1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_InstructionPrinter.hpp"
  27 #include "c1/c1_LIR.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciInstance.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 Register LIR_OprDesc::as_register() const {
  34   return FrameMap::cpu_rnr2reg(cpu_regnr());
  35 }
  36 
  37 Register LIR_OprDesc::as_register_lo() const {
  38   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
  39 }
  40 
  41 Register LIR_OprDesc::as_register_hi() const {
  42   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
  43 }
  44 
  45 #if defined(X86)
  46 
  47 XMMRegister LIR_OprDesc::as_xmm_float_reg() const {
  48   return FrameMap::nr2xmmreg(xmm_regnr());
  49 }
  50 
  51 XMMRegister LIR_OprDesc::as_xmm_double_reg() const {
  52   assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation");
  53   return FrameMap::nr2xmmreg(xmm_regnrLo());
  54 }
  55 
  56 #endif // X86
  57 
  58 #if defined(SPARC) || defined(PPC32)
  59 
  60 FloatRegister LIR_OprDesc::as_float_reg() const {
  61   return FrameMap::nr2floatreg(fpu_regnr());
  62 }
  63 
  64 FloatRegister LIR_OprDesc::as_double_reg() const {
  65   return FrameMap::nr2floatreg(fpu_regnrHi());
  66 }
  67 
  68 #endif
  69 
  70 #if defined(ARM) || defined(AARCH64) || defined(PPC64)
  71 
  72 FloatRegister LIR_OprDesc::as_float_reg() const {
  73   return as_FloatRegister(fpu_regnr());
  74 }
  75 
  76 FloatRegister LIR_OprDesc::as_double_reg() const {
  77   return as_FloatRegister(fpu_regnrLo());
  78 }
  79 
  80 #endif
  81 
  82 
  83 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
  84 
  85 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
  86   ValueTag tag = type->tag();
  87   switch (tag) {
  88   case metaDataTag : {
  89     ClassConstant* c = type->as_ClassConstant();
  90     if (c != NULL && !c->value()->is_loaded()) {
  91       return LIR_OprFact::metadataConst(NULL);
  92     } else if (c != NULL) {
  93       return LIR_OprFact::metadataConst(c->value()->constant_encoding());
  94     } else {
  95       MethodConstant* m = type->as_MethodConstant();
  96       assert (m != NULL, "not a class or a method?");
  97       return LIR_OprFact::metadataConst(m->value()->constant_encoding());
  98     }
  99   }
 100   case objectTag : {
 101       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
 102     }
 103   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
 104   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
 105   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
 106   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
 107   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
 108   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 109   }
 110 }
 111 
 112 
 113 LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) {
 114   switch (type->tag()) {
 115     case objectTag: return LIR_OprFact::oopConst(NULL);
 116     case addressTag:return LIR_OprFact::addressConst(0);
 117     case intTag:    return LIR_OprFact::intConst(0);
 118     case floatTag:  return LIR_OprFact::floatConst(0.0);
 119     case longTag:   return LIR_OprFact::longConst(0);
 120     case doubleTag: return LIR_OprFact::doubleConst(0.0);
 121     default:        ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 122   }
 123   return illegalOpr;
 124 }
 125 
 126 
 127 
 128 //---------------------------------------------------
 129 
 130 
 131 LIR_Address::Scale LIR_Address::scale(BasicType type) {
 132   int elem_size = type2aelembytes(type);
 133   switch (elem_size) {
 134   case 1: return LIR_Address::times_1;
 135   case 2: return LIR_Address::times_2;
 136   case 4: return LIR_Address::times_4;
 137   case 8: return LIR_Address::times_8;
 138   }
 139   ShouldNotReachHere();
 140   return LIR_Address::times_1;
 141 }
 142 
 143 
 144 #ifndef PRODUCT
 145 void LIR_Address::verify0() const {
 146 #if defined(SPARC) || defined(PPC)
 147   assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used");
 148   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 149 #endif
 150 #ifdef _LP64
 151   assert(base()->is_cpu_register(), "wrong base operand");
 152 #ifndef AARCH64
 153   assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand");
 154 #else
 155   assert(index()->is_illegal() || index()->is_double_cpu() || index()->is_single_cpu(), "wrong index operand");
 156 #endif
 157   assert(base()->type() == T_OBJECT || base()->type() == T_LONG || base()->type() == T_METADATA,
 158          "wrong type for addresses");
 159 #else
 160   assert(base()->is_single_cpu(), "wrong base operand");
 161   assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand");
 162   assert(base()->type() == T_OBJECT || base()->type() == T_INT || base()->type() == T_METADATA,
 163          "wrong type for addresses");
 164 #endif
 165 }
 166 #endif
 167 
 168 
 169 //---------------------------------------------------
 170 
 171 char LIR_OprDesc::type_char(BasicType t) {
 172   switch (t) {
 173     case T_ARRAY:
 174       t = T_OBJECT;
 175     case T_BOOLEAN:
 176     case T_CHAR:
 177     case T_FLOAT:
 178     case T_DOUBLE:
 179     case T_BYTE:
 180     case T_SHORT:
 181     case T_INT:
 182     case T_LONG:
 183     case T_OBJECT:
 184     case T_ADDRESS:
 185     case T_VOID:
 186       return ::type2char(t);
 187     case T_METADATA:
 188       return 'M';
 189     case T_ILLEGAL:
 190       return '?';
 191 
 192     default:
 193       ShouldNotReachHere();
 194       return '?';
 195   }
 196 }
 197 
 198 #ifndef PRODUCT
 199 void LIR_OprDesc::validate_type() const {
 200 
 201 #ifdef ASSERT
 202   if (!is_pointer() && !is_illegal()) {
 203     OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160
 204     switch (as_BasicType(type_field())) {
 205     case T_LONG:
 206       assert((kindfield == cpu_register || kindfield == stack_value) &&
 207              size_field() == double_size, "must match");
 208       break;
 209     case T_FLOAT:
 210       // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI)
 211       assert((kindfield == fpu_register || kindfield == stack_value
 212              ARM_ONLY(|| kindfield == cpu_register)
 213              PPC32_ONLY(|| kindfield == cpu_register) ) &&
 214              size_field() == single_size, "must match");
 215       break;
 216     case T_DOUBLE:
 217       // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI)
 218       assert((kindfield == fpu_register || kindfield == stack_value
 219              ARM_ONLY(|| kindfield == cpu_register)
 220              PPC32_ONLY(|| kindfield == cpu_register) ) &&
 221              size_field() == double_size, "must match");
 222       break;
 223     case T_BOOLEAN:
 224     case T_CHAR:
 225     case T_BYTE:
 226     case T_SHORT:
 227     case T_INT:
 228     case T_ADDRESS:
 229     case T_OBJECT:
 230     case T_METADATA:
 231     case T_ARRAY:
 232       assert((kindfield == cpu_register || kindfield == stack_value) &&
 233              size_field() == single_size, "must match");
 234       break;
 235 
 236     case T_ILLEGAL:
 237       // XXX TKR also means unknown right now
 238       // assert(is_illegal(), "must match");
 239       break;
 240 
 241     default:
 242       ShouldNotReachHere();
 243     }
 244   }
 245 #endif
 246 
 247 }
 248 #endif // PRODUCT
 249 
 250 
 251 bool LIR_OprDesc::is_oop() const {
 252   if (is_pointer()) {
 253     return pointer()->is_oop_pointer();
 254   } else {
 255     OprType t= type_field();
 256     assert(t != unknown_type, "not set");
 257     return t == object_type;
 258   }
 259 }
 260 
 261 
 262 
 263 void LIR_Op2::verify() const {
 264 #ifdef ASSERT
 265   switch (code()) {
 266     case lir_cmove:
 267     case lir_xchg:
 268       break;
 269 
 270     default:
 271       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
 272              "can't produce oops from arith");
 273   }
 274 
 275   if (TwoOperandLIRForm) {
 276     switch (code()) {
 277     case lir_add:
 278     case lir_sub:
 279     case lir_mul:
 280     case lir_mul_strictfp:
 281     case lir_div:
 282     case lir_div_strictfp:
 283     case lir_rem:
 284     case lir_logic_and:
 285     case lir_logic_or:
 286     case lir_logic_xor:
 287     case lir_shl:
 288     case lir_shr:
 289       assert(in_opr1() == result_opr(), "opr1 and result must match");
 290       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 291       break;
 292 
 293     // special handling for lir_ushr because of write barriers
 294     case lir_ushr:
 295       assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant");
 296       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 297       break;
 298 
 299     }
 300   }
 301 #endif
 302 }
 303 
 304 
 305 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block)
 306   : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 307   , _cond(cond)
 308   , _type(type)
 309   , _label(block->label())
 310   , _block(block)
 311   , _ublock(NULL)
 312   , _stub(NULL) {
 313 }
 314 
 315 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) :
 316   LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 317   , _cond(cond)
 318   , _type(type)
 319   , _label(stub->entry())
 320   , _block(NULL)
 321   , _ublock(NULL)
 322   , _stub(stub) {
 323 }
 324 
 325 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock)
 326   : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 327   , _cond(cond)
 328   , _type(type)
 329   , _label(block->label())
 330   , _block(block)
 331   , _ublock(ublock)
 332   , _stub(NULL)
 333 {
 334 }
 335 
 336 void LIR_OpBranch::change_block(BlockBegin* b) {
 337   assert(_block != NULL, "must have old block");
 338   assert(_block->label() == label(), "must be equal");
 339 
 340   _block = b;
 341   _label = b->label();
 342 }
 343 
 344 void LIR_OpBranch::change_ublock(BlockBegin* b) {
 345   assert(_ublock != NULL, "must have old block");
 346   _ublock = b;
 347 }
 348 
 349 void LIR_OpBranch::negate_cond() {
 350   switch (_cond) {
 351     case lir_cond_equal:        _cond = lir_cond_notEqual;     break;
 352     case lir_cond_notEqual:     _cond = lir_cond_equal;        break;
 353     case lir_cond_less:         _cond = lir_cond_greaterEqual; break;
 354     case lir_cond_lessEqual:    _cond = lir_cond_greater;      break;
 355     case lir_cond_greaterEqual: _cond = lir_cond_less;         break;
 356     case lir_cond_greater:      _cond = lir_cond_lessEqual;    break;
 357     default: ShouldNotReachHere();
 358   }
 359 }
 360 
 361 
 362 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
 363                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
 364                                  bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
 365                                  CodeStub* stub)
 366 
 367   : LIR_Op(code, result, NULL)
 368   , _object(object)
 369   , _array(LIR_OprFact::illegalOpr)
 370   , _klass(klass)
 371   , _tmp1(tmp1)
 372   , _tmp2(tmp2)
 373   , _tmp3(tmp3)
 374   , _fast_check(fast_check)
 375   , _stub(stub)
 376   , _info_for_patch(info_for_patch)
 377   , _info_for_exception(info_for_exception)
 378   , _profiled_method(NULL)
 379   , _profiled_bci(-1)
 380   , _should_profile(false)
 381 {
 382   if (code == lir_checkcast) {
 383     assert(info_for_exception != NULL, "checkcast throws exceptions");
 384   } else if (code == lir_instanceof) {
 385     assert(info_for_exception == NULL, "instanceof throws no exceptions");
 386   } else {
 387     ShouldNotReachHere();
 388   }
 389 }
 390 
 391 
 392 
 393 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
 394   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
 395   , _object(object)
 396   , _array(array)
 397   , _klass(NULL)
 398   , _tmp1(tmp1)
 399   , _tmp2(tmp2)
 400   , _tmp3(tmp3)
 401   , _fast_check(false)
 402   , _stub(NULL)
 403   , _info_for_patch(NULL)
 404   , _info_for_exception(info_for_exception)
 405   , _profiled_method(NULL)
 406   , _profiled_bci(-1)
 407   , _should_profile(false)
 408 {
 409   if (code == lir_store_check) {
 410     _stub = new ArrayStoreExceptionStub(object, info_for_exception);
 411     assert(info_for_exception != NULL, "store_check throws exceptions");
 412   } else {
 413     ShouldNotReachHere();
 414   }
 415 }
 416 
 417 
 418 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
 419                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
 420   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
 421   , _tmp(tmp)
 422   , _src(src)
 423   , _src_pos(src_pos)
 424   , _dst(dst)
 425   , _dst_pos(dst_pos)
 426   , _flags(flags)
 427   , _expected_type(expected_type)
 428   , _length(length) {
 429   _stub = new ArrayCopyStub(this);
 430 }
 431 
 432 LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)
 433   : LIR_Op(lir_updatecrc32, res, NULL)
 434   , _crc(crc)
 435   , _val(val) {
 436 }
 437 
 438 //-------------------verify--------------------------
 439 
 440 void LIR_Op1::verify() const {
 441   switch(code()) {
 442   case lir_move:
 443     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
 444     break;
 445   case lir_null_check:
 446     assert(in_opr()->is_register(), "must be");
 447     break;
 448   case lir_return:
 449     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
 450     break;
 451   }
 452 }
 453 
 454 void LIR_OpRTCall::verify() const {
 455   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
 456 }
 457 
 458 //-------------------visits--------------------------
 459 
 460 // complete rework of LIR instruction visitor.
 461 // The virtual call for each instruction type is replaced by a big
 462 // switch that adds the operands for each instruction
 463 
 464 void LIR_OpVisitState::visit(LIR_Op* op) {
 465   // copy information from the LIR_Op
 466   reset();
 467   set_op(op);
 468 
 469   switch (op->code()) {
 470 
 471 // LIR_Op0
 472     case lir_word_align:               // result and info always invalid
 473     case lir_backwardbranch_target:    // result and info always invalid
 474     case lir_build_frame:              // result and info always invalid
 475     case lir_fpop_raw:                 // result and info always invalid
 476     case lir_24bit_FPU:                // result and info always invalid
 477     case lir_reset_FPU:                // result and info always invalid
 478     case lir_breakpoint:               // result and info always invalid
 479     case lir_membar:                   // result and info always invalid
 480     case lir_membar_acquire:           // result and info always invalid
 481     case lir_membar_release:           // result and info always invalid
 482     case lir_membar_loadload:          // result and info always invalid
 483     case lir_membar_storestore:        // result and info always invalid
 484     case lir_membar_loadstore:         // result and info always invalid
 485     case lir_membar_storeload:         // result and info always invalid
 486     case lir_on_spin_wait:
 487     {
 488       assert(op->as_Op0() != NULL, "must be");
 489       assert(op->_info == NULL, "info not used by this instruction");
 490       assert(op->_result->is_illegal(), "not used");
 491       break;
 492     }
 493 
 494     case lir_nop:                      // may have info, result always invalid
 495     case lir_std_entry:                // may have result, info always invalid
 496     case lir_osr_entry:                // may have result, info always invalid
 497     case lir_get_thread:               // may have result, info always invalid
 498     {
 499       assert(op->as_Op0() != NULL, "must be");
 500       if (op->_info != NULL)           do_info(op->_info);
 501       if (op->_result->is_valid())     do_output(op->_result);
 502       break;
 503     }
 504 
 505 
 506 // LIR_OpLabel
 507     case lir_label:                    // result and info always invalid
 508     {
 509       assert(op->as_OpLabel() != NULL, "must be");
 510       assert(op->_info == NULL, "info not used by this instruction");
 511       assert(op->_result->is_illegal(), "not used");
 512       break;
 513     }
 514 
 515 
 516 // LIR_Op1
 517     case lir_fxch:           // input always valid, result and info always invalid
 518     case lir_fld:            // input always valid, result and info always invalid
 519     case lir_ffree:          // input always valid, result and info always invalid
 520     case lir_push:           // input always valid, result and info always invalid
 521     case lir_pop:            // input always valid, result and info always invalid
 522     case lir_return:         // input always valid, result and info always invalid
 523     case lir_leal:           // input and result always valid, info always invalid
 524     case lir_neg:            // input and result always valid, info always invalid
 525     case lir_monaddr:        // input and result always valid, info always invalid
 526     case lir_null_check:     // input and info always valid, result always invalid
 527     case lir_move:           // input and result always valid, may have info
 528     case lir_pack64:         // input and result always valid
 529     case lir_unpack64:       // input and result always valid
 530     {
 531       assert(op->as_Op1() != NULL, "must be");
 532       LIR_Op1* op1 = (LIR_Op1*)op;
 533 
 534       if (op1->_info)                  do_info(op1->_info);
 535       if (op1->_opr->is_valid())       do_input(op1->_opr);
 536       if (op1->_result->is_valid())    do_output(op1->_result);
 537 
 538       break;
 539     }
 540 
 541     case lir_safepoint:
 542     {
 543       assert(op->as_Op1() != NULL, "must be");
 544       LIR_Op1* op1 = (LIR_Op1*)op;
 545 
 546       assert(op1->_info != NULL, "");  do_info(op1->_info);
 547       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
 548       assert(op1->_result->is_illegal(), "safepoint does not produce value");
 549 
 550       break;
 551     }
 552 
 553 // LIR_OpConvert;
 554     case lir_convert:        // input and result always valid, info always invalid
 555     {
 556       assert(op->as_OpConvert() != NULL, "must be");
 557       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
 558 
 559       assert(opConvert->_info == NULL, "must be");
 560       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
 561       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
 562 #ifdef PPC32
 563       if (opConvert->_tmp1->is_valid())      do_temp(opConvert->_tmp1);
 564       if (opConvert->_tmp2->is_valid())      do_temp(opConvert->_tmp2);
 565 #endif
 566       do_stub(opConvert->_stub);
 567 
 568       break;
 569     }
 570 
 571 // LIR_OpBranch;
 572     case lir_branch:                   // may have info, input and result register always invalid
 573     case lir_cond_float_branch:        // may have info, input and result register always invalid
 574     {
 575       assert(op->as_OpBranch() != NULL, "must be");
 576       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
 577 
 578       if (opBranch->_info != NULL)     do_info(opBranch->_info);
 579       assert(opBranch->_result->is_illegal(), "not used");
 580       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
 581 
 582       break;
 583     }
 584 
 585 
 586 // LIR_OpAllocObj
 587     case lir_alloc_object:
 588     {
 589       assert(op->as_OpAllocObj() != NULL, "must be");
 590       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
 591 
 592       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
 593       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
 594                                                  do_temp(opAllocObj->_opr);
 595                                         }
 596       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
 597       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
 598       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
 599       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
 600       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
 601                                                  do_stub(opAllocObj->_stub);
 602       break;
 603     }
 604 
 605 
 606 // LIR_OpRoundFP;
 607     case lir_roundfp: {
 608       assert(op->as_OpRoundFP() != NULL, "must be");
 609       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
 610 
 611       assert(op->_info == NULL, "info not used by this instruction");
 612       assert(opRoundFP->_tmp->is_illegal(), "not used");
 613       do_input(opRoundFP->_opr);
 614       do_output(opRoundFP->_result);
 615 
 616       break;
 617     }
 618 
 619 
 620 // LIR_Op2
 621     case lir_cmp:
 622     case lir_cmp_l2i:
 623     case lir_ucmp_fd2i:
 624     case lir_cmp_fd2i:
 625     case lir_add:
 626     case lir_sub:
 627     case lir_mul:
 628     case lir_div:
 629     case lir_rem:
 630     case lir_sqrt:
 631     case lir_abs:
 632     case lir_logic_and:
 633     case lir_logic_or:
 634     case lir_logic_xor:
 635     case lir_shl:
 636     case lir_shr:
 637     case lir_ushr:
 638     case lir_xadd:
 639     case lir_xchg:
 640     case lir_assert:
 641     {
 642       assert(op->as_Op2() != NULL, "must be");
 643       LIR_Op2* op2 = (LIR_Op2*)op;
 644       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 645              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 646 
 647       if (op2->_info)                     do_info(op2->_info);
 648       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
 649       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
 650       if (op2->_tmp1->is_valid())         do_temp(op2->_tmp1);
 651       if (op2->_result->is_valid())       do_output(op2->_result);
 652       if (op->code() == lir_xchg || op->code() == lir_xadd) {
 653         // on ARM and PPC, return value is loaded first so could
 654         // destroy inputs. On other platforms that implement those
 655         // (x86, sparc), the extra constrainsts are harmless.
 656         if (op2->_opr1->is_valid())       do_temp(op2->_opr1);
 657         if (op2->_opr2->is_valid())       do_temp(op2->_opr2);
 658       }
 659 
 660       break;
 661     }
 662 
 663     // special handling for cmove: right input operand must not be equal
 664     // to the result operand, otherwise the backend fails
 665     case lir_cmove:
 666     {
 667       assert(op->as_Op2() != NULL, "must be");
 668       LIR_Op2* op2 = (LIR_Op2*)op;
 669 
 670       assert(op2->_info == NULL && op2->_tmp1->is_illegal() && op2->_tmp2->is_illegal() &&
 671              op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 672       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
 673 
 674       do_input(op2->_opr1);
 675       do_input(op2->_opr2);
 676       do_temp(op2->_opr2);
 677       do_output(op2->_result);
 678 
 679       break;
 680     }
 681 
 682     // vspecial handling for strict operations: register input operands
 683     // as temp to guarantee that they do not overlap with other
 684     // registers
 685     case lir_mul_strictfp:
 686     case lir_div_strictfp:
 687     {
 688       assert(op->as_Op2() != NULL, "must be");
 689       LIR_Op2* op2 = (LIR_Op2*)op;
 690 
 691       assert(op2->_info == NULL, "not used");
 692       assert(op2->_opr1->is_valid(), "used");
 693       assert(op2->_opr2->is_valid(), "used");
 694       assert(op2->_result->is_valid(), "used");
 695       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 696              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 697 
 698       do_input(op2->_opr1); do_temp(op2->_opr1);
 699       do_input(op2->_opr2); do_temp(op2->_opr2);
 700       if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1);
 701       do_output(op2->_result);
 702 
 703       break;
 704     }
 705 
 706     case lir_throw: {
 707       assert(op->as_Op2() != NULL, "must be");
 708       LIR_Op2* op2 = (LIR_Op2*)op;
 709 
 710       if (op2->_info)                     do_info(op2->_info);
 711       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
 712       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
 713       assert(op2->_result->is_illegal(), "no result");
 714       assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() &&
 715              op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used");
 716 
 717       break;
 718     }
 719 
 720     case lir_unwind: {
 721       assert(op->as_Op1() != NULL, "must be");
 722       LIR_Op1* op1 = (LIR_Op1*)op;
 723 
 724       assert(op1->_info == NULL, "no info");
 725       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
 726       assert(op1->_result->is_illegal(), "no result");
 727 
 728       break;
 729     }
 730 
 731 // LIR_Op3
 732     case lir_idiv:
 733     case lir_irem: {
 734       assert(op->as_Op3() != NULL, "must be");
 735       LIR_Op3* op3= (LIR_Op3*)op;
 736 
 737       if (op3->_info)                     do_info(op3->_info);
 738       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
 739 
 740       // second operand is input and temp, so ensure that second operand
 741       // and third operand get not the same register
 742       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
 743       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
 744       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
 745 
 746       if (op3->_result->is_valid())       do_output(op3->_result);
 747 
 748       break;
 749     }
 750 
 751 
 752 // LIR_OpJavaCall
 753     case lir_static_call:
 754     case lir_optvirtual_call:
 755     case lir_icvirtual_call:
 756     case lir_virtual_call:
 757     case lir_dynamic_call: {
 758       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
 759       assert(opJavaCall != NULL, "must be");
 760 
 761       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
 762 
 763       // only visit register parameters
 764       int n = opJavaCall->_arguments->length();
 765       for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) {
 766         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
 767           do_input(*opJavaCall->_arguments->adr_at(i));
 768         }
 769       }
 770 
 771       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
 772       if (FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr &&
 773           opJavaCall->is_method_handle_invoke()) {
 774         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
 775         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
 776       }
 777       do_call();
 778       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
 779 
 780       break;
 781     }
 782 
 783 
 784 // LIR_OpRTCall
 785     case lir_rtcall: {
 786       assert(op->as_OpRTCall() != NULL, "must be");
 787       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
 788 
 789       // only visit register parameters
 790       int n = opRTCall->_arguments->length();
 791       for (int i = 0; i < n; i++) {
 792         if (!opRTCall->_arguments->at(i)->is_pointer()) {
 793           do_input(*opRTCall->_arguments->adr_at(i));
 794         }
 795       }
 796       if (opRTCall->_info)                     do_info(opRTCall->_info);
 797       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
 798       do_call();
 799       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
 800 
 801       break;
 802     }
 803 
 804 
 805 // LIR_OpArrayCopy
 806     case lir_arraycopy: {
 807       assert(op->as_OpArrayCopy() != NULL, "must be");
 808       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
 809 
 810       assert(opArrayCopy->_result->is_illegal(), "unused");
 811       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
 812       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
 813       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
 814       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
 815       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
 816       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
 817       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
 818 
 819       // the implementation of arraycopy always has a call into the runtime
 820       do_call();
 821 
 822       break;
 823     }
 824 
 825 
 826 // LIR_OpUpdateCRC32
 827     case lir_updatecrc32: {
 828       assert(op->as_OpUpdateCRC32() != NULL, "must be");
 829       LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op;
 830 
 831       assert(opUp->_crc->is_valid(), "used");          do_input(opUp->_crc);     do_temp(opUp->_crc);
 832       assert(opUp->_val->is_valid(), "used");          do_input(opUp->_val);     do_temp(opUp->_val);
 833       assert(opUp->_result->is_valid(), "used");       do_output(opUp->_result);
 834       assert(opUp->_info == NULL, "no info for LIR_OpUpdateCRC32");
 835 
 836       break;
 837     }
 838 
 839 
 840 // LIR_OpLock
 841     case lir_lock:
 842     case lir_unlock: {
 843       assert(op->as_OpLock() != NULL, "must be");
 844       LIR_OpLock* opLock = (LIR_OpLock*)op;
 845 
 846       if (opLock->_info)                          do_info(opLock->_info);
 847 
 848       // TODO: check if these operands really have to be temp
 849       // (or if input is sufficient). This may have influence on the oop map!
 850       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
 851       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
 852       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
 853 
 854       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
 855       assert(opLock->_result->is_illegal(), "unused");
 856 
 857       do_stub(opLock->_stub);
 858 
 859       break;
 860     }
 861 
 862 
 863 // LIR_OpDelay
 864     case lir_delay_slot: {
 865       assert(op->as_OpDelay() != NULL, "must be");
 866       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
 867 
 868       visit(opDelay->delay_op());
 869       break;
 870     }
 871 
 872 // LIR_OpTypeCheck
 873     case lir_instanceof:
 874     case lir_checkcast:
 875     case lir_store_check: {
 876       assert(op->as_OpTypeCheck() != NULL, "must be");
 877       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
 878 
 879       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
 880       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
 881       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
 882       if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) {
 883         do_temp(opTypeCheck->_object);
 884       }
 885       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
 886       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
 887       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
 888       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
 889       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
 890                                                   do_stub(opTypeCheck->_stub);
 891       break;
 892     }
 893 
 894 // LIR_OpCompareAndSwap
 895     case lir_cas_long:
 896     case lir_cas_obj:
 897     case lir_cas_int: {
 898       assert(op->as_OpCompareAndSwap() != NULL, "must be");
 899       LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
 900 
 901       assert(opCompareAndSwap->_addr->is_valid(),      "used");
 902       assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
 903       assert(opCompareAndSwap->_new_value->is_valid(), "used");
 904       if (opCompareAndSwap->_info)                    do_info(opCompareAndSwap->_info);
 905                                                       do_input(opCompareAndSwap->_addr);
 906                                                       do_temp(opCompareAndSwap->_addr);
 907                                                       do_input(opCompareAndSwap->_cmp_value);
 908                                                       do_temp(opCompareAndSwap->_cmp_value);
 909                                                       do_input(opCompareAndSwap->_new_value);
 910                                                       do_temp(opCompareAndSwap->_new_value);
 911       if (opCompareAndSwap->_tmp1->is_valid())        do_temp(opCompareAndSwap->_tmp1);
 912       if (opCompareAndSwap->_tmp2->is_valid())        do_temp(opCompareAndSwap->_tmp2);
 913       if (opCompareAndSwap->_result->is_valid())      do_output(opCompareAndSwap->_result);
 914 
 915       break;
 916     }
 917 
 918 
 919 // LIR_OpAllocArray;
 920     case lir_alloc_array: {
 921       assert(op->as_OpAllocArray() != NULL, "must be");
 922       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
 923 
 924       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
 925       if (opAllocArray->_klass->is_valid())           do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
 926       if (opAllocArray->_len->is_valid())             do_input(opAllocArray->_len);   do_temp(opAllocArray->_len);
 927       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
 928       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
 929       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
 930       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
 931       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
 932                                                       do_stub(opAllocArray->_stub);
 933       break;
 934     }
 935 
 936 // LIR_OpProfileCall:
 937     case lir_profile_call: {
 938       assert(op->as_OpProfileCall() != NULL, "must be");
 939       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
 940 
 941       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
 942       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
 943       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
 944       break;
 945     }
 946 
 947 // LIR_OpProfileType:
 948     case lir_profile_type: {
 949       assert(op->as_OpProfileType() != NULL, "must be");
 950       LIR_OpProfileType* opProfileType = (LIR_OpProfileType*)op;
 951 
 952       do_input(opProfileType->_mdp); do_temp(opProfileType->_mdp);
 953       do_input(opProfileType->_obj);
 954       do_temp(opProfileType->_tmp);
 955       break;
 956     }
 957   default:
 958     ShouldNotReachHere();
 959   }
 960 }
 961 
 962 
 963 void LIR_OpVisitState::do_stub(CodeStub* stub) {
 964   if (stub != NULL) {
 965     stub->visit(this);
 966   }
 967 }
 968 
 969 XHandlers* LIR_OpVisitState::all_xhandler() {
 970   XHandlers* result = NULL;
 971 
 972   int i;
 973   for (i = 0; i < info_count(); i++) {
 974     if (info_at(i)->exception_handlers() != NULL) {
 975       result = info_at(i)->exception_handlers();
 976       break;
 977     }
 978   }
 979 
 980 #ifdef ASSERT
 981   for (i = 0; i < info_count(); i++) {
 982     assert(info_at(i)->exception_handlers() == NULL ||
 983            info_at(i)->exception_handlers() == result,
 984            "only one xhandler list allowed per LIR-operation");
 985   }
 986 #endif
 987 
 988   if (result != NULL) {
 989     return result;
 990   } else {
 991     return new XHandlers();
 992   }
 993 
 994   return result;
 995 }
 996 
 997 
 998 #ifdef ASSERT
 999 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
1000   visit(op);
1001 
1002   return opr_count(inputMode) == 0 &&
1003          opr_count(outputMode) == 0 &&
1004          opr_count(tempMode) == 0 &&
1005          info_count() == 0 &&
1006          !has_call() &&
1007          !has_slow_case();
1008 }
1009 #endif
1010 
1011 //---------------------------------------------------
1012 
1013 
1014 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
1015   masm->emit_call(this);
1016 }
1017 
1018 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
1019   masm->emit_rtcall(this);
1020 }
1021 
1022 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
1023   masm->emit_opLabel(this);
1024 }
1025 
1026 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
1027   masm->emit_arraycopy(this);
1028   masm->append_code_stub(stub());
1029 }
1030 
1031 void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) {
1032   masm->emit_updatecrc32(this);
1033 }
1034 
1035 void LIR_Op0::emit_code(LIR_Assembler* masm) {
1036   masm->emit_op0(this);
1037 }
1038 
1039 void LIR_Op1::emit_code(LIR_Assembler* masm) {
1040   masm->emit_op1(this);
1041 }
1042 
1043 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
1044   masm->emit_alloc_obj(this);
1045   masm->append_code_stub(stub());
1046 }
1047 
1048 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
1049   masm->emit_opBranch(this);
1050   if (stub()) {
1051     masm->append_code_stub(stub());
1052   }
1053 }
1054 
1055 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1056   masm->emit_opConvert(this);
1057   if (stub() != NULL) {
1058     masm->append_code_stub(stub());
1059   }
1060 }
1061 
1062 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1063   masm->emit_op2(this);
1064 }
1065 
1066 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1067   masm->emit_alloc_array(this);
1068   masm->append_code_stub(stub());
1069 }
1070 
1071 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1072   masm->emit_opTypeCheck(this);
1073   if (stub()) {
1074     masm->append_code_stub(stub());
1075   }
1076 }
1077 
1078 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1079   masm->emit_compare_and_swap(this);
1080 }
1081 
1082 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1083   masm->emit_op3(this);
1084 }
1085 
1086 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1087   masm->emit_lock(this);
1088   if (stub()) {
1089     masm->append_code_stub(stub());
1090   }
1091 }
1092 
1093 #ifdef ASSERT
1094 void LIR_OpAssert::emit_code(LIR_Assembler* masm) {
1095   masm->emit_assert(this);
1096 }
1097 #endif
1098 
1099 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1100   masm->emit_delay(this);
1101 }
1102 
1103 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1104   masm->emit_profile_call(this);
1105 }
1106 
1107 void LIR_OpProfileType::emit_code(LIR_Assembler* masm) {
1108   masm->emit_profile_type(this);
1109 }
1110 
1111 // LIR_List
1112 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1113   : _operations(8)
1114   , _compilation(compilation)
1115 #ifndef PRODUCT
1116   , _block(block)
1117 #endif
1118 #ifdef ASSERT
1119   , _file(NULL)
1120   , _line(0)
1121 #endif
1122 { }
1123 
1124 
1125 #ifdef ASSERT
1126 void LIR_List::set_file_and_line(const char * file, int line) {
1127   const char * f = strrchr(file, '/');
1128   if (f == NULL) f = strrchr(file, '\\');
1129   if (f == NULL) {
1130     f = file;
1131   } else {
1132     f++;
1133   }
1134   _file = f;
1135   _line = line;
1136 }
1137 #endif
1138 
1139 
1140 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1141   assert(this == buffer->lir_list(), "wrong lir list");
1142   const int n = _operations.length();
1143 
1144   if (buffer->number_of_ops() > 0) {
1145     // increase size of instructions list
1146     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1147     // insert ops from buffer into instructions list
1148     int op_index = buffer->number_of_ops() - 1;
1149     int ip_index = buffer->number_of_insertion_points() - 1;
1150     int from_index = n - 1;
1151     int to_index = _operations.length() - 1;
1152     for (; ip_index >= 0; ip_index --) {
1153       int index = buffer->index_at(ip_index);
1154       // make room after insertion point
1155       while (index < from_index) {
1156         _operations.at_put(to_index --, _operations.at(from_index --));
1157       }
1158       // insert ops from buffer
1159       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1160         _operations.at_put(to_index --, buffer->op_at(op_index --));
1161       }
1162     }
1163   }
1164 
1165   buffer->finish();
1166 }
1167 
1168 
1169 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1170   assert(reg->type() == T_OBJECT, "bad reg");
1171   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1172 }
1173 
1174 void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) {
1175   assert(reg->type() == T_METADATA, "bad reg");
1176   append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info));
1177 }
1178 
1179 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1180   append(new LIR_Op1(
1181             lir_move,
1182             LIR_OprFact::address(addr),
1183             src,
1184             addr->type(),
1185             patch_code,
1186             info));
1187 }
1188 
1189 
1190 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1191   append(new LIR_Op1(
1192             lir_move,
1193             LIR_OprFact::address(address),
1194             dst,
1195             address->type(),
1196             patch_code,
1197             info, lir_move_volatile));
1198 }
1199 
1200 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1201   append(new LIR_Op1(
1202             lir_move,
1203             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1204             dst,
1205             type,
1206             patch_code,
1207             info, lir_move_volatile));
1208 }
1209 
1210 
1211 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1212   append(new LIR_Op1(
1213             lir_move,
1214             LIR_OprFact::intConst(v),
1215             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1216             type,
1217             patch_code,
1218             info));
1219 }
1220 
1221 
1222 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1223   append(new LIR_Op1(
1224             lir_move,
1225             LIR_OprFact::oopConst(o),
1226             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1227             type,
1228             patch_code,
1229             info));
1230 }
1231 
1232 
1233 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1234   append(new LIR_Op1(
1235             lir_move,
1236             src,
1237             LIR_OprFact::address(addr),
1238             addr->type(),
1239             patch_code,
1240             info));
1241 }
1242 
1243 
1244 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1245   append(new LIR_Op1(
1246             lir_move,
1247             src,
1248             LIR_OprFact::address(addr),
1249             addr->type(),
1250             patch_code,
1251             info,
1252             lir_move_volatile));
1253 }
1254 
1255 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1256   append(new LIR_Op1(
1257             lir_move,
1258             src,
1259             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1260             type,
1261             patch_code,
1262             info, lir_move_volatile));
1263 }
1264 
1265 
1266 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1267   append(new LIR_Op3(
1268                     lir_idiv,
1269                     left,
1270                     right,
1271                     tmp,
1272                     res,
1273                     info));
1274 }
1275 
1276 
1277 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1278   append(new LIR_Op3(
1279                     lir_idiv,
1280                     left,
1281                     LIR_OprFact::intConst(right),
1282                     tmp,
1283                     res,
1284                     info));
1285 }
1286 
1287 
1288 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1289   append(new LIR_Op3(
1290                     lir_irem,
1291                     left,
1292                     right,
1293                     tmp,
1294                     res,
1295                     info));
1296 }
1297 
1298 
1299 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1300   append(new LIR_Op3(
1301                     lir_irem,
1302                     left,
1303                     LIR_OprFact::intConst(right),
1304                     tmp,
1305                     res,
1306                     info));
1307 }
1308 
1309 
1310 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1311   append(new LIR_Op2(
1312                     lir_cmp,
1313                     condition,
1314                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1315                     LIR_OprFact::intConst(c),
1316                     info));
1317 }
1318 
1319 
1320 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1321   append(new LIR_Op2(
1322                     lir_cmp,
1323                     condition,
1324                     reg,
1325                     LIR_OprFact::address(addr),
1326                     info));
1327 }
1328 
1329 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1330                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1331   append(new LIR_OpAllocObj(
1332                            klass,
1333                            dst,
1334                            t1,
1335                            t2,
1336                            t3,
1337                            t4,
1338                            header_size,
1339                            object_size,
1340                            init_check,
1341                            stub));
1342 }
1343 
1344 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1345   append(new LIR_OpAllocArray(
1346                            klass,
1347                            len,
1348                            dst,
1349                            t1,
1350                            t2,
1351                            t3,
1352                            t4,
1353                            type,
1354                            stub));
1355 }
1356 
1357 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1358  append(new LIR_Op2(
1359                     lir_shl,
1360                     value,
1361                     count,
1362                     dst,
1363                     tmp));
1364 }
1365 
1366 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1367  append(new LIR_Op2(
1368                     lir_shr,
1369                     value,
1370                     count,
1371                     dst,
1372                     tmp));
1373 }
1374 
1375 
1376 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1377  append(new LIR_Op2(
1378                     lir_ushr,
1379                     value,
1380                     count,
1381                     dst,
1382                     tmp));
1383 }
1384 
1385 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1386   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1387                      left,
1388                      right,
1389                      dst));
1390 }
1391 
1392 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1393   append(new LIR_OpLock(
1394                     lir_lock,
1395                     hdr,
1396                     obj,
1397                     lock,
1398                     scratch,
1399                     stub,
1400                     info));
1401 }
1402 
1403 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1404   append(new LIR_OpLock(
1405                     lir_unlock,
1406                     hdr,
1407                     obj,
1408                     lock,
1409                     scratch,
1410                     stub,
1411                     NULL));
1412 }
1413 
1414 
1415 void check_LIR() {
1416   // cannot do the proper checking as PRODUCT and other modes return different results
1417   // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
1418 }
1419 
1420 
1421 
1422 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1423                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1424                           CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1425                           ciMethod* profiled_method, int profiled_bci) {
1426   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1427                                            tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
1428   if (profiled_method != NULL) {
1429     c->set_profiled_method(profiled_method);
1430     c->set_profiled_bci(profiled_bci);
1431     c->set_should_profile(true);
1432   }
1433   append(c);
1434 }
1435 
1436 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1437   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1438   if (profiled_method != NULL) {
1439     c->set_profiled_method(profiled_method);
1440     c->set_profiled_bci(profiled_bci);
1441     c->set_should_profile(true);
1442   }
1443   append(c);
1444 }
1445 
1446 
1447 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
1448                            CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) {
1449   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception);
1450   if (profiled_method != NULL) {
1451     c->set_profiled_method(profiled_method);
1452     c->set_profiled_bci(profiled_bci);
1453     c->set_should_profile(true);
1454   }
1455   append(c);
1456 }
1457 
1458 
1459 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1460                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1461   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1462 }
1463 
1464 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1465                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1466   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1467 }
1468 
1469 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1470                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1471   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1472 }
1473 
1474 
1475 #ifdef PRODUCT
1476 
1477 void print_LIR(BlockList* blocks) {
1478 }
1479 
1480 #else
1481 // LIR_OprDesc
1482 void LIR_OprDesc::print() const {
1483   print(tty);
1484 }
1485 
1486 void LIR_OprDesc::print(outputStream* out) const {
1487   if (is_illegal()) {
1488     return;
1489   }
1490 
1491   out->print("[");
1492   if (is_pointer()) {
1493     pointer()->print_value_on(out);
1494   } else if (is_single_stack()) {
1495     out->print("stack:%d", single_stack_ix());
1496   } else if (is_double_stack()) {
1497     out->print("dbl_stack:%d",double_stack_ix());
1498   } else if (is_virtual()) {
1499     out->print("R%d", vreg_number());
1500   } else if (is_single_cpu()) {
1501     out->print("%s", as_register()->name());
1502   } else if (is_double_cpu()) {
1503     out->print("%s", as_register_hi()->name());
1504     out->print("%s", as_register_lo()->name());
1505 #if defined(X86)
1506   } else if (is_single_xmm()) {
1507     out->print("%s", as_xmm_float_reg()->name());
1508   } else if (is_double_xmm()) {
1509     out->print("%s", as_xmm_double_reg()->name());
1510   } else if (is_single_fpu()) {
1511     out->print("fpu%d", fpu_regnr());
1512   } else if (is_double_fpu()) {
1513     out->print("fpu%d", fpu_regnrLo());
1514 #elif defined(AARCH64)
1515   } else if (is_single_fpu()) {
1516     out->print("fpu%d", fpu_regnr());
1517   } else if (is_double_fpu()) {
1518     out->print("fpu%d", fpu_regnrLo());
1519 #elif defined(ARM)
1520   } else if (is_single_fpu()) {
1521     out->print("s%d", fpu_regnr());
1522   } else if (is_double_fpu()) {
1523     out->print("d%d", fpu_regnrLo() >> 1);
1524 #else
1525   } else if (is_single_fpu()) {
1526     out->print("%s", as_float_reg()->name());
1527   } else if (is_double_fpu()) {
1528     out->print("%s", as_double_reg()->name());
1529 #endif
1530 
1531   } else if (is_illegal()) {
1532     out->print("-");
1533   } else {
1534     out->print("Unknown Operand");
1535   }
1536   if (!is_illegal()) {
1537     out->print("|%c", type_char());
1538   }
1539   if (is_register() && is_last_use()) {
1540     out->print("(last_use)");
1541   }
1542   out->print("]");
1543 }
1544 
1545 
1546 // LIR_Address
1547 void LIR_Const::print_value_on(outputStream* out) const {
1548   switch (type()) {
1549     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1550     case T_INT:    out->print("int:%d",   as_jint());           break;
1551     case T_LONG:   out->print("lng:" JLONG_FORMAT, as_jlong()); break;
1552     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1553     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1554     case T_OBJECT: out->print("obj:" INTPTR_FORMAT, p2i(as_jobject()));        break;
1555     case T_METADATA: out->print("metadata:" INTPTR_FORMAT, p2i(as_metadata()));break;
1556     default:       out->print("%3d:0x" UINT64_FORMAT_X, type(), (uint64_t)as_jlong()); break;
1557   }
1558 }
1559 
1560 // LIR_Address
1561 void LIR_Address::print_value_on(outputStream* out) const {
1562   out->print("Base:"); _base->print(out);
1563   if (!_index->is_illegal()) {
1564     out->print(" Index:"); _index->print(out);
1565     switch (scale()) {
1566     case times_1: break;
1567     case times_2: out->print(" * 2"); break;
1568     case times_4: out->print(" * 4"); break;
1569     case times_8: out->print(" * 8"); break;
1570     }
1571   }
1572   out->print(" Disp: " INTX_FORMAT, _disp);
1573 }
1574 
1575 // debug output of block header without InstructionPrinter
1576 //       (because phi functions are not necessary for LIR)
1577 static void print_block(BlockBegin* x) {
1578   // print block id
1579   BlockEnd* end = x->end();
1580   tty->print("B%d ", x->block_id());
1581 
1582   // print flags
1583   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1584   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1585   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1586   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1587   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1588   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1589   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1590 
1591   // print block bci range
1592   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci()));
1593 
1594   // print predecessors and successors
1595   if (x->number_of_preds() > 0) {
1596     tty->print("preds: ");
1597     for (int i = 0; i < x->number_of_preds(); i ++) {
1598       tty->print("B%d ", x->pred_at(i)->block_id());
1599     }
1600   }
1601 
1602   if (x->number_of_sux() > 0) {
1603     tty->print("sux: ");
1604     for (int i = 0; i < x->number_of_sux(); i ++) {
1605       tty->print("B%d ", x->sux_at(i)->block_id());
1606     }
1607   }
1608 
1609   // print exception handlers
1610   if (x->number_of_exception_handlers() > 0) {
1611     tty->print("xhandler: ");
1612     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1613       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1614     }
1615   }
1616 
1617   tty->cr();
1618 }
1619 
1620 void print_LIR(BlockList* blocks) {
1621   tty->print_cr("LIR:");
1622   int i;
1623   for (i = 0; i < blocks->length(); i++) {
1624     BlockBegin* bb = blocks->at(i);
1625     print_block(bb);
1626     tty->print("__id_Instruction___________________________________________"); tty->cr();
1627     bb->lir()->print_instructions();
1628   }
1629 }
1630 
1631 void LIR_List::print_instructions() {
1632   for (int i = 0; i < _operations.length(); i++) {
1633     _operations.at(i)->print(); tty->cr();
1634   }
1635   tty->cr();
1636 }
1637 
1638 // LIR_Ops printing routines
1639 // LIR_Op
1640 void LIR_Op::print_on(outputStream* out) const {
1641   if (id() != -1 || PrintCFGToFile) {
1642     out->print("%4d ", id());
1643   } else {
1644     out->print("     ");
1645   }
1646   out->print("%s ", name());
1647   print_instr(out);
1648   if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci());
1649 #ifdef ASSERT
1650   if (Verbose && _file != NULL) {
1651     out->print(" (%s:%d)", _file, _line);
1652   }
1653 #endif
1654 }
1655 
1656 const char * LIR_Op::name() const {
1657   const char* s = NULL;
1658   switch(code()) {
1659      // LIR_Op0
1660      case lir_membar:                s = "membar";        break;
1661      case lir_membar_acquire:        s = "membar_acquire"; break;
1662      case lir_membar_release:        s = "membar_release"; break;
1663      case lir_membar_loadload:       s = "membar_loadload";   break;
1664      case lir_membar_storestore:     s = "membar_storestore"; break;
1665      case lir_membar_loadstore:      s = "membar_loadstore";  break;
1666      case lir_membar_storeload:      s = "membar_storeload";  break;
1667      case lir_word_align:            s = "word_align";    break;
1668      case lir_label:                 s = "label";         break;
1669      case lir_nop:                   s = "nop";           break;
1670      case lir_on_spin_wait:          s = "on_spin_wait";  break;
1671      case lir_backwardbranch_target: s = "backbranch";    break;
1672      case lir_std_entry:             s = "std_entry";     break;
1673      case lir_osr_entry:             s = "osr_entry";     break;
1674      case lir_build_frame:           s = "build_frm";     break;
1675      case lir_fpop_raw:              s = "fpop_raw";      break;
1676      case lir_24bit_FPU:             s = "24bit_FPU";     break;
1677      case lir_reset_FPU:             s = "reset_FPU";     break;
1678      case lir_breakpoint:            s = "breakpoint";    break;
1679      case lir_get_thread:            s = "get_thread";    break;
1680      // LIR_Op1
1681      case lir_fxch:                  s = "fxch";          break;
1682      case lir_fld:                   s = "fld";           break;
1683      case lir_ffree:                 s = "ffree";         break;
1684      case lir_push:                  s = "push";          break;
1685      case lir_pop:                   s = "pop";           break;
1686      case lir_null_check:            s = "null_check";    break;
1687      case lir_return:                s = "return";        break;
1688      case lir_safepoint:             s = "safepoint";     break;
1689      case lir_neg:                   s = "neg";           break;
1690      case lir_leal:                  s = "leal";          break;
1691      case lir_branch:                s = "branch";        break;
1692      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1693      case lir_move:                  s = "move";          break;
1694      case lir_roundfp:               s = "roundfp";       break;
1695      case lir_rtcall:                s = "rtcall";        break;
1696      case lir_throw:                 s = "throw";         break;
1697      case lir_unwind:                s = "unwind";        break;
1698      case lir_convert:               s = "convert";       break;
1699      case lir_alloc_object:          s = "alloc_obj";     break;
1700      case lir_monaddr:               s = "mon_addr";      break;
1701      case lir_pack64:                s = "pack64";        break;
1702      case lir_unpack64:              s = "unpack64";      break;
1703      // LIR_Op2
1704      case lir_cmp:                   s = "cmp";           break;
1705      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1706      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1707      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1708      case lir_cmove:                 s = "cmove";         break;
1709      case lir_add:                   s = "add";           break;
1710      case lir_sub:                   s = "sub";           break;
1711      case lir_mul:                   s = "mul";           break;
1712      case lir_mul_strictfp:          s = "mul_strictfp";  break;
1713      case lir_div:                   s = "div";           break;
1714      case lir_div_strictfp:          s = "div_strictfp";  break;
1715      case lir_rem:                   s = "rem";           break;
1716      case lir_abs:                   s = "abs";           break;
1717      case lir_sqrt:                  s = "sqrt";          break;
1718      case lir_logic_and:             s = "logic_and";     break;
1719      case lir_logic_or:              s = "logic_or";      break;
1720      case lir_logic_xor:             s = "logic_xor";     break;
1721      case lir_shl:                   s = "shift_left";    break;
1722      case lir_shr:                   s = "shift_right";   break;
1723      case lir_ushr:                  s = "ushift_right";  break;
1724      case lir_alloc_array:           s = "alloc_array";   break;
1725      case lir_xadd:                  s = "xadd";          break;
1726      case lir_xchg:                  s = "xchg";          break;
1727      // LIR_Op3
1728      case lir_idiv:                  s = "idiv";          break;
1729      case lir_irem:                  s = "irem";          break;
1730      // LIR_OpJavaCall
1731      case lir_static_call:           s = "static";        break;
1732      case lir_optvirtual_call:       s = "optvirtual";    break;
1733      case lir_icvirtual_call:        s = "icvirtual";     break;
1734      case lir_virtual_call:          s = "virtual";       break;
1735      case lir_dynamic_call:          s = "dynamic";       break;
1736      // LIR_OpArrayCopy
1737      case lir_arraycopy:             s = "arraycopy";     break;
1738      // LIR_OpUpdateCRC32
1739      case lir_updatecrc32:           s = "updatecrc32";   break;
1740      // LIR_OpLock
1741      case lir_lock:                  s = "lock";          break;
1742      case lir_unlock:                s = "unlock";        break;
1743      // LIR_OpDelay
1744      case lir_delay_slot:            s = "delay";         break;
1745      // LIR_OpTypeCheck
1746      case lir_instanceof:            s = "instanceof";    break;
1747      case lir_checkcast:             s = "checkcast";     break;
1748      case lir_store_check:           s = "store_check";   break;
1749      // LIR_OpCompareAndSwap
1750      case lir_cas_long:              s = "cas_long";      break;
1751      case lir_cas_obj:               s = "cas_obj";      break;
1752      case lir_cas_int:               s = "cas_int";      break;
1753      // LIR_OpProfileCall
1754      case lir_profile_call:          s = "profile_call";  break;
1755      // LIR_OpProfileType
1756      case lir_profile_type:          s = "profile_type";  break;
1757      // LIR_OpAssert
1758 #ifdef ASSERT
1759      case lir_assert:                s = "assert";        break;
1760 #endif
1761      case lir_none:                  ShouldNotReachHere();break;
1762     default:                         s = "illegal_op";    break;
1763   }
1764   return s;
1765 }
1766 
1767 // LIR_OpJavaCall
1768 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1769   out->print("call: ");
1770   out->print("[addr: " INTPTR_FORMAT "]", p2i(address()));
1771   if (receiver()->is_valid()) {
1772     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1773   }
1774   if (result_opr()->is_valid()) {
1775     out->print(" [result: "); result_opr()->print(out); out->print("]");
1776   }
1777 }
1778 
1779 // LIR_OpLabel
1780 void LIR_OpLabel::print_instr(outputStream* out) const {
1781   out->print("[label:" INTPTR_FORMAT "]", p2i(_label));
1782 }
1783 
1784 // LIR_OpArrayCopy
1785 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1786   src()->print(out);     out->print(" ");
1787   src_pos()->print(out); out->print(" ");
1788   dst()->print(out);     out->print(" ");
1789   dst_pos()->print(out); out->print(" ");
1790   length()->print(out);  out->print(" ");
1791   tmp()->print(out);     out->print(" ");
1792 }
1793 
1794 // LIR_OpUpdateCRC32
1795 void LIR_OpUpdateCRC32::print_instr(outputStream* out) const {
1796   crc()->print(out);     out->print(" ");
1797   val()->print(out);     out->print(" ");
1798   result_opr()->print(out); out->print(" ");
1799 }
1800 
1801 // LIR_OpCompareAndSwap
1802 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1803   addr()->print(out);      out->print(" ");
1804   cmp_value()->print(out); out->print(" ");
1805   new_value()->print(out); out->print(" ");
1806   tmp1()->print(out);      out->print(" ");
1807   tmp2()->print(out);      out->print(" ");
1808 
1809 }
1810 
1811 // LIR_Op0
1812 void LIR_Op0::print_instr(outputStream* out) const {
1813   result_opr()->print(out);
1814 }
1815 
1816 // LIR_Op1
1817 const char * LIR_Op1::name() const {
1818   if (code() == lir_move) {
1819     switch (move_kind()) {
1820     case lir_move_normal:
1821       return "move";
1822     case lir_move_unaligned:
1823       return "unaligned move";
1824     case lir_move_volatile:
1825       return "volatile_move";
1826     case lir_move_wide:
1827       return "wide_move";
1828     default:
1829       ShouldNotReachHere();
1830     return "illegal_op";
1831     }
1832   } else {
1833     return LIR_Op::name();
1834   }
1835 }
1836 
1837 
1838 void LIR_Op1::print_instr(outputStream* out) const {
1839   _opr->print(out);         out->print(" ");
1840   result_opr()->print(out); out->print(" ");
1841   print_patch_code(out, patch_code());
1842 }
1843 
1844 
1845 // LIR_Op1
1846 void LIR_OpRTCall::print_instr(outputStream* out) const {
1847   intx a = (intx)addr();
1848   out->print("%s", Runtime1::name_for_address(addr()));
1849   out->print(" ");
1850   tmp()->print(out);
1851 }
1852 
1853 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1854   switch(code) {
1855     case lir_patch_none:                                 break;
1856     case lir_patch_low:    out->print("[patch_low]");    break;
1857     case lir_patch_high:   out->print("[patch_high]");   break;
1858     case lir_patch_normal: out->print("[patch_normal]"); break;
1859     default: ShouldNotReachHere();
1860   }
1861 }
1862 
1863 // LIR_OpBranch
1864 void LIR_OpBranch::print_instr(outputStream* out) const {
1865   print_condition(out, cond());             out->print(" ");
1866   if (block() != NULL) {
1867     out->print("[B%d] ", block()->block_id());
1868   } else if (stub() != NULL) {
1869     out->print("[");
1870     stub()->print_name(out);
1871     out->print(": " INTPTR_FORMAT "]", p2i(stub()));
1872     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci());
1873   } else {
1874     out->print("[label:" INTPTR_FORMAT "] ", p2i(label()));
1875   }
1876   if (ublock() != NULL) {
1877     out->print("unordered: [B%d] ", ublock()->block_id());
1878   }
1879 }
1880 
1881 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1882   switch(cond) {
1883     case lir_cond_equal:           out->print("[EQ]");      break;
1884     case lir_cond_notEqual:        out->print("[NE]");      break;
1885     case lir_cond_less:            out->print("[LT]");      break;
1886     case lir_cond_lessEqual:       out->print("[LE]");      break;
1887     case lir_cond_greaterEqual:    out->print("[GE]");      break;
1888     case lir_cond_greater:         out->print("[GT]");      break;
1889     case lir_cond_belowEqual:      out->print("[BE]");      break;
1890     case lir_cond_aboveEqual:      out->print("[AE]");      break;
1891     case lir_cond_always:          out->print("[AL]");      break;
1892     default:                       out->print("[%d]",cond); break;
1893   }
1894 }
1895 
1896 // LIR_OpConvert
1897 void LIR_OpConvert::print_instr(outputStream* out) const {
1898   print_bytecode(out, bytecode());
1899   in_opr()->print(out);                  out->print(" ");
1900   result_opr()->print(out);              out->print(" ");
1901 #ifdef PPC32
1902   if(tmp1()->is_valid()) {
1903     tmp1()->print(out); out->print(" ");
1904     tmp2()->print(out); out->print(" ");
1905   }
1906 #endif
1907 }
1908 
1909 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1910   switch(code) {
1911     case Bytecodes::_d2f: out->print("[d2f] "); break;
1912     case Bytecodes::_d2i: out->print("[d2i] "); break;
1913     case Bytecodes::_d2l: out->print("[d2l] "); break;
1914     case Bytecodes::_f2d: out->print("[f2d] "); break;
1915     case Bytecodes::_f2i: out->print("[f2i] "); break;
1916     case Bytecodes::_f2l: out->print("[f2l] "); break;
1917     case Bytecodes::_i2b: out->print("[i2b] "); break;
1918     case Bytecodes::_i2c: out->print("[i2c] "); break;
1919     case Bytecodes::_i2d: out->print("[i2d] "); break;
1920     case Bytecodes::_i2f: out->print("[i2f] "); break;
1921     case Bytecodes::_i2l: out->print("[i2l] "); break;
1922     case Bytecodes::_i2s: out->print("[i2s] "); break;
1923     case Bytecodes::_l2i: out->print("[l2i] "); break;
1924     case Bytecodes::_l2f: out->print("[l2f] "); break;
1925     case Bytecodes::_l2d: out->print("[l2d] "); break;
1926     default:
1927       out->print("[?%d]",code);
1928     break;
1929   }
1930 }
1931 
1932 void LIR_OpAllocObj::print_instr(outputStream* out) const {
1933   klass()->print(out);                      out->print(" ");
1934   obj()->print(out);                        out->print(" ");
1935   tmp1()->print(out);                       out->print(" ");
1936   tmp2()->print(out);                       out->print(" ");
1937   tmp3()->print(out);                       out->print(" ");
1938   tmp4()->print(out);                       out->print(" ");
1939   out->print("[hdr:%d]", header_size()); out->print(" ");
1940   out->print("[obj:%d]", object_size()); out->print(" ");
1941   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1942 }
1943 
1944 void LIR_OpRoundFP::print_instr(outputStream* out) const {
1945   _opr->print(out);         out->print(" ");
1946   tmp()->print(out);        out->print(" ");
1947   result_opr()->print(out); out->print(" ");
1948 }
1949 
1950 // LIR_Op2
1951 void LIR_Op2::print_instr(outputStream* out) const {
1952   if (code() == lir_cmove || code() == lir_cmp) {
1953     print_condition(out, condition());         out->print(" ");
1954   }
1955   in_opr1()->print(out);    out->print(" ");
1956   in_opr2()->print(out);    out->print(" ");
1957   if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out);    out->print(" "); }
1958   if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out);    out->print(" "); }
1959   if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out);    out->print(" "); }
1960   if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out);    out->print(" "); }
1961   if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out);    out->print(" "); }
1962   result_opr()->print(out);
1963 }
1964 
1965 void LIR_OpAllocArray::print_instr(outputStream* out) const {
1966   klass()->print(out);                   out->print(" ");
1967   len()->print(out);                     out->print(" ");
1968   obj()->print(out);                     out->print(" ");
1969   tmp1()->print(out);                    out->print(" ");
1970   tmp2()->print(out);                    out->print(" ");
1971   tmp3()->print(out);                    out->print(" ");
1972   tmp4()->print(out);                    out->print(" ");
1973   out->print("[type:0x%x]", type());     out->print(" ");
1974   out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry()));
1975 }
1976 
1977 
1978 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
1979   object()->print(out);                  out->print(" ");
1980   if (code() == lir_store_check) {
1981     array()->print(out);                 out->print(" ");
1982   }
1983   if (code() != lir_store_check) {
1984     klass()->print_name_on(out);         out->print(" ");
1985     if (fast_check())                 out->print("fast_check ");
1986   }
1987   tmp1()->print(out);                    out->print(" ");
1988   tmp2()->print(out);                    out->print(" ");
1989   tmp3()->print(out);                    out->print(" ");
1990   result_opr()->print(out);              out->print(" ");
1991   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci());
1992 }
1993 
1994 
1995 // LIR_Op3
1996 void LIR_Op3::print_instr(outputStream* out) const {
1997   in_opr1()->print(out);    out->print(" ");
1998   in_opr2()->print(out);    out->print(" ");
1999   in_opr3()->print(out);    out->print(" ");
2000   result_opr()->print(out);
2001 }
2002 
2003 
2004 void LIR_OpLock::print_instr(outputStream* out) const {
2005   hdr_opr()->print(out);   out->print(" ");
2006   obj_opr()->print(out);   out->print(" ");
2007   lock_opr()->print(out);  out->print(" ");
2008   if (_scratch->is_valid()) {
2009     _scratch->print(out);  out->print(" ");
2010   }
2011   out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry()));
2012 }
2013 
2014 #ifdef ASSERT
2015 void LIR_OpAssert::print_instr(outputStream* out) const {
2016   print_condition(out, condition()); out->print(" ");
2017   in_opr1()->print(out);             out->print(" ");
2018   in_opr2()->print(out);             out->print(", \"");
2019   out->print("%s", msg());          out->print("\"");
2020 }
2021 #endif
2022 
2023 
2024 void LIR_OpDelay::print_instr(outputStream* out) const {
2025   _op->print_on(out);
2026 }
2027 
2028 
2029 // LIR_OpProfileCall
2030 void LIR_OpProfileCall::print_instr(outputStream* out) const {
2031   profiled_method()->name()->print_symbol_on(out);
2032   out->print(".");
2033   profiled_method()->holder()->name()->print_symbol_on(out);
2034   out->print(" @ %d ", profiled_bci());
2035   mdo()->print(out);           out->print(" ");
2036   recv()->print(out);          out->print(" ");
2037   tmp1()->print(out);          out->print(" ");
2038 }
2039 
2040 // LIR_OpProfileType
2041 void LIR_OpProfileType::print_instr(outputStream* out) const {
2042   out->print("exact = ");
2043   if  (exact_klass() == NULL) {
2044     out->print("unknown");
2045   } else {
2046     exact_klass()->print_name_on(out);
2047   }
2048   out->print(" current = "); ciTypeEntries::print_ciklass(out, current_klass());
2049   out->print(" ");
2050   mdp()->print(out);          out->print(" ");
2051   obj()->print(out);          out->print(" ");
2052   tmp()->print(out);          out->print(" ");
2053 }
2054 
2055 #endif // PRODUCT
2056 
2057 // Implementation of LIR_InsertionBuffer
2058 
2059 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
2060   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
2061 
2062   int i = number_of_insertion_points() - 1;
2063   if (i < 0 || index_at(i) < index) {
2064     append_new(index, 1);
2065   } else {
2066     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
2067     assert(count_at(i) > 0, "check");
2068     set_count_at(i, count_at(i) + 1);
2069   }
2070   _ops.push(op);
2071 
2072   DEBUG_ONLY(verify());
2073 }
2074 
2075 #ifdef ASSERT
2076 void LIR_InsertionBuffer::verify() {
2077   int sum = 0;
2078   int prev_idx = -1;
2079 
2080   for (int i = 0; i < number_of_insertion_points(); i++) {
2081     assert(prev_idx < index_at(i), "index must be ordered ascending");
2082     sum += count_at(i);
2083   }
2084   assert(sum == number_of_ops(), "wrong total sum");
2085 }
2086 #endif