1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "mutex_solaris.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_share_solaris.hpp"
  41 #include "os_solaris.inline.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm.h"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.inline.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "runtime/vm_version.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/decoder.hpp"
  69 #include "utilities/defaultStream.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <dlfcn.h>
  77 # include <errno.h>
  78 # include <exception>
  79 # include <link.h>
  80 # include <poll.h>
  81 # include <pthread.h>
  82 # include <schedctl.h>
  83 # include <setjmp.h>
  84 # include <signal.h>
  85 # include <stdio.h>
  86 # include <alloca.h>
  87 # include <sys/filio.h>
  88 # include <sys/ipc.h>
  89 # include <sys/lwp.h>
  90 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  91 # include <sys/mman.h>
  92 # include <sys/processor.h>
  93 # include <sys/procset.h>
  94 # include <sys/pset.h>
  95 # include <sys/resource.h>
  96 # include <sys/shm.h>
  97 # include <sys/socket.h>
  98 # include <sys/stat.h>
  99 # include <sys/systeminfo.h>
 100 # include <sys/time.h>
 101 # include <sys/times.h>
 102 # include <sys/types.h>
 103 # include <sys/wait.h>
 104 # include <sys/utsname.h>
 105 # include <thread.h>
 106 # include <unistd.h>
 107 # include <sys/priocntl.h>
 108 # include <sys/rtpriocntl.h>
 109 # include <sys/tspriocntl.h>
 110 # include <sys/iapriocntl.h>
 111 # include <sys/fxpriocntl.h>
 112 # include <sys/loadavg.h>
 113 # include <string.h>
 114 # include <stdio.h>
 115 
 116 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 117 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 118 
 119 #define MAX_PATH (2 * K)
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 
 125 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 126 // compile on older systems without this header file.
 127 
 128 #ifndef MADV_ACCESS_LWP
 129   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 130 #endif
 131 #ifndef MADV_ACCESS_MANY
 132   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 133 #endif
 134 
 135 #ifndef LGRP_RSRC_CPU
 136   #define LGRP_RSRC_CPU      0       /* CPU resources */
 137 #endif
 138 #ifndef LGRP_RSRC_MEM
 139   #define LGRP_RSRC_MEM      1       /* memory resources */
 140 #endif
 141 
 142 // Values for ThreadPriorityPolicy == 1
 143 int prio_policy1[CriticalPriority+1] = {
 144   -99999,  0, 16,  32,  48,  64,
 145           80, 96, 112, 124, 127, 127 };
 146 
 147 // System parameters used internally
 148 static clock_t clock_tics_per_sec = 100;
 149 
 150 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 151 static bool enabled_extended_FILE_stdio = false;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static bool check_addr0_done = false;
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 159 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 160 
 161 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 162 
 163 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
 164 
 165 // "default" initializers for missing libc APIs
 166 extern "C" {
 167   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 168   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 169 
 170   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 171   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 172 }
 173 
 174 // "default" initializers for pthread-based synchronization
 175 extern "C" {
 176   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 177   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 178 }
 179 
 180 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 181 
 182 static inline size_t adjust_stack_size(address base, size_t size) {
 183   if ((ssize_t)size < 0) {
 184     // 4759953: Compensate for ridiculous stack size.
 185     size = max_intx;
 186   }
 187   if (size > (size_t)base) {
 188     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 189     size = (size_t)base;
 190   }
 191   return size;
 192 }
 193 
 194 static inline stack_t get_stack_info() {
 195   stack_t st;
 196   int retval = thr_stksegment(&st);
 197   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 198   assert(retval == 0, "incorrect return value from thr_stksegment");
 199   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 200   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 201   return st;
 202 }
 203 
 204 address os::current_stack_base() {
 205   int r = thr_main();
 206   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 207   bool is_primordial_thread = r;
 208 
 209   // Workaround 4352906, avoid calls to thr_stksegment by
 210   // thr_main after the first one (it looks like we trash
 211   // some data, causing the value for ss_sp to be incorrect).
 212   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 213     stack_t st = get_stack_info();
 214     if (is_primordial_thread) {
 215       // cache initial value of stack base
 216       os::Solaris::_main_stack_base = (address)st.ss_sp;
 217     }
 218     return (address)st.ss_sp;
 219   } else {
 220     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 221     return os::Solaris::_main_stack_base;
 222   }
 223 }
 224 
 225 size_t os::current_stack_size() {
 226   size_t size;
 227 
 228   int r = thr_main();
 229   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 230   if (!r) {
 231     size = get_stack_info().ss_size;
 232   } else {
 233     struct rlimit limits;
 234     getrlimit(RLIMIT_STACK, &limits);
 235     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 236   }
 237   // base may not be page aligned
 238   address base = current_stack_base();
 239   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
 240   return (size_t)(base - bottom);
 241 }
 242 
 243 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 244   return localtime_r(clock, res);
 245 }
 246 
 247 void os::Solaris::try_enable_extended_io() {
 248   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 249 
 250   if (!UseExtendedFileIO) {
 251     return;
 252   }
 253 
 254   enable_extended_FILE_stdio_t enabler =
 255     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 256                                          "enable_extended_FILE_stdio");
 257   if (enabler) {
 258     enabler(-1, -1);
 259   }
 260 }
 261 
 262 static int _processors_online = 0;
 263 
 264 jint os::Solaris::_os_thread_limit = 0;
 265 volatile jint os::Solaris::_os_thread_count = 0;
 266 
 267 julong os::available_memory() {
 268   return Solaris::available_memory();
 269 }
 270 
 271 julong os::Solaris::available_memory() {
 272   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 273 }
 274 
 275 julong os::Solaris::_physical_memory = 0;
 276 
 277 julong os::physical_memory() {
 278   return Solaris::physical_memory();
 279 }
 280 
 281 static hrtime_t first_hrtime = 0;
 282 static const hrtime_t hrtime_hz = 1000*1000*1000;
 283 static volatile hrtime_t max_hrtime = 0;
 284 
 285 
 286 void os::Solaris::initialize_system_info() {
 287   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 288   _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
 289   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 290                                      (julong)sysconf(_SC_PAGESIZE);
 291 }
 292 
 293 int os::active_processor_count() {
 294   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 295   pid_t pid = getpid();
 296   psetid_t pset = PS_NONE;
 297   // Are we running in a processor set or is there any processor set around?
 298   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 299     uint_t pset_cpus;
 300     // Query the number of cpus available to us.
 301     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 302       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 303       _processors_online = pset_cpus;
 304       return pset_cpus;
 305     }
 306   }
 307   // Otherwise return number of online cpus
 308   return online_cpus;
 309 }
 310 
 311 static bool find_processors_in_pset(psetid_t        pset,
 312                                     processorid_t** id_array,
 313                                     uint_t*         id_length) {
 314   bool result = false;
 315   // Find the number of processors in the processor set.
 316   if (pset_info(pset, NULL, id_length, NULL) == 0) {
 317     // Make up an array to hold their ids.
 318     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 319     // Fill in the array with their processor ids.
 320     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
 321       result = true;
 322     }
 323   }
 324   return result;
 325 }
 326 
 327 // Callers of find_processors_online() must tolerate imprecise results --
 328 // the system configuration can change asynchronously because of DR
 329 // or explicit psradm operations.
 330 //
 331 // We also need to take care that the loop (below) terminates as the
 332 // number of processors online can change between the _SC_NPROCESSORS_ONLN
 333 // request and the loop that builds the list of processor ids.   Unfortunately
 334 // there's no reliable way to determine the maximum valid processor id,
 335 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
 336 // man pages, which claim the processor id set is "sparse, but
 337 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
 338 // exit the loop.
 339 //
 340 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
 341 // not available on S8.0.
 342 
 343 static bool find_processors_online(processorid_t** id_array,
 344                                    uint*           id_length) {
 345   const processorid_t MAX_PROCESSOR_ID = 100000;
 346   // Find the number of processors online.
 347   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
 348   // Make up an array to hold their ids.
 349   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 350   // Processors need not be numbered consecutively.
 351   long found = 0;
 352   processorid_t next = 0;
 353   while (found < *id_length && next < MAX_PROCESSOR_ID) {
 354     processor_info_t info;
 355     if (processor_info(next, &info) == 0) {
 356       // NB, PI_NOINTR processors are effectively online ...
 357       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
 358         (*id_array)[found] = next;
 359         found += 1;
 360       }
 361     }
 362     next += 1;
 363   }
 364   if (found < *id_length) {
 365     // The loop above didn't identify the expected number of processors.
 366     // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
 367     // and re-running the loop, above, but there's no guarantee of progress
 368     // if the system configuration is in flux.  Instead, we just return what
 369     // we've got.  Note that in the worst case find_processors_online() could
 370     // return an empty set.  (As a fall-back in the case of the empty set we
 371     // could just return the ID of the current processor).
 372     *id_length = found;
 373   }
 374 
 375   return true;
 376 }
 377 
 378 static bool assign_distribution(processorid_t* id_array,
 379                                 uint           id_length,
 380                                 uint*          distribution,
 381                                 uint           distribution_length) {
 382   // We assume we can assign processorid_t's to uint's.
 383   assert(sizeof(processorid_t) == sizeof(uint),
 384          "can't convert processorid_t to uint");
 385   // Quick check to see if we won't succeed.
 386   if (id_length < distribution_length) {
 387     return false;
 388   }
 389   // Assign processor ids to the distribution.
 390   // Try to shuffle processors to distribute work across boards,
 391   // assuming 4 processors per board.
 392   const uint processors_per_board = ProcessDistributionStride;
 393   // Find the maximum processor id.
 394   processorid_t max_id = 0;
 395   for (uint m = 0; m < id_length; m += 1) {
 396     max_id = MAX2(max_id, id_array[m]);
 397   }
 398   // The next id, to limit loops.
 399   const processorid_t limit_id = max_id + 1;
 400   // Make up markers for available processors.
 401   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
 402   for (uint c = 0; c < limit_id; c += 1) {
 403     available_id[c] = false;
 404   }
 405   for (uint a = 0; a < id_length; a += 1) {
 406     available_id[id_array[a]] = true;
 407   }
 408   // Step by "boards", then by "slot", copying to "assigned".
 409   // NEEDS_CLEANUP: The assignment of processors should be stateful,
 410   //                remembering which processors have been assigned by
 411   //                previous calls, etc., so as to distribute several
 412   //                independent calls of this method.  What we'd like is
 413   //                It would be nice to have an API that let us ask
 414   //                how many processes are bound to a processor,
 415   //                but we don't have that, either.
 416   //                In the short term, "board" is static so that
 417   //                subsequent distributions don't all start at board 0.
 418   static uint board = 0;
 419   uint assigned = 0;
 420   // Until we've found enough processors ....
 421   while (assigned < distribution_length) {
 422     // ... find the next available processor in the board.
 423     for (uint slot = 0; slot < processors_per_board; slot += 1) {
 424       uint try_id = board * processors_per_board + slot;
 425       if ((try_id < limit_id) && (available_id[try_id] == true)) {
 426         distribution[assigned] = try_id;
 427         available_id[try_id] = false;
 428         assigned += 1;
 429         break;
 430       }
 431     }
 432     board += 1;
 433     if (board * processors_per_board + 0 >= limit_id) {
 434       board = 0;
 435     }
 436   }
 437   if (available_id != NULL) {
 438     FREE_C_HEAP_ARRAY(bool, available_id);
 439   }
 440   return true;
 441 }
 442 
 443 void os::set_native_thread_name(const char *name) {
 444   if (Solaris::_pthread_setname_np != NULL) {
 445     // Only the first 31 bytes of 'name' are processed by pthread_setname_np
 446     // but we explicitly copy into a size-limited buffer to avoid any
 447     // possible overflow.
 448     char buf[32];
 449     snprintf(buf, sizeof(buf), "%s", name);
 450     buf[sizeof(buf) - 1] = '\0';
 451     Solaris::_pthread_setname_np(pthread_self(), buf);
 452   }
 453 }
 454 
 455 bool os::distribute_processes(uint length, uint* distribution) {
 456   bool result = false;
 457   // Find the processor id's of all the available CPUs.
 458   processorid_t* id_array  = NULL;
 459   uint           id_length = 0;
 460   // There are some races between querying information and using it,
 461   // since processor sets can change dynamically.
 462   psetid_t pset = PS_NONE;
 463   // Are we running in a processor set?
 464   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
 465     result = find_processors_in_pset(pset, &id_array, &id_length);
 466   } else {
 467     result = find_processors_online(&id_array, &id_length);
 468   }
 469   if (result == true) {
 470     if (id_length >= length) {
 471       result = assign_distribution(id_array, id_length, distribution, length);
 472     } else {
 473       result = false;
 474     }
 475   }
 476   if (id_array != NULL) {
 477     FREE_C_HEAP_ARRAY(processorid_t, id_array);
 478   }
 479   return result;
 480 }
 481 
 482 bool os::bind_to_processor(uint processor_id) {
 483   // We assume that a processorid_t can be stored in a uint.
 484   assert(sizeof(uint) == sizeof(processorid_t),
 485          "can't convert uint to processorid_t");
 486   int bind_result =
 487     processor_bind(P_LWPID,                       // bind LWP.
 488                    P_MYID,                        // bind current LWP.
 489                    (processorid_t) processor_id,  // id.
 490                    NULL);                         // don't return old binding.
 491   return (bind_result == 0);
 492 }
 493 
 494 // Return true if user is running as root.
 495 
 496 bool os::have_special_privileges() {
 497   static bool init = false;
 498   static bool privileges = false;
 499   if (!init) {
 500     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 501     init = true;
 502   }
 503   return privileges;
 504 }
 505 
 506 
 507 void os::init_system_properties_values() {
 508   // The next steps are taken in the product version:
 509   //
 510   // Obtain the JAVA_HOME value from the location of libjvm.so.
 511   // This library should be located at:
 512   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 513   //
 514   // If "/jre/lib/" appears at the right place in the path, then we
 515   // assume libjvm.so is installed in a JDK and we use this path.
 516   //
 517   // Otherwise exit with message: "Could not create the Java virtual machine."
 518   //
 519   // The following extra steps are taken in the debugging version:
 520   //
 521   // If "/jre/lib/" does NOT appear at the right place in the path
 522   // instead of exit check for $JAVA_HOME environment variable.
 523   //
 524   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 525   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 526   // it looks like libjvm.so is installed there
 527   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 528   //
 529   // Otherwise exit.
 530   //
 531   // Important note: if the location of libjvm.so changes this
 532   // code needs to be changed accordingly.
 533 
 534 // Base path of extensions installed on the system.
 535 #define SYS_EXT_DIR     "/usr/jdk/packages"
 536 #define EXTENSIONS_DIR  "/lib/ext"
 537 
 538   char cpu_arch[12];
 539   // Buffer that fits several sprintfs.
 540   // Note that the space for the colon and the trailing null are provided
 541   // by the nulls included by the sizeof operator.
 542   const size_t bufsize =
 543     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 544          sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
 545          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 546   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 547 
 548   // sysclasspath, java_home, dll_dir
 549   {
 550     char *pslash;
 551     os::jvm_path(buf, bufsize);
 552 
 553     // Found the full path to libjvm.so.
 554     // Now cut the path to <java_home>/jre if we can.
 555     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 556     pslash = strrchr(buf, '/');
 557     if (pslash != NULL) {
 558       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 559     }
 560     Arguments::set_dll_dir(buf);
 561 
 562     if (pslash != NULL) {
 563       pslash = strrchr(buf, '/');
 564       if (pslash != NULL) {
 565         *pslash = '\0';          // Get rid of /<arch>.
 566         pslash = strrchr(buf, '/');
 567         if (pslash != NULL) {
 568           *pslash = '\0';        // Get rid of /lib.
 569         }
 570       }
 571     }
 572     Arguments::set_java_home(buf);
 573     set_boot_path('/', ':');
 574   }
 575 
 576   // Where to look for native libraries.
 577   {
 578     // Use dlinfo() to determine the correct java.library.path.
 579     //
 580     // If we're launched by the Java launcher, and the user
 581     // does not set java.library.path explicitly on the commandline,
 582     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 583     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 584     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 585     // /usr/lib), which is exactly what we want.
 586     //
 587     // If the user does set java.library.path, it completely
 588     // overwrites this setting, and always has.
 589     //
 590     // If we're not launched by the Java launcher, we may
 591     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 592     // settings.  Again, dlinfo does exactly what we want.
 593 
 594     Dl_serinfo     info_sz, *info = &info_sz;
 595     Dl_serpath     *path;
 596     char           *library_path;
 597     char           *common_path = buf;
 598 
 599     // Determine search path count and required buffer size.
 600     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 601       FREE_C_HEAP_ARRAY(char, buf);
 602       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 603     }
 604 
 605     // Allocate new buffer and initialize.
 606     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 607     info->dls_size = info_sz.dls_size;
 608     info->dls_cnt = info_sz.dls_cnt;
 609 
 610     // Obtain search path information.
 611     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 612       FREE_C_HEAP_ARRAY(char, buf);
 613       FREE_C_HEAP_ARRAY(char, info);
 614       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 615     }
 616 
 617     path = &info->dls_serpath[0];
 618 
 619     // Note: Due to a legacy implementation, most of the library path
 620     // is set in the launcher. This was to accomodate linking restrictions
 621     // on legacy Solaris implementations (which are no longer supported).
 622     // Eventually, all the library path setting will be done here.
 623     //
 624     // However, to prevent the proliferation of improperly built native
 625     // libraries, the new path component /usr/jdk/packages is added here.
 626 
 627     // Determine the actual CPU architecture.
 628     sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
 629 #ifdef _LP64
 630     // If we are a 64-bit vm, perform the following translations:
 631     //   sparc   -> sparcv9
 632     //   i386    -> amd64
 633     if (strcmp(cpu_arch, "sparc") == 0) {
 634       strcat(cpu_arch, "v9");
 635     } else if (strcmp(cpu_arch, "i386") == 0) {
 636       strcpy(cpu_arch, "amd64");
 637     }
 638 #endif
 639 
 640     // Construct the invariant part of ld_library_path.
 641     sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
 642 
 643     // Struct size is more than sufficient for the path components obtained
 644     // through the dlinfo() call, so only add additional space for the path
 645     // components explicitly added here.
 646     size_t library_path_size = info->dls_size + strlen(common_path);
 647     library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 648     library_path[0] = '\0';
 649 
 650     // Construct the desired Java library path from the linker's library
 651     // search path.
 652     //
 653     // For compatibility, it is optimal that we insert the additional path
 654     // components specific to the Java VM after those components specified
 655     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 656     // infrastructure.
 657     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 658       strcpy(library_path, common_path);
 659     } else {
 660       int inserted = 0;
 661       int i;
 662       for (i = 0; i < info->dls_cnt; i++, path++) {
 663         uint_t flags = path->dls_flags & LA_SER_MASK;
 664         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 665           strcat(library_path, common_path);
 666           strcat(library_path, os::path_separator());
 667           inserted = 1;
 668         }
 669         strcat(library_path, path->dls_name);
 670         strcat(library_path, os::path_separator());
 671       }
 672       // Eliminate trailing path separator.
 673       library_path[strlen(library_path)-1] = '\0';
 674     }
 675 
 676     // happens before argument parsing - can't use a trace flag
 677     // tty->print_raw("init_system_properties_values: native lib path: ");
 678     // tty->print_raw_cr(library_path);
 679 
 680     // Callee copies into its own buffer.
 681     Arguments::set_library_path(library_path);
 682 
 683     FREE_C_HEAP_ARRAY(char, library_path);
 684     FREE_C_HEAP_ARRAY(char, info);
 685   }
 686 
 687   // Extensions directories.
 688   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 689   Arguments::set_ext_dirs(buf);
 690 
 691   FREE_C_HEAP_ARRAY(char, buf);
 692 
 693 #undef SYS_EXT_DIR
 694 #undef EXTENSIONS_DIR
 695 }
 696 
 697 void os::breakpoint() {
 698   BREAKPOINT;
 699 }
 700 
 701 bool os::obsolete_option(const JavaVMOption *option) {
 702   if (!strncmp(option->optionString, "-Xt", 3)) {
 703     return true;
 704   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
 705     return true;
 706   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
 707     return true;
 708   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
 709     return true;
 710   }
 711   return false;
 712 }
 713 
 714 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 715   address  stackStart  = (address)thread->stack_base();
 716   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 717   if (sp < stackStart && sp >= stackEnd) return true;
 718   return false;
 719 }
 720 
 721 extern "C" void breakpoint() {
 722   // use debugger to set breakpoint here
 723 }
 724 
 725 static thread_t main_thread;
 726 
 727 // Thread start routine for all newly created threads
 728 extern "C" void* thread_native_entry(void* thread_addr) {
 729   // Try to randomize the cache line index of hot stack frames.
 730   // This helps when threads of the same stack traces evict each other's
 731   // cache lines. The threads can be either from the same JVM instance, or
 732   // from different JVM instances. The benefit is especially true for
 733   // processors with hyperthreading technology.
 734   static int counter = 0;
 735   int pid = os::current_process_id();
 736   alloca(((pid ^ counter++) & 7) * 128);
 737 
 738   int prio;
 739   Thread* thread = (Thread*)thread_addr;
 740 
 741   thread->initialize_thread_current();
 742 
 743   OSThread* osthr = thread->osthread();
 744 
 745   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 746   thread->_schedctl = (void *) schedctl_init();
 747 
 748   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 749     os::current_thread_id());
 750 
 751   if (UseNUMA) {
 752     int lgrp_id = os::numa_get_group_id();
 753     if (lgrp_id != -1) {
 754       thread->set_lgrp_id(lgrp_id);
 755     }
 756   }
 757 
 758   // Our priority was set when we were created, and stored in the
 759   // osthread, but couldn't be passed through to our LWP until now.
 760   // So read back the priority and set it again.
 761 
 762   if (osthr->thread_id() != -1) {
 763     if (UseThreadPriorities) {
 764       int prio = osthr->native_priority();
 765       if (ThreadPriorityVerbose) {
 766         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 767                       INTPTR_FORMAT ", setting priority: %d\n",
 768                       osthr->thread_id(), osthr->lwp_id(), prio);
 769       }
 770       os::set_native_priority(thread, prio);
 771     }
 772   } else if (ThreadPriorityVerbose) {
 773     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 774   }
 775 
 776   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 777 
 778   // initialize signal mask for this thread
 779   os::Solaris::hotspot_sigmask(thread);
 780 
 781   thread->run();
 782 
 783   // One less thread is executing
 784   // When the VMThread gets here, the main thread may have already exited
 785   // which frees the CodeHeap containing the Atomic::dec code
 786   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 787     Atomic::dec(&os::Solaris::_os_thread_count);
 788   }
 789 
 790   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 791 
 792   // If a thread has not deleted itself ("delete this") as part of its
 793   // termination sequence, we have to ensure thread-local-storage is
 794   // cleared before we actually terminate. No threads should ever be
 795   // deleted asynchronously with respect to their termination.
 796   if (Thread::current_or_null_safe() != NULL) {
 797     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 798     thread->clear_thread_current();
 799   }
 800 
 801   if (UseDetachedThreads) {
 802     thr_exit(NULL);
 803     ShouldNotReachHere();
 804   }
 805   return NULL;
 806 }
 807 
 808 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 809   // Allocate the OSThread object
 810   OSThread* osthread = new OSThread(NULL, NULL);
 811   if (osthread == NULL) return NULL;
 812 
 813   // Store info on the Solaris thread into the OSThread
 814   osthread->set_thread_id(thread_id);
 815   osthread->set_lwp_id(_lwp_self());
 816   thread->_schedctl = (void *) schedctl_init();
 817 
 818   if (UseNUMA) {
 819     int lgrp_id = os::numa_get_group_id();
 820     if (lgrp_id != -1) {
 821       thread->set_lgrp_id(lgrp_id);
 822     }
 823   }
 824 
 825   if (ThreadPriorityVerbose) {
 826     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 827                   osthread->thread_id(), osthread->lwp_id());
 828   }
 829 
 830   // Initial thread state is INITIALIZED, not SUSPENDED
 831   osthread->set_state(INITIALIZED);
 832 
 833   return osthread;
 834 }
 835 
 836 void os::Solaris::hotspot_sigmask(Thread* thread) {
 837   //Save caller's signal mask
 838   sigset_t sigmask;
 839   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 840   OSThread *osthread = thread->osthread();
 841   osthread->set_caller_sigmask(sigmask);
 842 
 843   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 844   if (!ReduceSignalUsage) {
 845     if (thread->is_VM_thread()) {
 846       // Only the VM thread handles BREAK_SIGNAL ...
 847       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 848     } else {
 849       // ... all other threads block BREAK_SIGNAL
 850       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 851       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 852     }
 853   }
 854 }
 855 
 856 bool os::create_attached_thread(JavaThread* thread) {
 857 #ifdef ASSERT
 858   thread->verify_not_published();
 859 #endif
 860   OSThread* osthread = create_os_thread(thread, thr_self());
 861   if (osthread == NULL) {
 862     return false;
 863   }
 864 
 865   // Initial thread state is RUNNABLE
 866   osthread->set_state(RUNNABLE);
 867   thread->set_osthread(osthread);
 868 
 869   // initialize signal mask for this thread
 870   // and save the caller's signal mask
 871   os::Solaris::hotspot_sigmask(thread);
 872 
 873   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 874     os::current_thread_id());
 875 
 876   return true;
 877 }
 878 
 879 bool os::create_main_thread(JavaThread* thread) {
 880 #ifdef ASSERT
 881   thread->verify_not_published();
 882 #endif
 883   if (_starting_thread == NULL) {
 884     _starting_thread = create_os_thread(thread, main_thread);
 885     if (_starting_thread == NULL) {
 886       return false;
 887     }
 888   }
 889 
 890   // The primodial thread is runnable from the start
 891   _starting_thread->set_state(RUNNABLE);
 892 
 893   thread->set_osthread(_starting_thread);
 894 
 895   // initialize signal mask for this thread
 896   // and save the caller's signal mask
 897   os::Solaris::hotspot_sigmask(thread);
 898 
 899   return true;
 900 }
 901 
 902 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
 903 static char* describe_thr_create_attributes(char* buf, size_t buflen,
 904                                             size_t stacksize, long flags) {
 905   stringStream ss(buf, buflen);
 906   ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 907   ss.print("flags: ");
 908   #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
 909   #define ALL(X) \
 910     X(THR_SUSPENDED) \
 911     X(THR_DETACHED) \
 912     X(THR_BOUND) \
 913     X(THR_NEW_LWP) \
 914     X(THR_DAEMON)
 915   ALL(PRINT_FLAG)
 916   #undef ALL
 917   #undef PRINT_FLAG
 918   return buf;
 919 }
 920 
 921 bool os::create_thread(Thread* thread, ThreadType thr_type,
 922                        size_t stack_size) {
 923   // Allocate the OSThread object
 924   OSThread* osthread = new OSThread(NULL, NULL);
 925   if (osthread == NULL) {
 926     return false;
 927   }
 928 
 929   if (ThreadPriorityVerbose) {
 930     char *thrtyp;
 931     switch (thr_type) {
 932     case vm_thread:
 933       thrtyp = (char *)"vm";
 934       break;
 935     case cgc_thread:
 936       thrtyp = (char *)"cgc";
 937       break;
 938     case pgc_thread:
 939       thrtyp = (char *)"pgc";
 940       break;
 941     case java_thread:
 942       thrtyp = (char *)"java";
 943       break;
 944     case compiler_thread:
 945       thrtyp = (char *)"compiler";
 946       break;
 947     case watcher_thread:
 948       thrtyp = (char *)"watcher";
 949       break;
 950     default:
 951       thrtyp = (char *)"unknown";
 952       break;
 953     }
 954     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 955   }
 956 
 957   // Calculate stack size if it's not specified by caller.
 958   if (stack_size == 0) {
 959     // The default stack size 1M (2M for LP64).
 960     stack_size = (BytesPerWord >> 2) * K * K;
 961 
 962     switch (thr_type) {
 963     case os::java_thread:
 964       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 965       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
 966       break;
 967     case os::compiler_thread:
 968       if (CompilerThreadStackSize > 0) {
 969         stack_size = (size_t)(CompilerThreadStackSize * K);
 970         break;
 971       } // else fall through:
 972         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 973     case os::vm_thread:
 974     case os::pgc_thread:
 975     case os::cgc_thread:
 976     case os::watcher_thread:
 977       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 978       break;
 979     }
 980   }
 981   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
 982 
 983   // Initial state is ALLOCATED but not INITIALIZED
 984   osthread->set_state(ALLOCATED);
 985 
 986   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 987     // We got lots of threads. Check if we still have some address space left.
 988     // Need to be at least 5Mb of unreserved address space. We do check by
 989     // trying to reserve some.
 990     const size_t VirtualMemoryBangSize = 20*K*K;
 991     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 992     if (mem == NULL) {
 993       delete osthread;
 994       return false;
 995     } else {
 996       // Release the memory again
 997       os::release_memory(mem, VirtualMemoryBangSize);
 998     }
 999   }
1000 
1001   // Setup osthread because the child thread may need it.
1002   thread->set_osthread(osthread);
1003 
1004   // Create the Solaris thread
1005   thread_t tid = 0;
1006   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
1007   int      status;
1008 
1009   // Mark that we don't have an lwp or thread id yet.
1010   // In case we attempt to set the priority before the thread starts.
1011   osthread->set_lwp_id(-1);
1012   osthread->set_thread_id(-1);
1013 
1014   status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
1015 
1016   char buf[64];
1017   if (status == 0) {
1018     log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
1019       (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1020   } else {
1021     log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
1022       os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
1023   }
1024 
1025   if (status != 0) {
1026     thread->set_osthread(NULL);
1027     // Need to clean up stuff we've allocated so far
1028     delete osthread;
1029     return false;
1030   }
1031 
1032   Atomic::inc(&os::Solaris::_os_thread_count);
1033 
1034   // Store info on the Solaris thread into the OSThread
1035   osthread->set_thread_id(tid);
1036 
1037   // Remember that we created this thread so we can set priority on it
1038   osthread->set_vm_created();
1039 
1040   // Most thread types will set an explicit priority before starting the thread,
1041   // but for those that don't we need a valid value to read back in thread_native_entry.
1042   osthread->set_native_priority(NormPriority);
1043 
1044   // Initial thread state is INITIALIZED, not SUSPENDED
1045   osthread->set_state(INITIALIZED);
1046 
1047   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1048   return true;
1049 }
1050 
1051 // defined for >= Solaris 10. This allows builds on earlier versions
1052 // of Solaris to take advantage of the newly reserved Solaris JVM signals.
1053 // With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1054 // was SIGJVM1.
1055 //
1056 #if !defined(SIGJVM1)
1057   #define SIGJVM1 39
1058   #define SIGJVM2 40
1059 #endif
1060 
1061 debug_only(static bool signal_sets_initialized = false);
1062 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1063 
1064 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1065 
1066 bool os::Solaris::is_sig_ignored(int sig) {
1067   struct sigaction oact;
1068   sigaction(sig, (struct sigaction*)NULL, &oact);
1069   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1070                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1071   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1072     return true;
1073   } else {
1074     return false;
1075   }
1076 }
1077 
1078 // Note: SIGRTMIN is a macro that calls sysconf() so it will
1079 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1080 static bool isJVM1available() {
1081   return SIGJVM1 < SIGRTMIN;
1082 }
1083 
1084 void os::Solaris::signal_sets_init() {
1085   // Should also have an assertion stating we are still single-threaded.
1086   assert(!signal_sets_initialized, "Already initialized");
1087   // Fill in signals that are necessarily unblocked for all threads in
1088   // the VM. Currently, we unblock the following signals:
1089   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1090   //                         by -Xrs (=ReduceSignalUsage));
1091   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1092   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1093   // the dispositions or masks wrt these signals.
1094   // Programs embedding the VM that want to use the above signals for their
1095   // own purposes must, at this time, use the "-Xrs" option to prevent
1096   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1097   // (See bug 4345157, and other related bugs).
1098   // In reality, though, unblocking these signals is really a nop, since
1099   // these signals are not blocked by default.
1100   sigemptyset(&unblocked_sigs);
1101   sigemptyset(&allowdebug_blocked_sigs);
1102   sigaddset(&unblocked_sigs, SIGILL);
1103   sigaddset(&unblocked_sigs, SIGSEGV);
1104   sigaddset(&unblocked_sigs, SIGBUS);
1105   sigaddset(&unblocked_sigs, SIGFPE);
1106 
1107   // Always true on Solaris 10+
1108   guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1109   os::Solaris::set_SIGasync(SIGJVM2);
1110 
1111   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1112 
1113   if (!ReduceSignalUsage) {
1114     if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1115       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1116       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1117     }
1118     if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1119       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1120       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1121     }
1122     if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1123       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1124       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1125     }
1126   }
1127   // Fill in signals that are blocked by all but the VM thread.
1128   sigemptyset(&vm_sigs);
1129   if (!ReduceSignalUsage) {
1130     sigaddset(&vm_sigs, BREAK_SIGNAL);
1131   }
1132   debug_only(signal_sets_initialized = true);
1133 
1134   // For diagnostics only used in run_periodic_checks
1135   sigemptyset(&check_signal_done);
1136 }
1137 
1138 // These are signals that are unblocked while a thread is running Java.
1139 // (For some reason, they get blocked by default.)
1140 sigset_t* os::Solaris::unblocked_signals() {
1141   assert(signal_sets_initialized, "Not initialized");
1142   return &unblocked_sigs;
1143 }
1144 
1145 // These are the signals that are blocked while a (non-VM) thread is
1146 // running Java. Only the VM thread handles these signals.
1147 sigset_t* os::Solaris::vm_signals() {
1148   assert(signal_sets_initialized, "Not initialized");
1149   return &vm_sigs;
1150 }
1151 
1152 // These are signals that are blocked during cond_wait to allow debugger in
1153 sigset_t* os::Solaris::allowdebug_blocked_signals() {
1154   assert(signal_sets_initialized, "Not initialized");
1155   return &allowdebug_blocked_sigs;
1156 }
1157 
1158 
1159 void _handle_uncaught_cxx_exception() {
1160   VMError::report_and_die("An uncaught C++ exception");
1161 }
1162 
1163 
1164 // First crack at OS-specific initialization, from inside the new thread.
1165 void os::initialize_thread(Thread* thr) {
1166   int r = thr_main();
1167   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1168   if (r) {
1169     JavaThread* jt = (JavaThread *)thr;
1170     assert(jt != NULL, "Sanity check");
1171     size_t stack_size;
1172     address base = jt->stack_base();
1173     if (Arguments::created_by_java_launcher()) {
1174       // Use 2MB to allow for Solaris 7 64 bit mode.
1175       stack_size = JavaThread::stack_size_at_create() == 0
1176         ? 2048*K : JavaThread::stack_size_at_create();
1177 
1178       // There are rare cases when we may have already used more than
1179       // the basic stack size allotment before this method is invoked.
1180       // Attempt to allow for a normally sized java_stack.
1181       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1182       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1183     } else {
1184       // 6269555: If we were not created by a Java launcher, i.e. if we are
1185       // running embedded in a native application, treat the primordial thread
1186       // as much like a native attached thread as possible.  This means using
1187       // the current stack size from thr_stksegment(), unless it is too large
1188       // to reliably setup guard pages.  A reasonable max size is 8MB.
1189       size_t current_size = current_stack_size();
1190       // This should never happen, but just in case....
1191       if (current_size == 0) current_size = 2 * K * K;
1192       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1193     }
1194     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1195     stack_size = (size_t)(base - bottom);
1196 
1197     assert(stack_size > 0, "Stack size calculation problem");
1198 
1199     if (stack_size > jt->stack_size()) {
1200 #ifndef PRODUCT
1201       struct rlimit limits;
1202       getrlimit(RLIMIT_STACK, &limits);
1203       size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1204       assert(size >= jt->stack_size(), "Stack size problem in main thread");
1205 #endif
1206       tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1207                     "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1208                     "See limit(1) to increase the stack size limit.",
1209                     stack_size / K, jt->stack_size() / K);
1210       vm_exit(1);
1211     }
1212     assert(jt->stack_size() >= stack_size,
1213            "Attempt to map more stack than was allocated");
1214     jt->set_stack_size(stack_size);
1215   }
1216 
1217   // With the T2 libthread (T1 is no longer supported) threads are always bound
1218   // and we use stackbanging in all cases.
1219 
1220   os::Solaris::init_thread_fpu_state();
1221   std::set_terminate(_handle_uncaught_cxx_exception);
1222 }
1223 
1224 
1225 
1226 // Free Solaris resources related to the OSThread
1227 void os::free_thread(OSThread* osthread) {
1228   assert(osthread != NULL, "os::free_thread but osthread not set");
1229 
1230   // We are told to free resources of the argument thread,
1231   // but we can only really operate on the current thread.
1232   assert(Thread::current()->osthread() == osthread,
1233          "os::free_thread but not current thread");
1234 
1235   // Restore caller's signal mask
1236   sigset_t sigmask = osthread->caller_sigmask();
1237   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1238 
1239   delete osthread;
1240 }
1241 
1242 void os::pd_start_thread(Thread* thread) {
1243   int status = thr_continue(thread->osthread()->thread_id());
1244   assert_status(status == 0, status, "thr_continue failed");
1245 }
1246 
1247 
1248 intx os::current_thread_id() {
1249   return (intx)thr_self();
1250 }
1251 
1252 static pid_t _initial_pid = 0;
1253 
1254 int os::current_process_id() {
1255   return (int)(_initial_pid ? _initial_pid : getpid());
1256 }
1257 
1258 // gethrtime() should be monotonic according to the documentation,
1259 // but some virtualized platforms are known to break this guarantee.
1260 // getTimeNanos() must be guaranteed not to move backwards, so we
1261 // are forced to add a check here.
1262 inline hrtime_t getTimeNanos() {
1263   const hrtime_t now = gethrtime();
1264   const hrtime_t prev = max_hrtime;
1265   if (now <= prev) {
1266     return prev;   // same or retrograde time;
1267   }
1268   const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1269   assert(obsv >= prev, "invariant");   // Monotonicity
1270   // If the CAS succeeded then we're done and return "now".
1271   // If the CAS failed and the observed value "obsv" is >= now then
1272   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1273   // some other thread raced this thread and installed a new value, in which case
1274   // we could either (a) retry the entire operation, (b) retry trying to install now
1275   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1276   // we might discard a higher "now" value in deference to a slightly lower but freshly
1277   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1278   // to (a) or (b) -- and greatly reduces coherence traffic.
1279   // We might also condition (c) on the magnitude of the delta between obsv and now.
1280   // Avoiding excessive CAS operations to hot RW locations is critical.
1281   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1282   return (prev == obsv) ? now : obsv;
1283 }
1284 
1285 // Time since start-up in seconds to a fine granularity.
1286 // Used by VMSelfDestructTimer and the MemProfiler.
1287 double os::elapsedTime() {
1288   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1289 }
1290 
1291 jlong os::elapsed_counter() {
1292   return (jlong)(getTimeNanos() - first_hrtime);
1293 }
1294 
1295 jlong os::elapsed_frequency() {
1296   return hrtime_hz;
1297 }
1298 
1299 // Return the real, user, and system times in seconds from an
1300 // arbitrary fixed point in the past.
1301 bool os::getTimesSecs(double* process_real_time,
1302                       double* process_user_time,
1303                       double* process_system_time) {
1304   struct tms ticks;
1305   clock_t real_ticks = times(&ticks);
1306 
1307   if (real_ticks == (clock_t) (-1)) {
1308     return false;
1309   } else {
1310     double ticks_per_second = (double) clock_tics_per_sec;
1311     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1312     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1313     // For consistency return the real time from getTimeNanos()
1314     // converted to seconds.
1315     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1316 
1317     return true;
1318   }
1319 }
1320 
1321 bool os::supports_vtime() { return true; }
1322 bool os::enable_vtime() { return false; }
1323 bool os::vtime_enabled() { return false; }
1324 
1325 double os::elapsedVTime() {
1326   return (double)gethrvtime() / (double)hrtime_hz;
1327 }
1328 
1329 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1330 jlong os::javaTimeMillis() {
1331   timeval t;
1332   if (gettimeofday(&t, NULL) == -1) {
1333     fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1334   }
1335   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1336 }
1337 
1338 // Must return seconds+nanos since Jan 1 1970. This must use the same
1339 // time source as javaTimeMillis and can't use get_nsec_fromepoch as
1340 // we need better than 1ms accuracy
1341 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1342   timeval t;
1343   if (gettimeofday(&t, NULL) == -1) {
1344     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1345   }
1346   seconds = jlong(t.tv_sec);
1347   nanos = jlong(t.tv_usec) * 1000;
1348 }
1349 
1350 
1351 jlong os::javaTimeNanos() {
1352   return (jlong)getTimeNanos();
1353 }
1354 
1355 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1356   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1357   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1358   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1359   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1360 }
1361 
1362 char * os::local_time_string(char *buf, size_t buflen) {
1363   struct tm t;
1364   time_t long_time;
1365   time(&long_time);
1366   localtime_r(&long_time, &t);
1367   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1368                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1369                t.tm_hour, t.tm_min, t.tm_sec);
1370   return buf;
1371 }
1372 
1373 // Note: os::shutdown() might be called very early during initialization, or
1374 // called from signal handler. Before adding something to os::shutdown(), make
1375 // sure it is async-safe and can handle partially initialized VM.
1376 void os::shutdown() {
1377 
1378   // allow PerfMemory to attempt cleanup of any persistent resources
1379   perfMemory_exit();
1380 
1381   // needs to remove object in file system
1382   AttachListener::abort();
1383 
1384   // flush buffered output, finish log files
1385   ostream_abort();
1386 
1387   // Check for abort hook
1388   abort_hook_t abort_hook = Arguments::abort_hook();
1389   if (abort_hook != NULL) {
1390     abort_hook();
1391   }
1392 }
1393 
1394 // Note: os::abort() might be called very early during initialization, or
1395 // called from signal handler. Before adding something to os::abort(), make
1396 // sure it is async-safe and can handle partially initialized VM.
1397 void os::abort(bool dump_core, void* siginfo, const void* context) {
1398   os::shutdown();
1399   if (dump_core) {
1400 #ifndef PRODUCT
1401     fdStream out(defaultStream::output_fd());
1402     out.print_raw("Current thread is ");
1403     char buf[16];
1404     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1405     out.print_raw_cr(buf);
1406     out.print_raw_cr("Dumping core ...");
1407 #endif
1408     ::abort(); // dump core (for debugging)
1409   }
1410 
1411   ::exit(1);
1412 }
1413 
1414 // Die immediately, no exit hook, no abort hook, no cleanup.
1415 void os::die() {
1416   ::abort(); // dump core (for debugging)
1417 }
1418 
1419 // DLL functions
1420 
1421 const char* os::dll_file_extension() { return ".so"; }
1422 
1423 // This must be hard coded because it's the system's temporary
1424 // directory not the java application's temp directory, ala java.io.tmpdir.
1425 const char* os::get_temp_directory() { return "/tmp"; }
1426 
1427 static bool file_exists(const char* filename) {
1428   struct stat statbuf;
1429   if (filename == NULL || strlen(filename) == 0) {
1430     return false;
1431   }
1432   return os::stat(filename, &statbuf) == 0;
1433 }
1434 
1435 bool os::dll_build_name(char* buffer, size_t buflen,
1436                         const char* pname, const char* fname) {
1437   bool retval = false;
1438   const size_t pnamelen = pname ? strlen(pname) : 0;
1439 
1440   // Return error on buffer overflow.
1441   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1442     return retval;
1443   }
1444 
1445   if (pnamelen == 0) {
1446     snprintf(buffer, buflen, "lib%s.so", fname);
1447     retval = true;
1448   } else if (strchr(pname, *os::path_separator()) != NULL) {
1449     int n;
1450     char** pelements = split_path(pname, &n);
1451     if (pelements == NULL) {
1452       return false;
1453     }
1454     for (int i = 0; i < n; i++) {
1455       // really shouldn't be NULL but what the heck, check can't hurt
1456       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1457         continue; // skip the empty path values
1458       }
1459       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1460       if (file_exists(buffer)) {
1461         retval = true;
1462         break;
1463       }
1464     }
1465     // release the storage
1466     for (int i = 0; i < n; i++) {
1467       if (pelements[i] != NULL) {
1468         FREE_C_HEAP_ARRAY(char, pelements[i]);
1469       }
1470     }
1471     if (pelements != NULL) {
1472       FREE_C_HEAP_ARRAY(char*, pelements);
1473     }
1474   } else {
1475     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1476     retval = true;
1477   }
1478   return retval;
1479 }
1480 
1481 // check if addr is inside libjvm.so
1482 bool os::address_is_in_vm(address addr) {
1483   static address libjvm_base_addr;
1484   Dl_info dlinfo;
1485 
1486   if (libjvm_base_addr == NULL) {
1487     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1488       libjvm_base_addr = (address)dlinfo.dli_fbase;
1489     }
1490     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1491   }
1492 
1493   if (dladdr((void *)addr, &dlinfo) != 0) {
1494     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1495   }
1496 
1497   return false;
1498 }
1499 
1500 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1501 static dladdr1_func_type dladdr1_func = NULL;
1502 
1503 bool os::dll_address_to_function_name(address addr, char *buf,
1504                                       int buflen, int * offset,
1505                                       bool demangle) {
1506   // buf is not optional, but offset is optional
1507   assert(buf != NULL, "sanity check");
1508 
1509   Dl_info dlinfo;
1510 
1511   // dladdr1_func was initialized in os::init()
1512   if (dladdr1_func != NULL) {
1513     // yes, we have dladdr1
1514 
1515     // Support for dladdr1 is checked at runtime; it may be
1516     // available even if the vm is built on a machine that does
1517     // not have dladdr1 support.  Make sure there is a value for
1518     // RTLD_DL_SYMENT.
1519 #ifndef RTLD_DL_SYMENT
1520   #define RTLD_DL_SYMENT 1
1521 #endif
1522 #ifdef _LP64
1523     Elf64_Sym * info;
1524 #else
1525     Elf32_Sym * info;
1526 #endif
1527     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1528                      RTLD_DL_SYMENT) != 0) {
1529       // see if we have a matching symbol that covers our address
1530       if (dlinfo.dli_saddr != NULL &&
1531           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1532         if (dlinfo.dli_sname != NULL) {
1533           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1534             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1535           }
1536           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1537           return true;
1538         }
1539       }
1540       // no matching symbol so try for just file info
1541       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1542         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1543                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1544           return true;
1545         }
1546       }
1547     }
1548     buf[0] = '\0';
1549     if (offset != NULL) *offset  = -1;
1550     return false;
1551   }
1552 
1553   // no, only dladdr is available
1554   if (dladdr((void *)addr, &dlinfo) != 0) {
1555     // see if we have a matching symbol
1556     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1557       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1558         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1559       }
1560       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1561       return true;
1562     }
1563     // no matching symbol so try for just file info
1564     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1565       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1566                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1567         return true;
1568       }
1569     }
1570   }
1571   buf[0] = '\0';
1572   if (offset != NULL) *offset  = -1;
1573   return false;
1574 }
1575 
1576 bool os::dll_address_to_library_name(address addr, char* buf,
1577                                      int buflen, int* offset) {
1578   // buf is not optional, but offset is optional
1579   assert(buf != NULL, "sanity check");
1580 
1581   Dl_info dlinfo;
1582 
1583   if (dladdr((void*)addr, &dlinfo) != 0) {
1584     if (dlinfo.dli_fname != NULL) {
1585       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1586     }
1587     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1588       *offset = addr - (address)dlinfo.dli_fbase;
1589     }
1590     return true;
1591   }
1592 
1593   buf[0] = '\0';
1594   if (offset) *offset = -1;
1595   return false;
1596 }
1597 
1598 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1599   Dl_info dli;
1600   // Sanity check?
1601   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1602       dli.dli_fname == NULL) {
1603     return 1;
1604   }
1605 
1606   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1607   if (handle == NULL) {
1608     return 1;
1609   }
1610 
1611   Link_map *map;
1612   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1613   if (map == NULL) {
1614     dlclose(handle);
1615     return 1;
1616   }
1617 
1618   while (map->l_prev != NULL) {
1619     map = map->l_prev;
1620   }
1621 
1622   while (map != NULL) {
1623     // Iterate through all map entries and call callback with fields of interest
1624     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1625       dlclose(handle);
1626       return 1;
1627     }
1628     map = map->l_next;
1629   }
1630 
1631   dlclose(handle);
1632   return 0;
1633 }
1634 
1635 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1636   outputStream * out = (outputStream *) param;
1637   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1638   return 0;
1639 }
1640 
1641 void os::print_dll_info(outputStream * st) {
1642   st->print_cr("Dynamic libraries:"); st->flush();
1643   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1644     st->print_cr("Error: Cannot print dynamic libraries.");
1645   }
1646 }
1647 
1648 // Loads .dll/.so and
1649 // in case of error it checks if .dll/.so was built for the
1650 // same architecture as Hotspot is running on
1651 
1652 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1653   void * result= ::dlopen(filename, RTLD_LAZY);
1654   if (result != NULL) {
1655     // Successful loading
1656     return result;
1657   }
1658 
1659   Elf32_Ehdr elf_head;
1660 
1661   // Read system error message into ebuf
1662   // It may or may not be overwritten below
1663   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1664   ebuf[ebuflen-1]='\0';
1665   int diag_msg_max_length=ebuflen-strlen(ebuf);
1666   char* diag_msg_buf=ebuf+strlen(ebuf);
1667 
1668   if (diag_msg_max_length==0) {
1669     // No more space in ebuf for additional diagnostics message
1670     return NULL;
1671   }
1672 
1673 
1674   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1675 
1676   if (file_descriptor < 0) {
1677     // Can't open library, report dlerror() message
1678     return NULL;
1679   }
1680 
1681   bool failed_to_read_elf_head=
1682     (sizeof(elf_head)!=
1683      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1684 
1685   ::close(file_descriptor);
1686   if (failed_to_read_elf_head) {
1687     // file i/o error - report dlerror() msg
1688     return NULL;
1689   }
1690 
1691   typedef struct {
1692     Elf32_Half  code;         // Actual value as defined in elf.h
1693     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1694     char        elf_class;    // 32 or 64 bit
1695     char        endianess;    // MSB or LSB
1696     char*       name;         // String representation
1697   } arch_t;
1698 
1699   static const arch_t arch_array[]={
1700     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1701     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1702     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1703     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1704     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1705     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1706     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1707     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1708     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1709     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1710   };
1711 
1712 #if  (defined IA32)
1713   static  Elf32_Half running_arch_code=EM_386;
1714 #elif   (defined AMD64)
1715   static  Elf32_Half running_arch_code=EM_X86_64;
1716 #elif  (defined IA64)
1717   static  Elf32_Half running_arch_code=EM_IA_64;
1718 #elif  (defined __sparc) && (defined _LP64)
1719   static  Elf32_Half running_arch_code=EM_SPARCV9;
1720 #elif  (defined __sparc) && (!defined _LP64)
1721   static  Elf32_Half running_arch_code=EM_SPARC;
1722 #elif  (defined __powerpc64__)
1723   static  Elf32_Half running_arch_code=EM_PPC64;
1724 #elif  (defined __powerpc__)
1725   static  Elf32_Half running_arch_code=EM_PPC;
1726 #elif (defined ARM)
1727   static  Elf32_Half running_arch_code=EM_ARM;
1728 #else
1729   #error Method os::dll_load requires that one of following is defined:\
1730        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1731 #endif
1732 
1733   // Identify compatability class for VM's architecture and library's architecture
1734   // Obtain string descriptions for architectures
1735 
1736   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1737   int running_arch_index=-1;
1738 
1739   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1740     if (running_arch_code == arch_array[i].code) {
1741       running_arch_index    = i;
1742     }
1743     if (lib_arch.code == arch_array[i].code) {
1744       lib_arch.compat_class = arch_array[i].compat_class;
1745       lib_arch.name         = arch_array[i].name;
1746     }
1747   }
1748 
1749   assert(running_arch_index != -1,
1750          "Didn't find running architecture code (running_arch_code) in arch_array");
1751   if (running_arch_index == -1) {
1752     // Even though running architecture detection failed
1753     // we may still continue with reporting dlerror() message
1754     return NULL;
1755   }
1756 
1757   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1758     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1759     return NULL;
1760   }
1761 
1762   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1763     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1764     return NULL;
1765   }
1766 
1767   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1768     if (lib_arch.name!=NULL) {
1769       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1770                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1771                  lib_arch.name, arch_array[running_arch_index].name);
1772     } else {
1773       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1774                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1775                  lib_arch.code,
1776                  arch_array[running_arch_index].name);
1777     }
1778   }
1779 
1780   return NULL;
1781 }
1782 
1783 void* os::dll_lookup(void* handle, const char* name) {
1784   return dlsym(handle, name);
1785 }
1786 
1787 void* os::get_default_process_handle() {
1788   return (void*)::dlopen(NULL, RTLD_LAZY);
1789 }
1790 
1791 int os::stat(const char *path, struct stat *sbuf) {
1792   char pathbuf[MAX_PATH];
1793   if (strlen(path) > MAX_PATH - 1) {
1794     errno = ENAMETOOLONG;
1795     return -1;
1796   }
1797   os::native_path(strcpy(pathbuf, path));
1798   return ::stat(pathbuf, sbuf);
1799 }
1800 
1801 static inline time_t get_mtime(const char* filename) {
1802   struct stat st;
1803   int ret = os::stat(filename, &st);
1804   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1805   return st.st_mtime;
1806 }
1807 
1808 int os::compare_file_modified_times(const char* file1, const char* file2) {
1809   time_t t1 = get_mtime(file1);
1810   time_t t2 = get_mtime(file2);
1811   return t1 - t2;
1812 }
1813 
1814 static bool _print_ascii_file(const char* filename, outputStream* st) {
1815   int fd = ::open(filename, O_RDONLY);
1816   if (fd == -1) {
1817     return false;
1818   }
1819 
1820   char buf[32];
1821   int bytes;
1822   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1823     st->print_raw(buf, bytes);
1824   }
1825 
1826   ::close(fd);
1827 
1828   return true;
1829 }
1830 
1831 void os::print_os_info_brief(outputStream* st) {
1832   os::Solaris::print_distro_info(st);
1833 
1834   os::Posix::print_uname_info(st);
1835 
1836   os::Solaris::print_libversion_info(st);
1837 }
1838 
1839 void os::print_os_info(outputStream* st) {
1840   st->print("OS:");
1841 
1842   os::Solaris::print_distro_info(st);
1843 
1844   os::Posix::print_uname_info(st);
1845 
1846   os::Solaris::print_libversion_info(st);
1847 
1848   os::Posix::print_rlimit_info(st);
1849 
1850   os::Posix::print_load_average(st);
1851 }
1852 
1853 void os::Solaris::print_distro_info(outputStream* st) {
1854   if (!_print_ascii_file("/etc/release", st)) {
1855     st->print("Solaris");
1856   }
1857   st->cr();
1858 }
1859 
1860 void os::get_summary_os_info(char* buf, size_t buflen) {
1861   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1862   FILE* fp = fopen("/etc/release", "r");
1863   if (fp != NULL) {
1864     char tmp[256];
1865     // Only get the first line and chop out everything but the os name.
1866     if (fgets(tmp, sizeof(tmp), fp)) {
1867       char* ptr = tmp;
1868       // skip past whitespace characters
1869       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1870       if (*ptr != '\0') {
1871         char* nl = strchr(ptr, '\n');
1872         if (nl != NULL) *nl = '\0';
1873         strncpy(buf, ptr, buflen);
1874       }
1875     }
1876     fclose(fp);
1877   }
1878 }
1879 
1880 void os::Solaris::print_libversion_info(outputStream* st) {
1881   st->print("  (T2 libthread)");
1882   st->cr();
1883 }
1884 
1885 static bool check_addr0(outputStream* st) {
1886   jboolean status = false;
1887   const int read_chunk = 200;
1888   int ret = 0;
1889   int nmap = 0;
1890   int fd = ::open("/proc/self/map",O_RDONLY);
1891   if (fd >= 0) {
1892     prmap_t *p = NULL;
1893     char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1894     if (NULL == mbuff) {
1895       ::close(fd);
1896       return status;
1897     }
1898     while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1899       //check if read() has not read partial data
1900       if( 0 != ret % sizeof(prmap_t)){
1901         break;
1902       }
1903       nmap = ret / sizeof(prmap_t);
1904       p = (prmap_t *)mbuff;
1905       for(int i = 0; i < nmap; i++){
1906         if (p->pr_vaddr == 0x0) {
1907           st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1908           st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1909           st->print("Access: ");
1910           st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1911           st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1912           st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1913           st->cr();
1914           status = true;
1915         }
1916         p++;
1917       }
1918     }
1919     free(mbuff);
1920     ::close(fd);
1921   }
1922   return status;
1923 }
1924 
1925 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1926   // Get MHz with system call. We don't seem to already have this.
1927   processor_info_t stats;
1928   processorid_t id = getcpuid();
1929   int clock = 0;
1930   if (processor_info(id, &stats) != -1) {
1931     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1932   }
1933 #ifdef AMD64
1934   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1935 #else
1936   // must be sparc
1937   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1938 #endif
1939 }
1940 
1941 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1942   // Nothing to do for now.
1943 }
1944 
1945 void os::print_memory_info(outputStream* st) {
1946   st->print("Memory:");
1947   st->print(" %dk page", os::vm_page_size()>>10);
1948   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1949   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1950   st->cr();
1951   (void) check_addr0(st);
1952 }
1953 
1954 // Moved from whole group, because we need them here for diagnostic
1955 // prints.
1956 #define OLDMAXSIGNUM 32
1957 static int Maxsignum = 0;
1958 static int *ourSigFlags = NULL;
1959 
1960 int os::Solaris::get_our_sigflags(int sig) {
1961   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1962   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1963   return ourSigFlags[sig];
1964 }
1965 
1966 void os::Solaris::set_our_sigflags(int sig, int flags) {
1967   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1968   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1969   ourSigFlags[sig] = flags;
1970 }
1971 
1972 
1973 static const char* get_signal_handler_name(address handler,
1974                                            char* buf, int buflen) {
1975   int offset;
1976   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1977   if (found) {
1978     // skip directory names
1979     const char *p1, *p2;
1980     p1 = buf;
1981     size_t len = strlen(os::file_separator());
1982     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1983     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1984   } else {
1985     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1986   }
1987   return buf;
1988 }
1989 
1990 static void print_signal_handler(outputStream* st, int sig,
1991                                  char* buf, size_t buflen) {
1992   struct sigaction sa;
1993 
1994   sigaction(sig, NULL, &sa);
1995 
1996   st->print("%s: ", os::exception_name(sig, buf, buflen));
1997 
1998   address handler = (sa.sa_flags & SA_SIGINFO)
1999                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
2000                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
2001 
2002   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
2003     st->print("SIG_DFL");
2004   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
2005     st->print("SIG_IGN");
2006   } else {
2007     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
2008   }
2009 
2010   st->print(", sa_mask[0]=");
2011   os::Posix::print_signal_set_short(st, &sa.sa_mask);
2012 
2013   address rh = VMError::get_resetted_sighandler(sig);
2014   // May be, handler was resetted by VMError?
2015   if (rh != NULL) {
2016     handler = rh;
2017     sa.sa_flags = VMError::get_resetted_sigflags(sig);
2018   }
2019 
2020   st->print(", sa_flags=");
2021   os::Posix::print_sa_flags(st, sa.sa_flags);
2022 
2023   // Check: is it our handler?
2024   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
2025     // It is our signal handler
2026     // check for flags
2027     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
2028       st->print(
2029                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
2030                 os::Solaris::get_our_sigflags(sig));
2031     }
2032   }
2033   st->cr();
2034 }
2035 
2036 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2037   st->print_cr("Signal Handlers:");
2038   print_signal_handler(st, SIGSEGV, buf, buflen);
2039   print_signal_handler(st, SIGBUS , buf, buflen);
2040   print_signal_handler(st, SIGFPE , buf, buflen);
2041   print_signal_handler(st, SIGPIPE, buf, buflen);
2042   print_signal_handler(st, SIGXFSZ, buf, buflen);
2043   print_signal_handler(st, SIGILL , buf, buflen);
2044   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2045   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2046   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2047   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2048   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2049   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2050 }
2051 
2052 static char saved_jvm_path[MAXPATHLEN] = { 0 };
2053 
2054 // Find the full path to the current module, libjvm.so
2055 void os::jvm_path(char *buf, jint buflen) {
2056   // Error checking.
2057   if (buflen < MAXPATHLEN) {
2058     assert(false, "must use a large-enough buffer");
2059     buf[0] = '\0';
2060     return;
2061   }
2062   // Lazy resolve the path to current module.
2063   if (saved_jvm_path[0] != 0) {
2064     strcpy(buf, saved_jvm_path);
2065     return;
2066   }
2067 
2068   Dl_info dlinfo;
2069   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2070   assert(ret != 0, "cannot locate libjvm");
2071   if (ret != 0 && dlinfo.dli_fname != NULL) {
2072     realpath((char *)dlinfo.dli_fname, buf);
2073   } else {
2074     buf[0] = '\0';
2075     return;
2076   }
2077 
2078   if (Arguments::sun_java_launcher_is_altjvm()) {
2079     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2080     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2081     // If "/jre/lib/" appears at the right place in the string, then
2082     // assume we are installed in a JDK and we're done.  Otherwise, check
2083     // for a JAVA_HOME environment variable and fix up the path so it
2084     // looks like libjvm.so is installed there (append a fake suffix
2085     // hotspot/libjvm.so).
2086     const char *p = buf + strlen(buf) - 1;
2087     for (int count = 0; p > buf && count < 5; ++count) {
2088       for (--p; p > buf && *p != '/'; --p)
2089         /* empty */ ;
2090     }
2091 
2092     if (strncmp(p, "/jre/lib/", 9) != 0) {
2093       // Look for JAVA_HOME in the environment.
2094       char* java_home_var = ::getenv("JAVA_HOME");
2095       if (java_home_var != NULL && java_home_var[0] != 0) {
2096         char cpu_arch[12];
2097         char* jrelib_p;
2098         int   len;
2099         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2100 #ifdef _LP64
2101         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2102         if (strcmp(cpu_arch, "sparc") == 0) {
2103           strcat(cpu_arch, "v9");
2104         } else if (strcmp(cpu_arch, "i386") == 0) {
2105           strcpy(cpu_arch, "amd64");
2106         }
2107 #endif
2108         // Check the current module name "libjvm.so".
2109         p = strrchr(buf, '/');
2110         assert(strstr(p, "/libjvm") == p, "invalid library name");
2111 
2112         realpath(java_home_var, buf);
2113         // determine if this is a legacy image or modules image
2114         // modules image doesn't have "jre" subdirectory
2115         len = strlen(buf);
2116         assert(len < buflen, "Ran out of buffer space");
2117         jrelib_p = buf + len;
2118         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2119         if (0 != access(buf, F_OK)) {
2120           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2121         }
2122 
2123         if (0 == access(buf, F_OK)) {
2124           // Use current module name "libjvm.so"
2125           len = strlen(buf);
2126           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2127         } else {
2128           // Go back to path of .so
2129           realpath((char *)dlinfo.dli_fname, buf);
2130         }
2131       }
2132     }
2133   }
2134 
2135   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2136   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2137 }
2138 
2139 
2140 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2141   // no prefix required, not even "_"
2142 }
2143 
2144 
2145 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2146   // no suffix required
2147 }
2148 
2149 // This method is a copy of JDK's sysGetLastErrorString
2150 // from src/solaris/hpi/src/system_md.c
2151 
2152 size_t os::lasterror(char *buf, size_t len) {
2153   if (errno == 0)  return 0;
2154 
2155   const char *s = os::strerror(errno);
2156   size_t n = ::strlen(s);
2157   if (n >= len) {
2158     n = len - 1;
2159   }
2160   ::strncpy(buf, s, n);
2161   buf[n] = '\0';
2162   return n;
2163 }
2164 
2165 
2166 // sun.misc.Signal
2167 
2168 extern "C" {
2169   static void UserHandler(int sig, void *siginfo, void *context) {
2170     // Ctrl-C is pressed during error reporting, likely because the error
2171     // handler fails to abort. Let VM die immediately.
2172     if (sig == SIGINT && is_error_reported()) {
2173       os::die();
2174     }
2175 
2176     os::signal_notify(sig);
2177     // We do not need to reinstate the signal handler each time...
2178   }
2179 }
2180 
2181 void* os::user_handler() {
2182   return CAST_FROM_FN_PTR(void*, UserHandler);
2183 }
2184 
2185 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2186   struct timespec ts;
2187   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2188 
2189   return ts;
2190 }
2191 
2192 extern "C" {
2193   typedef void (*sa_handler_t)(int);
2194   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2195 }
2196 
2197 void* os::signal(int signal_number, void* handler) {
2198   struct sigaction sigAct, oldSigAct;
2199   sigfillset(&(sigAct.sa_mask));
2200   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2201   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2202 
2203   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2204     // -1 means registration failed
2205     return (void *)-1;
2206   }
2207 
2208   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2209 }
2210 
2211 void os::signal_raise(int signal_number) {
2212   raise(signal_number);
2213 }
2214 
2215 // The following code is moved from os.cpp for making this
2216 // code platform specific, which it is by its very nature.
2217 
2218 // a counter for each possible signal value
2219 static int Sigexit = 0;
2220 static int Maxlibjsigsigs;
2221 static jint *pending_signals = NULL;
2222 static int *preinstalled_sigs = NULL;
2223 static struct sigaction *chainedsigactions = NULL;
2224 static sema_t sig_sem;
2225 typedef int (*version_getting_t)();
2226 version_getting_t os::Solaris::get_libjsig_version = NULL;
2227 static int libjsigversion = NULL;
2228 
2229 int os::sigexitnum_pd() {
2230   assert(Sigexit > 0, "signal memory not yet initialized");
2231   return Sigexit;
2232 }
2233 
2234 void os::Solaris::init_signal_mem() {
2235   // Initialize signal structures
2236   Maxsignum = SIGRTMAX;
2237   Sigexit = Maxsignum+1;
2238   assert(Maxsignum >0, "Unable to obtain max signal number");
2239 
2240   Maxlibjsigsigs = Maxsignum;
2241 
2242   // pending_signals has one int per signal
2243   // The additional signal is for SIGEXIT - exit signal to signal_thread
2244   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2245   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2246 
2247   if (UseSignalChaining) {
2248     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2249                                                    * (Maxsignum + 1), mtInternal);
2250     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2251     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2252     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2253   }
2254   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2255   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2256 }
2257 
2258 void os::signal_init_pd() {
2259   int ret;
2260 
2261   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2262   assert(ret == 0, "sema_init() failed");
2263 }
2264 
2265 void os::signal_notify(int signal_number) {
2266   int ret;
2267 
2268   Atomic::inc(&pending_signals[signal_number]);
2269   ret = ::sema_post(&sig_sem);
2270   assert(ret == 0, "sema_post() failed");
2271 }
2272 
2273 static int check_pending_signals(bool wait_for_signal) {
2274   int ret;
2275   while (true) {
2276     for (int i = 0; i < Sigexit + 1; i++) {
2277       jint n = pending_signals[i];
2278       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2279         return i;
2280       }
2281     }
2282     if (!wait_for_signal) {
2283       return -1;
2284     }
2285     JavaThread *thread = JavaThread::current();
2286     ThreadBlockInVM tbivm(thread);
2287 
2288     bool threadIsSuspended;
2289     do {
2290       thread->set_suspend_equivalent();
2291       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2292       while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2293         ;
2294       assert(ret == 0, "sema_wait() failed");
2295 
2296       // were we externally suspended while we were waiting?
2297       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2298       if (threadIsSuspended) {
2299         // The semaphore has been incremented, but while we were waiting
2300         // another thread suspended us. We don't want to continue running
2301         // while suspended because that would surprise the thread that
2302         // suspended us.
2303         ret = ::sema_post(&sig_sem);
2304         assert(ret == 0, "sema_post() failed");
2305 
2306         thread->java_suspend_self();
2307       }
2308     } while (threadIsSuspended);
2309   }
2310 }
2311 
2312 int os::signal_lookup() {
2313   return check_pending_signals(false);
2314 }
2315 
2316 int os::signal_wait() {
2317   return check_pending_signals(true);
2318 }
2319 
2320 ////////////////////////////////////////////////////////////////////////////////
2321 // Virtual Memory
2322 
2323 static int page_size = -1;
2324 
2325 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2326 // clear this var if support is not available.
2327 static bool has_map_align = true;
2328 
2329 int os::vm_page_size() {
2330   assert(page_size != -1, "must call os::init");
2331   return page_size;
2332 }
2333 
2334 // Solaris allocates memory by pages.
2335 int os::vm_allocation_granularity() {
2336   assert(page_size != -1, "must call os::init");
2337   return page_size;
2338 }
2339 
2340 static bool recoverable_mmap_error(int err) {
2341   // See if the error is one we can let the caller handle. This
2342   // list of errno values comes from the Solaris mmap(2) man page.
2343   switch (err) {
2344   case EBADF:
2345   case EINVAL:
2346   case ENOTSUP:
2347     // let the caller deal with these errors
2348     return true;
2349 
2350   default:
2351     // Any remaining errors on this OS can cause our reserved mapping
2352     // to be lost. That can cause confusion where different data
2353     // structures think they have the same memory mapped. The worst
2354     // scenario is if both the VM and a library think they have the
2355     // same memory mapped.
2356     return false;
2357   }
2358 }
2359 
2360 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2361                                     int err) {
2362   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2363           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2364           os::strerror(err), err);
2365 }
2366 
2367 static void warn_fail_commit_memory(char* addr, size_t bytes,
2368                                     size_t alignment_hint, bool exec,
2369                                     int err) {
2370   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2371           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2372           alignment_hint, exec, os::strerror(err), err);
2373 }
2374 
2375 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2376   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2377   size_t size = bytes;
2378   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2379   if (res != NULL) {
2380     if (UseNUMAInterleaving) {
2381       numa_make_global(addr, bytes);
2382     }
2383     return 0;
2384   }
2385 
2386   int err = errno;  // save errno from mmap() call in mmap_chunk()
2387 
2388   if (!recoverable_mmap_error(err)) {
2389     warn_fail_commit_memory(addr, bytes, exec, err);
2390     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2391   }
2392 
2393   return err;
2394 }
2395 
2396 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2397   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2398 }
2399 
2400 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2401                                   const char* mesg) {
2402   assert(mesg != NULL, "mesg must be specified");
2403   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2404   if (err != 0) {
2405     // the caller wants all commit errors to exit with the specified mesg:
2406     warn_fail_commit_memory(addr, bytes, exec, err);
2407     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2408   }
2409 }
2410 
2411 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2412   assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2413          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2414          alignment, (size_t) vm_page_size());
2415 
2416   for (int i = 0; _page_sizes[i] != 0; i++) {
2417     if (is_size_aligned(alignment, _page_sizes[i])) {
2418       return _page_sizes[i];
2419     }
2420   }
2421 
2422   return (size_t) vm_page_size();
2423 }
2424 
2425 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2426                                     size_t alignment_hint, bool exec) {
2427   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2428   if (err == 0 && UseLargePages && alignment_hint > 0) {
2429     assert(is_size_aligned(bytes, alignment_hint),
2430            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2431 
2432     // The syscall memcntl requires an exact page size (see man memcntl for details).
2433     size_t page_size = page_size_for_alignment(alignment_hint);
2434     if (page_size > (size_t) vm_page_size()) {
2435       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2436     }
2437   }
2438   return err;
2439 }
2440 
2441 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2442                           bool exec) {
2443   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2444 }
2445 
2446 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2447                                   size_t alignment_hint, bool exec,
2448                                   const char* mesg) {
2449   assert(mesg != NULL, "mesg must be specified");
2450   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2451   if (err != 0) {
2452     // the caller wants all commit errors to exit with the specified mesg:
2453     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2454     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2455   }
2456 }
2457 
2458 // Uncommit the pages in a specified region.
2459 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2460   if (madvise(addr, bytes, MADV_FREE) < 0) {
2461     debug_only(warning("MADV_FREE failed."));
2462     return;
2463   }
2464 }
2465 
2466 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2467   return os::commit_memory(addr, size, !ExecMem);
2468 }
2469 
2470 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2471   return os::uncommit_memory(addr, size);
2472 }
2473 
2474 // Change the page size in a given range.
2475 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2476   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2477   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2478   if (UseLargePages) {
2479     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2480     if (page_size > (size_t) vm_page_size()) {
2481       Solaris::setup_large_pages(addr, bytes, page_size);
2482     }
2483   }
2484 }
2485 
2486 // Tell the OS to make the range local to the first-touching LWP
2487 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2488   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2489   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2490     debug_only(warning("MADV_ACCESS_LWP failed."));
2491   }
2492 }
2493 
2494 // Tell the OS that this range would be accessed from different LWPs.
2495 void os::numa_make_global(char *addr, size_t bytes) {
2496   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2497   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2498     debug_only(warning("MADV_ACCESS_MANY failed."));
2499   }
2500 }
2501 
2502 // Get the number of the locality groups.
2503 size_t os::numa_get_groups_num() {
2504   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2505   return n != -1 ? n : 1;
2506 }
2507 
2508 // Get a list of leaf locality groups. A leaf lgroup is group that
2509 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2510 // board. An LWP is assigned to one of these groups upon creation.
2511 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2512   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2513     ids[0] = 0;
2514     return 1;
2515   }
2516   int result_size = 0, top = 1, bottom = 0, cur = 0;
2517   for (int k = 0; k < size; k++) {
2518     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2519                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2520     if (r == -1) {
2521       ids[0] = 0;
2522       return 1;
2523     }
2524     if (!r) {
2525       // That's a leaf node.
2526       assert(bottom <= cur, "Sanity check");
2527       // Check if the node has memory
2528       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2529                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2530         ids[bottom++] = ids[cur];
2531       }
2532     }
2533     top += r;
2534     cur++;
2535   }
2536   if (bottom == 0) {
2537     // Handle a situation, when the OS reports no memory available.
2538     // Assume UMA architecture.
2539     ids[0] = 0;
2540     return 1;
2541   }
2542   return bottom;
2543 }
2544 
2545 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2546 bool os::numa_topology_changed() {
2547   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2548   if (is_stale != -1 && is_stale) {
2549     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2550     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2551     assert(c != 0, "Failure to initialize LGRP API");
2552     Solaris::set_lgrp_cookie(c);
2553     return true;
2554   }
2555   return false;
2556 }
2557 
2558 // Get the group id of the current LWP.
2559 int os::numa_get_group_id() {
2560   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2561   if (lgrp_id == -1) {
2562     return 0;
2563   }
2564   const int size = os::numa_get_groups_num();
2565   int *ids = (int*)alloca(size * sizeof(int));
2566 
2567   // Get the ids of all lgroups with memory; r is the count.
2568   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2569                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2570   if (r <= 0) {
2571     return 0;
2572   }
2573   return ids[os::random() % r];
2574 }
2575 
2576 // Request information about the page.
2577 bool os::get_page_info(char *start, page_info* info) {
2578   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2579   uint64_t addr = (uintptr_t)start;
2580   uint64_t outdata[2];
2581   uint_t validity = 0;
2582 
2583   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2584     return false;
2585   }
2586 
2587   info->size = 0;
2588   info->lgrp_id = -1;
2589 
2590   if ((validity & 1) != 0) {
2591     if ((validity & 2) != 0) {
2592       info->lgrp_id = outdata[0];
2593     }
2594     if ((validity & 4) != 0) {
2595       info->size = outdata[1];
2596     }
2597     return true;
2598   }
2599   return false;
2600 }
2601 
2602 // Scan the pages from start to end until a page different than
2603 // the one described in the info parameter is encountered.
2604 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2605                      page_info* page_found) {
2606   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2607   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2608   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2609   uint_t validity[MAX_MEMINFO_CNT];
2610 
2611   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2612   uint64_t p = (uint64_t)start;
2613   while (p < (uint64_t)end) {
2614     addrs[0] = p;
2615     size_t addrs_count = 1;
2616     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2617       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2618       addrs_count++;
2619     }
2620 
2621     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2622       return NULL;
2623     }
2624 
2625     size_t i = 0;
2626     for (; i < addrs_count; i++) {
2627       if ((validity[i] & 1) != 0) {
2628         if ((validity[i] & 4) != 0) {
2629           if (outdata[types * i + 1] != page_expected->size) {
2630             break;
2631           }
2632         } else if (page_expected->size != 0) {
2633           break;
2634         }
2635 
2636         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2637           if (outdata[types * i] != page_expected->lgrp_id) {
2638             break;
2639           }
2640         }
2641       } else {
2642         return NULL;
2643       }
2644     }
2645 
2646     if (i < addrs_count) {
2647       if ((validity[i] & 2) != 0) {
2648         page_found->lgrp_id = outdata[types * i];
2649       } else {
2650         page_found->lgrp_id = -1;
2651       }
2652       if ((validity[i] & 4) != 0) {
2653         page_found->size = outdata[types * i + 1];
2654       } else {
2655         page_found->size = 0;
2656       }
2657       return (char*)addrs[i];
2658     }
2659 
2660     p = addrs[addrs_count - 1] + page_size;
2661   }
2662   return end;
2663 }
2664 
2665 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2666   size_t size = bytes;
2667   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2668   // uncommitted page. Otherwise, the read/write might succeed if we
2669   // have enough swap space to back the physical page.
2670   return
2671     NULL != Solaris::mmap_chunk(addr, size,
2672                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2673                                 PROT_NONE);
2674 }
2675 
2676 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2677   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2678 
2679   if (b == MAP_FAILED) {
2680     return NULL;
2681   }
2682   return b;
2683 }
2684 
2685 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2686                              size_t alignment_hint, bool fixed) {
2687   char* addr = requested_addr;
2688   int flags = MAP_PRIVATE | MAP_NORESERVE;
2689 
2690   assert(!(fixed && (alignment_hint > 0)),
2691          "alignment hint meaningless with fixed mmap");
2692 
2693   if (fixed) {
2694     flags |= MAP_FIXED;
2695   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2696     flags |= MAP_ALIGN;
2697     addr = (char*) alignment_hint;
2698   }
2699 
2700   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2701   // uncommitted page. Otherwise, the read/write might succeed if we
2702   // have enough swap space to back the physical page.
2703   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2704 }
2705 
2706 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2707                             size_t alignment_hint) {
2708   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2709                                   (requested_addr != NULL));
2710 
2711   guarantee(requested_addr == NULL || requested_addr == addr,
2712             "OS failed to return requested mmap address.");
2713   return addr;
2714 }
2715 
2716 // Reserve memory at an arbitrary address, only if that area is
2717 // available (and not reserved for something else).
2718 
2719 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2720   const int max_tries = 10;
2721   char* base[max_tries];
2722   size_t size[max_tries];
2723 
2724   // Solaris adds a gap between mmap'ed regions.  The size of the gap
2725   // is dependent on the requested size and the MMU.  Our initial gap
2726   // value here is just a guess and will be corrected later.
2727   bool had_top_overlap = false;
2728   bool have_adjusted_gap = false;
2729   size_t gap = 0x400000;
2730 
2731   // Assert only that the size is a multiple of the page size, since
2732   // that's all that mmap requires, and since that's all we really know
2733   // about at this low abstraction level.  If we need higher alignment,
2734   // we can either pass an alignment to this method or verify alignment
2735   // in one of the methods further up the call chain.  See bug 5044738.
2736   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2737 
2738   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2739   // Give it a try, if the kernel honors the hint we can return immediately.
2740   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2741 
2742   volatile int err = errno;
2743   if (addr == requested_addr) {
2744     return addr;
2745   } else if (addr != NULL) {
2746     pd_unmap_memory(addr, bytes);
2747   }
2748 
2749   if (log_is_enabled(Warning, os)) {
2750     char buf[256];
2751     buf[0] = '\0';
2752     if (addr == NULL) {
2753       jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2754     }
2755     log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2756             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2757             "%s", bytes, requested_addr, addr, buf);
2758   }
2759 
2760   // Address hint method didn't work.  Fall back to the old method.
2761   // In theory, once SNV becomes our oldest supported platform, this
2762   // code will no longer be needed.
2763   //
2764   // Repeatedly allocate blocks until the block is allocated at the
2765   // right spot. Give up after max_tries.
2766   int i;
2767   for (i = 0; i < max_tries; ++i) {
2768     base[i] = reserve_memory(bytes);
2769 
2770     if (base[i] != NULL) {
2771       // Is this the block we wanted?
2772       if (base[i] == requested_addr) {
2773         size[i] = bytes;
2774         break;
2775       }
2776 
2777       // check that the gap value is right
2778       if (had_top_overlap && !have_adjusted_gap) {
2779         size_t actual_gap = base[i-1] - base[i] - bytes;
2780         if (gap != actual_gap) {
2781           // adjust the gap value and retry the last 2 allocations
2782           assert(i > 0, "gap adjustment code problem");
2783           have_adjusted_gap = true;  // adjust the gap only once, just in case
2784           gap = actual_gap;
2785           log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2786           unmap_memory(base[i], bytes);
2787           unmap_memory(base[i-1], size[i-1]);
2788           i-=2;
2789           continue;
2790         }
2791       }
2792 
2793       // Does this overlap the block we wanted? Give back the overlapped
2794       // parts and try again.
2795       //
2796       // There is still a bug in this code: if top_overlap == bytes,
2797       // the overlap is offset from requested region by the value of gap.
2798       // In this case giving back the overlapped part will not work,
2799       // because we'll give back the entire block at base[i] and
2800       // therefore the subsequent allocation will not generate a new gap.
2801       // This could be fixed with a new algorithm that used larger
2802       // or variable size chunks to find the requested region -
2803       // but such a change would introduce additional complications.
2804       // It's rare enough that the planets align for this bug,
2805       // so we'll just wait for a fix for 6204603/5003415 which
2806       // will provide a mmap flag to allow us to avoid this business.
2807 
2808       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2809       if (top_overlap >= 0 && top_overlap < bytes) {
2810         had_top_overlap = true;
2811         unmap_memory(base[i], top_overlap);
2812         base[i] += top_overlap;
2813         size[i] = bytes - top_overlap;
2814       } else {
2815         size_t bottom_overlap = base[i] + bytes - requested_addr;
2816         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2817           if (bottom_overlap == 0) {
2818             log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2819           }
2820           unmap_memory(requested_addr, bottom_overlap);
2821           size[i] = bytes - bottom_overlap;
2822         } else {
2823           size[i] = bytes;
2824         }
2825       }
2826     }
2827   }
2828 
2829   // Give back the unused reserved pieces.
2830 
2831   for (int j = 0; j < i; ++j) {
2832     if (base[j] != NULL) {
2833       unmap_memory(base[j], size[j]);
2834     }
2835   }
2836 
2837   return (i < max_tries) ? requested_addr : NULL;
2838 }
2839 
2840 bool os::pd_release_memory(char* addr, size_t bytes) {
2841   size_t size = bytes;
2842   return munmap(addr, size) == 0;
2843 }
2844 
2845 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2846   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2847          "addr must be page aligned");
2848   int retVal = mprotect(addr, bytes, prot);
2849   return retVal == 0;
2850 }
2851 
2852 // Protect memory (Used to pass readonly pages through
2853 // JNI GetArray<type>Elements with empty arrays.)
2854 // Also, used for serialization page and for compressed oops null pointer
2855 // checking.
2856 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2857                         bool is_committed) {
2858   unsigned int p = 0;
2859   switch (prot) {
2860   case MEM_PROT_NONE: p = PROT_NONE; break;
2861   case MEM_PROT_READ: p = PROT_READ; break;
2862   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2863   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2864   default:
2865     ShouldNotReachHere();
2866   }
2867   // is_committed is unused.
2868   return solaris_mprotect(addr, bytes, p);
2869 }
2870 
2871 // guard_memory and unguard_memory only happens within stack guard pages.
2872 // Since ISM pertains only to the heap, guard and unguard memory should not
2873 /// happen with an ISM region.
2874 bool os::guard_memory(char* addr, size_t bytes) {
2875   return solaris_mprotect(addr, bytes, PROT_NONE);
2876 }
2877 
2878 bool os::unguard_memory(char* addr, size_t bytes) {
2879   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2880 }
2881 
2882 // Large page support
2883 static size_t _large_page_size = 0;
2884 
2885 // Insertion sort for small arrays (descending order).
2886 static void insertion_sort_descending(size_t* array, int len) {
2887   for (int i = 0; i < len; i++) {
2888     size_t val = array[i];
2889     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2890       size_t tmp = array[key];
2891       array[key] = array[key - 1];
2892       array[key - 1] = tmp;
2893     }
2894   }
2895 }
2896 
2897 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2898   const unsigned int usable_count = VM_Version::page_size_count();
2899   if (usable_count == 1) {
2900     return false;
2901   }
2902 
2903   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2904   // build platform, getpagesizes() (without the '2') can be called directly.
2905   typedef int (*gps_t)(size_t[], int);
2906   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2907   if (gps_func == NULL) {
2908     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2909     if (gps_func == NULL) {
2910       if (warn) {
2911         warning("MPSS is not supported by the operating system.");
2912       }
2913       return false;
2914     }
2915   }
2916 
2917   // Fill the array of page sizes.
2918   int n = (*gps_func)(_page_sizes, page_sizes_max);
2919   assert(n > 0, "Solaris bug?");
2920 
2921   if (n == page_sizes_max) {
2922     // Add a sentinel value (necessary only if the array was completely filled
2923     // since it is static (zeroed at initialization)).
2924     _page_sizes[--n] = 0;
2925     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2926   }
2927   assert(_page_sizes[n] == 0, "missing sentinel");
2928   trace_page_sizes("available page sizes", _page_sizes, n);
2929 
2930   if (n == 1) return false;     // Only one page size available.
2931 
2932   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2933   // select up to usable_count elements.  First sort the array, find the first
2934   // acceptable value, then copy the usable sizes to the top of the array and
2935   // trim the rest.  Make sure to include the default page size :-).
2936   //
2937   // A better policy could get rid of the 4M limit by taking the sizes of the
2938   // important VM memory regions (java heap and possibly the code cache) into
2939   // account.
2940   insertion_sort_descending(_page_sizes, n);
2941   const size_t size_limit =
2942     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2943   int beg;
2944   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2945   const int end = MIN2((int)usable_count, n) - 1;
2946   for (int cur = 0; cur < end; ++cur, ++beg) {
2947     _page_sizes[cur] = _page_sizes[beg];
2948   }
2949   _page_sizes[end] = vm_page_size();
2950   _page_sizes[end + 1] = 0;
2951 
2952   if (_page_sizes[end] > _page_sizes[end - 1]) {
2953     // Default page size is not the smallest; sort again.
2954     insertion_sort_descending(_page_sizes, end + 1);
2955   }
2956   *page_size = _page_sizes[0];
2957 
2958   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2959   return true;
2960 }
2961 
2962 void os::large_page_init() {
2963   if (UseLargePages) {
2964     // print a warning if any large page related flag is specified on command line
2965     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2966                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2967 
2968     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2969   }
2970 }
2971 
2972 bool os::Solaris::is_valid_page_size(size_t bytes) {
2973   for (int i = 0; _page_sizes[i] != 0; i++) {
2974     if (_page_sizes[i] == bytes) {
2975       return true;
2976     }
2977   }
2978   return false;
2979 }
2980 
2981 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2982   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2983   assert(is_ptr_aligned((void*) start, align),
2984          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2985   assert(is_size_aligned(bytes, align),
2986          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2987 
2988   // Signal to OS that we want large pages for addresses
2989   // from addr, addr + bytes
2990   struct memcntl_mha mpss_struct;
2991   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2992   mpss_struct.mha_pagesize = align;
2993   mpss_struct.mha_flags = 0;
2994   // Upon successful completion, memcntl() returns 0
2995   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2996     debug_only(warning("Attempt to use MPSS failed."));
2997     return false;
2998   }
2999   return true;
3000 }
3001 
3002 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
3003   fatal("os::reserve_memory_special should not be called on Solaris.");
3004   return NULL;
3005 }
3006 
3007 bool os::release_memory_special(char* base, size_t bytes) {
3008   fatal("os::release_memory_special should not be called on Solaris.");
3009   return false;
3010 }
3011 
3012 size_t os::large_page_size() {
3013   return _large_page_size;
3014 }
3015 
3016 // MPSS allows application to commit large page memory on demand; with ISM
3017 // the entire memory region must be allocated as shared memory.
3018 bool os::can_commit_large_page_memory() {
3019   return true;
3020 }
3021 
3022 bool os::can_execute_large_page_memory() {
3023   return true;
3024 }
3025 
3026 // Read calls from inside the vm need to perform state transitions
3027 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3028   size_t res;
3029   JavaThread* thread = (JavaThread*)Thread::current();
3030   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3031   ThreadBlockInVM tbiv(thread);
3032   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3033   return res;
3034 }
3035 
3036 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3037   size_t res;
3038   JavaThread* thread = (JavaThread*)Thread::current();
3039   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3040   ThreadBlockInVM tbiv(thread);
3041   RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
3042   return res;
3043 }
3044 
3045 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3046   size_t res;
3047   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3048          "Assumed _thread_in_native");
3049   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3050   return res;
3051 }
3052 
3053 void os::naked_short_sleep(jlong ms) {
3054   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3055 
3056   // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3057   // Solaris requires -lrt for this.
3058   usleep((ms * 1000));
3059 
3060   return;
3061 }
3062 
3063 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3064 void os::infinite_sleep() {
3065   while (true) {    // sleep forever ...
3066     ::sleep(100);   // ... 100 seconds at a time
3067   }
3068 }
3069 
3070 // Used to convert frequent JVM_Yield() to nops
3071 bool os::dont_yield() {
3072   if (DontYieldALot) {
3073     static hrtime_t last_time = 0;
3074     hrtime_t diff = getTimeNanos() - last_time;
3075 
3076     if (diff < DontYieldALotInterval * 1000000) {
3077       return true;
3078     }
3079 
3080     last_time += diff;
3081 
3082     return false;
3083   } else {
3084     return false;
3085   }
3086 }
3087 
3088 // Note that yield semantics are defined by the scheduling class to which
3089 // the thread currently belongs.  Typically, yield will _not yield to
3090 // other equal or higher priority threads that reside on the dispatch queues
3091 // of other CPUs.
3092 
3093 void os::naked_yield() {
3094   thr_yield();
3095 }
3096 
3097 // Interface for setting lwp priorities.  If we are using T2 libthread,
3098 // which forces the use of BoundThreads or we manually set UseBoundThreads,
3099 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
3100 // function is meaningless in this mode so we must adjust the real lwp's priority
3101 // The routines below implement the getting and setting of lwp priorities.
3102 //
3103 // Note: T2 is now the only supported libthread. UseBoundThreads flag is
3104 //       being deprecated and all threads are now BoundThreads
3105 //
3106 // Note: There are three priority scales used on Solaris.  Java priotities
3107 //       which range from 1 to 10, libthread "thr_setprio" scale which range
3108 //       from 0 to 127, and the current scheduling class of the process we
3109 //       are running in.  This is typically from -60 to +60.
3110 //       The setting of the lwp priorities in done after a call to thr_setprio
3111 //       so Java priorities are mapped to libthread priorities and we map from
3112 //       the latter to lwp priorities.  We don't keep priorities stored in
3113 //       Java priorities since some of our worker threads want to set priorities
3114 //       higher than all Java threads.
3115 //
3116 // For related information:
3117 // (1)  man -s 2 priocntl
3118 // (2)  man -s 4 priocntl
3119 // (3)  man dispadmin
3120 // =    librt.so
3121 // =    libthread/common/rtsched.c - thrp_setlwpprio().
3122 // =    ps -cL <pid> ... to validate priority.
3123 // =    sched_get_priority_min and _max
3124 //              pthread_create
3125 //              sched_setparam
3126 //              pthread_setschedparam
3127 //
3128 // Assumptions:
3129 // +    We assume that all threads in the process belong to the same
3130 //              scheduling class.   IE. an homogenous process.
3131 // +    Must be root or in IA group to change change "interactive" attribute.
3132 //              Priocntl() will fail silently.  The only indication of failure is when
3133 //              we read-back the value and notice that it hasn't changed.
3134 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
3135 // +    For RT, change timeslice as well.  Invariant:
3136 //              constant "priority integral"
3137 //              Konst == TimeSlice * (60-Priority)
3138 //              Given a priority, compute appropriate timeslice.
3139 // +    Higher numerical values have higher priority.
3140 
3141 // sched class attributes
3142 typedef struct {
3143   int   schedPolicy;              // classID
3144   int   maxPrio;
3145   int   minPrio;
3146 } SchedInfo;
3147 
3148 
3149 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3150 
3151 #ifdef ASSERT
3152 static int  ReadBackValidate = 1;
3153 #endif
3154 static int  myClass     = 0;
3155 static int  myMin       = 0;
3156 static int  myMax       = 0;
3157 static int  myCur       = 0;
3158 static bool priocntl_enable = false;
3159 
3160 static const int criticalPrio = FXCriticalPriority;
3161 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3162 
3163 
3164 // lwp_priocntl_init
3165 //
3166 // Try to determine the priority scale for our process.
3167 //
3168 // Return errno or 0 if OK.
3169 //
3170 static int lwp_priocntl_init() {
3171   int rslt;
3172   pcinfo_t ClassInfo;
3173   pcparms_t ParmInfo;
3174   int i;
3175 
3176   if (!UseThreadPriorities) return 0;
3177 
3178   // If ThreadPriorityPolicy is 1, switch tables
3179   if (ThreadPriorityPolicy == 1) {
3180     for (i = 0; i < CriticalPriority+1; i++)
3181       os::java_to_os_priority[i] = prio_policy1[i];
3182   }
3183   if (UseCriticalJavaThreadPriority) {
3184     // MaxPriority always maps to the FX scheduling class and criticalPrio.
3185     // See set_native_priority() and set_lwp_class_and_priority().
3186     // Save original MaxPriority mapping in case attempt to
3187     // use critical priority fails.
3188     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3189     // Set negative to distinguish from other priorities
3190     os::java_to_os_priority[MaxPriority] = -criticalPrio;
3191   }
3192 
3193   // Get IDs for a set of well-known scheduling classes.
3194   // TODO-FIXME: GETCLINFO returns the current # of classes in the
3195   // the system.  We should have a loop that iterates over the
3196   // classID values, which are known to be "small" integers.
3197 
3198   strcpy(ClassInfo.pc_clname, "TS");
3199   ClassInfo.pc_cid = -1;
3200   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3201   if (rslt < 0) return errno;
3202   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3203   tsLimits.schedPolicy = ClassInfo.pc_cid;
3204   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3205   tsLimits.minPrio = -tsLimits.maxPrio;
3206 
3207   strcpy(ClassInfo.pc_clname, "IA");
3208   ClassInfo.pc_cid = -1;
3209   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3210   if (rslt < 0) return errno;
3211   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3212   iaLimits.schedPolicy = ClassInfo.pc_cid;
3213   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3214   iaLimits.minPrio = -iaLimits.maxPrio;
3215 
3216   strcpy(ClassInfo.pc_clname, "RT");
3217   ClassInfo.pc_cid = -1;
3218   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3219   if (rslt < 0) return errno;
3220   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3221   rtLimits.schedPolicy = ClassInfo.pc_cid;
3222   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3223   rtLimits.minPrio = 0;
3224 
3225   strcpy(ClassInfo.pc_clname, "FX");
3226   ClassInfo.pc_cid = -1;
3227   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3228   if (rslt < 0) return errno;
3229   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3230   fxLimits.schedPolicy = ClassInfo.pc_cid;
3231   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3232   fxLimits.minPrio = 0;
3233 
3234   // Query our "current" scheduling class.
3235   // This will normally be IA, TS or, rarely, FX or RT.
3236   memset(&ParmInfo, 0, sizeof(ParmInfo));
3237   ParmInfo.pc_cid = PC_CLNULL;
3238   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3239   if (rslt < 0) return errno;
3240   myClass = ParmInfo.pc_cid;
3241 
3242   // We now know our scheduling classId, get specific information
3243   // about the class.
3244   ClassInfo.pc_cid = myClass;
3245   ClassInfo.pc_clname[0] = 0;
3246   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3247   if (rslt < 0) return errno;
3248 
3249   if (ThreadPriorityVerbose) {
3250     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3251   }
3252 
3253   memset(&ParmInfo, 0, sizeof(pcparms_t));
3254   ParmInfo.pc_cid = PC_CLNULL;
3255   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3256   if (rslt < 0) return errno;
3257 
3258   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3259     myMin = rtLimits.minPrio;
3260     myMax = rtLimits.maxPrio;
3261   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3262     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3263     myMin = iaLimits.minPrio;
3264     myMax = iaLimits.maxPrio;
3265     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3266   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3267     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3268     myMin = tsLimits.minPrio;
3269     myMax = tsLimits.maxPrio;
3270     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3271   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3272     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3273     myMin = fxLimits.minPrio;
3274     myMax = fxLimits.maxPrio;
3275     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3276   } else {
3277     // No clue - punt
3278     if (ThreadPriorityVerbose) {
3279       tty->print_cr("Unknown scheduling class: %s ... \n",
3280                     ClassInfo.pc_clname);
3281     }
3282     return EINVAL;      // no clue, punt
3283   }
3284 
3285   if (ThreadPriorityVerbose) {
3286     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3287   }
3288 
3289   priocntl_enable = true;  // Enable changing priorities
3290   return 0;
3291 }
3292 
3293 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3294 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3295 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3296 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3297 
3298 
3299 // scale_to_lwp_priority
3300 //
3301 // Convert from the libthread "thr_setprio" scale to our current
3302 // lwp scheduling class scale.
3303 //
3304 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3305   int v;
3306 
3307   if (x == 127) return rMax;            // avoid round-down
3308   v = (((x*(rMax-rMin)))/128)+rMin;
3309   return v;
3310 }
3311 
3312 
3313 // set_lwp_class_and_priority
3314 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3315                                int newPrio, int new_class, bool scale) {
3316   int rslt;
3317   int Actual, Expected, prv;
3318   pcparms_t ParmInfo;                   // for GET-SET
3319 #ifdef ASSERT
3320   pcparms_t ReadBack;                   // for readback
3321 #endif
3322 
3323   // Set priority via PC_GETPARMS, update, PC_SETPARMS
3324   // Query current values.
3325   // TODO: accelerate this by eliminating the PC_GETPARMS call.
3326   // Cache "pcparms_t" in global ParmCache.
3327   // TODO: elide set-to-same-value
3328 
3329   // If something went wrong on init, don't change priorities.
3330   if (!priocntl_enable) {
3331     if (ThreadPriorityVerbose) {
3332       tty->print_cr("Trying to set priority but init failed, ignoring");
3333     }
3334     return EINVAL;
3335   }
3336 
3337   // If lwp hasn't started yet, just return
3338   // the _start routine will call us again.
3339   if (lwpid <= 0) {
3340     if (ThreadPriorityVerbose) {
3341       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3342                     INTPTR_FORMAT " to %d, lwpid not set",
3343                     ThreadID, newPrio);
3344     }
3345     return 0;
3346   }
3347 
3348   if (ThreadPriorityVerbose) {
3349     tty->print_cr ("set_lwp_class_and_priority("
3350                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3351                    ThreadID, lwpid, newPrio);
3352   }
3353 
3354   memset(&ParmInfo, 0, sizeof(pcparms_t));
3355   ParmInfo.pc_cid = PC_CLNULL;
3356   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3357   if (rslt < 0) return errno;
3358 
3359   int cur_class = ParmInfo.pc_cid;
3360   ParmInfo.pc_cid = (id_t)new_class;
3361 
3362   if (new_class == rtLimits.schedPolicy) {
3363     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3364     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3365                                                        rtLimits.maxPrio, newPrio)
3366                                : newPrio;
3367     rtInfo->rt_tqsecs  = RT_NOCHANGE;
3368     rtInfo->rt_tqnsecs = RT_NOCHANGE;
3369     if (ThreadPriorityVerbose) {
3370       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3371     }
3372   } else if (new_class == iaLimits.schedPolicy) {
3373     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3374     int maxClamped     = MIN2(iaLimits.maxPrio,
3375                               cur_class == new_class
3376                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3377     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3378                                                        maxClamped, newPrio)
3379                                : newPrio;
3380     iaInfo->ia_uprilim = cur_class == new_class
3381                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3382     iaInfo->ia_mode    = IA_NOCHANGE;
3383     if (ThreadPriorityVerbose) {
3384       tty->print_cr("IA: [%d...%d] %d->%d\n",
3385                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3386     }
3387   } else if (new_class == tsLimits.schedPolicy) {
3388     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3389     int maxClamped     = MIN2(tsLimits.maxPrio,
3390                               cur_class == new_class
3391                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3392     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3393                                                        maxClamped, newPrio)
3394                                : newPrio;
3395     tsInfo->ts_uprilim = cur_class == new_class
3396                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3397     if (ThreadPriorityVerbose) {
3398       tty->print_cr("TS: [%d...%d] %d->%d\n",
3399                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3400     }
3401   } else if (new_class == fxLimits.schedPolicy) {
3402     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3403     int maxClamped     = MIN2(fxLimits.maxPrio,
3404                               cur_class == new_class
3405                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3406     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3407                                                        maxClamped, newPrio)
3408                                : newPrio;
3409     fxInfo->fx_uprilim = cur_class == new_class
3410                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3411     fxInfo->fx_tqsecs  = FX_NOCHANGE;
3412     fxInfo->fx_tqnsecs = FX_NOCHANGE;
3413     if (ThreadPriorityVerbose) {
3414       tty->print_cr("FX: [%d...%d] %d->%d\n",
3415                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3416     }
3417   } else {
3418     if (ThreadPriorityVerbose) {
3419       tty->print_cr("Unknown new scheduling class %d\n", new_class);
3420     }
3421     return EINVAL;    // no clue, punt
3422   }
3423 
3424   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3425   if (ThreadPriorityVerbose && rslt) {
3426     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3427   }
3428   if (rslt < 0) return errno;
3429 
3430 #ifdef ASSERT
3431   // Sanity check: read back what we just attempted to set.
3432   // In theory it could have changed in the interim ...
3433   //
3434   // The priocntl system call is tricky.
3435   // Sometimes it'll validate the priority value argument and
3436   // return EINVAL if unhappy.  At other times it fails silently.
3437   // Readbacks are prudent.
3438 
3439   if (!ReadBackValidate) return 0;
3440 
3441   memset(&ReadBack, 0, sizeof(pcparms_t));
3442   ReadBack.pc_cid = PC_CLNULL;
3443   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3444   assert(rslt >= 0, "priocntl failed");
3445   Actual = Expected = 0xBAD;
3446   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3447   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3448     Actual   = RTPRI(ReadBack)->rt_pri;
3449     Expected = RTPRI(ParmInfo)->rt_pri;
3450   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3451     Actual   = IAPRI(ReadBack)->ia_upri;
3452     Expected = IAPRI(ParmInfo)->ia_upri;
3453   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3454     Actual   = TSPRI(ReadBack)->ts_upri;
3455     Expected = TSPRI(ParmInfo)->ts_upri;
3456   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3457     Actual   = FXPRI(ReadBack)->fx_upri;
3458     Expected = FXPRI(ParmInfo)->fx_upri;
3459   } else {
3460     if (ThreadPriorityVerbose) {
3461       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3462                     ParmInfo.pc_cid);
3463     }
3464   }
3465 
3466   if (Actual != Expected) {
3467     if (ThreadPriorityVerbose) {
3468       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3469                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3470     }
3471   }
3472 #endif
3473 
3474   return 0;
3475 }
3476 
3477 // Solaris only gives access to 128 real priorities at a time,
3478 // so we expand Java's ten to fill this range.  This would be better
3479 // if we dynamically adjusted relative priorities.
3480 //
3481 // The ThreadPriorityPolicy option allows us to select 2 different
3482 // priority scales.
3483 //
3484 // ThreadPriorityPolicy=0
3485 // Since the Solaris' default priority is MaximumPriority, we do not
3486 // set a priority lower than Max unless a priority lower than
3487 // NormPriority is requested.
3488 //
3489 // ThreadPriorityPolicy=1
3490 // This mode causes the priority table to get filled with
3491 // linear values.  NormPriority get's mapped to 50% of the
3492 // Maximum priority an so on.  This will cause VM threads
3493 // to get unfair treatment against other Solaris processes
3494 // which do not explicitly alter their thread priorities.
3495 
3496 int os::java_to_os_priority[CriticalPriority + 1] = {
3497   -99999,         // 0 Entry should never be used
3498 
3499   0,              // 1 MinPriority
3500   32,             // 2
3501   64,             // 3
3502 
3503   96,             // 4
3504   127,            // 5 NormPriority
3505   127,            // 6
3506 
3507   127,            // 7
3508   127,            // 8
3509   127,            // 9 NearMaxPriority
3510 
3511   127,            // 10 MaxPriority
3512 
3513   -criticalPrio   // 11 CriticalPriority
3514 };
3515 
3516 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3517   OSThread* osthread = thread->osthread();
3518 
3519   // Save requested priority in case the thread hasn't been started
3520   osthread->set_native_priority(newpri);
3521 
3522   // Check for critical priority request
3523   bool fxcritical = false;
3524   if (newpri == -criticalPrio) {
3525     fxcritical = true;
3526     newpri = criticalPrio;
3527   }
3528 
3529   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3530   if (!UseThreadPriorities) return OS_OK;
3531 
3532   int status = 0;
3533 
3534   if (!fxcritical) {
3535     // Use thr_setprio only if we have a priority that thr_setprio understands
3536     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3537   }
3538 
3539   int lwp_status =
3540           set_lwp_class_and_priority(osthread->thread_id(),
3541                                      osthread->lwp_id(),
3542                                      newpri,
3543                                      fxcritical ? fxLimits.schedPolicy : myClass,
3544                                      !fxcritical);
3545   if (lwp_status != 0 && fxcritical) {
3546     // Try again, this time without changing the scheduling class
3547     newpri = java_MaxPriority_to_os_priority;
3548     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3549                                             osthread->lwp_id(),
3550                                             newpri, myClass, false);
3551   }
3552   status |= lwp_status;
3553   return (status == 0) ? OS_OK : OS_ERR;
3554 }
3555 
3556 
3557 OSReturn os::get_native_priority(const Thread* const thread,
3558                                  int *priority_ptr) {
3559   int p;
3560   if (!UseThreadPriorities) {
3561     *priority_ptr = NormalPriority;
3562     return OS_OK;
3563   }
3564   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3565   if (status != 0) {
3566     return OS_ERR;
3567   }
3568   *priority_ptr = p;
3569   return OS_OK;
3570 }
3571 
3572 
3573 // Hint to the underlying OS that a task switch would not be good.
3574 // Void return because it's a hint and can fail.
3575 void os::hint_no_preempt() {
3576   schedctl_start(schedctl_init());
3577 }
3578 
3579 static void resume_clear_context(OSThread *osthread) {
3580   osthread->set_ucontext(NULL);
3581 }
3582 
3583 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3584   osthread->set_ucontext(context);
3585 }
3586 
3587 static PosixSemaphore sr_semaphore;
3588 
3589 void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3590   // Save and restore errno to avoid confusing native code with EINTR
3591   // after sigsuspend.
3592   int old_errno = errno;
3593 
3594   OSThread* osthread = thread->osthread();
3595   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3596 
3597   os::SuspendResume::State current = osthread->sr.state();
3598   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3599     suspend_save_context(osthread, uc);
3600 
3601     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3602     os::SuspendResume::State state = osthread->sr.suspended();
3603     if (state == os::SuspendResume::SR_SUSPENDED) {
3604       sigset_t suspend_set;  // signals for sigsuspend()
3605 
3606       // get current set of blocked signals and unblock resume signal
3607       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3608       sigdelset(&suspend_set, os::Solaris::SIGasync());
3609 
3610       sr_semaphore.signal();
3611       // wait here until we are resumed
3612       while (1) {
3613         sigsuspend(&suspend_set);
3614 
3615         os::SuspendResume::State result = osthread->sr.running();
3616         if (result == os::SuspendResume::SR_RUNNING) {
3617           sr_semaphore.signal();
3618           break;
3619         }
3620       }
3621 
3622     } else if (state == os::SuspendResume::SR_RUNNING) {
3623       // request was cancelled, continue
3624     } else {
3625       ShouldNotReachHere();
3626     }
3627 
3628     resume_clear_context(osthread);
3629   } else if (current == os::SuspendResume::SR_RUNNING) {
3630     // request was cancelled, continue
3631   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3632     // ignore
3633   } else {
3634     // ignore
3635   }
3636 
3637   errno = old_errno;
3638 }
3639 
3640 void os::print_statistics() {
3641 }
3642 
3643 bool os::message_box(const char* title, const char* message) {
3644   int i;
3645   fdStream err(defaultStream::error_fd());
3646   for (i = 0; i < 78; i++) err.print_raw("=");
3647   err.cr();
3648   err.print_raw_cr(title);
3649   for (i = 0; i < 78; i++) err.print_raw("-");
3650   err.cr();
3651   err.print_raw_cr(message);
3652   for (i = 0; i < 78; i++) err.print_raw("=");
3653   err.cr();
3654 
3655   char buf[16];
3656   // Prevent process from exiting upon "read error" without consuming all CPU
3657   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3658 
3659   return buf[0] == 'y' || buf[0] == 'Y';
3660 }
3661 
3662 static int sr_notify(OSThread* osthread) {
3663   int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3664   assert_status(status == 0, status, "thr_kill");
3665   return status;
3666 }
3667 
3668 // "Randomly" selected value for how long we want to spin
3669 // before bailing out on suspending a thread, also how often
3670 // we send a signal to a thread we want to resume
3671 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3672 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3673 
3674 static bool do_suspend(OSThread* osthread) {
3675   assert(osthread->sr.is_running(), "thread should be running");
3676   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3677 
3678   // mark as suspended and send signal
3679   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3680     // failed to switch, state wasn't running?
3681     ShouldNotReachHere();
3682     return false;
3683   }
3684 
3685   if (sr_notify(osthread) != 0) {
3686     ShouldNotReachHere();
3687   }
3688 
3689   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3690   while (true) {
3691     if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3692       break;
3693     } else {
3694       // timeout
3695       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3696       if (cancelled == os::SuspendResume::SR_RUNNING) {
3697         return false;
3698       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3699         // make sure that we consume the signal on the semaphore as well
3700         sr_semaphore.wait();
3701         break;
3702       } else {
3703         ShouldNotReachHere();
3704         return false;
3705       }
3706     }
3707   }
3708 
3709   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3710   return true;
3711 }
3712 
3713 static void do_resume(OSThread* osthread) {
3714   assert(osthread->sr.is_suspended(), "thread should be suspended");
3715   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3716 
3717   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3718     // failed to switch to WAKEUP_REQUEST
3719     ShouldNotReachHere();
3720     return;
3721   }
3722 
3723   while (true) {
3724     if (sr_notify(osthread) == 0) {
3725       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3726         if (osthread->sr.is_running()) {
3727           return;
3728         }
3729       }
3730     } else {
3731       ShouldNotReachHere();
3732     }
3733   }
3734 
3735   guarantee(osthread->sr.is_running(), "Must be running!");
3736 }
3737 
3738 void os::SuspendedThreadTask::internal_do_task() {
3739   if (do_suspend(_thread->osthread())) {
3740     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3741     do_task(context);
3742     do_resume(_thread->osthread());
3743   }
3744 }
3745 
3746 class PcFetcher : public os::SuspendedThreadTask {
3747  public:
3748   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3749   ExtendedPC result();
3750  protected:
3751   void do_task(const os::SuspendedThreadTaskContext& context);
3752  private:
3753   ExtendedPC _epc;
3754 };
3755 
3756 ExtendedPC PcFetcher::result() {
3757   guarantee(is_done(), "task is not done yet.");
3758   return _epc;
3759 }
3760 
3761 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3762   Thread* thread = context.thread();
3763   OSThread* osthread = thread->osthread();
3764   if (osthread->ucontext() != NULL) {
3765     _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3766   } else {
3767     // NULL context is unexpected, double-check this is the VMThread
3768     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3769   }
3770 }
3771 
3772 // A lightweight implementation that does not suspend the target thread and
3773 // thus returns only a hint. Used for profiling only!
3774 ExtendedPC os::get_thread_pc(Thread* thread) {
3775   // Make sure that it is called by the watcher and the Threads lock is owned.
3776   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3777   // For now, is only used to profile the VM Thread
3778   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3779   PcFetcher fetcher(thread);
3780   fetcher.run();
3781   return fetcher.result();
3782 }
3783 
3784 
3785 // This does not do anything on Solaris. This is basically a hook for being
3786 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3787 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3788                               const methodHandle& method, JavaCallArguments* args,
3789                               Thread* thread) {
3790   f(value, method, args, thread);
3791 }
3792 
3793 // This routine may be used by user applications as a "hook" to catch signals.
3794 // The user-defined signal handler must pass unrecognized signals to this
3795 // routine, and if it returns true (non-zero), then the signal handler must
3796 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3797 // routine will never retun false (zero), but instead will execute a VM panic
3798 // routine kill the process.
3799 //
3800 // If this routine returns false, it is OK to call it again.  This allows
3801 // the user-defined signal handler to perform checks either before or after
3802 // the VM performs its own checks.  Naturally, the user code would be making
3803 // a serious error if it tried to handle an exception (such as a null check
3804 // or breakpoint) that the VM was generating for its own correct operation.
3805 //
3806 // This routine may recognize any of the following kinds of signals:
3807 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3808 // os::Solaris::SIGasync
3809 // It should be consulted by handlers for any of those signals.
3810 //
3811 // The caller of this routine must pass in the three arguments supplied
3812 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3813 // field of the structure passed to sigaction().  This routine assumes that
3814 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3815 //
3816 // Note that the VM will print warnings if it detects conflicting signal
3817 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3818 //
3819 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3820                                                    siginfo_t* siginfo,
3821                                                    void* ucontext,
3822                                                    int abort_if_unrecognized);
3823 
3824 
3825 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3826   int orig_errno = errno;  // Preserve errno value over signal handler.
3827   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3828   errno = orig_errno;
3829 }
3830 
3831 // This boolean allows users to forward their own non-matching signals
3832 // to JVM_handle_solaris_signal, harmlessly.
3833 bool os::Solaris::signal_handlers_are_installed = false;
3834 
3835 // For signal-chaining
3836 bool os::Solaris::libjsig_is_loaded = false;
3837 typedef struct sigaction *(*get_signal_t)(int);
3838 get_signal_t os::Solaris::get_signal_action = NULL;
3839 
3840 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3841   struct sigaction *actp = NULL;
3842 
3843   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3844     // Retrieve the old signal handler from libjsig
3845     actp = (*get_signal_action)(sig);
3846   }
3847   if (actp == NULL) {
3848     // Retrieve the preinstalled signal handler from jvm
3849     actp = get_preinstalled_handler(sig);
3850   }
3851 
3852   return actp;
3853 }
3854 
3855 static bool call_chained_handler(struct sigaction *actp, int sig,
3856                                  siginfo_t *siginfo, void *context) {
3857   // Call the old signal handler
3858   if (actp->sa_handler == SIG_DFL) {
3859     // It's more reasonable to let jvm treat it as an unexpected exception
3860     // instead of taking the default action.
3861     return false;
3862   } else if (actp->sa_handler != SIG_IGN) {
3863     if ((actp->sa_flags & SA_NODEFER) == 0) {
3864       // automaticlly block the signal
3865       sigaddset(&(actp->sa_mask), sig);
3866     }
3867 
3868     sa_handler_t hand;
3869     sa_sigaction_t sa;
3870     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3871     // retrieve the chained handler
3872     if (siginfo_flag_set) {
3873       sa = actp->sa_sigaction;
3874     } else {
3875       hand = actp->sa_handler;
3876     }
3877 
3878     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3879       actp->sa_handler = SIG_DFL;
3880     }
3881 
3882     // try to honor the signal mask
3883     sigset_t oset;
3884     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3885 
3886     // call into the chained handler
3887     if (siginfo_flag_set) {
3888       (*sa)(sig, siginfo, context);
3889     } else {
3890       (*hand)(sig);
3891     }
3892 
3893     // restore the signal mask
3894     pthread_sigmask(SIG_SETMASK, &oset, 0);
3895   }
3896   // Tell jvm's signal handler the signal is taken care of.
3897   return true;
3898 }
3899 
3900 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3901   bool chained = false;
3902   // signal-chaining
3903   if (UseSignalChaining) {
3904     struct sigaction *actp = get_chained_signal_action(sig);
3905     if (actp != NULL) {
3906       chained = call_chained_handler(actp, sig, siginfo, context);
3907     }
3908   }
3909   return chained;
3910 }
3911 
3912 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3913   assert((chainedsigactions != (struct sigaction *)NULL) &&
3914          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3915   if (preinstalled_sigs[sig] != 0) {
3916     return &chainedsigactions[sig];
3917   }
3918   return NULL;
3919 }
3920 
3921 void os::Solaris::save_preinstalled_handler(int sig,
3922                                             struct sigaction& oldAct) {
3923   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3924   assert((chainedsigactions != (struct sigaction *)NULL) &&
3925          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3926   chainedsigactions[sig] = oldAct;
3927   preinstalled_sigs[sig] = 1;
3928 }
3929 
3930 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3931                                      bool oktochain) {
3932   // Check for overwrite.
3933   struct sigaction oldAct;
3934   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3935   void* oldhand =
3936       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3937                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3938   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3939       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3940       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3941     if (AllowUserSignalHandlers || !set_installed) {
3942       // Do not overwrite; user takes responsibility to forward to us.
3943       return;
3944     } else if (UseSignalChaining) {
3945       if (oktochain) {
3946         // save the old handler in jvm
3947         save_preinstalled_handler(sig, oldAct);
3948       } else {
3949         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3950       }
3951       // libjsig also interposes the sigaction() call below and saves the
3952       // old sigaction on it own.
3953     } else {
3954       fatal("Encountered unexpected pre-existing sigaction handler "
3955             "%#lx for signal %d.", (long)oldhand, sig);
3956     }
3957   }
3958 
3959   struct sigaction sigAct;
3960   sigfillset(&(sigAct.sa_mask));
3961   sigAct.sa_handler = SIG_DFL;
3962 
3963   sigAct.sa_sigaction = signalHandler;
3964   // Handle SIGSEGV on alternate signal stack if
3965   // not using stack banging
3966   if (!UseStackBanging && sig == SIGSEGV) {
3967     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3968   } else {
3969     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3970   }
3971   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3972 
3973   sigaction(sig, &sigAct, &oldAct);
3974 
3975   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3976                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3977   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3978 }
3979 
3980 
3981 #define DO_SIGNAL_CHECK(sig)                      \
3982   do {                                            \
3983     if (!sigismember(&check_signal_done, sig)) {  \
3984       os::Solaris::check_signal_handler(sig);     \
3985     }                                             \
3986   } while (0)
3987 
3988 // This method is a periodic task to check for misbehaving JNI applications
3989 // under CheckJNI, we can add any periodic checks here
3990 
3991 void os::run_periodic_checks() {
3992   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3993   // thereby preventing a NULL checks.
3994   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3995 
3996   if (check_signals == false) return;
3997 
3998   // SEGV and BUS if overridden could potentially prevent
3999   // generation of hs*.log in the event of a crash, debugging
4000   // such a case can be very challenging, so we absolutely
4001   // check for the following for a good measure:
4002   DO_SIGNAL_CHECK(SIGSEGV);
4003   DO_SIGNAL_CHECK(SIGILL);
4004   DO_SIGNAL_CHECK(SIGFPE);
4005   DO_SIGNAL_CHECK(SIGBUS);
4006   DO_SIGNAL_CHECK(SIGPIPE);
4007   DO_SIGNAL_CHECK(SIGXFSZ);
4008 
4009   // ReduceSignalUsage allows the user to override these handlers
4010   // see comments at the very top and jvm_solaris.h
4011   if (!ReduceSignalUsage) {
4012     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4013     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4014     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4015     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4016   }
4017 
4018   // See comments above for using JVM1/JVM2
4019   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
4020 
4021 }
4022 
4023 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4024 
4025 static os_sigaction_t os_sigaction = NULL;
4026 
4027 void os::Solaris::check_signal_handler(int sig) {
4028   char buf[O_BUFLEN];
4029   address jvmHandler = NULL;
4030 
4031   struct sigaction act;
4032   if (os_sigaction == NULL) {
4033     // only trust the default sigaction, in case it has been interposed
4034     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4035     if (os_sigaction == NULL) return;
4036   }
4037 
4038   os_sigaction(sig, (struct sigaction*)NULL, &act);
4039 
4040   address thisHandler = (act.sa_flags & SA_SIGINFO)
4041     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4042     : CAST_FROM_FN_PTR(address, act.sa_handler);
4043 
4044 
4045   switch (sig) {
4046   case SIGSEGV:
4047   case SIGBUS:
4048   case SIGFPE:
4049   case SIGPIPE:
4050   case SIGXFSZ:
4051   case SIGILL:
4052     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4053     break;
4054 
4055   case SHUTDOWN1_SIGNAL:
4056   case SHUTDOWN2_SIGNAL:
4057   case SHUTDOWN3_SIGNAL:
4058   case BREAK_SIGNAL:
4059     jvmHandler = (address)user_handler();
4060     break;
4061 
4062   default:
4063     int asynsig = os::Solaris::SIGasync();
4064 
4065     if (sig == asynsig) {
4066       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4067     } else {
4068       return;
4069     }
4070     break;
4071   }
4072 
4073 
4074   if (thisHandler != jvmHandler) {
4075     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4076     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4077     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4078     // No need to check this sig any longer
4079     sigaddset(&check_signal_done, sig);
4080     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4081     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4082       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4083                     exception_name(sig, buf, O_BUFLEN));
4084     }
4085   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4086     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4087     tty->print("expected:");
4088     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
4089     tty->cr();
4090     tty->print("  found:");
4091     os::Posix::print_sa_flags(tty, act.sa_flags);
4092     tty->cr();
4093     // No need to check this sig any longer
4094     sigaddset(&check_signal_done, sig);
4095   }
4096 
4097   // Print all the signal handler state
4098   if (sigismember(&check_signal_done, sig)) {
4099     print_signal_handlers(tty, buf, O_BUFLEN);
4100   }
4101 
4102 }
4103 
4104 void os::Solaris::install_signal_handlers() {
4105   bool libjsigdone = false;
4106   signal_handlers_are_installed = true;
4107 
4108   // signal-chaining
4109   typedef void (*signal_setting_t)();
4110   signal_setting_t begin_signal_setting = NULL;
4111   signal_setting_t end_signal_setting = NULL;
4112   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4113                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4114   if (begin_signal_setting != NULL) {
4115     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4116                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4117     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4118                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4119     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4120                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4121     libjsig_is_loaded = true;
4122     if (os::Solaris::get_libjsig_version != NULL) {
4123       libjsigversion =  (*os::Solaris::get_libjsig_version)();
4124     }
4125     assert(UseSignalChaining, "should enable signal-chaining");
4126   }
4127   if (libjsig_is_loaded) {
4128     // Tell libjsig jvm is setting signal handlers
4129     (*begin_signal_setting)();
4130   }
4131 
4132   set_signal_handler(SIGSEGV, true, true);
4133   set_signal_handler(SIGPIPE, true, true);
4134   set_signal_handler(SIGXFSZ, true, true);
4135   set_signal_handler(SIGBUS, true, true);
4136   set_signal_handler(SIGILL, true, true);
4137   set_signal_handler(SIGFPE, true, true);
4138 
4139 
4140   if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4141     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4142     // can not register overridable signals which might be > 32
4143     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4144       // Tell libjsig jvm has finished setting signal handlers
4145       (*end_signal_setting)();
4146       libjsigdone = true;
4147     }
4148   }
4149 
4150   set_signal_handler(os::Solaris::SIGasync(), true, true);
4151 
4152   if (libjsig_is_loaded && !libjsigdone) {
4153     // Tell libjsig jvm finishes setting signal handlers
4154     (*end_signal_setting)();
4155   }
4156 
4157   // We don't activate signal checker if libjsig is in place, we trust ourselves
4158   // and if UserSignalHandler is installed all bets are off.
4159   // Log that signal checking is off only if -verbose:jni is specified.
4160   if (CheckJNICalls) {
4161     if (libjsig_is_loaded) {
4162       if (PrintJNIResolving) {
4163         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4164       }
4165       check_signals = false;
4166     }
4167     if (AllowUserSignalHandlers) {
4168       if (PrintJNIResolving) {
4169         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4170       }
4171       check_signals = false;
4172     }
4173   }
4174 }
4175 
4176 
4177 void report_error(const char* file_name, int line_no, const char* title,
4178                   const char* format, ...);
4179 
4180 // (Static) wrapper for getisax(2) call.
4181 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4182 
4183 // (Static) wrappers for the liblgrp API
4184 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4185 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4186 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4187 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4188 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4189 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4190 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4191 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4192 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4193 
4194 // (Static) wrapper for meminfo() call.
4195 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4196 
4197 static address resolve_symbol_lazy(const char* name) {
4198   address addr = (address) dlsym(RTLD_DEFAULT, name);
4199   if (addr == NULL) {
4200     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4201     addr = (address) dlsym(RTLD_NEXT, name);
4202   }
4203   return addr;
4204 }
4205 
4206 static address resolve_symbol(const char* name) {
4207   address addr = resolve_symbol_lazy(name);
4208   if (addr == NULL) {
4209     fatal(dlerror());
4210   }
4211   return addr;
4212 }
4213 
4214 void os::Solaris::libthread_init() {
4215   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4216 
4217   lwp_priocntl_init();
4218 
4219   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4220   if (func == NULL) {
4221     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4222     // Guarantee that this VM is running on an new enough OS (5.6 or
4223     // later) that it will have a new enough libthread.so.
4224     guarantee(func != NULL, "libthread.so is too old.");
4225   }
4226 
4227   int size;
4228   void (*handler_info_func)(address *, int *);
4229   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4230   handler_info_func(&handler_start, &size);
4231   handler_end = handler_start + size;
4232 }
4233 
4234 
4235 int_fnP_mutex_tP os::Solaris::_mutex_lock;
4236 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4237 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4238 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4239 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4240 int os::Solaris::_mutex_scope = USYNC_THREAD;
4241 
4242 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4243 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4244 int_fnP_cond_tP os::Solaris::_cond_signal;
4245 int_fnP_cond_tP os::Solaris::_cond_broadcast;
4246 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4247 int_fnP_cond_tP os::Solaris::_cond_destroy;
4248 int os::Solaris::_cond_scope = USYNC_THREAD;
4249 
4250 void os::Solaris::synchronization_init() {
4251   if (UseLWPSynchronization) {
4252     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4253     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4254     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4255     os::Solaris::set_mutex_init(lwp_mutex_init);
4256     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4257     os::Solaris::set_mutex_scope(USYNC_THREAD);
4258 
4259     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4260     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4261     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4262     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4263     os::Solaris::set_cond_init(lwp_cond_init);
4264     os::Solaris::set_cond_destroy(lwp_cond_destroy);
4265     os::Solaris::set_cond_scope(USYNC_THREAD);
4266   } else {
4267     os::Solaris::set_mutex_scope(USYNC_THREAD);
4268     os::Solaris::set_cond_scope(USYNC_THREAD);
4269 
4270     if (UsePthreads) {
4271       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4272       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4273       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4274       os::Solaris::set_mutex_init(pthread_mutex_default_init);
4275       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4276 
4277       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4278       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4279       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4280       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4281       os::Solaris::set_cond_init(pthread_cond_default_init);
4282       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4283     } else {
4284       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4285       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4286       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4287       os::Solaris::set_mutex_init(::mutex_init);
4288       os::Solaris::set_mutex_destroy(::mutex_destroy);
4289 
4290       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4291       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4292       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4293       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4294       os::Solaris::set_cond_init(::cond_init);
4295       os::Solaris::set_cond_destroy(::cond_destroy);
4296     }
4297   }
4298 }
4299 
4300 bool os::Solaris::liblgrp_init() {
4301   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4302   if (handle != NULL) {
4303     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4304     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4305     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4306     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4307     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4308     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4309     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4310     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4311                                                       dlsym(handle, "lgrp_cookie_stale")));
4312 
4313     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4314     set_lgrp_cookie(c);
4315     return true;
4316   }
4317   return false;
4318 }
4319 
4320 void os::Solaris::misc_sym_init() {
4321   address func;
4322 
4323   // getisax
4324   func = resolve_symbol_lazy("getisax");
4325   if (func != NULL) {
4326     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4327   }
4328 
4329   // meminfo
4330   func = resolve_symbol_lazy("meminfo");
4331   if (func != NULL) {
4332     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4333   }
4334 }
4335 
4336 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4337   assert(_getisax != NULL, "_getisax not set");
4338   return _getisax(array, n);
4339 }
4340 
4341 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4342 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4343 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4344 
4345 void init_pset_getloadavg_ptr(void) {
4346   pset_getloadavg_ptr =
4347     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4348   if (pset_getloadavg_ptr == NULL) {
4349     log_warning(os)("pset_getloadavg function not found");
4350   }
4351 }
4352 
4353 int os::Solaris::_dev_zero_fd = -1;
4354 
4355 // this is called _before_ the global arguments have been parsed
4356 void os::init(void) {
4357   _initial_pid = getpid();
4358 
4359   max_hrtime = first_hrtime = gethrtime();
4360 
4361   init_random(1234567);
4362 
4363   page_size = sysconf(_SC_PAGESIZE);
4364   if (page_size == -1) {
4365     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4366   }
4367   init_page_sizes((size_t) page_size);
4368 
4369   Solaris::initialize_system_info();
4370 
4371   // Initialize misc. symbols as soon as possible, so we can use them
4372   // if we need them.
4373   Solaris::misc_sym_init();
4374 
4375   int fd = ::open("/dev/zero", O_RDWR);
4376   if (fd < 0) {
4377     fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4378   } else {
4379     Solaris::set_dev_zero_fd(fd);
4380 
4381     // Close on exec, child won't inherit.
4382     fcntl(fd, F_SETFD, FD_CLOEXEC);
4383   }
4384 
4385   clock_tics_per_sec = CLK_TCK;
4386 
4387   // check if dladdr1() exists; dladdr1 can provide more information than
4388   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4389   // and is available on linker patches for 5.7 and 5.8.
4390   // libdl.so must have been loaded, this call is just an entry lookup
4391   void * hdl = dlopen("libdl.so", RTLD_NOW);
4392   if (hdl) {
4393     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4394   }
4395 
4396   // (Solaris only) this switches to calls that actually do locking.
4397   ThreadCritical::initialize();
4398 
4399   main_thread = thr_self();
4400 
4401   // Constant minimum stack size allowed. It must be at least
4402   // the minimum of what the OS supports (thr_min_stack()), and
4403   // enough to allow the thread to get to user bytecode execution.
4404   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4405 
4406   // dynamic lookup of functions that may not be available in our lowest
4407   // supported Solaris release
4408   void * handle = dlopen("libc.so.1", RTLD_LAZY);
4409   if (handle != NULL) {
4410     Solaris::_pthread_setname_np =  // from 11.3
4411         (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4412   }
4413 }
4414 
4415 // To install functions for atexit system call
4416 extern "C" {
4417   static void perfMemory_exit_helper() {
4418     perfMemory_exit();
4419   }
4420 }
4421 
4422 // this is called _after_ the global arguments have been parsed
4423 jint os::init_2(void) {
4424   // try to enable extended file IO ASAP, see 6431278
4425   os::Solaris::try_enable_extended_io();
4426 
4427   // Allocate a single page and mark it as readable for safepoint polling.  Also
4428   // use this first mmap call to check support for MAP_ALIGN.
4429   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4430                                                       page_size,
4431                                                       MAP_PRIVATE | MAP_ALIGN,
4432                                                       PROT_READ);
4433   if (polling_page == NULL) {
4434     has_map_align = false;
4435     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4436                                                 PROT_READ);
4437   }
4438 
4439   os::set_polling_page(polling_page);
4440   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4441 
4442   if (!UseMembar) {
4443     address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4444     guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4445     os::set_memory_serialize_page(mem_serialize_page);
4446     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4447   }
4448 
4449   // Check minimum allowable stack size for thread creation and to initialize
4450   // the java system classes, including StackOverflowError - depends on page
4451   // size.  Add two 4K pages for compiler2 recursion in main thread.
4452   // Add in 4*BytesPerWord 4K pages to account for VM stack during
4453   // class initialization depending on 32 or 64 bit VM.
4454   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4455                                         JavaThread::stack_guard_zone_size() +
4456                                         JavaThread::stack_shadow_zone_size() +
4457                                         (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
4458 
4459   os::Solaris::min_stack_allowed = align_size_up(os::Solaris::min_stack_allowed, os::vm_page_size());
4460 
4461   size_t threadStackSizeInBytes = ThreadStackSize * K;
4462   if (threadStackSizeInBytes != 0 &&
4463       threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4464     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4465                   os::Solaris::min_stack_allowed/K);
4466     return JNI_ERR;
4467   }
4468 
4469   // For 64kbps there will be a 64kb page size, which makes
4470   // the usable default stack size quite a bit less.  Increase the
4471   // stack for 64kb (or any > than 8kb) pages, this increases
4472   // virtual memory fragmentation (since we're not creating the
4473   // stack on a power of 2 boundary.  The real fix for this
4474   // should be to fix the guard page mechanism.
4475 
4476   if (vm_page_size() > 8*K) {
4477     threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4478        ? threadStackSizeInBytes +
4479          JavaThread::stack_red_zone_size() +
4480          JavaThread::stack_yellow_zone_size()
4481        : 0;
4482     ThreadStackSize = threadStackSizeInBytes/K;
4483   }
4484 
4485   // Make the stack size a multiple of the page size so that
4486   // the yellow/red zones can be guarded.
4487   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4488                                                 vm_page_size()));
4489 
4490   Solaris::libthread_init();
4491 
4492   if (UseNUMA) {
4493     if (!Solaris::liblgrp_init()) {
4494       UseNUMA = false;
4495     } else {
4496       size_t lgrp_limit = os::numa_get_groups_num();
4497       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4498       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4499       FREE_C_HEAP_ARRAY(int, lgrp_ids);
4500       if (lgrp_num < 2) {
4501         // There's only one locality group, disable NUMA.
4502         UseNUMA = false;
4503       }
4504     }
4505     if (!UseNUMA && ForceNUMA) {
4506       UseNUMA = true;
4507     }
4508   }
4509 
4510   Solaris::signal_sets_init();
4511   Solaris::init_signal_mem();
4512   Solaris::install_signal_handlers();
4513 
4514   if (libjsigversion < JSIG_VERSION_1_4_1) {
4515     Maxlibjsigsigs = OLDMAXSIGNUM;
4516   }
4517 
4518   // initialize synchronization primitives to use either thread or
4519   // lwp synchronization (controlled by UseLWPSynchronization)
4520   Solaris::synchronization_init();
4521 
4522   if (MaxFDLimit) {
4523     // set the number of file descriptors to max. print out error
4524     // if getrlimit/setrlimit fails but continue regardless.
4525     struct rlimit nbr_files;
4526     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4527     if (status != 0) {
4528       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4529     } else {
4530       nbr_files.rlim_cur = nbr_files.rlim_max;
4531       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4532       if (status != 0) {
4533         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4534       }
4535     }
4536   }
4537 
4538   // Calculate theoretical max. size of Threads to guard gainst
4539   // artifical out-of-memory situations, where all available address-
4540   // space has been reserved by thread stacks. Default stack size is 1Mb.
4541   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4542     JavaThread::stack_size_at_create() : (1*K*K);
4543   assert(pre_thread_stack_size != 0, "Must have a stack");
4544   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4545   // we should start doing Virtual Memory banging. Currently when the threads will
4546   // have used all but 200Mb of space.
4547   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4548   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4549 
4550   // at-exit methods are called in the reverse order of their registration.
4551   // In Solaris 7 and earlier, atexit functions are called on return from
4552   // main or as a result of a call to exit(3C). There can be only 32 of
4553   // these functions registered and atexit() does not set errno. In Solaris
4554   // 8 and later, there is no limit to the number of functions registered
4555   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4556   // functions are called upon dlclose(3DL) in addition to return from main
4557   // and exit(3C).
4558 
4559   if (PerfAllowAtExitRegistration) {
4560     // only register atexit functions if PerfAllowAtExitRegistration is set.
4561     // atexit functions can be delayed until process exit time, which
4562     // can be problematic for embedded VM situations. Embedded VMs should
4563     // call DestroyJavaVM() to assure that VM resources are released.
4564 
4565     // note: perfMemory_exit_helper atexit function may be removed in
4566     // the future if the appropriate cleanup code can be added to the
4567     // VM_Exit VMOperation's doit method.
4568     if (atexit(perfMemory_exit_helper) != 0) {
4569       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4570     }
4571   }
4572 
4573   // Init pset_loadavg function pointer
4574   init_pset_getloadavg_ptr();
4575 
4576   return JNI_OK;
4577 }
4578 
4579 // Mark the polling page as unreadable
4580 void os::make_polling_page_unreadable(void) {
4581   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4582     fatal("Could not disable polling page");
4583   }
4584 }
4585 
4586 // Mark the polling page as readable
4587 void os::make_polling_page_readable(void) {
4588   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4589     fatal("Could not enable polling page");
4590   }
4591 }
4592 
4593 // OS interface.
4594 
4595 bool os::check_heap(bool force) { return true; }
4596 
4597 // Is a (classpath) directory empty?
4598 bool os::dir_is_empty(const char* path) {
4599   DIR *dir = NULL;
4600   struct dirent *ptr;
4601 
4602   dir = opendir(path);
4603   if (dir == NULL) return true;
4604 
4605   // Scan the directory
4606   bool result = true;
4607   char buf[sizeof(struct dirent) + MAX_PATH];
4608   struct dirent *dbuf = (struct dirent *) buf;
4609   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4610     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4611       result = false;
4612     }
4613   }
4614   closedir(dir);
4615   return result;
4616 }
4617 
4618 // This code originates from JDK's sysOpen and open64_w
4619 // from src/solaris/hpi/src/system_md.c
4620 
4621 int os::open(const char *path, int oflag, int mode) {
4622   if (strlen(path) > MAX_PATH - 1) {
4623     errno = ENAMETOOLONG;
4624     return -1;
4625   }
4626   int fd;
4627 
4628   fd = ::open64(path, oflag, mode);
4629   if (fd == -1) return -1;
4630 
4631   // If the open succeeded, the file might still be a directory
4632   {
4633     struct stat64 buf64;
4634     int ret = ::fstat64(fd, &buf64);
4635     int st_mode = buf64.st_mode;
4636 
4637     if (ret != -1) {
4638       if ((st_mode & S_IFMT) == S_IFDIR) {
4639         errno = EISDIR;
4640         ::close(fd);
4641         return -1;
4642       }
4643     } else {
4644       ::close(fd);
4645       return -1;
4646     }
4647   }
4648 
4649   // 32-bit Solaris systems suffer from:
4650   //
4651   // - an historical default soft limit of 256 per-process file
4652   //   descriptors that is too low for many Java programs.
4653   //
4654   // - a design flaw where file descriptors created using stdio
4655   //   fopen must be less than 256, _even_ when the first limit above
4656   //   has been raised.  This can cause calls to fopen (but not calls to
4657   //   open, for example) to fail mysteriously, perhaps in 3rd party
4658   //   native code (although the JDK itself uses fopen).  One can hardly
4659   //   criticize them for using this most standard of all functions.
4660   //
4661   // We attempt to make everything work anyways by:
4662   //
4663   // - raising the soft limit on per-process file descriptors beyond
4664   //   256
4665   //
4666   // - As of Solaris 10u4, we can request that Solaris raise the 256
4667   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4668   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4669   //
4670   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4671   //   workaround the bug by remapping non-stdio file descriptors below
4672   //   256 to ones beyond 256, which is done below.
4673   //
4674   // See:
4675   // 1085341: 32-bit stdio routines should support file descriptors >255
4676   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4677   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4678   //          enable_extended_FILE_stdio() in VM initialisation
4679   // Giri Mandalika's blog
4680   // http://technopark02.blogspot.com/2005_05_01_archive.html
4681   //
4682 #ifndef  _LP64
4683   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4684     int newfd = ::fcntl(fd, F_DUPFD, 256);
4685     if (newfd != -1) {
4686       ::close(fd);
4687       fd = newfd;
4688     }
4689   }
4690 #endif // 32-bit Solaris
4691 
4692   // All file descriptors that are opened in the JVM and not
4693   // specifically destined for a subprocess should have the
4694   // close-on-exec flag set.  If we don't set it, then careless 3rd
4695   // party native code might fork and exec without closing all
4696   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4697   // UNIXProcess.c), and this in turn might:
4698   //
4699   // - cause end-of-file to fail to be detected on some file
4700   //   descriptors, resulting in mysterious hangs, or
4701   //
4702   // - might cause an fopen in the subprocess to fail on a system
4703   //   suffering from bug 1085341.
4704   //
4705   // (Yes, the default setting of the close-on-exec flag is a Unix
4706   // design flaw)
4707   //
4708   // See:
4709   // 1085341: 32-bit stdio routines should support file descriptors >255
4710   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4711   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4712   //
4713 #ifdef FD_CLOEXEC
4714   {
4715     int flags = ::fcntl(fd, F_GETFD);
4716     if (flags != -1) {
4717       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4718     }
4719   }
4720 #endif
4721 
4722   return fd;
4723 }
4724 
4725 // create binary file, rewriting existing file if required
4726 int os::create_binary_file(const char* path, bool rewrite_existing) {
4727   int oflags = O_WRONLY | O_CREAT;
4728   if (!rewrite_existing) {
4729     oflags |= O_EXCL;
4730   }
4731   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4732 }
4733 
4734 // return current position of file pointer
4735 jlong os::current_file_offset(int fd) {
4736   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4737 }
4738 
4739 // move file pointer to the specified offset
4740 jlong os::seek_to_file_offset(int fd, jlong offset) {
4741   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4742 }
4743 
4744 jlong os::lseek(int fd, jlong offset, int whence) {
4745   return (jlong) ::lseek64(fd, offset, whence);
4746 }
4747 
4748 char * os::native_path(char *path) {
4749   return path;
4750 }
4751 
4752 int os::ftruncate(int fd, jlong length) {
4753   return ::ftruncate64(fd, length);
4754 }
4755 
4756 int os::fsync(int fd)  {
4757   RESTARTABLE_RETURN_INT(::fsync(fd));
4758 }
4759 
4760 int os::available(int fd, jlong *bytes) {
4761   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4762          "Assumed _thread_in_native");
4763   jlong cur, end;
4764   int mode;
4765   struct stat64 buf64;
4766 
4767   if (::fstat64(fd, &buf64) >= 0) {
4768     mode = buf64.st_mode;
4769     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4770       int n,ioctl_return;
4771 
4772       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4773       if (ioctl_return>= 0) {
4774         *bytes = n;
4775         return 1;
4776       }
4777     }
4778   }
4779   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4780     return 0;
4781   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4782     return 0;
4783   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4784     return 0;
4785   }
4786   *bytes = end - cur;
4787   return 1;
4788 }
4789 
4790 // Map a block of memory.
4791 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4792                         char *addr, size_t bytes, bool read_only,
4793                         bool allow_exec) {
4794   int prot;
4795   int flags;
4796 
4797   if (read_only) {
4798     prot = PROT_READ;
4799     flags = MAP_SHARED;
4800   } else {
4801     prot = PROT_READ | PROT_WRITE;
4802     flags = MAP_PRIVATE;
4803   }
4804 
4805   if (allow_exec) {
4806     prot |= PROT_EXEC;
4807   }
4808 
4809   if (addr != NULL) {
4810     flags |= MAP_FIXED;
4811   }
4812 
4813   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4814                                      fd, file_offset);
4815   if (mapped_address == MAP_FAILED) {
4816     return NULL;
4817   }
4818   return mapped_address;
4819 }
4820 
4821 
4822 // Remap a block of memory.
4823 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4824                           char *addr, size_t bytes, bool read_only,
4825                           bool allow_exec) {
4826   // same as map_memory() on this OS
4827   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4828                         allow_exec);
4829 }
4830 
4831 
4832 // Unmap a block of memory.
4833 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4834   return munmap(addr, bytes) == 0;
4835 }
4836 
4837 void os::pause() {
4838   char filename[MAX_PATH];
4839   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4840     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4841   } else {
4842     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4843   }
4844 
4845   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4846   if (fd != -1) {
4847     struct stat buf;
4848     ::close(fd);
4849     while (::stat(filename, &buf) == 0) {
4850       (void)::poll(NULL, 0, 100);
4851     }
4852   } else {
4853     jio_fprintf(stderr,
4854                 "Could not open pause file '%s', continuing immediately.\n", filename);
4855   }
4856 }
4857 
4858 #ifndef PRODUCT
4859 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4860 // Turn this on if you need to trace synch operations.
4861 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4862 // and call record_synch_enable and record_synch_disable
4863 // around the computation of interest.
4864 
4865 void record_synch(char* name, bool returning);  // defined below
4866 
4867 class RecordSynch {
4868   char* _name;
4869  public:
4870   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4871   ~RecordSynch()                       { record_synch(_name, true); }
4872 };
4873 
4874 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4875 extern "C" ret name params {                                    \
4876   typedef ret name##_t params;                                  \
4877   static name##_t* implem = NULL;                               \
4878   static int callcount = 0;                                     \
4879   if (implem == NULL) {                                         \
4880     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4881     if (implem == NULL)  fatal(dlerror());                      \
4882   }                                                             \
4883   ++callcount;                                                  \
4884   RecordSynch _rs(#name);                                       \
4885   inner;                                                        \
4886   return implem args;                                           \
4887 }
4888 // in dbx, examine callcounts this way:
4889 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4890 
4891 #define CHECK_POINTER_OK(p) \
4892   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4893 #define CHECK_MU \
4894   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4895 #define CHECK_CV \
4896   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4897 #define CHECK_P(p) \
4898   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4899 
4900 #define CHECK_MUTEX(mutex_op) \
4901   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4902 
4903 CHECK_MUTEX(   mutex_lock)
4904 CHECK_MUTEX(  _mutex_lock)
4905 CHECK_MUTEX( mutex_unlock)
4906 CHECK_MUTEX(_mutex_unlock)
4907 CHECK_MUTEX( mutex_trylock)
4908 CHECK_MUTEX(_mutex_trylock)
4909 
4910 #define CHECK_COND(cond_op) \
4911   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4912 
4913 CHECK_COND( cond_wait);
4914 CHECK_COND(_cond_wait);
4915 CHECK_COND(_cond_wait_cancel);
4916 
4917 #define CHECK_COND2(cond_op) \
4918   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4919 
4920 CHECK_COND2( cond_timedwait);
4921 CHECK_COND2(_cond_timedwait);
4922 CHECK_COND2(_cond_timedwait_cancel);
4923 
4924 // do the _lwp_* versions too
4925 #define mutex_t lwp_mutex_t
4926 #define cond_t  lwp_cond_t
4927 CHECK_MUTEX(  _lwp_mutex_lock)
4928 CHECK_MUTEX(  _lwp_mutex_unlock)
4929 CHECK_MUTEX(  _lwp_mutex_trylock)
4930 CHECK_MUTEX( __lwp_mutex_lock)
4931 CHECK_MUTEX( __lwp_mutex_unlock)
4932 CHECK_MUTEX( __lwp_mutex_trylock)
4933 CHECK_MUTEX(___lwp_mutex_lock)
4934 CHECK_MUTEX(___lwp_mutex_unlock)
4935 
4936 CHECK_COND(  _lwp_cond_wait);
4937 CHECK_COND( __lwp_cond_wait);
4938 CHECK_COND(___lwp_cond_wait);
4939 
4940 CHECK_COND2(  _lwp_cond_timedwait);
4941 CHECK_COND2( __lwp_cond_timedwait);
4942 #undef mutex_t
4943 #undef cond_t
4944 
4945 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4946 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4947 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4948 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4949 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4950 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4951 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4952 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4953 
4954 
4955 // recording machinery:
4956 
4957 enum { RECORD_SYNCH_LIMIT = 200 };
4958 char* record_synch_name[RECORD_SYNCH_LIMIT];
4959 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4960 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4961 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4962 int record_synch_count = 0;
4963 bool record_synch_enabled = false;
4964 
4965 // in dbx, examine recorded data this way:
4966 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4967 
4968 void record_synch(char* name, bool returning) {
4969   if (record_synch_enabled) {
4970     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4971       record_synch_name[record_synch_count] = name;
4972       record_synch_returning[record_synch_count] = returning;
4973       record_synch_thread[record_synch_count] = thr_self();
4974       record_synch_arg0ptr[record_synch_count] = &name;
4975       record_synch_count++;
4976     }
4977     // put more checking code here:
4978     // ...
4979   }
4980 }
4981 
4982 void record_synch_enable() {
4983   // start collecting trace data, if not already doing so
4984   if (!record_synch_enabled)  record_synch_count = 0;
4985   record_synch_enabled = true;
4986 }
4987 
4988 void record_synch_disable() {
4989   // stop collecting trace data
4990   record_synch_enabled = false;
4991 }
4992 
4993 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4994 #endif // PRODUCT
4995 
4996 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4997 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4998                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4999 
5000 
5001 // JVMTI & JVM monitoring and management support
5002 // The thread_cpu_time() and current_thread_cpu_time() are only
5003 // supported if is_thread_cpu_time_supported() returns true.
5004 // They are not supported on Solaris T1.
5005 
5006 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5007 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5008 // of a thread.
5009 //
5010 // current_thread_cpu_time() and thread_cpu_time(Thread *)
5011 // returns the fast estimate available on the platform.
5012 
5013 // hrtime_t gethrvtime() return value includes
5014 // user time but does not include system time
5015 jlong os::current_thread_cpu_time() {
5016   return (jlong) gethrvtime();
5017 }
5018 
5019 jlong os::thread_cpu_time(Thread *thread) {
5020   // return user level CPU time only to be consistent with
5021   // what current_thread_cpu_time returns.
5022   // thread_cpu_time_info() must be changed if this changes
5023   return os::thread_cpu_time(thread, false /* user time only */);
5024 }
5025 
5026 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5027   if (user_sys_cpu_time) {
5028     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5029   } else {
5030     return os::current_thread_cpu_time();
5031   }
5032 }
5033 
5034 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5035   char proc_name[64];
5036   int count;
5037   prusage_t prusage;
5038   jlong lwp_time;
5039   int fd;
5040 
5041   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5042           getpid(),
5043           thread->osthread()->lwp_id());
5044   fd = ::open(proc_name, O_RDONLY);
5045   if (fd == -1) return -1;
5046 
5047   do {
5048     count = ::pread(fd,
5049                     (void *)&prusage.pr_utime,
5050                     thr_time_size,
5051                     thr_time_off);
5052   } while (count < 0 && errno == EINTR);
5053   ::close(fd);
5054   if (count < 0) return -1;
5055 
5056   if (user_sys_cpu_time) {
5057     // user + system CPU time
5058     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5059                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5060                  (jlong)prusage.pr_stime.tv_nsec +
5061                  (jlong)prusage.pr_utime.tv_nsec;
5062   } else {
5063     // user level CPU time only
5064     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5065                 (jlong)prusage.pr_utime.tv_nsec;
5066   }
5067 
5068   return (lwp_time);
5069 }
5070 
5071 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5072   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5073   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5074   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5075   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5076 }
5077 
5078 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5079   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5080   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5081   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5082   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5083 }
5084 
5085 bool os::is_thread_cpu_time_supported() {
5086   return true;
5087 }
5088 
5089 // System loadavg support.  Returns -1 if load average cannot be obtained.
5090 // Return the load average for our processor set if the primitive exists
5091 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
5092 int os::loadavg(double loadavg[], int nelem) {
5093   if (pset_getloadavg_ptr != NULL) {
5094     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5095   } else {
5096     return ::getloadavg(loadavg, nelem);
5097   }
5098 }
5099 
5100 //---------------------------------------------------------------------------------
5101 
5102 bool os::find(address addr, outputStream* st) {
5103   Dl_info dlinfo;
5104   memset(&dlinfo, 0, sizeof(dlinfo));
5105   if (dladdr(addr, &dlinfo) != 0) {
5106     st->print(PTR_FORMAT ": ", addr);
5107     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5108       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5109     } else if (dlinfo.dli_fbase != NULL) {
5110       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5111     } else {
5112       st->print("<absolute address>");
5113     }
5114     if (dlinfo.dli_fname != NULL) {
5115       st->print(" in %s", dlinfo.dli_fname);
5116     }
5117     if (dlinfo.dli_fbase != NULL) {
5118       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5119     }
5120     st->cr();
5121 
5122     if (Verbose) {
5123       // decode some bytes around the PC
5124       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5125       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5126       address       lowest = (address) dlinfo.dli_sname;
5127       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5128       if (begin < lowest)  begin = lowest;
5129       Dl_info dlinfo2;
5130       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5131           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5132         end = (address) dlinfo2.dli_saddr;
5133       }
5134       Disassembler::decode(begin, end, st);
5135     }
5136     return true;
5137   }
5138   return false;
5139 }
5140 
5141 // Following function has been added to support HotSparc's libjvm.so running
5142 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5143 // src/solaris/hpi/native_threads in the EVM codebase.
5144 //
5145 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5146 // libraries and should thus be removed. We will leave it behind for a while
5147 // until we no longer want to able to run on top of 1.3.0 Solaris production
5148 // JDK. See 4341971.
5149 
5150 #define STACK_SLACK 0x800
5151 
5152 extern "C" {
5153   intptr_t sysThreadAvailableStackWithSlack() {
5154     stack_t st;
5155     intptr_t retval, stack_top;
5156     retval = thr_stksegment(&st);
5157     assert(retval == 0, "incorrect return value from thr_stksegment");
5158     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5159     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5160     stack_top=(intptr_t)st.ss_sp-st.ss_size;
5161     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5162   }
5163 }
5164 
5165 // ObjectMonitor park-unpark infrastructure ...
5166 //
5167 // We implement Solaris and Linux PlatformEvents with the
5168 // obvious condvar-mutex-flag triple.
5169 // Another alternative that works quite well is pipes:
5170 // Each PlatformEvent consists of a pipe-pair.
5171 // The thread associated with the PlatformEvent
5172 // calls park(), which reads from the input end of the pipe.
5173 // Unpark() writes into the other end of the pipe.
5174 // The write-side of the pipe must be set NDELAY.
5175 // Unfortunately pipes consume a large # of handles.
5176 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
5177 // Using pipes for the 1st few threads might be workable, however.
5178 //
5179 // park() is permitted to return spuriously.
5180 // Callers of park() should wrap the call to park() in
5181 // an appropriate loop.  A litmus test for the correct
5182 // usage of park is the following: if park() were modified
5183 // to immediately return 0 your code should still work,
5184 // albeit degenerating to a spin loop.
5185 //
5186 // In a sense, park()-unpark() just provides more polite spinning
5187 // and polling with the key difference over naive spinning being
5188 // that a parked thread needs to be explicitly unparked() in order
5189 // to wake up and to poll the underlying condition.
5190 //
5191 // Assumption:
5192 //    Only one parker can exist on an event, which is why we allocate
5193 //    them per-thread. Multiple unparkers can coexist.
5194 //
5195 // _Event transitions in park()
5196 //   -1 => -1 : illegal
5197 //    1 =>  0 : pass - return immediately
5198 //    0 => -1 : block; then set _Event to 0 before returning
5199 //
5200 // _Event transitions in unpark()
5201 //    0 => 1 : just return
5202 //    1 => 1 : just return
5203 //   -1 => either 0 or 1; must signal target thread
5204 //         That is, we can safely transition _Event from -1 to either
5205 //         0 or 1.
5206 //
5207 // _Event serves as a restricted-range semaphore.
5208 //   -1 : thread is blocked, i.e. there is a waiter
5209 //    0 : neutral: thread is running or ready,
5210 //        could have been signaled after a wait started
5211 //    1 : signaled - thread is running or ready
5212 //
5213 // Another possible encoding of _Event would be with
5214 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5215 //
5216 // TODO-FIXME: add DTRACE probes for:
5217 // 1.   Tx parks
5218 // 2.   Ty unparks Tx
5219 // 3.   Tx resumes from park
5220 
5221 
5222 // value determined through experimentation
5223 #define ROUNDINGFIX 11
5224 
5225 // utility to compute the abstime argument to timedwait.
5226 // TODO-FIXME: switch from compute_abstime() to unpackTime().
5227 
5228 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5229   // millis is the relative timeout time
5230   // abstime will be the absolute timeout time
5231   if (millis < 0)  millis = 0;
5232   struct timeval now;
5233   int status = gettimeofday(&now, NULL);
5234   assert(status == 0, "gettimeofday");
5235   jlong seconds = millis / 1000;
5236   jlong max_wait_period;
5237 
5238   if (UseLWPSynchronization) {
5239     // forward port of fix for 4275818 (not sleeping long enough)
5240     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5241     // _lwp_cond_timedwait() used a round_down algorithm rather
5242     // than a round_up. For millis less than our roundfactor
5243     // it rounded down to 0 which doesn't meet the spec.
5244     // For millis > roundfactor we may return a bit sooner, but
5245     // since we can not accurately identify the patch level and
5246     // this has already been fixed in Solaris 9 and 8 we will
5247     // leave it alone rather than always rounding down.
5248 
5249     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5250     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5251     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5252     max_wait_period = 21000000;
5253   } else {
5254     max_wait_period = 50000000;
5255   }
5256   millis %= 1000;
5257   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5258     seconds = max_wait_period;
5259   }
5260   abstime->tv_sec = now.tv_sec  + seconds;
5261   long       usec = now.tv_usec + millis * 1000;
5262   if (usec >= 1000000) {
5263     abstime->tv_sec += 1;
5264     usec -= 1000000;
5265   }
5266   abstime->tv_nsec = usec * 1000;
5267   return abstime;
5268 }
5269 
5270 void os::PlatformEvent::park() {           // AKA: down()
5271   // Transitions for _Event:
5272   //   -1 => -1 : illegal
5273   //    1 =>  0 : pass - return immediately
5274   //    0 => -1 : block; then set _Event to 0 before returning
5275 
5276   // Invariant: Only the thread associated with the Event/PlatformEvent
5277   // may call park().
5278   assert(_nParked == 0, "invariant");
5279 
5280   int v;
5281   for (;;) {
5282     v = _Event;
5283     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5284   }
5285   guarantee(v >= 0, "invariant");
5286   if (v == 0) {
5287     // Do this the hard way by blocking ...
5288     // See http://monaco.sfbay/detail.jsf?cr=5094058.
5289     // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5290     // Only for SPARC >= V8PlusA
5291 #if defined(__sparc) && defined(COMPILER2)
5292     if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5293 #endif
5294     int status = os::Solaris::mutex_lock(_mutex);
5295     assert_status(status == 0, status, "mutex_lock");
5296     guarantee(_nParked == 0, "invariant");
5297     ++_nParked;
5298     while (_Event < 0) {
5299       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5300       // Treat this the same as if the wait was interrupted
5301       // With usr/lib/lwp going to kernel, always handle ETIME
5302       status = os::Solaris::cond_wait(_cond, _mutex);
5303       if (status == ETIME) status = EINTR;
5304       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5305     }
5306     --_nParked;
5307     _Event = 0;
5308     status = os::Solaris::mutex_unlock(_mutex);
5309     assert_status(status == 0, status, "mutex_unlock");
5310     // Paranoia to ensure our locked and lock-free paths interact
5311     // correctly with each other.
5312     OrderAccess::fence();
5313   }
5314 }
5315 
5316 int os::PlatformEvent::park(jlong millis) {
5317   // Transitions for _Event:
5318   //   -1 => -1 : illegal
5319   //    1 =>  0 : pass - return immediately
5320   //    0 => -1 : block; then set _Event to 0 before returning
5321 
5322   guarantee(_nParked == 0, "invariant");
5323   int v;
5324   for (;;) {
5325     v = _Event;
5326     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5327   }
5328   guarantee(v >= 0, "invariant");
5329   if (v != 0) return OS_OK;
5330 
5331   int ret = OS_TIMEOUT;
5332   timestruc_t abst;
5333   compute_abstime(&abst, millis);
5334 
5335   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5336   // For Solaris SPARC set fprs.FEF=0 prior to parking.
5337   // Only for SPARC >= V8PlusA
5338 #if defined(__sparc) && defined(COMPILER2)
5339   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5340 #endif
5341   int status = os::Solaris::mutex_lock(_mutex);
5342   assert_status(status == 0, status, "mutex_lock");
5343   guarantee(_nParked == 0, "invariant");
5344   ++_nParked;
5345   while (_Event < 0) {
5346     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5347     assert_status(status == 0 || status == EINTR ||
5348                   status == ETIME || status == ETIMEDOUT,
5349                   status, "cond_timedwait");
5350     if (!FilterSpuriousWakeups) break;                // previous semantics
5351     if (status == ETIME || status == ETIMEDOUT) break;
5352     // We consume and ignore EINTR and spurious wakeups.
5353   }
5354   --_nParked;
5355   if (_Event >= 0) ret = OS_OK;
5356   _Event = 0;
5357   status = os::Solaris::mutex_unlock(_mutex);
5358   assert_status(status == 0, status, "mutex_unlock");
5359   // Paranoia to ensure our locked and lock-free paths interact
5360   // correctly with each other.
5361   OrderAccess::fence();
5362   return ret;
5363 }
5364 
5365 void os::PlatformEvent::unpark() {
5366   // Transitions for _Event:
5367   //    0 => 1 : just return
5368   //    1 => 1 : just return
5369   //   -1 => either 0 or 1; must signal target thread
5370   //         That is, we can safely transition _Event from -1 to either
5371   //         0 or 1.
5372   // See also: "Semaphores in Plan 9" by Mullender & Cox
5373   //
5374   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5375   // that it will take two back-to-back park() calls for the owning
5376   // thread to block. This has the benefit of forcing a spurious return
5377   // from the first park() call after an unpark() call which will help
5378   // shake out uses of park() and unpark() without condition variables.
5379 
5380   if (Atomic::xchg(1, &_Event) >= 0) return;
5381 
5382   // If the thread associated with the event was parked, wake it.
5383   // Wait for the thread assoc with the PlatformEvent to vacate.
5384   int status = os::Solaris::mutex_lock(_mutex);
5385   assert_status(status == 0, status, "mutex_lock");
5386   int AnyWaiters = _nParked;
5387   status = os::Solaris::mutex_unlock(_mutex);
5388   assert_status(status == 0, status, "mutex_unlock");
5389   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5390   if (AnyWaiters != 0) {
5391     // Note that we signal() *after* dropping the lock for "immortal" Events.
5392     // This is safe and avoids a common class of  futile wakeups.  In rare
5393     // circumstances this can cause a thread to return prematurely from
5394     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5395     // will simply re-test the condition and re-park itself.
5396     // This provides particular benefit if the underlying platform does not
5397     // provide wait morphing.
5398     status = os::Solaris::cond_signal(_cond);
5399     assert_status(status == 0, status, "cond_signal");
5400   }
5401 }
5402 
5403 // JSR166
5404 // -------------------------------------------------------
5405 
5406 // The solaris and linux implementations of park/unpark are fairly
5407 // conservative for now, but can be improved. They currently use a
5408 // mutex/condvar pair, plus _counter.
5409 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
5410 // sets count to 1 and signals condvar.  Only one thread ever waits
5411 // on the condvar. Contention seen when trying to park implies that someone
5412 // is unparking you, so don't wait. And spurious returns are fine, so there
5413 // is no need to track notifications.
5414 
5415 #define MAX_SECS 100000000
5416 
5417 // This code is common to linux and solaris and will be moved to a
5418 // common place in dolphin.
5419 //
5420 // The passed in time value is either a relative time in nanoseconds
5421 // or an absolute time in milliseconds. Either way it has to be unpacked
5422 // into suitable seconds and nanoseconds components and stored in the
5423 // given timespec structure.
5424 // Given time is a 64-bit value and the time_t used in the timespec is only
5425 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5426 // overflow if times way in the future are given. Further on Solaris versions
5427 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5428 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5429 // As it will be 28 years before "now + 100000000" will overflow we can
5430 // ignore overflow and just impose a hard-limit on seconds using the value
5431 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5432 // years from "now".
5433 //
5434 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5435   assert(time > 0, "convertTime");
5436 
5437   struct timeval now;
5438   int status = gettimeofday(&now, NULL);
5439   assert(status == 0, "gettimeofday");
5440 
5441   time_t max_secs = now.tv_sec + MAX_SECS;
5442 
5443   if (isAbsolute) {
5444     jlong secs = time / 1000;
5445     if (secs > max_secs) {
5446       absTime->tv_sec = max_secs;
5447     } else {
5448       absTime->tv_sec = secs;
5449     }
5450     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5451   } else {
5452     jlong secs = time / NANOSECS_PER_SEC;
5453     if (secs >= MAX_SECS) {
5454       absTime->tv_sec = max_secs;
5455       absTime->tv_nsec = 0;
5456     } else {
5457       absTime->tv_sec = now.tv_sec + secs;
5458       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5459       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5460         absTime->tv_nsec -= NANOSECS_PER_SEC;
5461         ++absTime->tv_sec; // note: this must be <= max_secs
5462       }
5463     }
5464   }
5465   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5466   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5467   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5468   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5469 }
5470 
5471 void Parker::park(bool isAbsolute, jlong time) {
5472   // Ideally we'd do something useful while spinning, such
5473   // as calling unpackTime().
5474 
5475   // Optional fast-path check:
5476   // Return immediately if a permit is available.
5477   // We depend on Atomic::xchg() having full barrier semantics
5478   // since we are doing a lock-free update to _counter.
5479   if (Atomic::xchg(0, &_counter) > 0) return;
5480 
5481   // Optional fast-exit: Check interrupt before trying to wait
5482   Thread* thread = Thread::current();
5483   assert(thread->is_Java_thread(), "Must be JavaThread");
5484   JavaThread *jt = (JavaThread *)thread;
5485   if (Thread::is_interrupted(thread, false)) {
5486     return;
5487   }
5488 
5489   // First, demultiplex/decode time arguments
5490   timespec absTime;
5491   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5492     return;
5493   }
5494   if (time > 0) {
5495     // Warning: this code might be exposed to the old Solaris time
5496     // round-down bugs.  Grep "roundingFix" for details.
5497     unpackTime(&absTime, isAbsolute, time);
5498   }
5499 
5500   // Enter safepoint region
5501   // Beware of deadlocks such as 6317397.
5502   // The per-thread Parker:: _mutex is a classic leaf-lock.
5503   // In particular a thread must never block on the Threads_lock while
5504   // holding the Parker:: mutex.  If safepoints are pending both the
5505   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5506   ThreadBlockInVM tbivm(jt);
5507 
5508   // Don't wait if cannot get lock since interference arises from
5509   // unblocking.  Also. check interrupt before trying wait
5510   if (Thread::is_interrupted(thread, false) ||
5511       os::Solaris::mutex_trylock(_mutex) != 0) {
5512     return;
5513   }
5514 
5515   int status;
5516 
5517   if (_counter > 0)  { // no wait needed
5518     _counter = 0;
5519     status = os::Solaris::mutex_unlock(_mutex);
5520     assert(status == 0, "invariant");
5521     // Paranoia to ensure our locked and lock-free paths interact
5522     // correctly with each other and Java-level accesses.
5523     OrderAccess::fence();
5524     return;
5525   }
5526 
5527 #ifdef ASSERT
5528   // Don't catch signals while blocked; let the running threads have the signals.
5529   // (This allows a debugger to break into the running thread.)
5530   sigset_t oldsigs;
5531   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5532   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5533 #endif
5534 
5535   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5536   jt->set_suspend_equivalent();
5537   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5538 
5539   // Do this the hard way by blocking ...
5540   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5541   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5542   // Only for SPARC >= V8PlusA
5543 #if defined(__sparc) && defined(COMPILER2)
5544   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5545 #endif
5546 
5547   if (time == 0) {
5548     status = os::Solaris::cond_wait(_cond, _mutex);
5549   } else {
5550     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5551   }
5552   // Note that an untimed cond_wait() can sometimes return ETIME on older
5553   // versions of the Solaris.
5554   assert_status(status == 0 || status == EINTR ||
5555                 status == ETIME || status == ETIMEDOUT,
5556                 status, "cond_timedwait");
5557 
5558 #ifdef ASSERT
5559   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5560 #endif
5561   _counter = 0;
5562   status = os::Solaris::mutex_unlock(_mutex);
5563   assert_status(status == 0, status, "mutex_unlock");
5564   // Paranoia to ensure our locked and lock-free paths interact
5565   // correctly with each other and Java-level accesses.
5566   OrderAccess::fence();
5567 
5568   // If externally suspended while waiting, re-suspend
5569   if (jt->handle_special_suspend_equivalent_condition()) {
5570     jt->java_suspend_self();
5571   }
5572 }
5573 
5574 void Parker::unpark() {
5575   int status = os::Solaris::mutex_lock(_mutex);
5576   assert(status == 0, "invariant");
5577   const int s = _counter;
5578   _counter = 1;
5579   status = os::Solaris::mutex_unlock(_mutex);
5580   assert(status == 0, "invariant");
5581 
5582   if (s < 1) {
5583     status = os::Solaris::cond_signal(_cond);
5584     assert(status == 0, "invariant");
5585   }
5586 }
5587 
5588 extern char** environ;
5589 
5590 // Run the specified command in a separate process. Return its exit value,
5591 // or -1 on failure (e.g. can't fork a new process).
5592 // Unlike system(), this function can be called from signal handler. It
5593 // doesn't block SIGINT et al.
5594 int os::fork_and_exec(char* cmd) {
5595   char * argv[4];
5596   argv[0] = (char *)"sh";
5597   argv[1] = (char *)"-c";
5598   argv[2] = cmd;
5599   argv[3] = NULL;
5600 
5601   // fork is async-safe, fork1 is not so can't use in signal handler
5602   pid_t pid;
5603   Thread* t = Thread::current_or_null_safe();
5604   if (t != NULL && t->is_inside_signal_handler()) {
5605     pid = fork();
5606   } else {
5607     pid = fork1();
5608   }
5609 
5610   if (pid < 0) {
5611     // fork failed
5612     warning("fork failed: %s", os::strerror(errno));
5613     return -1;
5614 
5615   } else if (pid == 0) {
5616     // child process
5617 
5618     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5619     execve("/usr/bin/sh", argv, environ);
5620 
5621     // execve failed
5622     _exit(-1);
5623 
5624   } else  {
5625     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5626     // care about the actual exit code, for now.
5627 
5628     int status;
5629 
5630     // Wait for the child process to exit.  This returns immediately if
5631     // the child has already exited. */
5632     while (waitpid(pid, &status, 0) < 0) {
5633       switch (errno) {
5634       case ECHILD: return 0;
5635       case EINTR: break;
5636       default: return -1;
5637       }
5638     }
5639 
5640     if (WIFEXITED(status)) {
5641       // The child exited normally; get its exit code.
5642       return WEXITSTATUS(status);
5643     } else if (WIFSIGNALED(status)) {
5644       // The child exited because of a signal
5645       // The best value to return is 0x80 + signal number,
5646       // because that is what all Unix shells do, and because
5647       // it allows callers to distinguish between process exit and
5648       // process death by signal.
5649       return 0x80 + WTERMSIG(status);
5650     } else {
5651       // Unknown exit code; pass it through
5652       return status;
5653     }
5654   }
5655 }
5656 
5657 // is_headless_jre()
5658 //
5659 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5660 // in order to report if we are running in a headless jre
5661 //
5662 // Since JDK8 xawt/libmawt.so was moved into the same directory
5663 // as libawt.so, and renamed libawt_xawt.so
5664 //
5665 bool os::is_headless_jre() {
5666   struct stat statbuf;
5667   char buf[MAXPATHLEN];
5668   char libmawtpath[MAXPATHLEN];
5669   const char *xawtstr  = "/xawt/libmawt.so";
5670   const char *new_xawtstr = "/libawt_xawt.so";
5671   char *p;
5672 
5673   // Get path to libjvm.so
5674   os::jvm_path(buf, sizeof(buf));
5675 
5676   // Get rid of libjvm.so
5677   p = strrchr(buf, '/');
5678   if (p == NULL) {
5679     return false;
5680   } else {
5681     *p = '\0';
5682   }
5683 
5684   // Get rid of client or server
5685   p = strrchr(buf, '/');
5686   if (p == NULL) {
5687     return false;
5688   } else {
5689     *p = '\0';
5690   }
5691 
5692   // check xawt/libmawt.so
5693   strcpy(libmawtpath, buf);
5694   strcat(libmawtpath, xawtstr);
5695   if (::stat(libmawtpath, &statbuf) == 0) return false;
5696 
5697   // check libawt_xawt.so
5698   strcpy(libmawtpath, buf);
5699   strcat(libmawtpath, new_xawtstr);
5700   if (::stat(libmawtpath, &statbuf) == 0) return false;
5701 
5702   return true;
5703 }
5704 
5705 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5706   size_t res;
5707   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5708   return res;
5709 }
5710 
5711 int os::close(int fd) {
5712   return ::close(fd);
5713 }
5714 
5715 int os::socket_close(int fd) {
5716   return ::close(fd);
5717 }
5718 
5719 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5720   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5721          "Assumed _thread_in_native");
5722   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5723 }
5724 
5725 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5726   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5727          "Assumed _thread_in_native");
5728   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5729 }
5730 
5731 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5732   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5733 }
5734 
5735 // As both poll and select can be interrupted by signals, we have to be
5736 // prepared to restart the system call after updating the timeout, unless
5737 // a poll() is done with timeout == -1, in which case we repeat with this
5738 // "wait forever" value.
5739 
5740 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5741   int _result;
5742   _result = ::connect(fd, him, len);
5743 
5744   // On Solaris, when a connect() call is interrupted, the connection
5745   // can be established asynchronously (see 6343810). Subsequent calls
5746   // to connect() must check the errno value which has the semantic
5747   // described below (copied from the connect() man page). Handling
5748   // of asynchronously established connections is required for both
5749   // blocking and non-blocking sockets.
5750   //     EINTR            The  connection  attempt  was   interrupted
5751   //                      before  any data arrived by the delivery of
5752   //                      a signal. The connection, however, will  be
5753   //                      established asynchronously.
5754   //
5755   //     EINPROGRESS      The socket is non-blocking, and the connec-
5756   //                      tion  cannot  be completed immediately.
5757   //
5758   //     EALREADY         The socket is non-blocking,  and a previous
5759   //                      connection  attempt  has  not yet been com-
5760   //                      pleted.
5761   //
5762   //     EISCONN          The socket is already connected.
5763   if (_result == OS_ERR && errno == EINTR) {
5764     // restarting a connect() changes its errno semantics
5765     RESTARTABLE(::connect(fd, him, len), _result);
5766     // undo these changes
5767     if (_result == OS_ERR) {
5768       if (errno == EALREADY) {
5769         errno = EINPROGRESS; // fall through
5770       } else if (errno == EISCONN) {
5771         errno = 0;
5772         return OS_OK;
5773       }
5774     }
5775   }
5776   return _result;
5777 }
5778 
5779 // Get the default path to the core file
5780 // Returns the length of the string
5781 int os::get_core_path(char* buffer, size_t bufferSize) {
5782   const char* p = get_current_directory(buffer, bufferSize);
5783 
5784   if (p == NULL) {
5785     assert(p != NULL, "failed to get current directory");
5786     return 0;
5787   }
5788 
5789   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5790                                               p, current_process_id());
5791 
5792   return strlen(buffer);
5793 }
5794 
5795 #ifndef PRODUCT
5796 void TestReserveMemorySpecial_test() {
5797   // No tests available for this platform
5798 }
5799 #endif
5800 
5801 bool os::start_debugging(char *buf, int buflen) {
5802   int len = (int)strlen(buf);
5803   char *p = &buf[len];
5804 
5805   jio_snprintf(p, buflen-len,
5806                "\n\n"
5807                "Do you want to debug the problem?\n\n"
5808                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5809                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5810                "Otherwise, press RETURN to abort...",
5811                os::current_process_id(), os::current_thread_id());
5812 
5813   bool yes = os::message_box("Unexpected Error", buf);
5814 
5815   if (yes) {
5816     // yes, user asked VM to launch debugger
5817     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5818 
5819     os::fork_and_exec(buf);
5820     yes = false;
5821   }
5822   return yes;
5823 }