1 //
   2 // Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 extern bool use_block_zeroing(Node* count);
 464 
 465 // Macros to extract hi & lo halves from a long pair.
 466 // G0 is not part of any long pair, so assert on that.
 467 // Prevents accidentally using G1 instead of G0.
 468 #define LONG_HI_REG(x) (x)
 469 #define LONG_LO_REG(x) (x)
 470 
 471 %}
 472 
 473 source %{
 474 #define __ _masm.
 475 
 476 // tertiary op of a LoadP or StoreP encoding
 477 #define REGP_OP true
 478 
 479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 481 static Register reg_to_register_object(int register_encoding);
 482 
 483 // Used by the DFA in dfa_sparc.cpp.
 484 // Check for being able to use a V9 branch-on-register.  Requires a
 485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 486 // extended.  Doesn't work following an integer ADD, for example, because of
 487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 489 // replace them with zero, which could become sign-extension in a different OS
 490 // release.  There's no obvious reason why an interrupt will ever fill these
 491 // bits with non-zero junk (the registers are reloaded with standard LD
 492 // instructions which either zero-fill or sign-fill).
 493 bool can_branch_register( Node *bol, Node *cmp ) {
 494   if( !BranchOnRegister ) return false;
 495 #ifdef _LP64
 496   if( cmp->Opcode() == Op_CmpP )
 497     return true;  // No problems with pointer compares
 498 #endif
 499   if( cmp->Opcode() == Op_CmpL )
 500     return true;  // No problems with long compares
 501 
 502   if( !SparcV9RegsHiBitsZero ) return false;
 503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 504       bol->as_Bool()->_test._test != BoolTest::eq )
 505      return false;
 506 
 507   // Check for comparing against a 'safe' value.  Any operation which
 508   // clears out the high word is safe.  Thus, loads and certain shifts
 509   // are safe, as are non-negative constants.  Any operation which
 510   // preserves zero bits in the high word is safe as long as each of its
 511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 512   // inputs are safe.  At present, the only important case to recognize
 513   // seems to be loads.  Constants should fold away, and shifts &
 514   // logicals can use the 'cc' forms.
 515   Node *x = cmp->in(1);
 516   if( x->is_Load() ) return true;
 517   if( x->is_Phi() ) {
 518     for( uint i = 1; i < x->req(); i++ )
 519       if( !x->in(i)->is_Load() )
 520         return false;
 521     return true;
 522   }
 523   return false;
 524 }
 525 
 526 bool use_block_zeroing(Node* count) {
 527   // Use BIS for zeroing if count is not constant
 528   // or it is >= BlockZeroingLowLimit.
 529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 530 }
 531 
 532 // ****************************************************************************
 533 
 534 // REQUIRED FUNCTIONALITY
 535 
 536 // !!!!! Special hack to get all type of calls to specify the byte offset
 537 //       from the start of the call to the point where the return address
 538 //       will point.
 539 //       The "return address" is the address of the call instruction, plus 8.
 540 
 541 int MachCallStaticJavaNode::ret_addr_offset() {
 542   int offset = NativeCall::instruction_size;  // call; delay slot
 543   if (_method_handle_invoke)
 544     offset += 4;  // restore SP
 545   return offset;
 546 }
 547 
 548 int MachCallDynamicJavaNode::ret_addr_offset() {
 549   int vtable_index = this->_vtable_index;
 550   if (vtable_index < 0) {
 551     // must be invalid_vtable_index, not nonvirtual_vtable_index
 552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 553     return (NativeMovConstReg::instruction_size +
 554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 555   } else {
 556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 559     int klass_load_size;
 560     if (UseCompressedKlassPointers) {
 561       assert(Universe::heap() != NULL, "java heap should be initialized");
 562       if (Universe::narrow_klass_base() == NULL)
 563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 564       else
 565         klass_load_size = 3*BytesPerInstWord;
 566     } else {
 567       klass_load_size = 1*BytesPerInstWord;
 568     }
 569     if (Assembler::is_simm13(v_off)) {
 570       return klass_load_size +
 571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 572              NativeCall::instruction_size);  // call; delay slot
 573     } else {
 574       return klass_load_size +
 575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 576              NativeCall::instruction_size);  // call; delay slot
 577     }
 578   }
 579 }
 580 
 581 int MachCallRuntimeNode::ret_addr_offset() {
 582 #ifdef _LP64
 583   if (MacroAssembler::is_far_target(entry_point())) {
 584     return NativeFarCall::instruction_size;
 585   } else {
 586     return NativeCall::instruction_size;
 587   }
 588 #else
 589   return NativeCall::instruction_size;  // call; delay slot
 590 #endif
 591 }
 592 
 593 // Indicate if the safepoint node needs the polling page as an input.
 594 // Since Sparc does not have absolute addressing, it does.
 595 bool SafePointNode::needs_polling_address_input() {
 596   return true;
 597 }
 598 
 599 // emit an interrupt that is caught by the debugger (for debugging compiler)
 600 void emit_break(CodeBuffer &cbuf) {
 601   MacroAssembler _masm(&cbuf);
 602   __ breakpoint_trap();
 603 }
 604 
 605 #ifndef PRODUCT
 606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 607   st->print("TA");
 608 }
 609 #endif
 610 
 611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 612   emit_break(cbuf);
 613 }
 614 
 615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 616   return MachNode::size(ra_);
 617 }
 618 
 619 // Traceable jump
 620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 621   MacroAssembler _masm(&cbuf);
 622   Register rdest = reg_to_register_object(jump_target);
 623   __ JMP(rdest, 0);
 624   __ delayed()->nop();
 625 }
 626 
 627 // Traceable jump and set exception pc
 628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 629   MacroAssembler _masm(&cbuf);
 630   Register rdest = reg_to_register_object(jump_target);
 631   __ JMP(rdest, 0);
 632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 633 }
 634 
 635 void emit_nop(CodeBuffer &cbuf) {
 636   MacroAssembler _masm(&cbuf);
 637   __ nop();
 638 }
 639 
 640 void emit_illtrap(CodeBuffer &cbuf) {
 641   MacroAssembler _masm(&cbuf);
 642   __ illtrap(0);
 643 }
 644 
 645 
 646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 647   assert(n->rule() != loadUB_rule, "");
 648 
 649   intptr_t offset = 0;
 650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 651   const Node* addr = n->get_base_and_disp(offset, adr_type);
 652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 655   atype = atype->add_offset(offset);
 656   assert(disp32 == offset, "wrong disp32");
 657   return atype->_offset;
 658 }
 659 
 660 
 661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 662   assert(n->rule() != loadUB_rule, "");
 663 
 664   intptr_t offset = 0;
 665   Node* addr = n->in(2);
 666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 668     Node* a = addr->in(2/*AddPNode::Address*/);
 669     Node* o = addr->in(3/*AddPNode::Offset*/);
 670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 672     assert(atype->isa_oop_ptr(), "still an oop");
 673   }
 674   offset = atype->is_ptr()->_offset;
 675   if (offset != Type::OffsetBot)  offset += disp32;
 676   return offset;
 677 }
 678 
 679 static inline jdouble replicate_immI(int con, int count, int width) {
 680   // Load a constant replicated "count" times with width "width"
 681   assert(count*width == 8 && width <= 4, "sanity");
 682   int bit_width = width * 8;
 683   jlong val = con;
 684   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 685   for (int i = 0; i < count - 1; i++) {
 686     val |= (val << bit_width);
 687   }
 688   jdouble dval = *((jdouble*) &val);  // coerce to double type
 689   return dval;
 690 }
 691 
 692 static inline jdouble replicate_immF(float con) {
 693   // Replicate float con 2 times and pack into vector.
 694   int val = *((int*)&con);
 695   jlong lval = val;
 696   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 697   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 698   return dval;
 699 }
 700 
 701 // Standard Sparc opcode form2 field breakdown
 702 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 703   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 704   int op = (f30 << 30) |
 705            (f29 << 29) |
 706            (f25 << 25) |
 707            (f22 << 22) |
 708            (f20 << 20) |
 709            (f19 << 19) |
 710            (f0  <<  0);
 711   cbuf.insts()->emit_int32(op);
 712 }
 713 
 714 // Standard Sparc opcode form2 field breakdown
 715 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 716   f0 >>= 10;           // Drop 10 bits
 717   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 718   int op = (f30 << 30) |
 719            (f25 << 25) |
 720            (f22 << 22) |
 721            (f0  <<  0);
 722   cbuf.insts()->emit_int32(op);
 723 }
 724 
 725 // Standard Sparc opcode form3 field breakdown
 726 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 727   int op = (f30 << 30) |
 728            (f25 << 25) |
 729            (f19 << 19) |
 730            (f14 << 14) |
 731            (f5  <<  5) |
 732            (f0  <<  0);
 733   cbuf.insts()->emit_int32(op);
 734 }
 735 
 736 // Standard Sparc opcode form3 field breakdown
 737 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 738   simm13 &= (1<<13)-1; // Mask to 13 bits
 739   int op = (f30 << 30) |
 740            (f25 << 25) |
 741            (f19 << 19) |
 742            (f14 << 14) |
 743            (1   << 13) | // bit to indicate immediate-mode
 744            (simm13<<0);
 745   cbuf.insts()->emit_int32(op);
 746 }
 747 
 748 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 749   simm10 &= (1<<10)-1; // Mask to 10 bits
 750   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 751 }
 752 
 753 #ifdef ASSERT
 754 // Helper function for VerifyOops in emit_form3_mem_reg
 755 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 756   warning("VerifyOops encountered unexpected instruction:");
 757   n->dump(2);
 758   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 759 }
 760 #endif
 761 
 762 
 763 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 764                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 765 
 766 #ifdef ASSERT
 767   // The following code implements the +VerifyOops feature.
 768   // It verifies oop values which are loaded into or stored out of
 769   // the current method activation.  +VerifyOops complements techniques
 770   // like ScavengeALot, because it eagerly inspects oops in transit,
 771   // as they enter or leave the stack, as opposed to ScavengeALot,
 772   // which inspects oops "at rest", in the stack or heap, at safepoints.
 773   // For this reason, +VerifyOops can sometimes detect bugs very close
 774   // to their point of creation.  It can also serve as a cross-check
 775   // on the validity of oop maps, when used toegether with ScavengeALot.
 776 
 777   // It would be good to verify oops at other points, especially
 778   // when an oop is used as a base pointer for a load or store.
 779   // This is presently difficult, because it is hard to know when
 780   // a base address is biased or not.  (If we had such information,
 781   // it would be easy and useful to make a two-argument version of
 782   // verify_oop which unbiases the base, and performs verification.)
 783 
 784   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 785   bool is_verified_oop_base  = false;
 786   bool is_verified_oop_load  = false;
 787   bool is_verified_oop_store = false;
 788   int tmp_enc = -1;
 789   if (VerifyOops && src1_enc != R_SP_enc) {
 790     // classify the op, mainly for an assert check
 791     int st_op = 0, ld_op = 0;
 792     switch (primary) {
 793     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 794     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 795     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 796     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 797     case Assembler::std_op3:  st_op = Op_StoreL; break;
 798     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 799     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 800 
 801     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 802     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 803     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 804     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 805     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 806     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 807     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 808     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 809     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 810     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 811     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 812 
 813     default: ShouldNotReachHere();
 814     }
 815     if (tertiary == REGP_OP) {
 816       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 817       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 818       else                          ShouldNotReachHere();
 819       if (st_op) {
 820         // a store
 821         // inputs are (0:control, 1:memory, 2:address, 3:value)
 822         Node* n2 = n->in(3);
 823         if (n2 != NULL) {
 824           const Type* t = n2->bottom_type();
 825           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 826         }
 827       } else {
 828         // a load
 829         const Type* t = n->bottom_type();
 830         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 831       }
 832     }
 833 
 834     if (ld_op) {
 835       // a Load
 836       // inputs are (0:control, 1:memory, 2:address)
 837       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 838           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 839           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 840           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 841           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 842           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 843           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 844           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 845           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 846           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 847           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 848           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 849           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 850           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 851           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 852           !(n->rule() == loadUB_rule)) {
 853         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 854       }
 855     } else if (st_op) {
 856       // a Store
 857       // inputs are (0:control, 1:memory, 2:address, 3:value)
 858       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 859           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 860           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 861           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 862           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 863           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 864           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 865         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 866       }
 867     }
 868 
 869     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 870       Node* addr = n->in(2);
 871       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 872         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 873         if (atype != NULL) {
 874           intptr_t offset = get_offset_from_base(n, atype, disp32);
 875           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 876           if (offset != offset_2) {
 877             get_offset_from_base(n, atype, disp32);
 878             get_offset_from_base_2(n, atype, disp32);
 879           }
 880           assert(offset == offset_2, "different offsets");
 881           if (offset == disp32) {
 882             // we now know that src1 is a true oop pointer
 883             is_verified_oop_base = true;
 884             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 885               if( primary == Assembler::ldd_op3 ) {
 886                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 887               } else {
 888                 tmp_enc = dst_enc;
 889                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 890                 assert(src1_enc != dst_enc, "");
 891               }
 892             }
 893           }
 894           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 895                        || offset == oopDesc::mark_offset_in_bytes())) {
 896                       // loading the mark should not be allowed either, but
 897                       // we don't check this since it conflicts with InlineObjectHash
 898                       // usage of LoadINode to get the mark. We could keep the
 899                       // check if we create a new LoadMarkNode
 900             // but do not verify the object before its header is initialized
 901             ShouldNotReachHere();
 902           }
 903         }
 904       }
 905     }
 906   }
 907 #endif
 908 
 909   uint instr;
 910   instr = (Assembler::ldst_op << 30)
 911         | (dst_enc        << 25)
 912         | (primary        << 19)
 913         | (src1_enc       << 14);
 914 
 915   uint index = src2_enc;
 916   int disp = disp32;
 917 
 918   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 919     disp += STACK_BIAS;
 920 
 921   // We should have a compiler bailout here rather than a guarantee.
 922   // Better yet would be some mechanism to handle variable-size matches correctly.
 923   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 924 
 925   if( disp == 0 ) {
 926     // use reg-reg form
 927     // bit 13 is already zero
 928     instr |= index;
 929   } else {
 930     // use reg-imm form
 931     instr |= 0x00002000;          // set bit 13 to one
 932     instr |= disp & 0x1FFF;
 933   }
 934 
 935   cbuf.insts()->emit_int32(instr);
 936 
 937 #ifdef ASSERT
 938   {
 939     MacroAssembler _masm(&cbuf);
 940     if (is_verified_oop_base) {
 941       __ verify_oop(reg_to_register_object(src1_enc));
 942     }
 943     if (is_verified_oop_store) {
 944       __ verify_oop(reg_to_register_object(dst_enc));
 945     }
 946     if (tmp_enc != -1) {
 947       __ mov(O7, reg_to_register_object(tmp_enc));
 948     }
 949     if (is_verified_oop_load) {
 950       __ verify_oop(reg_to_register_object(dst_enc));
 951     }
 952   }
 953 #endif
 954 }
 955 
 956 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 957   // The method which records debug information at every safepoint
 958   // expects the call to be the first instruction in the snippet as
 959   // it creates a PcDesc structure which tracks the offset of a call
 960   // from the start of the codeBlob. This offset is computed as
 961   // code_end() - code_begin() of the code which has been emitted
 962   // so far.
 963   // In this particular case we have skirted around the problem by
 964   // putting the "mov" instruction in the delay slot but the problem
 965   // may bite us again at some other point and a cleaner/generic
 966   // solution using relocations would be needed.
 967   MacroAssembler _masm(&cbuf);
 968   __ set_inst_mark();
 969 
 970   // We flush the current window just so that there is a valid stack copy
 971   // the fact that the current window becomes active again instantly is
 972   // not a problem there is nothing live in it.
 973 
 974 #ifdef ASSERT
 975   int startpos = __ offset();
 976 #endif /* ASSERT */
 977 
 978   __ call((address)entry_point, rtype);
 979 
 980   if (preserve_g2)   __ delayed()->mov(G2, L7);
 981   else __ delayed()->nop();
 982 
 983   if (preserve_g2)   __ mov(L7, G2);
 984 
 985 #ifdef ASSERT
 986   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 987 #ifdef _LP64
 988     // Trash argument dump slots.
 989     __ set(0xb0b8ac0db0b8ac0d, G1);
 990     __ mov(G1, G5);
 991     __ stx(G1, SP, STACK_BIAS + 0x80);
 992     __ stx(G1, SP, STACK_BIAS + 0x88);
 993     __ stx(G1, SP, STACK_BIAS + 0x90);
 994     __ stx(G1, SP, STACK_BIAS + 0x98);
 995     __ stx(G1, SP, STACK_BIAS + 0xA0);
 996     __ stx(G1, SP, STACK_BIAS + 0xA8);
 997 #else // _LP64
 998     // this is also a native call, so smash the first 7 stack locations,
 999     // and the various registers
1000 
1001     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1002     // while [SP+0x44..0x58] are the argument dump slots.
1003     __ set((intptr_t)0xbaadf00d, G1);
1004     __ mov(G1, G5);
1005     __ sllx(G1, 32, G1);
1006     __ or3(G1, G5, G1);
1007     __ mov(G1, G5);
1008     __ stx(G1, SP, 0x40);
1009     __ stx(G1, SP, 0x48);
1010     __ stx(G1, SP, 0x50);
1011     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1012 #endif // _LP64
1013   }
1014 #endif /*ASSERT*/
1015 }
1016 
1017 //=============================================================================
1018 // REQUIRED FUNCTIONALITY for encoding
1019 void emit_lo(CodeBuffer &cbuf, int val) {  }
1020 void emit_hi(CodeBuffer &cbuf, int val) {  }
1021 
1022 
1023 //=============================================================================
1024 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1025 
1026 int Compile::ConstantTable::calculate_table_base_offset() const {
1027   if (UseRDPCForConstantTableBase) {
1028     // The table base offset might be less but then it fits into
1029     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1030     return Assembler::min_simm13();
1031   } else {
1032     int offset = -(size() / 2);
1033     if (!Assembler::is_simm13(offset)) {
1034       offset = Assembler::min_simm13();
1035     }
1036     return offset;
1037   }
1038 }
1039 
1040 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1041   Compile* C = ra_->C;
1042   Compile::ConstantTable& constant_table = C->constant_table();
1043   MacroAssembler _masm(&cbuf);
1044 
1045   Register r = as_Register(ra_->get_encode(this));
1046   CodeSection* consts_section = __ code()->consts();
1047   int consts_size = consts_section->align_at_start(consts_section->size());
1048   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1049 
1050   if (UseRDPCForConstantTableBase) {
1051     // For the following RDPC logic to work correctly the consts
1052     // section must be allocated right before the insts section.  This
1053     // assert checks for that.  The layout and the SECT_* constants
1054     // are defined in src/share/vm/asm/codeBuffer.hpp.
1055     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1056     int insts_offset = __ offset();
1057 
1058     // Layout:
1059     //
1060     // |----------- consts section ------------|----------- insts section -----------...
1061     // |------ constant table -----|- padding -|------------------x----
1062     //                                                            \ current PC (RDPC instruction)
1063     // |<------------- consts_size ----------->|<- insts_offset ->|
1064     //                                                            \ table base
1065     // The table base offset is later added to the load displacement
1066     // so it has to be negative.
1067     int table_base_offset = -(consts_size + insts_offset);
1068     int disp;
1069 
1070     // If the displacement from the current PC to the constant table
1071     // base fits into simm13 we set the constant table base to the
1072     // current PC.
1073     if (Assembler::is_simm13(table_base_offset)) {
1074       constant_table.set_table_base_offset(table_base_offset);
1075       disp = 0;
1076     } else {
1077       // Otherwise we set the constant table base offset to the
1078       // maximum negative displacement of load instructions to keep
1079       // the disp as small as possible:
1080       //
1081       // |<------------- consts_size ----------->|<- insts_offset ->|
1082       // |<--------- min_simm13 --------->|<-------- disp --------->|
1083       //                                  \ table base
1084       table_base_offset = Assembler::min_simm13();
1085       constant_table.set_table_base_offset(table_base_offset);
1086       disp = (consts_size + insts_offset) + table_base_offset;
1087     }
1088 
1089     __ rdpc(r);
1090 
1091     if (disp != 0) {
1092       assert(r != O7, "need temporary");
1093       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1094     }
1095   }
1096   else {
1097     // Materialize the constant table base.
1098     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1099     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1100     AddressLiteral base(baseaddr, rspec);
1101     __ set(base, r);
1102   }
1103 }
1104 
1105 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1106   if (UseRDPCForConstantTableBase) {
1107     // This is really the worst case but generally it's only 1 instruction.
1108     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1109   } else {
1110     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1111   }
1112 }
1113 
1114 #ifndef PRODUCT
1115 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1116   char reg[128];
1117   ra_->dump_register(this, reg);
1118   if (UseRDPCForConstantTableBase) {
1119     st->print("RDPC   %s\t! constant table base", reg);
1120   } else {
1121     st->print("SET    &constanttable,%s\t! constant table base", reg);
1122   }
1123 }
1124 #endif
1125 
1126 
1127 //=============================================================================
1128 
1129 #ifndef PRODUCT
1130 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1131   Compile* C = ra_->C;
1132 
1133   for (int i = 0; i < OptoPrologueNops; i++) {
1134     st->print_cr("NOP"); st->print("\t");
1135   }
1136 
1137   if( VerifyThread ) {
1138     st->print_cr("Verify_Thread"); st->print("\t");
1139   }
1140 
1141   size_t framesize = C->frame_slots() << LogBytesPerInt;
1142 
1143   // Calls to C2R adapters often do not accept exceptional returns.
1144   // We require that their callers must bang for them.  But be careful, because
1145   // some VM calls (such as call site linkage) can use several kilobytes of
1146   // stack.  But the stack safety zone should account for that.
1147   // See bugs 4446381, 4468289, 4497237.
1148   if (C->need_stack_bang(framesize)) {
1149     st->print_cr("! stack bang"); st->print("\t");
1150   }
1151 
1152   if (Assembler::is_simm13(-framesize)) {
1153     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1154   } else {
1155     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1156     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1157     st->print   ("SAVE   R_SP,R_G3,R_SP");
1158   }
1159 
1160 }
1161 #endif
1162 
1163 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1164   Compile* C = ra_->C;
1165   MacroAssembler _masm(&cbuf);
1166 
1167   for (int i = 0; i < OptoPrologueNops; i++) {
1168     __ nop();
1169   }
1170 
1171   __ verify_thread();
1172 
1173   size_t framesize = C->frame_slots() << LogBytesPerInt;
1174   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1175   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1176 
1177   // Calls to C2R adapters often do not accept exceptional returns.
1178   // We require that their callers must bang for them.  But be careful, because
1179   // some VM calls (such as call site linkage) can use several kilobytes of
1180   // stack.  But the stack safety zone should account for that.
1181   // See bugs 4446381, 4468289, 4497237.
1182   if (C->need_stack_bang(framesize)) {
1183     __ generate_stack_overflow_check(framesize);
1184   }
1185 
1186   if (Assembler::is_simm13(-framesize)) {
1187     __ save(SP, -framesize, SP);
1188   } else {
1189     __ sethi(-framesize & ~0x3ff, G3);
1190     __ add(G3, -framesize & 0x3ff, G3);
1191     __ save(SP, G3, SP);
1192   }
1193   C->set_frame_complete( __ offset() );
1194 
1195   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1196     // NOTE: We set the table base offset here because users might be
1197     // emitted before MachConstantBaseNode.
1198     Compile::ConstantTable& constant_table = C->constant_table();
1199     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1200   }
1201 }
1202 
1203 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1204   return MachNode::size(ra_);
1205 }
1206 
1207 int MachPrologNode::reloc() const {
1208   return 10; // a large enough number
1209 }
1210 
1211 //=============================================================================
1212 #ifndef PRODUCT
1213 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1214   Compile* C = ra_->C;
1215 
1216   if( do_polling() && ra_->C->is_method_compilation() ) {
1217     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1218 #ifdef _LP64
1219     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1220 #else
1221     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1222 #endif
1223   }
1224 
1225   if( do_polling() )
1226     st->print("RET\n\t");
1227 
1228   st->print("RESTORE");
1229 }
1230 #endif
1231 
1232 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1233   MacroAssembler _masm(&cbuf);
1234   Compile* C = ra_->C;
1235 
1236   __ verify_thread();
1237 
1238   // If this does safepoint polling, then do it here
1239   if( do_polling() && ra_->C->is_method_compilation() ) {
1240     AddressLiteral polling_page(os::get_polling_page());
1241     __ sethi(polling_page, L0);
1242     __ relocate(relocInfo::poll_return_type);
1243     __ ld_ptr( L0, 0, G0 );
1244   }
1245 
1246   // If this is a return, then stuff the restore in the delay slot
1247   if( do_polling() ) {
1248     __ ret();
1249     __ delayed()->restore();
1250   } else {
1251     __ restore();
1252   }
1253 }
1254 
1255 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1256   return MachNode::size(ra_);
1257 }
1258 
1259 int MachEpilogNode::reloc() const {
1260   return 16; // a large enough number
1261 }
1262 
1263 const Pipeline * MachEpilogNode::pipeline() const {
1264   return MachNode::pipeline_class();
1265 }
1266 
1267 int MachEpilogNode::safepoint_offset() const {
1268   assert( do_polling(), "no return for this epilog node");
1269   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1270 }
1271 
1272 //=============================================================================
1273 
1274 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1275 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1276 static enum RC rc_class( OptoReg::Name reg ) {
1277   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1278   if (OptoReg::is_stack(reg)) return rc_stack;
1279   VMReg r = OptoReg::as_VMReg(reg);
1280   if (r->is_Register()) return rc_int;
1281   assert(r->is_FloatRegister(), "must be");
1282   return rc_float;
1283 }
1284 
1285 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1286   if( cbuf ) {
1287     // Better yet would be some mechanism to handle variable-size matches correctly
1288     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1289       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1290     } else {
1291       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1292     }
1293   }
1294 #ifndef PRODUCT
1295   else if( !do_size ) {
1296     if( size != 0 ) st->print("\n\t");
1297     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1298     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1299   }
1300 #endif
1301   return size+4;
1302 }
1303 
1304 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1305   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1306 #ifndef PRODUCT
1307   else if( !do_size ) {
1308     if( size != 0 ) st->print("\n\t");
1309     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1310   }
1311 #endif
1312   return size+4;
1313 }
1314 
1315 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1316                                         PhaseRegAlloc *ra_,
1317                                         bool do_size,
1318                                         outputStream* st ) const {
1319   // Get registers to move
1320   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1321   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1322   OptoReg::Name dst_second = ra_->get_reg_second(this );
1323   OptoReg::Name dst_first = ra_->get_reg_first(this );
1324 
1325   enum RC src_second_rc = rc_class(src_second);
1326   enum RC src_first_rc = rc_class(src_first);
1327   enum RC dst_second_rc = rc_class(dst_second);
1328   enum RC dst_first_rc = rc_class(dst_first);
1329 
1330   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1331 
1332   // Generate spill code!
1333   int size = 0;
1334 
1335   if( src_first == dst_first && src_second == dst_second )
1336     return size;            // Self copy, no move
1337 
1338   // --------------------------------------
1339   // Check for mem-mem move.  Load into unused float registers and fall into
1340   // the float-store case.
1341   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1342     int offset = ra_->reg2offset(src_first);
1343     // Further check for aligned-adjacent pair, so we can use a double load
1344     if( (src_first&1)==0 && src_first+1 == src_second ) {
1345       src_second    = OptoReg::Name(R_F31_num);
1346       src_second_rc = rc_float;
1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1348     } else {
1349       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1350     }
1351     src_first    = OptoReg::Name(R_F30_num);
1352     src_first_rc = rc_float;
1353   }
1354 
1355   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1356     int offset = ra_->reg2offset(src_second);
1357     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1358     src_second    = OptoReg::Name(R_F31_num);
1359     src_second_rc = rc_float;
1360   }
1361 
1362   // --------------------------------------
1363   // Check for float->int copy; requires a trip through memory
1364   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1365     int offset = frame::register_save_words*wordSize;
1366     if (cbuf) {
1367       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1368       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1369       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1370       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1371     }
1372 #ifndef PRODUCT
1373     else if (!do_size) {
1374       if (size != 0) st->print("\n\t");
1375       st->print(  "SUB    R_SP,16,R_SP\n");
1376       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1377       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1378       st->print("\tADD    R_SP,16,R_SP\n");
1379     }
1380 #endif
1381     size += 16;
1382   }
1383 
1384   // Check for float->int copy on T4
1385   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1386     // Further check for aligned-adjacent pair, so we can use a double move
1387     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1388       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1389     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1390   }
1391   // Check for int->float copy on T4
1392   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1393     // Further check for aligned-adjacent pair, so we can use a double move
1394     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1395       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1396     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1397   }
1398 
1399   // --------------------------------------
1400   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1401   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1402   // hardware does the flop for me.  Doubles are always aligned, so no problem
1403   // there.  Misaligned sources only come from native-long-returns (handled
1404   // special below).
1405 #ifndef _LP64
1406   if( src_first_rc == rc_int &&     // source is already big-endian
1407       src_second_rc != rc_bad &&    // 64-bit move
1408       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1409     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1410     // Do the big-endian flop.
1411     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1412     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1413   }
1414 #endif
1415 
1416   // --------------------------------------
1417   // Check for integer reg-reg copy
1418   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1419 #ifndef _LP64
1420     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1421       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1422       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1423       //       operand contains the least significant word of the 64-bit value and vice versa.
1424       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1425       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1426       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1427       if( cbuf ) {
1428         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1429         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1430         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1431 #ifndef PRODUCT
1432       } else if( !do_size ) {
1433         if( size != 0 ) st->print("\n\t");
1434         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1435         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1436         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1437 #endif
1438       }
1439       return size+12;
1440     }
1441     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1442       // returning a long value in I0/I1
1443       // a SpillCopy must be able to target a return instruction's reg_class
1444       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1445       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1446       //       operand contains the least significant word of the 64-bit value and vice versa.
1447       OptoReg::Name tdest = dst_first;
1448 
1449       if (src_first == dst_first) {
1450         tdest = OptoReg::Name(R_O7_num);
1451         size += 4;
1452       }
1453 
1454       if( cbuf ) {
1455         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1456         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1457         // ShrL_reg_imm6
1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1459         // ShrR_reg_imm6  src, 0, dst
1460         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1461         if (tdest != dst_first) {
1462           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1463         }
1464       }
1465 #ifndef PRODUCT
1466       else if( !do_size ) {
1467         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1468         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1469         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1470         if (tdest != dst_first) {
1471           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1472         }
1473       }
1474 #endif // PRODUCT
1475       return size+8;
1476     }
1477 #endif // !_LP64
1478     // Else normal reg-reg copy
1479     assert( src_second != dst_first, "smashed second before evacuating it" );
1480     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1481     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1482     // This moves an aligned adjacent pair.
1483     // See if we are done.
1484     if( src_first+1 == src_second && dst_first+1 == dst_second )
1485       return size;
1486   }
1487 
1488   // Check for integer store
1489   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1490     int offset = ra_->reg2offset(dst_first);
1491     // Further check for aligned-adjacent pair, so we can use a double store
1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1493       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1494     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1495   }
1496 
1497   // Check for integer load
1498   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1499     int offset = ra_->reg2offset(src_first);
1500     // Further check for aligned-adjacent pair, so we can use a double load
1501     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1502       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1503     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1504   }
1505 
1506   // Check for float reg-reg copy
1507   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1508     // Further check for aligned-adjacent pair, so we can use a double move
1509     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1510       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1511     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1512   }
1513 
1514   // Check for float store
1515   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1516     int offset = ra_->reg2offset(dst_first);
1517     // Further check for aligned-adjacent pair, so we can use a double store
1518     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1519       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1520     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1521   }
1522 
1523   // Check for float load
1524   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1525     int offset = ra_->reg2offset(src_first);
1526     // Further check for aligned-adjacent pair, so we can use a double load
1527     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1528       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1529     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1530   }
1531 
1532   // --------------------------------------------------------------------
1533   // Check for hi bits still needing moving.  Only happens for misaligned
1534   // arguments to native calls.
1535   if( src_second == dst_second )
1536     return size;               // Self copy; no move
1537   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1538 
1539 #ifndef _LP64
1540   // In the LP64 build, all registers can be moved as aligned/adjacent
1541   // pairs, so there's never any need to move the high bits separately.
1542   // The 32-bit builds have to deal with the 32-bit ABI which can force
1543   // all sorts of silly alignment problems.
1544 
1545   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1546   // 32-bits of a 64-bit register, but are needed in low bits of another
1547   // register (else it's a hi-bits-to-hi-bits copy which should have
1548   // happened already as part of a 64-bit move)
1549   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1550     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1551     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1552     // Shift src_second down to dst_second's low bits.
1553     if( cbuf ) {
1554       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1555 #ifndef PRODUCT
1556     } else if( !do_size ) {
1557       if( size != 0 ) st->print("\n\t");
1558       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1559 #endif
1560     }
1561     return size+4;
1562   }
1563 
1564   // Check for high word integer store.  Must down-shift the hi bits
1565   // into a temp register, then fall into the case of storing int bits.
1566   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1567     // Shift src_second down to dst_second's low bits.
1568     if( cbuf ) {
1569       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1570 #ifndef PRODUCT
1571     } else if( !do_size ) {
1572       if( size != 0 ) st->print("\n\t");
1573       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1574 #endif
1575     }
1576     size+=4;
1577     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1578   }
1579 
1580   // Check for high word integer load
1581   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1582     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1583 
1584   // Check for high word integer store
1585   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1586     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1587 
1588   // Check for high word float store
1589   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1590     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1591 
1592 #endif // !_LP64
1593 
1594   Unimplemented();
1595 }
1596 
1597 #ifndef PRODUCT
1598 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1599   implementation( NULL, ra_, false, st );
1600 }
1601 #endif
1602 
1603 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1604   implementation( &cbuf, ra_, false, NULL );
1605 }
1606 
1607 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1608   return implementation( NULL, ra_, true, NULL );
1609 }
1610 
1611 //=============================================================================
1612 #ifndef PRODUCT
1613 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1614   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1615 }
1616 #endif
1617 
1618 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1619   MacroAssembler _masm(&cbuf);
1620   for(int i = 0; i < _count; i += 1) {
1621     __ nop();
1622   }
1623 }
1624 
1625 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1626   return 4 * _count;
1627 }
1628 
1629 
1630 //=============================================================================
1631 #ifndef PRODUCT
1632 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1633   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1634   int reg = ra_->get_reg_first(this);
1635   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1636 }
1637 #endif
1638 
1639 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1640   MacroAssembler _masm(&cbuf);
1641   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1642   int reg = ra_->get_encode(this);
1643 
1644   if (Assembler::is_simm13(offset)) {
1645      __ add(SP, offset, reg_to_register_object(reg));
1646   } else {
1647      __ set(offset, O7);
1648      __ add(SP, O7, reg_to_register_object(reg));
1649   }
1650 }
1651 
1652 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1653   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1654   assert(ra_ == ra_->C->regalloc(), "sanity");
1655   return ra_->C->scratch_emit_size(this);
1656 }
1657 
1658 //=============================================================================
1659 
1660 // Offset from start of compiled java to interpreter stub to the load
1661 // constant that loads the inline cache (IC) (0 on sparc).
1662 const int CompiledStaticCall::comp_to_int_load_offset = 0;
1663 
1664 // emit call stub, compiled java to interpretor
1665 void emit_java_to_interp(CodeBuffer &cbuf ) {
1666 
1667   // Stub is fixed up when the corresponding call is converted from calling
1668   // compiled code to calling interpreted code.
1669   // set (empty), G5
1670   // jmp -1
1671 
1672   address mark = cbuf.insts_mark();  // get mark within main instrs section
1673 
1674   MacroAssembler _masm(&cbuf);
1675 
1676   address base =
1677   __ start_a_stub(Compile::MAX_stubs_size);
1678   if (base == NULL)  return;  // CodeBuffer::expand failed
1679 
1680   // static stub relocation stores the instruction address of the call
1681   __ relocate(static_stub_Relocation::spec(mark));
1682 
1683   __ set_metadata(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1684 
1685   __ set_inst_mark();
1686   AddressLiteral addrlit(-1);
1687   __ JUMP(addrlit, G3, 0);
1688 
1689   __ delayed()->nop();
1690 
1691   // Update current stubs pointer and restore code_end.
1692   __ end_a_stub();
1693 }
1694 
1695 // size of call stub, compiled java to interpretor
1696 uint size_java_to_interp() {
1697   // This doesn't need to be accurate but it must be larger or equal to
1698   // the real size of the stub.
1699   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1700           NativeJump::instruction_size + // sethi; jmp; nop
1701           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1702 }
1703 // relocation entries for call stub, compiled java to interpretor
1704 uint reloc_java_to_interp() {
1705   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1706 }
1707 
1708 
1709 //=============================================================================
1710 #ifndef PRODUCT
1711 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1712   st->print_cr("\nUEP:");
1713 #ifdef    _LP64
1714   if (UseCompressedKlassPointers) {
1715     assert(Universe::heap() != NULL, "java heap should be initialized");
1716     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1717     st->print_cr("\tSLL    R_G5,3,R_G5");
1718     if (Universe::narrow_klass_base() != NULL)
1719       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1720   } else {
1721     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1722   }
1723   st->print_cr("\tCMP    R_G5,R_G3" );
1724   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1725 #else  // _LP64
1726   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1727   st->print_cr("\tCMP    R_G5,R_G3" );
1728   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1729 #endif // _LP64
1730 }
1731 #endif
1732 
1733 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1734   MacroAssembler _masm(&cbuf);
1735   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1736   Register temp_reg   = G3;
1737   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1738 
1739   // Load klass from receiver
1740   __ load_klass(O0, temp_reg);
1741   // Compare against expected klass
1742   __ cmp(temp_reg, G5_ic_reg);
1743   // Branch to miss code, checks xcc or icc depending
1744   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1745 }
1746 
1747 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1748   return MachNode::size(ra_);
1749 }
1750 
1751 
1752 //=============================================================================
1753 
1754 uint size_exception_handler() {
1755   if (TraceJumps) {
1756     return (400); // just a guess
1757   }
1758   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1759 }
1760 
1761 uint size_deopt_handler() {
1762   if (TraceJumps) {
1763     return (400); // just a guess
1764   }
1765   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1766 }
1767 
1768 // Emit exception handler code.
1769 int emit_exception_handler(CodeBuffer& cbuf) {
1770   Register temp_reg = G3;
1771   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1772   MacroAssembler _masm(&cbuf);
1773 
1774   address base =
1775   __ start_a_stub(size_exception_handler());
1776   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1777 
1778   int offset = __ offset();
1779 
1780   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1781   __ delayed()->nop();
1782 
1783   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1784 
1785   __ end_a_stub();
1786 
1787   return offset;
1788 }
1789 
1790 int emit_deopt_handler(CodeBuffer& cbuf) {
1791   // Can't use any of the current frame's registers as we may have deopted
1792   // at a poll and everything (including G3) can be live.
1793   Register temp_reg = L0;
1794   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1795   MacroAssembler _masm(&cbuf);
1796 
1797   address base =
1798   __ start_a_stub(size_deopt_handler());
1799   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1800 
1801   int offset = __ offset();
1802   __ save_frame(0);
1803   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1804   __ delayed()->restore();
1805 
1806   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1807 
1808   __ end_a_stub();
1809   return offset;
1810 
1811 }
1812 
1813 // Given a register encoding, produce a Integer Register object
1814 static Register reg_to_register_object(int register_encoding) {
1815   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1816   return as_Register(register_encoding);
1817 }
1818 
1819 // Given a register encoding, produce a single-precision Float Register object
1820 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1821   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1822   return as_SingleFloatRegister(register_encoding);
1823 }
1824 
1825 // Given a register encoding, produce a double-precision Float Register object
1826 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1827   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1828   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1829   return as_DoubleFloatRegister(register_encoding);
1830 }
1831 
1832 const bool Matcher::match_rule_supported(int opcode) {
1833   if (!has_match_rule(opcode))
1834     return false;
1835 
1836   switch (opcode) {
1837   case Op_CountLeadingZerosI:
1838   case Op_CountLeadingZerosL:
1839   case Op_CountTrailingZerosI:
1840   case Op_CountTrailingZerosL:
1841   case Op_PopCountI:
1842   case Op_PopCountL:
1843     if (!UsePopCountInstruction)
1844       return false;
1845   case Op_CompareAndSwapL:
1846 #ifdef _LP64
1847   case Op_CompareAndSwapP:
1848 #endif
1849     if (!VM_Version::supports_cx8())
1850       return false;
1851     break;
1852   }
1853 
1854   return true;  // Per default match rules are supported.
1855 }
1856 
1857 int Matcher::regnum_to_fpu_offset(int regnum) {
1858   return regnum - 32; // The FP registers are in the second chunk
1859 }
1860 
1861 #ifdef ASSERT
1862 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1863 #endif
1864 
1865 // Vector width in bytes
1866 const int Matcher::vector_width_in_bytes(BasicType bt) {
1867   assert(MaxVectorSize == 8, "");
1868   return 8;
1869 }
1870 
1871 // Vector ideal reg
1872 const int Matcher::vector_ideal_reg(int size) {
1873   assert(MaxVectorSize == 8, "");
1874   return Op_RegD;
1875 }
1876 
1877 const int Matcher::vector_shift_count_ideal_reg(int size) {
1878   fatal("vector shift is not supported");
1879   return Node::NotAMachineReg;
1880 }
1881 
1882 // Limits on vector size (number of elements) loaded into vector.
1883 const int Matcher::max_vector_size(const BasicType bt) {
1884   assert(is_java_primitive(bt), "only primitive type vectors");
1885   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1886 }
1887 
1888 const int Matcher::min_vector_size(const BasicType bt) {
1889   return max_vector_size(bt); // Same as max.
1890 }
1891 
1892 // SPARC doesn't support misaligned vectors store/load.
1893 const bool Matcher::misaligned_vectors_ok() {
1894   return false;
1895 }
1896 
1897 // USII supports fxtof through the whole range of number, USIII doesn't
1898 const bool Matcher::convL2FSupported(void) {
1899   return VM_Version::has_fast_fxtof();
1900 }
1901 
1902 // Is this branch offset short enough that a short branch can be used?
1903 //
1904 // NOTE: If the platform does not provide any short branch variants, then
1905 //       this method should return false for offset 0.
1906 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1907   // The passed offset is relative to address of the branch.
1908   // Don't need to adjust the offset.
1909   return UseCBCond && Assembler::is_simm12(offset);
1910 }
1911 
1912 const bool Matcher::isSimpleConstant64(jlong value) {
1913   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1914   // Depends on optimizations in MacroAssembler::setx.
1915   int hi = (int)(value >> 32);
1916   int lo = (int)(value & ~0);
1917   return (hi == 0) || (hi == -1) || (lo == 0);
1918 }
1919 
1920 // No scaling for the parameter the ClearArray node.
1921 const bool Matcher::init_array_count_is_in_bytes = true;
1922 
1923 // Threshold size for cleararray.
1924 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1925 
1926 // No additional cost for CMOVL.
1927 const int Matcher::long_cmove_cost() { return 0; }
1928 
1929 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1930 const int Matcher::float_cmove_cost() {
1931   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1932 }
1933 
1934 // Should the Matcher clone shifts on addressing modes, expecting them to
1935 // be subsumed into complex addressing expressions or compute them into
1936 // registers?  True for Intel but false for most RISCs
1937 const bool Matcher::clone_shift_expressions = false;
1938 
1939 // Do we need to mask the count passed to shift instructions or does
1940 // the cpu only look at the lower 5/6 bits anyway?
1941 const bool Matcher::need_masked_shift_count = false;
1942 
1943 bool Matcher::narrow_oop_use_complex_address() {
1944   NOT_LP64(ShouldNotCallThis());
1945   assert(UseCompressedOops, "only for compressed oops code");
1946   return false;
1947 }
1948 
1949 bool Matcher::narrow_klass_use_complex_address() {
1950   NOT_LP64(ShouldNotCallThis());
1951   assert(UseCompressedKlassPointers, "only for compressed klass code");
1952   return false;
1953 }
1954 
1955 // Is it better to copy float constants, or load them directly from memory?
1956 // Intel can load a float constant from a direct address, requiring no
1957 // extra registers.  Most RISCs will have to materialize an address into a
1958 // register first, so they would do better to copy the constant from stack.
1959 const bool Matcher::rematerialize_float_constants = false;
1960 
1961 // If CPU can load and store mis-aligned doubles directly then no fixup is
1962 // needed.  Else we split the double into 2 integer pieces and move it
1963 // piece-by-piece.  Only happens when passing doubles into C code as the
1964 // Java calling convention forces doubles to be aligned.
1965 #ifdef _LP64
1966 const bool Matcher::misaligned_doubles_ok = true;
1967 #else
1968 const bool Matcher::misaligned_doubles_ok = false;
1969 #endif
1970 
1971 // No-op on SPARC.
1972 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1973 }
1974 
1975 // Advertise here if the CPU requires explicit rounding operations
1976 // to implement the UseStrictFP mode.
1977 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1978 
1979 // Are floats conerted to double when stored to stack during deoptimization?
1980 // Sparc does not handle callee-save floats.
1981 bool Matcher::float_in_double() { return false; }
1982 
1983 // Do ints take an entire long register or just half?
1984 // Note that we if-def off of _LP64.
1985 // The relevant question is how the int is callee-saved.  In _LP64
1986 // the whole long is written but de-opt'ing will have to extract
1987 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1988 #ifdef _LP64
1989 const bool Matcher::int_in_long = true;
1990 #else
1991 const bool Matcher::int_in_long = false;
1992 #endif
1993 
1994 // Return whether or not this register is ever used as an argument.  This
1995 // function is used on startup to build the trampoline stubs in generateOptoStub.
1996 // Registers not mentioned will be killed by the VM call in the trampoline, and
1997 // arguments in those registers not be available to the callee.
1998 bool Matcher::can_be_java_arg( int reg ) {
1999   // Standard sparc 6 args in registers
2000   if( reg == R_I0_num ||
2001       reg == R_I1_num ||
2002       reg == R_I2_num ||
2003       reg == R_I3_num ||
2004       reg == R_I4_num ||
2005       reg == R_I5_num ) return true;
2006 #ifdef _LP64
2007   // 64-bit builds can pass 64-bit pointers and longs in
2008   // the high I registers
2009   if( reg == R_I0H_num ||
2010       reg == R_I1H_num ||
2011       reg == R_I2H_num ||
2012       reg == R_I3H_num ||
2013       reg == R_I4H_num ||
2014       reg == R_I5H_num ) return true;
2015 
2016   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
2017     return true;
2018   }
2019 
2020 #else
2021   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
2022   // Longs cannot be passed in O regs, because O regs become I regs
2023   // after a 'save' and I regs get their high bits chopped off on
2024   // interrupt.
2025   if( reg == R_G1H_num || reg == R_G1_num ) return true;
2026   if( reg == R_G4H_num || reg == R_G4_num ) return true;
2027 #endif
2028   // A few float args in registers
2029   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
2030 
2031   return false;
2032 }
2033 
2034 bool Matcher::is_spillable_arg( int reg ) {
2035   return can_be_java_arg(reg);
2036 }
2037 
2038 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
2039   // Use hardware SDIVX instruction when it is
2040   // faster than a code which use multiply.
2041   return VM_Version::has_fast_idiv();
2042 }
2043 
2044 // Register for DIVI projection of divmodI
2045 RegMask Matcher::divI_proj_mask() {
2046   ShouldNotReachHere();
2047   return RegMask();
2048 }
2049 
2050 // Register for MODI projection of divmodI
2051 RegMask Matcher::modI_proj_mask() {
2052   ShouldNotReachHere();
2053   return RegMask();
2054 }
2055 
2056 // Register for DIVL projection of divmodL
2057 RegMask Matcher::divL_proj_mask() {
2058   ShouldNotReachHere();
2059   return RegMask();
2060 }
2061 
2062 // Register for MODL projection of divmodL
2063 RegMask Matcher::modL_proj_mask() {
2064   ShouldNotReachHere();
2065   return RegMask();
2066 }
2067 
2068 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2069   return L7_REGP_mask();
2070 }
2071 
2072 %}
2073 
2074 
2075 // The intptr_t operand types, defined by textual substitution.
2076 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2077 #ifdef _LP64
2078 #define immX      immL
2079 #define immX13    immL13
2080 #define immX13m7  immL13m7
2081 #define iRegX     iRegL
2082 #define g1RegX    g1RegL
2083 #else
2084 #define immX      immI
2085 #define immX13    immI13
2086 #define immX13m7  immI13m7
2087 #define iRegX     iRegI
2088 #define g1RegX    g1RegI
2089 #endif
2090 
2091 //----------ENCODING BLOCK-----------------------------------------------------
2092 // This block specifies the encoding classes used by the compiler to output
2093 // byte streams.  Encoding classes are parameterized macros used by
2094 // Machine Instruction Nodes in order to generate the bit encoding of the
2095 // instruction.  Operands specify their base encoding interface with the
2096 // interface keyword.  There are currently supported four interfaces,
2097 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2098 // operand to generate a function which returns its register number when
2099 // queried.   CONST_INTER causes an operand to generate a function which
2100 // returns the value of the constant when queried.  MEMORY_INTER causes an
2101 // operand to generate four functions which return the Base Register, the
2102 // Index Register, the Scale Value, and the Offset Value of the operand when
2103 // queried.  COND_INTER causes an operand to generate six functions which
2104 // return the encoding code (ie - encoding bits for the instruction)
2105 // associated with each basic boolean condition for a conditional instruction.
2106 //
2107 // Instructions specify two basic values for encoding.  Again, a function
2108 // is available to check if the constant displacement is an oop. They use the
2109 // ins_encode keyword to specify their encoding classes (which must be
2110 // a sequence of enc_class names, and their parameters, specified in
2111 // the encoding block), and they use the
2112 // opcode keyword to specify, in order, their primary, secondary, and
2113 // tertiary opcode.  Only the opcode sections which a particular instruction
2114 // needs for encoding need to be specified.
2115 encode %{
2116   enc_class enc_untested %{
2117 #ifdef ASSERT
2118     MacroAssembler _masm(&cbuf);
2119     __ untested("encoding");
2120 #endif
2121   %}
2122 
2123   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2124     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2125                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2126   %}
2127 
2128   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2129     emit_form3_mem_reg(cbuf, this, $primary, -1,
2130                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2131   %}
2132 
2133   enc_class form3_mem_prefetch_read( memory mem ) %{
2134     emit_form3_mem_reg(cbuf, this, $primary, -1,
2135                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2136   %}
2137 
2138   enc_class form3_mem_prefetch_write( memory mem ) %{
2139     emit_form3_mem_reg(cbuf, this, $primary, -1,
2140                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2141   %}
2142 
2143   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2144     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2145     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2146     guarantee($mem$$index == R_G0_enc, "double index?");
2147     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2148     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2149     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2150     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2151   %}
2152 
2153   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2154     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2155     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2156     guarantee($mem$$index == R_G0_enc, "double index?");
2157     // Load long with 2 instructions
2158     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2159     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2160   %}
2161 
2162   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2163   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2164     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2165     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2166   %}
2167 
2168   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2169     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2170     if( $rs2$$reg != $rd$$reg )
2171       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2172   %}
2173 
2174   // Target lo half of long
2175   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2176     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2177     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2178       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2179   %}
2180 
2181   // Source lo half of long
2182   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2183     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2184     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2185       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2186   %}
2187 
2188   // Target hi half of long
2189   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2190     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2191   %}
2192 
2193   // Source lo half of long, and leave it sign extended.
2194   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2195     // Sign extend low half
2196     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2197   %}
2198 
2199   // Source hi half of long, and leave it sign extended.
2200   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2201     // Shift high half to low half
2202     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2203   %}
2204 
2205   // Source hi half of long
2206   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2207     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2208     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2209       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2210   %}
2211 
2212   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2213     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2214   %}
2215 
2216   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2217     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2218     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2219   %}
2220 
2221   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2222     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2223     // clear if nothing else is happening
2224     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2225     // blt,a,pn done
2226     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2227     // mov dst,-1 in delay slot
2228     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2229   %}
2230 
2231   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2232     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2233   %}
2234 
2235   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2236     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2237   %}
2238 
2239   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2240     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2241   %}
2242 
2243   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2244     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2245   %}
2246 
2247   enc_class move_return_pc_to_o1() %{
2248     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2249   %}
2250 
2251 #ifdef _LP64
2252   /* %%% merge with enc_to_bool */
2253   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2254     MacroAssembler _masm(&cbuf);
2255 
2256     Register   src_reg = reg_to_register_object($src$$reg);
2257     Register   dst_reg = reg_to_register_object($dst$$reg);
2258     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2259   %}
2260 #endif
2261 
2262   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2263     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2264     MacroAssembler _masm(&cbuf);
2265 
2266     Register   p_reg = reg_to_register_object($p$$reg);
2267     Register   q_reg = reg_to_register_object($q$$reg);
2268     Register   y_reg = reg_to_register_object($y$$reg);
2269     Register tmp_reg = reg_to_register_object($tmp$$reg);
2270 
2271     __ subcc( p_reg, q_reg,   p_reg );
2272     __ add  ( p_reg, y_reg, tmp_reg );
2273     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2274   %}
2275 
2276   enc_class form_d2i_helper(regD src, regF dst) %{
2277     // fcmp %fcc0,$src,$src
2278     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2279     // branch %fcc0 not-nan, predict taken
2280     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2281     // fdtoi $src,$dst
2282     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2283     // fitos $dst,$dst (if nan)
2284     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2285     // clear $dst (if nan)
2286     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2287     // carry on here...
2288   %}
2289 
2290   enc_class form_d2l_helper(regD src, regD dst) %{
2291     // fcmp %fcc0,$src,$src  check for NAN
2292     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2293     // branch %fcc0 not-nan, predict taken
2294     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2295     // fdtox $src,$dst   convert in delay slot
2296     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2297     // fxtod $dst,$dst  (if nan)
2298     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2299     // clear $dst (if nan)
2300     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2301     // carry on here...
2302   %}
2303 
2304   enc_class form_f2i_helper(regF src, regF dst) %{
2305     // fcmps %fcc0,$src,$src
2306     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2307     // branch %fcc0 not-nan, predict taken
2308     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2309     // fstoi $src,$dst
2310     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2311     // fitos $dst,$dst (if nan)
2312     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2313     // clear $dst (if nan)
2314     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2315     // carry on here...
2316   %}
2317 
2318   enc_class form_f2l_helper(regF src, regD dst) %{
2319     // fcmps %fcc0,$src,$src
2320     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2321     // branch %fcc0 not-nan, predict taken
2322     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2323     // fstox $src,$dst
2324     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2325     // fxtod $dst,$dst (if nan)
2326     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2327     // clear $dst (if nan)
2328     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2329     // carry on here...
2330   %}
2331 
2332   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2333   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2334   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2335   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2336 
2337   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2338 
2339   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2340   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2341 
2342   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2343     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2344   %}
2345 
2346   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2347     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2348   %}
2349 
2350   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2351     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2352   %}
2353 
2354   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2355     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2356   %}
2357 
2358   enc_class form3_convI2F(regF rs2, regF rd) %{
2359     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2360   %}
2361 
2362   // Encloding class for traceable jumps
2363   enc_class form_jmpl(g3RegP dest) %{
2364     emit_jmpl(cbuf, $dest$$reg);
2365   %}
2366 
2367   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2368     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2369   %}
2370 
2371   enc_class form2_nop() %{
2372     emit_nop(cbuf);
2373   %}
2374 
2375   enc_class form2_illtrap() %{
2376     emit_illtrap(cbuf);
2377   %}
2378 
2379 
2380   // Compare longs and convert into -1, 0, 1.
2381   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2382     // CMP $src1,$src2
2383     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2384     // blt,a,pn done
2385     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2386     // mov dst,-1 in delay slot
2387     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2388     // bgt,a,pn done
2389     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2390     // mov dst,1 in delay slot
2391     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2392     // CLR    $dst
2393     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2394   %}
2395 
2396   enc_class enc_PartialSubtypeCheck() %{
2397     MacroAssembler _masm(&cbuf);
2398     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2399     __ delayed()->nop();
2400   %}
2401 
2402   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2403     MacroAssembler _masm(&cbuf);
2404     Label* L = $labl$$label;
2405     Assembler::Predict predict_taken =
2406       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2407 
2408     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2409     __ delayed()->nop();
2410   %}
2411 
2412   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2413     MacroAssembler _masm(&cbuf);
2414     Label* L = $labl$$label;
2415     Assembler::Predict predict_taken =
2416       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2417 
2418     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2419     __ delayed()->nop();
2420   %}
2421 
2422   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2423     int op = (Assembler::arith_op << 30) |
2424              ($dst$$reg << 25) |
2425              (Assembler::movcc_op3 << 19) |
2426              (1 << 18) |                    // cc2 bit for 'icc'
2427              ($cmp$$cmpcode << 14) |
2428              (0 << 13) |                    // select register move
2429              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2430              ($src$$reg << 0);
2431     cbuf.insts()->emit_int32(op);
2432   %}
2433 
2434   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2435     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2436     int op = (Assembler::arith_op << 30) |
2437              ($dst$$reg << 25) |
2438              (Assembler::movcc_op3 << 19) |
2439              (1 << 18) |                    // cc2 bit for 'icc'
2440              ($cmp$$cmpcode << 14) |
2441              (1 << 13) |                    // select immediate move
2442              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2443              (simm11 << 0);
2444     cbuf.insts()->emit_int32(op);
2445   %}
2446 
2447   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2448     int op = (Assembler::arith_op << 30) |
2449              ($dst$$reg << 25) |
2450              (Assembler::movcc_op3 << 19) |
2451              (0 << 18) |                    // cc2 bit for 'fccX'
2452              ($cmp$$cmpcode << 14) |
2453              (0 << 13) |                    // select register move
2454              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2455              ($src$$reg << 0);
2456     cbuf.insts()->emit_int32(op);
2457   %}
2458 
2459   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2460     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2461     int op = (Assembler::arith_op << 30) |
2462              ($dst$$reg << 25) |
2463              (Assembler::movcc_op3 << 19) |
2464              (0 << 18) |                    // cc2 bit for 'fccX'
2465              ($cmp$$cmpcode << 14) |
2466              (1 << 13) |                    // select immediate move
2467              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2468              (simm11 << 0);
2469     cbuf.insts()->emit_int32(op);
2470   %}
2471 
2472   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2473     int op = (Assembler::arith_op << 30) |
2474              ($dst$$reg << 25) |
2475              (Assembler::fpop2_op3 << 19) |
2476              (0 << 18) |
2477              ($cmp$$cmpcode << 14) |
2478              (1 << 13) |                    // select register move
2479              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2480              ($primary << 5) |              // select single, double or quad
2481              ($src$$reg << 0);
2482     cbuf.insts()->emit_int32(op);
2483   %}
2484 
2485   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2486     int op = (Assembler::arith_op << 30) |
2487              ($dst$$reg << 25) |
2488              (Assembler::fpop2_op3 << 19) |
2489              (0 << 18) |
2490              ($cmp$$cmpcode << 14) |
2491              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2492              ($primary << 5) |              // select single, double or quad
2493              ($src$$reg << 0);
2494     cbuf.insts()->emit_int32(op);
2495   %}
2496 
2497   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2498   // the condition comes from opcode-field instead of an argument.
2499   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2500     int op = (Assembler::arith_op << 30) |
2501              ($dst$$reg << 25) |
2502              (Assembler::movcc_op3 << 19) |
2503              (1 << 18) |                    // cc2 bit for 'icc'
2504              ($primary << 14) |
2505              (0 << 13) |                    // select register move
2506              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2507              ($src$$reg << 0);
2508     cbuf.insts()->emit_int32(op);
2509   %}
2510 
2511   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2512     int op = (Assembler::arith_op << 30) |
2513              ($dst$$reg << 25) |
2514              (Assembler::movcc_op3 << 19) |
2515              (6 << 16) |                    // cc2 bit for 'xcc'
2516              ($primary << 14) |
2517              (0 << 13) |                    // select register move
2518              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2519              ($src$$reg << 0);
2520     cbuf.insts()->emit_int32(op);
2521   %}
2522 
2523   enc_class Set13( immI13 src, iRegI rd ) %{
2524     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2525   %}
2526 
2527   enc_class SetHi22( immI src, iRegI rd ) %{
2528     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2529   %}
2530 
2531   enc_class Set32( immI src, iRegI rd ) %{
2532     MacroAssembler _masm(&cbuf);
2533     __ set($src$$constant, reg_to_register_object($rd$$reg));
2534   %}
2535 
2536   enc_class call_epilog %{
2537     if( VerifyStackAtCalls ) {
2538       MacroAssembler _masm(&cbuf);
2539       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2540       Register temp_reg = G3;
2541       __ add(SP, framesize, temp_reg);
2542       __ cmp(temp_reg, FP);
2543       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2544     }
2545   %}
2546 
2547   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2548   // to G1 so the register allocator will not have to deal with the misaligned register
2549   // pair.
2550   enc_class adjust_long_from_native_call %{
2551 #ifndef _LP64
2552     if (returns_long()) {
2553       //    sllx  O0,32,O0
2554       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2555       //    srl   O1,0,O1
2556       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2557       //    or    O0,O1,G1
2558       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2559     }
2560 #endif
2561   %}
2562 
2563   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2564     // CALL directly to the runtime
2565     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2566     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2567                     /*preserve_g2=*/true);
2568   %}
2569 
2570   enc_class preserve_SP %{
2571     MacroAssembler _masm(&cbuf);
2572     __ mov(SP, L7_mh_SP_save);
2573   %}
2574 
2575   enc_class restore_SP %{
2576     MacroAssembler _masm(&cbuf);
2577     __ mov(L7_mh_SP_save, SP);
2578   %}
2579 
2580   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2581     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2582     // who we intended to call.
2583     if ( !_method ) {
2584       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2585     } else if (_optimized_virtual) {
2586       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2587     } else {
2588       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2589     }
2590     if( _method ) {  // Emit stub for static call
2591       emit_java_to_interp(cbuf);
2592     }
2593   %}
2594 
2595   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2596     MacroAssembler _masm(&cbuf);
2597     __ set_inst_mark();
2598     int vtable_index = this->_vtable_index;
2599     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2600     if (vtable_index < 0) {
2601       // must be invalid_vtable_index, not nonvirtual_vtable_index
2602       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2603       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2604       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2605       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2606       __ ic_call((address)$meth$$method);
2607     } else {
2608       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2609       // Just go thru the vtable
2610       // get receiver klass (receiver already checked for non-null)
2611       // If we end up going thru a c2i adapter interpreter expects method in G5
2612       int off = __ offset();
2613       __ load_klass(O0, G3_scratch);
2614       int klass_load_size;
2615       if (UseCompressedKlassPointers) {
2616         assert(Universe::heap() != NULL, "java heap should be initialized");
2617         if (Universe::narrow_klass_base() == NULL)
2618           klass_load_size = 2*BytesPerInstWord;
2619         else
2620           klass_load_size = 3*BytesPerInstWord;
2621       } else {
2622         klass_load_size = 1*BytesPerInstWord;
2623       }
2624       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2625       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2626       if (Assembler::is_simm13(v_off)) {
2627         __ ld_ptr(G3, v_off, G5_method);
2628       } else {
2629         // Generate 2 instructions
2630         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2631         __ or3(G5_method, v_off & 0x3ff, G5_method);
2632         // ld_ptr, set_hi, set
2633         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2634                "Unexpected instruction size(s)");
2635         __ ld_ptr(G3, G5_method, G5_method);
2636       }
2637       // NOTE: for vtable dispatches, the vtable entry will never be null.
2638       // However it may very well end up in handle_wrong_method if the
2639       // method is abstract for the particular class.
2640       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2641       // jump to target (either compiled code or c2iadapter)
2642       __ jmpl(G3_scratch, G0, O7);
2643       __ delayed()->nop();
2644     }
2645   %}
2646 
2647   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2648     MacroAssembler _masm(&cbuf);
2649 
2650     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2651     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2652                               // we might be calling a C2I adapter which needs it.
2653 
2654     assert(temp_reg != G5_ic_reg, "conflicting registers");
2655     // Load nmethod
2656     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2657 
2658     // CALL to compiled java, indirect the contents of G3
2659     __ set_inst_mark();
2660     __ callr(temp_reg, G0);
2661     __ delayed()->nop();
2662   %}
2663 
2664 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2665     MacroAssembler _masm(&cbuf);
2666     Register Rdividend = reg_to_register_object($src1$$reg);
2667     Register Rdivisor = reg_to_register_object($src2$$reg);
2668     Register Rresult = reg_to_register_object($dst$$reg);
2669 
2670     __ sra(Rdivisor, 0, Rdivisor);
2671     __ sra(Rdividend, 0, Rdividend);
2672     __ sdivx(Rdividend, Rdivisor, Rresult);
2673 %}
2674 
2675 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2676     MacroAssembler _masm(&cbuf);
2677 
2678     Register Rdividend = reg_to_register_object($src1$$reg);
2679     int divisor = $imm$$constant;
2680     Register Rresult = reg_to_register_object($dst$$reg);
2681 
2682     __ sra(Rdividend, 0, Rdividend);
2683     __ sdivx(Rdividend, divisor, Rresult);
2684 %}
2685 
2686 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2687     MacroAssembler _masm(&cbuf);
2688     Register Rsrc1 = reg_to_register_object($src1$$reg);
2689     Register Rsrc2 = reg_to_register_object($src2$$reg);
2690     Register Rdst  = reg_to_register_object($dst$$reg);
2691 
2692     __ sra( Rsrc1, 0, Rsrc1 );
2693     __ sra( Rsrc2, 0, Rsrc2 );
2694     __ mulx( Rsrc1, Rsrc2, Rdst );
2695     __ srlx( Rdst, 32, Rdst );
2696 %}
2697 
2698 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2699     MacroAssembler _masm(&cbuf);
2700     Register Rdividend = reg_to_register_object($src1$$reg);
2701     Register Rdivisor = reg_to_register_object($src2$$reg);
2702     Register Rresult = reg_to_register_object($dst$$reg);
2703     Register Rscratch = reg_to_register_object($scratch$$reg);
2704 
2705     assert(Rdividend != Rscratch, "");
2706     assert(Rdivisor  != Rscratch, "");
2707 
2708     __ sra(Rdividend, 0, Rdividend);
2709     __ sra(Rdivisor, 0, Rdivisor);
2710     __ sdivx(Rdividend, Rdivisor, Rscratch);
2711     __ mulx(Rscratch, Rdivisor, Rscratch);
2712     __ sub(Rdividend, Rscratch, Rresult);
2713 %}
2714 
2715 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2716     MacroAssembler _masm(&cbuf);
2717 
2718     Register Rdividend = reg_to_register_object($src1$$reg);
2719     int divisor = $imm$$constant;
2720     Register Rresult = reg_to_register_object($dst$$reg);
2721     Register Rscratch = reg_to_register_object($scratch$$reg);
2722 
2723     assert(Rdividend != Rscratch, "");
2724 
2725     __ sra(Rdividend, 0, Rdividend);
2726     __ sdivx(Rdividend, divisor, Rscratch);
2727     __ mulx(Rscratch, divisor, Rscratch);
2728     __ sub(Rdividend, Rscratch, Rresult);
2729 %}
2730 
2731 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2732     MacroAssembler _masm(&cbuf);
2733 
2734     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2735     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2736 
2737     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2738 %}
2739 
2740 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2741     MacroAssembler _masm(&cbuf);
2742 
2743     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2744     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2745 
2746     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2747 %}
2748 
2749 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2750     MacroAssembler _masm(&cbuf);
2751 
2752     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2753     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2754 
2755     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2756 %}
2757 
2758 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2759     MacroAssembler _masm(&cbuf);
2760 
2761     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2762     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2763 
2764     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2765 %}
2766 
2767 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2768     MacroAssembler _masm(&cbuf);
2769 
2770     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2771     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2772 
2773     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2774 %}
2775 
2776 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2777     MacroAssembler _masm(&cbuf);
2778 
2779     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2780     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2781 
2782     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2783 %}
2784 
2785 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2786     MacroAssembler _masm(&cbuf);
2787 
2788     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2789     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2790 
2791     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2792 %}
2793 
2794 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2795     MacroAssembler _masm(&cbuf);
2796 
2797     Register Roop  = reg_to_register_object($oop$$reg);
2798     Register Rbox  = reg_to_register_object($box$$reg);
2799     Register Rscratch = reg_to_register_object($scratch$$reg);
2800     Register Rmark =    reg_to_register_object($scratch2$$reg);
2801 
2802     assert(Roop  != Rscratch, "");
2803     assert(Roop  != Rmark, "");
2804     assert(Rbox  != Rscratch, "");
2805     assert(Rbox  != Rmark, "");
2806 
2807     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2808 %}
2809 
2810 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2811     MacroAssembler _masm(&cbuf);
2812 
2813     Register Roop  = reg_to_register_object($oop$$reg);
2814     Register Rbox  = reg_to_register_object($box$$reg);
2815     Register Rscratch = reg_to_register_object($scratch$$reg);
2816     Register Rmark =    reg_to_register_object($scratch2$$reg);
2817 
2818     assert(Roop  != Rscratch, "");
2819     assert(Roop  != Rmark, "");
2820     assert(Rbox  != Rscratch, "");
2821     assert(Rbox  != Rmark, "");
2822 
2823     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2824   %}
2825 
2826   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2827     MacroAssembler _masm(&cbuf);
2828     Register Rmem = reg_to_register_object($mem$$reg);
2829     Register Rold = reg_to_register_object($old$$reg);
2830     Register Rnew = reg_to_register_object($new$$reg);
2831 
2832     // casx_under_lock picks 1 of 3 encodings:
2833     // For 32-bit pointers you get a 32-bit CAS
2834     // For 64-bit pointers you get a 64-bit CASX
2835     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2836     __ cmp( Rold, Rnew );
2837   %}
2838 
2839   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2840     Register Rmem = reg_to_register_object($mem$$reg);
2841     Register Rold = reg_to_register_object($old$$reg);
2842     Register Rnew = reg_to_register_object($new$$reg);
2843 
2844     MacroAssembler _masm(&cbuf);
2845     __ mov(Rnew, O7);
2846     __ casx(Rmem, Rold, O7);
2847     __ cmp( Rold, O7 );
2848   %}
2849 
2850   // raw int cas, used for compareAndSwap
2851   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2852     Register Rmem = reg_to_register_object($mem$$reg);
2853     Register Rold = reg_to_register_object($old$$reg);
2854     Register Rnew = reg_to_register_object($new$$reg);
2855 
2856     MacroAssembler _masm(&cbuf);
2857     __ mov(Rnew, O7);
2858     __ cas(Rmem, Rold, O7);
2859     __ cmp( Rold, O7 );
2860   %}
2861 
2862   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2863     Register Rres = reg_to_register_object($res$$reg);
2864 
2865     MacroAssembler _masm(&cbuf);
2866     __ mov(1, Rres);
2867     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2868   %}
2869 
2870   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2871     Register Rres = reg_to_register_object($res$$reg);
2872 
2873     MacroAssembler _masm(&cbuf);
2874     __ mov(1, Rres);
2875     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2876   %}
2877 
2878   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2879     MacroAssembler _masm(&cbuf);
2880     Register Rdst = reg_to_register_object($dst$$reg);
2881     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2882                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2883     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2884                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2885 
2886     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2887     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2888   %}
2889 
2890 
2891   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2892     Label Ldone, Lloop;
2893     MacroAssembler _masm(&cbuf);
2894 
2895     Register   str1_reg = reg_to_register_object($str1$$reg);
2896     Register   str2_reg = reg_to_register_object($str2$$reg);
2897     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2898     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2899     Register result_reg = reg_to_register_object($result$$reg);
2900 
2901     assert(result_reg != str1_reg &&
2902            result_reg != str2_reg &&
2903            result_reg != cnt1_reg &&
2904            result_reg != cnt2_reg ,
2905            "need different registers");
2906 
2907     // Compute the minimum of the string lengths(str1_reg) and the
2908     // difference of the string lengths (stack)
2909 
2910     // See if the lengths are different, and calculate min in str1_reg.
2911     // Stash diff in O7 in case we need it for a tie-breaker.
2912     Label Lskip;
2913     __ subcc(cnt1_reg, cnt2_reg, O7);
2914     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2915     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2916     // cnt2 is shorter, so use its count:
2917     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2918     __ bind(Lskip);
2919 
2920     // reallocate cnt1_reg, cnt2_reg, result_reg
2921     // Note:  limit_reg holds the string length pre-scaled by 2
2922     Register limit_reg =   cnt1_reg;
2923     Register  chr2_reg =   cnt2_reg;
2924     Register  chr1_reg = result_reg;
2925     // str{12} are the base pointers
2926 
2927     // Is the minimum length zero?
2928     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2929     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2930     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2931 
2932     // Load first characters
2933     __ lduh(str1_reg, 0, chr1_reg);
2934     __ lduh(str2_reg, 0, chr2_reg);
2935 
2936     // Compare first characters
2937     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2938     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2939     assert(chr1_reg == result_reg, "result must be pre-placed");
2940     __ delayed()->nop();
2941 
2942     {
2943       // Check after comparing first character to see if strings are equivalent
2944       Label LSkip2;
2945       // Check if the strings start at same location
2946       __ cmp(str1_reg, str2_reg);
2947       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2948       __ delayed()->nop();
2949 
2950       // Check if the length difference is zero (in O7)
2951       __ cmp(G0, O7);
2952       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2953       __ delayed()->mov(G0, result_reg);  // result is zero
2954 
2955       // Strings might not be equal
2956       __ bind(LSkip2);
2957     }
2958 
2959     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2960     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2961     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2962 
2963     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2964     __ add(str1_reg, limit_reg, str1_reg);
2965     __ add(str2_reg, limit_reg, str2_reg);
2966     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2967 
2968     // Compare the rest of the characters
2969     __ lduh(str1_reg, limit_reg, chr1_reg);
2970     __ bind(Lloop);
2971     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2972     __ lduh(str2_reg, limit_reg, chr2_reg);
2973     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2974     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2975     assert(chr1_reg == result_reg, "result must be pre-placed");
2976     __ delayed()->inccc(limit_reg, sizeof(jchar));
2977     // annul LDUH if branch is not taken to prevent access past end of string
2978     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2979     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2980 
2981     // If strings are equal up to min length, return the length difference.
2982     __ mov(O7, result_reg);
2983 
2984     // Otherwise, return the difference between the first mismatched chars.
2985     __ bind(Ldone);
2986   %}
2987 
2988 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2989     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2990     MacroAssembler _masm(&cbuf);
2991 
2992     Register   str1_reg = reg_to_register_object($str1$$reg);
2993     Register   str2_reg = reg_to_register_object($str2$$reg);
2994     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2995     Register   tmp1_reg = O7;
2996     Register result_reg = reg_to_register_object($result$$reg);
2997 
2998     assert(result_reg != str1_reg &&
2999            result_reg != str2_reg &&
3000            result_reg !=  cnt_reg &&
3001            result_reg != tmp1_reg ,
3002            "need different registers");
3003 
3004     __ cmp(str1_reg, str2_reg); //same char[] ?
3005     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3006     __ delayed()->add(G0, 1, result_reg);
3007 
3008     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
3009     __ delayed()->add(G0, 1, result_reg); // count == 0
3010 
3011     //rename registers
3012     Register limit_reg =    cnt_reg;
3013     Register  chr1_reg = result_reg;
3014     Register  chr2_reg =   tmp1_reg;
3015 
3016     //check for alignment and position the pointers to the ends
3017     __ or3(str1_reg, str2_reg, chr1_reg);
3018     __ andcc(chr1_reg, 0x3, chr1_reg);
3019     // notZero means at least one not 4-byte aligned.
3020     // We could optimize the case when both arrays are not aligned
3021     // but it is not frequent case and it requires additional checks.
3022     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
3023     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
3024 
3025     // Compare char[] arrays aligned to 4 bytes.
3026     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
3027                           chr1_reg, chr2_reg, Ldone);
3028     __ ba(Ldone);
3029     __ delayed()->add(G0, 1, result_reg);
3030 
3031     // char by char compare
3032     __ bind(Lchar);
3033     __ add(str1_reg, limit_reg, str1_reg);
3034     __ add(str2_reg, limit_reg, str2_reg);
3035     __ neg(limit_reg); //negate count
3036 
3037     __ lduh(str1_reg, limit_reg, chr1_reg);
3038     // Lchar_loop
3039     __ bind(Lchar_loop);
3040     __ lduh(str2_reg, limit_reg, chr2_reg);
3041     __ cmp(chr1_reg, chr2_reg);
3042     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3043     __ delayed()->mov(G0, result_reg); //not equal
3044     __ inccc(limit_reg, sizeof(jchar));
3045     // annul LDUH if branch is not taken to prevent access past end of string
3046     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3047     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3048 
3049     __ add(G0, 1, result_reg);  //equal
3050 
3051     __ bind(Ldone);
3052   %}
3053 
3054 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3055     Label Lvector, Ldone, Lloop;
3056     MacroAssembler _masm(&cbuf);
3057 
3058     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3059     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3060     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3061     Register   tmp2_reg = O7;
3062     Register result_reg = reg_to_register_object($result$$reg);
3063 
3064     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3065     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3066 
3067     // return true if the same array
3068     __ cmp(ary1_reg, ary2_reg);
3069     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3070     __ delayed()->add(G0, 1, result_reg); // equal
3071 
3072     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3073     __ delayed()->mov(G0, result_reg);    // not equal
3074 
3075     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3076     __ delayed()->mov(G0, result_reg);    // not equal
3077 
3078     //load the lengths of arrays
3079     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3080     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3081 
3082     // return false if the two arrays are not equal length
3083     __ cmp(tmp1_reg, tmp2_reg);
3084     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3085     __ delayed()->mov(G0, result_reg);     // not equal
3086 
3087     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3088     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3089 
3090     // load array addresses
3091     __ add(ary1_reg, base_offset, ary1_reg);
3092     __ add(ary2_reg, base_offset, ary2_reg);
3093 
3094     // renaming registers
3095     Register chr1_reg  =  result_reg; // for characters in ary1
3096     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3097     Register limit_reg =  tmp1_reg;   // length
3098 
3099     // set byte count
3100     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3101 
3102     // Compare char[] arrays aligned to 4 bytes.
3103     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3104                           chr1_reg, chr2_reg, Ldone);
3105     __ add(G0, 1, result_reg); // equals
3106 
3107     __ bind(Ldone);
3108   %}
3109 
3110   enc_class enc_rethrow() %{
3111     cbuf.set_insts_mark();
3112     Register temp_reg = G3;
3113     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3114     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3115     MacroAssembler _masm(&cbuf);
3116 #ifdef ASSERT
3117     __ save_frame(0);
3118     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3119     __ sethi(last_rethrow_addrlit, L1);
3120     Address addr(L1, last_rethrow_addrlit.low10());
3121     __ get_pc(L2);
3122     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3123     __ st_ptr(L2, addr);
3124     __ restore();
3125 #endif
3126     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3127     __ delayed()->nop();
3128   %}
3129 
3130   enc_class emit_mem_nop() %{
3131     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3132     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3133   %}
3134 
3135   enc_class emit_fadd_nop() %{
3136     // Generates the instruction FMOVS f31,f31
3137     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3138   %}
3139 
3140   enc_class emit_br_nop() %{
3141     // Generates the instruction BPN,PN .
3142     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3143   %}
3144 
3145   enc_class enc_membar_acquire %{
3146     MacroAssembler _masm(&cbuf);
3147     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3148   %}
3149 
3150   enc_class enc_membar_release %{
3151     MacroAssembler _masm(&cbuf);
3152     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3153   %}
3154 
3155   enc_class enc_membar_volatile %{
3156     MacroAssembler _masm(&cbuf);
3157     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3158   %}
3159 
3160 %}
3161 
3162 //----------FRAME--------------------------------------------------------------
3163 // Definition of frame structure and management information.
3164 //
3165 //  S T A C K   L A Y O U T    Allocators stack-slot number
3166 //                             |   (to get allocators register number
3167 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3168 //  r   CALLER     |        |
3169 //  o     |        +--------+      pad to even-align allocators stack-slot
3170 //  w     V        |  pad0  |        numbers; owned by CALLER
3171 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3172 //  h     ^        |   in   |  5
3173 //        |        |  args  |  4   Holes in incoming args owned by SELF
3174 //  |     |        |        |  3
3175 //  |     |        +--------+
3176 //  V     |        | old out|      Empty on Intel, window on Sparc
3177 //        |    old |preserve|      Must be even aligned.
3178 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3179 //        |        |   in   |  3   area for Intel ret address
3180 //     Owned by    |preserve|      Empty on Sparc.
3181 //       SELF      +--------+
3182 //        |        |  pad2  |  2   pad to align old SP
3183 //        |        +--------+  1
3184 //        |        | locks  |  0
3185 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3186 //        |        |  pad1  | 11   pad to align new SP
3187 //        |        +--------+
3188 //        |        |        | 10
3189 //        |        | spills |  9   spills
3190 //        V        |        |  8   (pad0 slot for callee)
3191 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3192 //        ^        |  out   |  7
3193 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3194 //     Owned by    +--------+
3195 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3196 //        |    new |preserve|      Must be even-aligned.
3197 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3198 //        |        |        |
3199 //
3200 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3201 //         known from SELF's arguments and the Java calling convention.
3202 //         Region 6-7 is determined per call site.
3203 // Note 2: If the calling convention leaves holes in the incoming argument
3204 //         area, those holes are owned by SELF.  Holes in the outgoing area
3205 //         are owned by the CALLEE.  Holes should not be nessecary in the
3206 //         incoming area, as the Java calling convention is completely under
3207 //         the control of the AD file.  Doubles can be sorted and packed to
3208 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3209 //         varargs C calling conventions.
3210 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3211 //         even aligned with pad0 as needed.
3212 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3213 //         region 6-11 is even aligned; it may be padded out more so that
3214 //         the region from SP to FP meets the minimum stack alignment.
3215 
3216 frame %{
3217   // What direction does stack grow in (assumed to be same for native & Java)
3218   stack_direction(TOWARDS_LOW);
3219 
3220   // These two registers define part of the calling convention
3221   // between compiled code and the interpreter.
3222   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3223   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3224 
3225   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3226   cisc_spilling_operand_name(indOffset);
3227 
3228   // Number of stack slots consumed by a Monitor enter
3229 #ifdef _LP64
3230   sync_stack_slots(2);
3231 #else
3232   sync_stack_slots(1);
3233 #endif
3234 
3235   // Compiled code's Frame Pointer
3236   frame_pointer(R_SP);
3237 
3238   // Stack alignment requirement
3239   stack_alignment(StackAlignmentInBytes);
3240   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3241   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3242 
3243   // Number of stack slots between incoming argument block and the start of
3244   // a new frame.  The PROLOG must add this many slots to the stack.  The
3245   // EPILOG must remove this many slots.
3246   in_preserve_stack_slots(0);
3247 
3248   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3249   // for calls to C.  Supports the var-args backing area for register parms.
3250   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3251 #ifdef _LP64
3252   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3253   varargs_C_out_slots_killed(12);
3254 #else
3255   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3256   varargs_C_out_slots_killed( 7);
3257 #endif
3258 
3259   // The after-PROLOG location of the return address.  Location of
3260   // return address specifies a type (REG or STACK) and a number
3261   // representing the register number (i.e. - use a register name) or
3262   // stack slot.
3263   return_addr(REG R_I7);          // Ret Addr is in register I7
3264 
3265   // Body of function which returns an OptoRegs array locating
3266   // arguments either in registers or in stack slots for calling
3267   // java
3268   calling_convention %{
3269     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3270 
3271   %}
3272 
3273   // Body of function which returns an OptoRegs array locating
3274   // arguments either in registers or in stack slots for callin
3275   // C.
3276   c_calling_convention %{
3277     // This is obviously always outgoing
3278     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3279   %}
3280 
3281   // Location of native (C/C++) and interpreter return values.  This is specified to
3282   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3283   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3284   // to and from the register pairs is done by the appropriate call and epilog
3285   // opcodes.  This simplifies the register allocator.
3286   c_return_value %{
3287     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3288 #ifdef     _LP64
3289     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3290     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3291     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3292     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3293 #else  // !_LP64
3294     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3295     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3296     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3297     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3298 #endif
3299     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3300                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3301   %}
3302 
3303   // Location of compiled Java return values.  Same as C
3304   return_value %{
3305     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3306 #ifdef     _LP64
3307     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3308     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3309     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3310     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3311 #else  // !_LP64
3312     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3313     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3314     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3315     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3316 #endif
3317     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3318                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3319   %}
3320 
3321 %}
3322 
3323 
3324 //----------ATTRIBUTES---------------------------------------------------------
3325 //----------Operand Attributes-------------------------------------------------
3326 op_attrib op_cost(1);          // Required cost attribute
3327 
3328 //----------Instruction Attributes---------------------------------------------
3329 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3330 ins_attrib ins_size(32);           // Required size attribute (in bits)
3331 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
3332 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3333                                    // non-matching short branch variant of some
3334                                                             // long branch?
3335 
3336 //----------OPERANDS-----------------------------------------------------------
3337 // Operand definitions must precede instruction definitions for correct parsing
3338 // in the ADLC because operands constitute user defined types which are used in
3339 // instruction definitions.
3340 
3341 //----------Simple Operands----------------------------------------------------
3342 // Immediate Operands
3343 // Integer Immediate: 32-bit
3344 operand immI() %{
3345   match(ConI);
3346 
3347   op_cost(0);
3348   // formats are generated automatically for constants and base registers
3349   format %{ %}
3350   interface(CONST_INTER);
3351 %}
3352 
3353 // Integer Immediate: 8-bit
3354 operand immI8() %{
3355   predicate(Assembler::is_simm8(n->get_int()));
3356   match(ConI);
3357   op_cost(0);
3358   format %{ %}
3359   interface(CONST_INTER);
3360 %}
3361 
3362 // Integer Immediate: 13-bit
3363 operand immI13() %{
3364   predicate(Assembler::is_simm13(n->get_int()));
3365   match(ConI);
3366   op_cost(0);
3367 
3368   format %{ %}
3369   interface(CONST_INTER);
3370 %}
3371 
3372 // Integer Immediate: 13-bit minus 7
3373 operand immI13m7() %{
3374   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3375   match(ConI);
3376   op_cost(0);
3377 
3378   format %{ %}
3379   interface(CONST_INTER);
3380 %}
3381 
3382 // Integer Immediate: 16-bit
3383 operand immI16() %{
3384   predicate(Assembler::is_simm16(n->get_int()));
3385   match(ConI);
3386   op_cost(0);
3387   format %{ %}
3388   interface(CONST_INTER);
3389 %}
3390 
3391 // Unsigned (positive) Integer Immediate: 13-bit
3392 operand immU13() %{
3393   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3394   match(ConI);
3395   op_cost(0);
3396 
3397   format %{ %}
3398   interface(CONST_INTER);
3399 %}
3400 
3401 // Integer Immediate: 6-bit
3402 operand immU6() %{
3403   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3404   match(ConI);
3405   op_cost(0);
3406   format %{ %}
3407   interface(CONST_INTER);
3408 %}
3409 
3410 // Integer Immediate: 11-bit
3411 operand immI11() %{
3412   predicate(Assembler::is_simm11(n->get_int()));
3413   match(ConI);
3414   op_cost(0);
3415   format %{ %}
3416   interface(CONST_INTER);
3417 %}
3418 
3419 // Integer Immediate: 5-bit
3420 operand immI5() %{
3421   predicate(Assembler::is_simm5(n->get_int()));
3422   match(ConI);
3423   op_cost(0);
3424   format %{ %}
3425   interface(CONST_INTER);
3426 %}
3427 
3428 // Integer Immediate: 0-bit
3429 operand immI0() %{
3430   predicate(n->get_int() == 0);
3431   match(ConI);
3432   op_cost(0);
3433 
3434   format %{ %}
3435   interface(CONST_INTER);
3436 %}
3437 
3438 // Integer Immediate: the value 10
3439 operand immI10() %{
3440   predicate(n->get_int() == 10);
3441   match(ConI);
3442   op_cost(0);
3443 
3444   format %{ %}
3445   interface(CONST_INTER);
3446 %}
3447 
3448 // Integer Immediate: the values 0-31
3449 operand immU5() %{
3450   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3451   match(ConI);
3452   op_cost(0);
3453 
3454   format %{ %}
3455   interface(CONST_INTER);
3456 %}
3457 
3458 // Integer Immediate: the values 1-31
3459 operand immI_1_31() %{
3460   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3461   match(ConI);
3462   op_cost(0);
3463 
3464   format %{ %}
3465   interface(CONST_INTER);
3466 %}
3467 
3468 // Integer Immediate: the values 32-63
3469 operand immI_32_63() %{
3470   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3471   match(ConI);
3472   op_cost(0);
3473 
3474   format %{ %}
3475   interface(CONST_INTER);
3476 %}
3477 
3478 // Immediates for special shifts (sign extend)
3479 
3480 // Integer Immediate: the value 16
3481 operand immI_16() %{
3482   predicate(n->get_int() == 16);
3483   match(ConI);
3484   op_cost(0);
3485 
3486   format %{ %}
3487   interface(CONST_INTER);
3488 %}
3489 
3490 // Integer Immediate: the value 24
3491 operand immI_24() %{
3492   predicate(n->get_int() == 24);
3493   match(ConI);
3494   op_cost(0);
3495 
3496   format %{ %}
3497   interface(CONST_INTER);
3498 %}
3499 
3500 // Integer Immediate: the value 255
3501 operand immI_255() %{
3502   predicate( n->get_int() == 255 );
3503   match(ConI);
3504   op_cost(0);
3505 
3506   format %{ %}
3507   interface(CONST_INTER);
3508 %}
3509 
3510 // Integer Immediate: the value 65535
3511 operand immI_65535() %{
3512   predicate(n->get_int() == 65535);
3513   match(ConI);
3514   op_cost(0);
3515 
3516   format %{ %}
3517   interface(CONST_INTER);
3518 %}
3519 
3520 // Long Immediate: the value FF
3521 operand immL_FF() %{
3522   predicate( n->get_long() == 0xFFL );
3523   match(ConL);
3524   op_cost(0);
3525 
3526   format %{ %}
3527   interface(CONST_INTER);
3528 %}
3529 
3530 // Long Immediate: the value FFFF
3531 operand immL_FFFF() %{
3532   predicate( n->get_long() == 0xFFFFL );
3533   match(ConL);
3534   op_cost(0);
3535 
3536   format %{ %}
3537   interface(CONST_INTER);
3538 %}
3539 
3540 // Pointer Immediate: 32 or 64-bit
3541 operand immP() %{
3542   match(ConP);
3543 
3544   op_cost(5);
3545   // formats are generated automatically for constants and base registers
3546   format %{ %}
3547   interface(CONST_INTER);
3548 %}
3549 
3550 #ifdef _LP64
3551 // Pointer Immediate: 64-bit
3552 operand immP_set() %{
3553   predicate(!VM_Version::is_niagara_plus());
3554   match(ConP);
3555 
3556   op_cost(5);
3557   // formats are generated automatically for constants and base registers
3558   format %{ %}
3559   interface(CONST_INTER);
3560 %}
3561 
3562 // Pointer Immediate: 64-bit
3563 // From Niagara2 processors on a load should be better than materializing.
3564 operand immP_load() %{
3565   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3566   match(ConP);
3567 
3568   op_cost(5);
3569   // formats are generated automatically for constants and base registers
3570   format %{ %}
3571   interface(CONST_INTER);
3572 %}
3573 
3574 // Pointer Immediate: 64-bit
3575 operand immP_no_oop_cheap() %{
3576   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3577   match(ConP);
3578 
3579   op_cost(5);
3580   // formats are generated automatically for constants and base registers
3581   format %{ %}
3582   interface(CONST_INTER);
3583 %}
3584 #endif
3585 
3586 operand immP13() %{
3587   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3588   match(ConP);
3589   op_cost(0);
3590 
3591   format %{ %}
3592   interface(CONST_INTER);
3593 %}
3594 
3595 operand immP0() %{
3596   predicate(n->get_ptr() == 0);
3597   match(ConP);
3598   op_cost(0);
3599 
3600   format %{ %}
3601   interface(CONST_INTER);
3602 %}
3603 
3604 operand immP_poll() %{
3605   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3606   match(ConP);
3607 
3608   // formats are generated automatically for constants and base registers
3609   format %{ %}
3610   interface(CONST_INTER);
3611 %}
3612 
3613 // Pointer Immediate
3614 operand immN()
3615 %{
3616   match(ConN);
3617 
3618   op_cost(10);
3619   format %{ %}
3620   interface(CONST_INTER);
3621 %}
3622 
3623 operand immNKlass()
3624 %{
3625   match(ConNKlass);
3626 
3627   op_cost(10);
3628   format %{ %}
3629   interface(CONST_INTER);
3630 %}
3631 
3632 // NULL Pointer Immediate
3633 operand immN0()
3634 %{
3635   predicate(n->get_narrowcon() == 0);
3636   match(ConN);
3637 
3638   op_cost(0);
3639   format %{ %}
3640   interface(CONST_INTER);
3641 %}
3642 
3643 operand immL() %{
3644   match(ConL);
3645   op_cost(40);
3646   // formats are generated automatically for constants and base registers
3647   format %{ %}
3648   interface(CONST_INTER);
3649 %}
3650 
3651 operand immL0() %{
3652   predicate(n->get_long() == 0L);
3653   match(ConL);
3654   op_cost(0);
3655   // formats are generated automatically for constants and base registers
3656   format %{ %}
3657   interface(CONST_INTER);
3658 %}
3659 
3660 // Integer Immediate: 5-bit
3661 operand immL5() %{
3662   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3663   match(ConL);
3664   op_cost(0);
3665   format %{ %}
3666   interface(CONST_INTER);
3667 %}
3668 
3669 // Long Immediate: 13-bit
3670 operand immL13() %{
3671   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3672   match(ConL);
3673   op_cost(0);
3674 
3675   format %{ %}
3676   interface(CONST_INTER);
3677 %}
3678 
3679 // Long Immediate: 13-bit minus 7
3680 operand immL13m7() %{
3681   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3682   match(ConL);
3683   op_cost(0);
3684 
3685   format %{ %}
3686   interface(CONST_INTER);
3687 %}
3688 
3689 // Long Immediate: low 32-bit mask
3690 operand immL_32bits() %{
3691   predicate(n->get_long() == 0xFFFFFFFFL);
3692   match(ConL);
3693   op_cost(0);
3694 
3695   format %{ %}
3696   interface(CONST_INTER);
3697 %}
3698 
3699 // Long Immediate: cheap (materialize in <= 3 instructions)
3700 operand immL_cheap() %{
3701   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3702   match(ConL);
3703   op_cost(0);
3704 
3705   format %{ %}
3706   interface(CONST_INTER);
3707 %}
3708 
3709 // Long Immediate: expensive (materialize in > 3 instructions)
3710 operand immL_expensive() %{
3711   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3712   match(ConL);
3713   op_cost(0);
3714 
3715   format %{ %}
3716   interface(CONST_INTER);
3717 %}
3718 
3719 // Double Immediate
3720 operand immD() %{
3721   match(ConD);
3722 
3723   op_cost(40);
3724   format %{ %}
3725   interface(CONST_INTER);
3726 %}
3727 
3728 operand immD0() %{
3729 #ifdef _LP64
3730   // on 64-bit architectures this comparision is faster
3731   predicate(jlong_cast(n->getd()) == 0);
3732 #else
3733   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3734 #endif
3735   match(ConD);
3736 
3737   op_cost(0);
3738   format %{ %}
3739   interface(CONST_INTER);
3740 %}
3741 
3742 // Float Immediate
3743 operand immF() %{
3744   match(ConF);
3745 
3746   op_cost(20);
3747   format %{ %}
3748   interface(CONST_INTER);
3749 %}
3750 
3751 // Float Immediate: 0
3752 operand immF0() %{
3753   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3754   match(ConF);
3755 
3756   op_cost(0);
3757   format %{ %}
3758   interface(CONST_INTER);
3759 %}
3760 
3761 // Integer Register Operands
3762 // Integer Register
3763 operand iRegI() %{
3764   constraint(ALLOC_IN_RC(int_reg));
3765   match(RegI);
3766 
3767   match(notemp_iRegI);
3768   match(g1RegI);
3769   match(o0RegI);
3770   match(iRegIsafe);
3771 
3772   format %{ %}
3773   interface(REG_INTER);
3774 %}
3775 
3776 operand notemp_iRegI() %{
3777   constraint(ALLOC_IN_RC(notemp_int_reg));
3778   match(RegI);
3779 
3780   match(o0RegI);
3781 
3782   format %{ %}
3783   interface(REG_INTER);
3784 %}
3785 
3786 operand o0RegI() %{
3787   constraint(ALLOC_IN_RC(o0_regI));
3788   match(iRegI);
3789 
3790   format %{ %}
3791   interface(REG_INTER);
3792 %}
3793 
3794 // Pointer Register
3795 operand iRegP() %{
3796   constraint(ALLOC_IN_RC(ptr_reg));
3797   match(RegP);
3798 
3799   match(lock_ptr_RegP);
3800   match(g1RegP);
3801   match(g2RegP);
3802   match(g3RegP);
3803   match(g4RegP);
3804   match(i0RegP);
3805   match(o0RegP);
3806   match(o1RegP);
3807   match(l7RegP);
3808 
3809   format %{ %}
3810   interface(REG_INTER);
3811 %}
3812 
3813 operand sp_ptr_RegP() %{
3814   constraint(ALLOC_IN_RC(sp_ptr_reg));
3815   match(RegP);
3816   match(iRegP);
3817 
3818   format %{ %}
3819   interface(REG_INTER);
3820 %}
3821 
3822 operand lock_ptr_RegP() %{
3823   constraint(ALLOC_IN_RC(lock_ptr_reg));
3824   match(RegP);
3825   match(i0RegP);
3826   match(o0RegP);
3827   match(o1RegP);
3828   match(l7RegP);
3829 
3830   format %{ %}
3831   interface(REG_INTER);
3832 %}
3833 
3834 operand g1RegP() %{
3835   constraint(ALLOC_IN_RC(g1_regP));
3836   match(iRegP);
3837 
3838   format %{ %}
3839   interface(REG_INTER);
3840 %}
3841 
3842 operand g2RegP() %{
3843   constraint(ALLOC_IN_RC(g2_regP));
3844   match(iRegP);
3845 
3846   format %{ %}
3847   interface(REG_INTER);
3848 %}
3849 
3850 operand g3RegP() %{
3851   constraint(ALLOC_IN_RC(g3_regP));
3852   match(iRegP);
3853 
3854   format %{ %}
3855   interface(REG_INTER);
3856 %}
3857 
3858 operand g1RegI() %{
3859   constraint(ALLOC_IN_RC(g1_regI));
3860   match(iRegI);
3861 
3862   format %{ %}
3863   interface(REG_INTER);
3864 %}
3865 
3866 operand g3RegI() %{
3867   constraint(ALLOC_IN_RC(g3_regI));
3868   match(iRegI);
3869 
3870   format %{ %}
3871   interface(REG_INTER);
3872 %}
3873 
3874 operand g4RegI() %{
3875   constraint(ALLOC_IN_RC(g4_regI));
3876   match(iRegI);
3877 
3878   format %{ %}
3879   interface(REG_INTER);
3880 %}
3881 
3882 operand g4RegP() %{
3883   constraint(ALLOC_IN_RC(g4_regP));
3884   match(iRegP);
3885 
3886   format %{ %}
3887   interface(REG_INTER);
3888 %}
3889 
3890 operand i0RegP() %{
3891   constraint(ALLOC_IN_RC(i0_regP));
3892   match(iRegP);
3893 
3894   format %{ %}
3895   interface(REG_INTER);
3896 %}
3897 
3898 operand o0RegP() %{
3899   constraint(ALLOC_IN_RC(o0_regP));
3900   match(iRegP);
3901 
3902   format %{ %}
3903   interface(REG_INTER);
3904 %}
3905 
3906 operand o1RegP() %{
3907   constraint(ALLOC_IN_RC(o1_regP));
3908   match(iRegP);
3909 
3910   format %{ %}
3911   interface(REG_INTER);
3912 %}
3913 
3914 operand o2RegP() %{
3915   constraint(ALLOC_IN_RC(o2_regP));
3916   match(iRegP);
3917 
3918   format %{ %}
3919   interface(REG_INTER);
3920 %}
3921 
3922 operand o7RegP() %{
3923   constraint(ALLOC_IN_RC(o7_regP));
3924   match(iRegP);
3925 
3926   format %{ %}
3927   interface(REG_INTER);
3928 %}
3929 
3930 operand l7RegP() %{
3931   constraint(ALLOC_IN_RC(l7_regP));
3932   match(iRegP);
3933 
3934   format %{ %}
3935   interface(REG_INTER);
3936 %}
3937 
3938 operand o7RegI() %{
3939   constraint(ALLOC_IN_RC(o7_regI));
3940   match(iRegI);
3941 
3942   format %{ %}
3943   interface(REG_INTER);
3944 %}
3945 
3946 operand iRegN() %{
3947   constraint(ALLOC_IN_RC(int_reg));
3948   match(RegN);
3949 
3950   format %{ %}
3951   interface(REG_INTER);
3952 %}
3953 
3954 // Long Register
3955 operand iRegL() %{
3956   constraint(ALLOC_IN_RC(long_reg));
3957   match(RegL);
3958 
3959   format %{ %}
3960   interface(REG_INTER);
3961 %}
3962 
3963 operand o2RegL() %{
3964   constraint(ALLOC_IN_RC(o2_regL));
3965   match(iRegL);
3966 
3967   format %{ %}
3968   interface(REG_INTER);
3969 %}
3970 
3971 operand o7RegL() %{
3972   constraint(ALLOC_IN_RC(o7_regL));
3973   match(iRegL);
3974 
3975   format %{ %}
3976   interface(REG_INTER);
3977 %}
3978 
3979 operand g1RegL() %{
3980   constraint(ALLOC_IN_RC(g1_regL));
3981   match(iRegL);
3982 
3983   format %{ %}
3984   interface(REG_INTER);
3985 %}
3986 
3987 operand g3RegL() %{
3988   constraint(ALLOC_IN_RC(g3_regL));
3989   match(iRegL);
3990 
3991   format %{ %}
3992   interface(REG_INTER);
3993 %}
3994 
3995 // Int Register safe
3996 // This is 64bit safe
3997 operand iRegIsafe() %{
3998   constraint(ALLOC_IN_RC(long_reg));
3999 
4000   match(iRegI);
4001 
4002   format %{ %}
4003   interface(REG_INTER);
4004 %}
4005 
4006 // Condition Code Flag Register
4007 operand flagsReg() %{
4008   constraint(ALLOC_IN_RC(int_flags));
4009   match(RegFlags);
4010 
4011   format %{ "ccr" %} // both ICC and XCC
4012   interface(REG_INTER);
4013 %}
4014 
4015 // Condition Code Register, unsigned comparisons.
4016 operand flagsRegU() %{
4017   constraint(ALLOC_IN_RC(int_flags));
4018   match(RegFlags);
4019 
4020   format %{ "icc_U" %}
4021   interface(REG_INTER);
4022 %}
4023 
4024 // Condition Code Register, pointer comparisons.
4025 operand flagsRegP() %{
4026   constraint(ALLOC_IN_RC(int_flags));
4027   match(RegFlags);
4028 
4029 #ifdef _LP64
4030   format %{ "xcc_P" %}
4031 #else
4032   format %{ "icc_P" %}
4033 #endif
4034   interface(REG_INTER);
4035 %}
4036 
4037 // Condition Code Register, long comparisons.
4038 operand flagsRegL() %{
4039   constraint(ALLOC_IN_RC(int_flags));
4040   match(RegFlags);
4041 
4042   format %{ "xcc_L" %}
4043   interface(REG_INTER);
4044 %}
4045 
4046 // Condition Code Register, floating comparisons, unordered same as "less".
4047 operand flagsRegF() %{
4048   constraint(ALLOC_IN_RC(float_flags));
4049   match(RegFlags);
4050   match(flagsRegF0);
4051 
4052   format %{ %}
4053   interface(REG_INTER);
4054 %}
4055 
4056 operand flagsRegF0() %{
4057   constraint(ALLOC_IN_RC(float_flag0));
4058   match(RegFlags);
4059 
4060   format %{ %}
4061   interface(REG_INTER);
4062 %}
4063 
4064 
4065 // Condition Code Flag Register used by long compare
4066 operand flagsReg_long_LTGE() %{
4067   constraint(ALLOC_IN_RC(int_flags));
4068   match(RegFlags);
4069   format %{ "icc_LTGE" %}
4070   interface(REG_INTER);
4071 %}
4072 operand flagsReg_long_EQNE() %{
4073   constraint(ALLOC_IN_RC(int_flags));
4074   match(RegFlags);
4075   format %{ "icc_EQNE" %}
4076   interface(REG_INTER);
4077 %}
4078 operand flagsReg_long_LEGT() %{
4079   constraint(ALLOC_IN_RC(int_flags));
4080   match(RegFlags);
4081   format %{ "icc_LEGT" %}
4082   interface(REG_INTER);
4083 %}
4084 
4085 
4086 operand regD() %{
4087   constraint(ALLOC_IN_RC(dflt_reg));
4088   match(RegD);
4089 
4090   match(regD_low);
4091 
4092   format %{ %}
4093   interface(REG_INTER);
4094 %}
4095 
4096 operand regF() %{
4097   constraint(ALLOC_IN_RC(sflt_reg));
4098   match(RegF);
4099 
4100   format %{ %}
4101   interface(REG_INTER);
4102 %}
4103 
4104 operand regD_low() %{
4105   constraint(ALLOC_IN_RC(dflt_low_reg));
4106   match(regD);
4107 
4108   format %{ %}
4109   interface(REG_INTER);
4110 %}
4111 
4112 // Special Registers
4113 
4114 // Method Register
4115 operand inline_cache_regP(iRegP reg) %{
4116   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4117   match(reg);
4118   format %{ %}
4119   interface(REG_INTER);
4120 %}
4121 
4122 operand interpreter_method_oop_regP(iRegP reg) %{
4123   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4124   match(reg);
4125   format %{ %}
4126   interface(REG_INTER);
4127 %}
4128 
4129 
4130 //----------Complex Operands---------------------------------------------------
4131 // Indirect Memory Reference
4132 operand indirect(sp_ptr_RegP reg) %{
4133   constraint(ALLOC_IN_RC(sp_ptr_reg));
4134   match(reg);
4135 
4136   op_cost(100);
4137   format %{ "[$reg]" %}
4138   interface(MEMORY_INTER) %{
4139     base($reg);
4140     index(0x0);
4141     scale(0x0);
4142     disp(0x0);
4143   %}
4144 %}
4145 
4146 // Indirect with simm13 Offset
4147 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4148   constraint(ALLOC_IN_RC(sp_ptr_reg));
4149   match(AddP reg offset);
4150 
4151   op_cost(100);
4152   format %{ "[$reg + $offset]" %}
4153   interface(MEMORY_INTER) %{
4154     base($reg);
4155     index(0x0);
4156     scale(0x0);
4157     disp($offset);
4158   %}
4159 %}
4160 
4161 // Indirect with simm13 Offset minus 7
4162 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4163   constraint(ALLOC_IN_RC(sp_ptr_reg));
4164   match(AddP reg offset);
4165 
4166   op_cost(100);
4167   format %{ "[$reg + $offset]" %}
4168   interface(MEMORY_INTER) %{
4169     base($reg);
4170     index(0x0);
4171     scale(0x0);
4172     disp($offset);
4173   %}
4174 %}
4175 
4176 // Note:  Intel has a swapped version also, like this:
4177 //operand indOffsetX(iRegI reg, immP offset) %{
4178 //  constraint(ALLOC_IN_RC(int_reg));
4179 //  match(AddP offset reg);
4180 //
4181 //  op_cost(100);
4182 //  format %{ "[$reg + $offset]" %}
4183 //  interface(MEMORY_INTER) %{
4184 //    base($reg);
4185 //    index(0x0);
4186 //    scale(0x0);
4187 //    disp($offset);
4188 //  %}
4189 //%}
4190 //// However, it doesn't make sense for SPARC, since
4191 // we have no particularly good way to embed oops in
4192 // single instructions.
4193 
4194 // Indirect with Register Index
4195 operand indIndex(iRegP addr, iRegX index) %{
4196   constraint(ALLOC_IN_RC(ptr_reg));
4197   match(AddP addr index);
4198 
4199   op_cost(100);
4200   format %{ "[$addr + $index]" %}
4201   interface(MEMORY_INTER) %{
4202     base($addr);
4203     index($index);
4204     scale(0x0);
4205     disp(0x0);
4206   %}
4207 %}
4208 
4209 //----------Special Memory Operands--------------------------------------------
4210 // Stack Slot Operand - This operand is used for loading and storing temporary
4211 //                      values on the stack where a match requires a value to
4212 //                      flow through memory.
4213 operand stackSlotI(sRegI reg) %{
4214   constraint(ALLOC_IN_RC(stack_slots));
4215   op_cost(100);
4216   //match(RegI);
4217   format %{ "[$reg]" %}
4218   interface(MEMORY_INTER) %{
4219     base(0xE);   // R_SP
4220     index(0x0);
4221     scale(0x0);
4222     disp($reg);  // Stack Offset
4223   %}
4224 %}
4225 
4226 operand stackSlotP(sRegP reg) %{
4227   constraint(ALLOC_IN_RC(stack_slots));
4228   op_cost(100);
4229   //match(RegP);
4230   format %{ "[$reg]" %}
4231   interface(MEMORY_INTER) %{
4232     base(0xE);   // R_SP
4233     index(0x0);
4234     scale(0x0);
4235     disp($reg);  // Stack Offset
4236   %}
4237 %}
4238 
4239 operand stackSlotF(sRegF reg) %{
4240   constraint(ALLOC_IN_RC(stack_slots));
4241   op_cost(100);
4242   //match(RegF);
4243   format %{ "[$reg]" %}
4244   interface(MEMORY_INTER) %{
4245     base(0xE);   // R_SP
4246     index(0x0);
4247     scale(0x0);
4248     disp($reg);  // Stack Offset
4249   %}
4250 %}
4251 operand stackSlotD(sRegD reg) %{
4252   constraint(ALLOC_IN_RC(stack_slots));
4253   op_cost(100);
4254   //match(RegD);
4255   format %{ "[$reg]" %}
4256   interface(MEMORY_INTER) %{
4257     base(0xE);   // R_SP
4258     index(0x0);
4259     scale(0x0);
4260     disp($reg);  // Stack Offset
4261   %}
4262 %}
4263 operand stackSlotL(sRegL reg) %{
4264   constraint(ALLOC_IN_RC(stack_slots));
4265   op_cost(100);
4266   //match(RegL);
4267   format %{ "[$reg]" %}
4268   interface(MEMORY_INTER) %{
4269     base(0xE);   // R_SP
4270     index(0x0);
4271     scale(0x0);
4272     disp($reg);  // Stack Offset
4273   %}
4274 %}
4275 
4276 // Operands for expressing Control Flow
4277 // NOTE:  Label is a predefined operand which should not be redefined in
4278 //        the AD file.  It is generically handled within the ADLC.
4279 
4280 //----------Conditional Branch Operands----------------------------------------
4281 // Comparison Op  - This is the operation of the comparison, and is limited to
4282 //                  the following set of codes:
4283 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4284 //
4285 // Other attributes of the comparison, such as unsignedness, are specified
4286 // by the comparison instruction that sets a condition code flags register.
4287 // That result is represented by a flags operand whose subtype is appropriate
4288 // to the unsignedness (etc.) of the comparison.
4289 //
4290 // Later, the instruction which matches both the Comparison Op (a Bool) and
4291 // the flags (produced by the Cmp) specifies the coding of the comparison op
4292 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4293 
4294 operand cmpOp() %{
4295   match(Bool);
4296 
4297   format %{ "" %}
4298   interface(COND_INTER) %{
4299     equal(0x1);
4300     not_equal(0x9);
4301     less(0x3);
4302     greater_equal(0xB);
4303     less_equal(0x2);
4304     greater(0xA);
4305   %}
4306 %}
4307 
4308 // Comparison Op, unsigned
4309 operand cmpOpU() %{
4310   match(Bool);
4311 
4312   format %{ "u" %}
4313   interface(COND_INTER) %{
4314     equal(0x1);
4315     not_equal(0x9);
4316     less(0x5);
4317     greater_equal(0xD);
4318     less_equal(0x4);
4319     greater(0xC);
4320   %}
4321 %}
4322 
4323 // Comparison Op, pointer (same as unsigned)
4324 operand cmpOpP() %{
4325   match(Bool);
4326 
4327   format %{ "p" %}
4328   interface(COND_INTER) %{
4329     equal(0x1);
4330     not_equal(0x9);
4331     less(0x5);
4332     greater_equal(0xD);
4333     less_equal(0x4);
4334     greater(0xC);
4335   %}
4336 %}
4337 
4338 // Comparison Op, branch-register encoding
4339 operand cmpOp_reg() %{
4340   match(Bool);
4341 
4342   format %{ "" %}
4343   interface(COND_INTER) %{
4344     equal        (0x1);
4345     not_equal    (0x5);
4346     less         (0x3);
4347     greater_equal(0x7);
4348     less_equal   (0x2);
4349     greater      (0x6);
4350   %}
4351 %}
4352 
4353 // Comparison Code, floating, unordered same as less
4354 operand cmpOpF() %{
4355   match(Bool);
4356 
4357   format %{ "fl" %}
4358   interface(COND_INTER) %{
4359     equal(0x9);
4360     not_equal(0x1);
4361     less(0x3);
4362     greater_equal(0xB);
4363     less_equal(0xE);
4364     greater(0x6);
4365   %}
4366 %}
4367 
4368 // Used by long compare
4369 operand cmpOp_commute() %{
4370   match(Bool);
4371 
4372   format %{ "" %}
4373   interface(COND_INTER) %{
4374     equal(0x1);
4375     not_equal(0x9);
4376     less(0xA);
4377     greater_equal(0x2);
4378     less_equal(0xB);
4379     greater(0x3);
4380   %}
4381 %}
4382 
4383 //----------OPERAND CLASSES----------------------------------------------------
4384 // Operand Classes are groups of operands that are used to simplify
4385 // instruction definitions by not requiring the AD writer to specify separate
4386 // instructions for every form of operand when the instruction accepts
4387 // multiple operand types with the same basic encoding and format.  The classic
4388 // case of this is memory operands.
4389 opclass memory( indirect, indOffset13, indIndex );
4390 opclass indIndexMemory( indIndex );
4391 
4392 //----------PIPELINE-----------------------------------------------------------
4393 pipeline %{
4394 
4395 //----------ATTRIBUTES---------------------------------------------------------
4396 attributes %{
4397   fixed_size_instructions;           // Fixed size instructions
4398   branch_has_delay_slot;             // Branch has delay slot following
4399   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4400   instruction_unit_size = 4;         // An instruction is 4 bytes long
4401   instruction_fetch_unit_size = 16;  // The processor fetches one line
4402   instruction_fetch_units = 1;       // of 16 bytes
4403 
4404   // List of nop instructions
4405   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4406 %}
4407 
4408 //----------RESOURCES----------------------------------------------------------
4409 // Resources are the functional units available to the machine
4410 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4411 
4412 //----------PIPELINE DESCRIPTION-----------------------------------------------
4413 // Pipeline Description specifies the stages in the machine's pipeline
4414 
4415 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4416 
4417 //----------PIPELINE CLASSES---------------------------------------------------
4418 // Pipeline Classes describe the stages in which input and output are
4419 // referenced by the hardware pipeline.
4420 
4421 // Integer ALU reg-reg operation
4422 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4423     single_instruction;
4424     dst   : E(write);
4425     src1  : R(read);
4426     src2  : R(read);
4427     IALU  : R;
4428 %}
4429 
4430 // Integer ALU reg-reg long operation
4431 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4432     instruction_count(2);
4433     dst   : E(write);
4434     src1  : R(read);
4435     src2  : R(read);
4436     IALU  : R;
4437     IALU  : R;
4438 %}
4439 
4440 // Integer ALU reg-reg long dependent operation
4441 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4442     instruction_count(1); multiple_bundles;
4443     dst   : E(write);
4444     src1  : R(read);
4445     src2  : R(read);
4446     cr    : E(write);
4447     IALU  : R(2);
4448 %}
4449 
4450 // Integer ALU reg-imm operaion
4451 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4452     single_instruction;
4453     dst   : E(write);
4454     src1  : R(read);
4455     IALU  : R;
4456 %}
4457 
4458 // Integer ALU reg-reg operation with condition code
4459 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4460     single_instruction;
4461     dst   : E(write);
4462     cr    : E(write);
4463     src1  : R(read);
4464     src2  : R(read);
4465     IALU  : R;
4466 %}
4467 
4468 // Integer ALU reg-imm operation with condition code
4469 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4470     single_instruction;
4471     dst   : E(write);
4472     cr    : E(write);
4473     src1  : R(read);
4474     IALU  : R;
4475 %}
4476 
4477 // Integer ALU zero-reg operation
4478 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4479     single_instruction;
4480     dst   : E(write);
4481     src2  : R(read);
4482     IALU  : R;
4483 %}
4484 
4485 // Integer ALU zero-reg operation with condition code only
4486 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4487     single_instruction;
4488     cr    : E(write);
4489     src   : R(read);
4490     IALU  : R;
4491 %}
4492 
4493 // Integer ALU reg-reg operation with condition code only
4494 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4495     single_instruction;
4496     cr    : E(write);
4497     src1  : R(read);
4498     src2  : R(read);
4499     IALU  : R;
4500 %}
4501 
4502 // Integer ALU reg-imm operation with condition code only
4503 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4504     single_instruction;
4505     cr    : E(write);
4506     src1  : R(read);
4507     IALU  : R;
4508 %}
4509 
4510 // Integer ALU reg-reg-zero operation with condition code only
4511 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4512     single_instruction;
4513     cr    : E(write);
4514     src1  : R(read);
4515     src2  : R(read);
4516     IALU  : R;
4517 %}
4518 
4519 // Integer ALU reg-imm-zero operation with condition code only
4520 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4521     single_instruction;
4522     cr    : E(write);
4523     src1  : R(read);
4524     IALU  : R;
4525 %}
4526 
4527 // Integer ALU reg-reg operation with condition code, src1 modified
4528 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4529     single_instruction;
4530     cr    : E(write);
4531     src1  : E(write);
4532     src1  : R(read);
4533     src2  : R(read);
4534     IALU  : R;
4535 %}
4536 
4537 // Integer ALU reg-imm operation with condition code, src1 modified
4538 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4539     single_instruction;
4540     cr    : E(write);
4541     src1  : E(write);
4542     src1  : R(read);
4543     IALU  : R;
4544 %}
4545 
4546 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4547     multiple_bundles;
4548     dst   : E(write)+4;
4549     cr    : E(write);
4550     src1  : R(read);
4551     src2  : R(read);
4552     IALU  : R(3);
4553     BR    : R(2);
4554 %}
4555 
4556 // Integer ALU operation
4557 pipe_class ialu_none(iRegI dst) %{
4558     single_instruction;
4559     dst   : E(write);
4560     IALU  : R;
4561 %}
4562 
4563 // Integer ALU reg operation
4564 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4565     single_instruction; may_have_no_code;
4566     dst   : E(write);
4567     src   : R(read);
4568     IALU  : R;
4569 %}
4570 
4571 // Integer ALU reg conditional operation
4572 // This instruction has a 1 cycle stall, and cannot execute
4573 // in the same cycle as the instruction setting the condition
4574 // code. We kludge this by pretending to read the condition code
4575 // 1 cycle earlier, and by marking the functional units as busy
4576 // for 2 cycles with the result available 1 cycle later than
4577 // is really the case.
4578 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4579     single_instruction;
4580     op2_out : C(write);
4581     op1     : R(read);
4582     cr      : R(read);       // This is really E, with a 1 cycle stall
4583     BR      : R(2);
4584     MS      : R(2);
4585 %}
4586 
4587 #ifdef _LP64
4588 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4589     instruction_count(1); multiple_bundles;
4590     dst     : C(write)+1;
4591     src     : R(read)+1;
4592     IALU    : R(1);
4593     BR      : E(2);
4594     MS      : E(2);
4595 %}
4596 #endif
4597 
4598 // Integer ALU reg operation
4599 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4600     single_instruction; may_have_no_code;
4601     dst   : E(write);
4602     src   : R(read);
4603     IALU  : R;
4604 %}
4605 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4606     single_instruction; may_have_no_code;
4607     dst   : E(write);
4608     src   : R(read);
4609     IALU  : R;
4610 %}
4611 
4612 // Two integer ALU reg operations
4613 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4614     instruction_count(2);
4615     dst   : E(write);
4616     src   : R(read);
4617     A0    : R;
4618     A1    : R;
4619 %}
4620 
4621 // Two integer ALU reg operations
4622 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4623     instruction_count(2); may_have_no_code;
4624     dst   : E(write);
4625     src   : R(read);
4626     A0    : R;
4627     A1    : R;
4628 %}
4629 
4630 // Integer ALU imm operation
4631 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4632     single_instruction;
4633     dst   : E(write);
4634     IALU  : R;
4635 %}
4636 
4637 // Integer ALU reg-reg with carry operation
4638 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4639     single_instruction;
4640     dst   : E(write);
4641     src1  : R(read);
4642     src2  : R(read);
4643     IALU  : R;
4644 %}
4645 
4646 // Integer ALU cc operation
4647 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4648     single_instruction;
4649     dst   : E(write);
4650     cc    : R(read);
4651     IALU  : R;
4652 %}
4653 
4654 // Integer ALU cc / second IALU operation
4655 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4656     instruction_count(1); multiple_bundles;
4657     dst   : E(write)+1;
4658     src   : R(read);
4659     IALU  : R;
4660 %}
4661 
4662 // Integer ALU cc / second IALU operation
4663 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4664     instruction_count(1); multiple_bundles;
4665     dst   : E(write)+1;
4666     p     : R(read);
4667     q     : R(read);
4668     IALU  : R;
4669 %}
4670 
4671 // Integer ALU hi-lo-reg operation
4672 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4673     instruction_count(1); multiple_bundles;
4674     dst   : E(write)+1;
4675     IALU  : R(2);
4676 %}
4677 
4678 // Float ALU hi-lo-reg operation (with temp)
4679 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4680     instruction_count(1); multiple_bundles;
4681     dst   : E(write)+1;
4682     IALU  : R(2);
4683 %}
4684 
4685 // Long Constant
4686 pipe_class loadConL( iRegL dst, immL src ) %{
4687     instruction_count(2); multiple_bundles;
4688     dst   : E(write)+1;
4689     IALU  : R(2);
4690     IALU  : R(2);
4691 %}
4692 
4693 // Pointer Constant
4694 pipe_class loadConP( iRegP dst, immP src ) %{
4695     instruction_count(0); multiple_bundles;
4696     fixed_latency(6);
4697 %}
4698 
4699 // Polling Address
4700 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4701 #ifdef _LP64
4702     instruction_count(0); multiple_bundles;
4703     fixed_latency(6);
4704 #else
4705     dst   : E(write);
4706     IALU  : R;
4707 #endif
4708 %}
4709 
4710 // Long Constant small
4711 pipe_class loadConLlo( iRegL dst, immL src ) %{
4712     instruction_count(2);
4713     dst   : E(write);
4714     IALU  : R;
4715     IALU  : R;
4716 %}
4717 
4718 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4719 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4720     instruction_count(1); multiple_bundles;
4721     src   : R(read);
4722     dst   : M(write)+1;
4723     IALU  : R;
4724     MS    : E;
4725 %}
4726 
4727 // Integer ALU nop operation
4728 pipe_class ialu_nop() %{
4729     single_instruction;
4730     IALU  : R;
4731 %}
4732 
4733 // Integer ALU nop operation
4734 pipe_class ialu_nop_A0() %{
4735     single_instruction;
4736     A0    : R;
4737 %}
4738 
4739 // Integer ALU nop operation
4740 pipe_class ialu_nop_A1() %{
4741     single_instruction;
4742     A1    : R;
4743 %}
4744 
4745 // Integer Multiply reg-reg operation
4746 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4747     single_instruction;
4748     dst   : E(write);
4749     src1  : R(read);
4750     src2  : R(read);
4751     MS    : R(5);
4752 %}
4753 
4754 // Integer Multiply reg-imm operation
4755 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4756     single_instruction;
4757     dst   : E(write);
4758     src1  : R(read);
4759     MS    : R(5);
4760 %}
4761 
4762 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4763     single_instruction;
4764     dst   : E(write)+4;
4765     src1  : R(read);
4766     src2  : R(read);
4767     MS    : R(6);
4768 %}
4769 
4770 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4771     single_instruction;
4772     dst   : E(write)+4;
4773     src1  : R(read);
4774     MS    : R(6);
4775 %}
4776 
4777 // Integer Divide reg-reg
4778 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4779     instruction_count(1); multiple_bundles;
4780     dst   : E(write);
4781     temp  : E(write);
4782     src1  : R(read);
4783     src2  : R(read);
4784     temp  : R(read);
4785     MS    : R(38);
4786 %}
4787 
4788 // Integer Divide reg-imm
4789 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4790     instruction_count(1); multiple_bundles;
4791     dst   : E(write);
4792     temp  : E(write);
4793     src1  : R(read);
4794     temp  : R(read);
4795     MS    : R(38);
4796 %}
4797 
4798 // Long Divide
4799 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4800     dst  : E(write)+71;
4801     src1 : R(read);
4802     src2 : R(read)+1;
4803     MS   : R(70);
4804 %}
4805 
4806 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4807     dst  : E(write)+71;
4808     src1 : R(read);
4809     MS   : R(70);
4810 %}
4811 
4812 // Floating Point Add Float
4813 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4814     single_instruction;
4815     dst   : X(write);
4816     src1  : E(read);
4817     src2  : E(read);
4818     FA    : R;
4819 %}
4820 
4821 // Floating Point Add Double
4822 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4823     single_instruction;
4824     dst   : X(write);
4825     src1  : E(read);
4826     src2  : E(read);
4827     FA    : R;
4828 %}
4829 
4830 // Floating Point Conditional Move based on integer flags
4831 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4832     single_instruction;
4833     dst   : X(write);
4834     src   : E(read);
4835     cr    : R(read);
4836     FA    : R(2);
4837     BR    : R(2);
4838 %}
4839 
4840 // Floating Point Conditional Move based on integer flags
4841 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4842     single_instruction;
4843     dst   : X(write);
4844     src   : E(read);
4845     cr    : R(read);
4846     FA    : R(2);
4847     BR    : R(2);
4848 %}
4849 
4850 // Floating Point Multiply Float
4851 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4852     single_instruction;
4853     dst   : X(write);
4854     src1  : E(read);
4855     src2  : E(read);
4856     FM    : R;
4857 %}
4858 
4859 // Floating Point Multiply Double
4860 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4861     single_instruction;
4862     dst   : X(write);
4863     src1  : E(read);
4864     src2  : E(read);
4865     FM    : R;
4866 %}
4867 
4868 // Floating Point Divide Float
4869 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4870     single_instruction;
4871     dst   : X(write);
4872     src1  : E(read);
4873     src2  : E(read);
4874     FM    : R;
4875     FDIV  : C(14);
4876 %}
4877 
4878 // Floating Point Divide Double
4879 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4880     single_instruction;
4881     dst   : X(write);
4882     src1  : E(read);
4883     src2  : E(read);
4884     FM    : R;
4885     FDIV  : C(17);
4886 %}
4887 
4888 // Floating Point Move/Negate/Abs Float
4889 pipe_class faddF_reg(regF dst, regF src) %{
4890     single_instruction;
4891     dst   : W(write);
4892     src   : E(read);
4893     FA    : R(1);
4894 %}
4895 
4896 // Floating Point Move/Negate/Abs Double
4897 pipe_class faddD_reg(regD dst, regD src) %{
4898     single_instruction;
4899     dst   : W(write);
4900     src   : E(read);
4901     FA    : R;
4902 %}
4903 
4904 // Floating Point Convert F->D
4905 pipe_class fcvtF2D(regD dst, regF src) %{
4906     single_instruction;
4907     dst   : X(write);
4908     src   : E(read);
4909     FA    : R;
4910 %}
4911 
4912 // Floating Point Convert I->D
4913 pipe_class fcvtI2D(regD dst, regF src) %{
4914     single_instruction;
4915     dst   : X(write);
4916     src   : E(read);
4917     FA    : R;
4918 %}
4919 
4920 // Floating Point Convert LHi->D
4921 pipe_class fcvtLHi2D(regD dst, regD src) %{
4922     single_instruction;
4923     dst   : X(write);
4924     src   : E(read);
4925     FA    : R;
4926 %}
4927 
4928 // Floating Point Convert L->D
4929 pipe_class fcvtL2D(regD dst, regF src) %{
4930     single_instruction;
4931     dst   : X(write);
4932     src   : E(read);
4933     FA    : R;
4934 %}
4935 
4936 // Floating Point Convert L->F
4937 pipe_class fcvtL2F(regD dst, regF src) %{
4938     single_instruction;
4939     dst   : X(write);
4940     src   : E(read);
4941     FA    : R;
4942 %}
4943 
4944 // Floating Point Convert D->F
4945 pipe_class fcvtD2F(regD dst, regF src) %{
4946     single_instruction;
4947     dst   : X(write);
4948     src   : E(read);
4949     FA    : R;
4950 %}
4951 
4952 // Floating Point Convert I->L
4953 pipe_class fcvtI2L(regD dst, regF src) %{
4954     single_instruction;
4955     dst   : X(write);
4956     src   : E(read);
4957     FA    : R;
4958 %}
4959 
4960 // Floating Point Convert D->F
4961 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4962     instruction_count(1); multiple_bundles;
4963     dst   : X(write)+6;
4964     src   : E(read);
4965     FA    : R;
4966 %}
4967 
4968 // Floating Point Convert D->L
4969 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4970     instruction_count(1); multiple_bundles;
4971     dst   : X(write)+6;
4972     src   : E(read);
4973     FA    : R;
4974 %}
4975 
4976 // Floating Point Convert F->I
4977 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4978     instruction_count(1); multiple_bundles;
4979     dst   : X(write)+6;
4980     src   : E(read);
4981     FA    : R;
4982 %}
4983 
4984 // Floating Point Convert F->L
4985 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4986     instruction_count(1); multiple_bundles;
4987     dst   : X(write)+6;
4988     src   : E(read);
4989     FA    : R;
4990 %}
4991 
4992 // Floating Point Convert I->F
4993 pipe_class fcvtI2F(regF dst, regF src) %{
4994     single_instruction;
4995     dst   : X(write);
4996     src   : E(read);
4997     FA    : R;
4998 %}
4999 
5000 // Floating Point Compare
5001 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
5002     single_instruction;
5003     cr    : X(write);
5004     src1  : E(read);
5005     src2  : E(read);
5006     FA    : R;
5007 %}
5008 
5009 // Floating Point Compare
5010 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5011     single_instruction;
5012     cr    : X(write);
5013     src1  : E(read);
5014     src2  : E(read);
5015     FA    : R;
5016 %}
5017 
5018 // Floating Add Nop
5019 pipe_class fadd_nop() %{
5020     single_instruction;
5021     FA  : R;
5022 %}
5023 
5024 // Integer Store to Memory
5025 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5026     single_instruction;
5027     mem   : R(read);
5028     src   : C(read);
5029     MS    : R;
5030 %}
5031 
5032 // Integer Store to Memory
5033 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5034     single_instruction;
5035     mem   : R(read);
5036     src   : C(read);
5037     MS    : R;
5038 %}
5039 
5040 // Integer Store Zero to Memory
5041 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5042     single_instruction;
5043     mem   : R(read);
5044     MS    : R;
5045 %}
5046 
5047 // Special Stack Slot Store
5048 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5049     single_instruction;
5050     stkSlot : R(read);
5051     src     : C(read);
5052     MS      : R;
5053 %}
5054 
5055 // Special Stack Slot Store
5056 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5057     instruction_count(2); multiple_bundles;
5058     stkSlot : R(read);
5059     src     : C(read);
5060     MS      : R(2);
5061 %}
5062 
5063 // Float Store
5064 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5065     single_instruction;
5066     mem : R(read);
5067     src : C(read);
5068     MS  : R;
5069 %}
5070 
5071 // Float Store
5072 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5073     single_instruction;
5074     mem : R(read);
5075     MS  : R;
5076 %}
5077 
5078 // Double Store
5079 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5080     instruction_count(1);
5081     mem : R(read);
5082     src : C(read);
5083     MS  : R;
5084 %}
5085 
5086 // Double Store
5087 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5088     single_instruction;
5089     mem : R(read);
5090     MS  : R;
5091 %}
5092 
5093 // Special Stack Slot Float Store
5094 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5095     single_instruction;
5096     stkSlot : R(read);
5097     src     : C(read);
5098     MS      : R;
5099 %}
5100 
5101 // Special Stack Slot Double Store
5102 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5103     single_instruction;
5104     stkSlot : R(read);
5105     src     : C(read);
5106     MS      : R;
5107 %}
5108 
5109 // Integer Load (when sign bit propagation not needed)
5110 pipe_class iload_mem(iRegI dst, memory mem) %{
5111     single_instruction;
5112     mem : R(read);
5113     dst : C(write);
5114     MS  : R;
5115 %}
5116 
5117 // Integer Load from stack operand
5118 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5119     single_instruction;
5120     mem : R(read);
5121     dst : C(write);
5122     MS  : R;
5123 %}
5124 
5125 // Integer Load (when sign bit propagation or masking is needed)
5126 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5127     single_instruction;
5128     mem : R(read);
5129     dst : M(write);
5130     MS  : R;
5131 %}
5132 
5133 // Float Load
5134 pipe_class floadF_mem(regF dst, memory mem) %{
5135     single_instruction;
5136     mem : R(read);
5137     dst : M(write);
5138     MS  : R;
5139 %}
5140 
5141 // Float Load
5142 pipe_class floadD_mem(regD dst, memory mem) %{
5143     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5144     mem : R(read);
5145     dst : M(write);
5146     MS  : R;
5147 %}
5148 
5149 // Float Load
5150 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5151     single_instruction;
5152     stkSlot : R(read);
5153     dst : M(write);
5154     MS  : R;
5155 %}
5156 
5157 // Float Load
5158 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5159     single_instruction;
5160     stkSlot : R(read);
5161     dst : M(write);
5162     MS  : R;
5163 %}
5164 
5165 // Memory Nop
5166 pipe_class mem_nop() %{
5167     single_instruction;
5168     MS  : R;
5169 %}
5170 
5171 pipe_class sethi(iRegP dst, immI src) %{
5172     single_instruction;
5173     dst  : E(write);
5174     IALU : R;
5175 %}
5176 
5177 pipe_class loadPollP(iRegP poll) %{
5178     single_instruction;
5179     poll : R(read);
5180     MS   : R;
5181 %}
5182 
5183 pipe_class br(Universe br, label labl) %{
5184     single_instruction_with_delay_slot;
5185     BR  : R;
5186 %}
5187 
5188 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5189     single_instruction_with_delay_slot;
5190     cr    : E(read);
5191     BR    : R;
5192 %}
5193 
5194 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5195     single_instruction_with_delay_slot;
5196     op1 : E(read);
5197     BR  : R;
5198     MS  : R;
5199 %}
5200 
5201 // Compare and branch
5202 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5203     instruction_count(2); has_delay_slot;
5204     cr    : E(write);
5205     src1  : R(read);
5206     src2  : R(read);
5207     IALU  : R;
5208     BR    : R;
5209 %}
5210 
5211 // Compare and branch
5212 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5213     instruction_count(2); has_delay_slot;
5214     cr    : E(write);
5215     src1  : R(read);
5216     IALU  : R;
5217     BR    : R;
5218 %}
5219 
5220 // Compare and branch using cbcond
5221 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5222     single_instruction;
5223     src1  : E(read);
5224     src2  : E(read);
5225     IALU  : R;
5226     BR    : R;
5227 %}
5228 
5229 // Compare and branch using cbcond
5230 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5231     single_instruction;
5232     src1  : E(read);
5233     IALU  : R;
5234     BR    : R;
5235 %}
5236 
5237 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5238     single_instruction_with_delay_slot;
5239     cr    : E(read);
5240     BR    : R;
5241 %}
5242 
5243 pipe_class br_nop() %{
5244     single_instruction;
5245     BR  : R;
5246 %}
5247 
5248 pipe_class simple_call(method meth) %{
5249     instruction_count(2); multiple_bundles; force_serialization;
5250     fixed_latency(100);
5251     BR  : R(1);
5252     MS  : R(1);
5253     A0  : R(1);
5254 %}
5255 
5256 pipe_class compiled_call(method meth) %{
5257     instruction_count(1); multiple_bundles; force_serialization;
5258     fixed_latency(100);
5259     MS  : R(1);
5260 %}
5261 
5262 pipe_class call(method meth) %{
5263     instruction_count(0); multiple_bundles; force_serialization;
5264     fixed_latency(100);
5265 %}
5266 
5267 pipe_class tail_call(Universe ignore, label labl) %{
5268     single_instruction; has_delay_slot;
5269     fixed_latency(100);
5270     BR  : R(1);
5271     MS  : R(1);
5272 %}
5273 
5274 pipe_class ret(Universe ignore) %{
5275     single_instruction; has_delay_slot;
5276     BR  : R(1);
5277     MS  : R(1);
5278 %}
5279 
5280 pipe_class ret_poll(g3RegP poll) %{
5281     instruction_count(3); has_delay_slot;
5282     poll : E(read);
5283     MS   : R;
5284 %}
5285 
5286 // The real do-nothing guy
5287 pipe_class empty( ) %{
5288     instruction_count(0);
5289 %}
5290 
5291 pipe_class long_memory_op() %{
5292     instruction_count(0); multiple_bundles; force_serialization;
5293     fixed_latency(25);
5294     MS  : R(1);
5295 %}
5296 
5297 // Check-cast
5298 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5299     array : R(read);
5300     match  : R(read);
5301     IALU   : R(2);
5302     BR     : R(2);
5303     MS     : R;
5304 %}
5305 
5306 // Convert FPU flags into +1,0,-1
5307 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5308     src1  : E(read);
5309     src2  : E(read);
5310     dst   : E(write);
5311     FA    : R;
5312     MS    : R(2);
5313     BR    : R(2);
5314 %}
5315 
5316 // Compare for p < q, and conditionally add y
5317 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5318     p     : E(read);
5319     q     : E(read);
5320     y     : E(read);
5321     IALU  : R(3)
5322 %}
5323 
5324 // Perform a compare, then move conditionally in a branch delay slot.
5325 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5326     src2   : E(read);
5327     srcdst : E(read);
5328     IALU   : R;
5329     BR     : R;
5330 %}
5331 
5332 // Define the class for the Nop node
5333 define %{
5334    MachNop = ialu_nop;
5335 %}
5336 
5337 %}
5338 
5339 //----------INSTRUCTIONS-------------------------------------------------------
5340 
5341 //------------Special Stack Slot instructions - no match rules-----------------
5342 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5343   // No match rule to avoid chain rule match.
5344   effect(DEF dst, USE src);
5345   ins_cost(MEMORY_REF_COST);
5346   size(4);
5347   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5348   opcode(Assembler::ldf_op3);
5349   ins_encode(simple_form3_mem_reg(src, dst));
5350   ins_pipe(floadF_stk);
5351 %}
5352 
5353 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5354   // No match rule to avoid chain rule match.
5355   effect(DEF dst, USE src);
5356   ins_cost(MEMORY_REF_COST);
5357   size(4);
5358   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5359   opcode(Assembler::lddf_op3);
5360   ins_encode(simple_form3_mem_reg(src, dst));
5361   ins_pipe(floadD_stk);
5362 %}
5363 
5364 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5365   // No match rule to avoid chain rule match.
5366   effect(DEF dst, USE src);
5367   ins_cost(MEMORY_REF_COST);
5368   size(4);
5369   format %{ "STF    $src,$dst\t! regF to stkI" %}
5370   opcode(Assembler::stf_op3);
5371   ins_encode(simple_form3_mem_reg(dst, src));
5372   ins_pipe(fstoreF_stk_reg);
5373 %}
5374 
5375 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5376   // No match rule to avoid chain rule match.
5377   effect(DEF dst, USE src);
5378   ins_cost(MEMORY_REF_COST);
5379   size(4);
5380   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5381   opcode(Assembler::stdf_op3);
5382   ins_encode(simple_form3_mem_reg(dst, src));
5383   ins_pipe(fstoreD_stk_reg);
5384 %}
5385 
5386 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5387   effect(DEF dst, USE src);
5388   ins_cost(MEMORY_REF_COST*2);
5389   size(8);
5390   format %{ "STW    $src,$dst.hi\t! long\n\t"
5391             "STW    R_G0,$dst.lo" %}
5392   opcode(Assembler::stw_op3);
5393   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5394   ins_pipe(lstoreI_stk_reg);
5395 %}
5396 
5397 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5398   // No match rule to avoid chain rule match.
5399   effect(DEF dst, USE src);
5400   ins_cost(MEMORY_REF_COST);
5401   size(4);
5402   format %{ "STX    $src,$dst\t! regL to stkD" %}
5403   opcode(Assembler::stx_op3);
5404   ins_encode(simple_form3_mem_reg( dst, src ) );
5405   ins_pipe(istore_stk_reg);
5406 %}
5407 
5408 //---------- Chain stack slots between similar types --------
5409 
5410 // Load integer from stack slot
5411 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5412   match(Set dst src);
5413   ins_cost(MEMORY_REF_COST);
5414 
5415   size(4);
5416   format %{ "LDUW   $src,$dst\t!stk" %}
5417   opcode(Assembler::lduw_op3);
5418   ins_encode(simple_form3_mem_reg( src, dst ) );
5419   ins_pipe(iload_mem);
5420 %}
5421 
5422 // Store integer to stack slot
5423 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5424   match(Set dst src);
5425   ins_cost(MEMORY_REF_COST);
5426 
5427   size(4);
5428   format %{ "STW    $src,$dst\t!stk" %}
5429   opcode(Assembler::stw_op3);
5430   ins_encode(simple_form3_mem_reg( dst, src ) );
5431   ins_pipe(istore_mem_reg);
5432 %}
5433 
5434 // Load long from stack slot
5435 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5436   match(Set dst src);
5437 
5438   ins_cost(MEMORY_REF_COST);
5439   size(4);
5440   format %{ "LDX    $src,$dst\t! long" %}
5441   opcode(Assembler::ldx_op3);
5442   ins_encode(simple_form3_mem_reg( src, dst ) );
5443   ins_pipe(iload_mem);
5444 %}
5445 
5446 // Store long to stack slot
5447 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5448   match(Set dst src);
5449 
5450   ins_cost(MEMORY_REF_COST);
5451   size(4);
5452   format %{ "STX    $src,$dst\t! long" %}
5453   opcode(Assembler::stx_op3);
5454   ins_encode(simple_form3_mem_reg( dst, src ) );
5455   ins_pipe(istore_mem_reg);
5456 %}
5457 
5458 #ifdef _LP64
5459 // Load pointer from stack slot, 64-bit encoding
5460 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5461   match(Set dst src);
5462   ins_cost(MEMORY_REF_COST);
5463   size(4);
5464   format %{ "LDX    $src,$dst\t!ptr" %}
5465   opcode(Assembler::ldx_op3);
5466   ins_encode(simple_form3_mem_reg( src, dst ) );
5467   ins_pipe(iload_mem);
5468 %}
5469 
5470 // Store pointer to stack slot
5471 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5472   match(Set dst src);
5473   ins_cost(MEMORY_REF_COST);
5474   size(4);
5475   format %{ "STX    $src,$dst\t!ptr" %}
5476   opcode(Assembler::stx_op3);
5477   ins_encode(simple_form3_mem_reg( dst, src ) );
5478   ins_pipe(istore_mem_reg);
5479 %}
5480 #else // _LP64
5481 // Load pointer from stack slot, 32-bit encoding
5482 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5483   match(Set dst src);
5484   ins_cost(MEMORY_REF_COST);
5485   format %{ "LDUW   $src,$dst\t!ptr" %}
5486   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5487   ins_encode(simple_form3_mem_reg( src, dst ) );
5488   ins_pipe(iload_mem);
5489 %}
5490 
5491 // Store pointer to stack slot
5492 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5493   match(Set dst src);
5494   ins_cost(MEMORY_REF_COST);
5495   format %{ "STW    $src,$dst\t!ptr" %}
5496   opcode(Assembler::stw_op3, Assembler::ldst_op);
5497   ins_encode(simple_form3_mem_reg( dst, src ) );
5498   ins_pipe(istore_mem_reg);
5499 %}
5500 #endif // _LP64
5501 
5502 //------------Special Nop instructions for bundling - no match rules-----------
5503 // Nop using the A0 functional unit
5504 instruct Nop_A0() %{
5505   ins_cost(0);
5506 
5507   format %{ "NOP    ! Alu Pipeline" %}
5508   opcode(Assembler::or_op3, Assembler::arith_op);
5509   ins_encode( form2_nop() );
5510   ins_pipe(ialu_nop_A0);
5511 %}
5512 
5513 // Nop using the A1 functional unit
5514 instruct Nop_A1( ) %{
5515   ins_cost(0);
5516 
5517   format %{ "NOP    ! Alu Pipeline" %}
5518   opcode(Assembler::or_op3, Assembler::arith_op);
5519   ins_encode( form2_nop() );
5520   ins_pipe(ialu_nop_A1);
5521 %}
5522 
5523 // Nop using the memory functional unit
5524 instruct Nop_MS( ) %{
5525   ins_cost(0);
5526 
5527   format %{ "NOP    ! Memory Pipeline" %}
5528   ins_encode( emit_mem_nop );
5529   ins_pipe(mem_nop);
5530 %}
5531 
5532 // Nop using the floating add functional unit
5533 instruct Nop_FA( ) %{
5534   ins_cost(0);
5535 
5536   format %{ "NOP    ! Floating Add Pipeline" %}
5537   ins_encode( emit_fadd_nop );
5538   ins_pipe(fadd_nop);
5539 %}
5540 
5541 // Nop using the branch functional unit
5542 instruct Nop_BR( ) %{
5543   ins_cost(0);
5544 
5545   format %{ "NOP    ! Branch Pipeline" %}
5546   ins_encode( emit_br_nop );
5547   ins_pipe(br_nop);
5548 %}
5549 
5550 //----------Load/Store/Move Instructions---------------------------------------
5551 //----------Load Instructions--------------------------------------------------
5552 // Load Byte (8bit signed)
5553 instruct loadB(iRegI dst, memory mem) %{
5554   match(Set dst (LoadB mem));
5555   ins_cost(MEMORY_REF_COST);
5556 
5557   size(4);
5558   format %{ "LDSB   $mem,$dst\t! byte" %}
5559   ins_encode %{
5560     __ ldsb($mem$$Address, $dst$$Register);
5561   %}
5562   ins_pipe(iload_mask_mem);
5563 %}
5564 
5565 // Load Byte (8bit signed) into a Long Register
5566 instruct loadB2L(iRegL dst, memory mem) %{
5567   match(Set dst (ConvI2L (LoadB mem)));
5568   ins_cost(MEMORY_REF_COST);
5569 
5570   size(4);
5571   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5572   ins_encode %{
5573     __ ldsb($mem$$Address, $dst$$Register);
5574   %}
5575   ins_pipe(iload_mask_mem);
5576 %}
5577 
5578 // Load Unsigned Byte (8bit UNsigned) into an int reg
5579 instruct loadUB(iRegI dst, memory mem) %{
5580   match(Set dst (LoadUB mem));
5581   ins_cost(MEMORY_REF_COST);
5582 
5583   size(4);
5584   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5585   ins_encode %{
5586     __ ldub($mem$$Address, $dst$$Register);
5587   %}
5588   ins_pipe(iload_mem);
5589 %}
5590 
5591 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5592 instruct loadUB2L(iRegL dst, memory mem) %{
5593   match(Set dst (ConvI2L (LoadUB mem)));
5594   ins_cost(MEMORY_REF_COST);
5595 
5596   size(4);
5597   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5598   ins_encode %{
5599     __ ldub($mem$$Address, $dst$$Register);
5600   %}
5601   ins_pipe(iload_mem);
5602 %}
5603 
5604 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5605 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5606   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5607   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5608 
5609   size(2*4);
5610   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5611             "AND    $dst,$mask,$dst" %}
5612   ins_encode %{
5613     __ ldub($mem$$Address, $dst$$Register);
5614     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5615   %}
5616   ins_pipe(iload_mem);
5617 %}
5618 
5619 // Load Short (16bit signed)
5620 instruct loadS(iRegI dst, memory mem) %{
5621   match(Set dst (LoadS mem));
5622   ins_cost(MEMORY_REF_COST);
5623 
5624   size(4);
5625   format %{ "LDSH   $mem,$dst\t! short" %}
5626   ins_encode %{
5627     __ ldsh($mem$$Address, $dst$$Register);
5628   %}
5629   ins_pipe(iload_mask_mem);
5630 %}
5631 
5632 // Load Short (16 bit signed) to Byte (8 bit signed)
5633 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5634   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5635   ins_cost(MEMORY_REF_COST);
5636 
5637   size(4);
5638 
5639   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5640   ins_encode %{
5641     __ ldsb($mem$$Address, $dst$$Register, 1);
5642   %}
5643   ins_pipe(iload_mask_mem);
5644 %}
5645 
5646 // Load Short (16bit signed) into a Long Register
5647 instruct loadS2L(iRegL dst, memory mem) %{
5648   match(Set dst (ConvI2L (LoadS mem)));
5649   ins_cost(MEMORY_REF_COST);
5650 
5651   size(4);
5652   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5653   ins_encode %{
5654     __ ldsh($mem$$Address, $dst$$Register);
5655   %}
5656   ins_pipe(iload_mask_mem);
5657 %}
5658 
5659 // Load Unsigned Short/Char (16bit UNsigned)
5660 instruct loadUS(iRegI dst, memory mem) %{
5661   match(Set dst (LoadUS mem));
5662   ins_cost(MEMORY_REF_COST);
5663 
5664   size(4);
5665   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5666   ins_encode %{
5667     __ lduh($mem$$Address, $dst$$Register);
5668   %}
5669   ins_pipe(iload_mem);
5670 %}
5671 
5672 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5673 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5674   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5675   ins_cost(MEMORY_REF_COST);
5676 
5677   size(4);
5678   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5679   ins_encode %{
5680     __ ldsb($mem$$Address, $dst$$Register, 1);
5681   %}
5682   ins_pipe(iload_mask_mem);
5683 %}
5684 
5685 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5686 instruct loadUS2L(iRegL dst, memory mem) %{
5687   match(Set dst (ConvI2L (LoadUS mem)));
5688   ins_cost(MEMORY_REF_COST);
5689 
5690   size(4);
5691   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5692   ins_encode %{
5693     __ lduh($mem$$Address, $dst$$Register);
5694   %}
5695   ins_pipe(iload_mem);
5696 %}
5697 
5698 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5699 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5700   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5701   ins_cost(MEMORY_REF_COST);
5702 
5703   size(4);
5704   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5705   ins_encode %{
5706     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5707   %}
5708   ins_pipe(iload_mem);
5709 %}
5710 
5711 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5712 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5713   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5714   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5715 
5716   size(2*4);
5717   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5718             "AND    $dst,$mask,$dst" %}
5719   ins_encode %{
5720     Register Rdst = $dst$$Register;
5721     __ lduh($mem$$Address, Rdst);
5722     __ and3(Rdst, $mask$$constant, Rdst);
5723   %}
5724   ins_pipe(iload_mem);
5725 %}
5726 
5727 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5728 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5729   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5730   effect(TEMP dst, TEMP tmp);
5731   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5732 
5733   size((3+1)*4);  // set may use two instructions.
5734   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5735             "SET    $mask,$tmp\n\t"
5736             "AND    $dst,$tmp,$dst" %}
5737   ins_encode %{
5738     Register Rdst = $dst$$Register;
5739     Register Rtmp = $tmp$$Register;
5740     __ lduh($mem$$Address, Rdst);
5741     __ set($mask$$constant, Rtmp);
5742     __ and3(Rdst, Rtmp, Rdst);
5743   %}
5744   ins_pipe(iload_mem);
5745 %}
5746 
5747 // Load Integer
5748 instruct loadI(iRegI dst, memory mem) %{
5749   match(Set dst (LoadI mem));
5750   ins_cost(MEMORY_REF_COST);
5751 
5752   size(4);
5753   format %{ "LDUW   $mem,$dst\t! int" %}
5754   ins_encode %{
5755     __ lduw($mem$$Address, $dst$$Register);
5756   %}
5757   ins_pipe(iload_mem);
5758 %}
5759 
5760 // Load Integer to Byte (8 bit signed)
5761 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5762   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5763   ins_cost(MEMORY_REF_COST);
5764 
5765   size(4);
5766 
5767   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5768   ins_encode %{
5769     __ ldsb($mem$$Address, $dst$$Register, 3);
5770   %}
5771   ins_pipe(iload_mask_mem);
5772 %}
5773 
5774 // Load Integer to Unsigned Byte (8 bit UNsigned)
5775 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5776   match(Set dst (AndI (LoadI mem) mask));
5777   ins_cost(MEMORY_REF_COST);
5778 
5779   size(4);
5780 
5781   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5782   ins_encode %{
5783     __ ldub($mem$$Address, $dst$$Register, 3);
5784   %}
5785   ins_pipe(iload_mask_mem);
5786 %}
5787 
5788 // Load Integer to Short (16 bit signed)
5789 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5790   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5791   ins_cost(MEMORY_REF_COST);
5792 
5793   size(4);
5794 
5795   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5796   ins_encode %{
5797     __ ldsh($mem$$Address, $dst$$Register, 2);
5798   %}
5799   ins_pipe(iload_mask_mem);
5800 %}
5801 
5802 // Load Integer to Unsigned Short (16 bit UNsigned)
5803 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5804   match(Set dst (AndI (LoadI mem) mask));
5805   ins_cost(MEMORY_REF_COST);
5806 
5807   size(4);
5808 
5809   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5810   ins_encode %{
5811     __ lduh($mem$$Address, $dst$$Register, 2);
5812   %}
5813   ins_pipe(iload_mask_mem);
5814 %}
5815 
5816 // Load Integer into a Long Register
5817 instruct loadI2L(iRegL dst, memory mem) %{
5818   match(Set dst (ConvI2L (LoadI mem)));
5819   ins_cost(MEMORY_REF_COST);
5820 
5821   size(4);
5822   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5823   ins_encode %{
5824     __ ldsw($mem$$Address, $dst$$Register);
5825   %}
5826   ins_pipe(iload_mask_mem);
5827 %}
5828 
5829 // Load Integer with mask 0xFF into a Long Register
5830 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5831   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5832   ins_cost(MEMORY_REF_COST);
5833 
5834   size(4);
5835   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5836   ins_encode %{
5837     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5838   %}
5839   ins_pipe(iload_mem);
5840 %}
5841 
5842 // Load Integer with mask 0xFFFF into a Long Register
5843 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5844   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5845   ins_cost(MEMORY_REF_COST);
5846 
5847   size(4);
5848   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5849   ins_encode %{
5850     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5851   %}
5852   ins_pipe(iload_mem);
5853 %}
5854 
5855 // Load Integer with a 13-bit mask into a Long Register
5856 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5857   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5858   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5859 
5860   size(2*4);
5861   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5862             "AND    $dst,$mask,$dst" %}
5863   ins_encode %{
5864     Register Rdst = $dst$$Register;
5865     __ lduw($mem$$Address, Rdst);
5866     __ and3(Rdst, $mask$$constant, Rdst);
5867   %}
5868   ins_pipe(iload_mem);
5869 %}
5870 
5871 // Load Integer with a 32-bit mask into a Long Register
5872 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5873   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5874   effect(TEMP dst, TEMP tmp);
5875   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5876 
5877   size((3+1)*4);  // set may use two instructions.
5878   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5879             "SET    $mask,$tmp\n\t"
5880             "AND    $dst,$tmp,$dst" %}
5881   ins_encode %{
5882     Register Rdst = $dst$$Register;
5883     Register Rtmp = $tmp$$Register;
5884     __ lduw($mem$$Address, Rdst);
5885     __ set($mask$$constant, Rtmp);
5886     __ and3(Rdst, Rtmp, Rdst);
5887   %}
5888   ins_pipe(iload_mem);
5889 %}
5890 
5891 // Load Unsigned Integer into a Long Register
5892 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5893   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5894   ins_cost(MEMORY_REF_COST);
5895 
5896   size(4);
5897   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5898   ins_encode %{
5899     __ lduw($mem$$Address, $dst$$Register);
5900   %}
5901   ins_pipe(iload_mem);
5902 %}
5903 
5904 // Load Long - aligned
5905 instruct loadL(iRegL dst, memory mem ) %{
5906   match(Set dst (LoadL mem));
5907   ins_cost(MEMORY_REF_COST);
5908 
5909   size(4);
5910   format %{ "LDX    $mem,$dst\t! long" %}
5911   ins_encode %{
5912     __ ldx($mem$$Address, $dst$$Register);
5913   %}
5914   ins_pipe(iload_mem);
5915 %}
5916 
5917 // Load Long - UNaligned
5918 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5919   match(Set dst (LoadL_unaligned mem));
5920   effect(KILL tmp);
5921   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5922   size(16);
5923   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5924           "\tLDUW   $mem  ,$dst\n"
5925           "\tSLLX   #32, $dst, $dst\n"
5926           "\tOR     $dst, R_O7, $dst" %}
5927   opcode(Assembler::lduw_op3);
5928   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5929   ins_pipe(iload_mem);
5930 %}
5931 
5932 // Load Range
5933 instruct loadRange(iRegI dst, memory mem) %{
5934   match(Set dst (LoadRange mem));
5935   ins_cost(MEMORY_REF_COST);
5936 
5937   size(4);
5938   format %{ "LDUW   $mem,$dst\t! range" %}
5939   opcode(Assembler::lduw_op3);
5940   ins_encode(simple_form3_mem_reg( mem, dst ) );
5941   ins_pipe(iload_mem);
5942 %}
5943 
5944 // Load Integer into %f register (for fitos/fitod)
5945 instruct loadI_freg(regF dst, memory mem) %{
5946   match(Set dst (LoadI mem));
5947   ins_cost(MEMORY_REF_COST);
5948   size(4);
5949 
5950   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5951   opcode(Assembler::ldf_op3);
5952   ins_encode(simple_form3_mem_reg( mem, dst ) );
5953   ins_pipe(floadF_mem);
5954 %}
5955 
5956 // Load Pointer
5957 instruct loadP(iRegP dst, memory mem) %{
5958   match(Set dst (LoadP mem));
5959   ins_cost(MEMORY_REF_COST);
5960   size(4);
5961 
5962 #ifndef _LP64
5963   format %{ "LDUW   $mem,$dst\t! ptr" %}
5964   ins_encode %{
5965     __ lduw($mem$$Address, $dst$$Register);
5966   %}
5967 #else
5968   format %{ "LDX    $mem,$dst\t! ptr" %}
5969   ins_encode %{
5970     __ ldx($mem$$Address, $dst$$Register);
5971   %}
5972 #endif
5973   ins_pipe(iload_mem);
5974 %}
5975 
5976 // Load Compressed Pointer
5977 instruct loadN(iRegN dst, memory mem) %{
5978   match(Set dst (LoadN mem));
5979   ins_cost(MEMORY_REF_COST);
5980   size(4);
5981 
5982   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5983   ins_encode %{
5984     __ lduw($mem$$Address, $dst$$Register);
5985   %}
5986   ins_pipe(iload_mem);
5987 %}
5988 
5989 // Load Klass Pointer
5990 instruct loadKlass(iRegP dst, memory mem) %{
5991   match(Set dst (LoadKlass mem));
5992   ins_cost(MEMORY_REF_COST);
5993   size(4);
5994 
5995 #ifndef _LP64
5996   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5997   ins_encode %{
5998     __ lduw($mem$$Address, $dst$$Register);
5999   %}
6000 #else
6001   format %{ "LDX    $mem,$dst\t! klass ptr" %}
6002   ins_encode %{
6003     __ ldx($mem$$Address, $dst$$Register);
6004   %}
6005 #endif
6006   ins_pipe(iload_mem);
6007 %}
6008 
6009 // Load narrow Klass Pointer
6010 instruct loadNKlass(iRegN dst, memory mem) %{
6011   match(Set dst (LoadNKlass mem));
6012   ins_cost(MEMORY_REF_COST);
6013   size(4);
6014 
6015   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6016   ins_encode %{
6017     __ lduw($mem$$Address, $dst$$Register);
6018   %}
6019   ins_pipe(iload_mem);
6020 %}
6021 
6022 // Load Double
6023 instruct loadD(regD dst, memory mem) %{
6024   match(Set dst (LoadD mem));
6025   ins_cost(MEMORY_REF_COST);
6026 
6027   size(4);
6028   format %{ "LDDF   $mem,$dst" %}
6029   opcode(Assembler::lddf_op3);
6030   ins_encode(simple_form3_mem_reg( mem, dst ) );
6031   ins_pipe(floadD_mem);
6032 %}
6033 
6034 // Load Double - UNaligned
6035 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6036   match(Set dst (LoadD_unaligned mem));
6037   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6038   size(8);
6039   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6040           "\tLDF    $mem+4,$dst.lo\t!" %}
6041   opcode(Assembler::ldf_op3);
6042   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6043   ins_pipe(iload_mem);
6044 %}
6045 
6046 // Load Float
6047 instruct loadF(regF dst, memory mem) %{
6048   match(Set dst (LoadF mem));
6049   ins_cost(MEMORY_REF_COST);
6050 
6051   size(4);
6052   format %{ "LDF    $mem,$dst" %}
6053   opcode(Assembler::ldf_op3);
6054   ins_encode(simple_form3_mem_reg( mem, dst ) );
6055   ins_pipe(floadF_mem);
6056 %}
6057 
6058 // Load Constant
6059 instruct loadConI( iRegI dst, immI src ) %{
6060   match(Set dst src);
6061   ins_cost(DEFAULT_COST * 3/2);
6062   format %{ "SET    $src,$dst" %}
6063   ins_encode( Set32(src, dst) );
6064   ins_pipe(ialu_hi_lo_reg);
6065 %}
6066 
6067 instruct loadConI13( iRegI dst, immI13 src ) %{
6068   match(Set dst src);
6069 
6070   size(4);
6071   format %{ "MOV    $src,$dst" %}
6072   ins_encode( Set13( src, dst ) );
6073   ins_pipe(ialu_imm);
6074 %}
6075 
6076 #ifndef _LP64
6077 instruct loadConP(iRegP dst, immP con) %{
6078   match(Set dst con);
6079   ins_cost(DEFAULT_COST * 3/2);
6080   format %{ "SET    $con,$dst\t!ptr" %}
6081   ins_encode %{
6082     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6083       intptr_t val = $con$$constant;
6084     if (constant_reloc == relocInfo::oop_type) {
6085       __ set_oop_constant((jobject) val, $dst$$Register);
6086     } else if (constant_reloc == relocInfo::metadata_type) {
6087       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6088     } else {          // non-oop pointers, e.g. card mark base, heap top
6089       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6090       __ set(val, $dst$$Register);
6091     }
6092   %}
6093   ins_pipe(loadConP);
6094 %}
6095 #else
6096 instruct loadConP_set(iRegP dst, immP_set con) %{
6097   match(Set dst con);
6098   ins_cost(DEFAULT_COST * 3/2);
6099   format %{ "SET    $con,$dst\t! ptr" %}
6100   ins_encode %{
6101     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6102       intptr_t val = $con$$constant;
6103     if (constant_reloc == relocInfo::oop_type) {
6104       __ set_oop_constant((jobject) val, $dst$$Register);
6105     } else if (constant_reloc == relocInfo::metadata_type) {
6106       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6107     } else {          // non-oop pointers, e.g. card mark base, heap top
6108       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6109       __ set(val, $dst$$Register);
6110     }
6111   %}
6112   ins_pipe(loadConP);
6113 %}
6114 
6115 instruct loadConP_load(iRegP dst, immP_load con) %{
6116   match(Set dst con);
6117   ins_cost(MEMORY_REF_COST);
6118   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6119   ins_encode %{
6120     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6121     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6122   %}
6123   ins_pipe(loadConP);
6124 %}
6125 
6126 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6127   match(Set dst con);
6128   ins_cost(DEFAULT_COST * 3/2);
6129   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6130   ins_encode %{
6131     __ set($con$$constant, $dst$$Register);
6132   %}
6133   ins_pipe(loadConP);
6134 %}
6135 #endif // _LP64
6136 
6137 instruct loadConP0(iRegP dst, immP0 src) %{
6138   match(Set dst src);
6139 
6140   size(4);
6141   format %{ "CLR    $dst\t!ptr" %}
6142   ins_encode %{
6143     __ clr($dst$$Register);
6144   %}
6145   ins_pipe(ialu_imm);
6146 %}
6147 
6148 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6149   match(Set dst src);
6150   ins_cost(DEFAULT_COST);
6151   format %{ "SET    $src,$dst\t!ptr" %}
6152   ins_encode %{
6153     AddressLiteral polling_page(os::get_polling_page());
6154     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6155   %}
6156   ins_pipe(loadConP_poll);
6157 %}
6158 
6159 instruct loadConN0(iRegN dst, immN0 src) %{
6160   match(Set dst src);
6161 
6162   size(4);
6163   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6164   ins_encode %{
6165     __ clr($dst$$Register);
6166   %}
6167   ins_pipe(ialu_imm);
6168 %}
6169 
6170 instruct loadConN(iRegN dst, immN src) %{
6171   match(Set dst src);
6172   ins_cost(DEFAULT_COST * 3/2);
6173   format %{ "SET    $src,$dst\t! compressed ptr" %}
6174   ins_encode %{
6175     Register dst = $dst$$Register;
6176     __ set_narrow_oop((jobject)$src$$constant, dst);
6177   %}
6178   ins_pipe(ialu_hi_lo_reg);
6179 %}
6180 
6181 instruct loadConNKlass(iRegN dst, immNKlass src) %{
6182   match(Set dst src);
6183   ins_cost(DEFAULT_COST * 3/2);
6184   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6185   ins_encode %{
6186     Register dst = $dst$$Register;
6187     __ set_narrow_klass((Klass*)$src$$constant, dst);
6188   %}
6189   ins_pipe(ialu_hi_lo_reg);
6190 %}
6191 
6192 // Materialize long value (predicated by immL_cheap).
6193 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6194   match(Set dst con);
6195   effect(KILL tmp);
6196   ins_cost(DEFAULT_COST * 3);
6197   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6198   ins_encode %{
6199     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6200   %}
6201   ins_pipe(loadConL);
6202 %}
6203 
6204 // Load long value from constant table (predicated by immL_expensive).
6205 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6206   match(Set dst con);
6207   ins_cost(MEMORY_REF_COST);
6208   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6209   ins_encode %{
6210       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6211     __ ldx($constanttablebase, con_offset, $dst$$Register);
6212   %}
6213   ins_pipe(loadConL);
6214 %}
6215 
6216 instruct loadConL0( iRegL dst, immL0 src ) %{
6217   match(Set dst src);
6218   ins_cost(DEFAULT_COST);
6219   size(4);
6220   format %{ "CLR    $dst\t! long" %}
6221   ins_encode( Set13( src, dst ) );
6222   ins_pipe(ialu_imm);
6223 %}
6224 
6225 instruct loadConL13( iRegL dst, immL13 src ) %{
6226   match(Set dst src);
6227   ins_cost(DEFAULT_COST * 2);
6228 
6229   size(4);
6230   format %{ "MOV    $src,$dst\t! long" %}
6231   ins_encode( Set13( src, dst ) );
6232   ins_pipe(ialu_imm);
6233 %}
6234 
6235 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6236   match(Set dst con);
6237   effect(KILL tmp);
6238   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6239   ins_encode %{
6240       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6241     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6242   %}
6243   ins_pipe(loadConFD);
6244 %}
6245 
6246 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6247   match(Set dst con);
6248   effect(KILL tmp);
6249   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6250   ins_encode %{
6251     // XXX This is a quick fix for 6833573.
6252     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6253     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6254     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6255   %}
6256   ins_pipe(loadConFD);
6257 %}
6258 
6259 // Prefetch instructions.
6260 // Must be safe to execute with invalid address (cannot fault).
6261 
6262 instruct prefetchr( memory mem ) %{
6263   match( PrefetchRead mem );
6264   ins_cost(MEMORY_REF_COST);
6265   size(4);
6266 
6267   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6268   opcode(Assembler::prefetch_op3);
6269   ins_encode( form3_mem_prefetch_read( mem ) );
6270   ins_pipe(iload_mem);
6271 %}
6272 
6273 instruct prefetchw( memory mem ) %{
6274   match( PrefetchWrite mem );
6275   ins_cost(MEMORY_REF_COST);
6276   size(4);
6277 
6278   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6279   opcode(Assembler::prefetch_op3);
6280   ins_encode( form3_mem_prefetch_write( mem ) );
6281   ins_pipe(iload_mem);
6282 %}
6283 
6284 // Prefetch instructions for allocation.
6285 
6286 instruct prefetchAlloc( memory mem ) %{
6287   predicate(AllocatePrefetchInstr == 0);
6288   match( PrefetchAllocation mem );
6289   ins_cost(MEMORY_REF_COST);
6290   size(4);
6291 
6292   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6293   opcode(Assembler::prefetch_op3);
6294   ins_encode( form3_mem_prefetch_write( mem ) );
6295   ins_pipe(iload_mem);
6296 %}
6297 
6298 // Use BIS instruction to prefetch for allocation.
6299 // Could fault, need space at the end of TLAB.
6300 instruct prefetchAlloc_bis( iRegP dst ) %{
6301   predicate(AllocatePrefetchInstr == 1);
6302   match( PrefetchAllocation dst );
6303   ins_cost(MEMORY_REF_COST);
6304   size(4);
6305 
6306   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6307   ins_encode %{
6308     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6309   %}
6310   ins_pipe(istore_mem_reg);
6311 %}
6312 
6313 // Next code is used for finding next cache line address to prefetch.
6314 #ifndef _LP64
6315 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6316   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6317   ins_cost(DEFAULT_COST);
6318   size(4);
6319 
6320   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6321   ins_encode %{
6322     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6323   %}
6324   ins_pipe(ialu_reg_imm);
6325 %}
6326 #else
6327 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6328   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6329   ins_cost(DEFAULT_COST);
6330   size(4);
6331 
6332   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6333   ins_encode %{
6334     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6335   %}
6336   ins_pipe(ialu_reg_imm);
6337 %}
6338 #endif
6339 
6340 //----------Store Instructions-------------------------------------------------
6341 // Store Byte
6342 instruct storeB(memory mem, iRegI src) %{
6343   match(Set mem (StoreB mem src));
6344   ins_cost(MEMORY_REF_COST);
6345 
6346   size(4);
6347   format %{ "STB    $src,$mem\t! byte" %}
6348   opcode(Assembler::stb_op3);
6349   ins_encode(simple_form3_mem_reg( mem, src ) );
6350   ins_pipe(istore_mem_reg);
6351 %}
6352 
6353 instruct storeB0(memory mem, immI0 src) %{
6354   match(Set mem (StoreB mem src));
6355   ins_cost(MEMORY_REF_COST);
6356 
6357   size(4);
6358   format %{ "STB    $src,$mem\t! byte" %}
6359   opcode(Assembler::stb_op3);
6360   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6361   ins_pipe(istore_mem_zero);
6362 %}
6363 
6364 instruct storeCM0(memory mem, immI0 src) %{
6365   match(Set mem (StoreCM mem src));
6366   ins_cost(MEMORY_REF_COST);
6367 
6368   size(4);
6369   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6370   opcode(Assembler::stb_op3);
6371   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6372   ins_pipe(istore_mem_zero);
6373 %}
6374 
6375 // Store Char/Short
6376 instruct storeC(memory mem, iRegI src) %{
6377   match(Set mem (StoreC mem src));
6378   ins_cost(MEMORY_REF_COST);
6379 
6380   size(4);
6381   format %{ "STH    $src,$mem\t! short" %}
6382   opcode(Assembler::sth_op3);
6383   ins_encode(simple_form3_mem_reg( mem, src ) );
6384   ins_pipe(istore_mem_reg);
6385 %}
6386 
6387 instruct storeC0(memory mem, immI0 src) %{
6388   match(Set mem (StoreC mem src));
6389   ins_cost(MEMORY_REF_COST);
6390 
6391   size(4);
6392   format %{ "STH    $src,$mem\t! short" %}
6393   opcode(Assembler::sth_op3);
6394   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6395   ins_pipe(istore_mem_zero);
6396 %}
6397 
6398 // Store Integer
6399 instruct storeI(memory mem, iRegI src) %{
6400   match(Set mem (StoreI mem src));
6401   ins_cost(MEMORY_REF_COST);
6402 
6403   size(4);
6404   format %{ "STW    $src,$mem" %}
6405   opcode(Assembler::stw_op3);
6406   ins_encode(simple_form3_mem_reg( mem, src ) );
6407   ins_pipe(istore_mem_reg);
6408 %}
6409 
6410 // Store Long
6411 instruct storeL(memory mem, iRegL src) %{
6412   match(Set mem (StoreL mem src));
6413   ins_cost(MEMORY_REF_COST);
6414   size(4);
6415   format %{ "STX    $src,$mem\t! long" %}
6416   opcode(Assembler::stx_op3);
6417   ins_encode(simple_form3_mem_reg( mem, src ) );
6418   ins_pipe(istore_mem_reg);
6419 %}
6420 
6421 instruct storeI0(memory mem, immI0 src) %{
6422   match(Set mem (StoreI mem src));
6423   ins_cost(MEMORY_REF_COST);
6424 
6425   size(4);
6426   format %{ "STW    $src,$mem" %}
6427   opcode(Assembler::stw_op3);
6428   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6429   ins_pipe(istore_mem_zero);
6430 %}
6431 
6432 instruct storeL0(memory mem, immL0 src) %{
6433   match(Set mem (StoreL mem src));
6434   ins_cost(MEMORY_REF_COST);
6435 
6436   size(4);
6437   format %{ "STX    $src,$mem" %}
6438   opcode(Assembler::stx_op3);
6439   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6440   ins_pipe(istore_mem_zero);
6441 %}
6442 
6443 // Store Integer from float register (used after fstoi)
6444 instruct storeI_Freg(memory mem, regF src) %{
6445   match(Set mem (StoreI mem src));
6446   ins_cost(MEMORY_REF_COST);
6447 
6448   size(4);
6449   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6450   opcode(Assembler::stf_op3);
6451   ins_encode(simple_form3_mem_reg( mem, src ) );
6452   ins_pipe(fstoreF_mem_reg);
6453 %}
6454 
6455 // Store Pointer
6456 instruct storeP(memory dst, sp_ptr_RegP src) %{
6457   match(Set dst (StoreP dst src));
6458   ins_cost(MEMORY_REF_COST);
6459   size(4);
6460 
6461 #ifndef _LP64
6462   format %{ "STW    $src,$dst\t! ptr" %}
6463   opcode(Assembler::stw_op3, 0, REGP_OP);
6464 #else
6465   format %{ "STX    $src,$dst\t! ptr" %}
6466   opcode(Assembler::stx_op3, 0, REGP_OP);
6467 #endif
6468   ins_encode( form3_mem_reg( dst, src ) );
6469   ins_pipe(istore_mem_spORreg);
6470 %}
6471 
6472 instruct storeP0(memory dst, immP0 src) %{
6473   match(Set dst (StoreP dst src));
6474   ins_cost(MEMORY_REF_COST);
6475   size(4);
6476 
6477 #ifndef _LP64
6478   format %{ "STW    $src,$dst\t! ptr" %}
6479   opcode(Assembler::stw_op3, 0, REGP_OP);
6480 #else
6481   format %{ "STX    $src,$dst\t! ptr" %}
6482   opcode(Assembler::stx_op3, 0, REGP_OP);
6483 #endif
6484   ins_encode( form3_mem_reg( dst, R_G0 ) );
6485   ins_pipe(istore_mem_zero);
6486 %}
6487 
6488 // Store Compressed Pointer
6489 instruct storeN(memory dst, iRegN src) %{
6490    match(Set dst (StoreN dst src));
6491    ins_cost(MEMORY_REF_COST);
6492    size(4);
6493 
6494    format %{ "STW    $src,$dst\t! compressed ptr" %}
6495    ins_encode %{
6496      Register base = as_Register($dst$$base);
6497      Register index = as_Register($dst$$index);
6498      Register src = $src$$Register;
6499      if (index != G0) {
6500        __ stw(src, base, index);
6501      } else {
6502        __ stw(src, base, $dst$$disp);
6503      }
6504    %}
6505    ins_pipe(istore_mem_spORreg);
6506 %}
6507 
6508 instruct storeNKlass(memory dst, iRegN src) %{
6509    match(Set dst (StoreNKlass dst src));
6510    ins_cost(MEMORY_REF_COST);
6511    size(4);
6512 
6513    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6514    ins_encode %{
6515      Register base = as_Register($dst$$base);
6516      Register index = as_Register($dst$$index);
6517      Register src = $src$$Register;
6518      if (index != G0) {
6519        __ stw(src, base, index);
6520      } else {
6521        __ stw(src, base, $dst$$disp);
6522      }
6523    %}
6524    ins_pipe(istore_mem_spORreg);
6525 %}
6526 
6527 instruct storeN0(memory dst, immN0 src) %{
6528    match(Set dst (StoreN dst src));
6529    ins_cost(MEMORY_REF_COST);
6530    size(4);
6531 
6532    format %{ "STW    $src,$dst\t! compressed ptr" %}
6533    ins_encode %{
6534      Register base = as_Register($dst$$base);
6535      Register index = as_Register($dst$$index);
6536      if (index != G0) {
6537        __ stw(0, base, index);
6538      } else {
6539        __ stw(0, base, $dst$$disp);
6540      }
6541    %}
6542    ins_pipe(istore_mem_zero);
6543 %}
6544 
6545 // Store Double
6546 instruct storeD( memory mem, regD src) %{
6547   match(Set mem (StoreD mem src));
6548   ins_cost(MEMORY_REF_COST);
6549 
6550   size(4);
6551   format %{ "STDF   $src,$mem" %}
6552   opcode(Assembler::stdf_op3);
6553   ins_encode(simple_form3_mem_reg( mem, src ) );
6554   ins_pipe(fstoreD_mem_reg);
6555 %}
6556 
6557 instruct storeD0( memory mem, immD0 src) %{
6558   match(Set mem (StoreD mem src));
6559   ins_cost(MEMORY_REF_COST);
6560 
6561   size(4);
6562   format %{ "STX    $src,$mem" %}
6563   opcode(Assembler::stx_op3);
6564   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6565   ins_pipe(fstoreD_mem_zero);
6566 %}
6567 
6568 // Store Float
6569 instruct storeF( memory mem, regF src) %{
6570   match(Set mem (StoreF mem src));
6571   ins_cost(MEMORY_REF_COST);
6572 
6573   size(4);
6574   format %{ "STF    $src,$mem" %}
6575   opcode(Assembler::stf_op3);
6576   ins_encode(simple_form3_mem_reg( mem, src ) );
6577   ins_pipe(fstoreF_mem_reg);
6578 %}
6579 
6580 instruct storeF0( memory mem, immF0 src) %{
6581   match(Set mem (StoreF mem src));
6582   ins_cost(MEMORY_REF_COST);
6583 
6584   size(4);
6585   format %{ "STW    $src,$mem\t! storeF0" %}
6586   opcode(Assembler::stw_op3);
6587   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6588   ins_pipe(fstoreF_mem_zero);
6589 %}
6590 
6591 // Convert oop pointer into compressed form
6592 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6593   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6594   match(Set dst (EncodeP src));
6595   format %{ "encode_heap_oop $src, $dst" %}
6596   ins_encode %{
6597     __ encode_heap_oop($src$$Register, $dst$$Register);
6598   %}
6599   ins_pipe(ialu_reg);
6600 %}
6601 
6602 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6603   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6604   match(Set dst (EncodeP src));
6605   format %{ "encode_heap_oop_not_null $src, $dst" %}
6606   ins_encode %{
6607     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6608   %}
6609   ins_pipe(ialu_reg);
6610 %}
6611 
6612 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6613   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6614             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6615   match(Set dst (DecodeN src));
6616   format %{ "decode_heap_oop $src, $dst" %}
6617   ins_encode %{
6618     __ decode_heap_oop($src$$Register, $dst$$Register);
6619   %}
6620   ins_pipe(ialu_reg);
6621 %}
6622 
6623 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6624   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6625             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6626   match(Set dst (DecodeN src));
6627   format %{ "decode_heap_oop_not_null $src, $dst" %}
6628   ins_encode %{
6629     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6630   %}
6631   ins_pipe(ialu_reg);
6632 %}
6633 
6634 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6635   match(Set dst (EncodePKlass src));
6636   format %{ "encode_klass_not_null $src, $dst" %}
6637   ins_encode %{
6638     __ encode_klass_not_null($src$$Register, $dst$$Register);
6639   %}
6640   ins_pipe(ialu_reg);
6641 %}
6642 
6643 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6644   match(Set dst (DecodeNKlass src));
6645   format %{ "decode_klass_not_null $src, $dst" %}
6646   ins_encode %{
6647     __ decode_klass_not_null($src$$Register, $dst$$Register);
6648   %}
6649   ins_pipe(ialu_reg);
6650 %}
6651 
6652 //----------MemBar Instructions-----------------------------------------------
6653 // Memory barrier flavors
6654 
6655 instruct membar_acquire() %{
6656   match(MemBarAcquire);
6657   ins_cost(4*MEMORY_REF_COST);
6658 
6659   size(0);
6660   format %{ "MEMBAR-acquire" %}
6661   ins_encode( enc_membar_acquire );
6662   ins_pipe(long_memory_op);
6663 %}
6664 
6665 instruct membar_acquire_lock() %{
6666   match(MemBarAcquireLock);
6667   ins_cost(0);
6668 
6669   size(0);
6670   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6671   ins_encode( );
6672   ins_pipe(empty);
6673 %}
6674 
6675 instruct membar_release() %{
6676   match(MemBarRelease);
6677   ins_cost(4*MEMORY_REF_COST);
6678 
6679   size(0);
6680   format %{ "MEMBAR-release" %}
6681   ins_encode( enc_membar_release );
6682   ins_pipe(long_memory_op);
6683 %}
6684 
6685 instruct membar_release_lock() %{
6686   match(MemBarReleaseLock);
6687   ins_cost(0);
6688 
6689   size(0);
6690   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6691   ins_encode( );
6692   ins_pipe(empty);
6693 %}
6694 
6695 instruct membar_volatile() %{
6696   match(MemBarVolatile);
6697   ins_cost(4*MEMORY_REF_COST);
6698 
6699   size(4);
6700   format %{ "MEMBAR-volatile" %}
6701   ins_encode( enc_membar_volatile );
6702   ins_pipe(long_memory_op);
6703 %}
6704 
6705 instruct unnecessary_membar_volatile() %{
6706   match(MemBarVolatile);
6707   predicate(Matcher::post_store_load_barrier(n));
6708   ins_cost(0);
6709 
6710   size(0);
6711   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6712   ins_encode( );
6713   ins_pipe(empty);
6714 %}
6715 
6716 instruct membar_storestore() %{
6717   match(MemBarStoreStore);
6718   ins_cost(0);
6719 
6720   size(0);
6721   format %{ "!MEMBAR-storestore (empty encoding)" %}
6722   ins_encode( );
6723   ins_pipe(empty);
6724 %}
6725 
6726 //----------Register Move Instructions-----------------------------------------
6727 instruct roundDouble_nop(regD dst) %{
6728   match(Set dst (RoundDouble dst));
6729   ins_cost(0);
6730   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6731   ins_encode( );
6732   ins_pipe(empty);
6733 %}
6734 
6735 
6736 instruct roundFloat_nop(regF dst) %{
6737   match(Set dst (RoundFloat dst));
6738   ins_cost(0);
6739   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6740   ins_encode( );
6741   ins_pipe(empty);
6742 %}
6743 
6744 
6745 // Cast Index to Pointer for unsafe natives
6746 instruct castX2P(iRegX src, iRegP dst) %{
6747   match(Set dst (CastX2P src));
6748 
6749   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6750   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6751   ins_pipe(ialu_reg);
6752 %}
6753 
6754 // Cast Pointer to Index for unsafe natives
6755 instruct castP2X(iRegP src, iRegX dst) %{
6756   match(Set dst (CastP2X src));
6757 
6758   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6759   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6760   ins_pipe(ialu_reg);
6761 %}
6762 
6763 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6764   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6765   match(Set stkSlot src);   // chain rule
6766   ins_cost(MEMORY_REF_COST);
6767   format %{ "STDF   $src,$stkSlot\t!stk" %}
6768   opcode(Assembler::stdf_op3);
6769   ins_encode(simple_form3_mem_reg(stkSlot, src));
6770   ins_pipe(fstoreD_stk_reg);
6771 %}
6772 
6773 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6774   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6775   match(Set dst stkSlot);   // chain rule
6776   ins_cost(MEMORY_REF_COST);
6777   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6778   opcode(Assembler::lddf_op3);
6779   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6780   ins_pipe(floadD_stk);
6781 %}
6782 
6783 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6784   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6785   match(Set stkSlot src);   // chain rule
6786   ins_cost(MEMORY_REF_COST);
6787   format %{ "STF   $src,$stkSlot\t!stk" %}
6788   opcode(Assembler::stf_op3);
6789   ins_encode(simple_form3_mem_reg(stkSlot, src));
6790   ins_pipe(fstoreF_stk_reg);
6791 %}
6792 
6793 //----------Conditional Move---------------------------------------------------
6794 // Conditional move
6795 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6796   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6797   ins_cost(150);
6798   format %{ "MOV$cmp $pcc,$src,$dst" %}
6799   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6800   ins_pipe(ialu_reg);
6801 %}
6802 
6803 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6804   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6805   ins_cost(140);
6806   format %{ "MOV$cmp $pcc,$src,$dst" %}
6807   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6808   ins_pipe(ialu_imm);
6809 %}
6810 
6811 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6812   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6813   ins_cost(150);
6814   size(4);
6815   format %{ "MOV$cmp  $icc,$src,$dst" %}
6816   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6817   ins_pipe(ialu_reg);
6818 %}
6819 
6820 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6821   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6822   ins_cost(140);
6823   size(4);
6824   format %{ "MOV$cmp  $icc,$src,$dst" %}
6825   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6826   ins_pipe(ialu_imm);
6827 %}
6828 
6829 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6830   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6831   ins_cost(150);
6832   size(4);
6833   format %{ "MOV$cmp  $icc,$src,$dst" %}
6834   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6835   ins_pipe(ialu_reg);
6836 %}
6837 
6838 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6839   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6840   ins_cost(140);
6841   size(4);
6842   format %{ "MOV$cmp  $icc,$src,$dst" %}
6843   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6844   ins_pipe(ialu_imm);
6845 %}
6846 
6847 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6848   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6849   ins_cost(150);
6850   size(4);
6851   format %{ "MOV$cmp $fcc,$src,$dst" %}
6852   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6853   ins_pipe(ialu_reg);
6854 %}
6855 
6856 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6857   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6858   ins_cost(140);
6859   size(4);
6860   format %{ "MOV$cmp $fcc,$src,$dst" %}
6861   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6862   ins_pipe(ialu_imm);
6863 %}
6864 
6865 // Conditional move for RegN. Only cmov(reg,reg).
6866 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6867   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6868   ins_cost(150);
6869   format %{ "MOV$cmp $pcc,$src,$dst" %}
6870   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6871   ins_pipe(ialu_reg);
6872 %}
6873 
6874 // This instruction also works with CmpN so we don't need cmovNN_reg.
6875 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6876   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6877   ins_cost(150);
6878   size(4);
6879   format %{ "MOV$cmp  $icc,$src,$dst" %}
6880   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6881   ins_pipe(ialu_reg);
6882 %}
6883 
6884 // This instruction also works with CmpN so we don't need cmovNN_reg.
6885 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6886   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6887   ins_cost(150);
6888   size(4);
6889   format %{ "MOV$cmp  $icc,$src,$dst" %}
6890   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6891   ins_pipe(ialu_reg);
6892 %}
6893 
6894 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6895   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6896   ins_cost(150);
6897   size(4);
6898   format %{ "MOV$cmp $fcc,$src,$dst" %}
6899   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6900   ins_pipe(ialu_reg);
6901 %}
6902 
6903 // Conditional move
6904 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6905   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6906   ins_cost(150);
6907   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6908   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6909   ins_pipe(ialu_reg);
6910 %}
6911 
6912 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6913   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6914   ins_cost(140);
6915   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6916   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6917   ins_pipe(ialu_imm);
6918 %}
6919 
6920 // This instruction also works with CmpN so we don't need cmovPN_reg.
6921 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6922   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6923   ins_cost(150);
6924 
6925   size(4);
6926   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6927   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6928   ins_pipe(ialu_reg);
6929 %}
6930 
6931 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6932   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6933   ins_cost(150);
6934 
6935   size(4);
6936   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6937   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6938   ins_pipe(ialu_reg);
6939 %}
6940 
6941 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6942   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6943   ins_cost(140);
6944 
6945   size(4);
6946   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6947   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6948   ins_pipe(ialu_imm);
6949 %}
6950 
6951 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6952   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6953   ins_cost(140);
6954 
6955   size(4);
6956   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6957   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6958   ins_pipe(ialu_imm);
6959 %}
6960 
6961 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6962   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6963   ins_cost(150);
6964   size(4);
6965   format %{ "MOV$cmp $fcc,$src,$dst" %}
6966   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6967   ins_pipe(ialu_imm);
6968 %}
6969 
6970 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6971   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6972   ins_cost(140);
6973   size(4);
6974   format %{ "MOV$cmp $fcc,$src,$dst" %}
6975   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6976   ins_pipe(ialu_imm);
6977 %}
6978 
6979 // Conditional move
6980 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6981   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6982   ins_cost(150);
6983   opcode(0x101);
6984   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6985   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6986   ins_pipe(int_conditional_float_move);
6987 %}
6988 
6989 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6990   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6991   ins_cost(150);
6992 
6993   size(4);
6994   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6995   opcode(0x101);
6996   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6997   ins_pipe(int_conditional_float_move);
6998 %}
6999 
7000 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
7001   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7002   ins_cost(150);
7003 
7004   size(4);
7005   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7006   opcode(0x101);
7007   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7008   ins_pipe(int_conditional_float_move);
7009 %}
7010 
7011 // Conditional move,
7012 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7013   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7014   ins_cost(150);
7015   size(4);
7016   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7017   opcode(0x1);
7018   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7019   ins_pipe(int_conditional_double_move);
7020 %}
7021 
7022 // Conditional move
7023 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7024   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7025   ins_cost(150);
7026   size(4);
7027   opcode(0x102);
7028   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7029   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7030   ins_pipe(int_conditional_double_move);
7031 %}
7032 
7033 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7034   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7035   ins_cost(150);
7036 
7037   size(4);
7038   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7039   opcode(0x102);
7040   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7041   ins_pipe(int_conditional_double_move);
7042 %}
7043 
7044 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7045   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7046   ins_cost(150);
7047 
7048   size(4);
7049   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7050   opcode(0x102);
7051   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7052   ins_pipe(int_conditional_double_move);
7053 %}
7054 
7055 // Conditional move,
7056 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7057   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7058   ins_cost(150);
7059   size(4);
7060   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7061   opcode(0x2);
7062   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7063   ins_pipe(int_conditional_double_move);
7064 %}
7065 
7066 // Conditional move
7067 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7068   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7069   ins_cost(150);
7070   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7071   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7072   ins_pipe(ialu_reg);
7073 %}
7074 
7075 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7076   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7077   ins_cost(140);
7078   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7079   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7080   ins_pipe(ialu_imm);
7081 %}
7082 
7083 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7084   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7085   ins_cost(150);
7086 
7087   size(4);
7088   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7089   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7090   ins_pipe(ialu_reg);
7091 %}
7092 
7093 
7094 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7095   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7096   ins_cost(150);
7097 
7098   size(4);
7099   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7100   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7101   ins_pipe(ialu_reg);
7102 %}
7103 
7104 
7105 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7106   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7107   ins_cost(150);
7108 
7109   size(4);
7110   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7111   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7112   ins_pipe(ialu_reg);
7113 %}
7114 
7115 
7116 
7117 //----------OS and Locking Instructions----------------------------------------
7118 
7119 // This name is KNOWN by the ADLC and cannot be changed.
7120 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7121 // for this guy.
7122 instruct tlsLoadP(g2RegP dst) %{
7123   match(Set dst (ThreadLocal));
7124 
7125   size(0);
7126   ins_cost(0);
7127   format %{ "# TLS is in G2" %}
7128   ins_encode( /*empty encoding*/ );
7129   ins_pipe(ialu_none);
7130 %}
7131 
7132 instruct checkCastPP( iRegP dst ) %{
7133   match(Set dst (CheckCastPP dst));
7134 
7135   size(0);
7136   format %{ "# checkcastPP of $dst" %}
7137   ins_encode( /*empty encoding*/ );
7138   ins_pipe(empty);
7139 %}
7140 
7141 
7142 instruct castPP( iRegP dst ) %{
7143   match(Set dst (CastPP dst));
7144   format %{ "# castPP of $dst" %}
7145   ins_encode( /*empty encoding*/ );
7146   ins_pipe(empty);
7147 %}
7148 
7149 instruct castII( iRegI dst ) %{
7150   match(Set dst (CastII dst));
7151   format %{ "# castII of $dst" %}
7152   ins_encode( /*empty encoding*/ );
7153   ins_cost(0);
7154   ins_pipe(empty);
7155 %}
7156 
7157 //----------Arithmetic Instructions--------------------------------------------
7158 // Addition Instructions
7159 // Register Addition
7160 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7161   match(Set dst (AddI src1 src2));
7162 
7163   size(4);
7164   format %{ "ADD    $src1,$src2,$dst" %}
7165   ins_encode %{
7166     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7167   %}
7168   ins_pipe(ialu_reg_reg);
7169 %}
7170 
7171 // Immediate Addition
7172 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7173   match(Set dst (AddI src1 src2));
7174 
7175   size(4);
7176   format %{ "ADD    $src1,$src2,$dst" %}
7177   opcode(Assembler::add_op3, Assembler::arith_op);
7178   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7179   ins_pipe(ialu_reg_imm);
7180 %}
7181 
7182 // Pointer Register Addition
7183 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7184   match(Set dst (AddP src1 src2));
7185 
7186   size(4);
7187   format %{ "ADD    $src1,$src2,$dst" %}
7188   opcode(Assembler::add_op3, Assembler::arith_op);
7189   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7190   ins_pipe(ialu_reg_reg);
7191 %}
7192 
7193 // Pointer Immediate Addition
7194 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7195   match(Set dst (AddP src1 src2));
7196 
7197   size(4);
7198   format %{ "ADD    $src1,$src2,$dst" %}
7199   opcode(Assembler::add_op3, Assembler::arith_op);
7200   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7201   ins_pipe(ialu_reg_imm);
7202 %}
7203 
7204 // Long Addition
7205 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7206   match(Set dst (AddL src1 src2));
7207 
7208   size(4);
7209   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7210   opcode(Assembler::add_op3, Assembler::arith_op);
7211   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7212   ins_pipe(ialu_reg_reg);
7213 %}
7214 
7215 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7216   match(Set dst (AddL src1 con));
7217 
7218   size(4);
7219   format %{ "ADD    $src1,$con,$dst" %}
7220   opcode(Assembler::add_op3, Assembler::arith_op);
7221   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7222   ins_pipe(ialu_reg_imm);
7223 %}
7224 
7225 //----------Conditional_store--------------------------------------------------
7226 // Conditional-store of the updated heap-top.
7227 // Used during allocation of the shared heap.
7228 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7229 
7230 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7231 instruct loadPLocked(iRegP dst, memory mem) %{
7232   match(Set dst (LoadPLocked mem));
7233   ins_cost(MEMORY_REF_COST);
7234 
7235 #ifndef _LP64
7236   size(4);
7237   format %{ "LDUW   $mem,$dst\t! ptr" %}
7238   opcode(Assembler::lduw_op3, 0, REGP_OP);
7239 #else
7240   format %{ "LDX    $mem,$dst\t! ptr" %}
7241   opcode(Assembler::ldx_op3, 0, REGP_OP);
7242 #endif
7243   ins_encode( form3_mem_reg( mem, dst ) );
7244   ins_pipe(iload_mem);
7245 %}
7246 
7247 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7248   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7249   effect( KILL newval );
7250   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7251             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7252   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7253   ins_pipe( long_memory_op );
7254 %}
7255 
7256 // Conditional-store of an int value.
7257 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7258   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7259   effect( KILL newval );
7260   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7261             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7262   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7263   ins_pipe( long_memory_op );
7264 %}
7265 
7266 // Conditional-store of a long value.
7267 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7268   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7269   effect( KILL newval );
7270   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7271             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7272   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7273   ins_pipe( long_memory_op );
7274 %}
7275 
7276 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7277 
7278 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7279   predicate(VM_Version::supports_cx8());
7280   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7281   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7282   format %{
7283             "MOV    $newval,O7\n\t"
7284             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7285             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7286             "MOV    1,$res\n\t"
7287             "MOVne  xcc,R_G0,$res"
7288   %}
7289   ins_encode( enc_casx(mem_ptr, oldval, newval),
7290               enc_lflags_ne_to_boolean(res) );
7291   ins_pipe( long_memory_op );
7292 %}
7293 
7294 
7295 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7296   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7297   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7298   format %{
7299             "MOV    $newval,O7\n\t"
7300             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7301             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7302             "MOV    1,$res\n\t"
7303             "MOVne  icc,R_G0,$res"
7304   %}
7305   ins_encode( enc_casi(mem_ptr, oldval, newval),
7306               enc_iflags_ne_to_boolean(res) );
7307   ins_pipe( long_memory_op );
7308 %}
7309 
7310 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7311 #ifdef _LP64
7312   predicate(VM_Version::supports_cx8());
7313 #endif
7314   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7315   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7316   format %{
7317             "MOV    $newval,O7\n\t"
7318             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7319             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7320             "MOV    1,$res\n\t"
7321             "MOVne  xcc,R_G0,$res"
7322   %}
7323 #ifdef _LP64
7324   ins_encode( enc_casx(mem_ptr, oldval, newval),
7325               enc_lflags_ne_to_boolean(res) );
7326 #else
7327   ins_encode( enc_casi(mem_ptr, oldval, newval),
7328               enc_iflags_ne_to_boolean(res) );
7329 #endif
7330   ins_pipe( long_memory_op );
7331 %}
7332 
7333 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7334   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7335   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7336   format %{
7337             "MOV    $newval,O7\n\t"
7338             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7339             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7340             "MOV    1,$res\n\t"
7341             "MOVne  icc,R_G0,$res"
7342   %}
7343   ins_encode( enc_casi(mem_ptr, oldval, newval),
7344               enc_iflags_ne_to_boolean(res) );
7345   ins_pipe( long_memory_op );
7346 %}
7347 
7348 instruct xchgI( memory mem, iRegI newval) %{
7349   match(Set newval (GetAndSetI mem newval));
7350   format %{ "SWAP  [$mem],$newval" %}
7351   size(4);
7352   ins_encode %{
7353     __ swap($mem$$Address, $newval$$Register);
7354   %}
7355   ins_pipe( long_memory_op );
7356 %}
7357 
7358 #ifndef _LP64
7359 instruct xchgP( memory mem, iRegP newval) %{
7360   match(Set newval (GetAndSetP mem newval));
7361   format %{ "SWAP  [$mem],$newval" %}
7362   size(4);
7363   ins_encode %{
7364     __ swap($mem$$Address, $newval$$Register);
7365   %}
7366   ins_pipe( long_memory_op );
7367 %}
7368 #endif
7369 
7370 instruct xchgN( memory mem, iRegN newval) %{
7371   match(Set newval (GetAndSetN mem newval));
7372   format %{ "SWAP  [$mem],$newval" %}
7373   size(4);
7374   ins_encode %{
7375     __ swap($mem$$Address, $newval$$Register);
7376   %}
7377   ins_pipe( long_memory_op );
7378 %}
7379 
7380 //---------------------
7381 // Subtraction Instructions
7382 // Register Subtraction
7383 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7384   match(Set dst (SubI src1 src2));
7385 
7386   size(4);
7387   format %{ "SUB    $src1,$src2,$dst" %}
7388   opcode(Assembler::sub_op3, Assembler::arith_op);
7389   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7390   ins_pipe(ialu_reg_reg);
7391 %}
7392 
7393 // Immediate Subtraction
7394 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7395   match(Set dst (SubI src1 src2));
7396 
7397   size(4);
7398   format %{ "SUB    $src1,$src2,$dst" %}
7399   opcode(Assembler::sub_op3, Assembler::arith_op);
7400   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7401   ins_pipe(ialu_reg_imm);
7402 %}
7403 
7404 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7405   match(Set dst (SubI zero src2));
7406 
7407   size(4);
7408   format %{ "NEG    $src2,$dst" %}
7409   opcode(Assembler::sub_op3, Assembler::arith_op);
7410   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7411   ins_pipe(ialu_zero_reg);
7412 %}
7413 
7414 // Long subtraction
7415 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7416   match(Set dst (SubL src1 src2));
7417 
7418   size(4);
7419   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7420   opcode(Assembler::sub_op3, Assembler::arith_op);
7421   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7422   ins_pipe(ialu_reg_reg);
7423 %}
7424 
7425 // Immediate Subtraction
7426 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7427   match(Set dst (SubL src1 con));
7428 
7429   size(4);
7430   format %{ "SUB    $src1,$con,$dst\t! long" %}
7431   opcode(Assembler::sub_op3, Assembler::arith_op);
7432   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7433   ins_pipe(ialu_reg_imm);
7434 %}
7435 
7436 // Long negation
7437 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7438   match(Set dst (SubL zero src2));
7439 
7440   size(4);
7441   format %{ "NEG    $src2,$dst\t! long" %}
7442   opcode(Assembler::sub_op3, Assembler::arith_op);
7443   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7444   ins_pipe(ialu_zero_reg);
7445 %}
7446 
7447 // Multiplication Instructions
7448 // Integer Multiplication
7449 // Register Multiplication
7450 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7451   match(Set dst (MulI src1 src2));
7452 
7453   size(4);
7454   format %{ "MULX   $src1,$src2,$dst" %}
7455   opcode(Assembler::mulx_op3, Assembler::arith_op);
7456   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7457   ins_pipe(imul_reg_reg);
7458 %}
7459 
7460 // Immediate Multiplication
7461 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7462   match(Set dst (MulI src1 src2));
7463 
7464   size(4);
7465   format %{ "MULX   $src1,$src2,$dst" %}
7466   opcode(Assembler::mulx_op3, Assembler::arith_op);
7467   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7468   ins_pipe(imul_reg_imm);
7469 %}
7470 
7471 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7472   match(Set dst (MulL src1 src2));
7473   ins_cost(DEFAULT_COST * 5);
7474   size(4);
7475   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7476   opcode(Assembler::mulx_op3, Assembler::arith_op);
7477   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7478   ins_pipe(mulL_reg_reg);
7479 %}
7480 
7481 // Immediate Multiplication
7482 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7483   match(Set dst (MulL src1 src2));
7484   ins_cost(DEFAULT_COST * 5);
7485   size(4);
7486   format %{ "MULX   $src1,$src2,$dst" %}
7487   opcode(Assembler::mulx_op3, Assembler::arith_op);
7488   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7489   ins_pipe(mulL_reg_imm);
7490 %}
7491 
7492 // Integer Division
7493 // Register Division
7494 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7495   match(Set dst (DivI src1 src2));
7496   ins_cost((2+71)*DEFAULT_COST);
7497 
7498   format %{ "SRA     $src2,0,$src2\n\t"
7499             "SRA     $src1,0,$src1\n\t"
7500             "SDIVX   $src1,$src2,$dst" %}
7501   ins_encode( idiv_reg( src1, src2, dst ) );
7502   ins_pipe(sdiv_reg_reg);
7503 %}
7504 
7505 // Immediate Division
7506 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7507   match(Set dst (DivI src1 src2));
7508   ins_cost((2+71)*DEFAULT_COST);
7509 
7510   format %{ "SRA     $src1,0,$src1\n\t"
7511             "SDIVX   $src1,$src2,$dst" %}
7512   ins_encode( idiv_imm( src1, src2, dst ) );
7513   ins_pipe(sdiv_reg_imm);
7514 %}
7515 
7516 //----------Div-By-10-Expansion------------------------------------------------
7517 // Extract hi bits of a 32x32->64 bit multiply.
7518 // Expand rule only, not matched
7519 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7520   effect( DEF dst, USE src1, USE src2 );
7521   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7522             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7523   ins_encode( enc_mul_hi(dst,src1,src2));
7524   ins_pipe(sdiv_reg_reg);
7525 %}
7526 
7527 // Magic constant, reciprocal of 10
7528 instruct loadConI_x66666667(iRegIsafe dst) %{
7529   effect( DEF dst );
7530 
7531   size(8);
7532   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7533   ins_encode( Set32(0x66666667, dst) );
7534   ins_pipe(ialu_hi_lo_reg);
7535 %}
7536 
7537 // Register Shift Right Arithmetic Long by 32-63
7538 instruct sra_31( iRegI dst, iRegI src ) %{
7539   effect( DEF dst, USE src );
7540   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7541   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7542   ins_pipe(ialu_reg_reg);
7543 %}
7544 
7545 // Arithmetic Shift Right by 8-bit immediate
7546 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7547   effect( DEF dst, USE src );
7548   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7549   opcode(Assembler::sra_op3, Assembler::arith_op);
7550   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7551   ins_pipe(ialu_reg_imm);
7552 %}
7553 
7554 // Integer DIV with 10
7555 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7556   match(Set dst (DivI src div));
7557   ins_cost((6+6)*DEFAULT_COST);
7558   expand %{
7559     iRegIsafe tmp1;               // Killed temps;
7560     iRegIsafe tmp2;               // Killed temps;
7561     iRegI tmp3;                   // Killed temps;
7562     iRegI tmp4;                   // Killed temps;
7563     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7564     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7565     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7566     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7567     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7568   %}
7569 %}
7570 
7571 // Register Long Division
7572 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7573   match(Set dst (DivL src1 src2));
7574   ins_cost(DEFAULT_COST*71);
7575   size(4);
7576   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7577   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7578   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7579   ins_pipe(divL_reg_reg);
7580 %}
7581 
7582 // Register Long Division
7583 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7584   match(Set dst (DivL src1 src2));
7585   ins_cost(DEFAULT_COST*71);
7586   size(4);
7587   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7588   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7589   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7590   ins_pipe(divL_reg_imm);
7591 %}
7592 
7593 // Integer Remainder
7594 // Register Remainder
7595 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7596   match(Set dst (ModI src1 src2));
7597   effect( KILL ccr, KILL temp);
7598 
7599   format %{ "SREM   $src1,$src2,$dst" %}
7600   ins_encode( irem_reg(src1, src2, dst, temp) );
7601   ins_pipe(sdiv_reg_reg);
7602 %}
7603 
7604 // Immediate Remainder
7605 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7606   match(Set dst (ModI src1 src2));
7607   effect( KILL ccr, KILL temp);
7608 
7609   format %{ "SREM   $src1,$src2,$dst" %}
7610   ins_encode( irem_imm(src1, src2, dst, temp) );
7611   ins_pipe(sdiv_reg_imm);
7612 %}
7613 
7614 // Register Long Remainder
7615 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7616   effect(DEF dst, USE src1, USE src2);
7617   size(4);
7618   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7619   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7620   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7621   ins_pipe(divL_reg_reg);
7622 %}
7623 
7624 // Register Long Division
7625 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7626   effect(DEF dst, USE src1, USE src2);
7627   size(4);
7628   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7629   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7630   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7631   ins_pipe(divL_reg_imm);
7632 %}
7633 
7634 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7635   effect(DEF dst, USE src1, USE src2);
7636   size(4);
7637   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7638   opcode(Assembler::mulx_op3, Assembler::arith_op);
7639   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7640   ins_pipe(mulL_reg_reg);
7641 %}
7642 
7643 // Immediate Multiplication
7644 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7645   effect(DEF dst, USE src1, USE src2);
7646   size(4);
7647   format %{ "MULX   $src1,$src2,$dst" %}
7648   opcode(Assembler::mulx_op3, Assembler::arith_op);
7649   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7650   ins_pipe(mulL_reg_imm);
7651 %}
7652 
7653 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7654   effect(DEF dst, USE src1, USE src2);
7655   size(4);
7656   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7657   opcode(Assembler::sub_op3, Assembler::arith_op);
7658   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7659   ins_pipe(ialu_reg_reg);
7660 %}
7661 
7662 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7663   effect(DEF dst, USE src1, USE src2);
7664   size(4);
7665   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7666   opcode(Assembler::sub_op3, Assembler::arith_op);
7667   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7668   ins_pipe(ialu_reg_reg);
7669 %}
7670 
7671 // Register Long Remainder
7672 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7673   match(Set dst (ModL src1 src2));
7674   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7675   expand %{
7676     iRegL tmp1;
7677     iRegL tmp2;
7678     divL_reg_reg_1(tmp1, src1, src2);
7679     mulL_reg_reg_1(tmp2, tmp1, src2);
7680     subL_reg_reg_1(dst,  src1, tmp2);
7681   %}
7682 %}
7683 
7684 // Register Long Remainder
7685 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7686   match(Set dst (ModL src1 src2));
7687   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7688   expand %{
7689     iRegL tmp1;
7690     iRegL tmp2;
7691     divL_reg_imm13_1(tmp1, src1, src2);
7692     mulL_reg_imm13_1(tmp2, tmp1, src2);
7693     subL_reg_reg_2  (dst,  src1, tmp2);
7694   %}
7695 %}
7696 
7697 // Integer Shift Instructions
7698 // Register Shift Left
7699 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7700   match(Set dst (LShiftI src1 src2));
7701 
7702   size(4);
7703   format %{ "SLL    $src1,$src2,$dst" %}
7704   opcode(Assembler::sll_op3, Assembler::arith_op);
7705   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7706   ins_pipe(ialu_reg_reg);
7707 %}
7708 
7709 // Register Shift Left Immediate
7710 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7711   match(Set dst (LShiftI src1 src2));
7712 
7713   size(4);
7714   format %{ "SLL    $src1,$src2,$dst" %}
7715   opcode(Assembler::sll_op3, Assembler::arith_op);
7716   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7717   ins_pipe(ialu_reg_imm);
7718 %}
7719 
7720 // Register Shift Left
7721 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7722   match(Set dst (LShiftL src1 src2));
7723 
7724   size(4);
7725   format %{ "SLLX   $src1,$src2,$dst" %}
7726   opcode(Assembler::sllx_op3, Assembler::arith_op);
7727   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7728   ins_pipe(ialu_reg_reg);
7729 %}
7730 
7731 // Register Shift Left Immediate
7732 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7733   match(Set dst (LShiftL src1 src2));
7734 
7735   size(4);
7736   format %{ "SLLX   $src1,$src2,$dst" %}
7737   opcode(Assembler::sllx_op3, Assembler::arith_op);
7738   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7739   ins_pipe(ialu_reg_imm);
7740 %}
7741 
7742 // Register Arithmetic Shift Right
7743 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7744   match(Set dst (RShiftI src1 src2));
7745   size(4);
7746   format %{ "SRA    $src1,$src2,$dst" %}
7747   opcode(Assembler::sra_op3, Assembler::arith_op);
7748   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7749   ins_pipe(ialu_reg_reg);
7750 %}
7751 
7752 // Register Arithmetic Shift Right Immediate
7753 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7754   match(Set dst (RShiftI src1 src2));
7755 
7756   size(4);
7757   format %{ "SRA    $src1,$src2,$dst" %}
7758   opcode(Assembler::sra_op3, Assembler::arith_op);
7759   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7760   ins_pipe(ialu_reg_imm);
7761 %}
7762 
7763 // Register Shift Right Arithmatic Long
7764 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7765   match(Set dst (RShiftL src1 src2));
7766 
7767   size(4);
7768   format %{ "SRAX   $src1,$src2,$dst" %}
7769   opcode(Assembler::srax_op3, Assembler::arith_op);
7770   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7771   ins_pipe(ialu_reg_reg);
7772 %}
7773 
7774 // Register Shift Left Immediate
7775 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7776   match(Set dst (RShiftL src1 src2));
7777 
7778   size(4);
7779   format %{ "SRAX   $src1,$src2,$dst" %}
7780   opcode(Assembler::srax_op3, Assembler::arith_op);
7781   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7782   ins_pipe(ialu_reg_imm);
7783 %}
7784 
7785 // Register Shift Right
7786 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7787   match(Set dst (URShiftI src1 src2));
7788 
7789   size(4);
7790   format %{ "SRL    $src1,$src2,$dst" %}
7791   opcode(Assembler::srl_op3, Assembler::arith_op);
7792   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7793   ins_pipe(ialu_reg_reg);
7794 %}
7795 
7796 // Register Shift Right Immediate
7797 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7798   match(Set dst (URShiftI src1 src2));
7799 
7800   size(4);
7801   format %{ "SRL    $src1,$src2,$dst" %}
7802   opcode(Assembler::srl_op3, Assembler::arith_op);
7803   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7804   ins_pipe(ialu_reg_imm);
7805 %}
7806 
7807 // Register Shift Right
7808 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7809   match(Set dst (URShiftL src1 src2));
7810 
7811   size(4);
7812   format %{ "SRLX   $src1,$src2,$dst" %}
7813   opcode(Assembler::srlx_op3, Assembler::arith_op);
7814   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7815   ins_pipe(ialu_reg_reg);
7816 %}
7817 
7818 // Register Shift Right Immediate
7819 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7820   match(Set dst (URShiftL src1 src2));
7821 
7822   size(4);
7823   format %{ "SRLX   $src1,$src2,$dst" %}
7824   opcode(Assembler::srlx_op3, Assembler::arith_op);
7825   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7826   ins_pipe(ialu_reg_imm);
7827 %}
7828 
7829 // Register Shift Right Immediate with a CastP2X
7830 #ifdef _LP64
7831 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7832   match(Set dst (URShiftL (CastP2X src1) src2));
7833   size(4);
7834   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7835   opcode(Assembler::srlx_op3, Assembler::arith_op);
7836   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7837   ins_pipe(ialu_reg_imm);
7838 %}
7839 #else
7840 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7841   match(Set dst (URShiftI (CastP2X src1) src2));
7842   size(4);
7843   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7844   opcode(Assembler::srl_op3, Assembler::arith_op);
7845   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7846   ins_pipe(ialu_reg_imm);
7847 %}
7848 #endif
7849 
7850 
7851 //----------Floating Point Arithmetic Instructions-----------------------------
7852 
7853 //  Add float single precision
7854 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7855   match(Set dst (AddF src1 src2));
7856 
7857   size(4);
7858   format %{ "FADDS  $src1,$src2,$dst" %}
7859   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7860   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7861   ins_pipe(faddF_reg_reg);
7862 %}
7863 
7864 //  Add float double precision
7865 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7866   match(Set dst (AddD src1 src2));
7867 
7868   size(4);
7869   format %{ "FADDD  $src1,$src2,$dst" %}
7870   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7871   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7872   ins_pipe(faddD_reg_reg);
7873 %}
7874 
7875 //  Sub float single precision
7876 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7877   match(Set dst (SubF src1 src2));
7878 
7879   size(4);
7880   format %{ "FSUBS  $src1,$src2,$dst" %}
7881   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7882   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7883   ins_pipe(faddF_reg_reg);
7884 %}
7885 
7886 //  Sub float double precision
7887 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7888   match(Set dst (SubD src1 src2));
7889 
7890   size(4);
7891   format %{ "FSUBD  $src1,$src2,$dst" %}
7892   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7893   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7894   ins_pipe(faddD_reg_reg);
7895 %}
7896 
7897 //  Mul float single precision
7898 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7899   match(Set dst (MulF src1 src2));
7900 
7901   size(4);
7902   format %{ "FMULS  $src1,$src2,$dst" %}
7903   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7904   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7905   ins_pipe(fmulF_reg_reg);
7906 %}
7907 
7908 //  Mul float double precision
7909 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7910   match(Set dst (MulD src1 src2));
7911 
7912   size(4);
7913   format %{ "FMULD  $src1,$src2,$dst" %}
7914   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7915   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7916   ins_pipe(fmulD_reg_reg);
7917 %}
7918 
7919 //  Div float single precision
7920 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7921   match(Set dst (DivF src1 src2));
7922 
7923   size(4);
7924   format %{ "FDIVS  $src1,$src2,$dst" %}
7925   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7926   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7927   ins_pipe(fdivF_reg_reg);
7928 %}
7929 
7930 //  Div float double precision
7931 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7932   match(Set dst (DivD src1 src2));
7933 
7934   size(4);
7935   format %{ "FDIVD  $src1,$src2,$dst" %}
7936   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7937   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7938   ins_pipe(fdivD_reg_reg);
7939 %}
7940 
7941 //  Absolute float double precision
7942 instruct absD_reg(regD dst, regD src) %{
7943   match(Set dst (AbsD src));
7944 
7945   format %{ "FABSd  $src,$dst" %}
7946   ins_encode(fabsd(dst, src));
7947   ins_pipe(faddD_reg);
7948 %}
7949 
7950 //  Absolute float single precision
7951 instruct absF_reg(regF dst, regF src) %{
7952   match(Set dst (AbsF src));
7953 
7954   format %{ "FABSs  $src,$dst" %}
7955   ins_encode(fabss(dst, src));
7956   ins_pipe(faddF_reg);
7957 %}
7958 
7959 instruct negF_reg(regF dst, regF src) %{
7960   match(Set dst (NegF src));
7961 
7962   size(4);
7963   format %{ "FNEGs  $src,$dst" %}
7964   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7965   ins_encode(form3_opf_rs2F_rdF(src, dst));
7966   ins_pipe(faddF_reg);
7967 %}
7968 
7969 instruct negD_reg(regD dst, regD src) %{
7970   match(Set dst (NegD src));
7971 
7972   format %{ "FNEGd  $src,$dst" %}
7973   ins_encode(fnegd(dst, src));
7974   ins_pipe(faddD_reg);
7975 %}
7976 
7977 //  Sqrt float double precision
7978 instruct sqrtF_reg_reg(regF dst, regF src) %{
7979   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7980 
7981   size(4);
7982   format %{ "FSQRTS $src,$dst" %}
7983   ins_encode(fsqrts(dst, src));
7984   ins_pipe(fdivF_reg_reg);
7985 %}
7986 
7987 //  Sqrt float double precision
7988 instruct sqrtD_reg_reg(regD dst, regD src) %{
7989   match(Set dst (SqrtD src));
7990 
7991   size(4);
7992   format %{ "FSQRTD $src,$dst" %}
7993   ins_encode(fsqrtd(dst, src));
7994   ins_pipe(fdivD_reg_reg);
7995 %}
7996 
7997 //----------Logical Instructions-----------------------------------------------
7998 // And Instructions
7999 // Register And
8000 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8001   match(Set dst (AndI src1 src2));
8002 
8003   size(4);
8004   format %{ "AND    $src1,$src2,$dst" %}
8005   opcode(Assembler::and_op3, Assembler::arith_op);
8006   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8007   ins_pipe(ialu_reg_reg);
8008 %}
8009 
8010 // Immediate And
8011 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8012   match(Set dst (AndI src1 src2));
8013 
8014   size(4);
8015   format %{ "AND    $src1,$src2,$dst" %}
8016   opcode(Assembler::and_op3, Assembler::arith_op);
8017   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8018   ins_pipe(ialu_reg_imm);
8019 %}
8020 
8021 // Register And Long
8022 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8023   match(Set dst (AndL src1 src2));
8024 
8025   ins_cost(DEFAULT_COST);
8026   size(4);
8027   format %{ "AND    $src1,$src2,$dst\t! long" %}
8028   opcode(Assembler::and_op3, Assembler::arith_op);
8029   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8030   ins_pipe(ialu_reg_reg);
8031 %}
8032 
8033 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8034   match(Set dst (AndL src1 con));
8035 
8036   ins_cost(DEFAULT_COST);
8037   size(4);
8038   format %{ "AND    $src1,$con,$dst\t! long" %}
8039   opcode(Assembler::and_op3, Assembler::arith_op);
8040   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8041   ins_pipe(ialu_reg_imm);
8042 %}
8043 
8044 // Or Instructions
8045 // Register Or
8046 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8047   match(Set dst (OrI src1 src2));
8048 
8049   size(4);
8050   format %{ "OR     $src1,$src2,$dst" %}
8051   opcode(Assembler::or_op3, Assembler::arith_op);
8052   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8053   ins_pipe(ialu_reg_reg);
8054 %}
8055 
8056 // Immediate Or
8057 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8058   match(Set dst (OrI src1 src2));
8059 
8060   size(4);
8061   format %{ "OR     $src1,$src2,$dst" %}
8062   opcode(Assembler::or_op3, Assembler::arith_op);
8063   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8064   ins_pipe(ialu_reg_imm);
8065 %}
8066 
8067 // Register Or Long
8068 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8069   match(Set dst (OrL src1 src2));
8070 
8071   ins_cost(DEFAULT_COST);
8072   size(4);
8073   format %{ "OR     $src1,$src2,$dst\t! long" %}
8074   opcode(Assembler::or_op3, Assembler::arith_op);
8075   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8076   ins_pipe(ialu_reg_reg);
8077 %}
8078 
8079 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8080   match(Set dst (OrL src1 con));
8081   ins_cost(DEFAULT_COST*2);
8082 
8083   ins_cost(DEFAULT_COST);
8084   size(4);
8085   format %{ "OR     $src1,$con,$dst\t! long" %}
8086   opcode(Assembler::or_op3, Assembler::arith_op);
8087   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8088   ins_pipe(ialu_reg_imm);
8089 %}
8090 
8091 #ifndef _LP64
8092 
8093 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8094 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8095   match(Set dst (OrI src1 (CastP2X src2)));
8096 
8097   size(4);
8098   format %{ "OR     $src1,$src2,$dst" %}
8099   opcode(Assembler::or_op3, Assembler::arith_op);
8100   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8101   ins_pipe(ialu_reg_reg);
8102 %}
8103 
8104 #else
8105 
8106 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8107   match(Set dst (OrL src1 (CastP2X src2)));
8108 
8109   ins_cost(DEFAULT_COST);
8110   size(4);
8111   format %{ "OR     $src1,$src2,$dst\t! long" %}
8112   opcode(Assembler::or_op3, Assembler::arith_op);
8113   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8114   ins_pipe(ialu_reg_reg);
8115 %}
8116 
8117 #endif
8118 
8119 // Xor Instructions
8120 // Register Xor
8121 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8122   match(Set dst (XorI src1 src2));
8123 
8124   size(4);
8125   format %{ "XOR    $src1,$src2,$dst" %}
8126   opcode(Assembler::xor_op3, Assembler::arith_op);
8127   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8128   ins_pipe(ialu_reg_reg);
8129 %}
8130 
8131 // Immediate Xor
8132 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8133   match(Set dst (XorI src1 src2));
8134 
8135   size(4);
8136   format %{ "XOR    $src1,$src2,$dst" %}
8137   opcode(Assembler::xor_op3, Assembler::arith_op);
8138   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8139   ins_pipe(ialu_reg_imm);
8140 %}
8141 
8142 // Register Xor Long
8143 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8144   match(Set dst (XorL src1 src2));
8145 
8146   ins_cost(DEFAULT_COST);
8147   size(4);
8148   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8149   opcode(Assembler::xor_op3, Assembler::arith_op);
8150   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8151   ins_pipe(ialu_reg_reg);
8152 %}
8153 
8154 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8155   match(Set dst (XorL src1 con));
8156 
8157   ins_cost(DEFAULT_COST);
8158   size(4);
8159   format %{ "XOR    $src1,$con,$dst\t! long" %}
8160   opcode(Assembler::xor_op3, Assembler::arith_op);
8161   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8162   ins_pipe(ialu_reg_imm);
8163 %}
8164 
8165 //----------Convert to Boolean-------------------------------------------------
8166 // Nice hack for 32-bit tests but doesn't work for
8167 // 64-bit pointers.
8168 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8169   match(Set dst (Conv2B src));
8170   effect( KILL ccr );
8171   ins_cost(DEFAULT_COST*2);
8172   format %{ "CMP    R_G0,$src\n\t"
8173             "ADDX   R_G0,0,$dst" %}
8174   ins_encode( enc_to_bool( src, dst ) );
8175   ins_pipe(ialu_reg_ialu);
8176 %}
8177 
8178 #ifndef _LP64
8179 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8180   match(Set dst (Conv2B src));
8181   effect( KILL ccr );
8182   ins_cost(DEFAULT_COST*2);
8183   format %{ "CMP    R_G0,$src\n\t"
8184             "ADDX   R_G0,0,$dst" %}
8185   ins_encode( enc_to_bool( src, dst ) );
8186   ins_pipe(ialu_reg_ialu);
8187 %}
8188 #else
8189 instruct convP2B( iRegI dst, iRegP src ) %{
8190   match(Set dst (Conv2B src));
8191   ins_cost(DEFAULT_COST*2);
8192   format %{ "MOV    $src,$dst\n\t"
8193             "MOVRNZ $src,1,$dst" %}
8194   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8195   ins_pipe(ialu_clr_and_mover);
8196 %}
8197 #endif
8198 
8199 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8200   match(Set dst (CmpLTMask src zero));
8201   effect(KILL ccr);
8202   size(4);
8203   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8204   ins_encode %{
8205     __ sra($src$$Register, 31, $dst$$Register);
8206   %}
8207   ins_pipe(ialu_reg_imm);
8208 %}
8209 
8210 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8211   match(Set dst (CmpLTMask p q));
8212   effect( KILL ccr );
8213   ins_cost(DEFAULT_COST*4);
8214   format %{ "CMP    $p,$q\n\t"
8215             "MOV    #0,$dst\n\t"
8216             "BLT,a  .+8\n\t"
8217             "MOV    #-1,$dst" %}
8218   ins_encode( enc_ltmask(p,q,dst) );
8219   ins_pipe(ialu_reg_reg_ialu);
8220 %}
8221 
8222 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8223   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8224   effect(KILL ccr, TEMP tmp);
8225   ins_cost(DEFAULT_COST*3);
8226 
8227   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8228             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8229             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8230   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
8231   ins_pipe( cadd_cmpltmask );
8232 %}
8233 
8234 
8235 //-----------------------------------------------------------------
8236 // Direct raw moves between float and general registers using VIS3.
8237 
8238 //  ins_pipe(faddF_reg);
8239 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8240   predicate(UseVIS >= 3);
8241   match(Set dst (MoveF2I src));
8242 
8243   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8244   ins_encode %{
8245     __ movstouw($src$$FloatRegister, $dst$$Register);
8246   %}
8247   ins_pipe(ialu_reg_reg);
8248 %}
8249 
8250 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8251   predicate(UseVIS >= 3);
8252   match(Set dst (MoveI2F src));
8253 
8254   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8255   ins_encode %{
8256     __ movwtos($src$$Register, $dst$$FloatRegister);
8257   %}
8258   ins_pipe(ialu_reg_reg);
8259 %}
8260 
8261 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8262   predicate(UseVIS >= 3);
8263   match(Set dst (MoveD2L src));
8264 
8265   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8266   ins_encode %{
8267     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8268   %}
8269   ins_pipe(ialu_reg_reg);
8270 %}
8271 
8272 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8273   predicate(UseVIS >= 3);
8274   match(Set dst (MoveL2D src));
8275 
8276   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8277   ins_encode %{
8278     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8279   %}
8280   ins_pipe(ialu_reg_reg);
8281 %}
8282 
8283 
8284 // Raw moves between float and general registers using stack.
8285 
8286 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8287   match(Set dst (MoveF2I src));
8288   effect(DEF dst, USE src);
8289   ins_cost(MEMORY_REF_COST);
8290 
8291   size(4);
8292   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8293   opcode(Assembler::lduw_op3);
8294   ins_encode(simple_form3_mem_reg( src, dst ) );
8295   ins_pipe(iload_mem);
8296 %}
8297 
8298 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8299   match(Set dst (MoveI2F src));
8300   effect(DEF dst, USE src);
8301   ins_cost(MEMORY_REF_COST);
8302 
8303   size(4);
8304   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8305   opcode(Assembler::ldf_op3);
8306   ins_encode(simple_form3_mem_reg(src, dst));
8307   ins_pipe(floadF_stk);
8308 %}
8309 
8310 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8311   match(Set dst (MoveD2L src));
8312   effect(DEF dst, USE src);
8313   ins_cost(MEMORY_REF_COST);
8314 
8315   size(4);
8316   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8317   opcode(Assembler::ldx_op3);
8318   ins_encode(simple_form3_mem_reg( src, dst ) );
8319   ins_pipe(iload_mem);
8320 %}
8321 
8322 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8323   match(Set dst (MoveL2D src));
8324   effect(DEF dst, USE src);
8325   ins_cost(MEMORY_REF_COST);
8326 
8327   size(4);
8328   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8329   opcode(Assembler::lddf_op3);
8330   ins_encode(simple_form3_mem_reg(src, dst));
8331   ins_pipe(floadD_stk);
8332 %}
8333 
8334 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8335   match(Set dst (MoveF2I src));
8336   effect(DEF dst, USE src);
8337   ins_cost(MEMORY_REF_COST);
8338 
8339   size(4);
8340   format %{ "STF   $src,$dst\t! MoveF2I" %}
8341   opcode(Assembler::stf_op3);
8342   ins_encode(simple_form3_mem_reg(dst, src));
8343   ins_pipe(fstoreF_stk_reg);
8344 %}
8345 
8346 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8347   match(Set dst (MoveI2F src));
8348   effect(DEF dst, USE src);
8349   ins_cost(MEMORY_REF_COST);
8350 
8351   size(4);
8352   format %{ "STW    $src,$dst\t! MoveI2F" %}
8353   opcode(Assembler::stw_op3);
8354   ins_encode(simple_form3_mem_reg( dst, src ) );
8355   ins_pipe(istore_mem_reg);
8356 %}
8357 
8358 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8359   match(Set dst (MoveD2L src));
8360   effect(DEF dst, USE src);
8361   ins_cost(MEMORY_REF_COST);
8362 
8363   size(4);
8364   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8365   opcode(Assembler::stdf_op3);
8366   ins_encode(simple_form3_mem_reg(dst, src));
8367   ins_pipe(fstoreD_stk_reg);
8368 %}
8369 
8370 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8371   match(Set dst (MoveL2D src));
8372   effect(DEF dst, USE src);
8373   ins_cost(MEMORY_REF_COST);
8374 
8375   size(4);
8376   format %{ "STX    $src,$dst\t! MoveL2D" %}
8377   opcode(Assembler::stx_op3);
8378   ins_encode(simple_form3_mem_reg( dst, src ) );
8379   ins_pipe(istore_mem_reg);
8380 %}
8381 
8382 
8383 //----------Arithmetic Conversion Instructions---------------------------------
8384 // The conversions operations are all Alpha sorted.  Please keep it that way!
8385 
8386 instruct convD2F_reg(regF dst, regD src) %{
8387   match(Set dst (ConvD2F src));
8388   size(4);
8389   format %{ "FDTOS  $src,$dst" %}
8390   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8391   ins_encode(form3_opf_rs2D_rdF(src, dst));
8392   ins_pipe(fcvtD2F);
8393 %}
8394 
8395 
8396 // Convert a double to an int in a float register.
8397 // If the double is a NAN, stuff a zero in instead.
8398 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8399   effect(DEF dst, USE src, KILL fcc0);
8400   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8401             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8402             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8403             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8404             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8405       "skip:" %}
8406   ins_encode(form_d2i_helper(src,dst));
8407   ins_pipe(fcvtD2I);
8408 %}
8409 
8410 instruct convD2I_stk(stackSlotI dst, regD src) %{
8411   match(Set dst (ConvD2I src));
8412   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8413   expand %{
8414     regF tmp;
8415     convD2I_helper(tmp, src);
8416     regF_to_stkI(dst, tmp);
8417   %}
8418 %}
8419 
8420 instruct convD2I_reg(iRegI dst, regD src) %{
8421   predicate(UseVIS >= 3);
8422   match(Set dst (ConvD2I src));
8423   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8424   expand %{
8425     regF tmp;
8426     convD2I_helper(tmp, src);
8427     MoveF2I_reg_reg(dst, tmp);
8428   %}
8429 %}
8430 
8431 
8432 // Convert a double to a long in a double register.
8433 // If the double is a NAN, stuff a zero in instead.
8434 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8435   effect(DEF dst, USE src, KILL fcc0);
8436   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8437             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8438             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8439             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8440             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8441       "skip:" %}
8442   ins_encode(form_d2l_helper(src,dst));
8443   ins_pipe(fcvtD2L);
8444 %}
8445 
8446 instruct convD2L_stk(stackSlotL dst, regD src) %{
8447   match(Set dst (ConvD2L src));
8448   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8449   expand %{
8450     regD tmp;
8451     convD2L_helper(tmp, src);
8452     regD_to_stkL(dst, tmp);
8453   %}
8454 %}
8455 
8456 instruct convD2L_reg(iRegL dst, regD src) %{
8457   predicate(UseVIS >= 3);
8458   match(Set dst (ConvD2L src));
8459   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8460   expand %{
8461     regD tmp;
8462     convD2L_helper(tmp, src);
8463     MoveD2L_reg_reg(dst, tmp);
8464   %}
8465 %}
8466 
8467 
8468 instruct convF2D_reg(regD dst, regF src) %{
8469   match(Set dst (ConvF2D src));
8470   format %{ "FSTOD  $src,$dst" %}
8471   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8472   ins_encode(form3_opf_rs2F_rdD(src, dst));
8473   ins_pipe(fcvtF2D);
8474 %}
8475 
8476 
8477 // Convert a float to an int in a float register.
8478 // If the float is a NAN, stuff a zero in instead.
8479 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8480   effect(DEF dst, USE src, KILL fcc0);
8481   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8482             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8483             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8484             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8485             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8486       "skip:" %}
8487   ins_encode(form_f2i_helper(src,dst));
8488   ins_pipe(fcvtF2I);
8489 %}
8490 
8491 instruct convF2I_stk(stackSlotI dst, regF src) %{
8492   match(Set dst (ConvF2I src));
8493   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8494   expand %{
8495     regF tmp;
8496     convF2I_helper(tmp, src);
8497     regF_to_stkI(dst, tmp);
8498   %}
8499 %}
8500 
8501 instruct convF2I_reg(iRegI dst, regF src) %{
8502   predicate(UseVIS >= 3);
8503   match(Set dst (ConvF2I src));
8504   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8505   expand %{
8506     regF tmp;
8507     convF2I_helper(tmp, src);
8508     MoveF2I_reg_reg(dst, tmp);
8509   %}
8510 %}
8511 
8512 
8513 // Convert a float to a long in a float register.
8514 // If the float is a NAN, stuff a zero in instead.
8515 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8516   effect(DEF dst, USE src, KILL fcc0);
8517   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8518             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8519             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8520             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8521             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8522       "skip:" %}
8523   ins_encode(form_f2l_helper(src,dst));
8524   ins_pipe(fcvtF2L);
8525 %}
8526 
8527 instruct convF2L_stk(stackSlotL dst, regF src) %{
8528   match(Set dst (ConvF2L src));
8529   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8530   expand %{
8531     regD tmp;
8532     convF2L_helper(tmp, src);
8533     regD_to_stkL(dst, tmp);
8534   %}
8535 %}
8536 
8537 instruct convF2L_reg(iRegL dst, regF src) %{
8538   predicate(UseVIS >= 3);
8539   match(Set dst (ConvF2L src));
8540   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8541   expand %{
8542     regD tmp;
8543     convF2L_helper(tmp, src);
8544     MoveD2L_reg_reg(dst, tmp);
8545   %}
8546 %}
8547 
8548 
8549 instruct convI2D_helper(regD dst, regF tmp) %{
8550   effect(USE tmp, DEF dst);
8551   format %{ "FITOD  $tmp,$dst" %}
8552   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8553   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8554   ins_pipe(fcvtI2D);
8555 %}
8556 
8557 instruct convI2D_stk(stackSlotI src, regD dst) %{
8558   match(Set dst (ConvI2D src));
8559   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8560   expand %{
8561     regF tmp;
8562     stkI_to_regF(tmp, src);
8563     convI2D_helper(dst, tmp);
8564   %}
8565 %}
8566 
8567 instruct convI2D_reg(regD_low dst, iRegI src) %{
8568   predicate(UseVIS >= 3);
8569   match(Set dst (ConvI2D src));
8570   expand %{
8571     regF tmp;
8572     MoveI2F_reg_reg(tmp, src);
8573     convI2D_helper(dst, tmp);
8574   %}
8575 %}
8576 
8577 instruct convI2D_mem(regD_low dst, memory mem) %{
8578   match(Set dst (ConvI2D (LoadI mem)));
8579   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8580   size(8);
8581   format %{ "LDF    $mem,$dst\n\t"
8582             "FITOD  $dst,$dst" %}
8583   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8584   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8585   ins_pipe(floadF_mem);
8586 %}
8587 
8588 
8589 instruct convI2F_helper(regF dst, regF tmp) %{
8590   effect(DEF dst, USE tmp);
8591   format %{ "FITOS  $tmp,$dst" %}
8592   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8593   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8594   ins_pipe(fcvtI2F);
8595 %}
8596 
8597 instruct convI2F_stk(regF dst, stackSlotI src) %{
8598   match(Set dst (ConvI2F src));
8599   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8600   expand %{
8601     regF tmp;
8602     stkI_to_regF(tmp,src);
8603     convI2F_helper(dst, tmp);
8604   %}
8605 %}
8606 
8607 instruct convI2F_reg(regF dst, iRegI src) %{
8608   predicate(UseVIS >= 3);
8609   match(Set dst (ConvI2F src));
8610   ins_cost(DEFAULT_COST);
8611   expand %{
8612     regF tmp;
8613     MoveI2F_reg_reg(tmp, src);
8614     convI2F_helper(dst, tmp);
8615   %}
8616 %}
8617 
8618 instruct convI2F_mem( regF dst, memory mem ) %{
8619   match(Set dst (ConvI2F (LoadI mem)));
8620   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8621   size(8);
8622   format %{ "LDF    $mem,$dst\n\t"
8623             "FITOS  $dst,$dst" %}
8624   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8625   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8626   ins_pipe(floadF_mem);
8627 %}
8628 
8629 
8630 instruct convI2L_reg(iRegL dst, iRegI src) %{
8631   match(Set dst (ConvI2L src));
8632   size(4);
8633   format %{ "SRA    $src,0,$dst\t! int->long" %}
8634   opcode(Assembler::sra_op3, Assembler::arith_op);
8635   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8636   ins_pipe(ialu_reg_reg);
8637 %}
8638 
8639 // Zero-extend convert int to long
8640 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8641   match(Set dst (AndL (ConvI2L src) mask) );
8642   size(4);
8643   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8644   opcode(Assembler::srl_op3, Assembler::arith_op);
8645   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8646   ins_pipe(ialu_reg_reg);
8647 %}
8648 
8649 // Zero-extend long
8650 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8651   match(Set dst (AndL src mask) );
8652   size(4);
8653   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8654   opcode(Assembler::srl_op3, Assembler::arith_op);
8655   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8656   ins_pipe(ialu_reg_reg);
8657 %}
8658 
8659 
8660 //-----------
8661 // Long to Double conversion using V8 opcodes.
8662 // Still useful because cheetah traps and becomes
8663 // amazingly slow for some common numbers.
8664 
8665 // Magic constant, 0x43300000
8666 instruct loadConI_x43300000(iRegI dst) %{
8667   effect(DEF dst);
8668   size(4);
8669   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8670   ins_encode(SetHi22(0x43300000, dst));
8671   ins_pipe(ialu_none);
8672 %}
8673 
8674 // Magic constant, 0x41f00000
8675 instruct loadConI_x41f00000(iRegI dst) %{
8676   effect(DEF dst);
8677   size(4);
8678   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8679   ins_encode(SetHi22(0x41f00000, dst));
8680   ins_pipe(ialu_none);
8681 %}
8682 
8683 // Construct a double from two float halves
8684 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8685   effect(DEF dst, USE src1, USE src2);
8686   size(8);
8687   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8688             "FMOVS  $src2.lo,$dst.lo" %}
8689   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8690   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8691   ins_pipe(faddD_reg_reg);
8692 %}
8693 
8694 // Convert integer in high half of a double register (in the lower half of
8695 // the double register file) to double
8696 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8697   effect(DEF dst, USE src);
8698   size(4);
8699   format %{ "FITOD  $src,$dst" %}
8700   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8701   ins_encode(form3_opf_rs2D_rdD(src, dst));
8702   ins_pipe(fcvtLHi2D);
8703 %}
8704 
8705 // Add float double precision
8706 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8707   effect(DEF dst, USE src1, USE src2);
8708   size(4);
8709   format %{ "FADDD  $src1,$src2,$dst" %}
8710   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8711   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8712   ins_pipe(faddD_reg_reg);
8713 %}
8714 
8715 // Sub float double precision
8716 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8717   effect(DEF dst, USE src1, USE src2);
8718   size(4);
8719   format %{ "FSUBD  $src1,$src2,$dst" %}
8720   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8721   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8722   ins_pipe(faddD_reg_reg);
8723 %}
8724 
8725 // Mul float double precision
8726 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8727   effect(DEF dst, USE src1, USE src2);
8728   size(4);
8729   format %{ "FMULD  $src1,$src2,$dst" %}
8730   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8731   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8732   ins_pipe(fmulD_reg_reg);
8733 %}
8734 
8735 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8736   match(Set dst (ConvL2D src));
8737   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8738 
8739   expand %{
8740     regD_low   tmpsrc;
8741     iRegI      ix43300000;
8742     iRegI      ix41f00000;
8743     stackSlotL lx43300000;
8744     stackSlotL lx41f00000;
8745     regD_low   dx43300000;
8746     regD       dx41f00000;
8747     regD       tmp1;
8748     regD_low   tmp2;
8749     regD       tmp3;
8750     regD       tmp4;
8751 
8752     stkL_to_regD(tmpsrc, src);
8753 
8754     loadConI_x43300000(ix43300000);
8755     loadConI_x41f00000(ix41f00000);
8756     regI_to_stkLHi(lx43300000, ix43300000);
8757     regI_to_stkLHi(lx41f00000, ix41f00000);
8758     stkL_to_regD(dx43300000, lx43300000);
8759     stkL_to_regD(dx41f00000, lx41f00000);
8760 
8761     convI2D_regDHi_regD(tmp1, tmpsrc);
8762     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8763     subD_regD_regD(tmp3, tmp2, dx43300000);
8764     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8765     addD_regD_regD(dst, tmp3, tmp4);
8766   %}
8767 %}
8768 
8769 // Long to Double conversion using fast fxtof
8770 instruct convL2D_helper(regD dst, regD tmp) %{
8771   effect(DEF dst, USE tmp);
8772   size(4);
8773   format %{ "FXTOD  $tmp,$dst" %}
8774   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8775   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8776   ins_pipe(fcvtL2D);
8777 %}
8778 
8779 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8780   predicate(VM_Version::has_fast_fxtof());
8781   match(Set dst (ConvL2D src));
8782   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8783   expand %{
8784     regD tmp;
8785     stkL_to_regD(tmp, src);
8786     convL2D_helper(dst, tmp);
8787   %}
8788 %}
8789 
8790 instruct convL2D_reg(regD dst, iRegL src) %{
8791   predicate(UseVIS >= 3);
8792   match(Set dst (ConvL2D src));
8793   expand %{
8794     regD tmp;
8795     MoveL2D_reg_reg(tmp, src);
8796     convL2D_helper(dst, tmp);
8797   %}
8798 %}
8799 
8800 // Long to Float conversion using fast fxtof
8801 instruct convL2F_helper(regF dst, regD tmp) %{
8802   effect(DEF dst, USE tmp);
8803   size(4);
8804   format %{ "FXTOS  $tmp,$dst" %}
8805   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8806   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8807   ins_pipe(fcvtL2F);
8808 %}
8809 
8810 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8811   match(Set dst (ConvL2F src));
8812   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8813   expand %{
8814     regD tmp;
8815     stkL_to_regD(tmp, src);
8816     convL2F_helper(dst, tmp);
8817   %}
8818 %}
8819 
8820 instruct convL2F_reg(regF dst, iRegL src) %{
8821   predicate(UseVIS >= 3);
8822   match(Set dst (ConvL2F src));
8823   ins_cost(DEFAULT_COST);
8824   expand %{
8825     regD tmp;
8826     MoveL2D_reg_reg(tmp, src);
8827     convL2F_helper(dst, tmp);
8828   %}
8829 %}
8830 
8831 //-----------
8832 
8833 instruct convL2I_reg(iRegI dst, iRegL src) %{
8834   match(Set dst (ConvL2I src));
8835 #ifndef _LP64
8836   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8837   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8838   ins_pipe(ialu_move_reg_I_to_L);
8839 #else
8840   size(4);
8841   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8842   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8843   ins_pipe(ialu_reg);
8844 #endif
8845 %}
8846 
8847 // Register Shift Right Immediate
8848 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8849   match(Set dst (ConvL2I (RShiftL src cnt)));
8850 
8851   size(4);
8852   format %{ "SRAX   $src,$cnt,$dst" %}
8853   opcode(Assembler::srax_op3, Assembler::arith_op);
8854   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8855   ins_pipe(ialu_reg_imm);
8856 %}
8857 
8858 //----------Control Flow Instructions------------------------------------------
8859 // Compare Instructions
8860 // Compare Integers
8861 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8862   match(Set icc (CmpI op1 op2));
8863   effect( DEF icc, USE op1, USE op2 );
8864 
8865   size(4);
8866   format %{ "CMP    $op1,$op2" %}
8867   opcode(Assembler::subcc_op3, Assembler::arith_op);
8868   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8869   ins_pipe(ialu_cconly_reg_reg);
8870 %}
8871 
8872 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8873   match(Set icc (CmpU op1 op2));
8874 
8875   size(4);
8876   format %{ "CMP    $op1,$op2\t! unsigned" %}
8877   opcode(Assembler::subcc_op3, Assembler::arith_op);
8878   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8879   ins_pipe(ialu_cconly_reg_reg);
8880 %}
8881 
8882 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8883   match(Set icc (CmpI op1 op2));
8884   effect( DEF icc, USE op1 );
8885 
8886   size(4);
8887   format %{ "CMP    $op1,$op2" %}
8888   opcode(Assembler::subcc_op3, Assembler::arith_op);
8889   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8890   ins_pipe(ialu_cconly_reg_imm);
8891 %}
8892 
8893 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8894   match(Set icc (CmpI (AndI op1 op2) zero));
8895 
8896   size(4);
8897   format %{ "BTST   $op2,$op1" %}
8898   opcode(Assembler::andcc_op3, Assembler::arith_op);
8899   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8900   ins_pipe(ialu_cconly_reg_reg_zero);
8901 %}
8902 
8903 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8904   match(Set icc (CmpI (AndI op1 op2) zero));
8905 
8906   size(4);
8907   format %{ "BTST   $op2,$op1" %}
8908   opcode(Assembler::andcc_op3, Assembler::arith_op);
8909   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8910   ins_pipe(ialu_cconly_reg_imm_zero);
8911 %}
8912 
8913 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8914   match(Set xcc (CmpL op1 op2));
8915   effect( DEF xcc, USE op1, USE op2 );
8916 
8917   size(4);
8918   format %{ "CMP    $op1,$op2\t\t! long" %}
8919   opcode(Assembler::subcc_op3, Assembler::arith_op);
8920   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8921   ins_pipe(ialu_cconly_reg_reg);
8922 %}
8923 
8924 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8925   match(Set xcc (CmpL op1 con));
8926   effect( DEF xcc, USE op1, USE con );
8927 
8928   size(4);
8929   format %{ "CMP    $op1,$con\t\t! long" %}
8930   opcode(Assembler::subcc_op3, Assembler::arith_op);
8931   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8932   ins_pipe(ialu_cconly_reg_reg);
8933 %}
8934 
8935 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8936   match(Set xcc (CmpL (AndL op1 op2) zero));
8937   effect( DEF xcc, USE op1, USE op2 );
8938 
8939   size(4);
8940   format %{ "BTST   $op1,$op2\t\t! long" %}
8941   opcode(Assembler::andcc_op3, Assembler::arith_op);
8942   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8943   ins_pipe(ialu_cconly_reg_reg);
8944 %}
8945 
8946 // useful for checking the alignment of a pointer:
8947 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8948   match(Set xcc (CmpL (AndL op1 con) zero));
8949   effect( DEF xcc, USE op1, USE con );
8950 
8951   size(4);
8952   format %{ "BTST   $op1,$con\t\t! long" %}
8953   opcode(Assembler::andcc_op3, Assembler::arith_op);
8954   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8955   ins_pipe(ialu_cconly_reg_reg);
8956 %}
8957 
8958 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8959   match(Set icc (CmpU op1 op2));
8960 
8961   size(4);
8962   format %{ "CMP    $op1,$op2\t! unsigned" %}
8963   opcode(Assembler::subcc_op3, Assembler::arith_op);
8964   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8965   ins_pipe(ialu_cconly_reg_imm);
8966 %}
8967 
8968 // Compare Pointers
8969 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8970   match(Set pcc (CmpP op1 op2));
8971 
8972   size(4);
8973   format %{ "CMP    $op1,$op2\t! ptr" %}
8974   opcode(Assembler::subcc_op3, Assembler::arith_op);
8975   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8976   ins_pipe(ialu_cconly_reg_reg);
8977 %}
8978 
8979 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8980   match(Set pcc (CmpP op1 op2));
8981 
8982   size(4);
8983   format %{ "CMP    $op1,$op2\t! ptr" %}
8984   opcode(Assembler::subcc_op3, Assembler::arith_op);
8985   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8986   ins_pipe(ialu_cconly_reg_imm);
8987 %}
8988 
8989 // Compare Narrow oops
8990 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8991   match(Set icc (CmpN op1 op2));
8992 
8993   size(4);
8994   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8995   opcode(Assembler::subcc_op3, Assembler::arith_op);
8996   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8997   ins_pipe(ialu_cconly_reg_reg);
8998 %}
8999 
9000 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9001   match(Set icc (CmpN op1 op2));
9002 
9003   size(4);
9004   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9005   opcode(Assembler::subcc_op3, Assembler::arith_op);
9006   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9007   ins_pipe(ialu_cconly_reg_imm);
9008 %}
9009 
9010 //----------Max and Min--------------------------------------------------------
9011 // Min Instructions
9012 // Conditional move for min
9013 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9014   effect( USE_DEF op2, USE op1, USE icc );
9015 
9016   size(4);
9017   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9018   opcode(Assembler::less);
9019   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9020   ins_pipe(ialu_reg_flags);
9021 %}
9022 
9023 // Min Register with Register.
9024 instruct minI_eReg(iRegI op1, iRegI op2) %{
9025   match(Set op2 (MinI op1 op2));
9026   ins_cost(DEFAULT_COST*2);
9027   expand %{
9028     flagsReg icc;
9029     compI_iReg(icc,op1,op2);
9030     cmovI_reg_lt(op2,op1,icc);
9031   %}
9032 %}
9033 
9034 // Max Instructions
9035 // Conditional move for max
9036 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9037   effect( USE_DEF op2, USE op1, USE icc );
9038   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9039   opcode(Assembler::greater);
9040   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9041   ins_pipe(ialu_reg_flags);
9042 %}
9043 
9044 // Max Register with Register
9045 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9046   match(Set op2 (MaxI op1 op2));
9047   ins_cost(DEFAULT_COST*2);
9048   expand %{
9049     flagsReg icc;
9050     compI_iReg(icc,op1,op2);
9051     cmovI_reg_gt(op2,op1,icc);
9052   %}
9053 %}
9054 
9055 
9056 //----------Float Compares----------------------------------------------------
9057 // Compare floating, generate condition code
9058 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9059   match(Set fcc (CmpF src1 src2));
9060 
9061   size(4);
9062   format %{ "FCMPs  $fcc,$src1,$src2" %}
9063   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9064   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9065   ins_pipe(faddF_fcc_reg_reg_zero);
9066 %}
9067 
9068 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9069   match(Set fcc (CmpD src1 src2));
9070 
9071   size(4);
9072   format %{ "FCMPd  $fcc,$src1,$src2" %}
9073   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9074   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9075   ins_pipe(faddD_fcc_reg_reg_zero);
9076 %}
9077 
9078 
9079 // Compare floating, generate -1,0,1
9080 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9081   match(Set dst (CmpF3 src1 src2));
9082   effect(KILL fcc0);
9083   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9084   format %{ "fcmpl  $dst,$src1,$src2" %}
9085   // Primary = float
9086   opcode( true );
9087   ins_encode( floating_cmp( dst, src1, src2 ) );
9088   ins_pipe( floating_cmp );
9089 %}
9090 
9091 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9092   match(Set dst (CmpD3 src1 src2));
9093   effect(KILL fcc0);
9094   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9095   format %{ "dcmpl  $dst,$src1,$src2" %}
9096   // Primary = double (not float)
9097   opcode( false );
9098   ins_encode( floating_cmp( dst, src1, src2 ) );
9099   ins_pipe( floating_cmp );
9100 %}
9101 
9102 //----------Branches---------------------------------------------------------
9103 // Jump
9104 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9105 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9106   match(Jump switch_val);
9107   effect(TEMP table);
9108 
9109   ins_cost(350);
9110 
9111   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9112              "LD     [O7 + $switch_val], O7\n\t"
9113              "JUMP   O7" %}
9114   ins_encode %{
9115     // Calculate table address into a register.
9116     Register table_reg;
9117     Register label_reg = O7;
9118     // If we are calculating the size of this instruction don't trust
9119     // zero offsets because they might change when
9120     // MachConstantBaseNode decides to optimize the constant table
9121     // base.
9122     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9123       table_reg = $constanttablebase;
9124     } else {
9125       table_reg = O7;
9126       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9127       __ add($constanttablebase, con_offset, table_reg);
9128     }
9129 
9130     // Jump to base address + switch value
9131     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9132     __ jmp(label_reg, G0);
9133     __ delayed()->nop();
9134   %}
9135   ins_pipe(ialu_reg_reg);
9136 %}
9137 
9138 // Direct Branch.  Use V8 version with longer range.
9139 instruct branch(label labl) %{
9140   match(Goto);
9141   effect(USE labl);
9142 
9143   size(8);
9144   ins_cost(BRANCH_COST);
9145   format %{ "BA     $labl" %}
9146   ins_encode %{
9147     Label* L = $labl$$label;
9148     __ ba(*L);
9149     __ delayed()->nop();
9150   %}
9151   ins_pipe(br);
9152 %}
9153 
9154 // Direct Branch, short with no delay slot
9155 instruct branch_short(label labl) %{
9156   match(Goto);
9157   predicate(UseCBCond);
9158   effect(USE labl);
9159 
9160   size(4);
9161   ins_cost(BRANCH_COST);
9162   format %{ "BA     $labl\t! short branch" %}
9163   ins_encode %{ 
9164     Label* L = $labl$$label;
9165     assert(__ use_cbcond(*L), "back to back cbcond");
9166     __ ba_short(*L);
9167   %}
9168   ins_short_branch(1);
9169   ins_avoid_back_to_back(1);
9170   ins_pipe(cbcond_reg_imm);
9171 %}
9172 
9173 // Conditional Direct Branch
9174 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9175   match(If cmp icc);
9176   effect(USE labl);
9177 
9178   size(8);
9179   ins_cost(BRANCH_COST);
9180   format %{ "BP$cmp   $icc,$labl" %}
9181   // Prim = bits 24-22, Secnd = bits 31-30
9182   ins_encode( enc_bp( labl, cmp, icc ) );
9183   ins_pipe(br_cc);
9184 %}
9185 
9186 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9187   match(If cmp icc);
9188   effect(USE labl);
9189 
9190   ins_cost(BRANCH_COST);
9191   format %{ "BP$cmp  $icc,$labl" %}
9192   // Prim = bits 24-22, Secnd = bits 31-30
9193   ins_encode( enc_bp( labl, cmp, icc ) );
9194   ins_pipe(br_cc);
9195 %}
9196 
9197 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9198   match(If cmp pcc);
9199   effect(USE labl);
9200 
9201   size(8);
9202   ins_cost(BRANCH_COST);
9203   format %{ "BP$cmp  $pcc,$labl" %}
9204   ins_encode %{
9205     Label* L = $labl$$label;
9206     Assembler::Predict predict_taken =
9207       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9208 
9209     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9210     __ delayed()->nop();
9211   %}
9212   ins_pipe(br_cc);
9213 %}
9214 
9215 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9216   match(If cmp fcc);
9217   effect(USE labl);
9218 
9219   size(8);
9220   ins_cost(BRANCH_COST);
9221   format %{ "FBP$cmp $fcc,$labl" %}
9222   ins_encode %{
9223     Label* L = $labl$$label;
9224     Assembler::Predict predict_taken =
9225       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9226 
9227     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9228     __ delayed()->nop();
9229   %}
9230   ins_pipe(br_fcc);
9231 %}
9232 
9233 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9234   match(CountedLoopEnd cmp icc);
9235   effect(USE labl);
9236 
9237   size(8);
9238   ins_cost(BRANCH_COST);
9239   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9240   // Prim = bits 24-22, Secnd = bits 31-30
9241   ins_encode( enc_bp( labl, cmp, icc ) );
9242   ins_pipe(br_cc);
9243 %}
9244 
9245 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9246   match(CountedLoopEnd cmp icc);
9247   effect(USE labl);
9248 
9249   size(8);
9250   ins_cost(BRANCH_COST);
9251   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9252   // Prim = bits 24-22, Secnd = bits 31-30
9253   ins_encode( enc_bp( labl, cmp, icc ) );
9254   ins_pipe(br_cc);
9255 %}
9256 
9257 // Compare and branch instructions
9258 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9259   match(If cmp (CmpI op1 op2));
9260   effect(USE labl, KILL icc);
9261 
9262   size(12);
9263   ins_cost(BRANCH_COST);
9264   format %{ "CMP    $op1,$op2\t! int\n\t"
9265             "BP$cmp   $labl" %}
9266   ins_encode %{
9267     Label* L = $labl$$label;
9268     Assembler::Predict predict_taken =
9269       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9270     __ cmp($op1$$Register, $op2$$Register);
9271     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9272     __ delayed()->nop();
9273   %}
9274   ins_pipe(cmp_br_reg_reg);
9275 %}
9276 
9277 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9278   match(If cmp (CmpI op1 op2));
9279   effect(USE labl, KILL icc);
9280 
9281   size(12);
9282   ins_cost(BRANCH_COST);
9283   format %{ "CMP    $op1,$op2\t! int\n\t"
9284             "BP$cmp   $labl" %}
9285   ins_encode %{
9286     Label* L = $labl$$label;
9287     Assembler::Predict predict_taken =
9288       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9289     __ cmp($op1$$Register, $op2$$constant);
9290     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9291     __ delayed()->nop();
9292   %}
9293   ins_pipe(cmp_br_reg_imm);
9294 %}
9295 
9296 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9297   match(If cmp (CmpU op1 op2));
9298   effect(USE labl, KILL icc);
9299 
9300   size(12);
9301   ins_cost(BRANCH_COST);
9302   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9303             "BP$cmp  $labl" %}
9304   ins_encode %{
9305     Label* L = $labl$$label;
9306     Assembler::Predict predict_taken =
9307       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9308     __ cmp($op1$$Register, $op2$$Register);
9309     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9310     __ delayed()->nop();
9311   %}
9312   ins_pipe(cmp_br_reg_reg);
9313 %}
9314 
9315 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9316   match(If cmp (CmpU op1 op2));
9317   effect(USE labl, KILL icc);
9318 
9319   size(12);
9320   ins_cost(BRANCH_COST);
9321   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9322             "BP$cmp  $labl" %}
9323   ins_encode %{
9324     Label* L = $labl$$label;
9325     Assembler::Predict predict_taken =
9326       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9327     __ cmp($op1$$Register, $op2$$constant);
9328     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9329     __ delayed()->nop();
9330   %}
9331   ins_pipe(cmp_br_reg_imm);
9332 %}
9333 
9334 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9335   match(If cmp (CmpL op1 op2));
9336   effect(USE labl, KILL xcc);
9337 
9338   size(12);
9339   ins_cost(BRANCH_COST);
9340   format %{ "CMP    $op1,$op2\t! long\n\t"
9341             "BP$cmp   $labl" %}
9342   ins_encode %{
9343     Label* L = $labl$$label;
9344     Assembler::Predict predict_taken =
9345       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9346     __ cmp($op1$$Register, $op2$$Register);
9347     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9348     __ delayed()->nop();
9349   %}
9350   ins_pipe(cmp_br_reg_reg);
9351 %}
9352 
9353 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9354   match(If cmp (CmpL op1 op2));
9355   effect(USE labl, KILL xcc);
9356 
9357   size(12);
9358   ins_cost(BRANCH_COST);
9359   format %{ "CMP    $op1,$op2\t! long\n\t"
9360             "BP$cmp   $labl" %}
9361   ins_encode %{
9362     Label* L = $labl$$label;
9363     Assembler::Predict predict_taken =
9364       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9365     __ cmp($op1$$Register, $op2$$constant);
9366     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9367     __ delayed()->nop();
9368   %}
9369   ins_pipe(cmp_br_reg_imm);
9370 %}
9371 
9372 // Compare Pointers and branch
9373 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9374   match(If cmp (CmpP op1 op2));
9375   effect(USE labl, KILL pcc);
9376 
9377   size(12);
9378   ins_cost(BRANCH_COST);
9379   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9380             "B$cmp   $labl" %}
9381   ins_encode %{
9382     Label* L = $labl$$label;
9383     Assembler::Predict predict_taken =
9384       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9385     __ cmp($op1$$Register, $op2$$Register);
9386     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9387     __ delayed()->nop();
9388   %}
9389   ins_pipe(cmp_br_reg_reg);
9390 %}
9391 
9392 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9393   match(If cmp (CmpP op1 null));
9394   effect(USE labl, KILL pcc);
9395 
9396   size(12);
9397   ins_cost(BRANCH_COST);
9398   format %{ "CMP    $op1,0\t! ptr\n\t"
9399             "B$cmp   $labl" %}
9400   ins_encode %{
9401     Label* L = $labl$$label;
9402     Assembler::Predict predict_taken =
9403       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9404     __ cmp($op1$$Register, G0);
9405     // bpr() is not used here since it has shorter distance.
9406     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9407     __ delayed()->nop();
9408   %}
9409   ins_pipe(cmp_br_reg_reg);
9410 %}
9411 
9412 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9413   match(If cmp (CmpN op1 op2));
9414   effect(USE labl, KILL icc);
9415 
9416   size(12);
9417   ins_cost(BRANCH_COST);
9418   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9419             "BP$cmp   $labl" %}
9420   ins_encode %{
9421     Label* L = $labl$$label;
9422     Assembler::Predict predict_taken =
9423       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9424     __ cmp($op1$$Register, $op2$$Register);
9425     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9426     __ delayed()->nop();
9427   %}
9428   ins_pipe(cmp_br_reg_reg);
9429 %}
9430 
9431 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9432   match(If cmp (CmpN op1 null));
9433   effect(USE labl, KILL icc);
9434 
9435   size(12);
9436   ins_cost(BRANCH_COST);
9437   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9438             "BP$cmp   $labl" %}
9439   ins_encode %{
9440     Label* L = $labl$$label;
9441     Assembler::Predict predict_taken =
9442       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9443     __ cmp($op1$$Register, G0);
9444     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9445     __ delayed()->nop();
9446   %}
9447   ins_pipe(cmp_br_reg_reg);
9448 %}
9449 
9450 // Loop back branch
9451 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9452   match(CountedLoopEnd cmp (CmpI op1 op2));
9453   effect(USE labl, KILL icc);
9454 
9455   size(12);
9456   ins_cost(BRANCH_COST);
9457   format %{ "CMP    $op1,$op2\t! int\n\t"
9458             "BP$cmp   $labl\t! Loop end" %}
9459   ins_encode %{
9460     Label* L = $labl$$label;
9461     Assembler::Predict predict_taken =
9462       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9463     __ cmp($op1$$Register, $op2$$Register);
9464     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9465     __ delayed()->nop();
9466   %}
9467   ins_pipe(cmp_br_reg_reg);
9468 %}
9469 
9470 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9471   match(CountedLoopEnd cmp (CmpI op1 op2));
9472   effect(USE labl, KILL icc);
9473 
9474   size(12);
9475   ins_cost(BRANCH_COST);
9476   format %{ "CMP    $op1,$op2\t! int\n\t"
9477             "BP$cmp   $labl\t! Loop end" %}
9478   ins_encode %{
9479     Label* L = $labl$$label;
9480     Assembler::Predict predict_taken =
9481       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9482     __ cmp($op1$$Register, $op2$$constant);
9483     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9484     __ delayed()->nop();
9485   %}
9486   ins_pipe(cmp_br_reg_imm);
9487 %}
9488 
9489 // Short compare and branch instructions
9490 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9491   match(If cmp (CmpI op1 op2));
9492   predicate(UseCBCond);
9493   effect(USE labl, KILL icc);
9494 
9495   size(4);
9496   ins_cost(BRANCH_COST);
9497   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9498   ins_encode %{
9499     Label* L = $labl$$label;
9500     assert(__ use_cbcond(*L), "back to back cbcond");
9501     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9502   %}
9503   ins_short_branch(1);
9504   ins_avoid_back_to_back(1);
9505   ins_pipe(cbcond_reg_reg);
9506 %}
9507 
9508 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9509   match(If cmp (CmpI op1 op2));
9510   predicate(UseCBCond);
9511   effect(USE labl, KILL icc);
9512 
9513   size(4);
9514   ins_cost(BRANCH_COST);
9515   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9516   ins_encode %{
9517     Label* L = $labl$$label;
9518     assert(__ use_cbcond(*L), "back to back cbcond");
9519     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9520   %}
9521   ins_short_branch(1);
9522   ins_avoid_back_to_back(1);
9523   ins_pipe(cbcond_reg_imm);
9524 %}
9525 
9526 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9527   match(If cmp (CmpU op1 op2));
9528   predicate(UseCBCond);
9529   effect(USE labl, KILL icc);
9530 
9531   size(4);
9532   ins_cost(BRANCH_COST);
9533   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9534   ins_encode %{
9535     Label* L = $labl$$label;
9536     assert(__ use_cbcond(*L), "back to back cbcond");
9537     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9538   %}
9539   ins_short_branch(1);
9540   ins_avoid_back_to_back(1);
9541   ins_pipe(cbcond_reg_reg);
9542 %}
9543 
9544 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9545   match(If cmp (CmpU op1 op2));
9546   predicate(UseCBCond);
9547   effect(USE labl, KILL icc);
9548 
9549   size(4);
9550   ins_cost(BRANCH_COST);
9551   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9552   ins_encode %{
9553     Label* L = $labl$$label;
9554     assert(__ use_cbcond(*L), "back to back cbcond");
9555     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9556   %}
9557   ins_short_branch(1);
9558   ins_avoid_back_to_back(1);
9559   ins_pipe(cbcond_reg_imm);
9560 %}
9561 
9562 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9563   match(If cmp (CmpL op1 op2));
9564   predicate(UseCBCond);
9565   effect(USE labl, KILL xcc);
9566 
9567   size(4);
9568   ins_cost(BRANCH_COST);
9569   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9570   ins_encode %{
9571     Label* L = $labl$$label;
9572     assert(__ use_cbcond(*L), "back to back cbcond");
9573     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9574   %}
9575   ins_short_branch(1);
9576   ins_avoid_back_to_back(1);
9577   ins_pipe(cbcond_reg_reg);
9578 %}
9579 
9580 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9581   match(If cmp (CmpL op1 op2));
9582   predicate(UseCBCond);
9583   effect(USE labl, KILL xcc);
9584 
9585   size(4);
9586   ins_cost(BRANCH_COST);
9587   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9588   ins_encode %{
9589     Label* L = $labl$$label;
9590     assert(__ use_cbcond(*L), "back to back cbcond");
9591     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9592   %}
9593   ins_short_branch(1);
9594   ins_avoid_back_to_back(1);
9595   ins_pipe(cbcond_reg_imm);
9596 %}
9597 
9598 // Compare Pointers and branch
9599 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9600   match(If cmp (CmpP op1 op2));
9601   predicate(UseCBCond);
9602   effect(USE labl, KILL pcc);
9603 
9604   size(4);
9605   ins_cost(BRANCH_COST);
9606 #ifdef _LP64
9607   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9608 #else
9609   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9610 #endif
9611   ins_encode %{
9612     Label* L = $labl$$label;
9613     assert(__ use_cbcond(*L), "back to back cbcond");
9614     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9615   %}
9616   ins_short_branch(1);
9617   ins_avoid_back_to_back(1);
9618   ins_pipe(cbcond_reg_reg);
9619 %}
9620 
9621 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9622   match(If cmp (CmpP op1 null));
9623   predicate(UseCBCond);
9624   effect(USE labl, KILL pcc);
9625 
9626   size(4);
9627   ins_cost(BRANCH_COST);
9628 #ifdef _LP64
9629   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9630 #else
9631   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9632 #endif
9633   ins_encode %{
9634     Label* L = $labl$$label;
9635     assert(__ use_cbcond(*L), "back to back cbcond");
9636     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9637   %}
9638   ins_short_branch(1);
9639   ins_avoid_back_to_back(1);
9640   ins_pipe(cbcond_reg_reg);
9641 %}
9642 
9643 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9644   match(If cmp (CmpN op1 op2));
9645   predicate(UseCBCond);
9646   effect(USE labl, KILL icc);
9647 
9648   size(4);
9649   ins_cost(BRANCH_COST);
9650   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
9651   ins_encode %{
9652     Label* L = $labl$$label;
9653     assert(__ use_cbcond(*L), "back to back cbcond");
9654     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9655   %}
9656   ins_short_branch(1);
9657   ins_avoid_back_to_back(1);
9658   ins_pipe(cbcond_reg_reg);
9659 %}
9660 
9661 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9662   match(If cmp (CmpN op1 null));
9663   predicate(UseCBCond);
9664   effect(USE labl, KILL icc);
9665 
9666   size(4);
9667   ins_cost(BRANCH_COST);
9668   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9669   ins_encode %{
9670     Label* L = $labl$$label;
9671     assert(__ use_cbcond(*L), "back to back cbcond");
9672     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9673   %}
9674   ins_short_branch(1);
9675   ins_avoid_back_to_back(1);
9676   ins_pipe(cbcond_reg_reg);
9677 %}
9678 
9679 // Loop back branch
9680 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9681   match(CountedLoopEnd cmp (CmpI op1 op2));
9682   predicate(UseCBCond);
9683   effect(USE labl, KILL icc);
9684 
9685   size(4);
9686   ins_cost(BRANCH_COST);
9687   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9688   ins_encode %{
9689     Label* L = $labl$$label;
9690     assert(__ use_cbcond(*L), "back to back cbcond");
9691     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9692   %}
9693   ins_short_branch(1);
9694   ins_avoid_back_to_back(1);
9695   ins_pipe(cbcond_reg_reg);
9696 %}
9697 
9698 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9699   match(CountedLoopEnd cmp (CmpI op1 op2));
9700   predicate(UseCBCond);
9701   effect(USE labl, KILL icc);
9702 
9703   size(4);
9704   ins_cost(BRANCH_COST);
9705   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9706   ins_encode %{
9707     Label* L = $labl$$label;
9708     assert(__ use_cbcond(*L), "back to back cbcond");
9709     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9710   %}
9711   ins_short_branch(1);
9712   ins_avoid_back_to_back(1);
9713   ins_pipe(cbcond_reg_imm);
9714 %}
9715 
9716 // Branch-on-register tests all 64 bits.  We assume that values
9717 // in 64-bit registers always remains zero or sign extended
9718 // unless our code munges the high bits.  Interrupts can chop
9719 // the high order bits to zero or sign at any time.
9720 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9721   match(If cmp (CmpI op1 zero));
9722   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9723   effect(USE labl);
9724 
9725   size(8);
9726   ins_cost(BRANCH_COST);
9727   format %{ "BR$cmp   $op1,$labl" %}
9728   ins_encode( enc_bpr( labl, cmp, op1 ) );
9729   ins_pipe(br_reg);
9730 %}
9731 
9732 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9733   match(If cmp (CmpP op1 null));
9734   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9735   effect(USE labl);
9736 
9737   size(8);
9738   ins_cost(BRANCH_COST);
9739   format %{ "BR$cmp   $op1,$labl" %}
9740   ins_encode( enc_bpr( labl, cmp, op1 ) );
9741   ins_pipe(br_reg);
9742 %}
9743 
9744 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9745   match(If cmp (CmpL op1 zero));
9746   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9747   effect(USE labl);
9748 
9749   size(8);
9750   ins_cost(BRANCH_COST);
9751   format %{ "BR$cmp   $op1,$labl" %}
9752   ins_encode( enc_bpr( labl, cmp, op1 ) );
9753   ins_pipe(br_reg);
9754 %}
9755 
9756 
9757 // ============================================================================
9758 // Long Compare
9759 //
9760 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9761 // is tricky.  The flavor of compare used depends on whether we are testing
9762 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9763 // The GE test is the negated LT test.  The LE test can be had by commuting
9764 // the operands (yielding a GE test) and then negating; negate again for the
9765 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9766 // NE test is negated from that.
9767 
9768 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9769 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9770 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9771 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9772 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9773 // foo match ends up with the wrong leaf.  One fix is to not match both
9774 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9775 // both forms beat the trinary form of long-compare and both are very useful
9776 // on Intel which has so few registers.
9777 
9778 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9779   match(If cmp xcc);
9780   effect(USE labl);
9781 
9782   size(8);
9783   ins_cost(BRANCH_COST);
9784   format %{ "BP$cmp   $xcc,$labl" %}
9785   ins_encode %{
9786     Label* L = $labl$$label;
9787     Assembler::Predict predict_taken =
9788       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9789 
9790     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9791     __ delayed()->nop();
9792   %}
9793   ins_pipe(br_cc);
9794 %}
9795 
9796 // Manifest a CmpL3 result in an integer register.  Very painful.
9797 // This is the test to avoid.
9798 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9799   match(Set dst (CmpL3 src1 src2) );
9800   effect( KILL ccr );
9801   ins_cost(6*DEFAULT_COST);
9802   size(24);
9803   format %{ "CMP    $src1,$src2\t\t! long\n"
9804           "\tBLT,a,pn done\n"
9805           "\tMOV    -1,$dst\t! delay slot\n"
9806           "\tBGT,a,pn done\n"
9807           "\tMOV    1,$dst\t! delay slot\n"
9808           "\tCLR    $dst\n"
9809     "done:"     %}
9810   ins_encode( cmpl_flag(src1,src2,dst) );
9811   ins_pipe(cmpL_reg);
9812 %}
9813 
9814 // Conditional move
9815 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9816   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9817   ins_cost(150);
9818   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9819   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9820   ins_pipe(ialu_reg);
9821 %}
9822 
9823 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9824   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9825   ins_cost(140);
9826   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9827   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9828   ins_pipe(ialu_imm);
9829 %}
9830 
9831 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9832   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9833   ins_cost(150);
9834   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9835   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9836   ins_pipe(ialu_reg);
9837 %}
9838 
9839 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9840   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9841   ins_cost(140);
9842   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9843   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9844   ins_pipe(ialu_imm);
9845 %}
9846 
9847 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9848   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9849   ins_cost(150);
9850   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9851   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9852   ins_pipe(ialu_reg);
9853 %}
9854 
9855 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9856   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9857   ins_cost(150);
9858   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9859   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9860   ins_pipe(ialu_reg);
9861 %}
9862 
9863 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9864   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9865   ins_cost(140);
9866   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9867   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9868   ins_pipe(ialu_imm);
9869 %}
9870 
9871 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9872   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9873   ins_cost(150);
9874   opcode(0x101);
9875   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9876   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9877   ins_pipe(int_conditional_float_move);
9878 %}
9879 
9880 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9881   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9882   ins_cost(150);
9883   opcode(0x102);
9884   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9885   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9886   ins_pipe(int_conditional_float_move);
9887 %}
9888 
9889 // ============================================================================
9890 // Safepoint Instruction
9891 instruct safePoint_poll(iRegP poll) %{
9892   match(SafePoint poll);
9893   effect(USE poll);
9894 
9895   size(4);
9896 #ifdef _LP64
9897   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9898 #else
9899   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9900 #endif
9901   ins_encode %{
9902     __ relocate(relocInfo::poll_type);
9903     __ ld_ptr($poll$$Register, 0, G0);
9904   %}
9905   ins_pipe(loadPollP);
9906 %}
9907 
9908 // ============================================================================
9909 // Call Instructions
9910 // Call Java Static Instruction
9911 instruct CallStaticJavaDirect( method meth ) %{
9912   match(CallStaticJava);
9913   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9914   effect(USE meth);
9915 
9916   size(8);
9917   ins_cost(CALL_COST);
9918   format %{ "CALL,static  ; NOP ==> " %}
9919   ins_encode( Java_Static_Call( meth ), call_epilog );
9920   ins_pipe(simple_call);
9921 %}
9922 
9923 // Call Java Static Instruction (method handle version)
9924 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9925   match(CallStaticJava);
9926   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9927   effect(USE meth, KILL l7_mh_SP_save);
9928 
9929   size(16);
9930   ins_cost(CALL_COST);
9931   format %{ "CALL,static/MethodHandle" %}
9932   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9933   ins_pipe(simple_call);
9934 %}
9935 
9936 // Call Java Dynamic Instruction
9937 instruct CallDynamicJavaDirect( method meth ) %{
9938   match(CallDynamicJava);
9939   effect(USE meth);
9940 
9941   ins_cost(CALL_COST);
9942   format %{ "SET    (empty),R_G5\n\t"
9943             "CALL,dynamic  ; NOP ==> " %}
9944   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9945   ins_pipe(call);
9946 %}
9947 
9948 // Call Runtime Instruction
9949 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9950   match(CallRuntime);
9951   effect(USE meth, KILL l7);
9952   ins_cost(CALL_COST);
9953   format %{ "CALL,runtime" %}
9954   ins_encode( Java_To_Runtime( meth ),
9955               call_epilog, adjust_long_from_native_call );
9956   ins_pipe(simple_call);
9957 %}
9958 
9959 // Call runtime without safepoint - same as CallRuntime
9960 instruct CallLeafDirect(method meth, l7RegP l7) %{
9961   match(CallLeaf);
9962   effect(USE meth, KILL l7);
9963   ins_cost(CALL_COST);
9964   format %{ "CALL,runtime leaf" %}
9965   ins_encode( Java_To_Runtime( meth ),
9966               call_epilog,
9967               adjust_long_from_native_call );
9968   ins_pipe(simple_call);
9969 %}
9970 
9971 // Call runtime without safepoint - same as CallLeaf
9972 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9973   match(CallLeafNoFP);
9974   effect(USE meth, KILL l7);
9975   ins_cost(CALL_COST);
9976   format %{ "CALL,runtime leaf nofp" %}
9977   ins_encode( Java_To_Runtime( meth ),
9978               call_epilog,
9979               adjust_long_from_native_call );
9980   ins_pipe(simple_call);
9981 %}
9982 
9983 // Tail Call; Jump from runtime stub to Java code.
9984 // Also known as an 'interprocedural jump'.
9985 // Target of jump will eventually return to caller.
9986 // TailJump below removes the return address.
9987 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9988   match(TailCall jump_target method_oop );
9989 
9990   ins_cost(CALL_COST);
9991   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9992   ins_encode(form_jmpl(jump_target));
9993   ins_pipe(tail_call);
9994 %}
9995 
9996 
9997 // Return Instruction
9998 instruct Ret() %{
9999   match(Return);
10000 
10001   // The epilogue node did the ret already.
10002   size(0);
10003   format %{ "! return" %}
10004   ins_encode();
10005   ins_pipe(empty);
10006 %}
10007 
10008 
10009 // Tail Jump; remove the return address; jump to target.
10010 // TailCall above leaves the return address around.
10011 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10012 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10013 // "restore" before this instruction (in Epilogue), we need to materialize it
10014 // in %i0.
10015 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10016   match( TailJump jump_target ex_oop );
10017   ins_cost(CALL_COST);
10018   format %{ "! discard R_O7\n\t"
10019             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10020   ins_encode(form_jmpl_set_exception_pc(jump_target));
10021   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10022   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10023   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10024   ins_pipe(tail_call);
10025 %}
10026 
10027 // Create exception oop: created by stack-crawling runtime code.
10028 // Created exception is now available to this handler, and is setup
10029 // just prior to jumping to this handler.  No code emitted.
10030 instruct CreateException( o0RegP ex_oop )
10031 %{
10032   match(Set ex_oop (CreateEx));
10033   ins_cost(0);
10034 
10035   size(0);
10036   // use the following format syntax
10037   format %{ "! exception oop is in R_O0; no code emitted" %}
10038   ins_encode();
10039   ins_pipe(empty);
10040 %}
10041 
10042 
10043 // Rethrow exception:
10044 // The exception oop will come in the first argument position.
10045 // Then JUMP (not call) to the rethrow stub code.
10046 instruct RethrowException()
10047 %{
10048   match(Rethrow);
10049   ins_cost(CALL_COST);
10050 
10051   // use the following format syntax
10052   format %{ "Jmp    rethrow_stub" %}
10053   ins_encode(enc_rethrow);
10054   ins_pipe(tail_call);
10055 %}
10056 
10057 
10058 // Die now
10059 instruct ShouldNotReachHere( )
10060 %{
10061   match(Halt);
10062   ins_cost(CALL_COST);
10063 
10064   size(4);
10065   // Use the following format syntax
10066   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10067   ins_encode( form2_illtrap() );
10068   ins_pipe(tail_call);
10069 %}
10070 
10071 // ============================================================================
10072 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10073 // array for an instance of the superklass.  Set a hidden internal cache on a
10074 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10075 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10076 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10077   match(Set index (PartialSubtypeCheck sub super));
10078   effect( KILL pcc, KILL o7 );
10079   ins_cost(DEFAULT_COST*10);
10080   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10081   ins_encode( enc_PartialSubtypeCheck() );
10082   ins_pipe(partial_subtype_check_pipe);
10083 %}
10084 
10085 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10086   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10087   effect( KILL idx, KILL o7 );
10088   ins_cost(DEFAULT_COST*10);
10089   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10090   ins_encode( enc_PartialSubtypeCheck() );
10091   ins_pipe(partial_subtype_check_pipe);
10092 %}
10093 
10094 
10095 // ============================================================================
10096 // inlined locking and unlocking
10097 
10098 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10099   match(Set pcc (FastLock object box));
10100 
10101   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10102   ins_cost(100);
10103 
10104   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10105   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10106   ins_pipe(long_memory_op);
10107 %}
10108 
10109 
10110 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10111   match(Set pcc (FastUnlock object box));
10112   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10113   ins_cost(100);
10114 
10115   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10116   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10117   ins_pipe(long_memory_op);
10118 %}
10119 
10120 // The encodings are generic.
10121 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10122   predicate(!use_block_zeroing(n->in(2)) );
10123   match(Set dummy (ClearArray cnt base));
10124   effect(TEMP temp, KILL ccr);
10125   ins_cost(300);
10126   format %{ "MOV    $cnt,$temp\n"
10127     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10128     "        BRge   loop\t\t! Clearing loop\n"
10129     "        STX    G0,[$base+$temp]\t! delay slot" %}
10130 
10131   ins_encode %{
10132     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10133     Register nof_bytes_arg    = $cnt$$Register;
10134     Register nof_bytes_tmp    = $temp$$Register;
10135     Register base_pointer_arg = $base$$Register;
10136 
10137     Label loop;
10138     __ mov(nof_bytes_arg, nof_bytes_tmp);
10139 
10140     // Loop and clear, walking backwards through the array.
10141     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10142     __ bind(loop);
10143     __ deccc(nof_bytes_tmp, 8);
10144     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10145     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10146     // %%%% this mini-loop must not cross a cache boundary!
10147   %}
10148   ins_pipe(long_memory_op);
10149 %}
10150 
10151 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10152   predicate(use_block_zeroing(n->in(2)));
10153   match(Set dummy (ClearArray cnt base));
10154   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10155   ins_cost(300);
10156   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10157 
10158   ins_encode %{
10159 
10160     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10161     Register to    = $base$$Register;
10162     Register count = $cnt$$Register;
10163 
10164     Label Ldone;
10165     __ nop(); // Separate short branches
10166     // Use BIS for zeroing (temp is not used).
10167     __ bis_zeroing(to, count, G0, Ldone);
10168     __ bind(Ldone);
10169 
10170   %}
10171   ins_pipe(long_memory_op);
10172 %}
10173 
10174 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10175   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10176   match(Set dummy (ClearArray cnt base));
10177   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10178   ins_cost(300);
10179   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10180 
10181   ins_encode %{
10182 
10183     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10184     Register to    = $base$$Register;
10185     Register count = $cnt$$Register;
10186     Register temp  = $tmp$$Register;
10187 
10188     Label Ldone;
10189     __ nop(); // Separate short branches
10190     // Use BIS for zeroing
10191     __ bis_zeroing(to, count, temp, Ldone);
10192     __ bind(Ldone);
10193 
10194   %}
10195   ins_pipe(long_memory_op);
10196 %}
10197 
10198 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10199                         o7RegI tmp, flagsReg ccr) %{
10200   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10201   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10202   ins_cost(300);
10203   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10204   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10205   ins_pipe(long_memory_op);
10206 %}
10207 
10208 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10209                        o7RegI tmp, flagsReg ccr) %{
10210   match(Set result (StrEquals (Binary str1 str2) cnt));
10211   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10212   ins_cost(300);
10213   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10214   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10215   ins_pipe(long_memory_op);
10216 %}
10217 
10218 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10219                       o7RegI tmp2, flagsReg ccr) %{
10220   match(Set result (AryEq ary1 ary2));
10221   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10222   ins_cost(300);
10223   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10224   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10225   ins_pipe(long_memory_op);
10226 %}
10227 
10228 
10229 //---------- Zeros Count Instructions ------------------------------------------
10230 
10231 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
10232   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10233   match(Set dst (CountLeadingZerosI src));
10234   effect(TEMP dst, TEMP tmp, KILL cr);
10235 
10236   // x |= (x >> 1);
10237   // x |= (x >> 2);
10238   // x |= (x >> 4);
10239   // x |= (x >> 8);
10240   // x |= (x >> 16);
10241   // return (WORDBITS - popc(x));
10242   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10243             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10244             "OR      $dst,$tmp,$dst\n\t"
10245             "SRL     $dst,2,$tmp\n\t"
10246             "OR      $dst,$tmp,$dst\n\t"
10247             "SRL     $dst,4,$tmp\n\t"
10248             "OR      $dst,$tmp,$dst\n\t"
10249             "SRL     $dst,8,$tmp\n\t"
10250             "OR      $dst,$tmp,$dst\n\t"
10251             "SRL     $dst,16,$tmp\n\t"
10252             "OR      $dst,$tmp,$dst\n\t"
10253             "POPC    $dst,$dst\n\t"
10254             "MOV     32,$tmp\n\t"
10255             "SUB     $tmp,$dst,$dst" %}
10256   ins_encode %{
10257     Register Rdst = $dst$$Register;
10258     Register Rsrc = $src$$Register;
10259     Register Rtmp = $tmp$$Register;
10260     __ srl(Rsrc, 1,    Rtmp);
10261     __ srl(Rsrc, 0,    Rdst);
10262     __ or3(Rdst, Rtmp, Rdst);
10263     __ srl(Rdst, 2,    Rtmp);
10264     __ or3(Rdst, Rtmp, Rdst);
10265     __ srl(Rdst, 4,    Rtmp);
10266     __ or3(Rdst, Rtmp, Rdst);
10267     __ srl(Rdst, 8,    Rtmp);
10268     __ or3(Rdst, Rtmp, Rdst);
10269     __ srl(Rdst, 16,   Rtmp);
10270     __ or3(Rdst, Rtmp, Rdst);
10271     __ popc(Rdst, Rdst);
10272     __ mov(BitsPerInt, Rtmp);
10273     __ sub(Rtmp, Rdst, Rdst);
10274   %}
10275   ins_pipe(ialu_reg);
10276 %}
10277 
10278 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10279   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10280   match(Set dst (CountLeadingZerosL src));
10281   effect(TEMP dst, TEMP tmp, KILL cr);
10282 
10283   // x |= (x >> 1);
10284   // x |= (x >> 2);
10285   // x |= (x >> 4);
10286   // x |= (x >> 8);
10287   // x |= (x >> 16);
10288   // x |= (x >> 32);
10289   // return (WORDBITS - popc(x));
10290   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10291             "OR      $src,$tmp,$dst\n\t"
10292             "SRLX    $dst,2,$tmp\n\t"
10293             "OR      $dst,$tmp,$dst\n\t"
10294             "SRLX    $dst,4,$tmp\n\t"
10295             "OR      $dst,$tmp,$dst\n\t"
10296             "SRLX    $dst,8,$tmp\n\t"
10297             "OR      $dst,$tmp,$dst\n\t"
10298             "SRLX    $dst,16,$tmp\n\t"
10299             "OR      $dst,$tmp,$dst\n\t"
10300             "SRLX    $dst,32,$tmp\n\t"
10301             "OR      $dst,$tmp,$dst\n\t"
10302             "POPC    $dst,$dst\n\t"
10303             "MOV     64,$tmp\n\t"
10304             "SUB     $tmp,$dst,$dst" %}
10305   ins_encode %{
10306     Register Rdst = $dst$$Register;
10307     Register Rsrc = $src$$Register;
10308     Register Rtmp = $tmp$$Register;
10309     __ srlx(Rsrc, 1,    Rtmp);
10310     __ or3( Rsrc, Rtmp, Rdst);
10311     __ srlx(Rdst, 2,    Rtmp);
10312     __ or3( Rdst, Rtmp, Rdst);
10313     __ srlx(Rdst, 4,    Rtmp);
10314     __ or3( Rdst, Rtmp, Rdst);
10315     __ srlx(Rdst, 8,    Rtmp);
10316     __ or3( Rdst, Rtmp, Rdst);
10317     __ srlx(Rdst, 16,   Rtmp);
10318     __ or3( Rdst, Rtmp, Rdst);
10319     __ srlx(Rdst, 32,   Rtmp);
10320     __ or3( Rdst, Rtmp, Rdst);
10321     __ popc(Rdst, Rdst);
10322     __ mov(BitsPerLong, Rtmp);
10323     __ sub(Rtmp, Rdst, Rdst);
10324   %}
10325   ins_pipe(ialu_reg);
10326 %}
10327 
10328 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
10329   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10330   match(Set dst (CountTrailingZerosI src));
10331   effect(TEMP dst, KILL cr);
10332 
10333   // return popc(~x & (x - 1));
10334   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10335             "ANDN    $dst,$src,$dst\n\t"
10336             "SRL     $dst,R_G0,$dst\n\t"
10337             "POPC    $dst,$dst" %}
10338   ins_encode %{
10339     Register Rdst = $dst$$Register;
10340     Register Rsrc = $src$$Register;
10341     __ sub(Rsrc, 1, Rdst);
10342     __ andn(Rdst, Rsrc, Rdst);
10343     __ srl(Rdst, G0, Rdst);
10344     __ popc(Rdst, Rdst);
10345   %}
10346   ins_pipe(ialu_reg);
10347 %}
10348 
10349 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10350   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10351   match(Set dst (CountTrailingZerosL src));
10352   effect(TEMP dst, KILL cr);
10353 
10354   // return popc(~x & (x - 1));
10355   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10356             "ANDN    $dst,$src,$dst\n\t"
10357             "POPC    $dst,$dst" %}
10358   ins_encode %{
10359     Register Rdst = $dst$$Register;
10360     Register Rsrc = $src$$Register;
10361     __ sub(Rsrc, 1, Rdst);
10362     __ andn(Rdst, Rsrc, Rdst);
10363     __ popc(Rdst, Rdst);
10364   %}
10365   ins_pipe(ialu_reg);
10366 %}
10367 
10368 
10369 //---------- Population Count Instructions -------------------------------------
10370 
10371 instruct popCountI(iRegI dst, iRegI src) %{
10372   predicate(UsePopCountInstruction);
10373   match(Set dst (PopCountI src));
10374 
10375   format %{ "POPC   $src, $dst" %}
10376   ins_encode %{
10377     __ popc($src$$Register, $dst$$Register);
10378   %}
10379   ins_pipe(ialu_reg);
10380 %}
10381 
10382 // Note: Long.bitCount(long) returns an int.
10383 instruct popCountL(iRegI dst, iRegL src) %{
10384   predicate(UsePopCountInstruction);
10385   match(Set dst (PopCountL src));
10386 
10387   format %{ "POPC   $src, $dst" %}
10388   ins_encode %{
10389     __ popc($src$$Register, $dst$$Register);
10390   %}
10391   ins_pipe(ialu_reg);
10392 %}
10393 
10394 
10395 // ============================================================================
10396 //------------Bytes reverse--------------------------------------------------
10397 
10398 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10399   match(Set dst (ReverseBytesI src));
10400 
10401   // Op cost is artificially doubled to make sure that load or store
10402   // instructions are preferred over this one which requires a spill
10403   // onto a stack slot.
10404   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10405   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10406 
10407   ins_encode %{
10408     __ set($src$$disp + STACK_BIAS, O7);
10409     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10410   %}
10411   ins_pipe( iload_mem );
10412 %}
10413 
10414 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10415   match(Set dst (ReverseBytesL src));
10416 
10417   // Op cost is artificially doubled to make sure that load or store
10418   // instructions are preferred over this one which requires a spill
10419   // onto a stack slot.
10420   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10421   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10422 
10423   ins_encode %{
10424     __ set($src$$disp + STACK_BIAS, O7);
10425     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10426   %}
10427   ins_pipe( iload_mem );
10428 %}
10429 
10430 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10431   match(Set dst (ReverseBytesUS src));
10432 
10433   // Op cost is artificially doubled to make sure that load or store
10434   // instructions are preferred over this one which requires a spill
10435   // onto a stack slot.
10436   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10437   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10438 
10439   ins_encode %{
10440     // the value was spilled as an int so bias the load
10441     __ set($src$$disp + STACK_BIAS + 2, O7);
10442     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10443   %}
10444   ins_pipe( iload_mem );
10445 %}
10446 
10447 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10448   match(Set dst (ReverseBytesS src));
10449 
10450   // Op cost is artificially doubled to make sure that load or store
10451   // instructions are preferred over this one which requires a spill
10452   // onto a stack slot.
10453   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10454   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10455 
10456   ins_encode %{
10457     // the value was spilled as an int so bias the load
10458     __ set($src$$disp + STACK_BIAS + 2, O7);
10459     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10460   %}
10461   ins_pipe( iload_mem );
10462 %}
10463 
10464 // Load Integer reversed byte order
10465 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10466   match(Set dst (ReverseBytesI (LoadI src)));
10467 
10468   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10469   size(4);
10470   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10471 
10472   ins_encode %{
10473     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10474   %}
10475   ins_pipe(iload_mem);
10476 %}
10477 
10478 // Load Long - aligned and reversed
10479 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10480   match(Set dst (ReverseBytesL (LoadL src)));
10481 
10482   ins_cost(MEMORY_REF_COST);
10483   size(4);
10484   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10485 
10486   ins_encode %{
10487     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10488   %}
10489   ins_pipe(iload_mem);
10490 %}
10491 
10492 // Load unsigned short / char reversed byte order
10493 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10494   match(Set dst (ReverseBytesUS (LoadUS src)));
10495 
10496   ins_cost(MEMORY_REF_COST);
10497   size(4);
10498   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10499 
10500   ins_encode %{
10501     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10502   %}
10503   ins_pipe(iload_mem);
10504 %}
10505 
10506 // Load short reversed byte order
10507 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10508   match(Set dst (ReverseBytesS (LoadS src)));
10509 
10510   ins_cost(MEMORY_REF_COST);
10511   size(4);
10512   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10513 
10514   ins_encode %{
10515     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10516   %}
10517   ins_pipe(iload_mem);
10518 %}
10519 
10520 // Store Integer reversed byte order
10521 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10522   match(Set dst (StoreI dst (ReverseBytesI src)));
10523 
10524   ins_cost(MEMORY_REF_COST);
10525   size(4);
10526   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10527 
10528   ins_encode %{
10529     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10530   %}
10531   ins_pipe(istore_mem_reg);
10532 %}
10533 
10534 // Store Long reversed byte order
10535 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10536   match(Set dst (StoreL dst (ReverseBytesL src)));
10537 
10538   ins_cost(MEMORY_REF_COST);
10539   size(4);
10540   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10541 
10542   ins_encode %{
10543     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10544   %}
10545   ins_pipe(istore_mem_reg);
10546 %}
10547 
10548 // Store unsighed short/char reversed byte order
10549 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10550   match(Set dst (StoreC dst (ReverseBytesUS src)));
10551 
10552   ins_cost(MEMORY_REF_COST);
10553   size(4);
10554   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10555 
10556   ins_encode %{
10557     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10558   %}
10559   ins_pipe(istore_mem_reg);
10560 %}
10561 
10562 // Store short reversed byte order
10563 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10564   match(Set dst (StoreC dst (ReverseBytesS src)));
10565 
10566   ins_cost(MEMORY_REF_COST);
10567   size(4);
10568   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10569 
10570   ins_encode %{
10571     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10572   %}
10573   ins_pipe(istore_mem_reg);
10574 %}
10575 
10576 // ====================VECTOR INSTRUCTIONS=====================================
10577 
10578 // Load Aligned Packed values into a Double Register
10579 instruct loadV8(regD dst, memory mem) %{
10580   predicate(n->as_LoadVector()->memory_size() == 8);
10581   match(Set dst (LoadVector mem));
10582   ins_cost(MEMORY_REF_COST);
10583   size(4);
10584   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10585   ins_encode %{
10586     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10587   %}
10588   ins_pipe(floadD_mem);
10589 %}
10590 
10591 // Store Vector in Double register to memory
10592 instruct storeV8(memory mem, regD src) %{
10593   predicate(n->as_StoreVector()->memory_size() == 8);
10594   match(Set mem (StoreVector mem src));
10595   ins_cost(MEMORY_REF_COST);
10596   size(4);
10597   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10598   ins_encode %{
10599     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10600   %}
10601   ins_pipe(fstoreD_mem_reg);
10602 %}
10603 
10604 // Store Zero into vector in memory
10605 instruct storeV8B_zero(memory mem, immI0 zero) %{
10606   predicate(n->as_StoreVector()->memory_size() == 8);
10607   match(Set mem (StoreVector mem (ReplicateB zero)));
10608   ins_cost(MEMORY_REF_COST);
10609   size(4);
10610   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10611   ins_encode %{
10612     __ stx(G0, $mem$$Address);
10613   %}
10614   ins_pipe(fstoreD_mem_zero);
10615 %}
10616 
10617 instruct storeV4S_zero(memory mem, immI0 zero) %{
10618   predicate(n->as_StoreVector()->memory_size() == 8);
10619   match(Set mem (StoreVector mem (ReplicateS zero)));
10620   ins_cost(MEMORY_REF_COST);
10621   size(4);
10622   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10623   ins_encode %{
10624     __ stx(G0, $mem$$Address);
10625   %}
10626   ins_pipe(fstoreD_mem_zero);
10627 %}
10628 
10629 instruct storeV2I_zero(memory mem, immI0 zero) %{
10630   predicate(n->as_StoreVector()->memory_size() == 8);
10631   match(Set mem (StoreVector mem (ReplicateI zero)));
10632   ins_cost(MEMORY_REF_COST);
10633   size(4);
10634   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10635   ins_encode %{
10636     __ stx(G0, $mem$$Address);
10637   %}
10638   ins_pipe(fstoreD_mem_zero);
10639 %}
10640 
10641 instruct storeV2F_zero(memory mem, immF0 zero) %{
10642   predicate(n->as_StoreVector()->memory_size() == 8);
10643   match(Set mem (StoreVector mem (ReplicateF zero)));
10644   ins_cost(MEMORY_REF_COST);
10645   size(4);
10646   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10647   ins_encode %{
10648     __ stx(G0, $mem$$Address);
10649   %}
10650   ins_pipe(fstoreD_mem_zero);
10651 %}
10652 
10653 // Replicate scalar to packed byte values into Double register
10654 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10655   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10656   match(Set dst (ReplicateB src));
10657   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10658   format %{ "SLLX  $src,56,$tmp\n\t"
10659             "SRLX  $tmp, 8,$tmp2\n\t"
10660             "OR    $tmp,$tmp2,$tmp\n\t"
10661             "SRLX  $tmp,16,$tmp2\n\t"
10662             "OR    $tmp,$tmp2,$tmp\n\t"
10663             "SRLX  $tmp,32,$tmp2\n\t"
10664             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10665             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10666   ins_encode %{
10667     Register Rsrc = $src$$Register;
10668     Register Rtmp = $tmp$$Register;
10669     Register Rtmp2 = $tmp2$$Register;
10670     __ sllx(Rsrc,    56, Rtmp);
10671     __ srlx(Rtmp,     8, Rtmp2);
10672     __ or3 (Rtmp, Rtmp2, Rtmp);
10673     __ srlx(Rtmp,    16, Rtmp2);
10674     __ or3 (Rtmp, Rtmp2, Rtmp);
10675     __ srlx(Rtmp,    32, Rtmp2);
10676     __ or3 (Rtmp, Rtmp2, Rtmp);
10677     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10678   %}
10679   ins_pipe(ialu_reg);
10680 %}
10681 
10682 // Replicate scalar to packed byte values into Double stack
10683 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10684   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10685   match(Set dst (ReplicateB src));
10686   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10687   format %{ "SLLX  $src,56,$tmp\n\t"
10688             "SRLX  $tmp, 8,$tmp2\n\t"
10689             "OR    $tmp,$tmp2,$tmp\n\t"
10690             "SRLX  $tmp,16,$tmp2\n\t"
10691             "OR    $tmp,$tmp2,$tmp\n\t"
10692             "SRLX  $tmp,32,$tmp2\n\t"
10693             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10694             "STX   $tmp,$dst\t! regL to stkD" %}
10695   ins_encode %{
10696     Register Rsrc = $src$$Register;
10697     Register Rtmp = $tmp$$Register;
10698     Register Rtmp2 = $tmp2$$Register;
10699     __ sllx(Rsrc,    56, Rtmp);
10700     __ srlx(Rtmp,     8, Rtmp2);
10701     __ or3 (Rtmp, Rtmp2, Rtmp);
10702     __ srlx(Rtmp,    16, Rtmp2);
10703     __ or3 (Rtmp, Rtmp2, Rtmp);
10704     __ srlx(Rtmp,    32, Rtmp2);
10705     __ or3 (Rtmp, Rtmp2, Rtmp);
10706     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10707     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10708   %}
10709   ins_pipe(ialu_reg);
10710 %}
10711 
10712 // Replicate scalar constant to packed byte values in Double register
10713 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10714   predicate(n->as_Vector()->length() == 8);
10715   match(Set dst (ReplicateB con));
10716   effect(KILL tmp);
10717   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10718   ins_encode %{
10719     // XXX This is a quick fix for 6833573.
10720     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10721     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10722     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10723   %}
10724   ins_pipe(loadConFD);
10725 %}
10726 
10727 // Replicate scalar to packed char/short values into Double register
10728 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10729   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10730   match(Set dst (ReplicateS src));
10731   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10732   format %{ "SLLX  $src,48,$tmp\n\t"
10733             "SRLX  $tmp,16,$tmp2\n\t"
10734             "OR    $tmp,$tmp2,$tmp\n\t"
10735             "SRLX  $tmp,32,$tmp2\n\t"
10736             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10737             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10738   ins_encode %{
10739     Register Rsrc = $src$$Register;
10740     Register Rtmp = $tmp$$Register;
10741     Register Rtmp2 = $tmp2$$Register;
10742     __ sllx(Rsrc,    48, Rtmp);
10743     __ srlx(Rtmp,    16, Rtmp2);
10744     __ or3 (Rtmp, Rtmp2, Rtmp);
10745     __ srlx(Rtmp,    32, Rtmp2);
10746     __ or3 (Rtmp, Rtmp2, Rtmp);
10747     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10748   %}
10749   ins_pipe(ialu_reg);
10750 %}
10751 
10752 // Replicate scalar to packed char/short values into Double stack
10753 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10754   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10755   match(Set dst (ReplicateS src));
10756   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10757   format %{ "SLLX  $src,48,$tmp\n\t"
10758             "SRLX  $tmp,16,$tmp2\n\t"
10759             "OR    $tmp,$tmp2,$tmp\n\t"
10760             "SRLX  $tmp,32,$tmp2\n\t"
10761             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10762             "STX   $tmp,$dst\t! regL to stkD" %}
10763   ins_encode %{
10764     Register Rsrc = $src$$Register;
10765     Register Rtmp = $tmp$$Register;
10766     Register Rtmp2 = $tmp2$$Register;
10767     __ sllx(Rsrc,    48, Rtmp);
10768     __ srlx(Rtmp,    16, Rtmp2);
10769     __ or3 (Rtmp, Rtmp2, Rtmp);
10770     __ srlx(Rtmp,    32, Rtmp2);
10771     __ or3 (Rtmp, Rtmp2, Rtmp);
10772     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10773     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10774   %}
10775   ins_pipe(ialu_reg);
10776 %}
10777 
10778 // Replicate scalar constant to packed char/short values in Double register
10779 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10780   predicate(n->as_Vector()->length() == 4);
10781   match(Set dst (ReplicateS con));
10782   effect(KILL tmp);
10783   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10784   ins_encode %{
10785     // XXX This is a quick fix for 6833573.
10786     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10787     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10788     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10789   %}
10790   ins_pipe(loadConFD);
10791 %}
10792 
10793 // Replicate scalar to packed int values into Double register
10794 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10795   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10796   match(Set dst (ReplicateI src));
10797   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10798   format %{ "SLLX  $src,32,$tmp\n\t"
10799             "SRLX  $tmp,32,$tmp2\n\t"
10800             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10801             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10802   ins_encode %{
10803     Register Rsrc = $src$$Register;
10804     Register Rtmp = $tmp$$Register;
10805     Register Rtmp2 = $tmp2$$Register;
10806     __ sllx(Rsrc,    32, Rtmp);
10807     __ srlx(Rtmp,    32, Rtmp2);
10808     __ or3 (Rtmp, Rtmp2, Rtmp);
10809     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10810   %}
10811   ins_pipe(ialu_reg);
10812 %}
10813 
10814 // Replicate scalar to packed int values into Double stack
10815 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10816   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10817   match(Set dst (ReplicateI src));
10818   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10819   format %{ "SLLX  $src,32,$tmp\n\t"
10820             "SRLX  $tmp,32,$tmp2\n\t"
10821             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10822             "STX   $tmp,$dst\t! regL to stkD" %}
10823   ins_encode %{
10824     Register Rsrc = $src$$Register;
10825     Register Rtmp = $tmp$$Register;
10826     Register Rtmp2 = $tmp2$$Register;
10827     __ sllx(Rsrc,    32, Rtmp);
10828     __ srlx(Rtmp,    32, Rtmp2);
10829     __ or3 (Rtmp, Rtmp2, Rtmp);
10830     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10831     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10832   %}
10833   ins_pipe(ialu_reg);
10834 %}
10835 
10836 // Replicate scalar zero constant to packed int values in Double register
10837 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10838   predicate(n->as_Vector()->length() == 2);
10839   match(Set dst (ReplicateI con));
10840   effect(KILL tmp);
10841   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10842   ins_encode %{
10843     // XXX This is a quick fix for 6833573.
10844     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10845     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10846     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10847   %}
10848   ins_pipe(loadConFD);
10849 %}
10850 
10851 // Replicate scalar to packed float values into Double stack
10852 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10853   predicate(n->as_Vector()->length() == 2);
10854   match(Set dst (ReplicateF src));
10855   ins_cost(MEMORY_REF_COST*2);
10856   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10857             "STF    $src,$dst.lo" %}
10858   opcode(Assembler::stf_op3);
10859   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10860   ins_pipe(fstoreF_stk_reg);
10861 %}
10862 
10863 // Replicate scalar zero constant to packed float values in Double register
10864 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10865   predicate(n->as_Vector()->length() == 2);
10866   match(Set dst (ReplicateF con));
10867   effect(KILL tmp);
10868   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10869   ins_encode %{
10870     // XXX This is a quick fix for 6833573.
10871     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10872     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10873     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10874   %}
10875   ins_pipe(loadConFD);
10876 %}
10877 
10878 //----------PEEPHOLE RULES-----------------------------------------------------
10879 // These must follow all instruction definitions as they use the names
10880 // defined in the instructions definitions.
10881 //
10882 // peepmatch ( root_instr_name [preceding_instruction]* );
10883 //
10884 // peepconstraint %{
10885 // (instruction_number.operand_name relational_op instruction_number.operand_name
10886 //  [, ...] );
10887 // // instruction numbers are zero-based using left to right order in peepmatch
10888 //
10889 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10890 // // provide an instruction_number.operand_name for each operand that appears
10891 // // in the replacement instruction's match rule
10892 //
10893 // ---------VM FLAGS---------------------------------------------------------
10894 //
10895 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10896 //
10897 // Each peephole rule is given an identifying number starting with zero and
10898 // increasing by one in the order seen by the parser.  An individual peephole
10899 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10900 // on the command-line.
10901 //
10902 // ---------CURRENT LIMITATIONS----------------------------------------------
10903 //
10904 // Only match adjacent instructions in same basic block
10905 // Only equality constraints
10906 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10907 // Only one replacement instruction
10908 //
10909 // ---------EXAMPLE----------------------------------------------------------
10910 //
10911 // // pertinent parts of existing instructions in architecture description
10912 // instruct movI(eRegI dst, eRegI src) %{
10913 //   match(Set dst (CopyI src));
10914 // %}
10915 //
10916 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10917 //   match(Set dst (AddI dst src));
10918 //   effect(KILL cr);
10919 // %}
10920 //
10921 // // Change (inc mov) to lea
10922 // peephole %{
10923 //   // increment preceeded by register-register move
10924 //   peepmatch ( incI_eReg movI );
10925 //   // require that the destination register of the increment
10926 //   // match the destination register of the move
10927 //   peepconstraint ( 0.dst == 1.dst );
10928 //   // construct a replacement instruction that sets
10929 //   // the destination to ( move's source register + one )
10930 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10931 // %}
10932 //
10933 
10934 // // Change load of spilled value to only a spill
10935 // instruct storeI(memory mem, eRegI src) %{
10936 //   match(Set mem (StoreI mem src));
10937 // %}
10938 //
10939 // instruct loadI(eRegI dst, memory mem) %{
10940 //   match(Set dst (LoadI mem));
10941 // %}
10942 //
10943 // peephole %{
10944 //   peepmatch ( loadI storeI );
10945 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10946 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10947 // %}
10948 
10949 //----------SMARTSPILL RULES---------------------------------------------------
10950 // These must follow all instruction definitions as they use the names
10951 // defined in the instructions definitions.
10952 //
10953 // SPARC will probably not have any of these rules due to RISC instruction set.
10954 
10955 //----------PIPELINE-----------------------------------------------------------
10956 // Rules which define the behavior of the target architectures pipeline.