1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "mutex_solaris.inline.hpp"
  37 #include "os_share_solaris.hpp"
  38 #include "prims/jniFastGetField.hpp"
  39 #include "prims/jvm.h"
  40 #include "prims/jvm_misc.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/atomic.inline.hpp"
  43 #include "runtime/extendedPC.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/interfaceSupport.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/javaCalls.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/thread.inline.hpp"
  53 #include "runtime/timer.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/vmError.hpp"
  56 
  57 // put OS-includes here
  58 # include <sys/types.h>
  59 # include <sys/mman.h>
  60 # include <pthread.h>
  61 # include <signal.h>
  62 # include <setjmp.h>
  63 # include <errno.h>
  64 # include <dlfcn.h>
  65 # include <stdio.h>
  66 # include <unistd.h>
  67 # include <sys/resource.h>
  68 # include <thread.h>
  69 # include <sys/stat.h>
  70 # include <sys/time.h>
  71 # include <sys/filio.h>
  72 # include <sys/utsname.h>
  73 # include <sys/systeminfo.h>
  74 # include <sys/socket.h>
  75 # include <sys/trap.h>
  76 # include <sys/lwp.h>
  77 # include <poll.h>
  78 # include <sys/lwp.h>
  79 # include <procfs.h>     //  see comment in <sys/procfs.h>
  80 
  81 #ifndef AMD64
  82 // QQQ seems useless at this point
  83 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
  84 #endif // AMD64
  85 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
  86 
  87 
  88 #define MAX_PATH (2 * K)
  89 
  90 // Minimum stack size for the VM.  It's easier to document a constant value
  91 // but it's different for x86 and sparc because the page sizes are different.
  92 #ifdef AMD64
  93 size_t os::Solaris::min_stack_allowed = 224*K;
  94 #define REG_SP REG_RSP
  95 #define REG_PC REG_RIP
  96 #define REG_FP REG_RBP
  97 #else
  98 size_t os::Solaris::min_stack_allowed = 64*K;
  99 #define REG_SP UESP
 100 #define REG_PC EIP
 101 #define REG_FP EBP
 102 // 4900493 counter to prevent runaway LDTR refresh attempt
 103 
 104 static volatile int ldtr_refresh = 0;
 105 // the libthread instruction that faults because of the stale LDTR
 106 
 107 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
 108                        };
 109 #endif // AMD64
 110 
 111 char* os::non_memory_address_word() {
 112   // Must never look like an address returned by reserve_memory,
 113   // even in its subfields (as defined by the CPU immediate fields,
 114   // if the CPU splits constants across multiple instructions).
 115   return (char*) -1;
 116 }
 117 
 118 //
 119 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
 120 // There are issues with libthread giving out uc_links for different threads
 121 // on the same uc_link chain and bad or circular links.
 122 //
 123 bool os::Solaris::valid_ucontext(Thread* thread, const ucontext_t* valid, const ucontext_t* suspect) {
 124   if (valid >= suspect ||
 125       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
 126       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
 127       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
 128     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
 129     return false;
 130   }
 131 
 132   if (thread->is_Java_thread()) {
 133     if (!valid_stack_address(thread, (address)suspect)) {
 134       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
 135       return false;
 136     }
 137     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
 138       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
 139       return false;
 140     }
 141   }
 142   return true;
 143 }
 144 
 145 // We will only follow one level of uc_link since there are libthread
 146 // issues with ucontext linking and it is better to be safe and just
 147 // let caller retry later.
 148 const ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
 149   const ucontext_t *uc) {
 150 
 151   const ucontext_t *retuc = NULL;
 152 
 153   if (uc != NULL) {
 154     if (uc->uc_link == NULL) {
 155       // cannot validate without uc_link so accept current ucontext
 156       retuc = uc;
 157     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 158       // first ucontext is valid so try the next one
 159       uc = uc->uc_link;
 160       if (uc->uc_link == NULL) {
 161         // cannot validate without uc_link so accept current ucontext
 162         retuc = uc;
 163       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 164         // the ucontext one level down is also valid so return it
 165         retuc = uc;
 166       }
 167     }
 168   }
 169   return retuc;
 170 }
 171 
 172 // Assumes ucontext is valid
 173 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(const ucontext_t *uc) {
 174   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
 175 }
 176 
 177 void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
 178   uc->uc_mcontext.gregs [REG_PC]  = (greg_t) pc;
 179 }
 180 
 181 // Assumes ucontext is valid
 182 intptr_t* os::Solaris::ucontext_get_sp(const ucontext_t *uc) {
 183   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 184 }
 185 
 186 // Assumes ucontext is valid
 187 intptr_t* os::Solaris::ucontext_get_fp(const ucontext_t *uc) {
 188   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 189 }
 190 
 191 address os::Solaris::ucontext_get_pc(const ucontext_t *uc) {
 192   return (address) uc->uc_mcontext.gregs[REG_PC];
 193 }
 194 
 195 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 196 // is currently interrupted by SIGPROF.
 197 //
 198 // The difference between this and os::fetch_frame_from_context() is that
 199 // here we try to skip nested signal frames.
 200 // This method is also used for stack overflow signal handling.
 201 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
 202   const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 203 
 204   assert(thread != NULL, "just checking");
 205   assert(ret_sp != NULL, "just checking");
 206   assert(ret_fp != NULL, "just checking");
 207 
 208   const ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
 209   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
 210 }
 211 
 212 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 213                     intptr_t** ret_sp, intptr_t** ret_fp) {
 214 
 215   ExtendedPC  epc;
 216   const ucontext_t *uc = (const ucontext_t*)ucVoid;
 217 
 218   if (uc != NULL) {
 219     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 220     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
 221     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
 222   } else {
 223     // construct empty ExtendedPC for return value checking
 224     epc = ExtendedPC(NULL);
 225     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 226     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 227   }
 228 
 229   return epc;
 230 }
 231 
 232 frame os::fetch_frame_from_context(const void* ucVoid) {
 233   intptr_t* sp;
 234   intptr_t* fp;
 235   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 236   return frame(sp, fp, epc.pc());
 237 }
 238 
 239 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
 240   intptr_t* sp;
 241   intptr_t* fp;
 242   ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
 243   return frame(sp, fp, epc.pc());
 244 }
 245 
 246 bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 247  address pc = (address) os::Solaris::ucontext_get_pc(uc);
 248   if (Interpreter::contains(pc)) {
 249     // interpreter performs stack banging after the fixed frame header has
 250     // been generated while the compilers perform it before. To maintain
 251     // semantic consistency between interpreted and compiled frames, the
 252     // method returns the Java sender of the current frame.
 253     *fr = os::fetch_frame_from_ucontext(thread, uc);
 254     if (!fr->is_first_java_frame()) {
 255       assert(fr->safe_for_sender(thread), "Safety check");
 256       *fr = fr->java_sender();
 257     }
 258   } else {
 259     // more complex code with compiled code
 260     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 261     CodeBlob* cb = CodeCache::find_blob(pc);
 262     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 263       // Not sure where the pc points to, fallback to default
 264       // stack overflow handling
 265       return false;
 266     } else {
 267       // in compiled code, the stack banging is performed just after the return pc
 268       // has been pushed on the stack
 269       intptr_t* fp = os::Solaris::ucontext_get_fp(uc);
 270       intptr_t* sp = os::Solaris::ucontext_get_sp(uc);
 271       *fr = frame(sp + 1, fp, (address)*sp);
 272       if (!fr->is_java_frame()) {
 273         assert(fr->safe_for_sender(thread), "Safety check");
 274         *fr = fr->java_sender();
 275       }
 276     }
 277   }
 278   assert(fr->is_java_frame(), "Safety check");
 279   return true;
 280 }
 281 
 282 frame os::get_sender_for_C_frame(frame* fr) {
 283   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 284 }
 285 
 286 extern "C" intptr_t *_get_current_sp();  // in .il file
 287 
 288 address os::current_stack_pointer() {
 289   return (address)_get_current_sp();
 290 }
 291 
 292 extern "C" intptr_t *_get_current_fp();  // in .il file
 293 
 294 frame os::current_frame() {
 295   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
 296   frame myframe((intptr_t*)os::current_stack_pointer(),
 297                 (intptr_t*)fp,
 298                 CAST_FROM_FN_PTR(address, os::current_frame));
 299   if (os::is_first_C_frame(&myframe)) {
 300     // stack is not walkable
 301     frame ret; // This will be a null useless frame
 302     return ret;
 303   } else {
 304     return os::get_sender_for_C_frame(&myframe);
 305   }
 306 }
 307 
 308 #ifndef AMD64
 309 
 310 // Detecting SSE support by OS
 311 // From solaris_i486.s
 312 extern "C" bool sse_check();
 313 extern "C" bool sse_unavailable();
 314 
 315 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
 316 static int sse_status = SSE_UNKNOWN;
 317 
 318 
 319 static void  check_for_sse_support() {
 320   if (!VM_Version::supports_sse()) {
 321     sse_status = SSE_NOT_SUPPORTED;
 322     return;
 323   }
 324   // looking for _sse_hw in libc.so, if it does not exist or
 325   // the value (int) is 0, OS has no support for SSE
 326   int *sse_hwp;
 327   void *h;
 328 
 329   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
 330     //open failed, presume no support for SSE
 331     sse_status = SSE_NOT_SUPPORTED;
 332     return;
 333   }
 334   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
 335     sse_status = SSE_NOT_SUPPORTED;
 336   } else if (*sse_hwp == 0) {
 337     sse_status = SSE_NOT_SUPPORTED;
 338   }
 339   dlclose(h);
 340 
 341   if (sse_status == SSE_UNKNOWN) {
 342     bool (*try_sse)() = (bool (*)())sse_check;
 343     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
 344   }
 345 
 346 }
 347 
 348 #endif // AMD64
 349 
 350 bool os::supports_sse() {
 351 #ifdef AMD64
 352   return true;
 353 #else
 354   if (sse_status == SSE_UNKNOWN)
 355     check_for_sse_support();
 356   return sse_status == SSE_SUPPORTED;
 357 #endif // AMD64
 358 }
 359 
 360 bool os::is_allocatable(size_t bytes) {
 361 #ifdef AMD64
 362   return true;
 363 #else
 364 
 365   if (bytes < 2 * G) {
 366     return true;
 367   }
 368 
 369   char* addr = reserve_memory(bytes, NULL);
 370 
 371   if (addr != NULL) {
 372     release_memory(addr, bytes);
 373   }
 374 
 375   return addr != NULL;
 376 #endif // AMD64
 377 
 378 }
 379 
 380 extern "C" JNIEXPORT int
 381 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
 382                           int abort_if_unrecognized) {
 383   ucontext_t* uc = (ucontext_t*) ucVoid;
 384 
 385 #ifndef AMD64
 386   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
 387     // the SSE instruction faulted. supports_sse() need return false.
 388     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
 389     return true;
 390   }
 391 #endif // !AMD64
 392 
 393   Thread* t = Thread::current_or_null_safe();
 394 
 395   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 396   // (no destructors can be run)
 397   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 398 
 399   SignalHandlerMark shm(t);
 400 
 401   if(sig == SIGPIPE || sig == SIGXFSZ) {
 402     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 403       return true;
 404     } else {
 405       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
 406       return true;
 407     }
 408   }
 409 
 410   JavaThread* thread = NULL;
 411   VMThread* vmthread = NULL;
 412 
 413   if (os::Solaris::signal_handlers_are_installed) {
 414     if (t != NULL ){
 415       if(t->is_Java_thread()) {
 416         thread = (JavaThread*)t;
 417       }
 418       else if(t->is_VM_thread()){
 419         vmthread = (VMThread *)t;
 420       }
 421     }
 422   }
 423 
 424   if (sig == os::Solaris::SIGasync()) {
 425     if(thread || vmthread){
 426       OSThread::SR_handler(t, uc);
 427       return true;
 428     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 429       return true;
 430     } else {
 431       // If os::Solaris::SIGasync not chained, and this is a non-vm and
 432       // non-java thread
 433       return true;
 434     }
 435   }
 436 
 437   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 438     // can't decode this kind of signal
 439     info = NULL;
 440   } else {
 441     assert(sig == info->si_signo, "bad siginfo");
 442   }
 443 
 444   // decide if this trap can be handled by a stub
 445   address stub = NULL;
 446 
 447   address pc          = NULL;
 448 
 449   //%note os_trap_1
 450   if (info != NULL && uc != NULL && thread != NULL) {
 451     // factor me: getPCfromContext
 452     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 453 
 454     if (StubRoutines::is_safefetch_fault(pc)) {
 455       os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 456       return true;
 457     }
 458 
 459     // Handle ALL stack overflow variations here
 460     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
 461       address addr = (address) info->si_addr;
 462       if (thread->in_stack_yellow_reserved_zone(addr)) {
 463         if (thread->thread_state() == _thread_in_Java) {
 464           if (thread->in_stack_reserved_zone(addr)) {
 465             frame fr;
 466             if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 467               assert(fr.is_java_frame(), "Must be Java frame");
 468               frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 469               if (activation.sp() != NULL) {
 470                 thread->disable_stack_reserved_zone();
 471                 if (activation.is_interpreted_frame()) {
 472                   thread->set_reserved_stack_activation((address)(
 473                     activation.fp() + frame::interpreter_frame_initial_sp_offset));
 474                 } else {
 475                   thread->set_reserved_stack_activation((address)activation.unextended_sp());
 476                 }
 477                 return true;
 478               }
 479             }
 480           }
 481           // Throw a stack overflow exception.  Guard pages will be reenabled
 482           // while unwinding the stack.
 483           thread->disable_stack_yellow_reserved_zone();
 484           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 485         } else {
 486           // Thread was in the vm or native code.  Return and try to finish.
 487           thread->disable_stack_yellow_reserved_zone();
 488           return true;
 489         }
 490       } else if (thread->in_stack_red_zone(addr)) {
 491         // Fatal red zone violation.  Disable the guard pages and fall through
 492         // to handle_unexpected_exception way down below.
 493         thread->disable_stack_red_zone();
 494         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 495       }
 496     }
 497 
 498     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 499       // Verify that OS save/restore AVX registers.
 500       stub = VM_Version::cpuinfo_cont_addr();
 501     }
 502 
 503     if (thread->thread_state() == _thread_in_vm) {
 504       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
 505         address next_pc = Assembler::locate_next_instruction(pc);
 506         stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 507       }
 508     }
 509 
 510     if (thread->thread_state() == _thread_in_Java) {
 511       // Support Safepoint Polling
 512       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 513         stub = SharedRuntime::get_poll_stub(pc);
 514       }
 515       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
 516         // BugId 4454115: A read from a MappedByteBuffer can fault
 517         // here if the underlying file has been truncated.
 518         // Do not crash the VM in such a case.
 519         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 520         if (cb != NULL) {
 521           CompiledMethod* nm = cb->as_compiled_method_or_null();
 522           if (nm != NULL && nm->has_unsafe_access()) {
 523             address next_pc = Assembler::locate_next_instruction(pc);
 524             stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 525           }
 526         }
 527       }
 528       else
 529       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
 530         // integer divide by zero
 531         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 532       }
 533 #ifndef AMD64
 534       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
 535         // floating-point divide by zero
 536         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 537       }
 538       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
 539         // The encoding of D2I in i486.ad can cause an exception prior
 540         // to the fist instruction if there was an invalid operation
 541         // pending. We want to dismiss that exception. From the win_32
 542         // side it also seems that if it really was the fist causing
 543         // the exception that we do the d2i by hand with different
 544         // rounding. Seems kind of weird. QQQ TODO
 545         // Note that we take the exception at the NEXT floating point instruction.
 546         if (pc[0] == 0xDB) {
 547             assert(pc[0] == 0xDB, "not a FIST opcode");
 548             assert(pc[1] == 0x14, "not a FIST opcode");
 549             assert(pc[2] == 0x24, "not a FIST opcode");
 550             return true;
 551         } else {
 552             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
 553             assert(pc[-2] == 0x14, "not an flt invalid opcode");
 554             assert(pc[-1] == 0x24, "not an flt invalid opcode");
 555         }
 556       }
 557       else if (sig == SIGFPE ) {
 558         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
 559       }
 560 #endif // !AMD64
 561 
 562         // QQQ It doesn't seem that we need to do this on x86 because we should be able
 563         // to return properly from the handler without this extra stuff on the back side.
 564 
 565       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 566         // Determination of interpreter/vtable stub/compiled code null exception
 567         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 568       }
 569     }
 570 
 571     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 572     // and the heap gets shrunk before the field access.
 573     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 574       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 575       if (addr != (address)-1) {
 576         stub = addr;
 577       }
 578     }
 579 
 580     // Check to see if we caught the safepoint code in the
 581     // process of write protecting the memory serialization page.
 582     // It write enables the page immediately after protecting it
 583     // so we can just return to retry the write.
 584     if ((sig == SIGSEGV) &&
 585         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
 586       // Block current thread until the memory serialize page permission restored.
 587       os::block_on_serialize_page_trap();
 588       return true;
 589     }
 590   }
 591 
 592   // Execution protection violation
 593   //
 594   // Preventative code for future versions of Solaris which may
 595   // enable execution protection when running the 32-bit VM on AMD64.
 596   //
 597   // This should be kept as the last step in the triage.  We don't
 598   // have a dedicated trap number for a no-execute fault, so be
 599   // conservative and allow other handlers the first shot.
 600   //
 601   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 602   // this si_code is so generic that it is almost meaningless; and
 603   // the si_code for this condition may change in the future.
 604   // Furthermore, a false-positive should be harmless.
 605   if (UnguardOnExecutionViolation > 0 &&
 606       (sig == SIGSEGV || sig == SIGBUS) &&
 607       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
 608     int page_size = os::vm_page_size();
 609     address addr = (address) info->si_addr;
 610     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
 611     // Make sure the pc and the faulting address are sane.
 612     //
 613     // If an instruction spans a page boundary, and the page containing
 614     // the beginning of the instruction is executable but the following
 615     // page is not, the pc and the faulting address might be slightly
 616     // different - we still want to unguard the 2nd page in this case.
 617     //
 618     // 15 bytes seems to be a (very) safe value for max instruction size.
 619     bool pc_is_near_addr =
 620       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 621     bool instr_spans_page_boundary =
 622       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 623                        (intptr_t) page_size) > 0);
 624 
 625     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 626       static volatile address last_addr =
 627         (address) os::non_memory_address_word();
 628 
 629       // In conservative mode, don't unguard unless the address is in the VM
 630       if (addr != last_addr &&
 631           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 632 
 633         // Make memory rwx and retry
 634         address page_start =
 635           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 636         bool res = os::protect_memory((char*) page_start, page_size,
 637                                       os::MEM_PROT_RWX);
 638 
 639         log_debug(os)("Execution protection violation "
 640                       "at " INTPTR_FORMAT
 641                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
 642                       p2i(page_start), (res ? "success" : "failed"), errno);
 643         stub = pc;
 644 
 645         // Set last_addr so if we fault again at the same address, we don't end
 646         // up in an endless loop.
 647         //
 648         // There are two potential complications here.  Two threads trapping at
 649         // the same address at the same time could cause one of the threads to
 650         // think it already unguarded, and abort the VM.  Likely very rare.
 651         //
 652         // The other race involves two threads alternately trapping at
 653         // different addresses and failing to unguard the page, resulting in
 654         // an endless loop.  This condition is probably even more unlikely than
 655         // the first.
 656         //
 657         // Although both cases could be avoided by using locks or thread local
 658         // last_addr, these solutions are unnecessary complication: this
 659         // handler is a best-effort safety net, not a complete solution.  It is
 660         // disabled by default and should only be used as a workaround in case
 661         // we missed any no-execute-unsafe VM code.
 662 
 663         last_addr = addr;
 664       }
 665     }
 666   }
 667 
 668   if (stub != NULL) {
 669     // save all thread context in case we need to restore it
 670 
 671     if (thread != NULL) thread->set_saved_exception_pc(pc);
 672     // 12/02/99: On Sparc it appears that the full context is also saved
 673     // but as yet, no one looks at or restores that saved context
 674     os::Solaris::ucontext_set_pc(uc, stub);
 675     return true;
 676   }
 677 
 678   // signal-chaining
 679   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 680     return true;
 681   }
 682 
 683 #ifndef AMD64
 684   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
 685   // Handle an undefined selector caused by an attempt to assign
 686   // fs in libthread getipriptr(). With the current libthread design every 512
 687   // thread creations the LDT for a private thread data structure is extended
 688   // and thre is a hazard that and another thread attempting a thread creation
 689   // will use a stale LDTR that doesn't reflect the structure's growth,
 690   // causing a GP fault.
 691   // Enforce the probable limit of passes through here to guard against an
 692   // infinite loop if some other move to fs caused the GP fault. Note that
 693   // this loop counter is ultimately a heuristic as it is possible for
 694   // more than one thread to generate this fault at a time in an MP system.
 695   // In the case of the loop count being exceeded or if the poll fails
 696   // just fall through to a fatal error.
 697   // If there is some other source of T_GPFLT traps and the text at EIP is
 698   // unreadable this code will loop infinitely until the stack is exausted.
 699   // The key to diagnosis in this case is to look for the bottom signal handler
 700   // frame.
 701 
 702   if(! IgnoreLibthreadGPFault) {
 703     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
 704       const unsigned char *p =
 705                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
 706 
 707       // Expected instruction?
 708 
 709       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
 710 
 711         Atomic::inc(&ldtr_refresh);
 712 
 713         // Infinite loop?
 714 
 715         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
 716 
 717           // No, force scheduling to get a fresh view of the LDTR
 718 
 719           if(poll(NULL, 0, 10) == 0) {
 720 
 721             // Retry the move
 722 
 723             return false;
 724           }
 725         }
 726       }
 727     }
 728   }
 729 #endif // !AMD64
 730 
 731   if (!abort_if_unrecognized) {
 732     // caller wants another chance, so give it to him
 733     return false;
 734   }
 735 
 736   if (!os::Solaris::libjsig_is_loaded) {
 737     struct sigaction oldAct;
 738     sigaction(sig, (struct sigaction *)0, &oldAct);
 739     if (oldAct.sa_sigaction != signalHandler) {
 740       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
 741                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
 742       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
 743     }
 744   }
 745 
 746   if (pc == NULL && uc != NULL) {
 747     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 748   }
 749 
 750   // unmask current signal
 751   sigset_t newset;
 752   sigemptyset(&newset);
 753   sigaddset(&newset, sig);
 754   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 755 
 756   // Determine which sort of error to throw.  Out of swap may signal
 757   // on the thread stack, which could get a mapping error when touched.
 758   address addr = (address) info->si_addr;
 759   if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
 760     vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
 761   }
 762 
 763   VMError::report_and_die(t, sig, pc, info, ucVoid);
 764 
 765   ShouldNotReachHere();
 766   return false;
 767 }
 768 
 769 void os::print_context(outputStream *st, const void *context) {
 770   if (context == NULL) return;
 771 
 772   const ucontext_t *uc = (const ucontext_t*)context;
 773   st->print_cr("Registers:");
 774 #ifdef AMD64
 775   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 776   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 777   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 778   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 779   st->cr();
 780   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 781   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 782   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 783   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 784   st->cr();
 785   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 786   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 787   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 788   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 789   st->cr();
 790   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 791   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 792   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 793   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 794   st->cr();
 795   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 796   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
 797 #else
 798   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
 799   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
 800   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
 801   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
 802   st->cr();
 803   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
 804   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
 805   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
 806   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
 807   st->cr();
 808   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
 809   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
 810 #endif // AMD64
 811   st->cr();
 812   st->cr();
 813 
 814   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
 815   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 816   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 817   st->cr();
 818 
 819   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 820   // point to garbage if entry point in an nmethod is corrupted. Leave
 821   // this at the end, and hope for the best.
 822   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 823   address pc = epc.pc();
 824   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 825   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 826 }
 827 
 828 void os::print_register_info(outputStream *st, const void *context) {
 829   if (context == NULL) return;
 830 
 831   const ucontext_t *uc = (const ucontext_t*)context;
 832 
 833   st->print_cr("Register to memory mapping:");
 834   st->cr();
 835 
 836   // this is horrendously verbose but the layout of the registers in the
 837   // context does not match how we defined our abstract Register set, so
 838   // we can't just iterate through the gregs area
 839 
 840   // this is only for the "general purpose" registers
 841 
 842 #ifdef AMD64
 843   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 844   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 845   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 846   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 847   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 848   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 849   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 850   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 851   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 852   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 853   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 854   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 855   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 856   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 857   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 858   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 859 #else
 860   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
 861   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
 862   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
 863   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
 864   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
 865   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
 866   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
 867   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
 868 #endif
 869 
 870   st->cr();
 871 }
 872 
 873 
 874 #ifdef AMD64
 875 void os::Solaris::init_thread_fpu_state(void) {
 876   // Nothing to do
 877 }
 878 #else
 879 // From solaris_i486.s
 880 extern "C" void fixcw();
 881 
 882 void os::Solaris::init_thread_fpu_state(void) {
 883   // Set fpu to 53 bit precision. This happens too early to use a stub.
 884   fixcw();
 885 }
 886 
 887 // These routines are the initial value of atomic_xchg_entry(),
 888 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
 889 // until initialization is complete.
 890 // TODO - replace with .il implementation when compiler supports it.
 891 
 892 typedef jint  xchg_func_t        (jint,  volatile jint*);
 893 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
 894 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
 895 typedef jint  add_func_t         (jint,  volatile jint*);
 896 
 897 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
 898   // try to use the stub:
 899   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
 900 
 901   if (func != NULL) {
 902     os::atomic_xchg_func = func;
 903     return (*func)(exchange_value, dest);
 904   }
 905   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 906 
 907   jint old_value = *dest;
 908   *dest = exchange_value;
 909   return old_value;
 910 }
 911 
 912 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
 913   // try to use the stub:
 914   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
 915 
 916   if (func != NULL) {
 917     os::atomic_cmpxchg_func = func;
 918     return (*func)(exchange_value, dest, compare_value);
 919   }
 920   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 921 
 922   jint old_value = *dest;
 923   if (old_value == compare_value)
 924     *dest = exchange_value;
 925   return old_value;
 926 }
 927 
 928 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
 929   // try to use the stub:
 930   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
 931 
 932   if (func != NULL) {
 933     os::atomic_cmpxchg_long_func = func;
 934     return (*func)(exchange_value, dest, compare_value);
 935   }
 936   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 937 
 938   jlong old_value = *dest;
 939   if (old_value == compare_value)
 940     *dest = exchange_value;
 941   return old_value;
 942 }
 943 
 944 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
 945   // try to use the stub:
 946   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
 947 
 948   if (func != NULL) {
 949     os::atomic_add_func = func;
 950     return (*func)(add_value, dest);
 951   }
 952   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 953 
 954   return (*dest) += add_value;
 955 }
 956 
 957 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
 958 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
 959 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
 960 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
 961 
 962 extern "C" void _solaris_raw_setup_fpu(address ptr);
 963 void os::setup_fpu() {
 964   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 965   _solaris_raw_setup_fpu(fpu_cntrl);
 966 }
 967 #endif // AMD64
 968 
 969 #ifndef PRODUCT
 970 void os::verify_stack_alignment() {
 971 #ifdef AMD64
 972   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 973 #endif
 974 }
 975 #endif
 976 
 977 int os::extra_bang_size_in_bytes() {
 978   // JDK-8050147 requires the full cache line bang for x86.
 979   return VM_Version::L1_line_size();
 980 }