1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
  26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "runtime/mutex.hpp"
  31 #include "utilities/stack.hpp"
  32 #ifdef TARGET_OS_ARCH_linux_x86
  33 # include "orderAccess_linux_x86.inline.hpp"
  34 #endif
  35 #ifdef TARGET_OS_ARCH_linux_sparc
  36 # include "orderAccess_linux_sparc.inline.hpp"
  37 #endif
  38 #ifdef TARGET_OS_ARCH_linux_zero
  39 # include "orderAccess_linux_zero.inline.hpp"
  40 #endif
  41 #ifdef TARGET_OS_ARCH_solaris_x86
  42 # include "orderAccess_solaris_x86.inline.hpp"
  43 #endif
  44 #ifdef TARGET_OS_ARCH_solaris_sparc
  45 # include "orderAccess_solaris_sparc.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_ARCH_windows_x86
  48 # include "orderAccess_windows_x86.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_ARCH_linux_arm
  51 # include "orderAccess_linux_arm.inline.hpp"
  52 #endif
  53 #ifdef TARGET_OS_ARCH_linux_ppc
  54 # include "orderAccess_linux_ppc.inline.hpp"
  55 #endif
  56 #ifdef TARGET_OS_ARCH_bsd_x86
  57 # include "orderAccess_bsd_x86.inline.hpp"
  58 #endif
  59 #ifdef TARGET_OS_ARCH_bsd_zero
  60 # include "orderAccess_bsd_zero.inline.hpp"
  61 #endif
  62 
  63 // Simple TaskQueue stats that are collected by default in debug builds.
  64 
  65 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
  66 #define TASKQUEUE_STATS 1
  67 #elif !defined(TASKQUEUE_STATS)
  68 #define TASKQUEUE_STATS 0
  69 #endif
  70 
  71 #if TASKQUEUE_STATS
  72 #define TASKQUEUE_STATS_ONLY(code) code
  73 #else
  74 #define TASKQUEUE_STATS_ONLY(code)
  75 #endif // TASKQUEUE_STATS
  76 
  77 #if TASKQUEUE_STATS
  78 class TaskQueueStats {
  79 public:
  80   enum StatId {
  81     push,             // number of taskqueue pushes
  82     pop,              // number of taskqueue pops
  83     pop_slow,         // subset of taskqueue pops that were done slow-path
  84     steal_attempt,    // number of taskqueue steal attempts
  85     steal,            // number of taskqueue steals
  86     overflow,         // number of overflow pushes
  87     overflow_max_len, // max length of overflow stack
  88     last_stat_id
  89   };
  90 
  91 public:
  92   inline TaskQueueStats()       { reset(); }
  93 
  94   inline void record_push()     { ++_stats[push]; }
  95   inline void record_pop()      { ++_stats[pop]; }
  96   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
  97   inline void record_steal(bool success);
  98   inline void record_overflow(size_t new_length);
  99 
 100   TaskQueueStats & operator +=(const TaskQueueStats & addend);
 101 
 102   inline size_t get(StatId id) const { return _stats[id]; }
 103   inline const size_t* get() const   { return _stats; }
 104 
 105   inline void reset();
 106 
 107   // Print the specified line of the header (does not include a line separator).
 108   static void print_header(unsigned int line, outputStream* const stream = tty,
 109                            unsigned int width = 10);
 110   // Print the statistics (does not include a line separator).
 111   void print(outputStream* const stream = tty, unsigned int width = 10) const;
 112 
 113   DEBUG_ONLY(void verify() const;)
 114 
 115 private:
 116   size_t                    _stats[last_stat_id];
 117   static const char * const _names[last_stat_id];
 118 };
 119 
 120 void TaskQueueStats::record_steal(bool success) {
 121   ++_stats[steal_attempt];
 122   if (success) ++_stats[steal];
 123 }
 124 
 125 void TaskQueueStats::record_overflow(size_t new_len) {
 126   ++_stats[overflow];
 127   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
 128 }
 129 
 130 void TaskQueueStats::reset() {
 131   memset(_stats, 0, sizeof(_stats));
 132 }
 133 #endif // TASKQUEUE_STATS
 134 
 135 template <unsigned int N, MEMFLAGS F>
 136 class TaskQueueSuper: public CHeapObj<F> {
 137 protected:
 138   // Internal type for indexing the queue; also used for the tag.
 139   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
 140 
 141 private:
 142   // The first free element after the last one pushed (mod N).
 143   // We keep _bottom private and DO NOT USE IT DIRECTLY.
 144   volatile uint _bottom;
 145 
 146 protected:
 147   // Access to _bottom must be ordered. Use OrderAccess.
 148   inline uint get_bottom() const {
 149     return OrderAccess::load_acquire((volatile juint*)&_bottom);
 150   }
 151 
 152   inline void set_bottom(uint new_bottom) {
 153     OrderAccess::release_store(&_bottom, new_bottom);
 154   }
 155 
 156   enum { MOD_N_MASK = N - 1 };
 157 
 158   // Simple field access here, so no OrderAccess and no volatiles.
 159   class Age {
 160   public:
 161     Age(size_t data = 0)         { _data = data; }
 162     Age(const Age& age)          { _data = age._data; }
 163     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
 164 
 165     idx_t top() const { return _fields._top; }
 166     idx_t tag() const { return _fields._tag; }
 167 
 168     // Increment top; if it wraps, increment tag also.
 169     void increment() {
 170       _fields._top = increment_index(_fields._top);
 171       if (_fields._top == 0) ++_fields._tag;
 172     }
 173 
 174     bool operator ==(const Age& other) const { return _data == other._data; }
 175 
 176   public:
 177     struct fields {
 178       idx_t _top;
 179       idx_t _tag;
 180     };
 181     union {
 182       size_t _data;
 183       fields _fields;
 184     };
 185   };
 186 
 187 
 188 private:
 189   // Keep _age private and DO NOT USE IT DIRECTLY.
 190   volatile Age _age;
 191 
 192 protected:
 193   inline idx_t get_age_top() const {
 194     return OrderAccess::load_acquire((volatile idx_t*) &(_age._fields._top));
 195   }
 196 
 197   inline Age get_age() {
 198     size_t res = OrderAccess::load_ptr_acquire((volatile intptr_t*) &_age);
 199     return *(Age*)(&res);
 200   }
 201 
 202   inline void set_age(Age a) {
 203     OrderAccess::release_store_ptr((volatile intptr_t*) &_age, *(size_t*)(&a));
 204   }
 205 
 206   Age cmpxchg_age(const Age new_age, const Age old_age) volatile {
 207     return (Age)(size_t)Atomic::cmpxchg_ptr((intptr_t)new_age._data,
 208                                             (volatile intptr_t*) &(_age._data),
 209                                             (intptr_t)old_age._data);
 210   }
 211 
 212   // These both operate mod N.
 213   static uint increment_index(uint ind) {
 214     return (ind + 1) & MOD_N_MASK;
 215   }
 216   static uint decrement_index(uint ind) {
 217     return (ind - 1) & MOD_N_MASK;
 218   }
 219 
 220   // Returns a number in the range [0..N).  If the result is "N-1", it should be
 221   // interpreted as 0.
 222   uint dirty_size(uint bot, uint top) const {
 223     return (bot - top) & MOD_N_MASK;
 224   }
 225 
 226   // Returns the size corresponding to the given "bot" and "top".
 227   uint size(uint bot, uint top) const {
 228     uint sz = dirty_size(bot, top);
 229     // Has the queue "wrapped", so that bottom is less than top?  There's a
 230     // complicated special case here.  A pair of threads could perform pop_local
 231     // and pop_global operations concurrently, starting from a state in which
 232     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
 233     // and the pop_global in incrementing _top (in which case the pop_global
 234     // will be awarded the contested queue element.)  The resulting state must
 235     // be interpreted as an empty queue.  (We only need to worry about one such
 236     // event: only the queue owner performs pop_local's, and several concurrent
 237     // threads attempting to perform the pop_global will all perform the same
 238     // CAS, and only one can succeed.)  Any stealing thread that reads after
 239     // either the increment or decrement will see an empty queue, and will not
 240     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
 241     // modified by concurrent queues, so the owner thread can reset the state to
 242     // _bottom == top so subsequent pushes will be performed normally.
 243     return (sz == N - 1) ? 0 : sz;
 244   }
 245 
 246 public:
 247   TaskQueueSuper() : _bottom(0), _age() {}
 248 
 249   // Return true if the TaskQueue contains/does not contain any tasks.
 250   // Use getters/setters with OrderAccess when accessing _bottom and _age.
 251   bool peek() {
 252     return get_bottom() != get_age_top();
 253   }
 254   bool is_empty() const { return size() == 0; }
 255 
 256   // Return an estimate of the number of elements in the queue.
 257   // The "careful" version admits the possibility of pop_local/pop_global
 258   // races.
 259   uint size() const {
 260     return size(get_bottom(), get_age_top());
 261   }
 262 
 263   uint dirty_size() const {
 264     return dirty_size(get_bottom(), get_age_top());
 265   }
 266 
 267   void set_empty() {
 268     set_bottom(0);
 269     set_age(0);
 270   }
 271 
 272   // Maximum number of elements allowed in the queue.  This is two less
 273   // than the actual queue size, for somewhat complicated reasons.
 274   uint max_elems() const { return N - 2; }
 275 
 276   // Total size of queue.
 277   static const uint total_size() { return N; }
 278 
 279   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
 280 };
 281 
 282 
 283 
 284 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
 285 class GenericTaskQueue: public TaskQueueSuper<N, F> {
 286 protected:
 287   typedef typename TaskQueueSuper<N, F>::Age Age;
 288   typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
 289 
 290   using TaskQueueSuper<N, F>::increment_index;
 291   using TaskQueueSuper<N, F>::decrement_index;
 292   using TaskQueueSuper<N, F>::dirty_size;
 293   using TaskQueueSuper<N, F>::get_age_top;
 294   using TaskQueueSuper<N, F>::get_age;
 295 
 296 public:
 297   using TaskQueueSuper<N, F>::max_elems;
 298   using TaskQueueSuper<N, F>::size;
 299 
 300 #if  TASKQUEUE_STATS
 301   using TaskQueueSuper<N, F>::stats;
 302 #endif
 303 
 304 private:
 305   // Slow paths for push, pop_local.  (pop_global has no fast path.)
 306   bool push_slow(E t, uint dirty_n_elems);
 307   bool pop_local_slow(uint localBot, Age oldAge);
 308 
 309 public:
 310   typedef E element_type;
 311 
 312   // Initializes the queue to empty.
 313   GenericTaskQueue();
 314 
 315   void initialize();
 316 
 317   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
 318   inline bool push(E t);
 319 
 320   // Attempts to claim a task from the "local" end of the queue (the most
 321   // recently pushed).  If successful, returns true and sets t to the task;
 322   // otherwise, returns false (the queue is empty).
 323   inline bool pop_local(E& t);
 324 
 325   // Like pop_local(), but uses the "global" end of the queue (the least
 326   // recently pushed).
 327   bool pop_global(E& t);
 328 
 329   // Delete any resource associated with the queue.
 330   ~GenericTaskQueue();
 331 
 332   // apply the closure to all elements in the task queue
 333   void oops_do(OopClosure* f);
 334 
 335 private:
 336   // Element array.
 337   volatile E* _elems;
 338 };
 339 
 340 template<class E, MEMFLAGS F, unsigned int N>
 341 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
 342   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
 343 }
 344 
 345 template<class E, MEMFLAGS F, unsigned int N>
 346 void GenericTaskQueue<E, F, N>::initialize() {
 347   _elems = NEW_C_HEAP_ARRAY(E, N, F);
 348 }
 349 
 350 template<class E, MEMFLAGS F, unsigned int N>
 351 void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
 352   // tty->print_cr("START OopTaskQueue::oops_do");
 353   uint iters = size();
 354   uint index = this->get_bottom();
 355   for (uint i = 0; i < iters; ++i) {
 356     index = decrement_index(index);
 357     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
 358     //            index, &_elems[index], _elems[index]);
 359     E* t = (E*)&_elems[index];      // cast away volatility
 360     oop* p = (oop*)t;
 361     assert((*t)->is_oop_or_null(), "Not an oop or null");
 362     f->do_oop(p);
 363   }
 364   // tty->print_cr("END OopTaskQueue::oops_do");
 365 }
 366 
 367 template<class E, MEMFLAGS F, unsigned int N>
 368 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
 369   if (dirty_n_elems == N - 1) {
 370     // Actually means 0, so do the push.
 371     uint localBot = this->get_bottom();
 372     // g++ complains if the volatile result of the assignment is unused.
 373     const_cast<E&>(_elems[localBot] = t);
 374     set_bottom(increment_index(localBot));
 375     TASKQUEUE_STATS_ONLY(stats.record_push());
 376     return true;
 377   }
 378   return false;
 379 }
 380 
 381 // pop_local_slow() is done by the owning thread and is trying to
 382 // get the last task in the queue.  It will compete with pop_global()
 383 // that will be used by other threads.  The tag age is incremented
 384 // whenever the queue goes empty which it will do here if this thread
 385 // gets the last task or in pop_global() if the queue wraps (top == 0
 386 // and pop_global() succeeds, see pop_global()).
 387 template<class E, MEMFLAGS F, unsigned int N>
 388 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
 389   // This queue was observed to contain exactly one element; either this
 390   // thread will claim it, or a competing "pop_global".  In either case,
 391   // the queue will be logically empty afterwards.  Create a new Age value
 392   // that represents the empty queue for the given value of "_bottom".  (We
 393   // must also increment "tag" because of the case where "bottom == 1",
 394   // "top == 0".  A pop_global could read the queue element in that case,
 395   // then have the owner thread do a pop followed by another push.  Without
 396   // the incrementing of "tag", the pop_global's CAS could succeed,
 397   // allowing it to believe it has claimed the stale element.)
 398   Age newAge((idx_t)localBot, oldAge.tag() + 1);
 399   // Perhaps a competing pop_global has already incremented "top", in which
 400   // case it wins the element.
 401   if (localBot == oldAge.top()) {
 402     // No competing pop_global has yet incremented "top"; we'll try to
 403     // install new_age, thus claiming the element.
 404     Age tempAge = cmpxchg_age(newAge, oldAge);
 405     if (tempAge == oldAge) {
 406       // We win.
 407       assert(dirty_size(localBot, get_age_top()) != N - 1, "sanity");
 408       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
 409       return true;
 410     }
 411   }
 412   // We lose; a completing pop_global gets the element.  But the queue is empty
 413   // and top is greater than bottom.  Fix this representation of the empty queue
 414   // to become the canonical one.
 415   set_age(newAge);
 416   assert(dirty_size(localBot, get_age_top()) != N - 1, "sanity");
 417   return false;
 418 }
 419 
 420 template<class E, MEMFLAGS F, unsigned int N>
 421 bool GenericTaskQueue<E, F, N>::pop_global(E& t) {
 422   Age oldAge = get_age();
 423   uint localBot = this->get_bottom();
 424   uint n_elems = size(localBot, oldAge.top());
 425   if (n_elems == 0) {
 426     return false;
 427   }
 428 
 429   const_cast<E&>(t = _elems[oldAge.top()]);
 430   Age newAge(oldAge);
 431   newAge.increment();
 432   Age resAge = cmpxchg_age(newAge, oldAge);
 433 
 434   // Note that using "_bottom" here might fail, since a pop_local might
 435   // have decremented it.
 436   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
 437   return resAge == oldAge;
 438 }
 439 
 440 template<class E, MEMFLAGS F, unsigned int N>
 441 GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
 442   FREE_C_HEAP_ARRAY(E, _elems, F);
 443 }
 444 
 445 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
 446 // elements that do not fit in the TaskQueue.
 447 //
 448 // This class hides two methods from super classes:
 449 //
 450 // push() - push onto the task queue or, if that fails, onto the overflow stack
 451 // is_empty() - return true if both the TaskQueue and overflow stack are empty
 452 //
 453 // Note that size() is not hidden--it returns the number of elements in the
 454 // TaskQueue, and does not include the size of the overflow stack.  This
 455 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
 456 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
 457 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
 458 {
 459 public:
 460   typedef Stack<E, F>               overflow_t;
 461   typedef GenericTaskQueue<E, F, N> taskqueue_t;
 462 
 463   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
 464 
 465   // Push task t onto the queue or onto the overflow stack.  Return true.
 466   inline bool push(E t);
 467 
 468   // Attempt to pop from the overflow stack; return true if anything was popped.
 469   inline bool pop_overflow(E& t);
 470 
 471   inline overflow_t* overflow_stack() { return &_overflow_stack; }
 472 
 473   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
 474   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
 475   inline bool is_empty()        const {
 476     return taskqueue_empty() && overflow_empty();
 477   }
 478 
 479 private:
 480   overflow_t _overflow_stack;
 481 };
 482 
 483 template <class E, MEMFLAGS F, unsigned int N>
 484 bool OverflowTaskQueue<E, F, N>::push(E t)
 485 {
 486   if (!taskqueue_t::push(t)) {
 487     overflow_stack()->push(t);
 488     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
 489   }
 490   return true;
 491 }
 492 
 493 template <class E, MEMFLAGS F, unsigned int N>
 494 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
 495 {
 496   if (overflow_empty()) return false;
 497   t = overflow_stack()->pop();
 498   return true;
 499 }
 500 
 501 class TaskQueueSetSuper {
 502 protected:
 503   static int randomParkAndMiller(int* seed0);
 504 public:
 505   // Returns "true" if some TaskQueue in the set contains a task.
 506   virtual bool peek() = 0;
 507 };
 508 
 509 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
 510 };
 511 
 512 template<class T, MEMFLAGS F>
 513 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
 514 private:
 515   uint _n;
 516   T** _queues;
 517 
 518 public:
 519   typedef typename T::element_type E;
 520 
 521   GenericTaskQueueSet(int n) : _n(n) {
 522     typedef T* GenericTaskQueuePtr;
 523     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
 524     for (int i = 0; i < n; i++) {
 525       _queues[i] = NULL;
 526     }
 527   }
 528 
 529   bool steal_best_of_2(uint queue_num, int* seed, E& t);
 530 
 531   void register_queue(uint i, T* q);
 532 
 533   T* queue(uint n);
 534 
 535   // The thread with queue number "queue_num" (and whose random number seed is
 536   // at "seed") is trying to steal a task from some other queue.  (It may try
 537   // several queues, according to some configuration parameter.)  If some steal
 538   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
 539   // false.
 540   bool steal(uint queue_num, int* seed, E& t);
 541 
 542   bool peek();
 543 };
 544 
 545 template<class T, MEMFLAGS F> void
 546 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
 547   assert(i < _n, "index out of range.");
 548   _queues[i] = q;
 549 }
 550 
 551 template<class T, MEMFLAGS F> T*
 552 GenericTaskQueueSet<T, F>::queue(uint i) {
 553   return _queues[i];
 554 }
 555 
 556 template<class T, MEMFLAGS F> bool
 557 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
 558   for (uint i = 0; i < 2 * _n; i++) {
 559     if (steal_best_of_2(queue_num, seed, t)) {
 560       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
 561       return true;
 562     }
 563   }
 564   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
 565   return false;
 566 }
 567 
 568 template<class T, MEMFLAGS F> bool
 569 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
 570   if (_n > 2) {
 571     uint k1 = queue_num;
 572     while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
 573     uint k2 = queue_num;
 574     while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
 575     // Sample both and try the larger.
 576     uint sz1 = _queues[k1]->size();
 577     uint sz2 = _queues[k2]->size();
 578     if (sz2 > sz1) return _queues[k2]->pop_global(t);
 579     else return _queues[k1]->pop_global(t);
 580   } else if (_n == 2) {
 581     // Just try the other one.
 582     uint k = (queue_num + 1) % 2;
 583     return _queues[k]->pop_global(t);
 584   } else {
 585     assert(_n == 1, "can't be zero.");
 586     return false;
 587   }
 588 }
 589 
 590 template<class T, MEMFLAGS F>
 591 bool GenericTaskQueueSet<T, F>::peek() {
 592   // Try all the queues.
 593   for (uint j = 0; j < _n; j++) {
 594     if (_queues[j]->peek())
 595       return true;
 596   }
 597   return false;
 598 }
 599 
 600 // When to terminate from the termination protocol.
 601 class TerminatorTerminator: public CHeapObj<mtInternal> {
 602 public:
 603   virtual bool should_exit_termination() = 0;
 604 };
 605 
 606 // A class to aid in the termination of a set of parallel tasks using
 607 // TaskQueueSet's for work stealing.
 608 
 609 #undef TRACESPINNING
 610 
 611 class ParallelTaskTerminator: public StackObj {
 612 private:
 613   int _n_threads;
 614   TaskQueueSetSuper* _queue_set;
 615   int _offered_termination;
 616 
 617 #ifdef TRACESPINNING
 618   static uint _total_yields;
 619   static uint _total_spins;
 620   static uint _total_peeks;
 621 #endif
 622 
 623   bool peek_in_queue_set();
 624 protected:
 625   virtual void yield();
 626   void sleep(uint millis);
 627 
 628 public:
 629 
 630   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
 631   // queue sets of work queues of other threads.
 632   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
 633 
 634   // The current thread has no work, and is ready to terminate if everyone
 635   // else is.  If returns "true", all threads are terminated.  If returns
 636   // "false", available work has been observed in one of the task queues,
 637   // so the global task is not complete.
 638   bool offer_termination() {
 639     return offer_termination(NULL);
 640   }
 641 
 642   // As above, but it also terminates if the should_exit_termination()
 643   // method of the terminator parameter returns true. If terminator is
 644   // NULL, then it is ignored.
 645   bool offer_termination(TerminatorTerminator* terminator);
 646 
 647   // Reset the terminator, so that it may be reused again.
 648   // The caller is responsible for ensuring that this is done
 649   // in an MT-safe manner, once the previous round of use of
 650   // the terminator is finished.
 651   void reset_for_reuse();
 652   // Same as above but the number of parallel threads is set to the
 653   // given number.
 654   void reset_for_reuse(int n_threads);
 655 
 656 #ifdef TRACESPINNING
 657   static uint total_yields() { return _total_yields; }
 658   static uint total_spins() { return _total_spins; }
 659   static uint total_peeks() { return _total_peeks; }
 660   static void print_termination_counts();
 661 #endif
 662 };
 663 
 664 template<class E, MEMFLAGS F, unsigned int N> inline bool
 665 GenericTaskQueue<E, F, N>::push(E t) {
 666   uint localBot = this->get_bottom();
 667   assert(localBot < N, "_bottom out of range.");
 668   idx_t top = get_age_top();
 669   uint dirty_n_elems = dirty_size(localBot, top);
 670   assert(dirty_n_elems < N, "n_elems out of range.");
 671   if (dirty_n_elems < max_elems()) {
 672     // g++ complains if the volatile result of the assignment is unused.
 673     const_cast<E&>(_elems[localBot] = t);
 674     set_bottom(increment_index(localBot));
 675     TASKQUEUE_STATS_ONLY(stats.record_push());
 676     return true;
 677   } else {
 678     return push_slow(t, dirty_n_elems);
 679   }
 680 }
 681 
 682 template<class E, MEMFLAGS F, unsigned int N> inline bool
 683 GenericTaskQueue<E, F, N>::pop_local(E& t) {
 684   uint localBot = this->get_bottom();
 685   // This value cannot be N-1.  That can only occur as a result of
 686   // the assignment to bottom in this method.  If it does, this method
 687   // resets the size to 0 before the next call (which is sequential,
 688   // since this is pop_local.)
 689   uint dirty_n_elems = dirty_size(localBot, get_age_top());
 690   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
 691   if (dirty_n_elems == 0) return false;
 692   localBot = decrement_index(localBot);
 693   this->set_bottom(localBot);
 694   // This is necessary to prevent any read below from being reordered
 695   // before the store just above.
 696   OrderAccess::fence();
 697   const_cast<E&>(t = _elems[localBot]);
 698   // This is a second read of "age"; the "size()" above is the first.
 699   // If there's still at least one element in the queue, based on the
 700   // "_bottom" and "age" we've read, then there can be no interference with
 701   // a "pop_global" operation, and we're done.
 702   idx_t tp = get_age_top();    // XXX
 703   if (size(localBot, tp) > 0) {
 704     assert(dirty_size(localBot, tp) != N - 1, "sanity");
 705     TASKQUEUE_STATS_ONLY(stats.record_pop());
 706     return true;
 707   } else {
 708     // Otherwise, the queue contained exactly one element; we take the slow
 709     // path.
 710     return pop_local_slow(localBot, get_age());
 711   }
 712 }
 713 
 714 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
 715 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
 716 
 717 #ifdef _MSC_VER
 718 #pragma warning(push)
 719 // warning C4522: multiple assignment operators specified
 720 #pragma warning(disable:4522)
 721 #endif
 722 
 723 // This is a container class for either an oop* or a narrowOop*.
 724 // Both are pushed onto a task queue and the consumer will test is_narrow()
 725 // to determine which should be processed.
 726 class StarTask {
 727   void*  _holder;        // either union oop* or narrowOop*
 728 
 729   enum { COMPRESSED_OOP_MASK = 1 };
 730 
 731  public:
 732   StarTask(narrowOop* p) {
 733     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 734     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
 735   }
 736   StarTask(oop* p)       {
 737     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 738     _holder = (void*)p;
 739   }
 740   StarTask()             { _holder = NULL; }
 741   operator oop*()        { return (oop*)_holder; }
 742   operator narrowOop*()  {
 743     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
 744   }
 745 
 746   StarTask& operator=(const StarTask& t) {
 747     _holder = t._holder;
 748     return *this;
 749   }
 750   volatile StarTask& operator=(const volatile StarTask& t) volatile {
 751     _holder = t._holder;
 752     return *this;
 753   }
 754 
 755   bool is_narrow() const {
 756     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
 757   }
 758 };
 759 
 760 class ObjArrayTask
 761 {
 762 public:
 763   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
 764   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
 765     assert(idx <= size_t(max_jint), "too big");
 766   }
 767   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
 768 
 769   ObjArrayTask& operator =(const ObjArrayTask& t) {
 770     _obj = t._obj;
 771     _index = t._index;
 772     return *this;
 773   }
 774   volatile ObjArrayTask&
 775   operator =(const volatile ObjArrayTask& t) volatile {
 776     _obj = t._obj;
 777     _index = t._index;
 778     return *this;
 779   }
 780 
 781   inline oop obj()   const { return _obj; }
 782   inline int index() const { return _index; }
 783 
 784   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
 785 
 786 private:
 787   oop _obj;
 788   int _index;
 789 };
 790 
 791 #ifdef _MSC_VER
 792 #pragma warning(pop)
 793 #endif
 794 
 795 typedef OverflowTaskQueue<StarTask, mtClass>           OopStarTaskQueue;
 796 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
 797 
 798 typedef OverflowTaskQueue<size_t, mtInternal>             RegionTaskQueue;
 799 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass>     RegionTaskQueueSet;
 800 
 801 
 802 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP