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
 350   assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
 351     "Wrong type of chunk?");
 352   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
 353 }
 354 
 355 template <class Chunk_t, template <class> class FreeList_t>
 356 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
 357   assert(head() != NULL, "The head of the list cannot be NULL");
 358   Chunk_t* fc = head()->next();
 359   TreeChunk<Chunk_t, FreeList_t>* retTC;
 360   if (fc == NULL) {
 361     retTC = head_as_TreeChunk();
 362   } else {
 363     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
 364   }
 365   assert(retTC->list() == this, "Wrong type of chunk.");
 366   return retTC;
 367 }
 368 
 369 // Returns the block with the largest heap address amongst
 370 // those in the list for this size; potentially slow and expensive,
 371 // use with caution!
 372 template <class Chunk_t, template <class> class FreeList_t>
 373 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
 374   assert(head() != NULL, "The head of the list cannot be NULL");
 375   Chunk_t* fc = head()->next();
 376   TreeChunk<Chunk_t, FreeList_t>* retTC;
 377   if (fc == NULL) {
 378     retTC = head_as_TreeChunk();
 379   } else {
 380     // walk down the list and return the one with the highest
 381     // heap address among chunks of this size.
 382     Chunk_t* last = fc;
 383     while (fc->next() != NULL) {
 384       if ((HeapWord*)last < (HeapWord*)fc) {
 385         last = fc;
 386       }
 387       fc = fc->next();
 388     }
 389     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
 390   }
 391   assert(retTC->list() == this, "Wrong type of chunk.");
 392   return retTC;
 393 }
 394 
 395 template <class Chunk_t, template <class> class FreeList_t>
 396 BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
 397   assert((mr.byte_size() > min_size()), "minimum chunk size");
 398 
 399   reset(mr);
 400   assert(root()->left() == NULL, "reset check failed");
 401   assert(root()->right() == NULL, "reset check failed");
 402   assert(root()->head()->next() == NULL, "reset check failed");
 403   assert(root()->head()->prev() == NULL, "reset check failed");
 404   assert(total_size() == root()->size(), "reset check failed");
 405   assert(total_free_blocks() == 1, "reset check failed");
 406 }
 407 
 408 template <class Chunk_t, template <class> class FreeList_t>
 409 void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
 410   _total_size = _total_size + inc;
 411 }
 412 
 413 template <class Chunk_t, template <class> class FreeList_t>
 414 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
 415   _total_size = _total_size - dec;
 416 }
 417 
 418 template <class Chunk_t, template <class> class FreeList_t>
 419 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
 420   assert((mr.byte_size() > min_size()), "minimum chunk size");
 421   set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
 422   set_total_size(mr.word_size());
 423   set_total_free_blocks(1);
 424 }
 425 
 426 template <class Chunk_t, template <class> class FreeList_t>
 427 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
 428   MemRegion mr(addr, heap_word_size(byte_size));
 429   reset(mr);
 430 }
 431 
 432 template <class Chunk_t, template <class> class FreeList_t>
 433 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
 434   set_root(NULL);
 435   set_total_size(0);
 436   set_total_free_blocks(0);
 437 }
 438 
 439 // Get a free block of size at least size from tree, or NULL.
 440 template <class Chunk_t, template <class> class FreeList_t>
 441 TreeChunk<Chunk_t, FreeList_t>*
 442 BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
 443                               size_t size,
 444                               enum FreeBlockDictionary<Chunk_t>::Dither dither)
 445 {
 446   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
 447   TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
 448 
 449   assert((size >= min_size()), "minimum chunk size");
 450   if (FLSVerifyDictionary) {
 451     verify_tree();
 452   }
 453   // starting at the root, work downwards trying to find match.
 454   // Remember the last node of size too great or too small.
 455   for (prevTL = curTL = root(); curTL != NULL;) {
 456     if (curTL->size() == size) {        // exact match
 457       break;
 458     }
 459     prevTL = curTL;
 460     if (curTL->size() < size) {        // proceed to right sub-tree
 461       curTL = curTL->right();
 462     } else {                           // proceed to left sub-tree
 463       assert(curTL->size() > size, "size inconsistency");
 464       curTL = curTL->left();
 465     }
 466   }
 467   if (curTL == NULL) { // couldn't find exact match
 468 
 469     if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
 470 
 471     // try and find the next larger size by walking back up the search path
 472     for (curTL = prevTL; curTL != NULL;) {
 473       if (curTL->size() >= size) break;
 474       else curTL = curTL->parent();
 475     }
 476     assert(curTL == NULL || curTL->count() > 0,
 477       "An empty list should not be in the tree");
 478   }
 479   if (curTL != NULL) {
 480     assert(curTL->size() >= size, "size inconsistency");
 481 
 482     curTL = curTL->get_better_list(this);
 483 
 484     retTC = curTL->first_available();
 485     assert((retTC != NULL) && (curTL->count() > 0),
 486       "A list in the binary tree should not be NULL");
 487     assert(retTC->size() >= size,
 488       "A chunk of the wrong size was found");
 489     remove_chunk_from_tree(retTC);
 490     assert(retTC->is_free(), "Header is not marked correctly");
 491   }
 492 
 493   if (FLSVerifyDictionary) {
 494     verify();
 495   }
 496   return retTC;
 497 }
 498 
 499 template <class Chunk_t, template <class> class FreeList_t>
 500 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
 501   TreeList<Chunk_t, FreeList_t>* curTL;
 502   for (curTL = root(); curTL != NULL;) {
 503     if (curTL->size() == size) {        // exact match
 504       break;
 505     }
 506 
 507     if (curTL->size() < size) {        // proceed to right sub-tree
 508       curTL = curTL->right();
 509     } else {                           // proceed to left sub-tree
 510       assert(curTL->size() > size, "size inconsistency");
 511       curTL = curTL->left();
 512     }
 513   }
 514   return curTL;
 515 }
 516 
 517 
 518 template <class Chunk_t, template <class> class FreeList_t>
 519 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
 520   size_t size = tc->size();
 521   TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
 522   if (tl == NULL) {
 523     return false;
 524   } else {
 525     return tl->verify_chunk_in_free_list(tc);
 526   }
 527 }
 528 
 529 template <class Chunk_t, template <class> class FreeList_t>
 530 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
 531   TreeList<Chunk_t, FreeList_t> *curTL = root();
 532   if (curTL != NULL) {
 533     while(curTL->right() != NULL) curTL = curTL->right();
 534     return curTL->largest_address();
 535   } else {
 536     return NULL;
 537   }
 538 }
 539 
 540 // Remove the current chunk from the tree.  If it is not the last
 541 // chunk in a list on a tree node, just unlink it.
 542 // If it is the last chunk in the list (the next link is NULL),
 543 // remove the node and repair the tree.
 544 template <class Chunk_t, template <class> class FreeList_t>
 545 TreeChunk<Chunk_t, FreeList_t>*
 546 BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
 547   assert(tc != NULL, "Should not call with a NULL chunk");
 548   assert(tc->is_free(), "Header is not marked correctly");
 549 
 550   TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
 551   TreeChunk<Chunk_t, FreeList_t>* retTC;
 552   TreeList<Chunk_t, FreeList_t>* tl = tc->list();
 553   debug_only(
 554     bool removing_only_chunk = false;
 555     if (tl == _root) {
 556       if ((_root->left() == NULL) && (_root->right() == NULL)) {
 557         if (_root->count() == 1) {
 558           assert(_root->head() == tc, "Should only be this one chunk");
 559           removing_only_chunk = true;
 560         }
 561       }
 562     }
 563   )
 564   assert(tl != NULL, "List should be set");
 565   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
 566          tl == tl->parent()->right(), "list is inconsistent");
 567 
 568   bool complicated_splice = false;
 569 
 570   retTC = tc;
 571   // Removing this chunk can have the side effect of changing the node
 572   // (TreeList<Chunk_t, FreeList_t>*) in the tree.  If the node is the root, update it.
 573   TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
 574   assert(tc->is_free(), "Chunk should still be free");
 575   assert(replacementTL->parent() == NULL ||
 576          replacementTL == replacementTL->parent()->left() ||
 577          replacementTL == replacementTL->parent()->right(),
 578          "list is inconsistent");
 579   if (tl == root()) {
 580     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
 581     set_root(replacementTL);
 582   }
 583 #ifdef ASSERT
 584     if (tl != replacementTL) {
 585       assert(replacementTL->head() != NULL,
 586         "If the tree list was replaced, it should not be a NULL list");
 587       TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
 588       TreeList<Chunk_t, FreeList_t>* rtl =
 589         TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
 590       assert(rhl == replacementTL, "Broken head");
 591       assert(rtl == replacementTL, "Broken tail");
 592       assert(replacementTL->size() == tc->size(),  "Broken size");
 593     }
 594 #endif
 595 
 596   // Does the tree need to be repaired?
 597   if (replacementTL->count() == 0) {
 598     assert(replacementTL->head() == NULL &&
 599            replacementTL->tail() == NULL, "list count is incorrect");
 600     // Find the replacement node for the (soon to be empty) node being removed.
 601     // if we have a single (or no) child, splice child in our stead
 602     if (replacementTL->left() == NULL) {
 603       // left is NULL so pick right.  right may also be NULL.
 604       newTL = replacementTL->right();
 605       debug_only(replacementTL->clear_right();)
 606     } else if (replacementTL->right() == NULL) {
 607       // right is NULL
 608       newTL = replacementTL->left();
 609       debug_only(replacementTL->clear_left();)
 610     } else {  // we have both children, so, by patriarchal convention,
 611               // my replacement is least node in right sub-tree
 612       complicated_splice = true;
 613       newTL = remove_tree_minimum(replacementTL->right());
 614       assert(newTL != NULL && newTL->left() == NULL &&
 615              newTL->right() == NULL, "sub-tree minimum exists");
 616     }
 617     // newTL is the replacement for the (soon to be empty) node.
 618     // newTL may be NULL.
 619     // should verify; we just cleanly excised our replacement
 620     if (FLSVerifyDictionary) {
 621       verify_tree();
 622     }
 623     // first make newTL my parent's child
 624     if ((parentTL = replacementTL->parent()) == NULL) {
 625       // newTL should be root
 626       assert(tl == root(), "Incorrectly replacing root");
 627       set_root(newTL);
 628       if (newTL != NULL) {
 629         newTL->clear_parent();
 630       }
 631     } else if (parentTL->right() == replacementTL) {
 632       // replacementTL is a right child
 633       parentTL->set_right(newTL);
 634     } else {                                // replacementTL is a left child
 635       assert(parentTL->left() == replacementTL, "should be left child");
 636       parentTL->set_left(newTL);
 637     }
 638     debug_only(replacementTL->clear_parent();)
 639     if (complicated_splice) {  // we need newTL to get replacementTL's
 640                               // two children
 641       assert(newTL != NULL &&
 642              newTL->left() == NULL && newTL->right() == NULL,
 643             "newTL should not have encumbrances from the past");
 644       // we'd like to assert as below:
 645       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
 646       //       "else !complicated_splice");
 647       // ... however, the above assertion is too strong because we aren't
 648       // guaranteed that replacementTL->right() is still NULL.
 649       // Recall that we removed
 650       // the right sub-tree minimum from replacementTL.
 651       // That may well have been its right
 652       // child! So we'll just assert half of the above:
 653       assert(replacementTL->left() != NULL, "else !complicated_splice");
 654       newTL->set_left(replacementTL->left());
 655       newTL->set_right(replacementTL->right());
 656       debug_only(
 657         replacementTL->clear_right();
 658         replacementTL->clear_left();
 659       )
 660     }
 661     assert(replacementTL->right() == NULL &&
 662            replacementTL->left() == NULL &&
 663            replacementTL->parent() == NULL,
 664         "delete without encumbrances");
 665   }
 666 
 667   assert(total_size() >= retTC->size(), "Incorrect total size");
 668   dec_total_size(retTC->size());     // size book-keeping
 669   assert(total_free_blocks() > 0, "Incorrect total count");
 670   set_total_free_blocks(total_free_blocks() - 1);
 671 
 672   assert(retTC != NULL, "null chunk?");
 673   assert(retTC->prev() == NULL && retTC->next() == NULL,
 674          "should return without encumbrances");
 675   if (FLSVerifyDictionary) {
 676     verify_tree();
 677   }
 678   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
 679   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
 680 }
 681 
 682 // Remove the leftmost node (lm) in the tree and return it.
 683 // If lm has a right child, link it to the left node of
 684 // the parent of lm.
 685 template <class Chunk_t, template <class> class FreeList_t>
 686 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
 687   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
 688   // locate the subtree minimum by walking down left branches
 689   TreeList<Chunk_t, FreeList_t>* curTL = tl;
 690   for (; curTL->left() != NULL; curTL = curTL->left());
 691   // obviously curTL now has at most one child, a right child
 692   if (curTL != root()) {  // Should this test just be removed?
 693     TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
 694     if (parentTL->left() == curTL) { // curTL is a left child
 695       parentTL->set_left(curTL->right());
 696     } else {
 697       // If the list tl has no left child, then curTL may be
 698       // the right child of parentTL.
 699       assert(parentTL->right() == curTL, "should be a right child");
 700       parentTL->set_right(curTL->right());
 701     }
 702   } else {
 703     // The only use of this method would not pass the root of the
 704     // tree (as indicated by the assertion above that the tree list
 705     // has a parent) but the specification does not explicitly exclude the
 706     // passing of the root so accommodate it.
 707     set_root(NULL);
 708   }
 709   debug_only(
 710     curTL->clear_parent();  // Test if this needs to be cleared
 711     curTL->clear_right();    // recall, above, left child is already null
 712   )
 713   // we just excised a (non-root) node, we should still verify all tree invariants
 714   if (FLSVerifyDictionary) {
 715     verify_tree();
 716   }
 717   return curTL;
 718 }
 719 
 720 template <class Chunk_t, template <class> class FreeList_t>
 721 void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
 722   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
 723   size_t size = fc->size();
 724 
 725   assert((size >= min_size()),
 726     err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
 727       size, min_size()));
 728   if (FLSVerifyDictionary) {
 729     verify_tree();
 730   }
 731 
 732   fc->clear_next();
 733   fc->link_prev(NULL);
 734 
 735   // work down from the _root, looking for insertion point
 736   for (prevTL = curTL = root(); curTL != NULL;) {
 737     if (curTL->size() == size)  // exact match
 738       break;
 739     prevTL = curTL;
 740     if (curTL->size() > size) { // follow left branch
 741       curTL = curTL->left();
 742     } else {                    // follow right branch
 743       assert(curTL->size() < size, "size inconsistency");
 744       curTL = curTL->right();
 745     }
 746   }
 747   TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
 748   // This chunk is being returned to the binary tree.  Its embedded
 749   // TreeList<Chunk_t, FreeList_t> should be unused at this point.
 750   tc->initialize();
 751   if (curTL != NULL) {          // exact match
 752     tc->set_list(curTL);
 753     curTL->return_chunk_at_tail(tc);
 754   } else {                     // need a new node in tree
 755     tc->clear_next();
 756     tc->link_prev(NULL);
 757     TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
 758     assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
 759       "List was not initialized correctly");
 760     if (prevTL == NULL) {      // we are the only tree node
 761       assert(root() == NULL, "control point invariant");
 762       set_root(newTL);
 763     } else {                   // insert under prevTL ...
 764       if (prevTL->size() < size) {   // am right child
 765         assert(prevTL->right() == NULL, "control point invariant");
 766         prevTL->set_right(newTL);
 767       } else {                       // am left child
 768         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
 769         prevTL->set_left(newTL);
 770       }
 771     }
 772   }
 773   assert(tc->list() != NULL, "Tree list should be set");
 774 
 775   inc_total_size(size);
 776   // Method 'total_size_in_tree' walks through the every block in the
 777   // tree, so it can cause significant performance loss if there are
 778   // many blocks in the tree
 779   assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
 780   set_total_free_blocks(total_free_blocks() + 1);
 781   if (FLSVerifyDictionary) {
 782     verify_tree();
 783   }
 784 }
 785 
 786 template <class Chunk_t, template <class> class FreeList_t>
 787 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
 788   FreeBlockDictionary<Chunk_t>::verify_par_locked();
 789   TreeList<Chunk_t, FreeList_t>* tc = root();
 790   if (tc == NULL) return 0;
 791   for (; tc->right() != NULL; tc = tc->right());
 792   return tc->size();
 793 }
 794 
 795 template <class Chunk_t, template <class> class FreeList_t>
 796 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
 797   size_t res;
 798   res = tl->count();
 799 #ifdef ASSERT
 800   size_t cnt;
 801   Chunk_t* tc = tl->head();
 802   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
 803   assert(res == cnt, "The count is not being maintained correctly");
 804 #endif
 805   return res;
 806 }
 807 
 808 template <class Chunk_t, template <class> class FreeList_t>
 809 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
 810   if (tl == NULL)
 811     return 0;
 812   return (tl->size() * total_list_length(tl)) +
 813          total_size_in_tree(tl->left())    +
 814          total_size_in_tree(tl->right());
 815 }
 816 
 817 template <class Chunk_t, template <class> class FreeList_t>
 818 double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
 819   if (tl == NULL) {
 820     return 0.0;
 821   }
 822   double size = (double)(tl->size());
 823   double curr = size * size * total_list_length(tl);
 824   curr += sum_of_squared_block_sizes(tl->left());
 825   curr += sum_of_squared_block_sizes(tl->right());
 826   return curr;
 827 }
 828 
 829 template <class Chunk_t, template <class> class FreeList_t>
 830 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
 831   if (tl == NULL)
 832     return 0;
 833   return total_list_length(tl) +
 834          total_free_blocks_in_tree(tl->left()) +
 835          total_free_blocks_in_tree(tl->right());
 836 }
 837 
 838 template <class Chunk_t, template <class> class FreeList_t>
 839 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
 840   assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
 841          "_total_free_blocks inconsistency");
 842   return total_free_blocks();
 843 }
 844 
 845 template <class Chunk_t, template <class> class FreeList_t>
 846 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
 847   if (tl == NULL)
 848     return 0;
 849   return 1 + MAX2(tree_height_helper(tl->left()),
 850                   tree_height_helper(tl->right()));
 851 }
 852 
 853 template <class Chunk_t, template <class> class FreeList_t>
 854 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
 855   return tree_height_helper(root());
 856 }
 857 
 858 template <class Chunk_t, template <class> class FreeList_t>
 859 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
 860   if (tl == NULL) {
 861     return 0;
 862   }
 863   return 1 + total_nodes_helper(tl->left()) +
 864     total_nodes_helper(tl->right());
 865 }
 866 
 867 template <class Chunk_t, template <class> class FreeList_t>
 868 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
 869   return total_nodes_helper(root());
 870 }
 871 
 872 template <class Chunk_t, template <class> class FreeList_t>
 873 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
 874 
 875 #if INCLUDE_ALL_GCS
 876 template <>
 877 void AFLBinaryTreeDictionary::dict_census_update(size_t size, bool split, bool birth){
 878   TreeList<FreeChunk, AdaptiveFreeList>* nd = find_list(size);
 879   if (nd) {
 880     if (split) {
 881       if (birth) {
 882         nd->increment_split_births();
 883         nd->increment_surplus();
 884       }  else {
 885         nd->increment_split_deaths();
 886         nd->decrement_surplus();
 887       }
 888     } else {
 889       if (birth) {
 890         nd->increment_coal_births();
 891         nd->increment_surplus();
 892       } else {
 893         nd->increment_coal_deaths();
 894         nd->decrement_surplus();
 895       }
 896     }
 897   }
 898   // A list for this size may not be found (nd == 0) if
 899   //   This is a death where the appropriate list is now
 900   //     empty and has been removed from the list.
 901   //   This is a birth associated with a LinAB.  The chunk
 902   //     for the LinAB is not in the dictionary.
 903 }
 904 #endif // INCLUDE_ALL_GCS
 905 
 906 template <class Chunk_t, template <class> class FreeList_t>
 907 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
 908   // For the general type of freelists, encourage coalescing by
 909   // returning true.
 910   return true;
 911 }
 912 
 913 #if INCLUDE_ALL_GCS
 914 template <>
 915 bool AFLBinaryTreeDictionary::coal_dict_over_populated(size_t size) {
 916   if (FLSAlwaysCoalesceLarge) return true;
 917 
 918   TreeList<FreeChunk, AdaptiveFreeList>* list_of_size = find_list(size);
 919   // None of requested size implies overpopulated.
 920   return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
 921          list_of_size->count() > list_of_size->coal_desired();
 922 }
 923 #endif // INCLUDE_ALL_GCS
 924 
 925 // Closures for walking the binary tree.
 926 //   do_list() walks the free list in a node applying the closure
 927 //     to each free chunk in the list
 928 //   do_tree() walks the nodes in the binary tree applying do_list()
 929 //     to each list at each node.
 930 
 931 template <class Chunk_t, template <class> class FreeList_t>
 932 class TreeCensusClosure : public StackObj {
 933  protected:
 934   virtual void do_list(FreeList_t<Chunk_t>* fl) = 0;
 935  public:
 936   virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
 937 };
 938 
 939 template <class Chunk_t, template <class> class FreeList_t>
 940 class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
 941  public:
 942   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
 943     if (tl != NULL) {
 944       do_tree(tl->left());
 945       this->do_list(tl);
 946       do_tree(tl->right());
 947     }
 948   }
 949 };
 950 
 951 template <class Chunk_t, template <class> class FreeList_t>
 952 class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
 953  public:
 954   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
 955     if (tl != NULL) {
 956       do_tree(tl->right());
 957       this->do_list(tl);
 958       do_tree(tl->left());
 959     }
 960   }
 961 };
 962 
 963 // For each list in the tree, calculate the desired, desired
 964 // coalesce, count before sweep, and surplus before sweep.
 965 template <class Chunk_t, template <class> class FreeList_t>
 966 class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
 967   double _percentage;
 968   float _inter_sweep_current;
 969   float _inter_sweep_estimate;
 970   float _intra_sweep_estimate;
 971 
 972  public:
 973   BeginSweepClosure(double p, float inter_sweep_current,
 974                               float inter_sweep_estimate,
 975                               float intra_sweep_estimate) :
 976    _percentage(p),
 977    _inter_sweep_current(inter_sweep_current),
 978    _inter_sweep_estimate(inter_sweep_estimate),
 979    _intra_sweep_estimate(intra_sweep_estimate) { }
 980 
 981   void do_list(FreeList<Chunk_t>* fl) {}
 982 
 983 #if INCLUDE_ALL_GCS
 984   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
 985     double coalSurplusPercent = _percentage;
 986     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
 987     fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
 988     fl->set_before_sweep(fl->count());
 989     fl->set_bfr_surp(fl->surplus());
 990   }
 991 #endif // INCLUDE_ALL_GCS
 992 };
 993 
 994 // Used to search the tree until a condition is met.
 995 // Similar to TreeCensusClosure but searches the
 996 // tree and returns promptly when found.
 997 
 998 template <class Chunk_t, template <class> class FreeList_t>
 999 class TreeSearchClosure : public StackObj {
1000  protected:
1001   virtual bool do_list(FreeList_t<Chunk_t>* fl) = 0;
1002  public:
1003   virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
1004 };
1005 
1006 #if 0 //  Don't need this yet but here for symmetry.
1007 template <class Chunk_t, template <class> class FreeList_t>
1008 class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
1009  public:
1010   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
1011     if (tl != NULL) {
1012       if (do_tree(tl->left())) return true;
1013       if (do_list(tl)) return true;
1014       if (do_tree(tl->right())) return true;
1015     }
1016     return false;
1017   }
1018 };
1019 #endif
1020 
1021 template <class Chunk_t, template <class> class FreeList_t>
1022 class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
1023  public:
1024   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
1025     if (tl != NULL) {
1026       if (do_tree(tl->right())) return true;
1027       if (this->do_list(tl)) return true;
1028       if (do_tree(tl->left())) return true;
1029     }
1030     return false;
1031   }
1032 };
1033 
1034 // Searches the tree for a chunk that ends at the
1035 // specified address.
1036 template <class Chunk_t, template <class> class FreeList_t>
1037 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
1038   HeapWord* _target;
1039   Chunk_t* _found;
1040 
1041  public:
1042   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
1043   bool do_list(FreeList_t<Chunk_t>* fl) {
1044     Chunk_t* item = fl->head();
1045     while (item != NULL) {
1046       if (item->end() == (uintptr_t*) _target) {
1047         _found = item;
1048         return true;
1049       }
1050       item = item->next();
1051     }
1052     return false;
1053   }
1054   Chunk_t* found() { return _found; }
1055 };
1056 
1057 template <class Chunk_t, template <class> class FreeList_t>
1058 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
1059   EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
1060   bool found_target = etsc.do_tree(root());
1061   assert(found_target || etsc.found() == NULL, "Consistency check");
1062   assert(!found_target || etsc.found() != NULL, "Consistency check");
1063   return etsc.found();
1064 }
1065 
1066 template <class Chunk_t, template <class> class FreeList_t>
1067 void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
1068   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
1069   BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
1070                                             inter_sweep_estimate,
1071                                             intra_sweep_estimate);
1072   bsc.do_tree(root());
1073 }
1074 
1075 // Closures and methods for calculating total bytes returned to the
1076 // free lists in the tree.
1077 #ifndef PRODUCT
1078 template <class Chunk_t, template <class> class FreeList_t>
1079 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1080    public:
1081   void do_list(FreeList_t<Chunk_t>* fl) {
1082     fl->set_returned_bytes(0);
1083   }
1084 };
1085 
1086 template <class Chunk_t, template <class> class FreeList_t>
1087 void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
1088   InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
1089   idrb.do_tree(root());
1090 }
1091 
1092 template <class Chunk_t, template <class> class FreeList_t>
1093 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1094   size_t _dict_returned_bytes;
1095  public:
1096   ReturnedBytesClosure() { _dict_returned_bytes = 0; }
1097   void do_list(FreeList_t<Chunk_t>* fl) {
1098     _dict_returned_bytes += fl->returned_bytes();
1099   }
1100   size_t dict_returned_bytes() { return _dict_returned_bytes; }
1101 };
1102 
1103 template <class Chunk_t, template <class> class FreeList_t>
1104 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
1105   ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
1106   rbc.do_tree(root());
1107 
1108   return rbc.dict_returned_bytes();
1109 }
1110 
1111 // Count the number of entries in the tree.
1112 template <class Chunk_t, template <class> class FreeList_t>
1113 class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1114  public:
1115   uint count;
1116   treeCountClosure(uint c) { count = c; }
1117   void do_list(FreeList_t<Chunk_t>* fl) {
1118     count++;
1119   }
1120 };
1121 
1122 template <class Chunk_t, template <class> class FreeList_t>
1123 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
1124   treeCountClosure<Chunk_t, FreeList_t> ctc(0);
1125   ctc.do_tree(root());
1126   return ctc.count;
1127 }
1128 #endif // PRODUCT
1129 
1130 // Calculate surpluses for the lists in the tree.
1131 template <class Chunk_t, template <class> class FreeList_t>
1132 class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1133   double percentage;
1134  public:
1135   setTreeSurplusClosure(double v) { percentage = v; }
1136   void do_list(FreeList<Chunk_t>* fl) {}
1137 
1138 #if INCLUDE_ALL_GCS
1139   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1140     double splitSurplusPercent = percentage;
1141     fl->set_surplus(fl->count() -
1142                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
1143   }
1144 #endif // INCLUDE_ALL_GCS
1145 };
1146 
1147 template <class Chunk_t, template <class> class FreeList_t>
1148 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
1149   setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
1150   sts.do_tree(root());
1151 }
1152 
1153 // Set hints for the lists in the tree.
1154 template <class Chunk_t, template <class> class FreeList_t>
1155 class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1156   size_t hint;
1157  public:
1158   setTreeHintsClosure(size_t v) { hint = v; }
1159   void do_list(FreeList<Chunk_t>* fl) {}
1160 
1161 #if INCLUDE_ALL_GCS
1162   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1163     fl->set_hint(hint);
1164     assert(fl->hint() == 0 || fl->hint() > fl->size(),
1165       "Current hint is inconsistent");
1166     if (fl->surplus() > 0) {
1167       hint = fl->size();
1168     }
1169   }
1170 #endif // INCLUDE_ALL_GCS
1171 };
1172 
1173 template <class Chunk_t, template <class> class FreeList_t>
1174 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
1175   setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
1176   sth.do_tree(root());
1177 }
1178 
1179 // Save count before previous sweep and splits and coalesces.
1180 template <class Chunk_t, template <class> class FreeList_t>
1181 class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1182   void do_list(FreeList<Chunk_t>* fl) {}
1183 
1184 #if INCLUDE_ALL_GCS
1185   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1186     fl->set_prev_sweep(fl->count());
1187     fl->set_coal_births(0);
1188     fl->set_coal_deaths(0);
1189     fl->set_split_births(0);
1190     fl->set_split_deaths(0);
1191   }
1192 #endif // INCLUDE_ALL_GCS
1193 };
1194 
1195 template <class Chunk_t, template <class> class FreeList_t>
1196 void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
1197   clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
1198   ctc.do_tree(root());
1199 }
1200 
1201 // Do reporting and post sweep clean up.
1202 template <class Chunk_t, template <class> class FreeList_t>
1203 void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
1204   // Does walking the tree 3 times hurt?
1205   set_tree_surplus(splitSurplusPercent);
1206   set_tree_hints();
1207   if (PrintGC && Verbose) {
1208     report_statistics();
1209   }
1210   clear_tree_census();
1211 }
1212 
1213 // Print summary statistics
1214 template <class Chunk_t, template <class> class FreeList_t>
1215 void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
1216   FreeBlockDictionary<Chunk_t>::verify_par_locked();
1217   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
1218          "------------------------------------\n");
1219   size_t total_size = total_chunk_size(debug_only(NULL));
1220   size_t    free_blocks = num_free_blocks();
1221   gclog_or_tty->print("Total Free Space: %d\n", total_size);
1222   gclog_or_tty->print("Max   Chunk Size: %d\n", max_chunk_size());
1223   gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
1224   if (free_blocks > 0) {
1225     gclog_or_tty->print("Av.  Block  Size: %d\n", total_size/free_blocks);
1226   }
1227   gclog_or_tty->print("Tree      Height: %d\n", tree_height());
1228 }
1229 
1230 // Print census information - counts, births, deaths, etc.
1231 // for each list in the tree.  Also print some summary
1232 // information.
1233 template <class Chunk_t, template <class> class FreeList_t>
1234 class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1235   int _print_line;
1236   size_t _total_free;
1237   FreeList_t<Chunk_t> _total;
1238 
1239  public:
1240   PrintTreeCensusClosure() {
1241     _print_line = 0;
1242     _total_free = 0;
1243   }
1244   FreeList_t<Chunk_t>* total() { return &_total; }
1245   size_t total_free() { return _total_free; }
1246   void do_list(FreeList<Chunk_t>* fl) {
1247     if (++_print_line >= 40) {
1248       FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
1249       _print_line = 0;
1250     }
1251     fl->print_on(gclog_or_tty);
1252     _total_free +=            fl->count()            * fl->size()        ;
1253     total()->set_count(      total()->count()       + fl->count()      );
1254   }
1255 
1256 #if INCLUDE_ALL_GCS
1257   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1258     if (++_print_line >= 40) {
1259       FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
1260       _print_line = 0;
1261     }
1262     fl->print_on(gclog_or_tty);
1263     _total_free +=           fl->count()             * fl->size()        ;
1264     total()->set_count(      total()->count()        + fl->count()      );
1265     total()->set_bfr_surp(   total()->bfr_surp()     + fl->bfr_surp()    );
1266     total()->set_surplus(    total()->split_deaths() + fl->surplus()    );
1267     total()->set_desired(    total()->desired()      + fl->desired()    );
1268     total()->set_prev_sweep(  total()->prev_sweep()   + fl->prev_sweep()  );
1269     total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
1270     total()->set_coal_births( total()->coal_births()  + fl->coal_births() );
1271     total()->set_coal_deaths( total()->coal_deaths()  + fl->coal_deaths() );
1272     total()->set_split_births(total()->split_births() + fl->split_births());
1273     total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
1274   }
1275 #endif // INCLUDE_ALL_GCS
1276 };
1277 
1278 template <class Chunk_t, template <class> class FreeList_t>
1279 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
1280 
1281   gclog_or_tty->print("\nBinaryTree\n");
1282   FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
1283   PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
1284   ptc.do_tree(root());
1285 
1286   FreeList_t<Chunk_t>* total = ptc.total();
1287   FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, " ");
1288 }
1289 
1290 #if INCLUDE_ALL_GCS
1291 template <>
1292 void AFLBinaryTreeDictionary::print_dict_census(void) const {
1293 
1294   gclog_or_tty->print("\nBinaryTree\n");
1295   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
1296   PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList> ptc;
1297   ptc.do_tree(root());
1298 
1299   AdaptiveFreeList<FreeChunk>* total = ptc.total();
1300   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
1301   total->print_on(gclog_or_tty, "TOTAL\t");
1302   gclog_or_tty->print(
1303               "total_free(words): " SIZE_FORMAT_W(16)
1304               " growth: %8.5f  deficit: %8.5f\n",
1305               ptc.total_free(),
1306               (double)(total->split_births() + total->coal_births()
1307                      - total->split_deaths() - total->coal_deaths())
1308               /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
1309              (double)(total->desired() - total->count())
1310              /(total->desired() != 0 ? (double)total->desired() : 1.0));
1311 }
1312 #endif // INCLUDE_ALL_GCS
1313 
1314 template <class Chunk_t, template <class> class FreeList_t>
1315 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1316   outputStream* _st;
1317   int _print_line;
1318 
1319  public:
1320   PrintFreeListsClosure(outputStream* st) {
1321     _st = st;
1322     _print_line = 0;
1323   }
1324   void do_list(FreeList_t<Chunk_t>* fl) {
1325     if (++_print_line >= 40) {
1326       FreeList_t<Chunk_t>::print_labels_on(_st, "size");
1327       _print_line = 0;
1328     }
1329     fl->print_on(gclog_or_tty);
1330     size_t sz = fl->size();
1331     for (Chunk_t* fc = fl->head(); fc != NULL;
1332          fc = fc->next()) {
1333       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
1334                     fc, (HeapWord*)fc + sz,
1335                     fc->cantCoalesce() ? "\t CC" : "");
1336     }
1337   }
1338 };
1339 
1340 template <class Chunk_t, template <class> class FreeList_t>
1341 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
1342 
1343   FreeList_t<Chunk_t>::print_labels_on(st, "size");
1344   PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
1345   pflc.do_tree(root());
1346 }
1347 
1348 // Verify the following tree invariants:
1349 // . _root has no parent
1350 // . parent and child point to each other
1351 // . each node's key correctly related to that of its child(ren)
1352 template <class Chunk_t, template <class> class FreeList_t>
1353 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
1354   guarantee(root() == NULL || total_free_blocks() == 0 ||
1355     total_size() != 0, "_total_size should't be 0?");
1356   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
1357   verify_tree_helper(root());
1358 }
1359 
1360 template <class Chunk_t, template <class> class FreeList_t>
1361 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
1362   size_t ct = 0;
1363   for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
1364     ct++;
1365     assert(curFC->prev() == NULL || curFC->prev()->is_free(),
1366       "Chunk should be free");
1367   }
1368   return ct;
1369 }
1370 
1371 // Note: this helper is recursive rather than iterative, so use with
1372 // caution on very deep trees; and watch out for stack overflow errors;
1373 // In general, to be used only for debugging.
1374 template <class Chunk_t, template <class> class FreeList_t>
1375 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
1376   if (tl == NULL)
1377     return;
1378   guarantee(tl->size() != 0, "A list must has a size");
1379   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
1380          "parent<-/->left");
1381   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
1382          "parent<-/->right");;
1383   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
1384          "parent !> left");
1385   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
1386          "parent !< left");
1387   guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
1388   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
1389     "list inconsistency");
1390   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
1391     "list count is inconsistent");
1392   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
1393     "list is incorrectly constructed");
1394   size_t count = verify_prev_free_ptrs(tl);
1395   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
1396   if (tl->head() != NULL) {
1397     tl->head_as_TreeChunk()->verify_tree_chunk_list();
1398   }
1399   verify_tree_helper(tl->left());
1400   verify_tree_helper(tl->right());
1401 }
1402 
1403 template <class Chunk_t, template <class> class FreeList_t>
1404 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
1405   verify_tree();
1406   guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
1407 }
1408 
1409 template class TreeList<Metablock, FreeList>;
1410 template class BinaryTreeDictionary<Metablock, FreeList>;
1411 template class TreeChunk<Metablock, FreeList>;
1412 
1413 template class TreeList<Metachunk, FreeList>;
1414 template class BinaryTreeDictionary<Metachunk, FreeList>;
1415 template class TreeChunk<Metachunk, FreeList>;
1416 
1417 
1418 #if INCLUDE_ALL_GCS
1419 // Explicitly instantiate these types for FreeChunk.
1420 template class TreeList<FreeChunk, AdaptiveFreeList>;
1421 template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>;
1422 template class TreeChunk<FreeChunk, AdaptiveFreeList>;
1423 
1424 #endif // INCLUDE_ALL_GCS