1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "mutex_linux.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_share_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm.h"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.inline.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/init.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/objectMonitor.hpp"
  55 #include "runtime/orderAccess.inline.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/decoder.hpp"
  69 #include "utilities/defaultStream.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/elfFile.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 // put OS-includes here
  77 # include <sys/types.h>
  78 # include <sys/mman.h>
  79 # include <sys/stat.h>
  80 # include <sys/select.h>
  81 # include <pthread.h>
  82 # include <signal.h>
  83 # include <errno.h>
  84 # include <dlfcn.h>
  85 # include <stdio.h>
  86 # include <unistd.h>
  87 # include <sys/resource.h>
  88 # include <pthread.h>
  89 # include <sys/stat.h>
  90 # include <sys/time.h>
  91 # include <sys/times.h>
  92 # include <sys/utsname.h>
  93 # include <sys/socket.h>
  94 # include <sys/wait.h>
  95 # include <pwd.h>
  96 # include <poll.h>
  97 # include <semaphore.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 ////////////////////////////////////////////////////////////////////////////////
 133 // global variables
 134 julong os::Linux::_physical_memory = 0;
 135 
 136 address   os::Linux::_initial_thread_stack_bottom = NULL;
 137 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 138 
 139 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 140 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 141 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 142 Mutex* os::Linux::_createThread_lock = NULL;
 143 pthread_t os::Linux::_main_thread;
 144 int os::Linux::_page_size = -1;
 145 const int os::Linux::_vm_default_page_size = (8 * K);
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 uint32_t os::Linux::_os_version = 0;
 148 const char * os::Linux::_glibc_version = NULL;
 149 const char * os::Linux::_libpthread_version = NULL;
 150 pthread_condattr_t os::Linux::_condattr[1];
 151 
 152 static jlong initial_time_count=0;
 153 
 154 static int clock_tics_per_sec = 100;
 155 
 156 // For diagnostics to print a message once. see run_periodic_checks
 157 static sigset_t check_signal_done;
 158 static bool check_signals = true;
 159 
 160 // Signal number used to suspend/resume a thread
 161 
 162 // do not use any signal number less than SIGSEGV, see 4355769
 163 static int SR_signum = SIGUSR2;
 164 sigset_t SR_sigset;
 165 
 166 // Declarations
 167 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 168 
 169 // utility functions
 170 
 171 static int SR_initialize();
 172 
 173 julong os::available_memory() {
 174   return Linux::available_memory();
 175 }
 176 
 177 julong os::Linux::available_memory() {
 178   // values in struct sysinfo are "unsigned long"
 179   struct sysinfo si;
 180   sysinfo(&si);
 181 
 182   return (julong)si.freeram * si.mem_unit;
 183 }
 184 
 185 julong os::physical_memory() {
 186   return Linux::physical_memory();
 187 }
 188 
 189 // Return true if user is running as root.
 190 
 191 bool os::have_special_privileges() {
 192   static bool init = false;
 193   static bool privileges = false;
 194   if (!init) {
 195     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 196     init = true;
 197   }
 198   return privileges;
 199 }
 200 
 201 
 202 #ifndef SYS_gettid
 203 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 204   #ifdef __ia64__
 205     #define SYS_gettid 1105
 206   #else
 207     #ifdef __i386__
 208       #define SYS_gettid 224
 209     #else
 210       #ifdef __amd64__
 211         #define SYS_gettid 186
 212       #else
 213         #ifdef __sparc__
 214           #define SYS_gettid 143
 215         #else
 216           #error define gettid for the arch
 217         #endif
 218       #endif
 219     #endif
 220   #endif
 221 #endif
 222 
 223 // Cpu architecture string
 224 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 225 
 226 
 227 // pid_t gettid()
 228 //
 229 // Returns the kernel thread id of the currently running thread. Kernel
 230 // thread id is used to access /proc.
 231 pid_t os::Linux::gettid() {
 232   int rslt = syscall(SYS_gettid);
 233   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 234   return (pid_t)rslt;
 235 }
 236 
 237 // Most versions of linux have a bug where the number of processors are
 238 // determined by looking at the /proc file system.  In a chroot environment,
 239 // the system call returns 1.  This causes the VM to act as if it is
 240 // a single processor and elide locking (see is_MP() call).
 241 static bool unsafe_chroot_detected = false;
 242 static const char *unstable_chroot_error = "/proc file system not found.\n"
 243                      "Java may be unstable running multithreaded in a chroot "
 244                      "environment on Linux when /proc filesystem is not mounted.";
 245 
 246 void os::Linux::initialize_system_info() {
 247   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 248   if (processor_count() == 1) {
 249     pid_t pid = os::Linux::gettid();
 250     char fname[32];
 251     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 252     FILE *fp = fopen(fname, "r");
 253     if (fp == NULL) {
 254       unsafe_chroot_detected = true;
 255     } else {
 256       fclose(fp);
 257     }
 258   }
 259   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 260   assert(processor_count() > 0, "linux error");
 261 }
 262 
 263 void os::init_system_properties_values() {
 264   // The next steps are taken in the product version:
 265   //
 266   // Obtain the JAVA_HOME value from the location of libjvm.so.
 267   // This library should be located at:
 268   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 269   //
 270   // If "/jre/lib/" appears at the right place in the path, then we
 271   // assume libjvm.so is installed in a JDK and we use this path.
 272   //
 273   // Otherwise exit with message: "Could not create the Java virtual machine."
 274   //
 275   // The following extra steps are taken in the debugging version:
 276   //
 277   // If "/jre/lib/" does NOT appear at the right place in the path
 278   // instead of exit check for $JAVA_HOME environment variable.
 279   //
 280   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 281   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 282   // it looks like libjvm.so is installed there
 283   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 284   //
 285   // Otherwise exit.
 286   //
 287   // Important note: if the location of libjvm.so changes this
 288   // code needs to be changed accordingly.
 289 
 290   // See ld(1):
 291   //      The linker uses the following search paths to locate required
 292   //      shared libraries:
 293   //        1: ...
 294   //        ...
 295   //        7: The default directories, normally /lib and /usr/lib.
 296 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 297   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 298 #else
 299   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 300 #endif
 301 
 302 // Base path of extensions installed on the system.
 303 #define SYS_EXT_DIR     "/usr/java/packages"
 304 #define EXTENSIONS_DIR  "/lib/ext"
 305 
 306   // Buffer that fits several sprintfs.
 307   // Note that the space for the colon and the trailing null are provided
 308   // by the nulls included by the sizeof operator.
 309   const size_t bufsize =
 310     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 311          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 312   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 313 
 314   // sysclasspath, java_home, dll_dir
 315   {
 316     char *pslash;
 317     os::jvm_path(buf, bufsize);
 318 
 319     // Found the full path to libjvm.so.
 320     // Now cut the path to <java_home>/jre if we can.
 321     pslash = strrchr(buf, '/');
 322     if (pslash != NULL) {
 323       *pslash = '\0';            // Get rid of /libjvm.so.
 324     }
 325     pslash = strrchr(buf, '/');
 326     if (pslash != NULL) {
 327       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 328     }
 329     Arguments::set_dll_dir(buf);
 330 
 331     if (pslash != NULL) {
 332       pslash = strrchr(buf, '/');
 333       if (pslash != NULL) {
 334         *pslash = '\0';          // Get rid of /<arch>.
 335         pslash = strrchr(buf, '/');
 336         if (pslash != NULL) {
 337           *pslash = '\0';        // Get rid of /lib.
 338         }
 339       }
 340     }
 341     Arguments::set_java_home(buf);
 342     set_boot_path('/', ':');
 343   }
 344 
 345   // Where to look for native libraries.
 346   //
 347   // Note: Due to a legacy implementation, most of the library path
 348   // is set in the launcher. This was to accomodate linking restrictions
 349   // on legacy Linux implementations (which are no longer supported).
 350   // Eventually, all the library path setting will be done here.
 351   //
 352   // However, to prevent the proliferation of improperly built native
 353   // libraries, the new path component /usr/java/packages is added here.
 354   // Eventually, all the library path setting will be done here.
 355   {
 356     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 357     // should always exist (until the legacy problem cited above is
 358     // addressed).
 359     const char *v = ::getenv("LD_LIBRARY_PATH");
 360     const char *v_colon = ":";
 361     if (v == NULL) { v = ""; v_colon = ""; }
 362     // That's +1 for the colon and +1 for the trailing '\0'.
 363     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 364                                                      strlen(v) + 1 +
 365                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 366                                                      mtInternal);
 367     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 368     Arguments::set_library_path(ld_library_path);
 369     FREE_C_HEAP_ARRAY(char, ld_library_path);
 370   }
 371 
 372   // Extensions directories.
 373   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 374   Arguments::set_ext_dirs(buf);
 375 
 376   FREE_C_HEAP_ARRAY(char, buf);
 377 
 378 #undef DEFAULT_LIBPATH
 379 #undef SYS_EXT_DIR
 380 #undef EXTENSIONS_DIR
 381 }
 382 
 383 ////////////////////////////////////////////////////////////////////////////////
 384 // breakpoint support
 385 
 386 void os::breakpoint() {
 387   BREAKPOINT;
 388 }
 389 
 390 extern "C" void breakpoint() {
 391   // use debugger to set breakpoint here
 392 }
 393 
 394 ////////////////////////////////////////////////////////////////////////////////
 395 // signal support
 396 
 397 debug_only(static bool signal_sets_initialized = false);
 398 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 399 
 400 bool os::Linux::is_sig_ignored(int sig) {
 401   struct sigaction oact;
 402   sigaction(sig, (struct sigaction*)NULL, &oact);
 403   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 404                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 405   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 406     return true;
 407   } else {
 408     return false;
 409   }
 410 }
 411 
 412 void os::Linux::signal_sets_init() {
 413   // Should also have an assertion stating we are still single-threaded.
 414   assert(!signal_sets_initialized, "Already initialized");
 415   // Fill in signals that are necessarily unblocked for all threads in
 416   // the VM. Currently, we unblock the following signals:
 417   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 418   //                         by -Xrs (=ReduceSignalUsage));
 419   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 420   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 421   // the dispositions or masks wrt these signals.
 422   // Programs embedding the VM that want to use the above signals for their
 423   // own purposes must, at this time, use the "-Xrs" option to prevent
 424   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 425   // (See bug 4345157, and other related bugs).
 426   // In reality, though, unblocking these signals is really a nop, since
 427   // these signals are not blocked by default.
 428   sigemptyset(&unblocked_sigs);
 429   sigemptyset(&allowdebug_blocked_sigs);
 430   sigaddset(&unblocked_sigs, SIGILL);
 431   sigaddset(&unblocked_sigs, SIGSEGV);
 432   sigaddset(&unblocked_sigs, SIGBUS);
 433   sigaddset(&unblocked_sigs, SIGFPE);
 434 #if defined(PPC64)
 435   sigaddset(&unblocked_sigs, SIGTRAP);
 436 #endif
 437   sigaddset(&unblocked_sigs, SR_signum);
 438 
 439   if (!ReduceSignalUsage) {
 440     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 441       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 442       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 443     }
 444     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 445       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 446       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 447     }
 448     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 449       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 450       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 451     }
 452   }
 453   // Fill in signals that are blocked by all but the VM thread.
 454   sigemptyset(&vm_sigs);
 455   if (!ReduceSignalUsage) {
 456     sigaddset(&vm_sigs, BREAK_SIGNAL);
 457   }
 458   debug_only(signal_sets_initialized = true);
 459 
 460 }
 461 
 462 // These are signals that are unblocked while a thread is running Java.
 463 // (For some reason, they get blocked by default.)
 464 sigset_t* os::Linux::unblocked_signals() {
 465   assert(signal_sets_initialized, "Not initialized");
 466   return &unblocked_sigs;
 467 }
 468 
 469 // These are the signals that are blocked while a (non-VM) thread is
 470 // running Java. Only the VM thread handles these signals.
 471 sigset_t* os::Linux::vm_signals() {
 472   assert(signal_sets_initialized, "Not initialized");
 473   return &vm_sigs;
 474 }
 475 
 476 // These are signals that are blocked during cond_wait to allow debugger in
 477 sigset_t* os::Linux::allowdebug_blocked_signals() {
 478   assert(signal_sets_initialized, "Not initialized");
 479   return &allowdebug_blocked_sigs;
 480 }
 481 
 482 void os::Linux::hotspot_sigmask(Thread* thread) {
 483 
 484   //Save caller's signal mask before setting VM signal mask
 485   sigset_t caller_sigmask;
 486   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 487 
 488   OSThread* osthread = thread->osthread();
 489   osthread->set_caller_sigmask(caller_sigmask);
 490 
 491   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 492 
 493   if (!ReduceSignalUsage) {
 494     if (thread->is_VM_thread()) {
 495       // Only the VM thread handles BREAK_SIGNAL ...
 496       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 497     } else {
 498       // ... all other threads block BREAK_SIGNAL
 499       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 500     }
 501   }
 502 }
 503 
 504 //////////////////////////////////////////////////////////////////////////////
 505 // detecting pthread library
 506 
 507 void os::Linux::libpthread_init() {
 508   // Save glibc and pthread version strings.
 509 #if !defined(_CS_GNU_LIBC_VERSION) || \
 510     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 511   #error "glibc too old (< 2.3.2)"
 512 #endif
 513 
 514   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 515   assert(n > 0, "cannot retrieve glibc version");
 516   char *str = (char *)malloc(n, mtInternal);
 517   confstr(_CS_GNU_LIBC_VERSION, str, n);
 518   os::Linux::set_glibc_version(str);
 519 
 520   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 521   assert(n > 0, "cannot retrieve pthread version");
 522   str = (char *)malloc(n, mtInternal);
 523   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 524   os::Linux::set_libpthread_version(str);
 525 }
 526 
 527 /////////////////////////////////////////////////////////////////////////////
 528 // thread stack expansion
 529 
 530 // os::Linux::manually_expand_stack() takes care of expanding the thread
 531 // stack. Note that this is normally not needed: pthread stacks allocate
 532 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 533 // committed. Therefore it is not necessary to expand the stack manually.
 534 //
 535 // Manually expanding the stack was historically needed on LinuxThreads
 536 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 537 // it is kept to deal with very rare corner cases:
 538 //
 539 // For one, user may run the VM on an own implementation of threads
 540 // whose stacks are - like the old LinuxThreads - implemented using
 541 // mmap(MAP_GROWSDOWN).
 542 //
 543 // Also, this coding may be needed if the VM is running on the primordial
 544 // thread. Normally we avoid running on the primordial thread; however,
 545 // user may still invoke the VM on the primordial thread.
 546 //
 547 // The following historical comment describes the details about running
 548 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 549 
 550 
 551 // Force Linux kernel to expand current thread stack. If "bottom" is close
 552 // to the stack guard, caller should block all signals.
 553 //
 554 // MAP_GROWSDOWN:
 555 //   A special mmap() flag that is used to implement thread stacks. It tells
 556 //   kernel that the memory region should extend downwards when needed. This
 557 //   allows early versions of LinuxThreads to only mmap the first few pages
 558 //   when creating a new thread. Linux kernel will automatically expand thread
 559 //   stack as needed (on page faults).
 560 //
 561 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 562 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 563 //   region, it's hard to tell if the fault is due to a legitimate stack
 564 //   access or because of reading/writing non-exist memory (e.g. buffer
 565 //   overrun). As a rule, if the fault happens below current stack pointer,
 566 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 567 //   application (see Linux kernel fault.c).
 568 //
 569 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 570 //   stack overflow detection.
 571 //
 572 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 573 //   not use MAP_GROWSDOWN.
 574 //
 575 // To get around the problem and allow stack banging on Linux, we need to
 576 // manually expand thread stack after receiving the SIGSEGV.
 577 //
 578 // There are two ways to expand thread stack to address "bottom", we used
 579 // both of them in JVM before 1.5:
 580 //   1. adjust stack pointer first so that it is below "bottom", and then
 581 //      touch "bottom"
 582 //   2. mmap() the page in question
 583 //
 584 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 585 // if current sp is already near the lower end of page 101, and we need to
 586 // call mmap() to map page 100, it is possible that part of the mmap() frame
 587 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 588 // That will destroy the mmap() frame and cause VM to crash.
 589 //
 590 // The following code works by adjusting sp first, then accessing the "bottom"
 591 // page to force a page fault. Linux kernel will then automatically expand the
 592 // stack mapping.
 593 //
 594 // _expand_stack_to() assumes its frame size is less than page size, which
 595 // should always be true if the function is not inlined.
 596 
 597 static void NOINLINE _expand_stack_to(address bottom) {
 598   address sp;
 599   size_t size;
 600   volatile char *p;
 601 
 602   // Adjust bottom to point to the largest address within the same page, it
 603   // gives us a one-page buffer if alloca() allocates slightly more memory.
 604   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 605   bottom += os::Linux::page_size() - 1;
 606 
 607   // sp might be slightly above current stack pointer; if that's the case, we
 608   // will alloca() a little more space than necessary, which is OK. Don't use
 609   // os::current_stack_pointer(), as its result can be slightly below current
 610   // stack pointer, causing us to not alloca enough to reach "bottom".
 611   sp = (address)&sp;
 612 
 613   if (sp > bottom) {
 614     size = sp - bottom;
 615     p = (volatile char *)alloca(size);
 616     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 617     p[0] = '\0';
 618   }
 619 }
 620 
 621 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 622   assert(t!=NULL, "just checking");
 623   assert(t->osthread()->expanding_stack(), "expand should be set");
 624   assert(t->stack_base() != NULL, "stack_base was not initialized");
 625 
 626   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 627     sigset_t mask_all, old_sigset;
 628     sigfillset(&mask_all);
 629     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 630     _expand_stack_to(addr);
 631     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 632     return true;
 633   }
 634   return false;
 635 }
 636 
 637 //////////////////////////////////////////////////////////////////////////////
 638 // create new thread
 639 
 640 // Thread start routine for all newly created threads
 641 static void *java_start(Thread *thread) {
 642   // Try to randomize the cache line index of hot stack frames.
 643   // This helps when threads of the same stack traces evict each other's
 644   // cache lines. The threads can be either from the same JVM instance, or
 645   // from different JVM instances. The benefit is especially true for
 646   // processors with hyperthreading technology.
 647   static int counter = 0;
 648   int pid = os::current_process_id();
 649   alloca(((pid ^ counter++) & 7) * 128);
 650 
 651   thread->initialize_thread_current();
 652 
 653   OSThread* osthread = thread->osthread();
 654   Monitor* sync = osthread->startThread_lock();
 655 
 656   osthread->set_thread_id(os::current_thread_id());
 657 
 658   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 659     os::current_thread_id(), (uintx) pthread_self());
 660 
 661   if (UseNUMA) {
 662     int lgrp_id = os::numa_get_group_id();
 663     if (lgrp_id != -1) {
 664       thread->set_lgrp_id(lgrp_id);
 665     }
 666   }
 667   // initialize signal mask for this thread
 668   os::Linux::hotspot_sigmask(thread);
 669 
 670   // initialize floating point control register
 671   os::Linux::init_thread_fpu_state();
 672 
 673   // handshaking with parent thread
 674   {
 675     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 676 
 677     // notify parent thread
 678     osthread->set_state(INITIALIZED);
 679     sync->notify_all();
 680 
 681     // wait until os::start_thread()
 682     while (osthread->get_state() == INITIALIZED) {
 683       sync->wait(Mutex::_no_safepoint_check_flag);
 684     }
 685   }
 686 
 687   // call one more level start routine
 688   thread->run();
 689 
 690   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 691     os::current_thread_id(), (uintx) pthread_self());
 692 
 693   return 0;
 694 }
 695 
 696 bool os::create_thread(Thread* thread, ThreadType thr_type,
 697                        size_t stack_size) {
 698   assert(thread->osthread() == NULL, "caller responsible");
 699 
 700   // Allocate the OSThread object
 701   OSThread* osthread = new OSThread(NULL, NULL);
 702   if (osthread == NULL) {
 703     return false;
 704   }
 705 
 706   // set the correct thread state
 707   osthread->set_thread_type(thr_type);
 708 
 709   // Initial state is ALLOCATED but not INITIALIZED
 710   osthread->set_state(ALLOCATED);
 711 
 712   thread->set_osthread(osthread);
 713 
 714   // init thread attributes
 715   pthread_attr_t attr;
 716   pthread_attr_init(&attr);
 717   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 718 
 719   // stack size
 720   // calculate stack size if it's not specified by caller
 721   if (stack_size == 0) {
 722     stack_size = os::Linux::default_stack_size(thr_type);
 723 
 724     switch (thr_type) {
 725     case os::java_thread:
 726       // Java threads use ThreadStackSize which default value can be
 727       // changed with the flag -Xss
 728       assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 729       stack_size = JavaThread::stack_size_at_create();
 730       break;
 731     case os::compiler_thread:
 732       if (CompilerThreadStackSize > 0) {
 733         stack_size = (size_t)(CompilerThreadStackSize * K);
 734         break;
 735       } // else fall through:
 736         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 737     case os::vm_thread:
 738     case os::pgc_thread:
 739     case os::cgc_thread:
 740     case os::watcher_thread:
 741       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 742       break;
 743     }
 744   }
 745 
 746   stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 747   pthread_attr_setstacksize(&attr, stack_size);
 748 
 749   // glibc guard page
 750   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 751 
 752   ThreadState state;
 753 
 754   {
 755     pthread_t tid;
 756     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 757 
 758     char buf[64];
 759     if (ret == 0) {
 760       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 761         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 762     } else {
 763       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 764         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 765     }
 766 
 767     pthread_attr_destroy(&attr);
 768 
 769     if (ret != 0) {
 770       // Need to clean up stuff we've allocated so far
 771       thread->set_osthread(NULL);
 772       delete osthread;
 773       return false;
 774     }
 775 
 776     // Store pthread info into the OSThread
 777     osthread->set_pthread_id(tid);
 778 
 779     // Wait until child thread is either initialized or aborted
 780     {
 781       Monitor* sync_with_child = osthread->startThread_lock();
 782       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 783       while ((state = osthread->get_state()) == ALLOCATED) {
 784         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 785       }
 786     }
 787   }
 788 
 789   // Aborted due to thread limit being reached
 790   if (state == ZOMBIE) {
 791     thread->set_osthread(NULL);
 792     delete osthread;
 793     return false;
 794   }
 795 
 796   // The thread is returned suspended (in state INITIALIZED),
 797   // and is started higher up in the call chain
 798   assert(state == INITIALIZED, "race condition");
 799   return true;
 800 }
 801 
 802 /////////////////////////////////////////////////////////////////////////////
 803 // attach existing thread
 804 
 805 // bootstrap the main thread
 806 bool os::create_main_thread(JavaThread* thread) {
 807   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 808   return create_attached_thread(thread);
 809 }
 810 
 811 bool os::create_attached_thread(JavaThread* thread) {
 812 #ifdef ASSERT
 813   thread->verify_not_published();
 814 #endif
 815 
 816   // Allocate the OSThread object
 817   OSThread* osthread = new OSThread(NULL, NULL);
 818 
 819   if (osthread == NULL) {
 820     return false;
 821   }
 822 
 823   // Store pthread info into the OSThread
 824   osthread->set_thread_id(os::Linux::gettid());
 825   osthread->set_pthread_id(::pthread_self());
 826 
 827   // initialize floating point control register
 828   os::Linux::init_thread_fpu_state();
 829 
 830   // Initial thread state is RUNNABLE
 831   osthread->set_state(RUNNABLE);
 832 
 833   thread->set_osthread(osthread);
 834 
 835   if (UseNUMA) {
 836     int lgrp_id = os::numa_get_group_id();
 837     if (lgrp_id != -1) {
 838       thread->set_lgrp_id(lgrp_id);
 839     }
 840   }
 841 
 842   if (os::Linux::is_initial_thread()) {
 843     // If current thread is initial thread, its stack is mapped on demand,
 844     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 845     // the entire stack region to avoid SEGV in stack banging.
 846     // It is also useful to get around the heap-stack-gap problem on SuSE
 847     // kernel (see 4821821 for details). We first expand stack to the top
 848     // of yellow zone, then enable stack yellow zone (order is significant,
 849     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 850     // is no gap between the last two virtual memory regions.
 851 
 852     JavaThread *jt = (JavaThread *)thread;
 853     address addr = jt->stack_reserved_zone_base();
 854     assert(addr != NULL, "initialization problem?");
 855     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 856 
 857     osthread->set_expanding_stack();
 858     os::Linux::manually_expand_stack(jt, addr);
 859     osthread->clear_expanding_stack();
 860   }
 861 
 862   // initialize signal mask for this thread
 863   // and save the caller's signal mask
 864   os::Linux::hotspot_sigmask(thread);
 865 
 866   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 867     os::current_thread_id(), (uintx) pthread_self());
 868 
 869   return true;
 870 }
 871 
 872 void os::pd_start_thread(Thread* thread) {
 873   OSThread * osthread = thread->osthread();
 874   assert(osthread->get_state() != INITIALIZED, "just checking");
 875   Monitor* sync_with_child = osthread->startThread_lock();
 876   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 877   sync_with_child->notify();
 878 }
 879 
 880 // Free Linux resources related to the OSThread
 881 void os::free_thread(OSThread* osthread) {
 882   assert(osthread != NULL, "osthread not set");
 883 
 884   if (Thread::current()->osthread() == osthread) {
 885 #ifdef ASSERT
 886     sigset_t current;
 887     sigemptyset(&current);
 888     pthread_sigmask(SIG_SETMASK, NULL, &current);
 889     assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 890 #endif
 891 
 892     // Restore caller's signal mask
 893     sigset_t sigmask = osthread->caller_sigmask();
 894     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 895   }
 896 
 897   delete osthread;
 898 }
 899 
 900 //////////////////////////////////////////////////////////////////////////////
 901 // initial thread
 902 
 903 // Check if current thread is the initial thread, similar to Solaris thr_main.
 904 bool os::Linux::is_initial_thread(void) {
 905   char dummy;
 906   // If called before init complete, thread stack bottom will be null.
 907   // Can be called if fatal error occurs before initialization.
 908   if (initial_thread_stack_bottom() == NULL) return false;
 909   assert(initial_thread_stack_bottom() != NULL &&
 910          initial_thread_stack_size()   != 0,
 911          "os::init did not locate initial thread's stack region");
 912   if ((address)&dummy >= initial_thread_stack_bottom() &&
 913       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 914     return true;
 915   } else {
 916     return false;
 917   }
 918 }
 919 
 920 // Find the virtual memory area that contains addr
 921 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 922   FILE *fp = fopen("/proc/self/maps", "r");
 923   if (fp) {
 924     address low, high;
 925     while (!feof(fp)) {
 926       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 927         if (low <= addr && addr < high) {
 928           if (vma_low)  *vma_low  = low;
 929           if (vma_high) *vma_high = high;
 930           fclose(fp);
 931           return true;
 932         }
 933       }
 934       for (;;) {
 935         int ch = fgetc(fp);
 936         if (ch == EOF || ch == (int)'\n') break;
 937       }
 938     }
 939     fclose(fp);
 940   }
 941   return false;
 942 }
 943 
 944 // Locate initial thread stack. This special handling of initial thread stack
 945 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 946 // bogus value for initial thread.
 947 void os::Linux::capture_initial_stack(size_t max_size) {
 948   // stack size is the easy part, get it from RLIMIT_STACK
 949   size_t stack_size;
 950   struct rlimit rlim;
 951   getrlimit(RLIMIT_STACK, &rlim);
 952   stack_size = rlim.rlim_cur;
 953 
 954   // 6308388: a bug in ld.so will relocate its own .data section to the
 955   //   lower end of primordial stack; reduce ulimit -s value a little bit
 956   //   so we won't install guard page on ld.so's data section.
 957   stack_size -= 2 * page_size();
 958 
 959   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
 960   //   7.1, in both cases we will get 2G in return value.
 961   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
 962   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
 963   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
 964   //   in case other parts in glibc still assumes 2M max stack size.
 965   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
 966   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
 967   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
 968     stack_size = 2 * K * K IA64_ONLY(*2);
 969   }
 970   // Try to figure out where the stack base (top) is. This is harder.
 971   //
 972   // When an application is started, glibc saves the initial stack pointer in
 973   // a global variable "__libc_stack_end", which is then used by system
 974   // libraries. __libc_stack_end should be pretty close to stack top. The
 975   // variable is available since the very early days. However, because it is
 976   // a private interface, it could disappear in the future.
 977   //
 978   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 979   // to __libc_stack_end, it is very close to stack top, but isn't the real
 980   // stack top. Note that /proc may not exist if VM is running as a chroot
 981   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 982   // /proc/<pid>/stat could change in the future (though unlikely).
 983   //
 984   // We try __libc_stack_end first. If that doesn't work, look for
 985   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 986   // as a hint, which should work well in most cases.
 987 
 988   uintptr_t stack_start;
 989 
 990   // try __libc_stack_end first
 991   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 992   if (p && *p) {
 993     stack_start = *p;
 994   } else {
 995     // see if we can get the start_stack field from /proc/self/stat
 996     FILE *fp;
 997     int pid;
 998     char state;
 999     int ppid;
1000     int pgrp;
1001     int session;
1002     int nr;
1003     int tpgrp;
1004     unsigned long flags;
1005     unsigned long minflt;
1006     unsigned long cminflt;
1007     unsigned long majflt;
1008     unsigned long cmajflt;
1009     unsigned long utime;
1010     unsigned long stime;
1011     long cutime;
1012     long cstime;
1013     long prio;
1014     long nice;
1015     long junk;
1016     long it_real;
1017     uintptr_t start;
1018     uintptr_t vsize;
1019     intptr_t rss;
1020     uintptr_t rsslim;
1021     uintptr_t scodes;
1022     uintptr_t ecode;
1023     int i;
1024 
1025     // Figure what the primordial thread stack base is. Code is inspired
1026     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1027     // followed by command name surrounded by parentheses, state, etc.
1028     char stat[2048];
1029     int statlen;
1030 
1031     fp = fopen("/proc/self/stat", "r");
1032     if (fp) {
1033       statlen = fread(stat, 1, 2047, fp);
1034       stat[statlen] = '\0';
1035       fclose(fp);
1036 
1037       // Skip pid and the command string. Note that we could be dealing with
1038       // weird command names, e.g. user could decide to rename java launcher
1039       // to "java 1.4.2 :)", then the stat file would look like
1040       //                1234 (java 1.4.2 :)) R ... ...
1041       // We don't really need to know the command string, just find the last
1042       // occurrence of ")" and then start parsing from there. See bug 4726580.
1043       char * s = strrchr(stat, ')');
1044 
1045       i = 0;
1046       if (s) {
1047         // Skip blank chars
1048         do { s++; } while (s && isspace(*s));
1049 
1050 #define _UFM UINTX_FORMAT
1051 #define _DFM INTX_FORMAT
1052 
1053         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1054         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1055         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1056                    &state,          // 3  %c
1057                    &ppid,           // 4  %d
1058                    &pgrp,           // 5  %d
1059                    &session,        // 6  %d
1060                    &nr,             // 7  %d
1061                    &tpgrp,          // 8  %d
1062                    &flags,          // 9  %lu
1063                    &minflt,         // 10 %lu
1064                    &cminflt,        // 11 %lu
1065                    &majflt,         // 12 %lu
1066                    &cmajflt,        // 13 %lu
1067                    &utime,          // 14 %lu
1068                    &stime,          // 15 %lu
1069                    &cutime,         // 16 %ld
1070                    &cstime,         // 17 %ld
1071                    &prio,           // 18 %ld
1072                    &nice,           // 19 %ld
1073                    &junk,           // 20 %ld
1074                    &it_real,        // 21 %ld
1075                    &start,          // 22 UINTX_FORMAT
1076                    &vsize,          // 23 UINTX_FORMAT
1077                    &rss,            // 24 INTX_FORMAT
1078                    &rsslim,         // 25 UINTX_FORMAT
1079                    &scodes,         // 26 UINTX_FORMAT
1080                    &ecode,          // 27 UINTX_FORMAT
1081                    &stack_start);   // 28 UINTX_FORMAT
1082       }
1083 
1084 #undef _UFM
1085 #undef _DFM
1086 
1087       if (i != 28 - 2) {
1088         assert(false, "Bad conversion from /proc/self/stat");
1089         // product mode - assume we are the initial thread, good luck in the
1090         // embedded case.
1091         warning("Can't detect initial thread stack location - bad conversion");
1092         stack_start = (uintptr_t) &rlim;
1093       }
1094     } else {
1095       // For some reason we can't open /proc/self/stat (for example, running on
1096       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1097       // most cases, so don't abort:
1098       warning("Can't detect initial thread stack location - no /proc/self/stat");
1099       stack_start = (uintptr_t) &rlim;
1100     }
1101   }
1102 
1103   // Now we have a pointer (stack_start) very close to the stack top, the
1104   // next thing to do is to figure out the exact location of stack top. We
1105   // can find out the virtual memory area that contains stack_start by
1106   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1107   // and its upper limit is the real stack top. (again, this would fail if
1108   // running inside chroot, because /proc may not exist.)
1109 
1110   uintptr_t stack_top;
1111   address low, high;
1112   if (find_vma((address)stack_start, &low, &high)) {
1113     // success, "high" is the true stack top. (ignore "low", because initial
1114     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1115     stack_top = (uintptr_t)high;
1116   } else {
1117     // failed, likely because /proc/self/maps does not exist
1118     warning("Can't detect initial thread stack location - find_vma failed");
1119     // best effort: stack_start is normally within a few pages below the real
1120     // stack top, use it as stack top, and reduce stack size so we won't put
1121     // guard page outside stack.
1122     stack_top = stack_start;
1123     stack_size -= 16 * page_size();
1124   }
1125 
1126   // stack_top could be partially down the page so align it
1127   stack_top = align_size_up(stack_top, page_size());
1128 
1129   if (max_size && stack_size > max_size) {
1130     _initial_thread_stack_size = max_size;
1131   } else {
1132     _initial_thread_stack_size = stack_size;
1133   }
1134 
1135   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1136   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1137 }
1138 
1139 ////////////////////////////////////////////////////////////////////////////////
1140 // time support
1141 
1142 // Time since start-up in seconds to a fine granularity.
1143 // Used by VMSelfDestructTimer and the MemProfiler.
1144 double os::elapsedTime() {
1145 
1146   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1147 }
1148 
1149 jlong os::elapsed_counter() {
1150   return javaTimeNanos() - initial_time_count;
1151 }
1152 
1153 jlong os::elapsed_frequency() {
1154   return NANOSECS_PER_SEC; // nanosecond resolution
1155 }
1156 
1157 bool os::supports_vtime() { return true; }
1158 bool os::enable_vtime()   { return false; }
1159 bool os::vtime_enabled()  { return false; }
1160 
1161 double os::elapsedVTime() {
1162   struct rusage usage;
1163   int retval = getrusage(RUSAGE_THREAD, &usage);
1164   if (retval == 0) {
1165     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1166   } else {
1167     // better than nothing, but not much
1168     return elapsedTime();
1169   }
1170 }
1171 
1172 jlong os::javaTimeMillis() {
1173   timeval time;
1174   int status = gettimeofday(&time, NULL);
1175   assert(status != -1, "linux error");
1176   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1177 }
1178 
1179 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1180   timeval time;
1181   int status = gettimeofday(&time, NULL);
1182   assert(status != -1, "linux error");
1183   seconds = jlong(time.tv_sec);
1184   nanos = jlong(time.tv_usec) * 1000;
1185 }
1186 
1187 
1188 #ifndef CLOCK_MONOTONIC
1189   #define CLOCK_MONOTONIC (1)
1190 #endif
1191 
1192 void os::Linux::clock_init() {
1193   // we do dlopen's in this particular order due to bug in linux
1194   // dynamical loader (see 6348968) leading to crash on exit
1195   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1196   if (handle == NULL) {
1197     handle = dlopen("librt.so", RTLD_LAZY);
1198   }
1199 
1200   if (handle) {
1201     int (*clock_getres_func)(clockid_t, struct timespec*) =
1202            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1203     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1204            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1205     if (clock_getres_func && clock_gettime_func) {
1206       // See if monotonic clock is supported by the kernel. Note that some
1207       // early implementations simply return kernel jiffies (updated every
1208       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1209       // for nano time (though the monotonic property is still nice to have).
1210       // It's fixed in newer kernels, however clock_getres() still returns
1211       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1212       // resolution for now. Hopefully as people move to new kernels, this
1213       // won't be a problem.
1214       struct timespec res;
1215       struct timespec tp;
1216       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1217           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1218         // yes, monotonic clock is supported
1219         _clock_gettime = clock_gettime_func;
1220         return;
1221       } else {
1222         // close librt if there is no monotonic clock
1223         dlclose(handle);
1224       }
1225     }
1226   }
1227   warning("No monotonic clock was available - timed services may " \
1228           "be adversely affected if the time-of-day clock changes");
1229 }
1230 
1231 #ifndef SYS_clock_getres
1232   #if defined(IA32) || defined(AMD64)
1233     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1234     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1235   #else
1236     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1237     #define sys_clock_getres(x,y)  -1
1238   #endif
1239 #else
1240   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1241 #endif
1242 
1243 void os::Linux::fast_thread_clock_init() {
1244   if (!UseLinuxPosixThreadCPUClocks) {
1245     return;
1246   }
1247   clockid_t clockid;
1248   struct timespec tp;
1249   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1250       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1251 
1252   // Switch to using fast clocks for thread cpu time if
1253   // the sys_clock_getres() returns 0 error code.
1254   // Note, that some kernels may support the current thread
1255   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1256   // returned by the pthread_getcpuclockid().
1257   // If the fast Posix clocks are supported then the sys_clock_getres()
1258   // must return at least tp.tv_sec == 0 which means a resolution
1259   // better than 1 sec. This is extra check for reliability.
1260 
1261   if (pthread_getcpuclockid_func &&
1262       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1263       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1264     _supports_fast_thread_cpu_time = true;
1265     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1266   }
1267 }
1268 
1269 jlong os::javaTimeNanos() {
1270   if (os::supports_monotonic_clock()) {
1271     struct timespec tp;
1272     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1273     assert(status == 0, "gettime error");
1274     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1275     return result;
1276   } else {
1277     timeval time;
1278     int status = gettimeofday(&time, NULL);
1279     assert(status != -1, "linux error");
1280     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1281     return 1000 * usecs;
1282   }
1283 }
1284 
1285 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1286   if (os::supports_monotonic_clock()) {
1287     info_ptr->max_value = ALL_64_BITS;
1288 
1289     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1290     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1291     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1292   } else {
1293     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1294     info_ptr->max_value = ALL_64_BITS;
1295 
1296     // gettimeofday is a real time clock so it skips
1297     info_ptr->may_skip_backward = true;
1298     info_ptr->may_skip_forward = true;
1299   }
1300 
1301   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1302 }
1303 
1304 // Return the real, user, and system times in seconds from an
1305 // arbitrary fixed point in the past.
1306 bool os::getTimesSecs(double* process_real_time,
1307                       double* process_user_time,
1308                       double* process_system_time) {
1309   struct tms ticks;
1310   clock_t real_ticks = times(&ticks);
1311 
1312   if (real_ticks == (clock_t) (-1)) {
1313     return false;
1314   } else {
1315     double ticks_per_second = (double) clock_tics_per_sec;
1316     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1317     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1318     *process_real_time = ((double) real_ticks) / ticks_per_second;
1319 
1320     return true;
1321   }
1322 }
1323 
1324 
1325 char * os::local_time_string(char *buf, size_t buflen) {
1326   struct tm t;
1327   time_t long_time;
1328   time(&long_time);
1329   localtime_r(&long_time, &t);
1330   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1331                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1332                t.tm_hour, t.tm_min, t.tm_sec);
1333   return buf;
1334 }
1335 
1336 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1337   return localtime_r(clock, res);
1338 }
1339 
1340 ////////////////////////////////////////////////////////////////////////////////
1341 // runtime exit support
1342 
1343 // Note: os::shutdown() might be called very early during initialization, or
1344 // called from signal handler. Before adding something to os::shutdown(), make
1345 // sure it is async-safe and can handle partially initialized VM.
1346 void os::shutdown() {
1347 
1348   // allow PerfMemory to attempt cleanup of any persistent resources
1349   perfMemory_exit();
1350 
1351   // needs to remove object in file system
1352   AttachListener::abort();
1353 
1354   // flush buffered output, finish log files
1355   ostream_abort();
1356 
1357   // Check for abort hook
1358   abort_hook_t abort_hook = Arguments::abort_hook();
1359   if (abort_hook != NULL) {
1360     abort_hook();
1361   }
1362 
1363 }
1364 
1365 // Note: os::abort() might be called very early during initialization, or
1366 // called from signal handler. Before adding something to os::abort(), make
1367 // sure it is async-safe and can handle partially initialized VM.
1368 void os::abort(bool dump_core, void* siginfo, const void* context) {
1369   os::shutdown();
1370   if (dump_core) {
1371 #ifndef PRODUCT
1372     fdStream out(defaultStream::output_fd());
1373     out.print_raw("Current thread is ");
1374     char buf[16];
1375     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1376     out.print_raw_cr(buf);
1377     out.print_raw_cr("Dumping core ...");
1378 #endif
1379     ::abort(); // dump core
1380   }
1381 
1382   ::exit(1);
1383 }
1384 
1385 // Die immediately, no exit hook, no abort hook, no cleanup.
1386 void os::die() {
1387   ::abort();
1388 }
1389 
1390 
1391 // This method is a copy of JDK's sysGetLastErrorString
1392 // from src/solaris/hpi/src/system_md.c
1393 
1394 size_t os::lasterror(char *buf, size_t len) {
1395   if (errno == 0)  return 0;
1396 
1397   const char *s = os::strerror(errno);
1398   size_t n = ::strlen(s);
1399   if (n >= len) {
1400     n = len - 1;
1401   }
1402   ::strncpy(buf, s, n);
1403   buf[n] = '\0';
1404   return n;
1405 }
1406 
1407 // thread_id is kernel thread id (similar to Solaris LWP id)
1408 intx os::current_thread_id() { return os::Linux::gettid(); }
1409 int os::current_process_id() {
1410   return ::getpid();
1411 }
1412 
1413 // DLL functions
1414 
1415 const char* os::dll_file_extension() { return ".so"; }
1416 
1417 // This must be hard coded because it's the system's temporary
1418 // directory not the java application's temp directory, ala java.io.tmpdir.
1419 const char* os::get_temp_directory() { return "/tmp"; }
1420 
1421 static bool file_exists(const char* filename) {
1422   struct stat statbuf;
1423   if (filename == NULL || strlen(filename) == 0) {
1424     return false;
1425   }
1426   return os::stat(filename, &statbuf) == 0;
1427 }
1428 
1429 bool os::dll_build_name(char* buffer, size_t buflen,
1430                         const char* pname, const char* fname) {
1431   bool retval = false;
1432   // Copied from libhpi
1433   const size_t pnamelen = pname ? strlen(pname) : 0;
1434 
1435   // Return error on buffer overflow.
1436   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1437     return retval;
1438   }
1439 
1440   if (pnamelen == 0) {
1441     snprintf(buffer, buflen, "lib%s.so", fname);
1442     retval = true;
1443   } else if (strchr(pname, *os::path_separator()) != NULL) {
1444     int n;
1445     char** pelements = split_path(pname, &n);
1446     if (pelements == NULL) {
1447       return false;
1448     }
1449     for (int i = 0; i < n; i++) {
1450       // Really shouldn't be NULL, but check can't hurt
1451       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1452         continue; // skip the empty path values
1453       }
1454       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1455       if (file_exists(buffer)) {
1456         retval = true;
1457         break;
1458       }
1459     }
1460     // release the storage
1461     for (int i = 0; i < n; i++) {
1462       if (pelements[i] != NULL) {
1463         FREE_C_HEAP_ARRAY(char, pelements[i]);
1464       }
1465     }
1466     if (pelements != NULL) {
1467       FREE_C_HEAP_ARRAY(char*, pelements);
1468     }
1469   } else {
1470     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1471     retval = true;
1472   }
1473   return retval;
1474 }
1475 
1476 // check if addr is inside libjvm.so
1477 bool os::address_is_in_vm(address addr) {
1478   static address libjvm_base_addr;
1479   Dl_info dlinfo;
1480 
1481   if (libjvm_base_addr == NULL) {
1482     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1483       libjvm_base_addr = (address)dlinfo.dli_fbase;
1484     }
1485     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1486   }
1487 
1488   if (dladdr((void *)addr, &dlinfo) != 0) {
1489     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1490   }
1491 
1492   return false;
1493 }
1494 
1495 bool os::dll_address_to_function_name(address addr, char *buf,
1496                                       int buflen, int *offset,
1497                                       bool demangle) {
1498   // buf is not optional, but offset is optional
1499   assert(buf != NULL, "sanity check");
1500 
1501   Dl_info dlinfo;
1502 
1503   if (dladdr((void*)addr, &dlinfo) != 0) {
1504     // see if we have a matching symbol
1505     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1506       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1507         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1508       }
1509       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1510       return true;
1511     }
1512     // no matching symbol so try for just file info
1513     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1514       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1515                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1516         return true;
1517       }
1518     }
1519   }
1520 
1521   buf[0] = '\0';
1522   if (offset != NULL) *offset = -1;
1523   return false;
1524 }
1525 
1526 struct _address_to_library_name {
1527   address addr;          // input : memory address
1528   size_t  buflen;        //         size of fname
1529   char*   fname;         // output: library name
1530   address base;          //         library base addr
1531 };
1532 
1533 static int address_to_library_name_callback(struct dl_phdr_info *info,
1534                                             size_t size, void *data) {
1535   int i;
1536   bool found = false;
1537   address libbase = NULL;
1538   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1539 
1540   // iterate through all loadable segments
1541   for (i = 0; i < info->dlpi_phnum; i++) {
1542     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1543     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1544       // base address of a library is the lowest address of its loaded
1545       // segments.
1546       if (libbase == NULL || libbase > segbase) {
1547         libbase = segbase;
1548       }
1549       // see if 'addr' is within current segment
1550       if (segbase <= d->addr &&
1551           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1552         found = true;
1553       }
1554     }
1555   }
1556 
1557   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1558   // so dll_address_to_library_name() can fall through to use dladdr() which
1559   // can figure out executable name from argv[0].
1560   if (found && info->dlpi_name && info->dlpi_name[0]) {
1561     d->base = libbase;
1562     if (d->fname) {
1563       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1564     }
1565     return 1;
1566   }
1567   return 0;
1568 }
1569 
1570 bool os::dll_address_to_library_name(address addr, char* buf,
1571                                      int buflen, int* offset) {
1572   // buf is not optional, but offset is optional
1573   assert(buf != NULL, "sanity check");
1574 
1575   Dl_info dlinfo;
1576   struct _address_to_library_name data;
1577 
1578   // There is a bug in old glibc dladdr() implementation that it could resolve
1579   // to wrong library name if the .so file has a base address != NULL. Here
1580   // we iterate through the program headers of all loaded libraries to find
1581   // out which library 'addr' really belongs to. This workaround can be
1582   // removed once the minimum requirement for glibc is moved to 2.3.x.
1583   data.addr = addr;
1584   data.fname = buf;
1585   data.buflen = buflen;
1586   data.base = NULL;
1587   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1588 
1589   if (rslt) {
1590     // buf already contains library name
1591     if (offset) *offset = addr - data.base;
1592     return true;
1593   }
1594   if (dladdr((void*)addr, &dlinfo) != 0) {
1595     if (dlinfo.dli_fname != NULL) {
1596       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1597     }
1598     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1599       *offset = addr - (address)dlinfo.dli_fbase;
1600     }
1601     return true;
1602   }
1603 
1604   buf[0] = '\0';
1605   if (offset) *offset = -1;
1606   return false;
1607 }
1608 
1609 // Loads .dll/.so and
1610 // in case of error it checks if .dll/.so was built for the
1611 // same architecture as Hotspot is running on
1612 
1613 
1614 // Remember the stack's state. The Linux dynamic linker will change
1615 // the stack to 'executable' at most once, so we must safepoint only once.
1616 bool os::Linux::_stack_is_executable = false;
1617 
1618 // VM operation that loads a library.  This is necessary if stack protection
1619 // of the Java stacks can be lost during loading the library.  If we
1620 // do not stop the Java threads, they can stack overflow before the stacks
1621 // are protected again.
1622 class VM_LinuxDllLoad: public VM_Operation {
1623  private:
1624   const char *_filename;
1625   char *_ebuf;
1626   int _ebuflen;
1627   void *_lib;
1628  public:
1629   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1630     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1631   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1632   void doit() {
1633     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1634     os::Linux::_stack_is_executable = true;
1635   }
1636   void* loaded_library() { return _lib; }
1637 };
1638 
1639 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1640   void * result = NULL;
1641   bool load_attempted = false;
1642 
1643   // Check whether the library to load might change execution rights
1644   // of the stack. If they are changed, the protection of the stack
1645   // guard pages will be lost. We need a safepoint to fix this.
1646   //
1647   // See Linux man page execstack(8) for more info.
1648   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1649     ElfFile ef(filename);
1650     if (!ef.specifies_noexecstack()) {
1651       if (!is_init_completed()) {
1652         os::Linux::_stack_is_executable = true;
1653         // This is OK - No Java threads have been created yet, and hence no
1654         // stack guard pages to fix.
1655         //
1656         // This should happen only when you are building JDK7 using a very
1657         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1658         //
1659         // Dynamic loader will make all stacks executable after
1660         // this function returns, and will not do that again.
1661         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1662       } else {
1663         warning("You have loaded library %s which might have disabled stack guard. "
1664                 "The VM will try to fix the stack guard now.\n"
1665                 "It's highly recommended that you fix the library with "
1666                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1667                 filename);
1668 
1669         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1670         JavaThread *jt = JavaThread::current();
1671         if (jt->thread_state() != _thread_in_native) {
1672           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1673           // that requires ExecStack. Cannot enter safe point. Let's give up.
1674           warning("Unable to fix stack guard. Giving up.");
1675         } else {
1676           if (!LoadExecStackDllInVMThread) {
1677             // This is for the case where the DLL has an static
1678             // constructor function that executes JNI code. We cannot
1679             // load such DLLs in the VMThread.
1680             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1681           }
1682 
1683           ThreadInVMfromNative tiv(jt);
1684           debug_only(VMNativeEntryWrapper vew;)
1685 
1686           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1687           VMThread::execute(&op);
1688           if (LoadExecStackDllInVMThread) {
1689             result = op.loaded_library();
1690           }
1691           load_attempted = true;
1692         }
1693       }
1694     }
1695   }
1696 
1697   if (!load_attempted) {
1698     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1699   }
1700 
1701   if (result != NULL) {
1702     // Successful loading
1703     return result;
1704   }
1705 
1706   Elf32_Ehdr elf_head;
1707   int diag_msg_max_length=ebuflen-strlen(ebuf);
1708   char* diag_msg_buf=ebuf+strlen(ebuf);
1709 
1710   if (diag_msg_max_length==0) {
1711     // No more space in ebuf for additional diagnostics message
1712     return NULL;
1713   }
1714 
1715 
1716   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1717 
1718   if (file_descriptor < 0) {
1719     // Can't open library, report dlerror() message
1720     return NULL;
1721   }
1722 
1723   bool failed_to_read_elf_head=
1724     (sizeof(elf_head)!=
1725      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1726 
1727   ::close(file_descriptor);
1728   if (failed_to_read_elf_head) {
1729     // file i/o error - report dlerror() msg
1730     return NULL;
1731   }
1732 
1733   typedef struct {
1734     Elf32_Half  code;         // Actual value as defined in elf.h
1735     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1736     char        elf_class;    // 32 or 64 bit
1737     char        endianess;    // MSB or LSB
1738     char*       name;         // String representation
1739   } arch_t;
1740 
1741 #ifndef EM_486
1742   #define EM_486          6               /* Intel 80486 */
1743 #endif
1744 #ifndef EM_AARCH64
1745   #define EM_AARCH64    183               /* ARM AARCH64 */
1746 #endif
1747 
1748   static const arch_t arch_array[]={
1749     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1750     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1751     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1752     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1753     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1754     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1755     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1756     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1757 #if defined(VM_LITTLE_ENDIAN)
1758     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1759 #else
1760     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1761 #endif
1762     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1763     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1764     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1765     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1766     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1767     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1768     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1769     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1770   };
1771 
1772 #if  (defined IA32)
1773   static  Elf32_Half running_arch_code=EM_386;
1774 #elif   (defined AMD64)
1775   static  Elf32_Half running_arch_code=EM_X86_64;
1776 #elif  (defined IA64)
1777   static  Elf32_Half running_arch_code=EM_IA_64;
1778 #elif  (defined __sparc) && (defined _LP64)
1779   static  Elf32_Half running_arch_code=EM_SPARCV9;
1780 #elif  (defined __sparc) && (!defined _LP64)
1781   static  Elf32_Half running_arch_code=EM_SPARC;
1782 #elif  (defined __powerpc64__)
1783   static  Elf32_Half running_arch_code=EM_PPC64;
1784 #elif  (defined __powerpc__)
1785   static  Elf32_Half running_arch_code=EM_PPC;
1786 #elif  (defined ARM)
1787   static  Elf32_Half running_arch_code=EM_ARM;
1788 #elif  (defined S390)
1789   static  Elf32_Half running_arch_code=EM_S390;
1790 #elif  (defined ALPHA)
1791   static  Elf32_Half running_arch_code=EM_ALPHA;
1792 #elif  (defined MIPSEL)
1793   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1794 #elif  (defined PARISC)
1795   static  Elf32_Half running_arch_code=EM_PARISC;
1796 #elif  (defined MIPS)
1797   static  Elf32_Half running_arch_code=EM_MIPS;
1798 #elif  (defined M68K)
1799   static  Elf32_Half running_arch_code=EM_68K;
1800 #elif  (defined AARCH64)
1801   static  Elf32_Half running_arch_code=EM_AARCH64;
1802 #else
1803     #error Method os::dll_load requires that one of following is defined:\
1804          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1805 #endif
1806 
1807   // Identify compatability class for VM's architecture and library's architecture
1808   // Obtain string descriptions for architectures
1809 
1810   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1811   int running_arch_index=-1;
1812 
1813   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1814     if (running_arch_code == arch_array[i].code) {
1815       running_arch_index    = i;
1816     }
1817     if (lib_arch.code == arch_array[i].code) {
1818       lib_arch.compat_class = arch_array[i].compat_class;
1819       lib_arch.name         = arch_array[i].name;
1820     }
1821   }
1822 
1823   assert(running_arch_index != -1,
1824          "Didn't find running architecture code (running_arch_code) in arch_array");
1825   if (running_arch_index == -1) {
1826     // Even though running architecture detection failed
1827     // we may still continue with reporting dlerror() message
1828     return NULL;
1829   }
1830 
1831   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1832     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1833     return NULL;
1834   }
1835 
1836 #ifndef S390
1837   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1838     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1839     return NULL;
1840   }
1841 #endif // !S390
1842 
1843   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1844     if (lib_arch.name!=NULL) {
1845       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1846                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1847                  lib_arch.name, arch_array[running_arch_index].name);
1848     } else {
1849       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1850                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1851                  lib_arch.code,
1852                  arch_array[running_arch_index].name);
1853     }
1854   }
1855 
1856   return NULL;
1857 }
1858 
1859 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1860                                 int ebuflen) {
1861   void * result = ::dlopen(filename, RTLD_LAZY);
1862   if (result == NULL) {
1863     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1864     ebuf[ebuflen-1] = '\0';
1865   }
1866   return result;
1867 }
1868 
1869 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1870                                        int ebuflen) {
1871   void * result = NULL;
1872   if (LoadExecStackDllInVMThread) {
1873     result = dlopen_helper(filename, ebuf, ebuflen);
1874   }
1875 
1876   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1877   // library that requires an executable stack, or which does not have this
1878   // stack attribute set, dlopen changes the stack attribute to executable. The
1879   // read protection of the guard pages gets lost.
1880   //
1881   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1882   // may have been queued at the same time.
1883 
1884   if (!_stack_is_executable) {
1885     JavaThread *jt = Threads::first();
1886 
1887     while (jt) {
1888       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1889           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1890         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1891           warning("Attempt to reguard stack yellow zone failed.");
1892         }
1893       }
1894       jt = jt->next();
1895     }
1896   }
1897 
1898   return result;
1899 }
1900 
1901 void* os::dll_lookup(void* handle, const char* name) {
1902   void* res = dlsym(handle, name);
1903   return res;
1904 }
1905 
1906 void* os::get_default_process_handle() {
1907   return (void*)::dlopen(NULL, RTLD_LAZY);
1908 }
1909 
1910 static bool _print_ascii_file(const char* filename, outputStream* st) {
1911   int fd = ::open(filename, O_RDONLY);
1912   if (fd == -1) {
1913     return false;
1914   }
1915 
1916   char buf[33];
1917   int bytes;
1918   buf[32] = '\0';
1919   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1920     st->print_raw(buf, bytes);
1921   }
1922 
1923   ::close(fd);
1924 
1925   return true;
1926 }
1927 
1928 void os::print_dll_info(outputStream *st) {
1929   st->print_cr("Dynamic libraries:");
1930 
1931   char fname[32];
1932   pid_t pid = os::Linux::gettid();
1933 
1934   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1935 
1936   if (!_print_ascii_file(fname, st)) {
1937     st->print("Can not get library information for pid = %d\n", pid);
1938   }
1939 }
1940 
1941 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1942   FILE *procmapsFile = NULL;
1943 
1944   // Open the procfs maps file for the current process
1945   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1946     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1947     char line[PATH_MAX + 100];
1948 
1949     // Read line by line from 'file'
1950     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1951       u8 base, top, offset, inode;
1952       char permissions[5];
1953       char device[6];
1954       char name[PATH_MAX + 1];
1955 
1956       // Parse fields from line
1957       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1958              &base, &top, permissions, &offset, device, &inode, name);
1959 
1960       // Filter by device id '00:00' so that we only get file system mapped files.
1961       if (strcmp(device, "00:00") != 0) {
1962 
1963         // Call callback with the fields of interest
1964         if(callback(name, (address)base, (address)top, param)) {
1965           // Oops abort, callback aborted
1966           fclose(procmapsFile);
1967           return 1;
1968         }
1969       }
1970     }
1971     fclose(procmapsFile);
1972   }
1973   return 0;
1974 }
1975 
1976 void os::print_os_info_brief(outputStream* st) {
1977   os::Linux::print_distro_info(st);
1978 
1979   os::Posix::print_uname_info(st);
1980 
1981   os::Linux::print_libversion_info(st);
1982 
1983 }
1984 
1985 void os::print_os_info(outputStream* st) {
1986   st->print("OS:");
1987 
1988   os::Linux::print_distro_info(st);
1989 
1990   os::Posix::print_uname_info(st);
1991 
1992   // Print warning if unsafe chroot environment detected
1993   if (unsafe_chroot_detected) {
1994     st->print("WARNING!! ");
1995     st->print_cr("%s", unstable_chroot_error);
1996   }
1997 
1998   os::Linux::print_libversion_info(st);
1999 
2000   os::Posix::print_rlimit_info(st);
2001 
2002   os::Posix::print_load_average(st);
2003 
2004   os::Linux::print_full_memory_info(st);
2005 }
2006 
2007 // Try to identify popular distros.
2008 // Most Linux distributions have a /etc/XXX-release file, which contains
2009 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2010 // file that also contains the OS version string. Some have more than one
2011 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2012 // /etc/redhat-release.), so the order is important.
2013 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2014 // their own specific XXX-release file as well as a redhat-release file.
2015 // Because of this the XXX-release file needs to be searched for before the
2016 // redhat-release file.
2017 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2018 // search for redhat-release / SuSE-release needs to be before lsb-release.
2019 // Since the lsb-release file is the new standard it needs to be searched
2020 // before the older style release files.
2021 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2022 // next to last resort.  The os-release file is a new standard that contains
2023 // distribution information and the system-release file seems to be an old
2024 // standard that has been replaced by the lsb-release and os-release files.
2025 // Searching for the debian_version file is the last resort.  It contains
2026 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2027 // "Debian " is printed before the contents of the debian_version file.
2028 
2029 const char* distro_files[] = {
2030   "/etc/oracle-release",
2031   "/etc/mandriva-release",
2032   "/etc/mandrake-release",
2033   "/etc/sun-release",
2034   "/etc/redhat-release",
2035   "/etc/SuSE-release",
2036   "/etc/lsb-release",
2037   "/etc/turbolinux-release",
2038   "/etc/gentoo-release",
2039   "/etc/ltib-release",
2040   "/etc/angstrom-version",
2041   "/etc/system-release",
2042   "/etc/os-release",
2043   NULL };
2044 
2045 void os::Linux::print_distro_info(outputStream* st) {
2046   for (int i = 0;; i++) {
2047     const char* file = distro_files[i];
2048     if (file == NULL) {
2049       break;  // done
2050     }
2051     // If file prints, we found it.
2052     if (_print_ascii_file(file, st)) {
2053       return;
2054     }
2055   }
2056 
2057   if (file_exists("/etc/debian_version")) {
2058     st->print("Debian ");
2059     _print_ascii_file("/etc/debian_version", st);
2060   } else {
2061     st->print("Linux");
2062   }
2063   st->cr();
2064 }
2065 
2066 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2067   char buf[256];
2068   while (fgets(buf, sizeof(buf), fp)) {
2069     // Edit out extra stuff in expected format
2070     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2071       char* ptr = strstr(buf, "\"");  // the name is in quotes
2072       if (ptr != NULL) {
2073         ptr++; // go beyond first quote
2074         char* nl = strchr(ptr, '\"');
2075         if (nl != NULL) *nl = '\0';
2076         strncpy(distro, ptr, length);
2077       } else {
2078         ptr = strstr(buf, "=");
2079         ptr++; // go beyond equals then
2080         char* nl = strchr(ptr, '\n');
2081         if (nl != NULL) *nl = '\0';
2082         strncpy(distro, ptr, length);
2083       }
2084       return;
2085     } else if (get_first_line) {
2086       char* nl = strchr(buf, '\n');
2087       if (nl != NULL) *nl = '\0';
2088       strncpy(distro, buf, length);
2089       return;
2090     }
2091   }
2092   // print last line and close
2093   char* nl = strchr(buf, '\n');
2094   if (nl != NULL) *nl = '\0';
2095   strncpy(distro, buf, length);
2096 }
2097 
2098 static void parse_os_info(char* distro, size_t length, const char* file) {
2099   FILE* fp = fopen(file, "r");
2100   if (fp != NULL) {
2101     // if suse format, print out first line
2102     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2103     parse_os_info_helper(fp, distro, length, get_first_line);
2104     fclose(fp);
2105   }
2106 }
2107 
2108 void os::get_summary_os_info(char* buf, size_t buflen) {
2109   for (int i = 0;; i++) {
2110     const char* file = distro_files[i];
2111     if (file == NULL) {
2112       break; // ran out of distro_files
2113     }
2114     if (file_exists(file)) {
2115       parse_os_info(buf, buflen, file);
2116       return;
2117     }
2118   }
2119   // special case for debian
2120   if (file_exists("/etc/debian_version")) {
2121     strncpy(buf, "Debian ", buflen);
2122     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2123   } else {
2124     strncpy(buf, "Linux", buflen);
2125   }
2126 }
2127 
2128 void os::Linux::print_libversion_info(outputStream* st) {
2129   // libc, pthread
2130   st->print("libc:");
2131   st->print("%s ", os::Linux::glibc_version());
2132   st->print("%s ", os::Linux::libpthread_version());
2133   st->cr();
2134 }
2135 
2136 void os::Linux::print_full_memory_info(outputStream* st) {
2137   st->print("\n/proc/meminfo:\n");
2138   _print_ascii_file("/proc/meminfo", st);
2139   st->cr();
2140 }
2141 
2142 void os::print_memory_info(outputStream* st) {
2143 
2144   st->print("Memory:");
2145   st->print(" %dk page", os::vm_page_size()>>10);
2146 
2147   // values in struct sysinfo are "unsigned long"
2148   struct sysinfo si;
2149   sysinfo(&si);
2150 
2151   st->print(", physical " UINT64_FORMAT "k",
2152             os::physical_memory() >> 10);
2153   st->print("(" UINT64_FORMAT "k free)",
2154             os::available_memory() >> 10);
2155   st->print(", swap " UINT64_FORMAT "k",
2156             ((jlong)si.totalswap * si.mem_unit) >> 10);
2157   st->print("(" UINT64_FORMAT "k free)",
2158             ((jlong)si.freeswap * si.mem_unit) >> 10);
2159   st->cr();
2160 }
2161 
2162 // Print the first "model name" line and the first "flags" line
2163 // that we find and nothing more. We assume "model name" comes
2164 // before "flags" so if we find a second "model name", then the
2165 // "flags" field is considered missing.
2166 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2167 #if defined(IA32) || defined(AMD64)
2168   // Other platforms have less repetitive cpuinfo files
2169   FILE *fp = fopen("/proc/cpuinfo", "r");
2170   if (fp) {
2171     while (!feof(fp)) {
2172       if (fgets(buf, buflen, fp)) {
2173         // Assume model name comes before flags
2174         bool model_name_printed = false;
2175         if (strstr(buf, "model name") != NULL) {
2176           if (!model_name_printed) {
2177             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2178             st->print_raw(buf);
2179             model_name_printed = true;
2180           } else {
2181             // model name printed but not flags?  Odd, just return
2182             fclose(fp);
2183             return true;
2184           }
2185         }
2186         // print the flags line too
2187         if (strstr(buf, "flags") != NULL) {
2188           st->print_raw(buf);
2189           fclose(fp);
2190           return true;
2191         }
2192       }
2193     }
2194     fclose(fp);
2195   }
2196 #endif // x86 platforms
2197   return false;
2198 }
2199 
2200 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2201   // Only print the model name if the platform provides this as a summary
2202   if (!print_model_name_and_flags(st, buf, buflen)) {
2203     st->print("\n/proc/cpuinfo:\n");
2204     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2205       st->print_cr("  <Not Available>");
2206     }
2207   }
2208 }
2209 
2210 #if defined(AMD64) || defined(IA32) || defined(X32)
2211 const char* search_string = "model name";
2212 #elif defined(SPARC)
2213 const char* search_string = "cpu";
2214 #elif defined(PPC64)
2215 const char* search_string = "cpu";
2216 #else
2217 const char* search_string = "Processor";
2218 #endif
2219 
2220 // Parses the cpuinfo file for string representing the model name.
2221 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2222   FILE* fp = fopen("/proc/cpuinfo", "r");
2223   if (fp != NULL) {
2224     while (!feof(fp)) {
2225       char buf[256];
2226       if (fgets(buf, sizeof(buf), fp)) {
2227         char* start = strstr(buf, search_string);
2228         if (start != NULL) {
2229           char *ptr = start + strlen(search_string);
2230           char *end = buf + strlen(buf);
2231           while (ptr != end) {
2232              // skip whitespace and colon for the rest of the name.
2233              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2234                break;
2235              }
2236              ptr++;
2237           }
2238           if (ptr != end) {
2239             // reasonable string, get rid of newline and keep the rest
2240             char* nl = strchr(buf, '\n');
2241             if (nl != NULL) *nl = '\0';
2242             strncpy(cpuinfo, ptr, length);
2243             fclose(fp);
2244             return;
2245           }
2246         }
2247       }
2248     }
2249     fclose(fp);
2250   }
2251   // cpuinfo not found or parsing failed, just print generic string.  The entire
2252   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2253 #if defined(AMD64)
2254   strncpy(cpuinfo, "x86_64", length);
2255 #elif defined(IA32)
2256   strncpy(cpuinfo, "x86_32", length);
2257 #elif defined(IA64)
2258   strncpy(cpuinfo, "IA64", length);
2259 #elif defined(SPARC)
2260   strncpy(cpuinfo, "sparcv9", length);
2261 #elif defined(AARCH64)
2262   strncpy(cpuinfo, "AArch64", length);
2263 #elif defined(ARM)
2264   strncpy(cpuinfo, "ARM", length);
2265 #elif defined(PPC)
2266   strncpy(cpuinfo, "PPC64", length);
2267 #elif defined(ZERO_LIBARCH)
2268   strncpy(cpuinfo, ZERO_LIBARCH, length);
2269 #else
2270   strncpy(cpuinfo, "unknown", length);
2271 #endif
2272 }
2273 
2274 static void print_signal_handler(outputStream* st, int sig,
2275                                  char* buf, size_t buflen);
2276 
2277 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2278   st->print_cr("Signal Handlers:");
2279   print_signal_handler(st, SIGSEGV, buf, buflen);
2280   print_signal_handler(st, SIGBUS , buf, buflen);
2281   print_signal_handler(st, SIGFPE , buf, buflen);
2282   print_signal_handler(st, SIGPIPE, buf, buflen);
2283   print_signal_handler(st, SIGXFSZ, buf, buflen);
2284   print_signal_handler(st, SIGILL , buf, buflen);
2285   print_signal_handler(st, SR_signum, buf, buflen);
2286   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2287   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2288   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2289   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2290 #if defined(PPC64)
2291   print_signal_handler(st, SIGTRAP, buf, buflen);
2292 #endif
2293 }
2294 
2295 static char saved_jvm_path[MAXPATHLEN] = {0};
2296 
2297 // Find the full path to the current module, libjvm.so
2298 void os::jvm_path(char *buf, jint buflen) {
2299   // Error checking.
2300   if (buflen < MAXPATHLEN) {
2301     assert(false, "must use a large-enough buffer");
2302     buf[0] = '\0';
2303     return;
2304   }
2305   // Lazy resolve the path to current module.
2306   if (saved_jvm_path[0] != 0) {
2307     strcpy(buf, saved_jvm_path);
2308     return;
2309   }
2310 
2311   char dli_fname[MAXPATHLEN];
2312   bool ret = dll_address_to_library_name(
2313                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2314                                          dli_fname, sizeof(dli_fname), NULL);
2315   assert(ret, "cannot locate libjvm");
2316   char *rp = NULL;
2317   if (ret && dli_fname[0] != '\0') {
2318     rp = realpath(dli_fname, buf);
2319   }
2320   if (rp == NULL) {
2321     return;
2322   }
2323 
2324   if (Arguments::sun_java_launcher_is_altjvm()) {
2325     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2326     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2327     // If "/jre/lib/" appears at the right place in the string, then
2328     // assume we are installed in a JDK and we're done. Otherwise, check
2329     // for a JAVA_HOME environment variable and fix up the path so it
2330     // looks like libjvm.so is installed there (append a fake suffix
2331     // hotspot/libjvm.so).
2332     const char *p = buf + strlen(buf) - 1;
2333     for (int count = 0; p > buf && count < 5; ++count) {
2334       for (--p; p > buf && *p != '/'; --p)
2335         /* empty */ ;
2336     }
2337 
2338     if (strncmp(p, "/jre/lib/", 9) != 0) {
2339       // Look for JAVA_HOME in the environment.
2340       char* java_home_var = ::getenv("JAVA_HOME");
2341       if (java_home_var != NULL && java_home_var[0] != 0) {
2342         char* jrelib_p;
2343         int len;
2344 
2345         // Check the current module name "libjvm.so".
2346         p = strrchr(buf, '/');
2347         if (p == NULL) {
2348           return;
2349         }
2350         assert(strstr(p, "/libjvm") == p, "invalid library name");
2351 
2352         rp = realpath(java_home_var, buf);
2353         if (rp == NULL) {
2354           return;
2355         }
2356 
2357         // determine if this is a legacy image or modules image
2358         // modules image doesn't have "jre" subdirectory
2359         len = strlen(buf);
2360         assert(len < buflen, "Ran out of buffer room");
2361         jrelib_p = buf + len;
2362         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2363         if (0 != access(buf, F_OK)) {
2364           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2365         }
2366 
2367         if (0 == access(buf, F_OK)) {
2368           // Use current module name "libjvm.so"
2369           len = strlen(buf);
2370           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2371         } else {
2372           // Go back to path of .so
2373           rp = realpath(dli_fname, buf);
2374           if (rp == NULL) {
2375             return;
2376           }
2377         }
2378       }
2379     }
2380   }
2381 
2382   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2383   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2384 }
2385 
2386 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2387   // no prefix required, not even "_"
2388 }
2389 
2390 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2391   // no suffix required
2392 }
2393 
2394 ////////////////////////////////////////////////////////////////////////////////
2395 // sun.misc.Signal support
2396 
2397 static volatile jint sigint_count = 0;
2398 
2399 static void UserHandler(int sig, void *siginfo, void *context) {
2400   // 4511530 - sem_post is serialized and handled by the manager thread. When
2401   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2402   // don't want to flood the manager thread with sem_post requests.
2403   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2404     return;
2405   }
2406 
2407   // Ctrl-C is pressed during error reporting, likely because the error
2408   // handler fails to abort. Let VM die immediately.
2409   if (sig == SIGINT && is_error_reported()) {
2410     os::die();
2411   }
2412 
2413   os::signal_notify(sig);
2414 }
2415 
2416 void* os::user_handler() {
2417   return CAST_FROM_FN_PTR(void*, UserHandler);
2418 }
2419 
2420 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2421   struct timespec ts;
2422   // Semaphore's are always associated with CLOCK_REALTIME
2423   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2424   // see unpackTime for discussion on overflow checking
2425   if (sec >= MAX_SECS) {
2426     ts.tv_sec += MAX_SECS;
2427     ts.tv_nsec = 0;
2428   } else {
2429     ts.tv_sec += sec;
2430     ts.tv_nsec += nsec;
2431     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2432       ts.tv_nsec -= NANOSECS_PER_SEC;
2433       ++ts.tv_sec; // note: this must be <= max_secs
2434     }
2435   }
2436 
2437   return ts;
2438 }
2439 
2440 extern "C" {
2441   typedef void (*sa_handler_t)(int);
2442   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2443 }
2444 
2445 void* os::signal(int signal_number, void* handler) {
2446   struct sigaction sigAct, oldSigAct;
2447 
2448   sigfillset(&(sigAct.sa_mask));
2449   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2450   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2451 
2452   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2453     // -1 means registration failed
2454     return (void *)-1;
2455   }
2456 
2457   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2458 }
2459 
2460 void os::signal_raise(int signal_number) {
2461   ::raise(signal_number);
2462 }
2463 
2464 // The following code is moved from os.cpp for making this
2465 // code platform specific, which it is by its very nature.
2466 
2467 // Will be modified when max signal is changed to be dynamic
2468 int os::sigexitnum_pd() {
2469   return NSIG;
2470 }
2471 
2472 // a counter for each possible signal value
2473 static volatile jint pending_signals[NSIG+1] = { 0 };
2474 
2475 // Linux(POSIX) specific hand shaking semaphore.
2476 static sem_t sig_sem;
2477 static PosixSemaphore sr_semaphore;
2478 
2479 void os::signal_init_pd() {
2480   // Initialize signal structures
2481   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2482 
2483   // Initialize signal semaphore
2484   ::sem_init(&sig_sem, 0, 0);
2485 }
2486 
2487 void os::signal_notify(int sig) {
2488   Atomic::inc(&pending_signals[sig]);
2489   ::sem_post(&sig_sem);
2490 }
2491 
2492 static int check_pending_signals(bool wait) {
2493   Atomic::store(0, &sigint_count);
2494   for (;;) {
2495     for (int i = 0; i < NSIG + 1; i++) {
2496       jint n = pending_signals[i];
2497       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2498         return i;
2499       }
2500     }
2501     if (!wait) {
2502       return -1;
2503     }
2504     JavaThread *thread = JavaThread::current();
2505     ThreadBlockInVM tbivm(thread);
2506 
2507     bool threadIsSuspended;
2508     do {
2509       thread->set_suspend_equivalent();
2510       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2511       ::sem_wait(&sig_sem);
2512 
2513       // were we externally suspended while we were waiting?
2514       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2515       if (threadIsSuspended) {
2516         // The semaphore has been incremented, but while we were waiting
2517         // another thread suspended us. We don't want to continue running
2518         // while suspended because that would surprise the thread that
2519         // suspended us.
2520         ::sem_post(&sig_sem);
2521 
2522         thread->java_suspend_self();
2523       }
2524     } while (threadIsSuspended);
2525   }
2526 }
2527 
2528 int os::signal_lookup() {
2529   return check_pending_signals(false);
2530 }
2531 
2532 int os::signal_wait() {
2533   return check_pending_signals(true);
2534 }
2535 
2536 ////////////////////////////////////////////////////////////////////////////////
2537 // Virtual Memory
2538 
2539 int os::vm_page_size() {
2540   // Seems redundant as all get out
2541   assert(os::Linux::page_size() != -1, "must call os::init");
2542   return os::Linux::page_size();
2543 }
2544 
2545 // Solaris allocates memory by pages.
2546 int os::vm_allocation_granularity() {
2547   assert(os::Linux::page_size() != -1, "must call os::init");
2548   return os::Linux::page_size();
2549 }
2550 
2551 // Rationale behind this function:
2552 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2553 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2554 //  samples for JITted code. Here we create private executable mapping over the code cache
2555 //  and then we can use standard (well, almost, as mapping can change) way to provide
2556 //  info for the reporting script by storing timestamp and location of symbol
2557 void linux_wrap_code(char* base, size_t size) {
2558   static volatile jint cnt = 0;
2559 
2560   if (!UseOprofile) {
2561     return;
2562   }
2563 
2564   char buf[PATH_MAX+1];
2565   int num = Atomic::add(1, &cnt);
2566 
2567   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2568            os::get_temp_directory(), os::current_process_id(), num);
2569   unlink(buf);
2570 
2571   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2572 
2573   if (fd != -1) {
2574     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2575     if (rv != (off_t)-1) {
2576       if (::write(fd, "", 1) == 1) {
2577         mmap(base, size,
2578              PROT_READ|PROT_WRITE|PROT_EXEC,
2579              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2580       }
2581     }
2582     ::close(fd);
2583     unlink(buf);
2584   }
2585 }
2586 
2587 static bool recoverable_mmap_error(int err) {
2588   // See if the error is one we can let the caller handle. This
2589   // list of errno values comes from JBS-6843484. I can't find a
2590   // Linux man page that documents this specific set of errno
2591   // values so while this list currently matches Solaris, it may
2592   // change as we gain experience with this failure mode.
2593   switch (err) {
2594   case EBADF:
2595   case EINVAL:
2596   case ENOTSUP:
2597     // let the caller deal with these errors
2598     return true;
2599 
2600   default:
2601     // Any remaining errors on this OS can cause our reserved mapping
2602     // to be lost. That can cause confusion where different data
2603     // structures think they have the same memory mapped. The worst
2604     // scenario is if both the VM and a library think they have the
2605     // same memory mapped.
2606     return false;
2607   }
2608 }
2609 
2610 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2611                                     int err) {
2612   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2613           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2614           os::strerror(err), err);
2615 }
2616 
2617 static void warn_fail_commit_memory(char* addr, size_t size,
2618                                     size_t alignment_hint, bool exec,
2619                                     int err) {
2620   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2621           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2622           alignment_hint, exec, os::strerror(err), err);
2623 }
2624 
2625 // NOTE: Linux kernel does not really reserve the pages for us.
2626 //       All it does is to check if there are enough free pages
2627 //       left at the time of mmap(). This could be a potential
2628 //       problem.
2629 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2630   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2631   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2632                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2633   if (res != (uintptr_t) MAP_FAILED) {
2634     if (UseNUMAInterleaving) {
2635       numa_make_global(addr, size);
2636     }
2637     return 0;
2638   }
2639 
2640   int err = errno;  // save errno from mmap() call above
2641 
2642   if (!recoverable_mmap_error(err)) {
2643     warn_fail_commit_memory(addr, size, exec, err);
2644     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2645   }
2646 
2647   return err;
2648 }
2649 
2650 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2651   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2652 }
2653 
2654 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2655                                   const char* mesg) {
2656   assert(mesg != NULL, "mesg must be specified");
2657   int err = os::Linux::commit_memory_impl(addr, size, exec);
2658   if (err != 0) {
2659     // the caller wants all commit errors to exit with the specified mesg:
2660     warn_fail_commit_memory(addr, size, exec, err);
2661     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2662   }
2663 }
2664 
2665 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2666 #ifndef MAP_HUGETLB
2667   #define MAP_HUGETLB 0x40000
2668 #endif
2669 
2670 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2671 #ifndef MADV_HUGEPAGE
2672   #define MADV_HUGEPAGE 14
2673 #endif
2674 
2675 int os::Linux::commit_memory_impl(char* addr, size_t size,
2676                                   size_t alignment_hint, bool exec) {
2677   int err = os::Linux::commit_memory_impl(addr, size, exec);
2678   if (err == 0) {
2679     realign_memory(addr, size, alignment_hint);
2680   }
2681   return err;
2682 }
2683 
2684 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2685                           bool exec) {
2686   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2687 }
2688 
2689 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2690                                   size_t alignment_hint, bool exec,
2691                                   const char* mesg) {
2692   assert(mesg != NULL, "mesg must be specified");
2693   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2694   if (err != 0) {
2695     // the caller wants all commit errors to exit with the specified mesg:
2696     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2697     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2698   }
2699 }
2700 
2701 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2702   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2703     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2704     // be supported or the memory may already be backed by huge pages.
2705     ::madvise(addr, bytes, MADV_HUGEPAGE);
2706   }
2707 }
2708 
2709 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2710   // This method works by doing an mmap over an existing mmaping and effectively discarding
2711   // the existing pages. However it won't work for SHM-based large pages that cannot be
2712   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2713   // small pages on top of the SHM segment. This method always works for small pages, so we
2714   // allow that in any case.
2715   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2716     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2717   }
2718 }
2719 
2720 void os::numa_make_global(char *addr, size_t bytes) {
2721   Linux::numa_interleave_memory(addr, bytes);
2722 }
2723 
2724 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2725 // bind policy to MPOL_PREFERRED for the current thread.
2726 #define USE_MPOL_PREFERRED 0
2727 
2728 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2729   // To make NUMA and large pages more robust when both enabled, we need to ease
2730   // the requirements on where the memory should be allocated. MPOL_BIND is the
2731   // default policy and it will force memory to be allocated on the specified
2732   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2733   // the specified node, but will not force it. Using this policy will prevent
2734   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2735   // free large pages.
2736   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2737   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2738 }
2739 
2740 bool os::numa_topology_changed() { return false; }
2741 
2742 size_t os::numa_get_groups_num() {
2743   int max_node = Linux::numa_max_node();
2744   return max_node > 0 ? max_node + 1 : 1;
2745 }
2746 
2747 int os::numa_get_group_id() {
2748   int cpu_id = Linux::sched_getcpu();
2749   if (cpu_id != -1) {
2750     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2751     if (lgrp_id != -1) {
2752       return lgrp_id;
2753     }
2754   }
2755   return 0;
2756 }
2757 
2758 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2759   for (size_t i = 0; i < size; i++) {
2760     ids[i] = i;
2761   }
2762   return size;
2763 }
2764 
2765 bool os::get_page_info(char *start, page_info* info) {
2766   return false;
2767 }
2768 
2769 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2770                      page_info* page_found) {
2771   return end;
2772 }
2773 
2774 
2775 int os::Linux::sched_getcpu_syscall(void) {
2776   unsigned int cpu = 0;
2777   int retval = -1;
2778 
2779 #if defined(IA32)
2780   #ifndef SYS_getcpu
2781     #define SYS_getcpu 318
2782   #endif
2783   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2784 #elif defined(AMD64)
2785 // Unfortunately we have to bring all these macros here from vsyscall.h
2786 // to be able to compile on old linuxes.
2787   #define __NR_vgetcpu 2
2788   #define VSYSCALL_START (-10UL << 20)
2789   #define VSYSCALL_SIZE 1024
2790   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2791   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2792   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2793   retval = vgetcpu(&cpu, NULL, NULL);
2794 #endif
2795 
2796   return (retval == -1) ? retval : cpu;
2797 }
2798 
2799 // Something to do with the numa-aware allocator needs these symbols
2800 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2801 extern "C" JNIEXPORT void numa_error(char *where) { }
2802 
2803 
2804 // If we are running with libnuma version > 2, then we should
2805 // be trying to use symbols with versions 1.1
2806 // If we are running with earlier version, which did not have symbol versions,
2807 // we should use the base version.
2808 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2809   void *f = dlvsym(handle, name, "libnuma_1.1");
2810   if (f == NULL) {
2811     f = dlsym(handle, name);
2812   }
2813   return f;
2814 }
2815 
2816 bool os::Linux::libnuma_init() {
2817   // sched_getcpu() should be in libc.
2818   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2819                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2820 
2821   // If it's not, try a direct syscall.
2822   if (sched_getcpu() == -1) {
2823     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2824                                     (void*)&sched_getcpu_syscall));
2825   }
2826 
2827   if (sched_getcpu() != -1) { // Does it work?
2828     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2829     if (handle != NULL) {
2830       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2831                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2832       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2833                                        libnuma_dlsym(handle, "numa_max_node")));
2834       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2835                                         libnuma_dlsym(handle, "numa_available")));
2836       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2837                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2838       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2839                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2840       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2841                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2842 
2843 
2844       if (numa_available() != -1) {
2845         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2846         // Create a cpu -> node mapping
2847         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2848         rebuild_cpu_to_node_map();
2849         return true;
2850       }
2851     }
2852   }
2853   return false;
2854 }
2855 
2856 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2857 // The table is later used in get_node_by_cpu().
2858 void os::Linux::rebuild_cpu_to_node_map() {
2859   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2860                               // in libnuma (possible values are starting from 16,
2861                               // and continuing up with every other power of 2, but less
2862                               // than the maximum number of CPUs supported by kernel), and
2863                               // is a subject to change (in libnuma version 2 the requirements
2864                               // are more reasonable) we'll just hardcode the number they use
2865                               // in the library.
2866   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2867 
2868   size_t cpu_num = os::active_processor_count();
2869   size_t cpu_map_size = NCPUS / BitsPerCLong;
2870   size_t cpu_map_valid_size =
2871     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2872 
2873   cpu_to_node()->clear();
2874   cpu_to_node()->at_grow(cpu_num - 1);
2875   size_t node_num = numa_get_groups_num();
2876 
2877   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2878   for (size_t i = 0; i < node_num; i++) {
2879     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2880       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2881         if (cpu_map[j] != 0) {
2882           for (size_t k = 0; k < BitsPerCLong; k++) {
2883             if (cpu_map[j] & (1UL << k)) {
2884               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2885             }
2886           }
2887         }
2888       }
2889     }
2890   }
2891   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2892 }
2893 
2894 int os::Linux::get_node_by_cpu(int cpu_id) {
2895   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2896     return cpu_to_node()->at(cpu_id);
2897   }
2898   return -1;
2899 }
2900 
2901 GrowableArray<int>* os::Linux::_cpu_to_node;
2902 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2903 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2904 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2905 os::Linux::numa_available_func_t os::Linux::_numa_available;
2906 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2907 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2908 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2909 unsigned long* os::Linux::_numa_all_nodes;
2910 
2911 bool os::pd_uncommit_memory(char* addr, size_t size) {
2912   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2913                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2914   return res  != (uintptr_t) MAP_FAILED;
2915 }
2916 
2917 static address get_stack_commited_bottom(address bottom, size_t size) {
2918   address nbot = bottom;
2919   address ntop = bottom + size;
2920 
2921   size_t page_sz = os::vm_page_size();
2922   unsigned pages = size / page_sz;
2923 
2924   unsigned char vec[1];
2925   unsigned imin = 1, imax = pages + 1, imid;
2926   int mincore_return_value = 0;
2927 
2928   assert(imin <= imax, "Unexpected page size");
2929 
2930   while (imin < imax) {
2931     imid = (imax + imin) / 2;
2932     nbot = ntop - (imid * page_sz);
2933 
2934     // Use a trick with mincore to check whether the page is mapped or not.
2935     // mincore sets vec to 1 if page resides in memory and to 0 if page
2936     // is swapped output but if page we are asking for is unmapped
2937     // it returns -1,ENOMEM
2938     mincore_return_value = mincore(nbot, page_sz, vec);
2939 
2940     if (mincore_return_value == -1) {
2941       // Page is not mapped go up
2942       // to find first mapped page
2943       if (errno != EAGAIN) {
2944         assert(errno == ENOMEM, "Unexpected mincore errno");
2945         imax = imid;
2946       }
2947     } else {
2948       // Page is mapped go down
2949       // to find first not mapped page
2950       imin = imid + 1;
2951     }
2952   }
2953 
2954   nbot = nbot + page_sz;
2955 
2956   // Adjust stack bottom one page up if last checked page is not mapped
2957   if (mincore_return_value == -1) {
2958     nbot = nbot + page_sz;
2959   }
2960 
2961   return nbot;
2962 }
2963 
2964 
2965 // Linux uses a growable mapping for the stack, and if the mapping for
2966 // the stack guard pages is not removed when we detach a thread the
2967 // stack cannot grow beyond the pages where the stack guard was
2968 // mapped.  If at some point later in the process the stack expands to
2969 // that point, the Linux kernel cannot expand the stack any further
2970 // because the guard pages are in the way, and a segfault occurs.
2971 //
2972 // However, it's essential not to split the stack region by unmapping
2973 // a region (leaving a hole) that's already part of the stack mapping,
2974 // so if the stack mapping has already grown beyond the guard pages at
2975 // the time we create them, we have to truncate the stack mapping.
2976 // So, we need to know the extent of the stack mapping when
2977 // create_stack_guard_pages() is called.
2978 
2979 // We only need this for stacks that are growable: at the time of
2980 // writing thread stacks don't use growable mappings (i.e. those
2981 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2982 // only applies to the main thread.
2983 
2984 // If the (growable) stack mapping already extends beyond the point
2985 // where we're going to put our guard pages, truncate the mapping at
2986 // that point by munmap()ping it.  This ensures that when we later
2987 // munmap() the guard pages we don't leave a hole in the stack
2988 // mapping. This only affects the main/initial thread
2989 
2990 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2991   if (os::Linux::is_initial_thread()) {
2992     // As we manually grow stack up to bottom inside create_attached_thread(),
2993     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2994     // we don't need to do anything special.
2995     // Check it first, before calling heavy function.
2996     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2997     unsigned char vec[1];
2998 
2999     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3000       // Fallback to slow path on all errors, including EAGAIN
3001       stack_extent = (uintptr_t) get_stack_commited_bottom(
3002                                                            os::Linux::initial_thread_stack_bottom(),
3003                                                            (size_t)addr - stack_extent);
3004     }
3005 
3006     if (stack_extent < (uintptr_t)addr) {
3007       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3008     }
3009   }
3010 
3011   return os::commit_memory(addr, size, !ExecMem);
3012 }
3013 
3014 // If this is a growable mapping, remove the guard pages entirely by
3015 // munmap()ping them.  If not, just call uncommit_memory(). This only
3016 // affects the main/initial thread, but guard against future OS changes
3017 // It's safe to always unmap guard pages for initial thread because we
3018 // always place it right after end of the mapped region
3019 
3020 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3021   uintptr_t stack_extent, stack_base;
3022 
3023   if (os::Linux::is_initial_thread()) {
3024     return ::munmap(addr, size) == 0;
3025   }
3026 
3027   return os::uncommit_memory(addr, size);
3028 }
3029 
3030 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3031 // at 'requested_addr'. If there are existing memory mappings at the same
3032 // location, however, they will be overwritten. If 'fixed' is false,
3033 // 'requested_addr' is only treated as a hint, the return value may or
3034 // may not start from the requested address. Unlike Linux mmap(), this
3035 // function returns NULL to indicate failure.
3036 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3037   char * addr;
3038   int flags;
3039 
3040   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3041   if (fixed) {
3042     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3043     flags |= MAP_FIXED;
3044   }
3045 
3046   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3047   // touch an uncommitted page. Otherwise, the read/write might
3048   // succeed if we have enough swap space to back the physical page.
3049   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3050                        flags, -1, 0);
3051 
3052   return addr == MAP_FAILED ? NULL : addr;
3053 }
3054 
3055 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3056 //   (req_addr != NULL) or with a given alignment.
3057 //  - bytes shall be a multiple of alignment.
3058 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3059 //  - alignment sets the alignment at which memory shall be allocated.
3060 //     It must be a multiple of allocation granularity.
3061 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3062 //  req_addr or NULL.
3063 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3064 
3065   size_t extra_size = bytes;
3066   if (req_addr == NULL && alignment > 0) {
3067     extra_size += alignment;
3068   }
3069 
3070   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3071     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3072     -1, 0);
3073   if (start == MAP_FAILED) {
3074     start = NULL;
3075   } else {
3076     if (req_addr != NULL) {
3077       if (start != req_addr) {
3078         ::munmap(start, extra_size);
3079         start = NULL;
3080       }
3081     } else {
3082       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3083       char* const end_aligned = start_aligned + bytes;
3084       char* const end = start + extra_size;
3085       if (start_aligned > start) {
3086         ::munmap(start, start_aligned - start);
3087       }
3088       if (end_aligned < end) {
3089         ::munmap(end_aligned, end - end_aligned);
3090       }
3091       start = start_aligned;
3092     }
3093   }
3094   return start;
3095 }
3096 
3097 static int anon_munmap(char * addr, size_t size) {
3098   return ::munmap(addr, size) == 0;
3099 }
3100 
3101 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3102                             size_t alignment_hint) {
3103   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3104 }
3105 
3106 bool os::pd_release_memory(char* addr, size_t size) {
3107   return anon_munmap(addr, size);
3108 }
3109 
3110 static bool linux_mprotect(char* addr, size_t size, int prot) {
3111   // Linux wants the mprotect address argument to be page aligned.
3112   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3113 
3114   // According to SUSv3, mprotect() should only be used with mappings
3115   // established by mmap(), and mmap() always maps whole pages. Unaligned
3116   // 'addr' likely indicates problem in the VM (e.g. trying to change
3117   // protection of malloc'ed or statically allocated memory). Check the
3118   // caller if you hit this assert.
3119   assert(addr == bottom, "sanity check");
3120 
3121   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3122   return ::mprotect(bottom, size, prot) == 0;
3123 }
3124 
3125 // Set protections specified
3126 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3127                         bool is_committed) {
3128   unsigned int p = 0;
3129   switch (prot) {
3130   case MEM_PROT_NONE: p = PROT_NONE; break;
3131   case MEM_PROT_READ: p = PROT_READ; break;
3132   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3133   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3134   default:
3135     ShouldNotReachHere();
3136   }
3137   // is_committed is unused.
3138   return linux_mprotect(addr, bytes, p);
3139 }
3140 
3141 bool os::guard_memory(char* addr, size_t size) {
3142   return linux_mprotect(addr, size, PROT_NONE);
3143 }
3144 
3145 bool os::unguard_memory(char* addr, size_t size) {
3146   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3147 }
3148 
3149 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3150                                                     size_t page_size) {
3151   bool result = false;
3152   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3153                  MAP_ANONYMOUS|MAP_PRIVATE,
3154                  -1, 0);
3155   if (p != MAP_FAILED) {
3156     void *aligned_p = align_ptr_up(p, page_size);
3157 
3158     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3159 
3160     munmap(p, page_size * 2);
3161   }
3162 
3163   if (warn && !result) {
3164     warning("TransparentHugePages is not supported by the operating system.");
3165   }
3166 
3167   return result;
3168 }
3169 
3170 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3171   bool result = false;
3172   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3173                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3174                  -1, 0);
3175 
3176   if (p != MAP_FAILED) {
3177     // We don't know if this really is a huge page or not.
3178     FILE *fp = fopen("/proc/self/maps", "r");
3179     if (fp) {
3180       while (!feof(fp)) {
3181         char chars[257];
3182         long x = 0;
3183         if (fgets(chars, sizeof(chars), fp)) {
3184           if (sscanf(chars, "%lx-%*x", &x) == 1
3185               && x == (long)p) {
3186             if (strstr (chars, "hugepage")) {
3187               result = true;
3188               break;
3189             }
3190           }
3191         }
3192       }
3193       fclose(fp);
3194     }
3195     munmap(p, page_size);
3196   }
3197 
3198   if (warn && !result) {
3199     warning("HugeTLBFS is not supported by the operating system.");
3200   }
3201 
3202   return result;
3203 }
3204 
3205 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3206 //
3207 // From the coredump_filter documentation:
3208 //
3209 // - (bit 0) anonymous private memory
3210 // - (bit 1) anonymous shared memory
3211 // - (bit 2) file-backed private memory
3212 // - (bit 3) file-backed shared memory
3213 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3214 //           effective only if the bit 2 is cleared)
3215 // - (bit 5) hugetlb private memory
3216 // - (bit 6) hugetlb shared memory
3217 //
3218 static void set_coredump_filter(void) {
3219   FILE *f;
3220   long cdm;
3221 
3222   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3223     return;
3224   }
3225 
3226   if (fscanf(f, "%lx", &cdm) != 1) {
3227     fclose(f);
3228     return;
3229   }
3230 
3231   rewind(f);
3232 
3233   if ((cdm & LARGEPAGES_BIT) == 0) {
3234     cdm |= LARGEPAGES_BIT;
3235     fprintf(f, "%#lx", cdm);
3236   }
3237 
3238   fclose(f);
3239 }
3240 
3241 // Large page support
3242 
3243 static size_t _large_page_size = 0;
3244 
3245 size_t os::Linux::find_large_page_size() {
3246   size_t large_page_size = 0;
3247 
3248   // large_page_size on Linux is used to round up heap size. x86 uses either
3249   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3250   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3251   // page as large as 256M.
3252   //
3253   // Here we try to figure out page size by parsing /proc/meminfo and looking
3254   // for a line with the following format:
3255   //    Hugepagesize:     2048 kB
3256   //
3257   // If we can't determine the value (e.g. /proc is not mounted, or the text
3258   // format has been changed), we'll use the largest page size supported by
3259   // the processor.
3260 
3261 #ifndef ZERO
3262   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3263                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3264 #endif // ZERO
3265 
3266   FILE *fp = fopen("/proc/meminfo", "r");
3267   if (fp) {
3268     while (!feof(fp)) {
3269       int x = 0;
3270       char buf[16];
3271       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3272         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3273           large_page_size = x * K;
3274           break;
3275         }
3276       } else {
3277         // skip to next line
3278         for (;;) {
3279           int ch = fgetc(fp);
3280           if (ch == EOF || ch == (int)'\n') break;
3281         }
3282       }
3283     }
3284     fclose(fp);
3285   }
3286 
3287   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3288     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3289             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3290             proper_unit_for_byte_size(large_page_size));
3291   }
3292 
3293   return large_page_size;
3294 }
3295 
3296 size_t os::Linux::setup_large_page_size() {
3297   _large_page_size = Linux::find_large_page_size();
3298   const size_t default_page_size = (size_t)Linux::page_size();
3299   if (_large_page_size > default_page_size) {
3300     _page_sizes[0] = _large_page_size;
3301     _page_sizes[1] = default_page_size;
3302     _page_sizes[2] = 0;
3303   }
3304 
3305   return _large_page_size;
3306 }
3307 
3308 bool os::Linux::setup_large_page_type(size_t page_size) {
3309   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3310       FLAG_IS_DEFAULT(UseSHM) &&
3311       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3312 
3313     // The type of large pages has not been specified by the user.
3314 
3315     // Try UseHugeTLBFS and then UseSHM.
3316     UseHugeTLBFS = UseSHM = true;
3317 
3318     // Don't try UseTransparentHugePages since there are known
3319     // performance issues with it turned on. This might change in the future.
3320     UseTransparentHugePages = false;
3321   }
3322 
3323   if (UseTransparentHugePages) {
3324     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3325     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3326       UseHugeTLBFS = false;
3327       UseSHM = false;
3328       return true;
3329     }
3330     UseTransparentHugePages = false;
3331   }
3332 
3333   if (UseHugeTLBFS) {
3334     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3335     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3336       UseSHM = false;
3337       return true;
3338     }
3339     UseHugeTLBFS = false;
3340   }
3341 
3342   return UseSHM;
3343 }
3344 
3345 void os::large_page_init() {
3346   if (!UseLargePages &&
3347       !UseTransparentHugePages &&
3348       !UseHugeTLBFS &&
3349       !UseSHM) {
3350     // Not using large pages.
3351     return;
3352   }
3353 
3354   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3355     // The user explicitly turned off large pages.
3356     // Ignore the rest of the large pages flags.
3357     UseTransparentHugePages = false;
3358     UseHugeTLBFS = false;
3359     UseSHM = false;
3360     return;
3361   }
3362 
3363   size_t large_page_size = Linux::setup_large_page_size();
3364   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3365 
3366   set_coredump_filter();
3367 }
3368 
3369 #ifndef SHM_HUGETLB
3370   #define SHM_HUGETLB 04000
3371 #endif
3372 
3373 #define shm_warning_format(format, ...)              \
3374   do {                                               \
3375     if (UseLargePages &&                             \
3376         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3377          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3378          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3379       warning(format, __VA_ARGS__);                  \
3380     }                                                \
3381   } while (0)
3382 
3383 #define shm_warning(str) shm_warning_format("%s", str)
3384 
3385 #define shm_warning_with_errno(str)                \
3386   do {                                             \
3387     int err = errno;                               \
3388     shm_warning_format(str " (error = %d)", err);  \
3389   } while (0)
3390 
3391 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3392   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3393 
3394   if (!is_size_aligned(alignment, SHMLBA)) {
3395     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3396     return NULL;
3397   }
3398 
3399   // To ensure that we get 'alignment' aligned memory from shmat,
3400   // we pre-reserve aligned virtual memory and then attach to that.
3401 
3402   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3403   if (pre_reserved_addr == NULL) {
3404     // Couldn't pre-reserve aligned memory.
3405     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3406     return NULL;
3407   }
3408 
3409   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3410   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3411 
3412   if ((intptr_t)addr == -1) {
3413     int err = errno;
3414     shm_warning_with_errno("Failed to attach shared memory.");
3415 
3416     assert(err != EACCES, "Unexpected error");
3417     assert(err != EIDRM,  "Unexpected error");
3418     assert(err != EINVAL, "Unexpected error");
3419 
3420     // Since we don't know if the kernel unmapped the pre-reserved memory area
3421     // we can't unmap it, since that would potentially unmap memory that was
3422     // mapped from other threads.
3423     return NULL;
3424   }
3425 
3426   return addr;
3427 }
3428 
3429 static char* shmat_at_address(int shmid, char* req_addr) {
3430   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3431     assert(false, "Requested address needs to be SHMLBA aligned");
3432     return NULL;
3433   }
3434 
3435   char* addr = (char*)shmat(shmid, req_addr, 0);
3436 
3437   if ((intptr_t)addr == -1) {
3438     shm_warning_with_errno("Failed to attach shared memory.");
3439     return NULL;
3440   }
3441 
3442   return addr;
3443 }
3444 
3445 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3446   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3447   if (req_addr != NULL) {
3448     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3449     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3450     return shmat_at_address(shmid, req_addr);
3451   }
3452 
3453   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3454   // return large page size aligned memory addresses when req_addr == NULL.
3455   // However, if the alignment is larger than the large page size, we have
3456   // to manually ensure that the memory returned is 'alignment' aligned.
3457   if (alignment > os::large_page_size()) {
3458     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3459     return shmat_with_alignment(shmid, bytes, alignment);
3460   } else {
3461     return shmat_at_address(shmid, NULL);
3462   }
3463 }
3464 
3465 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3466                                             char* req_addr, bool exec) {
3467   // "exec" is passed in but not used.  Creating the shared image for
3468   // the code cache doesn't have an SHM_X executable permission to check.
3469   assert(UseLargePages && UseSHM, "only for SHM large pages");
3470   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3471   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3472 
3473   if (!is_size_aligned(bytes, os::large_page_size())) {
3474     return NULL; // Fallback to small pages.
3475   }
3476 
3477   // Create a large shared memory region to attach to based on size.
3478   // Currently, size is the total size of the heap.
3479   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3480   if (shmid == -1) {
3481     // Possible reasons for shmget failure:
3482     // 1. shmmax is too small for Java heap.
3483     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3484     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3485     // 2. not enough large page memory.
3486     //    > check available large pages: cat /proc/meminfo
3487     //    > increase amount of large pages:
3488     //          echo new_value > /proc/sys/vm/nr_hugepages
3489     //      Note 1: different Linux may use different name for this property,
3490     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3491     //      Note 2: it's possible there's enough physical memory available but
3492     //            they are so fragmented after a long run that they can't
3493     //            coalesce into large pages. Try to reserve large pages when
3494     //            the system is still "fresh".
3495     shm_warning_with_errno("Failed to reserve shared memory.");
3496     return NULL;
3497   }
3498 
3499   // Attach to the region.
3500   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3501 
3502   // Remove shmid. If shmat() is successful, the actual shared memory segment
3503   // will be deleted when it's detached by shmdt() or when the process
3504   // terminates. If shmat() is not successful this will remove the shared
3505   // segment immediately.
3506   shmctl(shmid, IPC_RMID, NULL);
3507 
3508   return addr;
3509 }
3510 
3511 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3512                                         int error) {
3513   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3514 
3515   bool warn_on_failure = UseLargePages &&
3516       (!FLAG_IS_DEFAULT(UseLargePages) ||
3517        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3518        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3519 
3520   if (warn_on_failure) {
3521     char msg[128];
3522     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3523                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3524     warning("%s", msg);
3525   }
3526 }
3527 
3528 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3529                                                         char* req_addr,
3530                                                         bool exec) {
3531   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3532   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3533   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3534 
3535   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3536   char* addr = (char*)::mmap(req_addr, bytes, prot,
3537                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3538                              -1, 0);
3539 
3540   if (addr == MAP_FAILED) {
3541     warn_on_large_pages_failure(req_addr, bytes, errno);
3542     return NULL;
3543   }
3544 
3545   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3546 
3547   return addr;
3548 }
3549 
3550 // Reserve memory using mmap(MAP_HUGETLB).
3551 //  - bytes shall be a multiple of alignment.
3552 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3553 //  - alignment sets the alignment at which memory shall be allocated.
3554 //     It must be a multiple of allocation granularity.
3555 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3556 //  req_addr or NULL.
3557 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3558                                                          size_t alignment,
3559                                                          char* req_addr,
3560                                                          bool exec) {
3561   size_t large_page_size = os::large_page_size();
3562   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3563 
3564   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3565   assert(is_size_aligned(bytes, alignment), "Must be");
3566 
3567   // First reserve - but not commit - the address range in small pages.
3568   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3569 
3570   if (start == NULL) {
3571     return NULL;
3572   }
3573 
3574   assert(is_ptr_aligned(start, alignment), "Must be");
3575 
3576   char* end = start + bytes;
3577 
3578   // Find the regions of the allocated chunk that can be promoted to large pages.
3579   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3580   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3581 
3582   size_t lp_bytes = lp_end - lp_start;
3583 
3584   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3585 
3586   if (lp_bytes == 0) {
3587     // The mapped region doesn't even span the start and the end of a large page.
3588     // Fall back to allocate a non-special area.
3589     ::munmap(start, end - start);
3590     return NULL;
3591   }
3592 
3593   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3594 
3595   void* result;
3596 
3597   // Commit small-paged leading area.
3598   if (start != lp_start) {
3599     result = ::mmap(start, lp_start - start, prot,
3600                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3601                     -1, 0);
3602     if (result == MAP_FAILED) {
3603       ::munmap(lp_start, end - lp_start);
3604       return NULL;
3605     }
3606   }
3607 
3608   // Commit large-paged area.
3609   result = ::mmap(lp_start, lp_bytes, prot,
3610                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3611                   -1, 0);
3612   if (result == MAP_FAILED) {
3613     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3614     // If the mmap above fails, the large pages region will be unmapped and we
3615     // have regions before and after with small pages. Release these regions.
3616     //
3617     // |  mapped  |  unmapped  |  mapped  |
3618     // ^          ^            ^          ^
3619     // start      lp_start     lp_end     end
3620     //
3621     ::munmap(start, lp_start - start);
3622     ::munmap(lp_end, end - lp_end);
3623     return NULL;
3624   }
3625 
3626   // Commit small-paged trailing area.
3627   if (lp_end != end) {
3628     result = ::mmap(lp_end, end - lp_end, prot,
3629                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3630                     -1, 0);
3631     if (result == MAP_FAILED) {
3632       ::munmap(start, lp_end - start);
3633       return NULL;
3634     }
3635   }
3636 
3637   return start;
3638 }
3639 
3640 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3641                                                    size_t alignment,
3642                                                    char* req_addr,
3643                                                    bool exec) {
3644   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3645   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3646   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3647   assert(is_power_of_2(os::large_page_size()), "Must be");
3648   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3649 
3650   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3651     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3652   } else {
3653     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3654   }
3655 }
3656 
3657 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3658                                  char* req_addr, bool exec) {
3659   assert(UseLargePages, "only for large pages");
3660 
3661   char* addr;
3662   if (UseSHM) {
3663     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3664   } else {
3665     assert(UseHugeTLBFS, "must be");
3666     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3667   }
3668 
3669   if (addr != NULL) {
3670     if (UseNUMAInterleaving) {
3671       numa_make_global(addr, bytes);
3672     }
3673 
3674     // The memory is committed
3675     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3676   }
3677 
3678   return addr;
3679 }
3680 
3681 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3682   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3683   return shmdt(base) == 0;
3684 }
3685 
3686 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3687   return pd_release_memory(base, bytes);
3688 }
3689 
3690 bool os::release_memory_special(char* base, size_t bytes) {
3691   bool res;
3692   if (MemTracker::tracking_level() > NMT_minimal) {
3693     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3694     res = os::Linux::release_memory_special_impl(base, bytes);
3695     if (res) {
3696       tkr.record((address)base, bytes);
3697     }
3698 
3699   } else {
3700     res = os::Linux::release_memory_special_impl(base, bytes);
3701   }
3702   return res;
3703 }
3704 
3705 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3706   assert(UseLargePages, "only for large pages");
3707   bool res;
3708 
3709   if (UseSHM) {
3710     res = os::Linux::release_memory_special_shm(base, bytes);
3711   } else {
3712     assert(UseHugeTLBFS, "must be");
3713     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3714   }
3715   return res;
3716 }
3717 
3718 size_t os::large_page_size() {
3719   return _large_page_size;
3720 }
3721 
3722 // With SysV SHM the entire memory region must be allocated as shared
3723 // memory.
3724 // HugeTLBFS allows application to commit large page memory on demand.
3725 // However, when committing memory with HugeTLBFS fails, the region
3726 // that was supposed to be committed will lose the old reservation
3727 // and allow other threads to steal that memory region. Because of this
3728 // behavior we can't commit HugeTLBFS memory.
3729 bool os::can_commit_large_page_memory() {
3730   return UseTransparentHugePages;
3731 }
3732 
3733 bool os::can_execute_large_page_memory() {
3734   return UseTransparentHugePages || UseHugeTLBFS;
3735 }
3736 
3737 // Reserve memory at an arbitrary address, only if that area is
3738 // available (and not reserved for something else).
3739 
3740 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3741   const int max_tries = 10;
3742   char* base[max_tries];
3743   size_t size[max_tries];
3744   const size_t gap = 0x000000;
3745 
3746   // Assert only that the size is a multiple of the page size, since
3747   // that's all that mmap requires, and since that's all we really know
3748   // about at this low abstraction level.  If we need higher alignment,
3749   // we can either pass an alignment to this method or verify alignment
3750   // in one of the methods further up the call chain.  See bug 5044738.
3751   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3752 
3753   // Repeatedly allocate blocks until the block is allocated at the
3754   // right spot.
3755 
3756   // Linux mmap allows caller to pass an address as hint; give it a try first,
3757   // if kernel honors the hint then we can return immediately.
3758   char * addr = anon_mmap(requested_addr, bytes, false);
3759   if (addr == requested_addr) {
3760     return requested_addr;
3761   }
3762 
3763   if (addr != NULL) {
3764     // mmap() is successful but it fails to reserve at the requested address
3765     anon_munmap(addr, bytes);
3766   }
3767 
3768   int i;
3769   for (i = 0; i < max_tries; ++i) {
3770     base[i] = reserve_memory(bytes);
3771 
3772     if (base[i] != NULL) {
3773       // Is this the block we wanted?
3774       if (base[i] == requested_addr) {
3775         size[i] = bytes;
3776         break;
3777       }
3778 
3779       // Does this overlap the block we wanted? Give back the overlapped
3780       // parts and try again.
3781 
3782       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3783       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3784         unmap_memory(base[i], top_overlap);
3785         base[i] += top_overlap;
3786         size[i] = bytes - top_overlap;
3787       } else {
3788         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3789         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3790           unmap_memory(requested_addr, bottom_overlap);
3791           size[i] = bytes - bottom_overlap;
3792         } else {
3793           size[i] = bytes;
3794         }
3795       }
3796     }
3797   }
3798 
3799   // Give back the unused reserved pieces.
3800 
3801   for (int j = 0; j < i; ++j) {
3802     if (base[j] != NULL) {
3803       unmap_memory(base[j], size[j]);
3804     }
3805   }
3806 
3807   if (i < max_tries) {
3808     return requested_addr;
3809   } else {
3810     return NULL;
3811   }
3812 }
3813 
3814 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3815   return ::read(fd, buf, nBytes);
3816 }
3817 
3818 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3819   return ::pread(fd, buf, nBytes, offset);
3820 }
3821 
3822 // Short sleep, direct OS call.
3823 //
3824 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3825 // sched_yield(2) will actually give up the CPU:
3826 //
3827 //   * Alone on this pariticular CPU, keeps running.
3828 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3829 //     (pre 2.6.39).
3830 //
3831 // So calling this with 0 is an alternative.
3832 //
3833 void os::naked_short_sleep(jlong ms) {
3834   struct timespec req;
3835 
3836   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3837   req.tv_sec = 0;
3838   if (ms > 0) {
3839     req.tv_nsec = (ms % 1000) * 1000000;
3840   } else {
3841     req.tv_nsec = 1;
3842   }
3843 
3844   nanosleep(&req, NULL);
3845 
3846   return;
3847 }
3848 
3849 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3850 void os::infinite_sleep() {
3851   while (true) {    // sleep forever ...
3852     ::sleep(100);   // ... 100 seconds at a time
3853   }
3854 }
3855 
3856 // Used to convert frequent JVM_Yield() to nops
3857 bool os::dont_yield() {
3858   return DontYieldALot;
3859 }
3860 
3861 void os::naked_yield() {
3862   sched_yield();
3863 }
3864 
3865 ////////////////////////////////////////////////////////////////////////////////
3866 // thread priority support
3867 
3868 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3869 // only supports dynamic priority, static priority must be zero. For real-time
3870 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3871 // However, for large multi-threaded applications, SCHED_RR is not only slower
3872 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3873 // of 5 runs - Sep 2005).
3874 //
3875 // The following code actually changes the niceness of kernel-thread/LWP. It
3876 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3877 // not the entire user process, and user level threads are 1:1 mapped to kernel
3878 // threads. It has always been the case, but could change in the future. For
3879 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3880 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3881 
3882 int os::java_to_os_priority[CriticalPriority + 1] = {
3883   19,              // 0 Entry should never be used
3884 
3885    4,              // 1 MinPriority
3886    3,              // 2
3887    2,              // 3
3888 
3889    1,              // 4
3890    0,              // 5 NormPriority
3891   -1,              // 6
3892 
3893   -2,              // 7
3894   -3,              // 8
3895   -4,              // 9 NearMaxPriority
3896 
3897   -5,              // 10 MaxPriority
3898 
3899   -5               // 11 CriticalPriority
3900 };
3901 
3902 static int prio_init() {
3903   if (ThreadPriorityPolicy == 1) {
3904     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3905     // if effective uid is not root. Perhaps, a more elegant way of doing
3906     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3907     if (geteuid() != 0) {
3908       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3909         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3910       }
3911       ThreadPriorityPolicy = 0;
3912     }
3913   }
3914   if (UseCriticalJavaThreadPriority) {
3915     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3916   }
3917   return 0;
3918 }
3919 
3920 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3921   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3922 
3923   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3924   return (ret == 0) ? OS_OK : OS_ERR;
3925 }
3926 
3927 OSReturn os::get_native_priority(const Thread* const thread,
3928                                  int *priority_ptr) {
3929   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3930     *priority_ptr = java_to_os_priority[NormPriority];
3931     return OS_OK;
3932   }
3933 
3934   errno = 0;
3935   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3936   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3937 }
3938 
3939 // Hint to the underlying OS that a task switch would not be good.
3940 // Void return because it's a hint and can fail.
3941 void os::hint_no_preempt() {}
3942 
3943 ////////////////////////////////////////////////////////////////////////////////
3944 // suspend/resume support
3945 
3946 //  the low-level signal-based suspend/resume support is a remnant from the
3947 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3948 //  within hotspot. Now there is a single use-case for this:
3949 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3950 //      that runs in the watcher thread.
3951 //  The remaining code is greatly simplified from the more general suspension
3952 //  code that used to be used.
3953 //
3954 //  The protocol is quite simple:
3955 //  - suspend:
3956 //      - sends a signal to the target thread
3957 //      - polls the suspend state of the osthread using a yield loop
3958 //      - target thread signal handler (SR_handler) sets suspend state
3959 //        and blocks in sigsuspend until continued
3960 //  - resume:
3961 //      - sets target osthread state to continue
3962 //      - sends signal to end the sigsuspend loop in the SR_handler
3963 //
3964 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3965 
3966 static void resume_clear_context(OSThread *osthread) {
3967   osthread->set_ucontext(NULL);
3968   osthread->set_siginfo(NULL);
3969 }
3970 
3971 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3972                                  ucontext_t* context) {
3973   osthread->set_ucontext(context);
3974   osthread->set_siginfo(siginfo);
3975 }
3976 
3977 // Handler function invoked when a thread's execution is suspended or
3978 // resumed. We have to be careful that only async-safe functions are
3979 // called here (Note: most pthread functions are not async safe and
3980 // should be avoided.)
3981 //
3982 // Note: sigwait() is a more natural fit than sigsuspend() from an
3983 // interface point of view, but sigwait() prevents the signal hander
3984 // from being run. libpthread would get very confused by not having
3985 // its signal handlers run and prevents sigwait()'s use with the
3986 // mutex granting granting signal.
3987 //
3988 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3989 //
3990 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3991   // Save and restore errno to avoid confusing native code with EINTR
3992   // after sigsuspend.
3993   int old_errno = errno;
3994 
3995   Thread* thread = Thread::current_or_null_safe();
3996   assert(thread != NULL, "Missing current thread in SR_handler");
3997   OSThread* osthread = thread->osthread();
3998   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3999 
4000   os::SuspendResume::State current = osthread->sr.state();
4001   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4002     suspend_save_context(osthread, siginfo, context);
4003 
4004     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4005     os::SuspendResume::State state = osthread->sr.suspended();
4006     if (state == os::SuspendResume::SR_SUSPENDED) {
4007       sigset_t suspend_set;  // signals for sigsuspend()
4008       sigemptyset(&suspend_set);
4009       // get current set of blocked signals and unblock resume signal
4010       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4011       sigdelset(&suspend_set, SR_signum);
4012 
4013       sr_semaphore.signal();
4014       // wait here until we are resumed
4015       while (1) {
4016         sigsuspend(&suspend_set);
4017 
4018         os::SuspendResume::State result = osthread->sr.running();
4019         if (result == os::SuspendResume::SR_RUNNING) {
4020           sr_semaphore.signal();
4021           break;
4022         }
4023       }
4024 
4025     } else if (state == os::SuspendResume::SR_RUNNING) {
4026       // request was cancelled, continue
4027     } else {
4028       ShouldNotReachHere();
4029     }
4030 
4031     resume_clear_context(osthread);
4032   } else if (current == os::SuspendResume::SR_RUNNING) {
4033     // request was cancelled, continue
4034   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4035     // ignore
4036   } else {
4037     // ignore
4038   }
4039 
4040   errno = old_errno;
4041 }
4042 
4043 static int SR_initialize() {
4044   struct sigaction act;
4045   char *s;
4046 
4047   // Get signal number to use for suspend/resume
4048   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4049     int sig = ::strtol(s, 0, 10);
4050     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4051         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4052       SR_signum = sig;
4053     } else {
4054       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4055               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4056     }
4057   }
4058 
4059   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4060          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4061 
4062   sigemptyset(&SR_sigset);
4063   sigaddset(&SR_sigset, SR_signum);
4064 
4065   // Set up signal handler for suspend/resume
4066   act.sa_flags = SA_RESTART|SA_SIGINFO;
4067   act.sa_handler = (void (*)(int)) SR_handler;
4068 
4069   // SR_signum is blocked by default.
4070   // 4528190 - We also need to block pthread restart signal (32 on all
4071   // supported Linux platforms). Note that LinuxThreads need to block
4072   // this signal for all threads to work properly. So we don't have
4073   // to use hard-coded signal number when setting up the mask.
4074   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4075 
4076   if (sigaction(SR_signum, &act, 0) == -1) {
4077     return -1;
4078   }
4079 
4080   // Save signal flag
4081   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4082   return 0;
4083 }
4084 
4085 static int sr_notify(OSThread* osthread) {
4086   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4087   assert_status(status == 0, status, "pthread_kill");
4088   return status;
4089 }
4090 
4091 // "Randomly" selected value for how long we want to spin
4092 // before bailing out on suspending a thread, also how often
4093 // we send a signal to a thread we want to resume
4094 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4095 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4096 
4097 // returns true on success and false on error - really an error is fatal
4098 // but this seems the normal response to library errors
4099 static bool do_suspend(OSThread* osthread) {
4100   assert(osthread->sr.is_running(), "thread should be running");
4101   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4102 
4103   // mark as suspended and send signal
4104   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4105     // failed to switch, state wasn't running?
4106     ShouldNotReachHere();
4107     return false;
4108   }
4109 
4110   if (sr_notify(osthread) != 0) {
4111     ShouldNotReachHere();
4112   }
4113 
4114   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4115   while (true) {
4116     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4117       break;
4118     } else {
4119       // timeout
4120       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4121       if (cancelled == os::SuspendResume::SR_RUNNING) {
4122         return false;
4123       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4124         // make sure that we consume the signal on the semaphore as well
4125         sr_semaphore.wait();
4126         break;
4127       } else {
4128         ShouldNotReachHere();
4129         return false;
4130       }
4131     }
4132   }
4133 
4134   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4135   return true;
4136 }
4137 
4138 static void do_resume(OSThread* osthread) {
4139   assert(osthread->sr.is_suspended(), "thread should be suspended");
4140   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4141 
4142   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4143     // failed to switch to WAKEUP_REQUEST
4144     ShouldNotReachHere();
4145     return;
4146   }
4147 
4148   while (true) {
4149     if (sr_notify(osthread) == 0) {
4150       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4151         if (osthread->sr.is_running()) {
4152           return;
4153         }
4154       }
4155     } else {
4156       ShouldNotReachHere();
4157     }
4158   }
4159 
4160   guarantee(osthread->sr.is_running(), "Must be running!");
4161 }
4162 
4163 ///////////////////////////////////////////////////////////////////////////////////
4164 // signal handling (except suspend/resume)
4165 
4166 // This routine may be used by user applications as a "hook" to catch signals.
4167 // The user-defined signal handler must pass unrecognized signals to this
4168 // routine, and if it returns true (non-zero), then the signal handler must
4169 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4170 // routine will never retun false (zero), but instead will execute a VM panic
4171 // routine kill the process.
4172 //
4173 // If this routine returns false, it is OK to call it again.  This allows
4174 // the user-defined signal handler to perform checks either before or after
4175 // the VM performs its own checks.  Naturally, the user code would be making
4176 // a serious error if it tried to handle an exception (such as a null check
4177 // or breakpoint) that the VM was generating for its own correct operation.
4178 //
4179 // This routine may recognize any of the following kinds of signals:
4180 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4181 // It should be consulted by handlers for any of those signals.
4182 //
4183 // The caller of this routine must pass in the three arguments supplied
4184 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4185 // field of the structure passed to sigaction().  This routine assumes that
4186 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4187 //
4188 // Note that the VM will print warnings if it detects conflicting signal
4189 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4190 //
4191 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4192                                                  siginfo_t* siginfo,
4193                                                  void* ucontext,
4194                                                  int abort_if_unrecognized);
4195 
4196 void signalHandler(int sig, siginfo_t* info, void* uc) {
4197   assert(info != NULL && uc != NULL, "it must be old kernel");
4198   int orig_errno = errno;  // Preserve errno value over signal handler.
4199   JVM_handle_linux_signal(sig, info, uc, true);
4200   errno = orig_errno;
4201 }
4202 
4203 
4204 // This boolean allows users to forward their own non-matching signals
4205 // to JVM_handle_linux_signal, harmlessly.
4206 bool os::Linux::signal_handlers_are_installed = false;
4207 
4208 // For signal-chaining
4209 struct sigaction sigact[NSIG];
4210 uint64_t sigs = 0;
4211 #if (64 < NSIG-1)
4212 #error "Not all signals can be encoded in sigs. Adapt its type!"
4213 #endif
4214 bool os::Linux::libjsig_is_loaded = false;
4215 typedef struct sigaction *(*get_signal_t)(int);
4216 get_signal_t os::Linux::get_signal_action = NULL;
4217 
4218 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4219   struct sigaction *actp = NULL;
4220 
4221   if (libjsig_is_loaded) {
4222     // Retrieve the old signal handler from libjsig
4223     actp = (*get_signal_action)(sig);
4224   }
4225   if (actp == NULL) {
4226     // Retrieve the preinstalled signal handler from jvm
4227     actp = get_preinstalled_handler(sig);
4228   }
4229 
4230   return actp;
4231 }
4232 
4233 static bool call_chained_handler(struct sigaction *actp, int sig,
4234                                  siginfo_t *siginfo, void *context) {
4235   // Call the old signal handler
4236   if (actp->sa_handler == SIG_DFL) {
4237     // It's more reasonable to let jvm treat it as an unexpected exception
4238     // instead of taking the default action.
4239     return false;
4240   } else if (actp->sa_handler != SIG_IGN) {
4241     if ((actp->sa_flags & SA_NODEFER) == 0) {
4242       // automaticlly block the signal
4243       sigaddset(&(actp->sa_mask), sig);
4244     }
4245 
4246     sa_handler_t hand = NULL;
4247     sa_sigaction_t sa = NULL;
4248     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4249     // retrieve the chained handler
4250     if (siginfo_flag_set) {
4251       sa = actp->sa_sigaction;
4252     } else {
4253       hand = actp->sa_handler;
4254     }
4255 
4256     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4257       actp->sa_handler = SIG_DFL;
4258     }
4259 
4260     // try to honor the signal mask
4261     sigset_t oset;
4262     sigemptyset(&oset);
4263     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4264 
4265     // call into the chained handler
4266     if (siginfo_flag_set) {
4267       (*sa)(sig, siginfo, context);
4268     } else {
4269       (*hand)(sig);
4270     }
4271 
4272     // restore the signal mask
4273     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4274   }
4275   // Tell jvm's signal handler the signal is taken care of.
4276   return true;
4277 }
4278 
4279 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4280   bool chained = false;
4281   // signal-chaining
4282   if (UseSignalChaining) {
4283     struct sigaction *actp = get_chained_signal_action(sig);
4284     if (actp != NULL) {
4285       chained = call_chained_handler(actp, sig, siginfo, context);
4286     }
4287   }
4288   return chained;
4289 }
4290 
4291 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4292   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4293     return &sigact[sig];
4294   }
4295   return NULL;
4296 }
4297 
4298 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4299   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4300   sigact[sig] = oldAct;
4301   sigs |= (uint64_t)1 << (sig-1);
4302 }
4303 
4304 // for diagnostic
4305 int sigflags[NSIG];
4306 
4307 int os::Linux::get_our_sigflags(int sig) {
4308   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4309   return sigflags[sig];
4310 }
4311 
4312 void os::Linux::set_our_sigflags(int sig, int flags) {
4313   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4314   if (sig > 0 && sig < NSIG) {
4315     sigflags[sig] = flags;
4316   }
4317 }
4318 
4319 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4320   // Check for overwrite.
4321   struct sigaction oldAct;
4322   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4323 
4324   void* oldhand = oldAct.sa_sigaction
4325                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4326                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4327   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4328       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4329       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4330     if (AllowUserSignalHandlers || !set_installed) {
4331       // Do not overwrite; user takes responsibility to forward to us.
4332       return;
4333     } else if (UseSignalChaining) {
4334       // save the old handler in jvm
4335       save_preinstalled_handler(sig, oldAct);
4336       // libjsig also interposes the sigaction() call below and saves the
4337       // old sigaction on it own.
4338     } else {
4339       fatal("Encountered unexpected pre-existing sigaction handler "
4340             "%#lx for signal %d.", (long)oldhand, sig);
4341     }
4342   }
4343 
4344   struct sigaction sigAct;
4345   sigfillset(&(sigAct.sa_mask));
4346   sigAct.sa_handler = SIG_DFL;
4347   if (!set_installed) {
4348     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4349   } else {
4350     sigAct.sa_sigaction = signalHandler;
4351     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4352   }
4353   // Save flags, which are set by ours
4354   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4355   sigflags[sig] = sigAct.sa_flags;
4356 
4357   int ret = sigaction(sig, &sigAct, &oldAct);
4358   assert(ret == 0, "check");
4359 
4360   void* oldhand2  = oldAct.sa_sigaction
4361                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4362                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4363   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4364 }
4365 
4366 // install signal handlers for signals that HotSpot needs to
4367 // handle in order to support Java-level exception handling.
4368 
4369 void os::Linux::install_signal_handlers() {
4370   if (!signal_handlers_are_installed) {
4371     signal_handlers_are_installed = true;
4372 
4373     // signal-chaining
4374     typedef void (*signal_setting_t)();
4375     signal_setting_t begin_signal_setting = NULL;
4376     signal_setting_t end_signal_setting = NULL;
4377     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4378                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4379     if (begin_signal_setting != NULL) {
4380       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4381                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4382       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4383                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4384       libjsig_is_loaded = true;
4385       assert(UseSignalChaining, "should enable signal-chaining");
4386     }
4387     if (libjsig_is_loaded) {
4388       // Tell libjsig jvm is setting signal handlers
4389       (*begin_signal_setting)();
4390     }
4391 
4392     set_signal_handler(SIGSEGV, true);
4393     set_signal_handler(SIGPIPE, true);
4394     set_signal_handler(SIGBUS, true);
4395     set_signal_handler(SIGILL, true);
4396     set_signal_handler(SIGFPE, true);
4397 #if defined(PPC64)
4398     set_signal_handler(SIGTRAP, true);
4399 #endif
4400     set_signal_handler(SIGXFSZ, true);
4401 
4402     if (libjsig_is_loaded) {
4403       // Tell libjsig jvm finishes setting signal handlers
4404       (*end_signal_setting)();
4405     }
4406 
4407     // We don't activate signal checker if libjsig is in place, we trust ourselves
4408     // and if UserSignalHandler is installed all bets are off.
4409     // Log that signal checking is off only if -verbose:jni is specified.
4410     if (CheckJNICalls) {
4411       if (libjsig_is_loaded) {
4412         if (PrintJNIResolving) {
4413           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4414         }
4415         check_signals = false;
4416       }
4417       if (AllowUserSignalHandlers) {
4418         if (PrintJNIResolving) {
4419           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4420         }
4421         check_signals = false;
4422       }
4423     }
4424   }
4425 }
4426 
4427 // This is the fastest way to get thread cpu time on Linux.
4428 // Returns cpu time (user+sys) for any thread, not only for current.
4429 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4430 // It might work on 2.6.10+ with a special kernel/glibc patch.
4431 // For reference, please, see IEEE Std 1003.1-2004:
4432 //   http://www.unix.org/single_unix_specification
4433 
4434 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4435   struct timespec tp;
4436   int rc = os::Linux::clock_gettime(clockid, &tp);
4437   assert(rc == 0, "clock_gettime is expected to return 0 code");
4438 
4439   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4440 }
4441 
4442 void os::Linux::initialize_os_info() {
4443   assert(_os_version == 0, "OS info already initialized");
4444 
4445   struct utsname _uname;
4446 
4447   uint32_t major;
4448   uint32_t minor;
4449   uint32_t fix;
4450 
4451   int rc;
4452 
4453   // Kernel version is unknown if
4454   // verification below fails.
4455   _os_version = 0x01000000;
4456 
4457   rc = uname(&_uname);
4458   if (rc != -1) {
4459 
4460     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4461     if (rc == 3) {
4462 
4463       if (major < 256 && minor < 256 && fix < 256) {
4464         // Kernel version format is as expected,
4465         // set it overriding unknown state.
4466         _os_version = (major << 16) |
4467                       (minor << 8 ) |
4468                       (fix   << 0 ) ;
4469       }
4470     }
4471   }
4472 }
4473 
4474 uint32_t os::Linux::os_version() {
4475   assert(_os_version != 0, "not initialized");
4476   return _os_version & 0x00FFFFFF;
4477 }
4478 
4479 bool os::Linux::os_version_is_known() {
4480   assert(_os_version != 0, "not initialized");
4481   return _os_version & 0x01000000 ? false : true;
4482 }
4483 
4484 /////
4485 // glibc on Linux platform uses non-documented flag
4486 // to indicate, that some special sort of signal
4487 // trampoline is used.
4488 // We will never set this flag, and we should
4489 // ignore this flag in our diagnostic
4490 #ifdef SIGNIFICANT_SIGNAL_MASK
4491   #undef SIGNIFICANT_SIGNAL_MASK
4492 #endif
4493 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4494 
4495 static const char* get_signal_handler_name(address handler,
4496                                            char* buf, int buflen) {
4497   int offset = 0;
4498   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4499   if (found) {
4500     // skip directory names
4501     const char *p1, *p2;
4502     p1 = buf;
4503     size_t len = strlen(os::file_separator());
4504     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4505     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4506   } else {
4507     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4508   }
4509   return buf;
4510 }
4511 
4512 static void print_signal_handler(outputStream* st, int sig,
4513                                  char* buf, size_t buflen) {
4514   struct sigaction sa;
4515 
4516   sigaction(sig, NULL, &sa);
4517 
4518   // See comment for SIGNIFICANT_SIGNAL_MASK define
4519   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4520 
4521   st->print("%s: ", os::exception_name(sig, buf, buflen));
4522 
4523   address handler = (sa.sa_flags & SA_SIGINFO)
4524     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4525     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4526 
4527   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4528     st->print("SIG_DFL");
4529   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4530     st->print("SIG_IGN");
4531   } else {
4532     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4533   }
4534 
4535   st->print(", sa_mask[0]=");
4536   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4537 
4538   address rh = VMError::get_resetted_sighandler(sig);
4539   // May be, handler was resetted by VMError?
4540   if (rh != NULL) {
4541     handler = rh;
4542     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4543   }
4544 
4545   st->print(", sa_flags=");
4546   os::Posix::print_sa_flags(st, sa.sa_flags);
4547 
4548   // Check: is it our handler?
4549   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4550       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4551     // It is our signal handler
4552     // check for flags, reset system-used one!
4553     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4554       st->print(
4555                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4556                 os::Linux::get_our_sigflags(sig));
4557     }
4558   }
4559   st->cr();
4560 }
4561 
4562 
4563 #define DO_SIGNAL_CHECK(sig)                      \
4564   do {                                            \
4565     if (!sigismember(&check_signal_done, sig)) {  \
4566       os::Linux::check_signal_handler(sig);       \
4567     }                                             \
4568   } while (0)
4569 
4570 // This method is a periodic task to check for misbehaving JNI applications
4571 // under CheckJNI, we can add any periodic checks here
4572 
4573 void os::run_periodic_checks() {
4574   if (check_signals == false) return;
4575 
4576   // SEGV and BUS if overridden could potentially prevent
4577   // generation of hs*.log in the event of a crash, debugging
4578   // such a case can be very challenging, so we absolutely
4579   // check the following for a good measure:
4580   DO_SIGNAL_CHECK(SIGSEGV);
4581   DO_SIGNAL_CHECK(SIGILL);
4582   DO_SIGNAL_CHECK(SIGFPE);
4583   DO_SIGNAL_CHECK(SIGBUS);
4584   DO_SIGNAL_CHECK(SIGPIPE);
4585   DO_SIGNAL_CHECK(SIGXFSZ);
4586 #if defined(PPC64)
4587   DO_SIGNAL_CHECK(SIGTRAP);
4588 #endif
4589 
4590   // ReduceSignalUsage allows the user to override these handlers
4591   // see comments at the very top and jvm_solaris.h
4592   if (!ReduceSignalUsage) {
4593     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4594     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4595     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4596     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4597   }
4598 
4599   DO_SIGNAL_CHECK(SR_signum);
4600 }
4601 
4602 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4603 
4604 static os_sigaction_t os_sigaction = NULL;
4605 
4606 void os::Linux::check_signal_handler(int sig) {
4607   char buf[O_BUFLEN];
4608   address jvmHandler = NULL;
4609 
4610 
4611   struct sigaction act;
4612   if (os_sigaction == NULL) {
4613     // only trust the default sigaction, in case it has been interposed
4614     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4615     if (os_sigaction == NULL) return;
4616   }
4617 
4618   os_sigaction(sig, (struct sigaction*)NULL, &act);
4619 
4620 
4621   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4622 
4623   address thisHandler = (act.sa_flags & SA_SIGINFO)
4624     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4625     : CAST_FROM_FN_PTR(address, act.sa_handler);
4626 
4627 
4628   switch (sig) {
4629   case SIGSEGV:
4630   case SIGBUS:
4631   case SIGFPE:
4632   case SIGPIPE:
4633   case SIGILL:
4634   case SIGXFSZ:
4635     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4636     break;
4637 
4638   case SHUTDOWN1_SIGNAL:
4639   case SHUTDOWN2_SIGNAL:
4640   case SHUTDOWN3_SIGNAL:
4641   case BREAK_SIGNAL:
4642     jvmHandler = (address)user_handler();
4643     break;
4644 
4645   default:
4646     if (sig == SR_signum) {
4647       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4648     } else {
4649       return;
4650     }
4651     break;
4652   }
4653 
4654   if (thisHandler != jvmHandler) {
4655     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4656     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4657     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4658     // No need to check this sig any longer
4659     sigaddset(&check_signal_done, sig);
4660     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4661     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4662       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4663                     exception_name(sig, buf, O_BUFLEN));
4664     }
4665   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4666     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4667     tty->print("expected:");
4668     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4669     tty->cr();
4670     tty->print("  found:");
4671     os::Posix::print_sa_flags(tty, act.sa_flags);
4672     tty->cr();
4673     // No need to check this sig any longer
4674     sigaddset(&check_signal_done, sig);
4675   }
4676 
4677   // Dump all the signal
4678   if (sigismember(&check_signal_done, sig)) {
4679     print_signal_handlers(tty, buf, O_BUFLEN);
4680   }
4681 }
4682 
4683 extern void report_error(char* file_name, int line_no, char* title,
4684                          char* format, ...);
4685 
4686 // this is called _before_ the most of global arguments have been parsed
4687 void os::init(void) {
4688   char dummy;   // used to get a guess on initial stack address
4689 //  first_hrtime = gethrtime();
4690 
4691   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4692 
4693   init_random(1234567);
4694 
4695   ThreadCritical::initialize();
4696 
4697   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4698   if (Linux::page_size() == -1) {
4699     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4700           os::strerror(errno));
4701   }
4702   init_page_sizes((size_t) Linux::page_size());
4703 
4704   Linux::initialize_system_info();
4705 
4706   Linux::initialize_os_info();
4707 
4708   // main_thread points to the aboriginal thread
4709   Linux::_main_thread = pthread_self();
4710 
4711   Linux::clock_init();
4712   initial_time_count = javaTimeNanos();
4713 
4714   // pthread_condattr initialization for monotonic clock
4715   int status;
4716   pthread_condattr_t* _condattr = os::Linux::condAttr();
4717   if ((status = pthread_condattr_init(_condattr)) != 0) {
4718     fatal("pthread_condattr_init: %s", os::strerror(status));
4719   }
4720   // Only set the clock if CLOCK_MONOTONIC is available
4721   if (os::supports_monotonic_clock()) {
4722     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4723       if (status == EINVAL) {
4724         warning("Unable to use monotonic clock with relative timed-waits" \
4725                 " - changes to the time-of-day clock may have adverse affects");
4726       } else {
4727         fatal("pthread_condattr_setclock: %s", os::strerror(status));
4728       }
4729     }
4730   }
4731   // else it defaults to CLOCK_REALTIME
4732 
4733   // retrieve entry point for pthread_setname_np
4734   Linux::_pthread_setname_np =
4735     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4736 
4737 }
4738 
4739 // To install functions for atexit system call
4740 extern "C" {
4741   static void perfMemory_exit_helper() {
4742     perfMemory_exit();
4743   }
4744 }
4745 
4746 // this is called _after_ the global arguments have been parsed
4747 jint os::init_2(void) {
4748   Linux::fast_thread_clock_init();
4749 
4750   // Allocate a single page and mark it as readable for safepoint polling
4751   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4752   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4753 
4754   os::set_polling_page(polling_page);
4755   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4756 
4757   if (!UseMembar) {
4758     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4759     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4760     os::set_memory_serialize_page(mem_serialize_page);
4761     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4762   }
4763 
4764   // initialize suspend/resume support - must do this before signal_sets_init()
4765   if (SR_initialize() != 0) {
4766     perror("SR_initialize failed");
4767     return JNI_ERR;
4768   }
4769 
4770   Linux::signal_sets_init();
4771   Linux::install_signal_handlers();
4772 
4773   // Check minimum allowable stack size for thread creation and to initialize
4774   // the java system classes, including StackOverflowError - depends on page
4775   // size.  Add a page for compiler2 recursion in main thread.
4776   // Add in 2*BytesPerWord times page size to account for VM stack during
4777   // class initialization depending on 32 or 64 bit VM.
4778   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4779                                       JavaThread::stack_guard_zone_size() +
4780                                       JavaThread::stack_shadow_zone_size() +
4781                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4782 
4783   size_t threadStackSizeInBytes = ThreadStackSize * K;
4784   if (threadStackSizeInBytes != 0 &&
4785       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4786     tty->print_cr("\nThe stack size specified is too small, "
4787                   "Specify at least " SIZE_FORMAT "k",
4788                   os::Linux::min_stack_allowed/ K);
4789     return JNI_ERR;
4790   }
4791 
4792   // Make the stack size a multiple of the page size so that
4793   // the yellow/red zones can be guarded.
4794   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4795                                                 vm_page_size()));
4796 
4797   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4798 
4799 #if defined(IA32)
4800   workaround_expand_exec_shield_cs_limit();
4801 #endif
4802 
4803   Linux::libpthread_init();
4804   log_info(os)("HotSpot is running with %s, %s",
4805                Linux::glibc_version(), Linux::libpthread_version());
4806 
4807   if (UseNUMA) {
4808     if (!Linux::libnuma_init()) {
4809       UseNUMA = false;
4810     } else {
4811       if ((Linux::numa_max_node() < 1)) {
4812         // There's only one node(they start from 0), disable NUMA.
4813         UseNUMA = false;
4814       }
4815     }
4816     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4817     // we can make the adaptive lgrp chunk resizing work. If the user specified
4818     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4819     // disable adaptive resizing.
4820     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4821       if (FLAG_IS_DEFAULT(UseNUMA)) {
4822         UseNUMA = false;
4823       } else {
4824         if (FLAG_IS_DEFAULT(UseLargePages) &&
4825             FLAG_IS_DEFAULT(UseSHM) &&
4826             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4827           UseLargePages = false;
4828         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4829           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4830           UseAdaptiveSizePolicy = false;
4831           UseAdaptiveNUMAChunkSizing = false;
4832         }
4833       }
4834     }
4835     if (!UseNUMA && ForceNUMA) {
4836       UseNUMA = true;
4837     }
4838   }
4839 
4840   if (MaxFDLimit) {
4841     // set the number of file descriptors to max. print out error
4842     // if getrlimit/setrlimit fails but continue regardless.
4843     struct rlimit nbr_files;
4844     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4845     if (status != 0) {
4846       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4847     } else {
4848       nbr_files.rlim_cur = nbr_files.rlim_max;
4849       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4850       if (status != 0) {
4851         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4852       }
4853     }
4854   }
4855 
4856   // Initialize lock used to serialize thread creation (see os::create_thread)
4857   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4858 
4859   // at-exit methods are called in the reverse order of their registration.
4860   // atexit functions are called on return from main or as a result of a
4861   // call to exit(3C). There can be only 32 of these functions registered
4862   // and atexit() does not set errno.
4863 
4864   if (PerfAllowAtExitRegistration) {
4865     // only register atexit functions if PerfAllowAtExitRegistration is set.
4866     // atexit functions can be delayed until process exit time, which
4867     // can be problematic for embedded VM situations. Embedded VMs should
4868     // call DestroyJavaVM() to assure that VM resources are released.
4869 
4870     // note: perfMemory_exit_helper atexit function may be removed in
4871     // the future if the appropriate cleanup code can be added to the
4872     // VM_Exit VMOperation's doit method.
4873     if (atexit(perfMemory_exit_helper) != 0) {
4874       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4875     }
4876   }
4877 
4878   // initialize thread priority policy
4879   prio_init();
4880 
4881   return JNI_OK;
4882 }
4883 
4884 // Mark the polling page as unreadable
4885 void os::make_polling_page_unreadable(void) {
4886   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4887     fatal("Could not disable polling page");
4888   }
4889 }
4890 
4891 // Mark the polling page as readable
4892 void os::make_polling_page_readable(void) {
4893   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4894     fatal("Could not enable polling page");
4895   }
4896 }
4897 
4898 // older glibc versions don't have this macro (which expands to
4899 // an optimized bit-counting function) so we have to roll our own
4900 #ifndef CPU_COUNT
4901 
4902 static int _cpu_count(const cpu_set_t* cpus) {
4903   int count = 0;
4904   // only look up to the number of configured processors
4905   for (int i = 0; i < os::processor_count(); i++) {
4906     if (CPU_ISSET(i, cpus)) {
4907       count++;
4908     }
4909   }
4910   return count;
4911 }
4912 
4913 #define CPU_COUNT(cpus) _cpu_count(cpus)
4914 
4915 #endif // CPU_COUNT
4916 
4917 // Get the current number of available processors for this process.
4918 // This value can change at any time during a process's lifetime.
4919 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4920 // If it appears there may be more than 1024 processors then we do a
4921 // dynamic check - see 6515172 for details.
4922 // If anything goes wrong we fallback to returning the number of online
4923 // processors - which can be greater than the number available to the process.
4924 int os::active_processor_count() {
4925   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4926   cpu_set_t* cpus_p = &cpus;
4927   int cpus_size = sizeof(cpu_set_t);
4928 
4929   int configured_cpus = processor_count();  // upper bound on available cpus
4930   int cpu_count = 0;
4931 
4932 // old build platforms may not support dynamic cpu sets
4933 #ifdef CPU_ALLOC
4934 
4935   // To enable easy testing of the dynamic path on different platforms we
4936   // introduce a diagnostic flag: UseCpuAllocPath
4937   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4938     // kernel may use a mask bigger than cpu_set_t
4939     log_trace(os)("active_processor_count: using dynamic path %s"
4940                   "- configured processors: %d",
4941                   UseCpuAllocPath ? "(forced) " : "",
4942                   configured_cpus);
4943     cpus_p = CPU_ALLOC(configured_cpus);
4944     if (cpus_p != NULL) {
4945       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4946       // zero it just to be safe
4947       CPU_ZERO_S(cpus_size, cpus_p);
4948     }
4949     else {
4950        // failed to allocate so fallback to online cpus
4951        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4952        log_trace(os)("active_processor_count: "
4953                      "CPU_ALLOC failed (%s) - using "
4954                      "online processor count: %d",
4955                      os::strerror(errno), online_cpus);
4956        return online_cpus;
4957     }
4958   }
4959   else {
4960     log_trace(os)("active_processor_count: using static path - configured processors: %d",
4961                   configured_cpus);
4962   }
4963 #else // CPU_ALLOC
4964 // these stubs won't be executed
4965 #define CPU_COUNT_S(size, cpus) -1
4966 #define CPU_FREE(cpus)
4967 
4968   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4969                 configured_cpus);
4970 #endif // CPU_ALLOC
4971 
4972   // pid 0 means the current thread - which we have to assume represents the process
4973   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
4974     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4975       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
4976     }
4977     else {
4978       cpu_count = CPU_COUNT(cpus_p);
4979     }
4980     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
4981   }
4982   else {
4983     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
4984     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
4985             "which may exceed available processors", os::strerror(errno), cpu_count);
4986   }
4987 
4988   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4989     CPU_FREE(cpus_p);
4990   }
4991 
4992   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
4993   return cpu_count;
4994 }
4995 
4996 void os::set_native_thread_name(const char *name) {
4997   if (Linux::_pthread_setname_np) {
4998     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4999     snprintf(buf, sizeof(buf), "%s", name);
5000     buf[sizeof(buf) - 1] = '\0';
5001     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5002     // ERANGE should not happen; all other errors should just be ignored.
5003     assert(rc != ERANGE, "pthread_setname_np failed");
5004   }
5005 }
5006 
5007 bool os::distribute_processes(uint length, uint* distribution) {
5008   // Not yet implemented.
5009   return false;
5010 }
5011 
5012 bool os::bind_to_processor(uint processor_id) {
5013   // Not yet implemented.
5014   return false;
5015 }
5016 
5017 ///
5018 
5019 void os::SuspendedThreadTask::internal_do_task() {
5020   if (do_suspend(_thread->osthread())) {
5021     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5022     do_task(context);
5023     do_resume(_thread->osthread());
5024   }
5025 }
5026 
5027 class PcFetcher : public os::SuspendedThreadTask {
5028  public:
5029   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5030   ExtendedPC result();
5031  protected:
5032   void do_task(const os::SuspendedThreadTaskContext& context);
5033  private:
5034   ExtendedPC _epc;
5035 };
5036 
5037 ExtendedPC PcFetcher::result() {
5038   guarantee(is_done(), "task is not done yet.");
5039   return _epc;
5040 }
5041 
5042 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5043   Thread* thread = context.thread();
5044   OSThread* osthread = thread->osthread();
5045   if (osthread->ucontext() != NULL) {
5046     _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
5047   } else {
5048     // NULL context is unexpected, double-check this is the VMThread
5049     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5050   }
5051 }
5052 
5053 // Suspends the target using the signal mechanism and then grabs the PC before
5054 // resuming the target. Used by the flat-profiler only
5055 ExtendedPC os::get_thread_pc(Thread* thread) {
5056   // Make sure that it is called by the watcher for the VMThread
5057   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5058   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5059 
5060   PcFetcher fetcher(thread);
5061   fetcher.run();
5062   return fetcher.result();
5063 }
5064 
5065 ////////////////////////////////////////////////////////////////////////////////
5066 // debug support
5067 
5068 bool os::find(address addr, outputStream* st) {
5069   Dl_info dlinfo;
5070   memset(&dlinfo, 0, sizeof(dlinfo));
5071   if (dladdr(addr, &dlinfo) != 0) {
5072     st->print(PTR_FORMAT ": ", p2i(addr));
5073     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5074       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5075                 p2i(addr) - p2i(dlinfo.dli_saddr));
5076     } else if (dlinfo.dli_fbase != NULL) {
5077       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5078     } else {
5079       st->print("<absolute address>");
5080     }
5081     if (dlinfo.dli_fname != NULL) {
5082       st->print(" in %s", dlinfo.dli_fname);
5083     }
5084     if (dlinfo.dli_fbase != NULL) {
5085       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5086     }
5087     st->cr();
5088 
5089     if (Verbose) {
5090       // decode some bytes around the PC
5091       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5092       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5093       address       lowest = (address) dlinfo.dli_sname;
5094       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5095       if (begin < lowest)  begin = lowest;
5096       Dl_info dlinfo2;
5097       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5098           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5099         end = (address) dlinfo2.dli_saddr;
5100       }
5101       Disassembler::decode(begin, end, st);
5102     }
5103     return true;
5104   }
5105   return false;
5106 }
5107 
5108 ////////////////////////////////////////////////////////////////////////////////
5109 // misc
5110 
5111 // This does not do anything on Linux. This is basically a hook for being
5112 // able to use structured exception handling (thread-local exception filters)
5113 // on, e.g., Win32.
5114 void
5115 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5116                          JavaCallArguments* args, Thread* thread) {
5117   f(value, method, args, thread);
5118 }
5119 
5120 void os::print_statistics() {
5121 }
5122 
5123 bool os::message_box(const char* title, const char* message) {
5124   int i;
5125   fdStream err(defaultStream::error_fd());
5126   for (i = 0; i < 78; i++) err.print_raw("=");
5127   err.cr();
5128   err.print_raw_cr(title);
5129   for (i = 0; i < 78; i++) err.print_raw("-");
5130   err.cr();
5131   err.print_raw_cr(message);
5132   for (i = 0; i < 78; i++) err.print_raw("=");
5133   err.cr();
5134 
5135   char buf[16];
5136   // Prevent process from exiting upon "read error" without consuming all CPU
5137   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5138 
5139   return buf[0] == 'y' || buf[0] == 'Y';
5140 }
5141 
5142 int os::stat(const char *path, struct stat *sbuf) {
5143   char pathbuf[MAX_PATH];
5144   if (strlen(path) > MAX_PATH - 1) {
5145     errno = ENAMETOOLONG;
5146     return -1;
5147   }
5148   os::native_path(strcpy(pathbuf, path));
5149   return ::stat(pathbuf, sbuf);
5150 }
5151 
5152 bool os::check_heap(bool force) {
5153   return true;
5154 }
5155 
5156 // Is a (classpath) directory empty?
5157 bool os::dir_is_empty(const char* path) {
5158   DIR *dir = NULL;
5159   struct dirent *ptr;
5160 
5161   dir = opendir(path);
5162   if (dir == NULL) return true;
5163 
5164   // Scan the directory
5165   bool result = true;
5166   char buf[sizeof(struct dirent) + MAX_PATH];
5167   while (result && (ptr = ::readdir(dir)) != NULL) {
5168     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5169       result = false;
5170     }
5171   }
5172   closedir(dir);
5173   return result;
5174 }
5175 
5176 // This code originates from JDK's sysOpen and open64_w
5177 // from src/solaris/hpi/src/system_md.c
5178 
5179 int os::open(const char *path, int oflag, int mode) {
5180   if (strlen(path) > MAX_PATH - 1) {
5181     errno = ENAMETOOLONG;
5182     return -1;
5183   }
5184 
5185   // All file descriptors that are opened in the Java process and not
5186   // specifically destined for a subprocess should have the close-on-exec
5187   // flag set.  If we don't set it, then careless 3rd party native code
5188   // might fork and exec without closing all appropriate file descriptors
5189   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5190   // turn might:
5191   //
5192   // - cause end-of-file to fail to be detected on some file
5193   //   descriptors, resulting in mysterious hangs, or
5194   //
5195   // - might cause an fopen in the subprocess to fail on a system
5196   //   suffering from bug 1085341.
5197   //
5198   // (Yes, the default setting of the close-on-exec flag is a Unix
5199   // design flaw)
5200   //
5201   // See:
5202   // 1085341: 32-bit stdio routines should support file descriptors >255
5203   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5204   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5205   //
5206   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5207   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5208   // because it saves a system call and removes a small window where the flag
5209   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5210   // and we fall back to using FD_CLOEXEC (see below).
5211 #ifdef O_CLOEXEC
5212   oflag |= O_CLOEXEC;
5213 #endif
5214 
5215   int fd = ::open64(path, oflag, mode);
5216   if (fd == -1) return -1;
5217 
5218   //If the open succeeded, the file might still be a directory
5219   {
5220     struct stat64 buf64;
5221     int ret = ::fstat64(fd, &buf64);
5222     int st_mode = buf64.st_mode;
5223 
5224     if (ret != -1) {
5225       if ((st_mode & S_IFMT) == S_IFDIR) {
5226         errno = EISDIR;
5227         ::close(fd);
5228         return -1;
5229       }
5230     } else {
5231       ::close(fd);
5232       return -1;
5233     }
5234   }
5235 
5236 #ifdef FD_CLOEXEC
5237   // Validate that the use of the O_CLOEXEC flag on open above worked.
5238   // With recent kernels, we will perform this check exactly once.
5239   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5240   if (!O_CLOEXEC_is_known_to_work) {
5241     int flags = ::fcntl(fd, F_GETFD);
5242     if (flags != -1) {
5243       if ((flags & FD_CLOEXEC) != 0)
5244         O_CLOEXEC_is_known_to_work = 1;
5245       else
5246         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5247     }
5248   }
5249 #endif
5250 
5251   return fd;
5252 }
5253 
5254 
5255 // create binary file, rewriting existing file if required
5256 int os::create_binary_file(const char* path, bool rewrite_existing) {
5257   int oflags = O_WRONLY | O_CREAT;
5258   if (!rewrite_existing) {
5259     oflags |= O_EXCL;
5260   }
5261   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5262 }
5263 
5264 // return current position of file pointer
5265 jlong os::current_file_offset(int fd) {
5266   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5267 }
5268 
5269 // move file pointer to the specified offset
5270 jlong os::seek_to_file_offset(int fd, jlong offset) {
5271   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5272 }
5273 
5274 // This code originates from JDK's sysAvailable
5275 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5276 
5277 int os::available(int fd, jlong *bytes) {
5278   jlong cur, end;
5279   int mode;
5280   struct stat64 buf64;
5281 
5282   if (::fstat64(fd, &buf64) >= 0) {
5283     mode = buf64.st_mode;
5284     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5285       int n;
5286       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5287         *bytes = n;
5288         return 1;
5289       }
5290     }
5291   }
5292   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5293     return 0;
5294   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5295     return 0;
5296   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5297     return 0;
5298   }
5299   *bytes = end - cur;
5300   return 1;
5301 }
5302 
5303 // Map a block of memory.
5304 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5305                         char *addr, size_t bytes, bool read_only,
5306                         bool allow_exec) {
5307   int prot;
5308   int flags = MAP_PRIVATE;
5309 
5310   if (read_only) {
5311     prot = PROT_READ;
5312   } else {
5313     prot = PROT_READ | PROT_WRITE;
5314   }
5315 
5316   if (allow_exec) {
5317     prot |= PROT_EXEC;
5318   }
5319 
5320   if (addr != NULL) {
5321     flags |= MAP_FIXED;
5322   }
5323 
5324   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5325                                      fd, file_offset);
5326   if (mapped_address == MAP_FAILED) {
5327     return NULL;
5328   }
5329   return mapped_address;
5330 }
5331 
5332 
5333 // Remap a block of memory.
5334 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5335                           char *addr, size_t bytes, bool read_only,
5336                           bool allow_exec) {
5337   // same as map_memory() on this OS
5338   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5339                         allow_exec);
5340 }
5341 
5342 
5343 // Unmap a block of memory.
5344 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5345   return munmap(addr, bytes) == 0;
5346 }
5347 
5348 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5349 
5350 static clockid_t thread_cpu_clockid(Thread* thread) {
5351   pthread_t tid = thread->osthread()->pthread_id();
5352   clockid_t clockid;
5353 
5354   // Get thread clockid
5355   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5356   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5357   return clockid;
5358 }
5359 
5360 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5361 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5362 // of a thread.
5363 //
5364 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5365 // the fast estimate available on the platform.
5366 
5367 jlong os::current_thread_cpu_time() {
5368   if (os::Linux::supports_fast_thread_cpu_time()) {
5369     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5370   } else {
5371     // return user + sys since the cost is the same
5372     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5373   }
5374 }
5375 
5376 jlong os::thread_cpu_time(Thread* thread) {
5377   // consistent with what current_thread_cpu_time() returns
5378   if (os::Linux::supports_fast_thread_cpu_time()) {
5379     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5380   } else {
5381     return slow_thread_cpu_time(thread, true /* user + sys */);
5382   }
5383 }
5384 
5385 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5386   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5387     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5388   } else {
5389     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5390   }
5391 }
5392 
5393 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5394   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5395     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5396   } else {
5397     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5398   }
5399 }
5400 
5401 //  -1 on error.
5402 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5403   pid_t  tid = thread->osthread()->thread_id();
5404   char *s;
5405   char stat[2048];
5406   int statlen;
5407   char proc_name[64];
5408   int count;
5409   long sys_time, user_time;
5410   char cdummy;
5411   int idummy;
5412   long ldummy;
5413   FILE *fp;
5414 
5415   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5416   fp = fopen(proc_name, "r");
5417   if (fp == NULL) return -1;
5418   statlen = fread(stat, 1, 2047, fp);
5419   stat[statlen] = '\0';
5420   fclose(fp);
5421 
5422   // Skip pid and the command string. Note that we could be dealing with
5423   // weird command names, e.g. user could decide to rename java launcher
5424   // to "java 1.4.2 :)", then the stat file would look like
5425   //                1234 (java 1.4.2 :)) R ... ...
5426   // We don't really need to know the command string, just find the last
5427   // occurrence of ")" and then start parsing from there. See bug 4726580.
5428   s = strrchr(stat, ')');
5429   if (s == NULL) return -1;
5430 
5431   // Skip blank chars
5432   do { s++; } while (s && isspace(*s));
5433 
5434   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5435                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5436                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5437                  &user_time, &sys_time);
5438   if (count != 13) return -1;
5439   if (user_sys_cpu_time) {
5440     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5441   } else {
5442     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5443   }
5444 }
5445 
5446 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5447   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5448   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5449   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5450   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5451 }
5452 
5453 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5454   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5455   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5456   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5457   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5458 }
5459 
5460 bool os::is_thread_cpu_time_supported() {
5461   return true;
5462 }
5463 
5464 // System loadavg support.  Returns -1 if load average cannot be obtained.
5465 // Linux doesn't yet have a (official) notion of processor sets,
5466 // so just return the system wide load average.
5467 int os::loadavg(double loadavg[], int nelem) {
5468   return ::getloadavg(loadavg, nelem);
5469 }
5470 
5471 void os::pause() {
5472   char filename[MAX_PATH];
5473   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5474     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5475   } else {
5476     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5477   }
5478 
5479   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5480   if (fd != -1) {
5481     struct stat buf;
5482     ::close(fd);
5483     while (::stat(filename, &buf) == 0) {
5484       (void)::poll(NULL, 0, 100);
5485     }
5486   } else {
5487     jio_fprintf(stderr,
5488                 "Could not open pause file '%s', continuing immediately.\n", filename);
5489   }
5490 }
5491 
5492 
5493 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5494 // comment paragraphs are worth repeating here:
5495 //
5496 // Assumption:
5497 //    Only one parker can exist on an event, which is why we allocate
5498 //    them per-thread. Multiple unparkers can coexist.
5499 //
5500 // _Event serves as a restricted-range semaphore.
5501 //   -1 : thread is blocked, i.e. there is a waiter
5502 //    0 : neutral: thread is running or ready,
5503 //        could have been signaled after a wait started
5504 //    1 : signaled - thread is running or ready
5505 //
5506 
5507 // utility to compute the abstime argument to timedwait:
5508 // millis is the relative timeout time
5509 // abstime will be the absolute timeout time
5510 // TODO: replace compute_abstime() with unpackTime()
5511 
5512 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5513   if (millis < 0)  millis = 0;
5514 
5515   jlong seconds = millis / 1000;
5516   millis %= 1000;
5517   if (seconds > 50000000) { // see man cond_timedwait(3T)
5518     seconds = 50000000;
5519   }
5520 
5521   if (os::supports_monotonic_clock()) {
5522     struct timespec now;
5523     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5524     assert_status(status == 0, status, "clock_gettime");
5525     abstime->tv_sec = now.tv_sec  + seconds;
5526     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5527     if (nanos >= NANOSECS_PER_SEC) {
5528       abstime->tv_sec += 1;
5529       nanos -= NANOSECS_PER_SEC;
5530     }
5531     abstime->tv_nsec = nanos;
5532   } else {
5533     struct timeval now;
5534     int status = gettimeofday(&now, NULL);
5535     assert(status == 0, "gettimeofday");
5536     abstime->tv_sec = now.tv_sec  + seconds;
5537     long usec = now.tv_usec + millis * 1000;
5538     if (usec >= 1000000) {
5539       abstime->tv_sec += 1;
5540       usec -= 1000000;
5541     }
5542     abstime->tv_nsec = usec * 1000;
5543   }
5544   return abstime;
5545 }
5546 
5547 void os::PlatformEvent::park() {       // AKA "down()"
5548   // Transitions for _Event:
5549   //   -1 => -1 : illegal
5550   //    1 =>  0 : pass - return immediately
5551   //    0 => -1 : block; then set _Event to 0 before returning
5552 
5553   // Invariant: Only the thread associated with the Event/PlatformEvent
5554   // may call park().
5555   // TODO: assert that _Assoc != NULL or _Assoc == Self
5556   assert(_nParked == 0, "invariant");
5557 
5558   int v;
5559   for (;;) {
5560     v = _Event;
5561     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5562   }
5563   guarantee(v >= 0, "invariant");
5564   if (v == 0) {
5565     // Do this the hard way by blocking ...
5566     int status = pthread_mutex_lock(_mutex);
5567     assert_status(status == 0, status, "mutex_lock");
5568     guarantee(_nParked == 0, "invariant");
5569     ++_nParked;
5570     while (_Event < 0) {
5571       status = pthread_cond_wait(_cond, _mutex);
5572       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5573       // Treat this the same as if the wait was interrupted
5574       if (status == ETIME) { status = EINTR; }
5575       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5576     }
5577     --_nParked;
5578 
5579     _Event = 0;
5580     status = pthread_mutex_unlock(_mutex);
5581     assert_status(status == 0, status, "mutex_unlock");
5582     // Paranoia to ensure our locked and lock-free paths interact
5583     // correctly with each other.
5584     OrderAccess::fence();
5585   }
5586   guarantee(_Event >= 0, "invariant");
5587 }
5588 
5589 int os::PlatformEvent::park(jlong millis) {
5590   // Transitions for _Event:
5591   //   -1 => -1 : illegal
5592   //    1 =>  0 : pass - return immediately
5593   //    0 => -1 : block; then set _Event to 0 before returning
5594 
5595   guarantee(_nParked == 0, "invariant");
5596 
5597   int v;
5598   for (;;) {
5599     v = _Event;
5600     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5601   }
5602   guarantee(v >= 0, "invariant");
5603   if (v != 0) return OS_OK;
5604 
5605   // We do this the hard way, by blocking the thread.
5606   // Consider enforcing a minimum timeout value.
5607   struct timespec abst;
5608   compute_abstime(&abst, millis);
5609 
5610   int ret = OS_TIMEOUT;
5611   int status = pthread_mutex_lock(_mutex);
5612   assert_status(status == 0, status, "mutex_lock");
5613   guarantee(_nParked == 0, "invariant");
5614   ++_nParked;
5615 
5616   // Object.wait(timo) will return because of
5617   // (a) notification
5618   // (b) timeout
5619   // (c) thread.interrupt
5620   //
5621   // Thread.interrupt and object.notify{All} both call Event::set.
5622   // That is, we treat thread.interrupt as a special case of notification.
5623   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5624   // We assume all ETIME returns are valid.
5625   //
5626   // TODO: properly differentiate simultaneous notify+interrupt.
5627   // In that case, we should propagate the notify to another waiter.
5628 
5629   while (_Event < 0) {
5630     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5631     assert_status(status == 0 || status == EINTR ||
5632                   status == ETIME || status == ETIMEDOUT,
5633                   status, "cond_timedwait");
5634     if (!FilterSpuriousWakeups) break;                 // previous semantics
5635     if (status == ETIME || status == ETIMEDOUT) break;
5636     // We consume and ignore EINTR and spurious wakeups.
5637   }
5638   --_nParked;
5639   if (_Event >= 0) {
5640     ret = OS_OK;
5641   }
5642   _Event = 0;
5643   status = pthread_mutex_unlock(_mutex);
5644   assert_status(status == 0, status, "mutex_unlock");
5645   assert(_nParked == 0, "invariant");
5646   // Paranoia to ensure our locked and lock-free paths interact
5647   // correctly with each other.
5648   OrderAccess::fence();
5649   return ret;
5650 }
5651 
5652 void os::PlatformEvent::unpark() {
5653   // Transitions for _Event:
5654   //    0 => 1 : just return
5655   //    1 => 1 : just return
5656   //   -1 => either 0 or 1; must signal target thread
5657   //         That is, we can safely transition _Event from -1 to either
5658   //         0 or 1.
5659   // See also: "Semaphores in Plan 9" by Mullender & Cox
5660   //
5661   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5662   // that it will take two back-to-back park() calls for the owning
5663   // thread to block. This has the benefit of forcing a spurious return
5664   // from the first park() call after an unpark() call which will help
5665   // shake out uses of park() and unpark() without condition variables.
5666 
5667   if (Atomic::xchg(1, &_Event) >= 0) return;
5668 
5669   // Wait for the thread associated with the event to vacate
5670   int status = pthread_mutex_lock(_mutex);
5671   assert_status(status == 0, status, "mutex_lock");
5672   int AnyWaiters = _nParked;
5673   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5674   status = pthread_mutex_unlock(_mutex);
5675   assert_status(status == 0, status, "mutex_unlock");
5676   if (AnyWaiters != 0) {
5677     // Note that we signal() *after* dropping the lock for "immortal" Events.
5678     // This is safe and avoids a common class of  futile wakeups.  In rare
5679     // circumstances this can cause a thread to return prematurely from
5680     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5681     // will simply re-test the condition and re-park itself.
5682     // This provides particular benefit if the underlying platform does not
5683     // provide wait morphing.
5684     status = pthread_cond_signal(_cond);
5685     assert_status(status == 0, status, "cond_signal");
5686   }
5687 }
5688 
5689 
5690 // JSR166
5691 // -------------------------------------------------------
5692 
5693 // The solaris and linux implementations of park/unpark are fairly
5694 // conservative for now, but can be improved. They currently use a
5695 // mutex/condvar pair, plus a a count.
5696 // Park decrements count if > 0, else does a condvar wait.  Unpark
5697 // sets count to 1 and signals condvar.  Only one thread ever waits
5698 // on the condvar. Contention seen when trying to park implies that someone
5699 // is unparking you, so don't wait. And spurious returns are fine, so there
5700 // is no need to track notifications.
5701 
5702 // This code is common to linux and solaris and will be moved to a
5703 // common place in dolphin.
5704 //
5705 // The passed in time value is either a relative time in nanoseconds
5706 // or an absolute time in milliseconds. Either way it has to be unpacked
5707 // into suitable seconds and nanoseconds components and stored in the
5708 // given timespec structure.
5709 // Given time is a 64-bit value and the time_t used in the timespec is only
5710 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5711 // overflow if times way in the future are given. Further on Solaris versions
5712 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5713 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5714 // As it will be 28 years before "now + 100000000" will overflow we can
5715 // ignore overflow and just impose a hard-limit on seconds using the value
5716 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5717 // years from "now".
5718 
5719 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5720   assert(time > 0, "convertTime");
5721   time_t max_secs = 0;
5722 
5723   if (!os::supports_monotonic_clock() || isAbsolute) {
5724     struct timeval now;
5725     int status = gettimeofday(&now, NULL);
5726     assert(status == 0, "gettimeofday");
5727 
5728     max_secs = now.tv_sec + MAX_SECS;
5729 
5730     if (isAbsolute) {
5731       jlong secs = time / 1000;
5732       if (secs > max_secs) {
5733         absTime->tv_sec = max_secs;
5734       } else {
5735         absTime->tv_sec = secs;
5736       }
5737       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5738     } else {
5739       jlong secs = time / NANOSECS_PER_SEC;
5740       if (secs >= MAX_SECS) {
5741         absTime->tv_sec = max_secs;
5742         absTime->tv_nsec = 0;
5743       } else {
5744         absTime->tv_sec = now.tv_sec + secs;
5745         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5746         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5747           absTime->tv_nsec -= NANOSECS_PER_SEC;
5748           ++absTime->tv_sec; // note: this must be <= max_secs
5749         }
5750       }
5751     }
5752   } else {
5753     // must be relative using monotonic clock
5754     struct timespec now;
5755     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5756     assert_status(status == 0, status, "clock_gettime");
5757     max_secs = now.tv_sec + MAX_SECS;
5758     jlong secs = time / NANOSECS_PER_SEC;
5759     if (secs >= MAX_SECS) {
5760       absTime->tv_sec = max_secs;
5761       absTime->tv_nsec = 0;
5762     } else {
5763       absTime->tv_sec = now.tv_sec + secs;
5764       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5765       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5766         absTime->tv_nsec -= NANOSECS_PER_SEC;
5767         ++absTime->tv_sec; // note: this must be <= max_secs
5768       }
5769     }
5770   }
5771   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5772   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5773   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5774   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5775 }
5776 
5777 void Parker::park(bool isAbsolute, jlong time) {
5778   // Ideally we'd do something useful while spinning, such
5779   // as calling unpackTime().
5780 
5781   // Optional fast-path check:
5782   // Return immediately if a permit is available.
5783   // We depend on Atomic::xchg() having full barrier semantics
5784   // since we are doing a lock-free update to _counter.
5785   if (Atomic::xchg(0, &_counter) > 0) return;
5786 
5787   Thread* thread = Thread::current();
5788   assert(thread->is_Java_thread(), "Must be JavaThread");
5789   JavaThread *jt = (JavaThread *)thread;
5790 
5791   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5792   // Check interrupt before trying to wait
5793   if (Thread::is_interrupted(thread, false)) {
5794     return;
5795   }
5796 
5797   // Next, demultiplex/decode time arguments
5798   timespec absTime;
5799   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5800     return;
5801   }
5802   if (time > 0) {
5803     unpackTime(&absTime, isAbsolute, time);
5804   }
5805 
5806 
5807   // Enter safepoint region
5808   // Beware of deadlocks such as 6317397.
5809   // The per-thread Parker:: mutex is a classic leaf-lock.
5810   // In particular a thread must never block on the Threads_lock while
5811   // holding the Parker:: mutex.  If safepoints are pending both the
5812   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5813   ThreadBlockInVM tbivm(jt);
5814 
5815   // Don't wait if cannot get lock since interference arises from
5816   // unblocking.  Also. check interrupt before trying wait
5817   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5818     return;
5819   }
5820 
5821   int status;
5822   if (_counter > 0)  { // no wait needed
5823     _counter = 0;
5824     status = pthread_mutex_unlock(_mutex);
5825     assert_status(status == 0, status, "invariant");
5826     // Paranoia to ensure our locked and lock-free paths interact
5827     // correctly with each other and Java-level accesses.
5828     OrderAccess::fence();
5829     return;
5830   }
5831 
5832 #ifdef ASSERT
5833   // Don't catch signals while blocked; let the running threads have the signals.
5834   // (This allows a debugger to break into the running thread.)
5835   sigset_t oldsigs;
5836   sigemptyset(&oldsigs);
5837   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5838   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5839 #endif
5840 
5841   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5842   jt->set_suspend_equivalent();
5843   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5844 
5845   assert(_cur_index == -1, "invariant");
5846   if (time == 0) {
5847     _cur_index = REL_INDEX; // arbitrary choice when not timed
5848     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5849   } else {
5850     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5851     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5852   }
5853   _cur_index = -1;
5854   assert_status(status == 0 || status == EINTR ||
5855                 status == ETIME || status == ETIMEDOUT,
5856                 status, "cond_timedwait");
5857 
5858 #ifdef ASSERT
5859   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5860 #endif
5861 
5862   _counter = 0;
5863   status = pthread_mutex_unlock(_mutex);
5864   assert_status(status == 0, status, "invariant");
5865   // Paranoia to ensure our locked and lock-free paths interact
5866   // correctly with each other and Java-level accesses.
5867   OrderAccess::fence();
5868 
5869   // If externally suspended while waiting, re-suspend
5870   if (jt->handle_special_suspend_equivalent_condition()) {
5871     jt->java_suspend_self();
5872   }
5873 }
5874 
5875 void Parker::unpark() {
5876   int status = pthread_mutex_lock(_mutex);
5877   assert_status(status == 0, status, "invariant");
5878   const int s = _counter;
5879   _counter = 1;
5880   // must capture correct index before unlocking
5881   int index = _cur_index;
5882   status = pthread_mutex_unlock(_mutex);
5883   assert_status(status == 0, status, "invariant");
5884   if (s < 1 && index != -1) {
5885     // thread is definitely parked
5886     status = pthread_cond_signal(&_cond[index]);
5887     assert_status(status == 0, status, "invariant");
5888   }
5889 }
5890 
5891 
5892 extern char** environ;
5893 
5894 // Run the specified command in a separate process. Return its exit value,
5895 // or -1 on failure (e.g. can't fork a new process).
5896 // Unlike system(), this function can be called from signal handler. It
5897 // doesn't block SIGINT et al.
5898 int os::fork_and_exec(char* cmd) {
5899   const char * argv[4] = {"sh", "-c", cmd, NULL};
5900 
5901   pid_t pid = fork();
5902 
5903   if (pid < 0) {
5904     // fork failed
5905     return -1;
5906 
5907   } else if (pid == 0) {
5908     // child process
5909 
5910     execve("/bin/sh", (char* const*)argv, environ);
5911 
5912     // execve failed
5913     _exit(-1);
5914 
5915   } else  {
5916     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5917     // care about the actual exit code, for now.
5918 
5919     int status;
5920 
5921     // Wait for the child process to exit.  This returns immediately if
5922     // the child has already exited. */
5923     while (waitpid(pid, &status, 0) < 0) {
5924       switch (errno) {
5925       case ECHILD: return 0;
5926       case EINTR: break;
5927       default: return -1;
5928       }
5929     }
5930 
5931     if (WIFEXITED(status)) {
5932       // The child exited normally; get its exit code.
5933       return WEXITSTATUS(status);
5934     } else if (WIFSIGNALED(status)) {
5935       // The child exited because of a signal
5936       // The best value to return is 0x80 + signal number,
5937       // because that is what all Unix shells do, and because
5938       // it allows callers to distinguish between process exit and
5939       // process death by signal.
5940       return 0x80 + WTERMSIG(status);
5941     } else {
5942       // Unknown exit code; pass it through
5943       return status;
5944     }
5945   }
5946 }
5947 
5948 // is_headless_jre()
5949 //
5950 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5951 // in order to report if we are running in a headless jre
5952 //
5953 // Since JDK8 xawt/libmawt.so was moved into the same directory
5954 // as libawt.so, and renamed libawt_xawt.so
5955 //
5956 bool os::is_headless_jre() {
5957   struct stat statbuf;
5958   char buf[MAXPATHLEN];
5959   char libmawtpath[MAXPATHLEN];
5960   const char *xawtstr  = "/xawt/libmawt.so";
5961   const char *new_xawtstr = "/libawt_xawt.so";
5962   char *p;
5963 
5964   // Get path to libjvm.so
5965   os::jvm_path(buf, sizeof(buf));
5966 
5967   // Get rid of libjvm.so
5968   p = strrchr(buf, '/');
5969   if (p == NULL) {
5970     return false;
5971   } else {
5972     *p = '\0';
5973   }
5974 
5975   // Get rid of client or server
5976   p = strrchr(buf, '/');
5977   if (p == NULL) {
5978     return false;
5979   } else {
5980     *p = '\0';
5981   }
5982 
5983   // check xawt/libmawt.so
5984   strcpy(libmawtpath, buf);
5985   strcat(libmawtpath, xawtstr);
5986   if (::stat(libmawtpath, &statbuf) == 0) return false;
5987 
5988   // check libawt_xawt.so
5989   strcpy(libmawtpath, buf);
5990   strcat(libmawtpath, new_xawtstr);
5991   if (::stat(libmawtpath, &statbuf) == 0) return false;
5992 
5993   return true;
5994 }
5995 
5996 // Get the default path to the core file
5997 // Returns the length of the string
5998 int os::get_core_path(char* buffer, size_t bufferSize) {
5999   /*
6000    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
6001    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
6002    */
6003   const int core_pattern_len = 129;
6004   char core_pattern[core_pattern_len] = {0};
6005 
6006   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6007   if (core_pattern_file == -1) {
6008     return -1;
6009   }
6010 
6011   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6012   ::close(core_pattern_file);
6013   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
6014     return -1;
6015   }
6016   if (core_pattern[ret-1] == '\n') {
6017     core_pattern[ret-1] = '\0';
6018   } else {
6019     core_pattern[ret] = '\0';
6020   }
6021 
6022   char *pid_pos = strstr(core_pattern, "%p");
6023   int written;
6024 
6025   if (core_pattern[0] == '/') {
6026     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6027   } else {
6028     char cwd[PATH_MAX];
6029 
6030     const char* p = get_current_directory(cwd, PATH_MAX);
6031     if (p == NULL) {
6032       return -1;
6033     }
6034 
6035     if (core_pattern[0] == '|') {
6036       written = jio_snprintf(buffer, bufferSize,
6037                              "\"%s\" (or dumping to %s/core.%d)",
6038                              &core_pattern[1], p, current_process_id());
6039     } else {
6040       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6041     }
6042   }
6043 
6044   if (written < 0) {
6045     return -1;
6046   }
6047 
6048   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6049     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6050 
6051     if (core_uses_pid_file != -1) {
6052       char core_uses_pid = 0;
6053       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6054       ::close(core_uses_pid_file);
6055 
6056       if (core_uses_pid == '1') {
6057         jio_snprintf(buffer + written, bufferSize - written,
6058                                           ".%d", current_process_id());
6059       }
6060     }
6061   }
6062 
6063   return strlen(buffer);
6064 }
6065 
6066 bool os::start_debugging(char *buf, int buflen) {
6067   int len = (int)strlen(buf);
6068   char *p = &buf[len];
6069 
6070   jio_snprintf(p, buflen-len,
6071                "\n\n"
6072                "Do you want to debug the problem?\n\n"
6073                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6074                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6075                "Otherwise, press RETURN to abort...",
6076                os::current_process_id(), os::current_process_id(),
6077                os::current_thread_id(), os::current_thread_id());
6078 
6079   bool yes = os::message_box("Unexpected Error", buf);
6080 
6081   if (yes) {
6082     // yes, user asked VM to launch debugger
6083     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6084                  os::current_process_id(), os::current_process_id());
6085 
6086     os::fork_and_exec(buf);
6087     yes = false;
6088   }
6089   return yes;
6090 }
6091 
6092 static inline struct timespec get_mtime(const char* filename) {
6093   struct stat st;
6094   int ret = os::stat(filename, &st);
6095   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6096   return st.st_mtim;
6097 }
6098 
6099 int os::compare_file_modified_times(const char* file1, const char* file2) {
6100   struct timespec filetime1 = get_mtime(file1);
6101   struct timespec filetime2 = get_mtime(file2);
6102   int diff = filetime1.tv_sec - filetime2.tv_sec;
6103   if (diff == 0) {
6104     return filetime1.tv_nsec - filetime2.tv_nsec;
6105   }
6106   return diff;
6107 }
6108 
6109 /////////////// Unit tests ///////////////
6110 
6111 #ifndef PRODUCT
6112 
6113 #define test_log(...)              \
6114   do {                             \
6115     if (VerboseInternalVMTests) {  \
6116       tty->print_cr(__VA_ARGS__);  \
6117       tty->flush();                \
6118     }                              \
6119   } while (false)
6120 
6121 class TestReserveMemorySpecial : AllStatic {
6122  public:
6123   static void small_page_write(void* addr, size_t size) {
6124     size_t page_size = os::vm_page_size();
6125 
6126     char* end = (char*)addr + size;
6127     for (char* p = (char*)addr; p < end; p += page_size) {
6128       *p = 1;
6129     }
6130   }
6131 
6132   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6133     if (!UseHugeTLBFS) {
6134       return;
6135     }
6136 
6137     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6138 
6139     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6140 
6141     if (addr != NULL) {
6142       small_page_write(addr, size);
6143 
6144       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6145     }
6146   }
6147 
6148   static void test_reserve_memory_special_huge_tlbfs_only() {
6149     if (!UseHugeTLBFS) {
6150       return;
6151     }
6152 
6153     size_t lp = os::large_page_size();
6154 
6155     for (size_t size = lp; size <= lp * 10; size += lp) {
6156       test_reserve_memory_special_huge_tlbfs_only(size);
6157     }
6158   }
6159 
6160   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6161     size_t lp = os::large_page_size();
6162     size_t ag = os::vm_allocation_granularity();
6163 
6164     // sizes to test
6165     const size_t sizes[] = {
6166       lp, lp + ag, lp + lp / 2, lp * 2,
6167       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6168       lp * 10, lp * 10 + lp / 2
6169     };
6170     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6171 
6172     // For each size/alignment combination, we test three scenarios:
6173     // 1) with req_addr == NULL
6174     // 2) with a non-null req_addr at which we expect to successfully allocate
6175     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6176     //    expect the allocation to either fail or to ignore req_addr
6177 
6178     // Pre-allocate two areas; they shall be as large as the largest allocation
6179     //  and aligned to the largest alignment we will be testing.
6180     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6181     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6182       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6183       -1, 0);
6184     assert(mapping1 != MAP_FAILED, "should work");
6185 
6186     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6187       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6188       -1, 0);
6189     assert(mapping2 != MAP_FAILED, "should work");
6190 
6191     // Unmap the first mapping, but leave the second mapping intact: the first
6192     // mapping will serve as a value for a "good" req_addr (case 2). The second
6193     // mapping, still intact, as "bad" req_addr (case 3).
6194     ::munmap(mapping1, mapping_size);
6195 
6196     // Case 1
6197     test_log("%s, req_addr NULL:", __FUNCTION__);
6198     test_log("size            align           result");
6199 
6200     for (int i = 0; i < num_sizes; i++) {
6201       const size_t size = sizes[i];
6202       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6203         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6204         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6205                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6206         if (p != NULL) {
6207           assert(is_ptr_aligned(p, alignment), "must be");
6208           small_page_write(p, size);
6209           os::Linux::release_memory_special_huge_tlbfs(p, size);
6210         }
6211       }
6212     }
6213 
6214     // Case 2
6215     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6216     test_log("size            align           req_addr         result");
6217 
6218     for (int i = 0; i < num_sizes; i++) {
6219       const size_t size = sizes[i];
6220       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6221         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6222         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6223         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6224                  size, alignment, p2i(req_addr), p2i(p),
6225                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6226         if (p != NULL) {
6227           assert(p == req_addr, "must be");
6228           small_page_write(p, size);
6229           os::Linux::release_memory_special_huge_tlbfs(p, size);
6230         }
6231       }
6232     }
6233 
6234     // Case 3
6235     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6236     test_log("size            align           req_addr         result");
6237 
6238     for (int i = 0; i < num_sizes; i++) {
6239       const size_t size = sizes[i];
6240       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6241         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6242         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6243         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6244                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6245         // as the area around req_addr contains already existing mappings, the API should always
6246         // return NULL (as per contract, it cannot return another address)
6247         assert(p == NULL, "must be");
6248       }
6249     }
6250 
6251     ::munmap(mapping2, mapping_size);
6252 
6253   }
6254 
6255   static void test_reserve_memory_special_huge_tlbfs() {
6256     if (!UseHugeTLBFS) {
6257       return;
6258     }
6259 
6260     test_reserve_memory_special_huge_tlbfs_only();
6261     test_reserve_memory_special_huge_tlbfs_mixed();
6262   }
6263 
6264   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6265     if (!UseSHM) {
6266       return;
6267     }
6268 
6269     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6270 
6271     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6272 
6273     if (addr != NULL) {
6274       assert(is_ptr_aligned(addr, alignment), "Check");
6275       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6276 
6277       small_page_write(addr, size);
6278 
6279       os::Linux::release_memory_special_shm(addr, size);
6280     }
6281   }
6282 
6283   static void test_reserve_memory_special_shm() {
6284     size_t lp = os::large_page_size();
6285     size_t ag = os::vm_allocation_granularity();
6286 
6287     for (size_t size = ag; size < lp * 3; size += ag) {
6288       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6289         test_reserve_memory_special_shm(size, alignment);
6290       }
6291     }
6292   }
6293 
6294   static void test() {
6295     test_reserve_memory_special_huge_tlbfs();
6296     test_reserve_memory_special_shm();
6297   }
6298 };
6299 
6300 void TestReserveMemorySpecial_test() {
6301   TestReserveMemorySpecial::test();
6302 }
6303 
6304 #endif