1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "opto/ad.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/idealGraphPrinter.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/memnode.hpp"
  34 #include "opto/movenode.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/regmask.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/type.hpp"
  40 #include "opto/vectornode.hpp"
  41 #include "runtime/os.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 
  44 OptoReg::Name OptoReg::c_frame_pointer;
  45 
  46 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  47 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  48 RegMask Matcher::STACK_ONLY_mask;
  49 RegMask Matcher::c_frame_ptr_mask;
  50 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  51 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  52 
  53 //---------------------------Matcher-------------------------------------------
  54 Matcher::Matcher()
  55 : PhaseTransform( Phase::Ins_Select ),
  56 #ifdef ASSERT
  57   _old2new_map(C->comp_arena()),
  58   _new2old_map(C->comp_arena()),
  59 #endif
  60   _shared_nodes(C->comp_arena()),
  61   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  62   _swallowed(swallowed),
  63   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  64   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  65   _must_clone(must_clone),
  66   _register_save_policy(register_save_policy),
  67   _c_reg_save_policy(c_reg_save_policy),
  68   _register_save_type(register_save_type),
  69   _ruleName(ruleName),
  70   _allocation_started(false),
  71   _states_arena(Chunk::medium_size),
  72   _visited(&_states_arena),
  73   _shared(&_states_arena),
  74   _dontcare(&_states_arena) {
  75   C->set_matcher(this);
  76 
  77   idealreg2spillmask  [Op_RegI] = NULL;
  78   idealreg2spillmask  [Op_RegN] = NULL;
  79   idealreg2spillmask  [Op_RegL] = NULL;
  80   idealreg2spillmask  [Op_RegF] = NULL;
  81   idealreg2spillmask  [Op_RegD] = NULL;
  82   idealreg2spillmask  [Op_RegP] = NULL;
  83   idealreg2spillmask  [Op_VecS] = NULL;
  84   idealreg2spillmask  [Op_VecD] = NULL;
  85   idealreg2spillmask  [Op_VecX] = NULL;
  86   idealreg2spillmask  [Op_VecY] = NULL;
  87   idealreg2spillmask  [Op_VecZ] = NULL;
  88 
  89   idealreg2debugmask  [Op_RegI] = NULL;
  90   idealreg2debugmask  [Op_RegN] = NULL;
  91   idealreg2debugmask  [Op_RegL] = NULL;
  92   idealreg2debugmask  [Op_RegF] = NULL;
  93   idealreg2debugmask  [Op_RegD] = NULL;
  94   idealreg2debugmask  [Op_RegP] = NULL;
  95   idealreg2debugmask  [Op_VecS] = NULL;
  96   idealreg2debugmask  [Op_VecD] = NULL;
  97   idealreg2debugmask  [Op_VecX] = NULL;
  98   idealreg2debugmask  [Op_VecY] = NULL;
  99   idealreg2debugmask  [Op_VecZ] = NULL;
 100 
 101   idealreg2mhdebugmask[Op_RegI] = NULL;
 102   idealreg2mhdebugmask[Op_RegN] = NULL;
 103   idealreg2mhdebugmask[Op_RegL] = NULL;
 104   idealreg2mhdebugmask[Op_RegF] = NULL;
 105   idealreg2mhdebugmask[Op_RegD] = NULL;
 106   idealreg2mhdebugmask[Op_RegP] = NULL;
 107   idealreg2mhdebugmask[Op_VecS] = NULL;
 108   idealreg2mhdebugmask[Op_VecD] = NULL;
 109   idealreg2mhdebugmask[Op_VecX] = NULL;
 110   idealreg2mhdebugmask[Op_VecY] = NULL;
 111   idealreg2mhdebugmask[Op_VecZ] = NULL;
 112 
 113   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 114 }
 115 
 116 //------------------------------warp_incoming_stk_arg------------------------
 117 // This warps a VMReg into an OptoReg::Name
 118 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 119   OptoReg::Name warped;
 120   if( reg->is_stack() ) {  // Stack slot argument?
 121     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 122     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 123     if( warped >= _in_arg_limit )
 124       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 125     if (!RegMask::can_represent_arg(warped)) {
 126       // the compiler cannot represent this method's calling sequence
 127       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 128       return OptoReg::Bad;
 129     }
 130     return warped;
 131   }
 132   return OptoReg::as_OptoReg(reg);
 133 }
 134 
 135 //---------------------------compute_old_SP------------------------------------
 136 OptoReg::Name Compile::compute_old_SP() {
 137   int fixed    = fixed_slots();
 138   int preserve = in_preserve_stack_slots();
 139   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 140 }
 141 
 142 
 143 
 144 #ifdef ASSERT
 145 void Matcher::verify_new_nodes_only(Node* xroot) {
 146   // Make sure that the new graph only references new nodes
 147   ResourceMark rm;
 148   Unique_Node_List worklist;
 149   VectorSet visited(Thread::current()->resource_area());
 150   worklist.push(xroot);
 151   while (worklist.size() > 0) {
 152     Node* n = worklist.pop();
 153     visited <<= n->_idx;
 154     assert(C->node_arena()->contains(n), "dead node");
 155     for (uint j = 0; j < n->req(); j++) {
 156       Node* in = n->in(j);
 157       if (in != NULL) {
 158         assert(C->node_arena()->contains(in), "dead node");
 159         if (!visited.test(in->_idx)) {
 160           worklist.push(in);
 161         }
 162       }
 163     }
 164   }
 165 }
 166 #endif
 167 
 168 
 169 //---------------------------match---------------------------------------------
 170 void Matcher::match( ) {
 171   if( MaxLabelRootDepth < 100 ) { // Too small?
 172     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 173     MaxLabelRootDepth = 100;
 174   }
 175   // One-time initialization of some register masks.
 176   init_spill_mask( C->root()->in(1) );
 177   _return_addr_mask = return_addr();
 178 #ifdef _LP64
 179   // Pointers take 2 slots in 64-bit land
 180   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 181 #endif
 182 
 183   // Map a Java-signature return type into return register-value
 184   // machine registers for 0, 1 and 2 returned values.
 185   const TypeTuple *range = C->tf()->range();
 186   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 187     // Get ideal-register return type
 188     int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 189     // Get machine return register
 190     uint sop = C->start()->Opcode();
 191     OptoRegPair regs = return_value(ireg, false);
 192 
 193     // And mask for same
 194     _return_value_mask = RegMask(regs.first());
 195     if( OptoReg::is_valid(regs.second()) )
 196       _return_value_mask.Insert(regs.second());
 197   }
 198 
 199   // ---------------
 200   // Frame Layout
 201 
 202   // Need the method signature to determine the incoming argument types,
 203   // because the types determine which registers the incoming arguments are
 204   // in, and this affects the matched code.
 205   const TypeTuple *domain = C->tf()->domain();
 206   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 207   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 208   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 209   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 210   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 211   uint i;
 212   for( i = 0; i<argcnt; i++ ) {
 213     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 214   }
 215 
 216   // Pass array of ideal registers and length to USER code (from the AD file)
 217   // that will convert this to an array of register numbers.
 218   const StartNode *start = C->start();
 219   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 220 #ifdef ASSERT
 221   // Sanity check users' calling convention.  Real handy while trying to
 222   // get the initial port correct.
 223   { for (uint i = 0; i<argcnt; i++) {
 224       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 225         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 226         _parm_regs[i].set_bad();
 227         continue;
 228       }
 229       VMReg parm_reg = vm_parm_regs[i].first();
 230       assert(parm_reg->is_valid(), "invalid arg?");
 231       if (parm_reg->is_reg()) {
 232         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 233         assert(can_be_java_arg(opto_parm_reg) ||
 234                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 235                opto_parm_reg == inline_cache_reg(),
 236                "parameters in register must be preserved by runtime stubs");
 237       }
 238       for (uint j = 0; j < i; j++) {
 239         assert(parm_reg != vm_parm_regs[j].first(),
 240                "calling conv. must produce distinct regs");
 241       }
 242     }
 243   }
 244 #endif
 245 
 246   // Do some initial frame layout.
 247 
 248   // Compute the old incoming SP (may be called FP) as
 249   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 250   _old_SP = C->compute_old_SP();
 251   assert( is_even(_old_SP), "must be even" );
 252 
 253   // Compute highest incoming stack argument as
 254   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 255   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 256   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 257   for( i = 0; i < argcnt; i++ ) {
 258     // Permit args to have no register
 259     _calling_convention_mask[i].Clear();
 260     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 261       continue;
 262     }
 263     // calling_convention returns stack arguments as a count of
 264     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 265     // the allocators point of view, taking into account all the
 266     // preserve area, locks & pad2.
 267 
 268     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 269     if( OptoReg::is_valid(reg1))
 270       _calling_convention_mask[i].Insert(reg1);
 271 
 272     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 273     if( OptoReg::is_valid(reg2))
 274       _calling_convention_mask[i].Insert(reg2);
 275 
 276     // Saved biased stack-slot register number
 277     _parm_regs[i].set_pair(reg2, reg1);
 278   }
 279 
 280   // Finally, make sure the incoming arguments take up an even number of
 281   // words, in case the arguments or locals need to contain doubleword stack
 282   // slots.  The rest of the system assumes that stack slot pairs (in
 283   // particular, in the spill area) which look aligned will in fact be
 284   // aligned relative to the stack pointer in the target machine.  Double
 285   // stack slots will always be allocated aligned.
 286   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 287 
 288   // Compute highest outgoing stack argument as
 289   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 290   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 291   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 292 
 293   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
 294     // the compiler cannot represent this method's calling sequence
 295     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 296   }
 297 
 298   if (C->failing())  return;  // bailed out on incoming arg failure
 299 
 300   // ---------------
 301   // Collect roots of matcher trees.  Every node for which
 302   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 303   // can be a valid interior of some tree.
 304   find_shared( C->root() );
 305   find_shared( C->top() );
 306 
 307   C->print_method(PHASE_BEFORE_MATCHING);
 308 
 309   // Create new ideal node ConP #NULL even if it does exist in old space
 310   // to avoid false sharing if the corresponding mach node is not used.
 311   // The corresponding mach node is only used in rare cases for derived
 312   // pointers.
 313   Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
 314 
 315   // Swap out to old-space; emptying new-space
 316   Arena *old = C->node_arena()->move_contents(C->old_arena());
 317 
 318   // Save debug and profile information for nodes in old space:
 319   _old_node_note_array = C->node_note_array();
 320   if (_old_node_note_array != NULL) {
 321     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 322                            (C->comp_arena(), _old_node_note_array->length(),
 323                             0, NULL));
 324   }
 325 
 326   // Pre-size the new_node table to avoid the need for range checks.
 327   grow_new_node_array(C->unique());
 328 
 329   // Reset node counter so MachNodes start with _idx at 0
 330   int live_nodes = C->live_nodes();
 331   C->set_unique(0);
 332   C->reset_dead_node_list();
 333 
 334   // Recursively match trees from old space into new space.
 335   // Correct leaves of new-space Nodes; they point to old-space.
 336   _visited.Clear();             // Clear visit bits for xform call
 337   C->set_cached_top_node(xform( C->top(), live_nodes ));
 338   if (!C->failing()) {
 339     Node* xroot =        xform( C->root(), 1 );
 340     if (xroot == NULL) {
 341       Matcher::soft_match_failure();  // recursive matching process failed
 342       C->record_method_not_compilable("instruction match failed");
 343     } else {
 344       // During matching shared constants were attached to C->root()
 345       // because xroot wasn't available yet, so transfer the uses to
 346       // the xroot.
 347       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 348         Node* n = C->root()->fast_out(j);
 349         if (C->node_arena()->contains(n)) {
 350           assert(n->in(0) == C->root(), "should be control user");
 351           n->set_req(0, xroot);
 352           --j;
 353           --jmax;
 354         }
 355       }
 356 
 357       // Generate new mach node for ConP #NULL
 358       assert(new_ideal_null != NULL, "sanity");
 359       _mach_null = match_tree(new_ideal_null);
 360       // Don't set control, it will confuse GCM since there are no uses.
 361       // The control will be set when this node is used first time
 362       // in find_base_for_derived().
 363       assert(_mach_null != NULL, "");
 364 
 365       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 366 
 367 #ifdef ASSERT
 368       verify_new_nodes_only(xroot);
 369 #endif
 370     }
 371   }
 372   if (C->top() == NULL || C->root() == NULL) {
 373     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 374   }
 375   if (C->failing()) {
 376     // delete old;
 377     old->destruct_contents();
 378     return;
 379   }
 380   assert( C->top(), "" );
 381   assert( C->root(), "" );
 382   validate_null_checks();
 383 
 384   // Now smoke old-space
 385   NOT_DEBUG( old->destruct_contents() );
 386 
 387   // ------------------------
 388   // Set up save-on-entry registers
 389   Fixup_Save_On_Entry( );
 390 }
 391 
 392 
 393 //------------------------------Fixup_Save_On_Entry----------------------------
 394 // The stated purpose of this routine is to take care of save-on-entry
 395 // registers.  However, the overall goal of the Match phase is to convert into
 396 // machine-specific instructions which have RegMasks to guide allocation.
 397 // So what this procedure really does is put a valid RegMask on each input
 398 // to the machine-specific variations of all Return, TailCall and Halt
 399 // instructions.  It also adds edgs to define the save-on-entry values (and of
 400 // course gives them a mask).
 401 
 402 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 403   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 404   // Do all the pre-defined register masks
 405   rms[TypeFunc::Control  ] = RegMask::Empty;
 406   rms[TypeFunc::I_O      ] = RegMask::Empty;
 407   rms[TypeFunc::Memory   ] = RegMask::Empty;
 408   rms[TypeFunc::ReturnAdr] = ret_adr;
 409   rms[TypeFunc::FramePtr ] = fp;
 410   return rms;
 411 }
 412 
 413 //---------------------------init_first_stack_mask-----------------------------
 414 // Create the initial stack mask used by values spilling to the stack.
 415 // Disallow any debug info in outgoing argument areas by setting the
 416 // initial mask accordingly.
 417 void Matcher::init_first_stack_mask() {
 418 
 419   // Allocate storage for spill masks as masks for the appropriate load type.
 420   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+5));
 421 
 422   idealreg2spillmask  [Op_RegN] = &rms[0];
 423   idealreg2spillmask  [Op_RegI] = &rms[1];
 424   idealreg2spillmask  [Op_RegL] = &rms[2];
 425   idealreg2spillmask  [Op_RegF] = &rms[3];
 426   idealreg2spillmask  [Op_RegD] = &rms[4];
 427   idealreg2spillmask  [Op_RegP] = &rms[5];
 428 
 429   idealreg2debugmask  [Op_RegN] = &rms[6];
 430   idealreg2debugmask  [Op_RegI] = &rms[7];
 431   idealreg2debugmask  [Op_RegL] = &rms[8];
 432   idealreg2debugmask  [Op_RegF] = &rms[9];
 433   idealreg2debugmask  [Op_RegD] = &rms[10];
 434   idealreg2debugmask  [Op_RegP] = &rms[11];
 435 
 436   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 437   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 438   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 439   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 440   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 441   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 442 
 443   idealreg2spillmask  [Op_VecS] = &rms[18];
 444   idealreg2spillmask  [Op_VecD] = &rms[19];
 445   idealreg2spillmask  [Op_VecX] = &rms[20];
 446   idealreg2spillmask  [Op_VecY] = &rms[21];
 447   idealreg2spillmask  [Op_VecZ] = &rms[22];
 448 
 449   OptoReg::Name i;
 450 
 451   // At first, start with the empty mask
 452   C->FIRST_STACK_mask().Clear();
 453 
 454   // Add in the incoming argument area
 455   OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 456   for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
 457     C->FIRST_STACK_mask().Insert(i);
 458   }
 459   // Add in all bits past the outgoing argument area
 460   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 461             "must be able to represent all call arguments in reg mask");
 462   OptoReg::Name init = _out_arg_limit;
 463   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
 464     C->FIRST_STACK_mask().Insert(i);
 465   }
 466   // Finally, set the "infinite stack" bit.
 467   C->FIRST_STACK_mask().set_AllStack();
 468 
 469   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 470   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 471   // Keep spill masks aligned.
 472   aligned_stack_mask.clear_to_pairs();
 473   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 474 
 475   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 476 #ifdef _LP64
 477   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 478    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 479    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 480 #else
 481    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 482 #endif
 483   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 484    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 485   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 486    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 487   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 488    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 489   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 490    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 491 
 492   if (Matcher::vector_size_supported(T_BYTE,4)) {
 493     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 494      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 495   }
 496   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 497     // For VecD we need dual alignment and 8 bytes (2 slots) for spills.
 498     // RA guarantees such alignment since it is needed for Double and Long values.
 499     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 500      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 501   }
 502   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 503     // For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
 504     //
 505     // RA can use input arguments stack slots for spills but until RA
 506     // we don't know frame size and offset of input arg stack slots.
 507     //
 508     // Exclude last input arg stack slots to avoid spilling vectors there
 509     // otherwise vector spills could stomp over stack slots in caller frame.
 510     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 511     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
 512       aligned_stack_mask.Remove(in);
 513       in = OptoReg::add(in, -1);
 514     }
 515      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 516      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 517     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 518      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 519   }
 520   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 521     // For VecY we need octo alignment and 32 bytes (8 slots) for spills.
 522     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 523     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
 524       aligned_stack_mask.Remove(in);
 525       in = OptoReg::add(in, -1);
 526     }
 527      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 528      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 529     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 530      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 531   }
 532   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 533     // For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
 534     OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
 535     for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
 536       aligned_stack_mask.Remove(in);
 537       in = OptoReg::add(in, -1);
 538     }
 539      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
 540      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 541     *idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
 542      idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
 543   }
 544    if (UseFPUForSpilling) {
 545      // This mask logic assumes that the spill operations are
 546      // symmetric and that the registers involved are the same size.
 547      // On sparc for instance we may have to use 64 bit moves will
 548      // kill 2 registers when used with F0-F31.
 549      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 550      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 551 #ifdef _LP64
 552      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 553      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 554      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 555      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 556 #else
 557      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 558 #ifdef ARM
 559      // ARM has support for moving 64bit values between a pair of
 560      // integer registers and a double register
 561      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 562      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 563 #endif
 564 #endif
 565    }
 566 
 567   // Make up debug masks.  Any spill slot plus callee-save registers.
 568   // Caller-save registers are assumed to be trashable by the various
 569   // inline-cache fixup routines.
 570   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 571   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 572   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 573   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 574   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 575   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 576 
 577   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 578   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 579   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 580   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 581   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 582   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 583 
 584   // Prevent stub compilations from attempting to reference
 585   // callee-saved registers from debug info
 586   bool exclude_soe = !Compile::current()->is_method_compilation();
 587 
 588   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 589     // registers the caller has to save do not work
 590     if( _register_save_policy[i] == 'C' ||
 591         _register_save_policy[i] == 'A' ||
 592         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 593       idealreg2debugmask  [Op_RegN]->Remove(i);
 594       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 595       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 596       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 597       idealreg2debugmask  [Op_RegD]->Remove(i);
 598       idealreg2debugmask  [Op_RegP]->Remove(i);
 599 
 600       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 601       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 602       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 603       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 604       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 605       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 606     }
 607   }
 608 
 609   // Subtract the register we use to save the SP for MethodHandle
 610   // invokes to from the debug mask.
 611   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 612   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 613   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 614   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 615   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 616   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 617   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 618 }
 619 
 620 //---------------------------is_save_on_entry----------------------------------
 621 bool Matcher::is_save_on_entry( int reg ) {
 622   return
 623     _register_save_policy[reg] == 'E' ||
 624     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 625     // Also save argument registers in the trampolining stubs
 626     (C->save_argument_registers() && is_spillable_arg(reg));
 627 }
 628 
 629 //---------------------------Fixup_Save_On_Entry-------------------------------
 630 void Matcher::Fixup_Save_On_Entry( ) {
 631   init_first_stack_mask();
 632 
 633   Node *root = C->root();       // Short name for root
 634   // Count number of save-on-entry registers.
 635   uint soe_cnt = number_of_saved_registers();
 636   uint i;
 637 
 638   // Find the procedure Start Node
 639   StartNode *start = C->start();
 640   assert( start, "Expect a start node" );
 641 
 642   // Save argument registers in the trampolining stubs
 643   if( C->save_argument_registers() )
 644     for( i = 0; i < _last_Mach_Reg; i++ )
 645       if( is_spillable_arg(i) )
 646         soe_cnt++;
 647 
 648   // Input RegMask array shared by all Returns.
 649   // The type for doubles and longs has a count of 2, but
 650   // there is only 1 returned value
 651   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 652   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 653   // Returns have 0 or 1 returned values depending on call signature.
 654   // Return register is specified by return_value in the AD file.
 655   if (ret_edge_cnt > TypeFunc::Parms)
 656     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 657 
 658   // Input RegMask array shared by all Rethrows.
 659   uint reth_edge_cnt = TypeFunc::Parms+1;
 660   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 661   // Rethrow takes exception oop only, but in the argument 0 slot.
 662   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 663 #ifdef _LP64
 664   // Need two slots for ptrs in 64-bit land
 665   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 666 #endif
 667 
 668   // Input RegMask array shared by all TailCalls
 669   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 670   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 671 
 672   // Input RegMask array shared by all TailJumps
 673   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 674   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 675 
 676   // TailCalls have 2 returned values (target & moop), whose masks come
 677   // from the usual MachNode/MachOper mechanism.  Find a sample
 678   // TailCall to extract these masks and put the correct masks into
 679   // the tail_call_rms array.
 680   for( i=1; i < root->req(); i++ ) {
 681     MachReturnNode *m = root->in(i)->as_MachReturn();
 682     if( m->ideal_Opcode() == Op_TailCall ) {
 683       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 684       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 685       break;
 686     }
 687   }
 688 
 689   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 690   // from the usual MachNode/MachOper mechanism.  Find a sample
 691   // TailJump to extract these masks and put the correct masks into
 692   // the tail_jump_rms array.
 693   for( i=1; i < root->req(); i++ ) {
 694     MachReturnNode *m = root->in(i)->as_MachReturn();
 695     if( m->ideal_Opcode() == Op_TailJump ) {
 696       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 697       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 698       break;
 699     }
 700   }
 701 
 702   // Input RegMask array shared by all Halts
 703   uint halt_edge_cnt = TypeFunc::Parms;
 704   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 705 
 706   // Capture the return input masks into each exit flavor
 707   for( i=1; i < root->req(); i++ ) {
 708     MachReturnNode *exit = root->in(i)->as_MachReturn();
 709     switch( exit->ideal_Opcode() ) {
 710       case Op_Return   : exit->_in_rms = ret_rms;  break;
 711       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 712       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 713       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 714       case Op_Halt     : exit->_in_rms = halt_rms; break;
 715       default          : ShouldNotReachHere();
 716     }
 717   }
 718 
 719   // Next unused projection number from Start.
 720   int proj_cnt = C->tf()->domain()->cnt();
 721 
 722   // Do all the save-on-entry registers.  Make projections from Start for
 723   // them, and give them a use at the exit points.  To the allocator, they
 724   // look like incoming register arguments.
 725   for( i = 0; i < _last_Mach_Reg; i++ ) {
 726     if( is_save_on_entry(i) ) {
 727 
 728       // Add the save-on-entry to the mask array
 729       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 730       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 731       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 732       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 733       // Halts need the SOE registers, but only in the stack as debug info.
 734       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 735       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 736 
 737       Node *mproj;
 738 
 739       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 740       // into a single RegD.
 741       if( (i&1) == 0 &&
 742           _register_save_type[i  ] == Op_RegF &&
 743           _register_save_type[i+1] == Op_RegF &&
 744           is_save_on_entry(i+1) ) {
 745         // Add other bit for double
 746         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 747         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 748         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 749         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 750         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 751         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 752         proj_cnt += 2;          // Skip 2 for doubles
 753       }
 754       else if( (i&1) == 1 &&    // Else check for high half of double
 755                _register_save_type[i-1] == Op_RegF &&
 756                _register_save_type[i  ] == Op_RegF &&
 757                is_save_on_entry(i-1) ) {
 758         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 759         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 760         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 761         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 762         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 763         mproj = C->top();
 764       }
 765       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 766       // into a single RegL.
 767       else if( (i&1) == 0 &&
 768           _register_save_type[i  ] == Op_RegI &&
 769           _register_save_type[i+1] == Op_RegI &&
 770         is_save_on_entry(i+1) ) {
 771         // Add other bit for long
 772         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 773         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 774         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 775         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 776         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 777         mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 778         proj_cnt += 2;          // Skip 2 for longs
 779       }
 780       else if( (i&1) == 1 &&    // Else check for high half of long
 781                _register_save_type[i-1] == Op_RegI &&
 782                _register_save_type[i  ] == Op_RegI &&
 783                is_save_on_entry(i-1) ) {
 784         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 785         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 786         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 787         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 788         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 789         mproj = C->top();
 790       } else {
 791         // Make a projection for it off the Start
 792         mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 793       }
 794 
 795       ret_edge_cnt ++;
 796       reth_edge_cnt ++;
 797       tail_call_edge_cnt ++;
 798       tail_jump_edge_cnt ++;
 799       halt_edge_cnt ++;
 800 
 801       // Add a use of the SOE register to all exit paths
 802       for( uint j=1; j < root->req(); j++ )
 803         root->in(j)->add_req(mproj);
 804     } // End of if a save-on-entry register
 805   } // End of for all machine registers
 806 }
 807 
 808 //------------------------------init_spill_mask--------------------------------
 809 void Matcher::init_spill_mask( Node *ret ) {
 810   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 811 
 812   OptoReg::c_frame_pointer = c_frame_pointer();
 813   c_frame_ptr_mask = c_frame_pointer();
 814 #ifdef _LP64
 815   // pointers are twice as big
 816   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 817 #endif
 818 
 819   // Start at OptoReg::stack0()
 820   STACK_ONLY_mask.Clear();
 821   OptoReg::Name init = OptoReg::stack2reg(0);
 822   // STACK_ONLY_mask is all stack bits
 823   OptoReg::Name i;
 824   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 825     STACK_ONLY_mask.Insert(i);
 826   // Also set the "infinite stack" bit.
 827   STACK_ONLY_mask.set_AllStack();
 828 
 829   // Copy the register names over into the shared world
 830   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 831     // SharedInfo::regName[i] = regName[i];
 832     // Handy RegMasks per machine register
 833     mreg2regmask[i].Insert(i);
 834   }
 835 
 836   // Grab the Frame Pointer
 837   Node *fp  = ret->in(TypeFunc::FramePtr);
 838   Node *mem = ret->in(TypeFunc::Memory);
 839   const TypePtr* atp = TypePtr::BOTTOM;
 840   // Share frame pointer while making spill ops
 841   set_shared(fp);
 842 
 843   // Compute generic short-offset Loads
 844 #ifdef _LP64
 845   MachNode *spillCP = match_tree(new LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 846 #endif
 847   MachNode *spillI  = match_tree(new LoadINode(NULL,mem,fp,atp,TypeInt::INT,MemNode::unordered));
 848   MachNode *spillL  = match_tree(new LoadLNode(NULL,mem,fp,atp,TypeLong::LONG,MemNode::unordered, LoadNode::DependsOnlyOnTest, false));
 849   MachNode *spillF  = match_tree(new LoadFNode(NULL,mem,fp,atp,Type::FLOAT,MemNode::unordered));
 850   MachNode *spillD  = match_tree(new LoadDNode(NULL,mem,fp,atp,Type::DOUBLE,MemNode::unordered));
 851   MachNode *spillP  = match_tree(new LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM,MemNode::unordered));
 852   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 853          spillD != NULL && spillP != NULL, "");
 854   // Get the ADLC notion of the right regmask, for each basic type.
 855 #ifdef _LP64
 856   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 857 #endif
 858   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 859   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 860   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 861   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 862   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 863 
 864   // Vector regmasks.
 865   if (Matcher::vector_size_supported(T_BYTE,4)) {
 866     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 867     MachNode *spillVectS = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 868     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
 869   }
 870   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 871     MachNode *spillVectD = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 872     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
 873   }
 874   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 875     MachNode *spillVectX = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 876     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
 877   }
 878   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 879     MachNode *spillVectY = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 880     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
 881   }
 882   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 883     MachNode *spillVectZ = match_tree(new LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTZ));
 884     idealreg2regmask[Op_VecZ] = &spillVectZ->out_RegMask();
 885   }
 886 }
 887 
 888 #ifdef ASSERT
 889 static void match_alias_type(Compile* C, Node* n, Node* m) {
 890   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 891   const TypePtr* nat = n->adr_type();
 892   const TypePtr* mat = m->adr_type();
 893   int nidx = C->get_alias_index(nat);
 894   int midx = C->get_alias_index(mat);
 895   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 896   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 897     for (uint i = 1; i < n->req(); i++) {
 898       Node* n1 = n->in(i);
 899       const TypePtr* n1at = n1->adr_type();
 900       if (n1at != NULL) {
 901         nat = n1at;
 902         nidx = C->get_alias_index(n1at);
 903       }
 904     }
 905   }
 906   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 907   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 908     switch (n->Opcode()) {
 909     case Op_PrefetchAllocation:
 910       nidx = Compile::AliasIdxRaw;
 911       nat = TypeRawPtr::BOTTOM;
 912       break;
 913     }
 914   }
 915   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 916     switch (n->Opcode()) {
 917     case Op_ClearArray:
 918       midx = Compile::AliasIdxRaw;
 919       mat = TypeRawPtr::BOTTOM;
 920       break;
 921     }
 922   }
 923   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 924     switch (n->Opcode()) {
 925     case Op_Return:
 926     case Op_Rethrow:
 927     case Op_Halt:
 928     case Op_TailCall:
 929     case Op_TailJump:
 930       nidx = Compile::AliasIdxBot;
 931       nat = TypePtr::BOTTOM;
 932       break;
 933     }
 934   }
 935   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 936     switch (n->Opcode()) {
 937     case Op_StrComp:
 938     case Op_StrEquals:
 939     case Op_StrIndexOf:
 940     case Op_StrIndexOfChar:
 941     case Op_AryEq:
 942     case Op_HasNegatives:
 943     case Op_MemBarVolatile:
 944     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 945     case Op_StrInflatedCopy:
 946     case Op_StrCompressedCopy:
 947     case Op_OnSpinWait:
 948     case Op_EncodeISOArray:
 949       nidx = Compile::AliasIdxTop;
 950       nat = NULL;
 951       break;
 952     }
 953   }
 954   if (nidx != midx) {
 955     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 956       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 957       n->dump();
 958       m->dump();
 959     }
 960     assert(C->subsume_loads() && C->must_alias(nat, midx),
 961            "must not lose alias info when matching");
 962   }
 963 }
 964 #endif
 965 
 966 
 967 //------------------------------MStack-----------------------------------------
 968 // State and MStack class used in xform() and find_shared() iterative methods.
 969 enum Node_State { Pre_Visit,  // node has to be pre-visited
 970                       Visit,  // visit node
 971                  Post_Visit,  // post-visit node
 972              Alt_Post_Visit   // alternative post-visit path
 973                 };
 974 
 975 class MStack: public Node_Stack {
 976   public:
 977     MStack(int size) : Node_Stack(size) { }
 978 
 979     void push(Node *n, Node_State ns) {
 980       Node_Stack::push(n, (uint)ns);
 981     }
 982     void push(Node *n, Node_State ns, Node *parent, int indx) {
 983       ++_inode_top;
 984       if ((_inode_top + 1) >= _inode_max) grow();
 985       _inode_top->node = parent;
 986       _inode_top->indx = (uint)indx;
 987       ++_inode_top;
 988       _inode_top->node = n;
 989       _inode_top->indx = (uint)ns;
 990     }
 991     Node *parent() {
 992       pop();
 993       return node();
 994     }
 995     Node_State state() const {
 996       return (Node_State)index();
 997     }
 998     void set_state(Node_State ns) {
 999       set_index((uint)ns);
1000     }
1001 };
1002 
1003 
1004 //------------------------------xform------------------------------------------
1005 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
1006 // Node in new-space.  Given a new-space Node, recursively walk his children.
1007 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
1008 Node *Matcher::xform( Node *n, int max_stack ) {
1009   // Use one stack to keep both: child's node/state and parent's node/index
1010   MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
1011   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
1012 
1013   while (mstack.is_nonempty()) {
1014     C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
1015     if (C->failing()) return NULL;
1016     n = mstack.node();          // Leave node on stack
1017     Node_State nstate = mstack.state();
1018     if (nstate == Visit) {
1019       mstack.set_state(Post_Visit);
1020       Node *oldn = n;
1021       // Old-space or new-space check
1022       if (!C->node_arena()->contains(n)) {
1023         // Old space!
1024         Node* m;
1025         if (has_new_node(n)) {  // Not yet Label/Reduced
1026           m = new_node(n);
1027         } else {
1028           if (!is_dontcare(n)) { // Matcher can match this guy
1029             // Calls match special.  They match alone with no children.
1030             // Their children, the incoming arguments, match normally.
1031             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1032             if (C->failing())  return NULL;
1033             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1034           } else {                  // Nothing the matcher cares about
1035             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
1036               // Convert to machine-dependent projection
1037               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1038 #ifdef ASSERT
1039               _new2old_map.map(m->_idx, n);
1040 #endif
1041               if (m->in(0) != NULL) // m might be top
1042                 collect_null_checks(m, n);
1043             } else {                // Else just a regular 'ol guy
1044               m = n->clone();       // So just clone into new-space
1045 #ifdef ASSERT
1046               _new2old_map.map(m->_idx, n);
1047 #endif
1048               // Def-Use edges will be added incrementally as Uses
1049               // of this node are matched.
1050               assert(m->outcnt() == 0, "no Uses of this clone yet");
1051             }
1052           }
1053 
1054           set_new_node(n, m);       // Map old to new
1055           if (_old_node_note_array != NULL) {
1056             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1057                                                   n->_idx);
1058             C->set_node_notes_at(m->_idx, nn);
1059           }
1060           debug_only(match_alias_type(C, n, m));
1061         }
1062         n = m;    // n is now a new-space node
1063         mstack.set_node(n);
1064       }
1065 
1066       // New space!
1067       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1068 
1069       int i;
1070       // Put precedence edges on stack first (match them last).
1071       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1072         Node *m = oldn->in(i);
1073         if (m == NULL) break;
1074         // set -1 to call add_prec() instead of set_req() during Step1
1075         mstack.push(m, Visit, n, -1);
1076       }
1077 
1078       // Handle precedence edges for interior nodes
1079       for (i = n->len()-1; (uint)i >= n->req(); i--) {
1080         Node *m = n->in(i);
1081         if (m == NULL || C->node_arena()->contains(m)) continue;
1082         n->rm_prec(i);
1083         // set -1 to call add_prec() instead of set_req() during Step1
1084         mstack.push(m, Visit, n, -1);
1085       }
1086 
1087       // For constant debug info, I'd rather have unmatched constants.
1088       int cnt = n->req();
1089       JVMState* jvms = n->jvms();
1090       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1091 
1092       // Now do only debug info.  Clone constants rather than matching.
1093       // Constants are represented directly in the debug info without
1094       // the need for executable machine instructions.
1095       // Monitor boxes are also represented directly.
1096       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1097         Node *m = n->in(i);          // Get input
1098         int op = m->Opcode();
1099         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1100         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1101             op == Op_ConF || op == Op_ConD || op == Op_ConL
1102             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1103             ) {
1104           m = m->clone();
1105 #ifdef ASSERT
1106           _new2old_map.map(m->_idx, n);
1107 #endif
1108           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1109           mstack.push(m->in(0), Visit, m, 0);
1110         } else {
1111           mstack.push(m, Visit, n, i);
1112         }
1113       }
1114 
1115       // And now walk his children, and convert his inputs to new-space.
1116       for( ; i >= 0; --i ) { // For all normal inputs do
1117         Node *m = n->in(i);  // Get input
1118         if(m != NULL)
1119           mstack.push(m, Visit, n, i);
1120       }
1121 
1122     }
1123     else if (nstate == Post_Visit) {
1124       // Set xformed input
1125       Node *p = mstack.parent();
1126       if (p != NULL) { // root doesn't have parent
1127         int i = (int)mstack.index();
1128         if (i >= 0)
1129           p->set_req(i, n); // required input
1130         else if (i == -1)
1131           p->add_prec(n);   // precedence input
1132         else
1133           ShouldNotReachHere();
1134       }
1135       mstack.pop(); // remove processed node from stack
1136     }
1137     else {
1138       ShouldNotReachHere();
1139     }
1140   } // while (mstack.is_nonempty())
1141   return n; // Return new-space Node
1142 }
1143 
1144 //------------------------------warp_outgoing_stk_arg------------------------
1145 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1146   // Convert outgoing argument location to a pre-biased stack offset
1147   if (reg->is_stack()) {
1148     OptoReg::Name warped = reg->reg2stack();
1149     // Adjust the stack slot offset to be the register number used
1150     // by the allocator.
1151     warped = OptoReg::add(begin_out_arg_area, warped);
1152     // Keep track of the largest numbered stack slot used for an arg.
1153     // Largest used slot per call-site indicates the amount of stack
1154     // that is killed by the call.
1155     if( warped >= out_arg_limit_per_call )
1156       out_arg_limit_per_call = OptoReg::add(warped,1);
1157     if (!RegMask::can_represent_arg(warped)) {
1158       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1159       return OptoReg::Bad;
1160     }
1161     return warped;
1162   }
1163   return OptoReg::as_OptoReg(reg);
1164 }
1165 
1166 
1167 //------------------------------match_sfpt-------------------------------------
1168 // Helper function to match call instructions.  Calls match special.
1169 // They match alone with no children.  Their children, the incoming
1170 // arguments, match normally.
1171 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1172   MachSafePointNode *msfpt = NULL;
1173   MachCallNode      *mcall = NULL;
1174   uint               cnt;
1175   // Split out case for SafePoint vs Call
1176   CallNode *call;
1177   const TypeTuple *domain;
1178   ciMethod*        method = NULL;
1179   bool             is_method_handle_invoke = false;  // for special kill effects
1180   if( sfpt->is_Call() ) {
1181     call = sfpt->as_Call();
1182     domain = call->tf()->domain();
1183     cnt = domain->cnt();
1184 
1185     // Match just the call, nothing else
1186     MachNode *m = match_tree(call);
1187     if (C->failing())  return NULL;
1188     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1189 
1190     // Copy data from the Ideal SafePoint to the machine version
1191     mcall = m->as_MachCall();
1192 
1193     mcall->set_tf(         call->tf());
1194     mcall->set_entry_point(call->entry_point());
1195     mcall->set_cnt(        call->cnt());
1196 
1197     if( mcall->is_MachCallJava() ) {
1198       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1199       const CallJavaNode *call_java =  call->as_CallJava();
1200       method = call_java->method();
1201       mcall_java->_method = method;
1202       mcall_java->_bci = call_java->_bci;
1203       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1204       is_method_handle_invoke = call_java->is_method_handle_invoke();
1205       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1206       mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
1207       if (is_method_handle_invoke) {
1208         C->set_has_method_handle_invokes(true);
1209       }
1210       if( mcall_java->is_MachCallStaticJava() )
1211         mcall_java->as_MachCallStaticJava()->_name =
1212          call_java->as_CallStaticJava()->_name;
1213       if( mcall_java->is_MachCallDynamicJava() )
1214         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1215          call_java->as_CallDynamicJava()->_vtable_index;
1216     }
1217     else if( mcall->is_MachCallRuntime() ) {
1218       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1219     }
1220     msfpt = mcall;
1221   }
1222   // This is a non-call safepoint
1223   else {
1224     call = NULL;
1225     domain = NULL;
1226     MachNode *mn = match_tree(sfpt);
1227     if (C->failing())  return NULL;
1228     msfpt = mn->as_MachSafePoint();
1229     cnt = TypeFunc::Parms;
1230   }
1231 
1232   // Advertise the correct memory effects (for anti-dependence computation).
1233   msfpt->set_adr_type(sfpt->adr_type());
1234 
1235   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1236   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1237   // Empty them all.
1238   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1239 
1240   // Do all the pre-defined non-Empty register masks
1241   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1242   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1243 
1244   // Place first outgoing argument can possibly be put.
1245   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1246   assert( is_even(begin_out_arg_area), "" );
1247   // Compute max outgoing register number per call site.
1248   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1249   // Calls to C may hammer extra stack slots above and beyond any arguments.
1250   // These are usually backing store for register arguments for varargs.
1251   if( call != NULL && call->is_CallRuntime() )
1252     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1253 
1254 
1255   // Do the normal argument list (parameters) register masks
1256   int argcnt = cnt - TypeFunc::Parms;
1257   if( argcnt > 0 ) {          // Skip it all if we have no args
1258     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1259     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1260     int i;
1261     for( i = 0; i < argcnt; i++ ) {
1262       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1263     }
1264     // V-call to pick proper calling convention
1265     call->calling_convention( sig_bt, parm_regs, argcnt );
1266 
1267 #ifdef ASSERT
1268     // Sanity check users' calling convention.  Really handy during
1269     // the initial porting effort.  Fairly expensive otherwise.
1270     { for (int i = 0; i<argcnt; i++) {
1271       if( !parm_regs[i].first()->is_valid() &&
1272           !parm_regs[i].second()->is_valid() ) continue;
1273       VMReg reg1 = parm_regs[i].first();
1274       VMReg reg2 = parm_regs[i].second();
1275       for (int j = 0; j < i; j++) {
1276         if( !parm_regs[j].first()->is_valid() &&
1277             !parm_regs[j].second()->is_valid() ) continue;
1278         VMReg reg3 = parm_regs[j].first();
1279         VMReg reg4 = parm_regs[j].second();
1280         if( !reg1->is_valid() ) {
1281           assert( !reg2->is_valid(), "valid halvsies" );
1282         } else if( !reg3->is_valid() ) {
1283           assert( !reg4->is_valid(), "valid halvsies" );
1284         } else {
1285           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1286           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1287           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1288           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1289           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1290           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1291         }
1292       }
1293     }
1294     }
1295 #endif
1296 
1297     // Visit each argument.  Compute its outgoing register mask.
1298     // Return results now can have 2 bits returned.
1299     // Compute max over all outgoing arguments both per call-site
1300     // and over the entire method.
1301     for( i = 0; i < argcnt; i++ ) {
1302       // Address of incoming argument mask to fill in
1303       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1304       if( !parm_regs[i].first()->is_valid() &&
1305           !parm_regs[i].second()->is_valid() ) {
1306         continue;               // Avoid Halves
1307       }
1308       // Grab first register, adjust stack slots and insert in mask.
1309       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1310       if (OptoReg::is_valid(reg1))
1311         rm->Insert( reg1 );
1312       // Grab second register (if any), adjust stack slots and insert in mask.
1313       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1314       if (OptoReg::is_valid(reg2))
1315         rm->Insert( reg2 );
1316     } // End of for all arguments
1317 
1318     // Compute number of stack slots needed to restore stack in case of
1319     // Pascal-style argument popping.
1320     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1321   }
1322 
1323   // Compute the max stack slot killed by any call.  These will not be
1324   // available for debug info, and will be used to adjust FIRST_STACK_mask
1325   // after all call sites have been visited.
1326   if( _out_arg_limit < out_arg_limit_per_call)
1327     _out_arg_limit = out_arg_limit_per_call;
1328 
1329   if (mcall) {
1330     // Kill the outgoing argument area, including any non-argument holes and
1331     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1332     // Since the max-per-method covers the max-per-call-site and debug info
1333     // is excluded on the max-per-method basis, debug info cannot land in
1334     // this killed area.
1335     uint r_cnt = mcall->tf()->range()->cnt();
1336     MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1337     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1338       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1339     } else {
1340       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1341         proj->_rout.Insert(OptoReg::Name(i));
1342     }
1343     if (proj->_rout.is_NotEmpty()) {
1344       push_projection(proj);
1345     }
1346   }
1347   // Transfer the safepoint information from the call to the mcall
1348   // Move the JVMState list
1349   msfpt->set_jvms(sfpt->jvms());
1350   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1351     jvms->set_map(sfpt);
1352   }
1353 
1354   // Debug inputs begin just after the last incoming parameter
1355   assert((mcall == NULL) || (mcall->jvms() == NULL) ||
1356          (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
1357 
1358   // Move the OopMap
1359   msfpt->_oop_map = sfpt->_oop_map;
1360 
1361   // Add additional edges.
1362   if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
1363     // For these calls we can not add MachConstantBase in expand(), as the
1364     // ins are not complete then.
1365     msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
1366     if (msfpt->jvms() &&
1367         msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
1368       // We added an edge before jvms, so we must adapt the position of the ins.
1369       msfpt->jvms()->adapt_position(+1);
1370     }
1371   }
1372 
1373   // Registers killed by the call are set in the local scheduling pass
1374   // of Global Code Motion.
1375   return msfpt;
1376 }
1377 
1378 //---------------------------match_tree----------------------------------------
1379 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1380 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1381 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1382 // a Load's result RegMask for memoization in idealreg2regmask[]
1383 MachNode *Matcher::match_tree( const Node *n ) {
1384   assert( n->Opcode() != Op_Phi, "cannot match" );
1385   assert( !n->is_block_start(), "cannot match" );
1386   // Set the mark for all locally allocated State objects.
1387   // When this call returns, the _states_arena arena will be reset
1388   // freeing all State objects.
1389   ResourceMark rm( &_states_arena );
1390 
1391   LabelRootDepth = 0;
1392 
1393   // StoreNodes require their Memory input to match any LoadNodes
1394   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1395 #ifdef ASSERT
1396   Node* save_mem_node = _mem_node;
1397   _mem_node = n->is_Store() ? (Node*)n : NULL;
1398 #endif
1399   // State object for root node of match tree
1400   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1401   State *s = new (&_states_arena) State;
1402   s->_kids[0] = NULL;
1403   s->_kids[1] = NULL;
1404   s->_leaf = (Node*)n;
1405   // Label the input tree, allocating labels from top-level arena
1406   Label_Root( n, s, n->in(0), mem );
1407   if (C->failing())  return NULL;
1408 
1409   // The minimum cost match for the whole tree is found at the root State
1410   uint mincost = max_juint;
1411   uint cost = max_juint;
1412   uint i;
1413   for( i = 0; i < NUM_OPERANDS; i++ ) {
1414     if( s->valid(i) &&                // valid entry and
1415         s->_cost[i] < cost &&         // low cost and
1416         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1417       cost = s->_cost[mincost=i];
1418   }
1419   if (mincost == max_juint) {
1420 #ifndef PRODUCT
1421     tty->print("No matching rule for:");
1422     s->dump();
1423 #endif
1424     Matcher::soft_match_failure();
1425     return NULL;
1426   }
1427   // Reduce input tree based upon the state labels to machine Nodes
1428   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1429 #ifdef ASSERT
1430   _old2new_map.map(n->_idx, m);
1431   _new2old_map.map(m->_idx, (Node*)n);
1432 #endif
1433 
1434   // Add any Matcher-ignored edges
1435   uint cnt = n->req();
1436   uint start = 1;
1437   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1438   if( n->is_AddP() ) {
1439     assert( mem == (Node*)1, "" );
1440     start = AddPNode::Base+1;
1441   }
1442   for( i = start; i < cnt; i++ ) {
1443     if( !n->match_edge(i) ) {
1444       if( i < m->req() )
1445         m->ins_req( i, n->in(i) );
1446       else
1447         m->add_req( n->in(i) );
1448     }
1449   }
1450 
1451   debug_only( _mem_node = save_mem_node; )
1452   return m;
1453 }
1454 
1455 
1456 //------------------------------match_into_reg---------------------------------
1457 // Choose to either match this Node in a register or part of the current
1458 // match tree.  Return true for requiring a register and false for matching
1459 // as part of the current match tree.
1460 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1461 
1462   const Type *t = m->bottom_type();
1463 
1464   if (t->singleton()) {
1465     // Never force constants into registers.  Allow them to match as
1466     // constants or registers.  Copies of the same value will share
1467     // the same register.  See find_shared_node.
1468     return false;
1469   } else {                      // Not a constant
1470     // Stop recursion if they have different Controls.
1471     Node* m_control = m->in(0);
1472     // Control of load's memory can post-dominates load's control.
1473     // So use it since load can't float above its memory.
1474     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1475     if (control && m_control && control != m_control && control != mem_control) {
1476 
1477       // Actually, we can live with the most conservative control we
1478       // find, if it post-dominates the others.  This allows us to
1479       // pick up load/op/store trees where the load can float a little
1480       // above the store.
1481       Node *x = control;
1482       const uint max_scan = 6;  // Arbitrary scan cutoff
1483       uint j;
1484       for (j=0; j<max_scan; j++) {
1485         if (x->is_Region())     // Bail out at merge points
1486           return true;
1487         x = x->in(0);
1488         if (x == m_control)     // Does 'control' post-dominate
1489           break;                // m->in(0)?  If so, we can use it
1490         if (x == mem_control)   // Does 'control' post-dominate
1491           break;                // mem_control?  If so, we can use it
1492       }
1493       if (j == max_scan)        // No post-domination before scan end?
1494         return true;            // Then break the match tree up
1495     }
1496     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1497         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1498       // These are commonly used in address expressions and can
1499       // efficiently fold into them on X64 in some cases.
1500       return false;
1501     }
1502   }
1503 
1504   // Not forceable cloning.  If shared, put it into a register.
1505   return shared;
1506 }
1507 
1508 
1509 //------------------------------Instruction Selection--------------------------
1510 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1511 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1512 // things the Matcher does not match (e.g., Memory), and things with different
1513 // Controls (hence forced into different blocks).  We pass in the Control
1514 // selected for this entire State tree.
1515 
1516 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1517 // Store and the Load must have identical Memories (as well as identical
1518 // pointers).  Since the Matcher does not have anything for Memory (and
1519 // does not handle DAGs), I have to match the Memory input myself.  If the
1520 // Tree root is a Store, I require all Loads to have the identical memory.
1521 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1522   // Since Label_Root is a recursive function, its possible that we might run
1523   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1524   LabelRootDepth++;
1525   if (LabelRootDepth > MaxLabelRootDepth) {
1526     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1527     return NULL;
1528   }
1529   uint care = 0;                // Edges matcher cares about
1530   uint cnt = n->req();
1531   uint i = 0;
1532 
1533   // Examine children for memory state
1534   // Can only subsume a child into your match-tree if that child's memory state
1535   // is not modified along the path to another input.
1536   // It is unsafe even if the other inputs are separate roots.
1537   Node *input_mem = NULL;
1538   for( i = 1; i < cnt; i++ ) {
1539     if( !n->match_edge(i) ) continue;
1540     Node *m = n->in(i);         // Get ith input
1541     assert( m, "expect non-null children" );
1542     if( m->is_Load() ) {
1543       if( input_mem == NULL ) {
1544         input_mem = m->in(MemNode::Memory);
1545       } else if( input_mem != m->in(MemNode::Memory) ) {
1546         input_mem = NodeSentinel;
1547       }
1548     }
1549   }
1550 
1551   for( i = 1; i < cnt; i++ ){// For my children
1552     if( !n->match_edge(i) ) continue;
1553     Node *m = n->in(i);         // Get ith input
1554     // Allocate states out of a private arena
1555     State *s = new (&_states_arena) State;
1556     svec->_kids[care++] = s;
1557     assert( care <= 2, "binary only for now" );
1558 
1559     // Recursively label the State tree.
1560     s->_kids[0] = NULL;
1561     s->_kids[1] = NULL;
1562     s->_leaf = m;
1563 
1564     // Check for leaves of the State Tree; things that cannot be a part of
1565     // the current tree.  If it finds any, that value is matched as a
1566     // register operand.  If not, then the normal matching is used.
1567     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1568         //
1569         // Stop recursion if this is LoadNode and the root of this tree is a
1570         // StoreNode and the load & store have different memories.
1571         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1572         // Can NOT include the match of a subtree when its memory state
1573         // is used by any of the other subtrees
1574         (input_mem == NodeSentinel) ) {
1575       // Print when we exclude matching due to different memory states at input-loads
1576       if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1577         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) {
1578         tty->print_cr("invalid input_mem");
1579       }
1580       // Switch to a register-only opcode; this value must be in a register
1581       // and cannot be subsumed as part of a larger instruction.
1582       s->DFA( m->ideal_reg(), m );
1583 
1584     } else {
1585       // If match tree has no control and we do, adopt it for entire tree
1586       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1587         control = m->in(0);         // Pick up control
1588       // Else match as a normal part of the match tree.
1589       control = Label_Root(m,s,control,mem);
1590       if (C->failing()) return NULL;
1591     }
1592   }
1593 
1594 
1595   // Call DFA to match this node, and return
1596   svec->DFA( n->Opcode(), n );
1597 
1598 #ifdef ASSERT
1599   uint x;
1600   for( x = 0; x < _LAST_MACH_OPER; x++ )
1601     if( svec->valid(x) )
1602       break;
1603 
1604   if (x >= _LAST_MACH_OPER) {
1605     n->dump();
1606     svec->dump();
1607     assert( false, "bad AD file" );
1608   }
1609 #endif
1610   return control;
1611 }
1612 
1613 
1614 // Con nodes reduced using the same rule can share their MachNode
1615 // which reduces the number of copies of a constant in the final
1616 // program.  The register allocator is free to split uses later to
1617 // split live ranges.
1618 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1619   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1620 
1621   // See if this Con has already been reduced using this rule.
1622   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1623   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1624   if (last != NULL && rule == last->rule()) {
1625     // Don't expect control change for DecodeN
1626     if (leaf->is_DecodeNarrowPtr())
1627       return last;
1628     // Get the new space root.
1629     Node* xroot = new_node(C->root());
1630     if (xroot == NULL) {
1631       // This shouldn't happen give the order of matching.
1632       return NULL;
1633     }
1634 
1635     // Shared constants need to have their control be root so they
1636     // can be scheduled properly.
1637     Node* control = last->in(0);
1638     if (control != xroot) {
1639       if (control == NULL || control == C->root()) {
1640         last->set_req(0, xroot);
1641       } else {
1642         assert(false, "unexpected control");
1643         return NULL;
1644       }
1645     }
1646     return last;
1647   }
1648   return NULL;
1649 }
1650 
1651 
1652 //------------------------------ReduceInst-------------------------------------
1653 // Reduce a State tree (with given Control) into a tree of MachNodes.
1654 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1655 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1656 // Each MachNode has a number of complicated MachOper operands; each
1657 // MachOper also covers a further tree of Ideal Nodes.
1658 
1659 // The root of the Ideal match tree is always an instruction, so we enter
1660 // the recursion here.  After building the MachNode, we need to recurse
1661 // the tree checking for these cases:
1662 // (1) Child is an instruction -
1663 //     Build the instruction (recursively), add it as an edge.
1664 //     Build a simple operand (register) to hold the result of the instruction.
1665 // (2) Child is an interior part of an instruction -
1666 //     Skip over it (do nothing)
1667 // (3) Child is the start of a operand -
1668 //     Build the operand, place it inside the instruction
1669 //     Call ReduceOper.
1670 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1671   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1672 
1673   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1674   if (shared_node != NULL) {
1675     return shared_node;
1676   }
1677 
1678   // Build the object to represent this state & prepare for recursive calls
1679   MachNode *mach = s->MachNodeGenerator(rule);
1680   mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]);
1681   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1682   Node *leaf = s->_leaf;
1683   // Check for instruction or instruction chain rule
1684   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1685     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1686            "duplicating node that's already been matched");
1687     // Instruction
1688     mach->add_req( leaf->in(0) ); // Set initial control
1689     // Reduce interior of complex instruction
1690     ReduceInst_Interior( s, rule, mem, mach, 1 );
1691   } else {
1692     // Instruction chain rules are data-dependent on their inputs
1693     mach->add_req(0);             // Set initial control to none
1694     ReduceInst_Chain_Rule( s, rule, mem, mach );
1695   }
1696 
1697   // If a Memory was used, insert a Memory edge
1698   if( mem != (Node*)1 ) {
1699     mach->ins_req(MemNode::Memory,mem);
1700 #ifdef ASSERT
1701     // Verify adr type after matching memory operation
1702     const MachOper* oper = mach->memory_operand();
1703     if (oper != NULL && oper != (MachOper*)-1) {
1704       // It has a unique memory operand.  Find corresponding ideal mem node.
1705       Node* m = NULL;
1706       if (leaf->is_Mem()) {
1707         m = leaf;
1708       } else {
1709         m = _mem_node;
1710         assert(m != NULL && m->is_Mem(), "expecting memory node");
1711       }
1712       const Type* mach_at = mach->adr_type();
1713       // DecodeN node consumed by an address may have different type
1714       // then its input. Don't compare types for such case.
1715       if (m->adr_type() != mach_at &&
1716           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1717            m->in(MemNode::Address)->is_AddP() &&
1718            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1719            m->in(MemNode::Address)->is_AddP() &&
1720            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1721            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1722         mach_at = m->adr_type();
1723       }
1724       if (m->adr_type() != mach_at) {
1725         m->dump();
1726         tty->print_cr("mach:");
1727         mach->dump(1);
1728       }
1729       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1730     }
1731 #endif
1732   }
1733 
1734   // If the _leaf is an AddP, insert the base edge
1735   if (leaf->is_AddP()) {
1736     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1737   }
1738 
1739   uint number_of_projections_prior = number_of_projections();
1740 
1741   // Perform any 1-to-many expansions required
1742   MachNode *ex = mach->Expand(s, _projection_list, mem);
1743   if (ex != mach) {
1744     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1745     if( ex->in(1)->is_Con() )
1746       ex->in(1)->set_req(0, C->root());
1747     // Remove old node from the graph
1748     for( uint i=0; i<mach->req(); i++ ) {
1749       mach->set_req(i,NULL);
1750     }
1751 #ifdef ASSERT
1752     _new2old_map.map(ex->_idx, s->_leaf);
1753 #endif
1754   }
1755 
1756   // PhaseChaitin::fixup_spills will sometimes generate spill code
1757   // via the matcher.  By the time, nodes have been wired into the CFG,
1758   // and any further nodes generated by expand rules will be left hanging
1759   // in space, and will not get emitted as output code.  Catch this.
1760   // Also, catch any new register allocation constraints ("projections")
1761   // generated belatedly during spill code generation.
1762   if (_allocation_started) {
1763     guarantee(ex == mach, "no expand rules during spill generation");
1764     guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
1765   }
1766 
1767   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1768     // Record the con for sharing
1769     _shared_nodes.map(leaf->_idx, ex);
1770   }
1771 
1772   return ex;
1773 }
1774 
1775 void Matcher::handle_precedence_edges(Node* n, MachNode *mach) {
1776   for (uint i = n->req(); i < n->len(); i++) {
1777     if (n->in(i) != NULL) {
1778       mach->add_prec(n->in(i));
1779     }
1780   }
1781 }
1782 
1783 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1784   // 'op' is what I am expecting to receive
1785   int op = _leftOp[rule];
1786   // Operand type to catch childs result
1787   // This is what my child will give me.
1788   int opnd_class_instance = s->_rule[op];
1789   // Choose between operand class or not.
1790   // This is what I will receive.
1791   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1792   // New rule for child.  Chase operand classes to get the actual rule.
1793   int newrule = s->_rule[catch_op];
1794 
1795   if( newrule < NUM_OPERANDS ) {
1796     // Chain from operand or operand class, may be output of shared node
1797     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1798             "Bad AD file: Instruction chain rule must chain from operand");
1799     // Insert operand into array of operands for this instruction
1800     mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance);
1801 
1802     ReduceOper( s, newrule, mem, mach );
1803   } else {
1804     // Chain from the result of an instruction
1805     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1806     mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]);
1807     Node *mem1 = (Node*)1;
1808     debug_only(Node *save_mem_node = _mem_node;)
1809     mach->add_req( ReduceInst(s, newrule, mem1) );
1810     debug_only(_mem_node = save_mem_node;)
1811   }
1812   return;
1813 }
1814 
1815 
1816 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1817   handle_precedence_edges(s->_leaf, mach);
1818 
1819   if( s->_leaf->is_Load() ) {
1820     Node *mem2 = s->_leaf->in(MemNode::Memory);
1821     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1822     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1823     mem = mem2;
1824   }
1825   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1826     if( mach->in(0) == NULL )
1827       mach->set_req(0, s->_leaf->in(0));
1828   }
1829 
1830   // Now recursively walk the state tree & add operand list.
1831   for( uint i=0; i<2; i++ ) {   // binary tree
1832     State *newstate = s->_kids[i];
1833     if( newstate == NULL ) break;      // Might only have 1 child
1834     // 'op' is what I am expecting to receive
1835     int op;
1836     if( i == 0 ) {
1837       op = _leftOp[rule];
1838     } else {
1839       op = _rightOp[rule];
1840     }
1841     // Operand type to catch childs result
1842     // This is what my child will give me.
1843     int opnd_class_instance = newstate->_rule[op];
1844     // Choose between operand class or not.
1845     // This is what I will receive.
1846     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1847     // New rule for child.  Chase operand classes to get the actual rule.
1848     int newrule = newstate->_rule[catch_op];
1849 
1850     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1851       // Operand/operandClass
1852       // Insert operand into array of operands for this instruction
1853       mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance);
1854       ReduceOper( newstate, newrule, mem, mach );
1855 
1856     } else {                    // Child is internal operand or new instruction
1857       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1858         // internal operand --> call ReduceInst_Interior
1859         // Interior of complex instruction.  Do nothing but recurse.
1860         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1861       } else {
1862         // instruction --> call build operand(  ) to catch result
1863         //             --> ReduceInst( newrule )
1864         mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]);
1865         Node *mem1 = (Node*)1;
1866         debug_only(Node *save_mem_node = _mem_node;)
1867         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1868         debug_only(_mem_node = save_mem_node;)
1869       }
1870     }
1871     assert( mach->_opnds[num_opnds-1], "" );
1872   }
1873   return num_opnds;
1874 }
1875 
1876 // This routine walks the interior of possible complex operands.
1877 // At each point we check our children in the match tree:
1878 // (1) No children -
1879 //     We are a leaf; add _leaf field as an input to the MachNode
1880 // (2) Child is an internal operand -
1881 //     Skip over it ( do nothing )
1882 // (3) Child is an instruction -
1883 //     Call ReduceInst recursively and
1884 //     and instruction as an input to the MachNode
1885 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1886   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1887   State *kid = s->_kids[0];
1888   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1889 
1890   // Leaf?  And not subsumed?
1891   if( kid == NULL && !_swallowed[rule] ) {
1892     mach->add_req( s->_leaf );  // Add leaf pointer
1893     return;                     // Bail out
1894   }
1895 
1896   if( s->_leaf->is_Load() ) {
1897     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1898     mem = s->_leaf->in(MemNode::Memory);
1899     debug_only(_mem_node = s->_leaf;)
1900   }
1901 
1902   handle_precedence_edges(s->_leaf, mach);
1903 
1904   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1905     if( !mach->in(0) )
1906       mach->set_req(0,s->_leaf->in(0));
1907     else {
1908       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1909     }
1910   }
1911 
1912   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1913     int newrule;
1914     if( i == 0)
1915       newrule = kid->_rule[_leftOp[rule]];
1916     else
1917       newrule = kid->_rule[_rightOp[rule]];
1918 
1919     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1920       // Internal operand; recurse but do nothing else
1921       ReduceOper( kid, newrule, mem, mach );
1922 
1923     } else {                    // Child is a new instruction
1924       // Reduce the instruction, and add a direct pointer from this
1925       // machine instruction to the newly reduced one.
1926       Node *mem1 = (Node*)1;
1927       debug_only(Node *save_mem_node = _mem_node;)
1928       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1929       debug_only(_mem_node = save_mem_node;)
1930     }
1931   }
1932 }
1933 
1934 
1935 // -------------------------------------------------------------------------
1936 // Java-Java calling convention
1937 // (what you use when Java calls Java)
1938 
1939 //------------------------------find_receiver----------------------------------
1940 // For a given signature, return the OptoReg for parameter 0.
1941 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1942   VMRegPair regs;
1943   BasicType sig_bt = T_OBJECT;
1944   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1945   // Return argument 0 register.  In the LP64 build pointers
1946   // take 2 registers, but the VM wants only the 'main' name.
1947   return OptoReg::as_OptoReg(regs.first());
1948 }
1949 
1950 // This function identifies sub-graphs in which a 'load' node is
1951 // input to two different nodes, and such that it can be matched
1952 // with BMI instructions like blsi, blsr, etc.
1953 // Example : for b = -a[i] & a[i] can be matched to blsi r32, m32.
1954 // The graph is (AndL (SubL Con0 LoadL*) LoadL*), where LoadL*
1955 // refers to the same node.
1956 #ifdef X86
1957 // Match the generic fused operations pattern (op1 (op2 Con{ConType} mop) mop)
1958 // This is a temporary solution until we make DAGs expressible in ADL.
1959 template<typename ConType>
1960 class FusedPatternMatcher {
1961   Node* _op1_node;
1962   Node* _mop_node;
1963   int _con_op;
1964 
1965   static int match_next(Node* n, int next_op, int next_op_idx) {
1966     if (n->in(1) == NULL || n->in(2) == NULL) {
1967       return -1;
1968     }
1969 
1970     if (next_op_idx == -1) { // n is commutative, try rotations
1971       if (n->in(1)->Opcode() == next_op) {
1972         return 1;
1973       } else if (n->in(2)->Opcode() == next_op) {
1974         return 2;
1975       }
1976     } else {
1977       assert(next_op_idx > 0 && next_op_idx <= 2, "Bad argument index");
1978       if (n->in(next_op_idx)->Opcode() == next_op) {
1979         return next_op_idx;
1980       }
1981     }
1982     return -1;
1983   }
1984 public:
1985   FusedPatternMatcher(Node* op1_node, Node *mop_node, int con_op) :
1986     _op1_node(op1_node), _mop_node(mop_node), _con_op(con_op) { }
1987 
1988   bool match(int op1, int op1_op2_idx,  // op1 and the index of the op1->op2 edge, -1 if op1 is commutative
1989              int op2, int op2_con_idx,  // op2 and the index of the op2->con edge, -1 if op2 is commutative
1990              typename ConType::NativeType con_value) {
1991     if (_op1_node->Opcode() != op1) {
1992       return false;
1993     }
1994     if (_mop_node->outcnt() > 2) {
1995       return false;
1996     }
1997     op1_op2_idx = match_next(_op1_node, op2, op1_op2_idx);
1998     if (op1_op2_idx == -1) {
1999       return false;
2000     }
2001     // Memory operation must be the other edge
2002     int op1_mop_idx = (op1_op2_idx & 1) + 1;
2003 
2004     // Check that the mop node is really what we want
2005     if (_op1_node->in(op1_mop_idx) == _mop_node) {
2006       Node *op2_node = _op1_node->in(op1_op2_idx);
2007       if (op2_node->outcnt() > 1) {
2008         return false;
2009       }
2010       assert(op2_node->Opcode() == op2, "Should be");
2011       op2_con_idx = match_next(op2_node, _con_op, op2_con_idx);
2012       if (op2_con_idx == -1) {
2013         return false;
2014       }
2015       // Memory operation must be the other edge
2016       int op2_mop_idx = (op2_con_idx & 1) + 1;
2017       // Check that the memory operation is the same node
2018       if (op2_node->in(op2_mop_idx) == _mop_node) {
2019         // Now check the constant
2020         const Type* con_type = op2_node->in(op2_con_idx)->bottom_type();
2021         if (con_type != Type::TOP && ConType::as_self(con_type)->get_con() == con_value) {
2022           return true;
2023         }
2024       }
2025     }
2026     return false;
2027   }
2028 };
2029 
2030 
2031 bool Matcher::is_bmi_pattern(Node *n, Node *m) {
2032   if (n != NULL && m != NULL) {
2033     if (m->Opcode() == Op_LoadI) {
2034       FusedPatternMatcher<TypeInt> bmii(n, m, Op_ConI);
2035       return bmii.match(Op_AndI, -1, Op_SubI,  1,  0)  ||
2036              bmii.match(Op_AndI, -1, Op_AddI, -1, -1)  ||
2037              bmii.match(Op_XorI, -1, Op_AddI, -1, -1);
2038     } else if (m->Opcode() == Op_LoadL) {
2039       FusedPatternMatcher<TypeLong> bmil(n, m, Op_ConL);
2040       return bmil.match(Op_AndL, -1, Op_SubL,  1,  0) ||
2041              bmil.match(Op_AndL, -1, Op_AddL, -1, -1) ||
2042              bmil.match(Op_XorL, -1, Op_AddL, -1, -1);
2043     }
2044   }
2045   return false;
2046 }
2047 #endif // X86
2048 
2049 // A method-klass-holder may be passed in the inline_cache_reg
2050 // and then expanded into the inline_cache_reg and a method_oop register
2051 //   defined in ad_<arch>.cpp
2052 
2053 // Check for shift by small constant as well
2054 static bool clone_shift(Node* shift, Matcher* matcher, MStack& mstack, VectorSet& address_visited) {
2055   if (shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2056       shift->in(2)->get_int() <= 3 &&
2057       // Are there other uses besides address expressions?
2058       !matcher->is_visited(shift)) {
2059     address_visited.set(shift->_idx); // Flag as address_visited
2060     mstack.push(shift->in(2), Visit);
2061     Node *conv = shift->in(1);
2062 #ifdef _LP64
2063     // Allow Matcher to match the rule which bypass
2064     // ConvI2L operation for an array index on LP64
2065     // if the index value is positive.
2066     if (conv->Opcode() == Op_ConvI2L &&
2067         conv->as_Type()->type()->is_long()->_lo >= 0 &&
2068         // Are there other uses besides address expressions?
2069         !matcher->is_visited(conv)) {
2070       address_visited.set(conv->_idx); // Flag as address_visited
2071       mstack.push(conv->in(1), Pre_Visit);
2072     } else
2073 #endif
2074       mstack.push(conv, Pre_Visit);
2075     return true;
2076   }
2077   return false;
2078 }
2079 
2080 
2081 //------------------------------find_shared------------------------------------
2082 // Set bits if Node is shared or otherwise a root
2083 void Matcher::find_shared( Node *n ) {
2084   // Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
2085   MStack mstack(C->live_nodes() * 2);
2086   // Mark nodes as address_visited if they are inputs to an address expression
2087   VectorSet address_visited(Thread::current()->resource_area());
2088   mstack.push(n, Visit);     // Don't need to pre-visit root node
2089   while (mstack.is_nonempty()) {
2090     n = mstack.node();       // Leave node on stack
2091     Node_State nstate = mstack.state();
2092     uint nop = n->Opcode();
2093     if (nstate == Pre_Visit) {
2094       if (address_visited.test(n->_idx)) { // Visited in address already?
2095         // Flag as visited and shared now.
2096         set_visited(n);
2097       }
2098       if (is_visited(n)) {   // Visited already?
2099         // Node is shared and has no reason to clone.  Flag it as shared.
2100         // This causes it to match into a register for the sharing.
2101         set_shared(n);       // Flag as shared and
2102         mstack.pop();        // remove node from stack
2103         continue;
2104       }
2105       nstate = Visit; // Not already visited; so visit now
2106     }
2107     if (nstate == Visit) {
2108       mstack.set_state(Post_Visit);
2109       set_visited(n);   // Flag as visited now
2110       bool mem_op = false;
2111 
2112       switch( nop ) {  // Handle some opcodes special
2113       case Op_Phi:             // Treat Phis as shared roots
2114       case Op_Parm:
2115       case Op_Proj:            // All handled specially during matching
2116       case Op_SafePointScalarObject:
2117         set_shared(n);
2118         set_dontcare(n);
2119         break;
2120       case Op_If:
2121       case Op_CountedLoopEnd:
2122         mstack.set_state(Alt_Post_Visit); // Alternative way
2123         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
2124         // with matching cmp/branch in 1 instruction.  The Matcher needs the
2125         // Bool and CmpX side-by-side, because it can only get at constants
2126         // that are at the leaves of Match trees, and the Bool's condition acts
2127         // as a constant here.
2128         mstack.push(n->in(1), Visit);         // Clone the Bool
2129         mstack.push(n->in(0), Pre_Visit);     // Visit control input
2130         continue; // while (mstack.is_nonempty())
2131       case Op_ConvI2D:         // These forms efficiently match with a prior
2132       case Op_ConvI2F:         //   Load but not a following Store
2133         if( n->in(1)->is_Load() &&        // Prior load
2134             n->outcnt() == 1 &&           // Not already shared
2135             n->unique_out()->is_Store() ) // Following store
2136           set_shared(n);       // Force it to be a root
2137         break;
2138       case Op_ReverseBytesI:
2139       case Op_ReverseBytesL:
2140         if( n->in(1)->is_Load() &&        // Prior load
2141             n->outcnt() == 1 )            // Not already shared
2142           set_shared(n);                  // Force it to be a root
2143         break;
2144       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
2145       case Op_IfFalse:
2146       case Op_IfTrue:
2147       case Op_MachProj:
2148       case Op_MergeMem:
2149       case Op_Catch:
2150       case Op_CatchProj:
2151       case Op_CProj:
2152       case Op_JumpProj:
2153       case Op_JProj:
2154       case Op_NeverBranch:
2155         set_dontcare(n);
2156         break;
2157       case Op_Jump:
2158         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
2159         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
2160         continue;                             // while (mstack.is_nonempty())
2161       case Op_StrComp:
2162       case Op_StrEquals:
2163       case Op_StrIndexOf:
2164       case Op_StrIndexOfChar:
2165       case Op_AryEq:
2166       case Op_HasNegatives:
2167       case Op_StrInflatedCopy:
2168       case Op_StrCompressedCopy:
2169       case Op_EncodeISOArray:
2170         set_shared(n); // Force result into register (it will be anyways)
2171         break;
2172       case Op_ConP: {  // Convert pointers above the centerline to NUL
2173         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2174         const TypePtr* tp = tn->type()->is_ptr();
2175         if (tp->_ptr == TypePtr::AnyNull) {
2176           tn->set_type(TypePtr::NULL_PTR);
2177         }
2178         break;
2179       }
2180       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
2181         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
2182         const TypePtr* tp = tn->type()->make_ptr();
2183         if (tp && tp->_ptr == TypePtr::AnyNull) {
2184           tn->set_type(TypeNarrowOop::NULL_PTR);
2185         }
2186         break;
2187       }
2188       case Op_Binary:         // These are introduced in the Post_Visit state.
2189         ShouldNotReachHere();
2190         break;
2191       case Op_ClearArray:
2192       case Op_SafePoint:
2193         mem_op = true;
2194         break;
2195       default:
2196         if( n->is_Store() ) {
2197           // Do match stores, despite no ideal reg
2198           mem_op = true;
2199           break;
2200         }
2201         if( n->is_Mem() ) { // Loads and LoadStores
2202           mem_op = true;
2203           // Loads must be root of match tree due to prior load conflict
2204           if( C->subsume_loads() == false )
2205             set_shared(n);
2206         }
2207         // Fall into default case
2208         if( !n->ideal_reg() )
2209           set_dontcare(n);  // Unmatchable Nodes
2210       } // end_switch
2211 
2212       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2213         Node *m = n->in(i); // Get ith input
2214         if (m == NULL) continue;  // Ignore NULLs
2215         uint mop = m->Opcode();
2216 
2217         // Must clone all producers of flags, or we will not match correctly.
2218         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2219         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2220         // are also there, so we may match a float-branch to int-flags and
2221         // expect the allocator to haul the flags from the int-side to the
2222         // fp-side.  No can do.
2223         if( _must_clone[mop] ) {
2224           mstack.push(m, Visit);
2225           continue; // for(int i = ...)
2226         }
2227 
2228         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2229           // Bases used in addresses must be shared but since
2230           // they are shared through a DecodeN they may appear
2231           // to have a single use so force sharing here.
2232           set_shared(m->in(AddPNode::Base)->in(1));
2233         }
2234 
2235         // if 'n' and 'm' are part of a graph for BMI instruction, clone this node.
2236 #ifdef X86
2237         if (UseBMI1Instructions && is_bmi_pattern(n, m)) {
2238           mstack.push(m, Visit);
2239           continue;
2240         }
2241 #endif
2242 
2243         // Clone addressing expressions as they are "free" in memory access instructions
2244         if (mem_op && i == MemNode::Address && mop == Op_AddP &&
2245             // When there are other uses besides address expressions
2246             // put it on stack and mark as shared.
2247             !is_visited(m)) {
2248           // Some inputs for address expression are not put on stack
2249           // to avoid marking them as shared and forcing them into register
2250           // if they are used only in address expressions.
2251           // But they should be marked as shared if there are other uses
2252           // besides address expressions.
2253 
2254           Node *off = m->in(AddPNode::Offset);
2255           if (off->is_Con()) {
2256             address_visited.test_set(m->_idx); // Flag as address_visited
2257             Node *adr = m->in(AddPNode::Address);
2258 
2259             // Intel, ARM and friends can handle 2 adds in addressing mode
2260             if( clone_shift_expressions && adr->is_AddP() &&
2261                 // AtomicAdd is not an addressing expression.
2262                 // Cheap to find it by looking for screwy base.
2263                 !adr->in(AddPNode::Base)->is_top() &&
2264                 // Are there other uses besides address expressions?
2265                 !is_visited(adr) ) {
2266               address_visited.set(adr->_idx); // Flag as address_visited
2267               Node *shift = adr->in(AddPNode::Offset);
2268               if (!clone_shift(shift, this, mstack, address_visited)) {
2269                 mstack.push(shift, Pre_Visit);
2270               }
2271               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2272               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2273             } else {  // Sparc, Alpha, PPC and friends
2274               mstack.push(adr, Pre_Visit);
2275             }
2276 
2277             // Clone X+offset as it also folds into most addressing expressions
2278             mstack.push(off, Visit);
2279             mstack.push(m->in(AddPNode::Base), Pre_Visit);
2280             continue; // for(int i = ...)
2281           } else if (clone_shift_expressions &&
2282                      clone_shift(off, this, mstack, address_visited)) {
2283               address_visited.test_set(m->_idx); // Flag as address_visited
2284               mstack.push(m->in(AddPNode::Address), Pre_Visit);
2285               mstack.push(m->in(AddPNode::Base), Pre_Visit);
2286               continue;
2287           } // if( off->is_Con() )
2288         }   // if( mem_op &&
2289         mstack.push(m, Pre_Visit);
2290       }     // for(int i = ...)
2291     }
2292     else if (nstate == Alt_Post_Visit) {
2293       mstack.pop(); // Remove node from stack
2294       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2295       // shared and all users of the Bool need to move the Cmp in parallel.
2296       // This leaves both the Bool and the If pointing at the Cmp.  To
2297       // prevent the Matcher from trying to Match the Cmp along both paths
2298       // BoolNode::match_edge always returns a zero.
2299 
2300       // We reorder the Op_If in a pre-order manner, so we can visit without
2301       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2302       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2303     }
2304     else if (nstate == Post_Visit) {
2305       mstack.pop(); // Remove node from stack
2306 
2307       // Now hack a few special opcodes
2308       switch( n->Opcode() ) {       // Handle some opcodes special
2309       case Op_StorePConditional:
2310       case Op_StoreIConditional:
2311       case Op_StoreLConditional:
2312       case Op_CompareAndExchangeI:
2313       case Op_CompareAndExchangeL:
2314       case Op_CompareAndExchangeP:
2315       case Op_CompareAndExchangeN:
2316       case Op_WeakCompareAndSwapI:
2317       case Op_WeakCompareAndSwapL:
2318       case Op_WeakCompareAndSwapP:
2319       case Op_WeakCompareAndSwapN:
2320       case Op_CompareAndSwapI:
2321       case Op_CompareAndSwapL:
2322       case Op_CompareAndSwapP:
2323       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2324         Node *newval = n->in(MemNode::ValueIn );
2325         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2326         Node *pair = new BinaryNode( oldval, newval );
2327         n->set_req(MemNode::ValueIn,pair);
2328         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2329         break;
2330       }
2331       case Op_CMoveD:              // Convert trinary to binary-tree
2332       case Op_CMoveF:
2333       case Op_CMoveI:
2334       case Op_CMoveL:
2335       case Op_CMoveN:
2336       case Op_CMoveP:
2337       case Op_CMoveVD:  {
2338         // Restructure into a binary tree for Matching.  It's possible that
2339         // we could move this code up next to the graph reshaping for IfNodes
2340         // or vice-versa, but I do not want to debug this for Ladybird.
2341         // 10/2/2000 CNC.
2342         Node *pair1 = new BinaryNode(n->in(1),n->in(1)->in(1));
2343         n->set_req(1,pair1);
2344         Node *pair2 = new BinaryNode(n->in(2),n->in(3));
2345         n->set_req(2,pair2);
2346         n->del_req(3);
2347         break;
2348       }
2349       case Op_LoopLimit: {
2350         Node *pair1 = new BinaryNode(n->in(1),n->in(2));
2351         n->set_req(1,pair1);
2352         n->set_req(2,n->in(3));
2353         n->del_req(3);
2354         break;
2355       }
2356       case Op_StrEquals:
2357       case Op_StrIndexOfChar: {
2358         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2359         n->set_req(2,pair1);
2360         n->set_req(3,n->in(4));
2361         n->del_req(4);
2362         break;
2363       }
2364       case Op_StrComp:
2365       case Op_StrIndexOf: {
2366         Node *pair1 = new BinaryNode(n->in(2),n->in(3));
2367         n->set_req(2,pair1);
2368         Node *pair2 = new BinaryNode(n->in(4),n->in(5));
2369         n->set_req(3,pair2);
2370         n->del_req(5);
2371         n->del_req(4);
2372         break;
2373       }
2374       case Op_StrCompressedCopy:
2375       case Op_StrInflatedCopy:
2376       case Op_EncodeISOArray: {
2377         // Restructure into a binary tree for Matching.
2378         Node* pair = new BinaryNode(n->in(3), n->in(4));
2379         n->set_req(3, pair);
2380         n->del_req(4);
2381         break;
2382       }
2383       default:
2384         break;
2385       }
2386     }
2387     else {
2388       ShouldNotReachHere();
2389     }
2390   } // end of while (mstack.is_nonempty())
2391 }
2392 
2393 #ifdef ASSERT
2394 // machine-independent root to machine-dependent root
2395 void Matcher::dump_old2new_map() {
2396   _old2new_map.dump();
2397 }
2398 #endif
2399 
2400 //---------------------------collect_null_checks-------------------------------
2401 // Find null checks in the ideal graph; write a machine-specific node for
2402 // it.  Used by later implicit-null-check handling.  Actually collects
2403 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2404 // value being tested.
2405 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2406   Node *iff = proj->in(0);
2407   if( iff->Opcode() == Op_If ) {
2408     // During matching If's have Bool & Cmp side-by-side
2409     BoolNode *b = iff->in(1)->as_Bool();
2410     Node *cmp = iff->in(2);
2411     int opc = cmp->Opcode();
2412     if (opc != Op_CmpP && opc != Op_CmpN) return;
2413 
2414     const Type* ct = cmp->in(2)->bottom_type();
2415     if (ct == TypePtr::NULL_PTR ||
2416         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2417 
2418       bool push_it = false;
2419       if( proj->Opcode() == Op_IfTrue ) {
2420 #ifndef PRODUCT
2421         extern int all_null_checks_found;
2422         all_null_checks_found++;
2423 #endif
2424         if( b->_test._test == BoolTest::ne ) {
2425           push_it = true;
2426         }
2427       } else {
2428         assert( proj->Opcode() == Op_IfFalse, "" );
2429         if( b->_test._test == BoolTest::eq ) {
2430           push_it = true;
2431         }
2432       }
2433       if( push_it ) {
2434         _null_check_tests.push(proj);
2435         Node* val = cmp->in(1);
2436 #ifdef _LP64
2437         if (val->bottom_type()->isa_narrowoop() &&
2438             !Matcher::narrow_oop_use_complex_address()) {
2439           //
2440           // Look for DecodeN node which should be pinned to orig_proj.
2441           // On platforms (Sparc) which can not handle 2 adds
2442           // in addressing mode we have to keep a DecodeN node and
2443           // use it to do implicit NULL check in address.
2444           //
2445           // DecodeN node was pinned to non-null path (orig_proj) during
2446           // CastPP transformation in final_graph_reshaping_impl().
2447           //
2448           uint cnt = orig_proj->outcnt();
2449           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2450             Node* d = orig_proj->raw_out(i);
2451             if (d->is_DecodeN() && d->in(1) == val) {
2452               val = d;
2453               val->set_req(0, NULL); // Unpin now.
2454               // Mark this as special case to distinguish from
2455               // a regular case: CmpP(DecodeN, NULL).
2456               val = (Node*)(((intptr_t)val) | 1);
2457               break;
2458             }
2459           }
2460         }
2461 #endif
2462         _null_check_tests.push(val);
2463       }
2464     }
2465   }
2466 }
2467 
2468 //---------------------------validate_null_checks------------------------------
2469 // Its possible that the value being NULL checked is not the root of a match
2470 // tree.  If so, I cannot use the value in an implicit null check.
2471 void Matcher::validate_null_checks( ) {
2472   uint cnt = _null_check_tests.size();
2473   for( uint i=0; i < cnt; i+=2 ) {
2474     Node *test = _null_check_tests[i];
2475     Node *val = _null_check_tests[i+1];
2476     bool is_decoden = ((intptr_t)val) & 1;
2477     val = (Node*)(((intptr_t)val) & ~1);
2478     if (has_new_node(val)) {
2479       Node* new_val = new_node(val);
2480       if (is_decoden) {
2481         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2482         // Note: new_val may have a control edge if
2483         // the original ideal node DecodeN was matched before
2484         // it was unpinned in Matcher::collect_null_checks().
2485         // Unpin the mach node and mark it.
2486         new_val->set_req(0, NULL);
2487         new_val = (Node*)(((intptr_t)new_val) | 1);
2488       }
2489       // Is a match-tree root, so replace with the matched value
2490       _null_check_tests.map(i+1, new_val);
2491     } else {
2492       // Yank from candidate list
2493       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2494       _null_check_tests.map(i,_null_check_tests[--cnt]);
2495       _null_check_tests.pop();
2496       _null_check_tests.pop();
2497       i-=2;
2498     }
2499   }
2500 }
2501 
2502 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2503 // atomic instruction acting as a store_load barrier without any
2504 // intervening volatile load, and thus we don't need a barrier here.
2505 // We retain the Node to act as a compiler ordering barrier.
2506 bool Matcher::post_store_load_barrier(const Node* vmb) {
2507   Compile* C = Compile::current();
2508   assert(vmb->is_MemBar(), "");
2509   assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
2510   const MemBarNode* membar = vmb->as_MemBar();
2511 
2512   // Get the Ideal Proj node, ctrl, that can be used to iterate forward
2513   Node* ctrl = NULL;
2514   for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
2515     Node* p = membar->fast_out(i);
2516     assert(p->is_Proj(), "only projections here");
2517     if ((p->as_Proj()->_con == TypeFunc::Control) &&
2518         !C->node_arena()->contains(p)) { // Unmatched old-space only
2519       ctrl = p;
2520       break;
2521     }
2522   }
2523   assert((ctrl != NULL), "missing control projection");
2524 
2525   for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
2526     Node *x = ctrl->fast_out(j);
2527     int xop = x->Opcode();
2528 
2529     // We don't need current barrier if we see another or a lock
2530     // before seeing volatile load.
2531     //
2532     // Op_Fastunlock previously appeared in the Op_* list below.
2533     // With the advent of 1-0 lock operations we're no longer guaranteed
2534     // that a monitor exit operation contains a serializing instruction.
2535 
2536     if (xop == Op_MemBarVolatile ||
2537         xop == Op_CompareAndExchangeI ||
2538         xop == Op_CompareAndExchangeL ||
2539         xop == Op_CompareAndExchangeP ||
2540         xop == Op_CompareAndExchangeN ||
2541         xop == Op_WeakCompareAndSwapL ||
2542         xop == Op_WeakCompareAndSwapP ||
2543         xop == Op_WeakCompareAndSwapN ||
2544         xop == Op_WeakCompareAndSwapI ||
2545         xop == Op_CompareAndSwapL ||
2546         xop == Op_CompareAndSwapP ||
2547         xop == Op_CompareAndSwapN ||
2548         xop == Op_CompareAndSwapI) {
2549       return true;
2550     }
2551 
2552     // Op_FastLock previously appeared in the Op_* list above.
2553     // With biased locking we're no longer guaranteed that a monitor
2554     // enter operation contains a serializing instruction.
2555     if ((xop == Op_FastLock) && !UseBiasedLocking) {
2556       return true;
2557     }
2558 
2559     if (x->is_MemBar()) {
2560       // We must retain this membar if there is an upcoming volatile
2561       // load, which will be followed by acquire membar.
2562       if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
2563         return false;
2564       } else {
2565         // For other kinds of barriers, check by pretending we
2566         // are them, and seeing if we can be removed.
2567         return post_store_load_barrier(x->as_MemBar());
2568       }
2569     }
2570 
2571     // probably not necessary to check for these
2572     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
2573       return false;
2574     }
2575   }
2576   return false;
2577 }
2578 
2579 // Check whether node n is a branch to an uncommon trap that we could
2580 // optimize as test with very high branch costs in case of going to
2581 // the uncommon trap. The code must be able to be recompiled to use
2582 // a cheaper test.
2583 bool Matcher::branches_to_uncommon_trap(const Node *n) {
2584   // Don't do it for natives, adapters, or runtime stubs
2585   Compile *C = Compile::current();
2586   if (!C->is_method_compilation()) return false;
2587 
2588   assert(n->is_If(), "You should only call this on if nodes.");
2589   IfNode *ifn = n->as_If();
2590 
2591   Node *ifFalse = NULL;
2592   for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
2593     if (ifn->fast_out(i)->is_IfFalse()) {
2594       ifFalse = ifn->fast_out(i);
2595       break;
2596     }
2597   }
2598   assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
2599 
2600   Node *reg = ifFalse;
2601   int cnt = 4; // We must protect against cycles.  Limit to 4 iterations.
2602                // Alternatively use visited set?  Seems too expensive.
2603   while (reg != NULL && cnt > 0) {
2604     CallNode *call = NULL;
2605     RegionNode *nxt_reg = NULL;
2606     for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
2607       Node *o = reg->fast_out(i);
2608       if (o->is_Call()) {
2609         call = o->as_Call();
2610       }
2611       if (o->is_Region()) {
2612         nxt_reg = o->as_Region();
2613       }
2614     }
2615 
2616     if (call &&
2617         call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
2618       const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
2619       if (trtype->isa_int() && trtype->is_int()->is_con()) {
2620         jint tr_con = trtype->is_int()->get_con();
2621         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
2622         Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
2623         assert((int)reason < (int)BitsPerInt, "recode bit map");
2624 
2625         if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
2626             && action != Deoptimization::Action_none) {
2627           // This uncommon trap is sure to recompile, eventually.
2628           // When that happens, C->too_many_traps will prevent
2629           // this transformation from happening again.
2630           return true;
2631         }
2632       }
2633     }
2634 
2635     reg = nxt_reg;
2636     cnt--;
2637   }
2638 
2639   return false;
2640 }
2641 
2642 //=============================================================================
2643 //---------------------------State---------------------------------------------
2644 State::State(void) {
2645 #ifdef ASSERT
2646   _id = 0;
2647   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2648   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2649   //memset(_cost, -1, sizeof(_cost));
2650   //memset(_rule, -1, sizeof(_rule));
2651 #endif
2652   memset(_valid, 0, sizeof(_valid));
2653 }
2654 
2655 #ifdef ASSERT
2656 State::~State() {
2657   _id = 99;
2658   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2659   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2660   memset(_cost, -3, sizeof(_cost));
2661   memset(_rule, -3, sizeof(_rule));
2662 }
2663 #endif
2664 
2665 #ifndef PRODUCT
2666 //---------------------------dump----------------------------------------------
2667 void State::dump() {
2668   tty->print("\n");
2669   dump(0);
2670 }
2671 
2672 void State::dump(int depth) {
2673   for( int j = 0; j < depth; j++ )
2674     tty->print("   ");
2675   tty->print("--N: ");
2676   _leaf->dump();
2677   uint i;
2678   for( i = 0; i < _LAST_MACH_OPER; i++ )
2679     // Check for valid entry
2680     if( valid(i) ) {
2681       for( int j = 0; j < depth; j++ )
2682         tty->print("   ");
2683         assert(_cost[i] != max_juint, "cost must be a valid value");
2684         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2685         tty->print_cr("%s  %d  %s",
2686                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2687       }
2688   tty->cr();
2689 
2690   for( i=0; i<2; i++ )
2691     if( _kids[i] )
2692       _kids[i]->dump(depth+1);
2693 }
2694 #endif