1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/templateInterpreterGenerator.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 #include "utilities/macros.hpp"
  49 
  50 #ifndef FAST_DISPATCH
  51 #define FAST_DISPATCH 1
  52 #endif
  53 #undef FAST_DISPATCH
  54 
  55 // Size of interpreter code.  Increase if too small.  Interpreter will
  56 // fail with a guarantee ("not enough space for interpreter generation");
  57 // if too small.
  58 // Run with +PrintInterpreter to get the VM to print out the size.
  59 // Max size with JVMTI
  60 #ifdef _LP64
  61   // The sethi() instruction generates lots more instructions when shell
  62   // stack limit is unlimited, so that's why this is much bigger.
  63 int TemplateInterpreter::InterpreterCodeSize = 260 * K;
  64 #else
  65 int TemplateInterpreter::InterpreterCodeSize = 230 * K;
  66 #endif
  67 
  68 // Generation of Interpreter
  69 //
  70 // The TemplateInterpreterGenerator generates the interpreter into Interpreter::_code.
  71 
  72 
  73 #define __ _masm->
  74 
  75 
  76 //----------------------------------------------------------------------------------------------------
  77 
  78 #ifndef _LP64
  79 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  80   address entry = __ pc();
  81   Argument argv(0, true);
  82 
  83   // We are in the jni transition frame. Save the last_java_frame corresponding to the
  84   // outer interpreter frame
  85   //
  86   __ set_last_Java_frame(FP, noreg);
  87   // make sure the interpreter frame we've pushed has a valid return pc
  88   __ mov(O7, I7);
  89   __ mov(Lmethod, G3_scratch);
  90   __ mov(Llocals, G4_scratch);
  91   __ save_frame(0);
  92   __ mov(G2_thread, L7_thread_cache);
  93   __ add(argv.address_in_frame(), O3);
  94   __ mov(G2_thread, O0);
  95   __ mov(G3_scratch, O1);
  96   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
  97   __ delayed()->mov(G4_scratch, O2);
  98   __ mov(L7_thread_cache, G2_thread);
  99   __ reset_last_Java_frame();
 100 
 101   // load the register arguments (the C code packed them as varargs)
 102   for (Argument ldarg = argv.successor(); ldarg.is_register(); ldarg = ldarg.successor()) {
 103       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
 104   }
 105   __ ret();
 106   __ delayed()->
 107      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
 108   return entry;
 109 }
 110 
 111 
 112 #else
 113 // LP64 passes floating point arguments in F1, F3, F5, etc. instead of
 114 // O0, O1, O2 etc..
 115 // Doubles are passed in D0, D2, D4
 116 // We store the signature of the first 16 arguments in the first argument
 117 // slot because it will be overwritten prior to calling the native
 118 // function, with the pointer to the JNIEnv.
 119 // If LP64 there can be up to 16 floating point arguments in registers
 120 // or 6 integer registers.
 121 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
 122 
 123   enum {
 124     non_float  = 0,
 125     float_sig  = 1,
 126     double_sig = 2,
 127     sig_mask   = 3
 128   };
 129 
 130   address entry = __ pc();
 131   Argument argv(0, true);
 132 
 133   // We are in the jni transition frame. Save the last_java_frame corresponding to the
 134   // outer interpreter frame
 135   //
 136   __ set_last_Java_frame(FP, noreg);
 137   // make sure the interpreter frame we've pushed has a valid return pc
 138   __ mov(O7, I7);
 139   __ mov(Lmethod, G3_scratch);
 140   __ mov(Llocals, G4_scratch);
 141   __ save_frame(0);
 142   __ mov(G2_thread, L7_thread_cache);
 143   __ add(argv.address_in_frame(), O3);
 144   __ mov(G2_thread, O0);
 145   __ mov(G3_scratch, O1);
 146   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
 147   __ delayed()->mov(G4_scratch, O2);
 148   __ mov(L7_thread_cache, G2_thread);
 149   __ reset_last_Java_frame();
 150 
 151 
 152   // load the register arguments (the C code packed them as varargs)
 153   Address Sig = argv.address_in_frame();        // Argument 0 holds the signature
 154   __ ld_ptr( Sig, G3_scratch );                   // Get register argument signature word into G3_scratch
 155   __ mov( G3_scratch, G4_scratch);
 156   __ srl( G4_scratch, 2, G4_scratch);             // Skip Arg 0
 157   Label done;
 158   for (Argument ldarg = argv.successor(); ldarg.is_float_register(); ldarg = ldarg.successor()) {
 159     Label NonFloatArg;
 160     Label LoadFloatArg;
 161     Label LoadDoubleArg;
 162     Label NextArg;
 163     Address a = ldarg.address_in_frame();
 164     __ andcc(G4_scratch, sig_mask, G3_scratch);
 165     __ br(Assembler::zero, false, Assembler::pt, NonFloatArg);
 166     __ delayed()->nop();
 167 
 168     __ cmp(G3_scratch, float_sig );
 169     __ br(Assembler::equal, false, Assembler::pt, LoadFloatArg);
 170     __ delayed()->nop();
 171 
 172     __ cmp(G3_scratch, double_sig );
 173     __ br(Assembler::equal, false, Assembler::pt, LoadDoubleArg);
 174     __ delayed()->nop();
 175 
 176     __ bind(NonFloatArg);
 177     // There are only 6 integer register arguments!
 178     if ( ldarg.is_register() )
 179       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
 180     else {
 181     // Optimization, see if there are any more args and get out prior to checking
 182     // all 16 float registers.  My guess is that this is rare.
 183     // If is_register is false, then we are done the first six integer args.
 184       __ br_null_short(G4_scratch, Assembler::pt, done);
 185     }
 186     __ ba(NextArg);
 187     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 188 
 189     __ bind(LoadFloatArg);
 190     __ ldf( FloatRegisterImpl::S, a, ldarg.as_float_register(), 4);
 191     __ ba(NextArg);
 192     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 193 
 194     __ bind(LoadDoubleArg);
 195     __ ldf( FloatRegisterImpl::D, a, ldarg.as_double_register() );
 196     __ ba(NextArg);
 197     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 198 
 199     __ bind(NextArg);
 200 
 201   }
 202 
 203   __ bind(done);
 204   __ ret();
 205   __ delayed()->
 206      restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
 207   return entry;
 208 }
 209 #endif
 210 
 211 void TemplateInterpreterGenerator::generate_counter_overflow(Label& Lcontinue) {
 212 
 213   // Generate code to initiate compilation on the counter overflow.
 214 
 215   // InterpreterRuntime::frequency_counter_overflow takes two arguments,
 216   // the first indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 217   // and the second is only used when the first is true.  We pass zero for both.
 218   // The call returns the address of the verified entry point for the method or NULL
 219   // if the compilation did not complete (either went background or bailed out).
 220   __ set((int)false, O2);
 221   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O2, O2, true);
 222   // returns verified_entry_point or NULL
 223   // we ignore it in any case
 224   __ ba_short(Lcontinue);
 225 
 226 }
 227 
 228 
 229 // End of helpers
 230 
 231 // Various method entries
 232 
 233 // Abstract method entry
 234 // Attempt to execute abstract method. Throw exception
 235 //
 236 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 237   address entry = __ pc();
 238   // abstract method entry
 239   // throw exception
 240   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
 241   // the call_VM checks for exception, so we should never return here.
 242   __ should_not_reach_here();
 243   return entry;
 244 
 245 }
 246 
 247 void TemplateInterpreterGenerator::save_native_result(void) {
 248   // result potentially in O0/O1: save it across calls
 249   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
 250 
 251   // result potentially in F0/F1: save it across calls
 252   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
 253 
 254   // save and restore any potential method result value around the unlocking operation
 255   __ stf(FloatRegisterImpl::D, F0, d_tmp);
 256 #ifdef _LP64
 257   __ stx(O0, l_tmp);
 258 #else
 259   __ std(O0, l_tmp);
 260 #endif
 261 }
 262 
 263 void TemplateInterpreterGenerator::restore_native_result(void) {
 264   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
 265   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
 266 
 267   // Restore any method result value
 268   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
 269 #ifdef _LP64
 270   __ ldx(l_tmp, O0);
 271 #else
 272   __ ldd(l_tmp, O0);
 273 #endif
 274 }
 275 
 276 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 277   assert(!pass_oop || message == NULL, "either oop or message but not both");
 278   address entry = __ pc();
 279   // expression stack must be empty before entering the VM if an exception happened
 280   __ empty_expression_stack();
 281   // load exception object
 282   __ set((intptr_t)name, G3_scratch);
 283   if (pass_oop) {
 284     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
 285   } else {
 286     __ set((intptr_t)message, G4_scratch);
 287     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
 288   }
 289   // throw exception
 290   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
 291   AddressLiteral thrower(Interpreter::throw_exception_entry());
 292   __ jump_to(thrower, G3_scratch);
 293   __ delayed()->nop();
 294   return entry;
 295 }
 296 
 297 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 298   address entry = __ pc();
 299   // expression stack must be empty before entering the VM if an exception
 300   // happened
 301   __ empty_expression_stack();
 302   // load exception object
 303   __ call_VM(Oexception,
 304              CAST_FROM_FN_PTR(address,
 305                               InterpreterRuntime::throw_ClassCastException),
 306              Otos_i);
 307   __ should_not_reach_here();
 308   return entry;
 309 }
 310 
 311 
 312 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 313   address entry = __ pc();
 314   // expression stack must be empty before entering the VM if an exception happened
 315   __ empty_expression_stack();
 316   // convention: expect aberrant index in register G3_scratch, then shuffle the
 317   // index to G4_scratch for the VM call
 318   __ mov(G3_scratch, G4_scratch);
 319   __ set((intptr_t)name, G3_scratch);
 320   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 321   __ should_not_reach_here();
 322   return entry;
 323 }
 324 
 325 
 326 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 327   address entry = __ pc();
 328   // expression stack must be empty before entering the VM if an exception happened
 329   __ empty_expression_stack();
 330   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 331   __ should_not_reach_here();
 332   return entry;
 333 }
 334 
 335 
 336 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 337   address entry = __ pc();
 338 
 339   if (state == atos) {
 340     __ profile_return_type(O0, G3_scratch, G1_scratch);
 341   }
 342 
 343 #if !defined(_LP64) && defined(COMPILER2)
 344   // All return values are where we want them, except for Longs.  C2 returns
 345   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 346   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 347   // build even if we are returning from interpreted we just do a little
 348   // stupid shuffing.
 349   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 350   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 351   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 352 
 353   if (state == ltos) {
 354     __ srl (G1,  0, O1);
 355     __ srlx(G1, 32, O0);
 356   }
 357 #endif // !_LP64 && COMPILER2
 358 
 359   // The callee returns with the stack possibly adjusted by adapter transition
 360   // We remove that possible adjustment here.
 361   // All interpreter local registers are untouched. Any result is passed back
 362   // in the O0/O1 or float registers. Before continuing, the arguments must be
 363   // popped from the java expression stack; i.e., Lesp must be adjusted.
 364 
 365   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 366 
 367   const Register cache = G3_scratch;
 368   const Register index  = G1_scratch;
 369   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
 370 
 371   const Register flags = cache;
 372   __ ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), flags);
 373   const Register parameter_size = flags;
 374   __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, parameter_size);  // argument size in words
 375   __ sll(parameter_size, Interpreter::logStackElementSize, parameter_size);     // each argument size in bytes
 376   __ add(Lesp, parameter_size, Lesp);                                           // pop arguments
 377   __ dispatch_next(state, step);
 378 
 379   return entry;
 380 }
 381 
 382 
 383 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 384   address entry = __ pc();
 385   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 386 #if INCLUDE_JVMCI
 387   // Check if we need to take lock at entry of synchronized method.
 388   if (UseJVMCICompiler) {
 389     Label L;
 390     Address pending_monitor_enter_addr(G2_thread, JavaThread::pending_monitorenter_offset());
 391     __ ldbool(pending_monitor_enter_addr, Gtemp);  // Load if pending monitor enter
 392     __ cmp_and_br_short(Gtemp, G0, Assembler::equal, Assembler::pn, L);
 393     // Clear flag.
 394     __ stbool(G0, pending_monitor_enter_addr);
 395     // Take lock.
 396     lock_method();
 397     __ bind(L);
 398   }
 399 #endif
 400   { Label L;
 401     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 402     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 403     __ br_null_short(Gtemp, Assembler::pt, L);
 404     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 405     __ should_not_reach_here();
 406     __ bind(L);
 407   }
 408   __ dispatch_next(state, step);
 409   return entry;
 410 }
 411 
 412 // A result handler converts/unboxes a native call result into
 413 // a java interpreter/compiler result. The current frame is an
 414 // interpreter frame. The activation frame unwind code must be
 415 // consistent with that of TemplateTable::_return(...). In the
 416 // case of native methods, the caller's SP was not modified.
 417 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 418   address entry = __ pc();
 419   Register Itos_i  = Otos_i ->after_save();
 420   Register Itos_l  = Otos_l ->after_save();
 421   Register Itos_l1 = Otos_l1->after_save();
 422   Register Itos_l2 = Otos_l2->after_save();
 423   switch (type) {
 424     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 425     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 426     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 427     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 428     case T_LONG   :
 429 #ifndef _LP64
 430                     __ mov(O1, Itos_l2);  // move other half of long
 431 #endif              // ifdef or no ifdef, fall through to the T_INT case
 432     case T_INT    : __ mov(O0, Itos_i);                         break;
 433     case T_VOID   : /* nothing to do */                         break;
 434     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 435     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 436     case T_OBJECT :
 437       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 438       __ verify_oop(Itos_i);
 439       break;
 440     default       : ShouldNotReachHere();
 441   }
 442   __ ret();                           // return from interpreter activation
 443   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 444   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 445   return entry;
 446 }
 447 
 448 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 449   address entry = __ pc();
 450   __ push(state);
 451   __ call_VM(noreg, runtime_entry);
 452   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 453   return entry;
 454 }
 455 
 456 
 457 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 458   address entry = __ pc();
 459   __ dispatch_next(state);
 460   return entry;
 461 }
 462 
 463 //
 464 // Helpers for commoning out cases in the various type of method entries.
 465 //
 466 
 467 // increment invocation count & check for overflow
 468 //
 469 // Note: checking for negative value instead of overflow
 470 //       so we have a 'sticky' overflow test
 471 //
 472 // Lmethod: method
 473 // ??: invocation counter
 474 //
 475 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 476   // Note: In tiered we increment either counters in MethodCounters* or in
 477   // MDO depending if we're profiling or not.
 478   const Register G3_method_counters = G3_scratch;
 479   Label done;
 480 
 481   if (TieredCompilation) {
 482     const int increment = InvocationCounter::count_increment;
 483     Label no_mdo;
 484     if (ProfileInterpreter) {
 485       // If no method data exists, go to profile_continue.
 486       __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
 487       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
 488       // Increment counter
 489       Address mdo_invocation_counter(G4_scratch,
 490                                      in_bytes(MethodData::invocation_counter_offset()) +
 491                                      in_bytes(InvocationCounter::counter_offset()));
 492       Address mask(G4_scratch, in_bytes(MethodData::invoke_mask_offset()));
 493       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 494                                  G3_scratch, Lscratch,
 495                                  Assembler::zero, overflow);
 496       __ ba_short(done);
 497     }
 498 
 499     // Increment counter in MethodCounters*
 500     __ bind(no_mdo);
 501     Address invocation_counter(G3_method_counters,
 502             in_bytes(MethodCounters::invocation_counter_offset()) +
 503             in_bytes(InvocationCounter::counter_offset()));
 504     __ get_method_counters(Lmethod, G3_method_counters, done);
 505     Address mask(G3_method_counters, in_bytes(MethodCounters::invoke_mask_offset()));
 506     __ increment_mask_and_jump(invocation_counter, increment, mask,
 507                                G4_scratch, Lscratch,
 508                                Assembler::zero, overflow);
 509     __ bind(done);
 510   } else { // not TieredCompilation
 511     // Update standard invocation counters
 512     __ get_method_counters(Lmethod, G3_method_counters, done);
 513     __ increment_invocation_counter(G3_method_counters, O0, G4_scratch);
 514     if (ProfileInterpreter) {
 515       Address interpreter_invocation_counter(G3_method_counters,
 516             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
 517       __ ld(interpreter_invocation_counter, G4_scratch);
 518       __ inc(G4_scratch);
 519       __ st(G4_scratch, interpreter_invocation_counter);
 520     }
 521 
 522     if (ProfileInterpreter && profile_method != NULL) {
 523       // Test to see if we should create a method data oop
 524       Address profile_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_profile_limit_offset()));
 525       __ ld(profile_limit, G1_scratch);
 526       __ cmp_and_br_short(O0, G1_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
 527 
 528       // if no method data exists, go to profile_method
 529       __ test_method_data_pointer(*profile_method);
 530     }
 531 
 532     Address invocation_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_invocation_limit_offset()));
 533     __ ld(invocation_limit, G3_scratch);
 534     __ cmp(O0, G3_scratch);
 535     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
 536     __ delayed()->nop();
 537     __ bind(done);
 538   }
 539 
 540 }
 541 
 542 // Allocate monitor and lock method (asm interpreter)
 543 // ebx - Method*
 544 //
 545 void TemplateInterpreterGenerator::lock_method() {
 546   __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0);  // Load access flags.
 547 
 548 #ifdef ASSERT
 549  { Label ok;
 550    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 551    __ br( Assembler::notZero, false, Assembler::pt, ok);
 552    __ delayed()->nop();
 553    __ stop("method doesn't need synchronization");
 554    __ bind(ok);
 555   }
 556 #endif // ASSERT
 557 
 558   // get synchronization object to O0
 559   { Label done;
 560     __ btst(JVM_ACC_STATIC, O0);
 561     __ br( Assembler::zero, true, Assembler::pt, done);
 562     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 563 
 564     // lock the mirror, not the Klass*
 565     __ load_mirror(O0, Lmethod);
 566 
 567 #ifdef ASSERT
 568     __ tst(O0);
 569     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
 570 #endif // ASSERT
 571 
 572     __ bind(done);
 573   }
 574 
 575   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 576   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 577   // __ untested("lock_object from method entry");
 578   __ lock_object(Lmonitors, O0);
 579 }
 580 
 581 // See if we've got enough room on the stack for locals plus overhead below
 582 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 583 // without going through the signal handler, i.e., reserved and yellow zones
 584 // will not be made usable. The shadow zone must suffice to handle the
 585 // overflow.
 586 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 587                                                                  Register Rscratch,
 588                                                                  Register unused) {
 589   const int page_size = os::vm_page_size();
 590   Label after_frame_check;
 591 
 592   assert_different_registers(Rframe_size, Rscratch);
 593 
 594   __ set(page_size, Rscratch);
 595   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
 596 
 597   // Get the stack overflow limit, and in debug, verify it is non-zero.
 598   __ ld_ptr(G2_thread, JavaThread::stack_overflow_limit_offset(), Rscratch);
 599 #ifdef ASSERT
 600   Label limit_ok;
 601   __ br_notnull_short(Rscratch, Assembler::pn, limit_ok);
 602   __ stop("stack overflow limit is zero in generate_stack_overflow_check");
 603   __ bind(limit_ok);
 604 #endif
 605 
 606   // Add in the size of the frame (which is the same as subtracting it from the
 607   // SP, which would take another register.
 608   __ add(Rscratch, Rframe_size, Rscratch);
 609 
 610   // The frame is greater than one page in size, so check against
 611   // the bottom of the stack.
 612   __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check);
 613 
 614   // The stack will overflow, throw an exception.
 615 
 616   // Note that SP is restored to sender's sp (in the delay slot). This
 617   // is necessary if the sender's frame is an extended compiled frame
 618   // (see gen_c2i_adapter()) and safer anyway in case of JSR292
 619   // adaptations.
 620 
 621   // Note also that the restored frame is not necessarily interpreted.
 622   // Use the shared runtime version of the StackOverflowError.
 623   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 624   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 625   __ jump_to(stub, Rscratch);
 626   __ delayed()->mov(O5_savedSP, SP);
 627 
 628   // If you get to here, then there is enough stack space.
 629   __ bind(after_frame_check);
 630 }
 631 
 632 
 633 //
 634 // Generate a fixed interpreter frame. This is identical setup for interpreted
 635 // methods and for native methods hence the shared code.
 636 
 637 
 638 //----------------------------------------------------------------------------------------------------
 639 // Stack frame layout
 640 //
 641 // When control flow reaches any of the entry types for the interpreter
 642 // the following holds ->
 643 //
 644 // C2 Calling Conventions:
 645 //
 646 // The entry code below assumes that the following registers are set
 647 // when coming in:
 648 //    G5_method: holds the Method* of the method to call
 649 //    Lesp:    points to the TOS of the callers expression stack
 650 //             after having pushed all the parameters
 651 //
 652 // The entry code does the following to setup an interpreter frame
 653 //   pop parameters from the callers stack by adjusting Lesp
 654 //   set O0 to Lesp
 655 //   compute X = (max_locals - num_parameters)
 656 //   bump SP up by X to accomadate the extra locals
 657 //   compute X = max_expression_stack
 658 //               + vm_local_words
 659 //               + 16 words of register save area
 660 //   save frame doing a save sp, -X, sp growing towards lower addresses
 661 //   set Lbcp, Lmethod, LcpoolCache
 662 //   set Llocals to i0
 663 //   set Lmonitors to FP - rounded_vm_local_words
 664 //   set Lesp to Lmonitors - 4
 665 //
 666 //  The frame has now been setup to do the rest of the entry code
 667 
 668 // Try this optimization:  Most method entries could live in a
 669 // "one size fits all" stack frame without all the dynamic size
 670 // calculations.  It might be profitable to do all this calculation
 671 // statically and approximately for "small enough" methods.
 672 
 673 //-----------------------------------------------------------------------------------------------
 674 
 675 // C1 Calling conventions
 676 //
 677 // Upon method entry, the following registers are setup:
 678 //
 679 // g2 G2_thread: current thread
 680 // g5 G5_method: method to activate
 681 // g4 Gargs  : pointer to last argument
 682 //
 683 //
 684 // Stack:
 685 //
 686 // +---------------+ <--- sp
 687 // |               |
 688 // : reg save area :
 689 // |               |
 690 // +---------------+ <--- sp + 0x40
 691 // |               |
 692 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 693 // |               |
 694 // +---------------+ <--- sp + 0x5c
 695 // |               |
 696 // :     free      :
 697 // |               |
 698 // +---------------+ <--- Gargs
 699 // |               |
 700 // :   arguments   :
 701 // |               |
 702 // +---------------+
 703 // |               |
 704 //
 705 //
 706 //
 707 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
 708 //
 709 // +---------------+ <--- sp
 710 // |               |
 711 // : reg save area :
 712 // |               |
 713 // +---------------+ <--- sp + 0x40
 714 // |               |
 715 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 716 // |               |
 717 // +---------------+ <--- sp + 0x5c
 718 // |               |
 719 // :               :
 720 // |               | <--- Lesp
 721 // +---------------+ <--- Lmonitors (fp - 0x18)
 722 // |   VM locals   |
 723 // +---------------+ <--- fp
 724 // |               |
 725 // : reg save area :
 726 // |               |
 727 // +---------------+ <--- fp + 0x40
 728 // |               |
 729 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 730 // |               |
 731 // +---------------+ <--- fp + 0x5c
 732 // |               |
 733 // :     free      :
 734 // |               |
 735 // +---------------+
 736 // |               |
 737 // : nonarg locals :
 738 // |               |
 739 // +---------------+
 740 // |               |
 741 // :   arguments   :
 742 // |               | <--- Llocals
 743 // +---------------+ <--- Gargs
 744 // |               |
 745 
 746 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 747   //
 748   //
 749   // The entry code sets up a new interpreter frame in 4 steps:
 750   //
 751   // 1) Increase caller's SP by for the extra local space needed:
 752   //    (check for overflow)
 753   //    Efficient implementation of xload/xstore bytecodes requires
 754   //    that arguments and non-argument locals are in a contigously
 755   //    addressable memory block => non-argument locals must be
 756   //    allocated in the caller's frame.
 757   //
 758   // 2) Create a new stack frame and register window:
 759   //    The new stack frame must provide space for the standard
 760   //    register save area, the maximum java expression stack size,
 761   //    the monitor slots (0 slots initially), and some frame local
 762   //    scratch locations.
 763   //
 764   // 3) The following interpreter activation registers must be setup:
 765   //    Lesp       : expression stack pointer
 766   //    Lbcp       : bytecode pointer
 767   //    Lmethod    : method
 768   //    Llocals    : locals pointer
 769   //    Lmonitors  : monitor pointer
 770   //    LcpoolCache: constant pool cache
 771   //
 772   // 4) Initialize the non-argument locals if necessary:
 773   //    Non-argument locals may need to be initialized to NULL
 774   //    for GC to work. If the oop-map information is accurate
 775   //    (in the absence of the JSR problem), no initialization
 776   //    is necessary.
 777   //
 778   // (gri - 2/25/2000)
 779 
 780 
 781   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
 782 
 783   const int extra_space =
 784     rounded_vm_local_words +                   // frame local scratch space
 785     Method::extra_stack_entries() +            // extra stack for jsr 292
 786     frame::memory_parameter_word_sp_offset +   // register save area
 787     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 788 
 789   const Register Glocals_size = G3;
 790   const Register RconstMethod = Glocals_size;
 791   const Register Otmp1 = O3;
 792   const Register Otmp2 = O4;
 793   // Lscratch can't be used as a temporary because the call_stub uses
 794   // it to assert that the stack frame was setup correctly.
 795   const Address constMethod       (G5_method, Method::const_offset());
 796   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
 797 
 798   __ ld_ptr( constMethod, RconstMethod );
 799   __ lduh( size_of_parameters, Glocals_size);
 800 
 801   // Gargs points to first local + BytesPerWord
 802   // Set the saved SP after the register window save
 803   //
 804   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 805   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
 806   __ add(Gargs, Otmp1, Gargs);
 807 
 808   if (native_call) {
 809     __ calc_mem_param_words( Glocals_size, Gframe_size );
 810     __ add( Gframe_size,  extra_space, Gframe_size);
 811     __ round_to( Gframe_size, WordsPerLong );
 812     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 813 
 814     // Native calls don't need the stack size check since they have no
 815     // expression stack and the arguments are already on the stack and
 816     // we only add a handful of words to the stack.
 817   } else {
 818 
 819     //
 820     // Compute number of locals in method apart from incoming parameters
 821     //
 822     const Address size_of_locals(Otmp1, ConstMethod::size_of_locals_offset());
 823     __ ld_ptr(constMethod, Otmp1);
 824     __ lduh(size_of_locals, Otmp1);
 825     __ sub(Otmp1, Glocals_size, Glocals_size);
 826     __ round_to(Glocals_size, WordsPerLong);
 827     __ sll(Glocals_size, Interpreter::logStackElementSize, Glocals_size);
 828 
 829     // See if the frame is greater than one page in size. If so,
 830     // then we need to verify there is enough stack space remaining.
 831     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 832     __ ld_ptr(constMethod, Gframe_size);
 833     __ lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size);
 834     __ add(Gframe_size, extra_space, Gframe_size);
 835     __ round_to(Gframe_size, WordsPerLong);
 836     __ sll(Gframe_size, Interpreter::logStackElementSize, Gframe_size);
 837 
 838     // Add in java locals size for stack overflow check only
 839     __ add(Gframe_size, Glocals_size, Gframe_size);
 840 
 841     const Register Otmp2 = O4;
 842     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 843     generate_stack_overflow_check(Gframe_size, Otmp1);
 844 
 845     __ sub(Gframe_size, Glocals_size, Gframe_size);
 846 
 847     //
 848     // bump SP to accomodate the extra locals
 849     //
 850     __ sub(SP, Glocals_size, SP);
 851   }
 852 
 853   //
 854   // now set up a stack frame with the size computed above
 855   //
 856   __ neg( Gframe_size );
 857   __ save( SP, Gframe_size, SP );
 858 
 859   //
 860   // now set up all the local cache registers
 861   //
 862   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 863   // that all present references to Lbyte_code initialize the register
 864   // immediately before use
 865   if (native_call) {
 866     __ mov(G0, Lbcp);
 867   } else {
 868     __ ld_ptr(G5_method, Method::const_offset(), Lbcp);
 869     __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
 870   }
 871   __ mov( G5_method, Lmethod);                 // set Lmethod
 872   // Get mirror and store it in the frame as GC root for this Method*
 873   Register mirror = LcpoolCache;
 874   __ load_mirror(mirror, Lmethod);
 875   __ st_ptr(mirror, FP, (frame::interpreter_frame_mirror_offset * wordSize) + STACK_BIAS);
 876   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
 877   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 878 #ifdef _LP64
 879   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
 880 #endif
 881   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 882 
 883   // setup interpreter activation registers
 884   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 885 
 886   if (ProfileInterpreter) {
 887 #ifdef FAST_DISPATCH
 888     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
 889     // they both use I2.
 890     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
 891 #endif // FAST_DISPATCH
 892     __ set_method_data_pointer();
 893   }
 894 
 895 }
 896 
 897 // Method entry for java.lang.ref.Reference.get.
 898 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 899 #if INCLUDE_ALL_GCS
 900   // Code: _aload_0, _getfield, _areturn
 901   // parameter size = 1
 902   //
 903   // The code that gets generated by this routine is split into 2 parts:
 904   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 905   //    2. The slow path - which is an expansion of the regular method entry.
 906   //
 907   // Notes:-
 908   // * In the G1 code we do not check whether we need to block for
 909   //   a safepoint. If G1 is enabled then we must execute the specialized
 910   //   code for Reference.get (except when the Reference object is null)
 911   //   so that we can log the value in the referent field with an SATB
 912   //   update buffer.
 913   //   If the code for the getfield template is modified so that the
 914   //   G1 pre-barrier code is executed when the current method is
 915   //   Reference.get() then going through the normal method entry
 916   //   will be fine.
 917   // * The G1 code can, however, check the receiver object (the instance
 918   //   of java.lang.Reference) and jump to the slow path if null. If the
 919   //   Reference object is null then we obviously cannot fetch the referent
 920   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 921   //   regular method entry code to generate the NPE.
 922   //
 923   // This code is based on generate_accessor_enty.
 924 
 925   address entry = __ pc();
 926 
 927   const int referent_offset = java_lang_ref_Reference::referent_offset;
 928   guarantee(referent_offset > 0, "referent offset not initialized");
 929 
 930   if (UseG1GC) {
 931      Label slow_path;
 932 
 933     // In the G1 code we don't check if we need to reach a safepoint. We
 934     // continue and the thread will safepoint at the next bytecode dispatch.
 935 
 936     // Check if local 0 != NULL
 937     // If the receiver is null then it is OK to jump to the slow path.
 938     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 939     // check if local 0 == NULL and go the slow path
 940     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
 941 
 942 
 943     // Load the value of the referent field.
 944     if (Assembler::is_simm13(referent_offset)) {
 945       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
 946     } else {
 947       __ set(referent_offset, G3_scratch);
 948       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
 949     }
 950 
 951     // Generate the G1 pre-barrier code to log the value of
 952     // the referent field in an SATB buffer. Note with
 953     // these parameters the pre-barrier does not generate
 954     // the load of the previous value
 955 
 956     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
 957                             Otos_i /* pre_val */,
 958                             G3_scratch /* tmp */,
 959                             true /* preserve_o_regs */);
 960 
 961     // _areturn
 962     __ retl();                      // return from leaf routine
 963     __ delayed()->mov(O5_savedSP, SP);
 964 
 965     // Generate regular method entry
 966     __ bind(slow_path);
 967     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 968     return entry;
 969   }
 970 #endif // INCLUDE_ALL_GCS
 971 
 972   // If G1 is not enabled then attempt to go through the accessor entry point
 973   // Reference.get is an accessor
 974   return NULL;
 975 }
 976 
 977 /**
 978  * Method entry for static native methods:
 979  *   int java.util.zip.CRC32.update(int crc, int b)
 980  */
 981 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 982 
 983   if (UseCRC32Intrinsics) {
 984     address entry = __ pc();
 985 
 986     Label L_slow_path;
 987     // If we need a safepoint check, generate full interpreter entry.
 988     ExternalAddress state(SafepointSynchronize::address_of_state());
 989     __ set(ExternalAddress(SafepointSynchronize::address_of_state()), O2);
 990     __ set(SafepointSynchronize::_not_synchronized, O3);
 991     __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pt, L_slow_path);
 992 
 993     // Load parameters
 994     const Register crc   = O0; // initial crc
 995     const Register val   = O1; // byte to update with
 996     const Register table = O2; // address of 256-entry lookup table
 997 
 998     __ ldub(Gargs, 3, val);
 999     __ lduw(Gargs, 8, crc);
1000 
1001     __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
1002 
1003     __ not1(crc); // ~crc
1004     __ clruwu(crc);
1005     __ update_byte_crc32(crc, val, table);
1006     __ not1(crc); // ~crc
1007 
1008     // result in O0
1009     __ retl();
1010     __ delayed()->nop();
1011 
1012     // generate a vanilla native entry as the slow path
1013     __ bind(L_slow_path);
1014     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1015     return entry;
1016   }
1017   return NULL;
1018 }
1019 
1020 /**
1021  * Method entry for static native methods:
1022  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1023  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1024  */
1025 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1026 
1027   if (UseCRC32Intrinsics) {
1028     address entry = __ pc();
1029 
1030     Label L_slow_path;
1031     // If we need a safepoint check, generate full interpreter entry.
1032     ExternalAddress state(SafepointSynchronize::address_of_state());
1033     __ set(ExternalAddress(SafepointSynchronize::address_of_state()), O2);
1034     __ set(SafepointSynchronize::_not_synchronized, O3);
1035     __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pt, L_slow_path);
1036 
1037     // Load parameters from the stack
1038     const Register crc    = O0; // initial crc
1039     const Register buf    = O1; // source java byte array address
1040     const Register len    = O2; // len
1041     const Register offset = O3; // offset
1042 
1043     // Arguments are reversed on java expression stack
1044     // Calculate address of start element
1045     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
1046       __ lduw(Gargs, 0,  len);
1047       __ lduw(Gargs, 8,  offset);
1048       __ ldx( Gargs, 16, buf);
1049       __ lduw(Gargs, 32, crc);
1050       __ add(buf, offset, buf);
1051     } else {
1052       __ lduw(Gargs, 0,  len);
1053       __ lduw(Gargs, 8,  offset);
1054       __ ldx( Gargs, 16, buf);
1055       __ lduw(Gargs, 24, crc);
1056       __ add(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE), buf); // account for the header size
1057       __ add(buf ,offset, buf);
1058     }
1059 
1060     // Call the crc32 kernel
1061     __ MacroAssembler::save_thread(L7_thread_cache);
1062     __ kernel_crc32(crc, buf, len, O3);
1063     __ MacroAssembler::restore_thread(L7_thread_cache);
1064 
1065     // result in O0
1066     __ retl();
1067     __ delayed()->nop();
1068 
1069     // generate a vanilla native entry as the slow path
1070     __ bind(L_slow_path);
1071     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1072     return entry;
1073   }
1074   return NULL;
1075 }
1076 
1077 /**
1078  * Method entry for intrinsic-candidate (non-native) methods:
1079  *   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1080  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1081  * Unlike CRC32, CRC32C does not have any methods marked as native
1082  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1083  */
1084 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1085 
1086   if (UseCRC32CIntrinsics) {
1087     address entry = __ pc();
1088 
1089     // Load parameters from the stack
1090     const Register crc    = O0; // initial crc
1091     const Register buf    = O1; // source java byte array address
1092     const Register offset = O2; // offset
1093     const Register end    = O3; // index of last element to process
1094     const Register len    = O2; // len argument to the kernel
1095     const Register table  = O3; // crc32c lookup table address
1096 
1097     // Arguments are reversed on java expression stack
1098     // Calculate address of start element
1099     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1100       __ lduw(Gargs, 0,  end);
1101       __ lduw(Gargs, 8,  offset);
1102       __ ldx( Gargs, 16, buf);
1103       __ lduw(Gargs, 32, crc);
1104       __ add(buf, offset, buf);
1105       __ sub(end, offset, len);
1106     } else {
1107       __ lduw(Gargs, 0,  end);
1108       __ lduw(Gargs, 8,  offset);
1109       __ ldx( Gargs, 16, buf);
1110       __ lduw(Gargs, 24, crc);
1111       __ add(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE), buf); // account for the header size
1112       __ add(buf, offset, buf);
1113       __ sub(end, offset, len);
1114     }
1115 
1116     // Call the crc32c kernel
1117     __ MacroAssembler::save_thread(L7_thread_cache);
1118     __ kernel_crc32c(crc, buf, len, table);
1119     __ MacroAssembler::restore_thread(L7_thread_cache);
1120 
1121     // result in O0
1122     __ retl();
1123     __ delayed()->nop();
1124 
1125     return entry;
1126   }
1127   return NULL;
1128 }
1129 
1130 // Not supported
1131 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1132   return NULL;
1133 }
1134 
1135 // TODO: rather than touching all pages, check against stack_overflow_limit and bang yellow page to
1136 // generate exception
1137 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1138   // Quick & dirty stack overflow checking: bang the stack & handle trap.
1139   // Note that we do the banging after the frame is setup, since the exception
1140   // handling code expects to find a valid interpreter frame on the stack.
1141   // Doing the banging earlier fails if the caller frame is not an interpreter
1142   // frame.
1143   // (Also, the exception throwing code expects to unlock any synchronized
1144   // method receiever, so do the banging after locking the receiver.)
1145 
1146   // Bang each page in the shadow zone. We can't assume it's been done for
1147   // an interpreter frame with greater than a page of locals, so each page
1148   // needs to be checked.  Only true for non-native.
1149   if (UseStackBanging) {
1150     const int page_size = os::vm_page_size();
1151     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
1152     const int start_page = native_call ? n_shadow_pages : 1;
1153     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1154       __ bang_stack_with_offset(pages*page_size);
1155     }
1156   }
1157 }
1158 
1159 //
1160 // Interpreter stub for calling a native method. (asm interpreter)
1161 // This sets up a somewhat different looking stack for calling the native method
1162 // than the typical interpreter frame setup.
1163 //
1164 
1165 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1166   address entry = __ pc();
1167 
1168   // the following temporary registers are used during frame creation
1169   const Register Gtmp1 = G3_scratch ;
1170   const Register Gtmp2 = G1_scratch;
1171   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1172 
1173   // make sure registers are different!
1174   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1175 
1176   const Address Laccess_flags(Lmethod, Method::access_flags_offset());
1177 
1178   const Register Glocals_size = G3;
1179   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1180 
1181   // make sure method is native & not abstract
1182   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1183 #ifdef ASSERT
1184   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1185   {
1186     Label L;
1187     __ btst(JVM_ACC_NATIVE, Gtmp1);
1188     __ br(Assembler::notZero, false, Assembler::pt, L);
1189     __ delayed()->nop();
1190     __ stop("tried to execute non-native method as native");
1191     __ bind(L);
1192   }
1193   { Label L;
1194     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1195     __ br(Assembler::zero, false, Assembler::pt, L);
1196     __ delayed()->nop();
1197     __ stop("tried to execute abstract method as non-abstract");
1198     __ bind(L);
1199   }
1200 #endif // ASSERT
1201 
1202  // generate the code to allocate the interpreter stack frame
1203   generate_fixed_frame(true);
1204 
1205   //
1206   // No locals to initialize for native method
1207   //
1208 
1209   // this slot will be set later, we initialize it to null here just in
1210   // case we get a GC before the actual value is stored later
1211   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
1212 
1213   const Address do_not_unlock_if_synchronized(G2_thread,
1214     JavaThread::do_not_unlock_if_synchronized_offset());
1215   // Since at this point in the method invocation the exception handler
1216   // would try to exit the monitor of synchronized methods which hasn't
1217   // been entered yet, we set the thread local variable
1218   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1219   // runtime, exception handling i.e. unlock_if_synchronized_method will
1220   // check this thread local flag.
1221   // This flag has two effects, one is to force an unwind in the topmost
1222   // interpreter frame and not perform an unlock while doing so.
1223 
1224   __ movbool(true, G3_scratch);
1225   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1226 
1227   // increment invocation counter and check for overflow
1228   //
1229   // Note: checking for negative value instead of overflow
1230   //       so we have a 'sticky' overflow test (may be of
1231   //       importance as soon as we have true MT/MP)
1232   Label invocation_counter_overflow;
1233   Label Lcontinue;
1234   if (inc_counter) {
1235     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1236 
1237   }
1238   __ bind(Lcontinue);
1239 
1240   bang_stack_shadow_pages(true);
1241 
1242   // reset the _do_not_unlock_if_synchronized flag
1243   __ stbool(G0, do_not_unlock_if_synchronized);
1244 
1245   // check for synchronized methods
1246   // Must happen AFTER invocation_counter check and stack overflow check,
1247   // so method is not locked if overflows.
1248 
1249   if (synchronized) {
1250     lock_method();
1251   } else {
1252 #ifdef ASSERT
1253     { Label ok;
1254       __ ld(Laccess_flags, O0);
1255       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1256       __ br( Assembler::zero, false, Assembler::pt, ok);
1257       __ delayed()->nop();
1258       __ stop("method needs synchronization");
1259       __ bind(ok);
1260     }
1261 #endif // ASSERT
1262   }
1263 
1264 
1265   // start execution
1266   __ verify_thread();
1267 
1268   // JVMTI support
1269   __ notify_method_entry();
1270 
1271   // native call
1272 
1273   // (note that O0 is never an oop--at most it is a handle)
1274   // It is important not to smash any handles created by this call,
1275   // until any oop handle in O0 is dereferenced.
1276 
1277   // (note that the space for outgoing params is preallocated)
1278 
1279   // get signature handler
1280   { Label L;
1281     Address signature_handler(Lmethod, Method::signature_handler_offset());
1282     __ ld_ptr(signature_handler, G3_scratch);
1283     __ br_notnull_short(G3_scratch, Assembler::pt, L);
1284     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
1285     __ ld_ptr(signature_handler, G3_scratch);
1286     __ bind(L);
1287   }
1288 
1289   // Push a new frame so that the args will really be stored in
1290   // Copy a few locals across so the new frame has the variables
1291   // we need but these values will be dead at the jni call and
1292   // therefore not gc volatile like the values in the current
1293   // frame (Lmethod in particular)
1294 
1295   // Flush the method pointer to the register save area
1296   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
1297   __ mov(Llocals, O1);
1298 
1299   // calculate where the mirror handle body is allocated in the interpreter frame:
1300   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
1301 
1302   // Calculate current frame size
1303   __ sub(SP, FP, O3);         // Calculate negative of current frame size
1304   __ save(SP, O3, SP);        // Allocate an identical sized frame
1305 
1306   // Note I7 has leftover trash. Slow signature handler will fill it in
1307   // should we get there. Normal jni call will set reasonable last_Java_pc
1308   // below (and fix I7 so the stack trace doesn't have a meaningless frame
1309   // in it).
1310 
1311   // Load interpreter frame's Lmethod into same register here
1312 
1313   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1314 
1315   __ mov(I1, Llocals);
1316   __ mov(I2, Lscratch2);     // save the address of the mirror
1317 
1318 
1319   // ONLY Lmethod and Llocals are valid here!
1320 
1321   // call signature handler, It will move the arg properly since Llocals in current frame
1322   // matches that in outer frame
1323 
1324   __ callr(G3_scratch, 0);
1325   __ delayed()->nop();
1326 
1327   // Result handler is in Lscratch
1328 
1329   // Reload interpreter frame's Lmethod since slow signature handler may block
1330   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1331 
1332   { Label not_static;
1333 
1334     __ ld(Laccess_flags, O0);
1335     __ btst(JVM_ACC_STATIC, O0);
1336     __ br( Assembler::zero, false, Assembler::pt, not_static);
1337     // get native function entry point(O0 is a good temp until the very end)
1338     __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
1339     // for static methods insert the mirror argument
1340     __ load_mirror(O1, Lmethod);
1341 #ifdef ASSERT
1342     if (!PrintSignatureHandlers)  // do not dirty the output with this
1343     { Label L;
1344       __ br_notnull_short(O1, Assembler::pt, L);
1345       __ stop("mirror is missing");
1346       __ bind(L);
1347     }
1348 #endif // ASSERT
1349     __ st_ptr(O1, Lscratch2, 0);
1350     __ mov(Lscratch2, O1);
1351     __ bind(not_static);
1352   }
1353 
1354   // At this point, arguments have been copied off of stack into
1355   // their JNI positions, which are O1..O5 and SP[68..].
1356   // Oops are boxed in-place on the stack, with handles copied to arguments.
1357   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
1358 
1359 #ifdef ASSERT
1360   { Label L;
1361     __ br_notnull_short(O0, Assembler::pt, L);
1362     __ stop("native entry point is missing");
1363     __ bind(L);
1364   }
1365 #endif // ASSERT
1366 
1367   //
1368   // setup the frame anchor
1369   //
1370   // The scavenge function only needs to know that the PC of this frame is
1371   // in the interpreter method entry code, it doesn't need to know the exact
1372   // PC and hence we can use O7 which points to the return address from the
1373   // previous call in the code stream (signature handler function)
1374   //
1375   // The other trick is we set last_Java_sp to FP instead of the usual SP because
1376   // we have pushed the extra frame in order to protect the volatile register(s)
1377   // in that frame when we return from the jni call
1378   //
1379 
1380   __ set_last_Java_frame(FP, O7);
1381   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
1382                    // not meaningless information that'll confuse me.
1383 
1384   // flush the windows now. We don't care about the current (protection) frame
1385   // only the outer frames
1386 
1387   __ flushw();
1388 
1389   // mark windows as flushed
1390   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1391   __ set(JavaFrameAnchor::flushed, G3_scratch);
1392   __ st(G3_scratch, flags);
1393 
1394   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
1395 
1396   Address thread_state(G2_thread, JavaThread::thread_state_offset());
1397 #ifdef ASSERT
1398   { Label L;
1399     __ ld(thread_state, G3_scratch);
1400     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
1401     __ stop("Wrong thread state in native stub");
1402     __ bind(L);
1403   }
1404 #endif // ASSERT
1405   __ set(_thread_in_native, G3_scratch);
1406   __ st(G3_scratch, thread_state);
1407 
1408   // Call the jni method, using the delay slot to set the JNIEnv* argument.
1409   __ save_thread(L7_thread_cache); // save Gthread
1410   __ callr(O0, 0);
1411   __ delayed()->
1412      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
1413 
1414   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
1415 
1416   __ restore_thread(L7_thread_cache); // restore G2_thread
1417   __ reinit_heapbase();
1418 
1419   // must we block?
1420 
1421   // Block, if necessary, before resuming in _thread_in_Java state.
1422   // In order for GC to work, don't clear the last_Java_sp until after blocking.
1423   { Label no_block;
1424     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
1425 
1426     // Switch thread to "native transition" state before reading the synchronization state.
1427     // This additional state is necessary because reading and testing the synchronization
1428     // state is not atomic w.r.t. GC, as this scenario demonstrates:
1429     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1430     //     VM thread changes sync state to synchronizing and suspends threads for GC.
1431     //     Thread A is resumed to finish this native method, but doesn't block here since it
1432     //     didn't see any synchronization is progress, and escapes.
1433     __ set(_thread_in_native_trans, G3_scratch);
1434     __ st(G3_scratch, thread_state);
1435     if(os::is_MP()) {
1436       if (UseMembar) {
1437         // Force this write out before the read below
1438         __ membar(Assembler::StoreLoad);
1439       } else {
1440         // Write serialization page so VM thread can do a pseudo remote membar.
1441         // We use the current thread pointer to calculate a thread specific
1442         // offset to write to within the page. This minimizes bus traffic
1443         // due to cache line collision.
1444         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1445       }
1446     }
1447     __ load_contents(sync_state, G3_scratch);
1448     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
1449 
1450     Label L;
1451     __ br(Assembler::notEqual, false, Assembler::pn, L);
1452     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1453     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
1454     __ bind(L);
1455 
1456     // Block.  Save any potential method result value before the operation and
1457     // use a leaf call to leave the last_Java_frame setup undisturbed.
1458     save_native_result();
1459     __ call_VM_leaf(L7_thread_cache,
1460                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1461                     G2_thread);
1462 
1463     // Restore any method result value
1464     restore_native_result();
1465     __ bind(no_block);
1466   }
1467 
1468   // Clear the frame anchor now
1469 
1470   __ reset_last_Java_frame();
1471 
1472   // Move the result handler address
1473   __ mov(Lscratch, G3_scratch);
1474   // return possible result to the outer frame
1475 #ifndef __LP64
1476   __ mov(O0, I0);
1477   __ restore(O1, G0, O1);
1478 #else
1479   __ restore(O0, G0, O0);
1480 #endif /* __LP64 */
1481 
1482   // Move result handler to expected register
1483   __ mov(G3_scratch, Lscratch);
1484 
1485   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1486   // switch to thread_in_Java.
1487 
1488   __ set(_thread_in_Java, G3_scratch);
1489   __ st(G3_scratch, thread_state);
1490 
1491   // reset handle block
1492   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1493   __ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1494 
1495   // If we have an oop result store it where it will be safe for any further gc
1496   // until we return now that we've released the handle it might be protected by
1497 
1498   {
1499     Label no_oop, store_result;
1500 
1501     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1502     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
1503     __ addcc(G0, O0, O0);
1504     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
1505     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
1506     __ mov(G0, O0);
1507 
1508     __ bind(store_result);
1509     // Store it where gc will look for it and result handler expects it.
1510     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1511 
1512     __ bind(no_oop);
1513 
1514   }
1515 
1516 
1517   // handle exceptions (exception handling will handle unlocking!)
1518   { Label L;
1519     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1520     __ ld_ptr(exception_addr, Gtemp);
1521     __ br_null_short(Gtemp, Assembler::pt, L);
1522     // Note: This could be handled more efficiently since we know that the native
1523     //       method doesn't have an exception handler. We could directly return
1524     //       to the exception handler for the caller.
1525     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1526     __ should_not_reach_here();
1527     __ bind(L);
1528   }
1529 
1530   // JVMTI support (preserves thread register)
1531   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1532 
1533   if (synchronized) {
1534     // save and restore any potential method result value around the unlocking operation
1535     save_native_result();
1536 
1537     __ add( __ top_most_monitor(), O1);
1538     __ unlock_object(O1);
1539 
1540     restore_native_result();
1541   }
1542 
1543 #if defined(COMPILER2) && !defined(_LP64)
1544 
1545   // C2 expects long results in G1 we can't tell if we're returning to interpreted
1546   // or compiled so just be safe.
1547 
1548   __ sllx(O0, 32, G1);          // Shift bits into high G1
1549   __ srl (O1, 0, O1);           // Zero extend O1
1550   __ or3 (O1, G1, G1);          // OR 64 bits into G1
1551 
1552 #endif /* COMPILER2 && !_LP64 */
1553 
1554   // dispose of return address and remove activation
1555 #ifdef ASSERT
1556   {
1557     Label ok;
1558     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
1559     __ stop("bad I5_savedSP value");
1560     __ should_not_reach_here();
1561     __ bind(ok);
1562   }
1563 #endif
1564   __ jmp(Lscratch, 0);
1565   __ delayed()->nop();
1566 
1567 
1568   if (inc_counter) {
1569     // handle invocation counter overflow
1570     __ bind(invocation_counter_overflow);
1571     generate_counter_overflow(Lcontinue);
1572   }
1573 
1574 
1575 
1576   return entry;
1577 }
1578 
1579 
1580 // Generic method entry to (asm) interpreter
1581 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1582   address entry = __ pc();
1583 
1584   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1585 
1586   // the following temporary registers are used during frame creation
1587   const Register Gtmp1 = G3_scratch ;
1588   const Register Gtmp2 = G1_scratch;
1589 
1590   // make sure registers are different!
1591   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1592 
1593   const Address constMethod       (G5_method, Method::const_offset());
1594   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1595   // and use in the asserts.
1596   const Address access_flags      (Lmethod,   Method::access_flags_offset());
1597 
1598   const Register Glocals_size = G3;
1599   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1600 
1601   // make sure method is not native & not abstract
1602   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1603 #ifdef ASSERT
1604   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1605   {
1606     Label L;
1607     __ btst(JVM_ACC_NATIVE, Gtmp1);
1608     __ br(Assembler::zero, false, Assembler::pt, L);
1609     __ delayed()->nop();
1610     __ stop("tried to execute native method as non-native");
1611     __ bind(L);
1612   }
1613   { Label L;
1614     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1615     __ br(Assembler::zero, false, Assembler::pt, L);
1616     __ delayed()->nop();
1617     __ stop("tried to execute abstract method as non-abstract");
1618     __ bind(L);
1619   }
1620 #endif // ASSERT
1621 
1622   // generate the code to allocate the interpreter stack frame
1623 
1624   generate_fixed_frame(false);
1625 
1626 #ifdef FAST_DISPATCH
1627   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
1628                                           // set bytecode dispatch table base
1629 #endif
1630 
1631   //
1632   // Code to initialize the extra (i.e. non-parm) locals
1633   //
1634   Register init_value = noreg;    // will be G0 if we must clear locals
1635   // The way the code was setup before zerolocals was always true for vanilla java entries.
1636   // It could only be false for the specialized entries like accessor or empty which have
1637   // no extra locals so the testing was a waste of time and the extra locals were always
1638   // initialized. We removed this extra complication to already over complicated code.
1639 
1640   init_value = G0;
1641   Label clear_loop;
1642 
1643   const Register RconstMethod = O1;
1644   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1645   const Address size_of_locals    (RconstMethod, ConstMethod::size_of_locals_offset());
1646 
1647   // NOTE: If you change the frame layout, this code will need to
1648   // be updated!
1649   __ ld_ptr( constMethod, RconstMethod );
1650   __ lduh( size_of_locals, O2 );
1651   __ lduh( size_of_parameters, O1 );
1652   __ sll( O2, Interpreter::logStackElementSize, O2);
1653   __ sll( O1, Interpreter::logStackElementSize, O1 );
1654   __ sub( Llocals, O2, O2 );
1655   __ sub( Llocals, O1, O1 );
1656 
1657   __ bind( clear_loop );
1658   __ inc( O2, wordSize );
1659 
1660   __ cmp( O2, O1 );
1661   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1662   __ delayed()->st_ptr( init_value, O2, 0 );
1663 
1664   const Address do_not_unlock_if_synchronized(G2_thread,
1665     JavaThread::do_not_unlock_if_synchronized_offset());
1666   // Since at this point in the method invocation the exception handler
1667   // would try to exit the monitor of synchronized methods which hasn't
1668   // been entered yet, we set the thread local variable
1669   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1670   // runtime, exception handling i.e. unlock_if_synchronized_method will
1671   // check this thread local flag.
1672   __ movbool(true, G3_scratch);
1673   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1674 
1675   __ profile_parameters_type(G1_scratch, G3_scratch, G4_scratch, Lscratch);
1676   // increment invocation counter and check for overflow
1677   //
1678   // Note: checking for negative value instead of overflow
1679   //       so we have a 'sticky' overflow test (may be of
1680   //       importance as soon as we have true MT/MP)
1681   Label invocation_counter_overflow;
1682   Label profile_method;
1683   Label profile_method_continue;
1684   Label Lcontinue;
1685   if (inc_counter) {
1686     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1687     if (ProfileInterpreter) {
1688       __ bind(profile_method_continue);
1689     }
1690   }
1691   __ bind(Lcontinue);
1692 
1693   bang_stack_shadow_pages(false);
1694 
1695   // reset the _do_not_unlock_if_synchronized flag
1696   __ stbool(G0, do_not_unlock_if_synchronized);
1697 
1698   // check for synchronized methods
1699   // Must happen AFTER invocation_counter check and stack overflow check,
1700   // so method is not locked if overflows.
1701 
1702   if (synchronized) {
1703     lock_method();
1704   } else {
1705 #ifdef ASSERT
1706     { Label ok;
1707       __ ld(access_flags, O0);
1708       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1709       __ br( Assembler::zero, false, Assembler::pt, ok);
1710       __ delayed()->nop();
1711       __ stop("method needs synchronization");
1712       __ bind(ok);
1713     }
1714 #endif // ASSERT
1715   }
1716 
1717   // start execution
1718 
1719   __ verify_thread();
1720 
1721   // jvmti support
1722   __ notify_method_entry();
1723 
1724   // start executing instructions
1725   __ dispatch_next(vtos);
1726 
1727 
1728   if (inc_counter) {
1729     if (ProfileInterpreter) {
1730       // We have decided to profile this method in the interpreter
1731       __ bind(profile_method);
1732 
1733       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1734       __ set_method_data_pointer_for_bcp();
1735       __ ba_short(profile_method_continue);
1736     }
1737 
1738     // handle invocation counter overflow
1739     __ bind(invocation_counter_overflow);
1740     generate_counter_overflow(Lcontinue);
1741   }
1742 
1743 
1744   return entry;
1745 }
1746 
1747 //----------------------------------------------------------------------------------------------------
1748 // Exceptions
1749 void TemplateInterpreterGenerator::generate_throw_exception() {
1750 
1751   // Entry point in previous activation (i.e., if the caller was interpreted)
1752   Interpreter::_rethrow_exception_entry = __ pc();
1753   // O0: exception
1754 
1755   // entry point for exceptions thrown within interpreter code
1756   Interpreter::_throw_exception_entry = __ pc();
1757   __ verify_thread();
1758   // expression stack is undefined here
1759   // O0: exception, i.e. Oexception
1760   // Lbcp: exception bcp
1761   __ verify_oop(Oexception);
1762 
1763 
1764   // expression stack must be empty before entering the VM in case of an exception
1765   __ empty_expression_stack();
1766   // find exception handler address and preserve exception oop
1767   // call C routine to find handler and jump to it
1768   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1769   __ push_ptr(O1); // push exception for exception handler bytecodes
1770 
1771   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1772   __ delayed()->nop();
1773 
1774 
1775   // if the exception is not handled in the current frame
1776   // the frame is removed and the exception is rethrown
1777   // (i.e. exception continuation is _rethrow_exception)
1778   //
1779   // Note: At this point the bci is still the bxi for the instruction which caused
1780   //       the exception and the expression stack is empty. Thus, for any VM calls
1781   //       at this point, GC will find a legal oop map (with empty expression stack).
1782 
1783   // in current activation
1784   // tos: exception
1785   // Lbcp: exception bcp
1786 
1787   //
1788   // JVMTI PopFrame support
1789   //
1790 
1791   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1792   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1793   // Set the popframe_processing bit in popframe_condition indicating that we are
1794   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1795   // popframe handling cycles.
1796 
1797   __ ld(popframe_condition_addr, G3_scratch);
1798   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1799   __ stw(G3_scratch, popframe_condition_addr);
1800 
1801   // Empty the expression stack, as in normal exception handling
1802   __ empty_expression_stack();
1803   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1804 
1805   {
1806     // Check to see whether we are returning to a deoptimized frame.
1807     // (The PopFrame call ensures that the caller of the popped frame is
1808     // either interpreted or compiled and deoptimizes it if compiled.)
1809     // In this case, we can't call dispatch_next() after the frame is
1810     // popped, but instead must save the incoming arguments and restore
1811     // them after deoptimization has occurred.
1812     //
1813     // Note that we don't compare the return PC against the
1814     // deoptimization blob's unpack entry because of the presence of
1815     // adapter frames in C2.
1816     Label caller_not_deoptimized;
1817     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1818     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
1819 
1820     const Register Gtmp1 = G3_scratch;
1821     const Register Gtmp2 = G1_scratch;
1822     const Register RconstMethod = Gtmp1;
1823     const Address constMethod(Lmethod, Method::const_offset());
1824     const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1825 
1826     // Compute size of arguments for saving when returning to deoptimized caller
1827     __ ld_ptr(constMethod, RconstMethod);
1828     __ lduh(size_of_parameters, Gtmp1);
1829     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
1830     __ sub(Llocals, Gtmp1, Gtmp2);
1831     __ add(Gtmp2, wordSize, Gtmp2);
1832     // Save these arguments
1833     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1834     // Inform deoptimization that it is responsible for restoring these arguments
1835     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1836     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1837     __ st(Gtmp1, popframe_condition_addr);
1838 
1839     // Return from the current method
1840     // The caller's SP was adjusted upon method entry to accomodate
1841     // the callee's non-argument locals. Undo that adjustment.
1842     __ ret();
1843     __ delayed()->restore(I5_savedSP, G0, SP);
1844 
1845     __ bind(caller_not_deoptimized);
1846   }
1847 
1848   // Clear the popframe condition flag
1849   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1850 
1851   // Get out of the current method (how this is done depends on the particular compiler calling
1852   // convention that the interpreter currently follows)
1853   // The caller's SP was adjusted upon method entry to accomodate
1854   // the callee's non-argument locals. Undo that adjustment.
1855   __ restore(I5_savedSP, G0, SP);
1856   // The method data pointer was incremented already during
1857   // call profiling. We have to restore the mdp for the current bcp.
1858   if (ProfileInterpreter) {
1859     __ set_method_data_pointer_for_bcp();
1860   }
1861 
1862 #if INCLUDE_JVMTI
1863   {
1864     Label L_done;
1865 
1866     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode
1867     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokestatic, Assembler::notEqual, Assembler::pn, L_done);
1868 
1869     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1870     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1871 
1872     __ call_VM(G1_scratch, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), I0, Lmethod, Lbcp);
1873 
1874     __ br_null(G1_scratch, false, Assembler::pn, L_done);
1875     __ delayed()->nop();
1876 
1877     __ st_ptr(G1_scratch, Lesp, wordSize);
1878     __ bind(L_done);
1879   }
1880 #endif // INCLUDE_JVMTI
1881 
1882   // Resume bytecode interpretation at the current bcp
1883   __ dispatch_next(vtos);
1884   // end of JVMTI PopFrame support
1885 
1886   Interpreter::_remove_activation_entry = __ pc();
1887 
1888   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1889   __ pop_ptr(Oexception);                                  // get exception
1890 
1891   // Intel has the following comment:
1892   //// remove the activation (without doing throws on illegalMonitorExceptions)
1893   // They remove the activation without checking for bad monitor state.
1894   // %%% We should make sure this is the right semantics before implementing.
1895 
1896   __ set_vm_result(Oexception);
1897   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1898 
1899   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1900 
1901   __ get_vm_result(Oexception);
1902   __ verify_oop(Oexception);
1903 
1904     const int return_reg_adjustment = frame::pc_return_offset;
1905   Address issuing_pc_addr(I7, return_reg_adjustment);
1906 
1907   // We are done with this activation frame; find out where to go next.
1908   // The continuation point will be an exception handler, which expects
1909   // the following registers set up:
1910   //
1911   // Oexception: exception
1912   // Oissuing_pc: the local call that threw exception
1913   // Other On: garbage
1914   // In/Ln:  the contents of the caller's register window
1915   //
1916   // We do the required restore at the last possible moment, because we
1917   // need to preserve some state across a runtime call.
1918   // (Remember that the caller activation is unknown--it might not be
1919   // interpreted, so things like Lscratch are useless in the caller.)
1920 
1921   // Although the Intel version uses call_C, we can use the more
1922   // compact call_VM.  (The only real difference on SPARC is a
1923   // harmlessly ignored [re]set_last_Java_frame, compared with
1924   // the Intel code which lacks this.)
1925   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1926   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1927   __ super_call_VM_leaf(L7_thread_cache,
1928                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1929                         G2_thread, Oissuing_pc->after_save());
1930 
1931   // The caller's SP was adjusted upon method entry to accomodate
1932   // the callee's non-argument locals. Undo that adjustment.
1933   __ JMP(O0, 0);                         // return exception handler in caller
1934   __ delayed()->restore(I5_savedSP, G0, SP);
1935 
1936   // (same old exception object is already in Oexception; see above)
1937   // Note that an "issuing PC" is actually the next PC after the call
1938 }
1939 
1940 
1941 //
1942 // JVMTI ForceEarlyReturn support
1943 //
1944 
1945 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1946   address entry = __ pc();
1947 
1948   __ empty_expression_stack();
1949   __ load_earlyret_value(state);
1950 
1951   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1952   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1953 
1954   // Clear the earlyret state
1955   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
1956 
1957   __ remove_activation(state,
1958                        /* throw_monitor_exception */ false,
1959                        /* install_monitor_exception */ false);
1960 
1961   // The caller's SP was adjusted upon method entry to accomodate
1962   // the callee's non-argument locals. Undo that adjustment.
1963   __ ret();                             // return to caller
1964   __ delayed()->restore(I5_savedSP, G0, SP);
1965 
1966   return entry;
1967 } // end of JVMTI ForceEarlyReturn support
1968 
1969 
1970 //------------------------------------------------------------------------------------------------------------------------
1971 // Helper for vtos entry point generation
1972 
1973 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1974   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1975   Label L;
1976   aep = __ pc(); __ push_ptr(); __ ba_short(L);
1977   fep = __ pc(); __ push_f();   __ ba_short(L);
1978   dep = __ pc(); __ push_d();   __ ba_short(L);
1979   lep = __ pc(); __ push_l();   __ ba_short(L);
1980   iep = __ pc(); __ push_i();
1981   bep = cep = sep = iep;                        // there aren't any
1982   vep = __ pc(); __ bind(L);                    // fall through
1983   generate_and_dispatch(t);
1984 }
1985 
1986 // --------------------------------------------------------------------------------
1987 
1988 // Non-product code
1989 #ifndef PRODUCT
1990 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1991   address entry = __ pc();
1992 
1993   __ push(state);
1994   __ mov(O7, Lscratch); // protect return address within interpreter
1995 
1996   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
1997   __ mov( Otos_l2, G3_scratch );
1998   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
1999   __ mov(Lscratch, O7); // restore return address
2000   __ pop(state);
2001   __ retl();
2002   __ delayed()->nop();
2003 
2004   return entry;
2005 }
2006 
2007 
2008 // helpers for generate_and_dispatch
2009 
2010 void TemplateInterpreterGenerator::count_bytecode() {
2011   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
2012 }
2013 
2014 
2015 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2016   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
2017 }
2018 
2019 
2020 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2021   AddressLiteral index   (&BytecodePairHistogram::_index);
2022   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
2023 
2024   // get index, shift out old bytecode, bring in new bytecode, and store it
2025   // _index = (_index >> log2_number_of_codes) |
2026   //          (bytecode << log2_number_of_codes);
2027 
2028   __ load_contents(index, G4_scratch);
2029   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
2030   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
2031   __ or3( G3_scratch,  G4_scratch, G4_scratch );
2032   __ store_contents(G4_scratch, index, G3_scratch);
2033 
2034   // bump bucket contents
2035   // _counters[_index] ++;
2036 
2037   __ set(counters, G3_scratch);                       // loads into G3_scratch
2038   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
2039   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
2040   __ ld (G3_scratch, 0, G4_scratch);
2041   __ inc (G4_scratch);
2042   __ st (G4_scratch, 0, G3_scratch);
2043 }
2044 
2045 
2046 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2047   // Call a little run-time stub to avoid blow-up for each bytecode.
2048   // The run-time runtime saves the right registers, depending on
2049   // the tosca in-state for the given template.
2050   address entry = Interpreter::trace_code(t->tos_in());
2051   guarantee(entry != NULL, "entry must have been generated");
2052   __ call(entry, relocInfo::none);
2053   __ delayed()->nop();
2054 }
2055 
2056 
2057 void TemplateInterpreterGenerator::stop_interpreter_at() {
2058   AddressLiteral counter(&BytecodeCounter::_counter_value);
2059   __ load_contents(counter, G3_scratch);
2060   AddressLiteral stop_at(&StopInterpreterAt);
2061   __ load_ptr_contents(stop_at, G4_scratch);
2062   __ cmp(G3_scratch, G4_scratch);
2063   __ breakpoint_trap(Assembler::equal, Assembler::icc);
2064 }
2065 #endif // not PRODUCT