1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_ASM_ASSEMBLER_HPP
  26 #define SHARE_VM_ASM_ASSEMBLER_HPP
  27 
  28 #include "asm/codeBuffer.hpp"
  29 #include "asm/register.hpp"
  30 #include "code/oopRecorder.hpp"
  31 #include "code/relocInfo.hpp"
  32 #include "memory/allocation.hpp"
  33 #include "runtime/vm_version.hpp"
  34 #include "utilities/debug.hpp"
  35 #include "utilities/growableArray.hpp"
  36 #include "utilities/macros.hpp"
  37 
  38 // This file contains platform-independent assembler declarations.
  39 
  40 class MacroAssembler;
  41 class AbstractAssembler;
  42 class Label;
  43 
  44 /**
  45  * Labels represent destinations for control transfer instructions.  Such
  46  * instructions can accept a Label as their target argument.  A Label is
  47  * bound to the current location in the code stream by calling the
  48  * MacroAssembler's 'bind' method, which in turn calls the Label's 'bind'
  49  * method.  A Label may be referenced by an instruction before it's bound
  50  * (i.e., 'forward referenced').  'bind' stores the current code offset
  51  * in the Label object.
  52  *
  53  * If an instruction references a bound Label, the offset field(s) within
  54  * the instruction are immediately filled in based on the Label's code
  55  * offset.  If an instruction references an unbound label, that
  56  * instruction is put on a list of instructions that must be patched
  57  * (i.e., 'resolved') when the Label is bound.
  58  *
  59  * 'bind' will call the platform-specific 'patch_instruction' method to
  60  * fill in the offset field(s) for each unresolved instruction (if there
  61  * are any).  'patch_instruction' lives in one of the
  62  * cpu/<arch>/vm/assembler_<arch>* files.
  63  *
  64  * Instead of using a linked list of unresolved instructions, a Label has
  65  * an array of unresolved instruction code offsets.  _patch_index
  66  * contains the total number of forward references.  If the Label's array
  67  * overflows (i.e., _patch_index grows larger than the array size), a
  68  * GrowableArray is allocated to hold the remaining offsets.  (The cache
  69  * size is 4 for now, which handles over 99.5% of the cases)
  70  *
  71  * Labels may only be used within a single CodeSection.  If you need
  72  * to create references between code sections, use explicit relocations.
  73  */
  74 class Label VALUE_OBJ_CLASS_SPEC {
  75  private:
  76   enum { PatchCacheSize = 4 };
  77 
  78   // _loc encodes both the binding state (via its sign)
  79   // and the binding locator (via its value) of a label.
  80   //
  81   // _loc >= 0   bound label, loc() encodes the target (jump) position
  82   // _loc == -1  unbound label
  83   int _loc;
  84 
  85   // References to instructions that jump to this unresolved label.
  86   // These instructions need to be patched when the label is bound
  87   // using the platform-specific patchInstruction() method.
  88   //
  89   // To avoid having to allocate from the C-heap each time, we provide
  90   // a local cache and use the overflow only if we exceed the local cache
  91   int _patches[PatchCacheSize];
  92   int _patch_index;
  93   GrowableArray<int>* _patch_overflow;
  94 
  95   Label(const Label&) { ShouldNotReachHere(); }
  96 
  97  public:
  98 
  99   /**
 100    * After binding, be sure 'patch_instructions' is called later to link
 101    */
 102   void bind_loc(int loc) {
 103     assert(loc >= 0, "illegal locator");
 104     assert(_loc == -1, "already bound");
 105     _loc = loc;
 106   }
 107   void bind_loc(int pos, int sect) { bind_loc(CodeBuffer::locator(pos, sect)); }
 108 
 109 #ifndef PRODUCT
 110   // Iterates over all unresolved instructions for printing
 111   void print_instructions(MacroAssembler* masm) const;
 112 #endif // PRODUCT
 113 
 114   /**
 115    * Returns the position of the the Label in the code buffer
 116    * The position is a 'locator', which encodes both offset and section.
 117    */
 118   int loc() const {
 119     assert(_loc >= 0, "unbound label");
 120     return _loc;
 121   }
 122   int loc_pos()  const { return CodeBuffer::locator_pos(loc()); }
 123   int loc_sect() const { return CodeBuffer::locator_sect(loc()); }
 124 
 125   bool is_bound() const    { return _loc >=  0; }
 126   bool is_unbound() const  { return _loc == -1 && _patch_index > 0; }
 127   bool is_unused() const   { return _loc == -1 && _patch_index == 0; }
 128 
 129   /**
 130    * Adds a reference to an unresolved displacement instruction to
 131    * this unbound label
 132    *
 133    * @param cb         the code buffer being patched
 134    * @param branch_loc the locator of the branch instruction in the code buffer
 135    */
 136   void add_patch_at(CodeBuffer* cb, int branch_loc);
 137 
 138   /**
 139    * Iterate over the list of patches, resolving the instructions
 140    * Call patch_instruction on each 'branch_loc' value
 141    */
 142   void patch_instructions(MacroAssembler* masm);
 143 
 144   void init() {
 145     _loc = -1;
 146     _patch_index = 0;
 147     _patch_overflow = NULL;
 148   }
 149 
 150   Label() {
 151     init();
 152   }
 153 };
 154 
 155 // A union type for code which has to assemble both constant and
 156 // non-constant operands, when the distinction cannot be made
 157 // statically.
 158 class RegisterOrConstant VALUE_OBJ_CLASS_SPEC {
 159  private:
 160   Register _r;
 161   intptr_t _c;
 162 
 163  public:
 164   RegisterOrConstant(): _r(noreg), _c(0) {}
 165   RegisterOrConstant(Register r): _r(r), _c(0) {}
 166   RegisterOrConstant(intptr_t c): _r(noreg), _c(c) {}
 167 
 168   Register as_register() const { assert(is_register(),""); return _r; }
 169   intptr_t as_constant() const { assert(is_constant(),""); return _c; }
 170 
 171   Register register_or_noreg() const { return _r; }
 172   intptr_t constant_or_zero() const  { return _c; }
 173 
 174   bool is_register() const { return _r != noreg; }
 175   bool is_constant() const { return _r == noreg; }
 176 };
 177 
 178 // The Abstract Assembler: Pure assembler doing NO optimizations on the
 179 // instruction level; i.e., what you write is what you get.
 180 // The Assembler is generating code into a CodeBuffer.
 181 class AbstractAssembler : public ResourceObj  {
 182   friend class Label;
 183 
 184  protected:
 185   CodeSection* _code_section;          // section within the code buffer
 186   OopRecorder* _oop_recorder;          // support for relocInfo::oop_type
 187 
 188  public:
 189   // Code emission & accessing
 190   address addr_at(int pos) const { return code_section()->start() + pos; }
 191 
 192  protected:
 193   // This routine is called with a label is used for an address.
 194   // Labels and displacements truck in offsets, but target must return a PC.
 195   address target(Label& L)             { return code_section()->target(L, pc()); }
 196 
 197   bool is8bit(int x) const             { return -0x80 <= x && x < 0x80; }
 198   bool isByte(int x) const             { return 0 <= x && x < 0x100; }
 199   bool isShiftCount(int x) const       { return 0 <= x && x < 32; }
 200 
 201   // Instruction boundaries (required when emitting relocatable values).
 202   class InstructionMark: public StackObj {
 203    private:
 204     AbstractAssembler* _assm;
 205 
 206    public:
 207     InstructionMark(AbstractAssembler* assm) : _assm(assm) {
 208       assert(assm->inst_mark() == NULL, "overlapping instructions");
 209       _assm->set_inst_mark();
 210     }
 211     ~InstructionMark() {
 212       _assm->clear_inst_mark();
 213     }
 214   };
 215   friend class InstructionMark;
 216 #ifdef ASSERT
 217   // Make it return true on platforms which need to verify
 218   // instruction boundaries for some operations.
 219   static bool pd_check_instruction_mark();
 220 
 221   // Add delta to short branch distance to verify that it still fit into imm8.
 222   int _short_branch_delta;
 223 
 224   int  short_branch_delta() const { return _short_branch_delta; }
 225   void set_short_branch_delta()   { _short_branch_delta = 32; }
 226   void clear_short_branch_delta() { _short_branch_delta = 0; }
 227 
 228   class ShortBranchVerifier: public StackObj {
 229    private:
 230     AbstractAssembler* _assm;
 231 
 232    public:
 233     ShortBranchVerifier(AbstractAssembler* assm) : _assm(assm) {
 234       assert(assm->short_branch_delta() == 0, "overlapping instructions");
 235       _assm->set_short_branch_delta();
 236     }
 237     ~ShortBranchVerifier() {
 238       _assm->clear_short_branch_delta();
 239     }
 240   };
 241 #else
 242   // Dummy in product.
 243   class ShortBranchVerifier: public StackObj {
 244    public:
 245     ShortBranchVerifier(AbstractAssembler* assm) {}
 246   };
 247 #endif
 248 
 249  public:
 250 
 251   // Creation
 252   AbstractAssembler(CodeBuffer* code);
 253 
 254   // ensure buf contains all code (call this before using/copying the code)
 255   void flush();
 256 
 257   void emit_int8(   int8_t  x) { code_section()->emit_int8(   x); }
 258   void emit_int16(  int16_t x) { code_section()->emit_int16(  x); }
 259   void emit_int32(  int32_t x) { code_section()->emit_int32(  x); }
 260   void emit_int64(  int64_t x) { code_section()->emit_int64(  x); }
 261 
 262   void emit_float(  jfloat  x) { code_section()->emit_float(  x); }
 263   void emit_double( jdouble x) { code_section()->emit_double( x); }
 264   void emit_address(address x) { code_section()->emit_address(x); }
 265 
 266   // min and max values for signed immediate ranges
 267   static int min_simm(int nbits) { return -(intptr_t(1) << (nbits - 1))    ; }
 268   static int max_simm(int nbits) { return  (intptr_t(1) << (nbits - 1)) - 1; }
 269 
 270   // Define some:
 271   static int min_simm10() { return min_simm(10); }
 272   static int min_simm13() { return min_simm(13); }
 273   static int min_simm16() { return min_simm(16); }
 274 
 275   // Test if x is within signed immediate range for nbits
 276   static bool is_simm(intptr_t x, int nbits) { return min_simm(nbits) <= x && x <= max_simm(nbits); }
 277 
 278   // Define some:
 279   static bool is_simm5( intptr_t x) { return is_simm(x, 5 ); }
 280   static bool is_simm8( intptr_t x) { return is_simm(x, 8 ); }
 281   static bool is_simm10(intptr_t x) { return is_simm(x, 10); }
 282   static bool is_simm11(intptr_t x) { return is_simm(x, 11); }
 283   static bool is_simm12(intptr_t x) { return is_simm(x, 12); }
 284   static bool is_simm13(intptr_t x) { return is_simm(x, 13); }
 285   static bool is_simm16(intptr_t x) { return is_simm(x, 16); }
 286   static bool is_simm26(intptr_t x) { return is_simm(x, 26); }
 287   static bool is_simm32(intptr_t x) { return is_simm(x, 32); }
 288 
 289   // Accessors
 290   CodeSection*  code_section() const   { return _code_section; }
 291   CodeBuffer*   code()         const   { return code_section()->outer(); }
 292   int           sect()         const   { return code_section()->index(); }
 293   address       pc()           const   { return code_section()->end();   }
 294   int           offset()       const   { return code_section()->size();  }
 295   int           locator()      const   { return CodeBuffer::locator(offset(), sect()); }
 296 
 297   OopRecorder*  oop_recorder() const   { return _oop_recorder; }
 298   void      set_oop_recorder(OopRecorder* r) { _oop_recorder = r; }
 299 
 300   address       inst_mark() const { return code_section()->mark();       }
 301   void      set_inst_mark()       {        code_section()->set_mark();   }
 302   void    clear_inst_mark()       {        code_section()->clear_mark(); }
 303 
 304   // Constants in code
 305   void relocate(RelocationHolder const& rspec, int format = 0) {
 306     assert(!pd_check_instruction_mark()
 307         || inst_mark() == NULL || inst_mark() == code_section()->end(),
 308         "call relocate() between instructions");
 309     code_section()->relocate(code_section()->end(), rspec, format);
 310   }
 311   void relocate(   relocInfo::relocType rtype, int format = 0) {
 312     code_section()->relocate(code_section()->end(), rtype, format);
 313   }
 314 
 315   static int code_fill_byte();         // used to pad out odd-sized code buffers
 316 
 317   // Associate a comment with the current offset.  It will be printed
 318   // along with the disassembly when printing nmethods.  Currently
 319   // only supported in the instruction section of the code buffer.
 320   void block_comment(const char* comment);
 321   // Copy str to a buffer that has the same lifetime as the CodeBuffer
 322   const char* code_string(const char* str);
 323 
 324   // Label functions
 325   void bind(Label& L); // binds an unbound label L to the current code position
 326 
 327   // Move to a different section in the same code buffer.
 328   void set_code_section(CodeSection* cs);
 329 
 330   // Inform assembler when generating stub code and relocation info
 331   address    start_a_stub(int required_space);
 332   void       end_a_stub();
 333   // Ditto for constants.
 334   address    start_a_const(int required_space, int required_align = sizeof(double));
 335   void       end_a_const(CodeSection* cs);  // Pass the codesection to continue in (insts or stubs?).
 336 
 337   // constants support
 338   //
 339   // We must remember the code section (insts or stubs) in c1
 340   // so we can reset to the proper section in end_a_const().
 341   address long_constant(jlong c) {
 342     CodeSection* c1 = _code_section;
 343     address ptr = start_a_const(sizeof(c), sizeof(c));
 344     if (ptr != NULL) {
 345       emit_int64(c);
 346       end_a_const(c1);
 347     }
 348     return ptr;
 349   }
 350   address double_constant(jdouble c) {
 351     CodeSection* c1 = _code_section;
 352     address ptr = start_a_const(sizeof(c), sizeof(c));
 353     if (ptr != NULL) {
 354       emit_double(c);
 355       end_a_const(c1);
 356     }
 357     return ptr;
 358   }
 359   address float_constant(jfloat c) {
 360     CodeSection* c1 = _code_section;
 361     address ptr = start_a_const(sizeof(c), sizeof(c));
 362     if (ptr != NULL) {
 363       emit_float(c);
 364       end_a_const(c1);
 365     }
 366     return ptr;
 367   }
 368   address address_constant(address c) {
 369     CodeSection* c1 = _code_section;
 370     address ptr = start_a_const(sizeof(c), sizeof(c));
 371     if (ptr != NULL) {
 372       emit_address(c);
 373       end_a_const(c1);
 374     }
 375     return ptr;
 376   }
 377   address address_constant(address c, RelocationHolder const& rspec) {
 378     CodeSection* c1 = _code_section;
 379     address ptr = start_a_const(sizeof(c), sizeof(c));
 380     if (ptr != NULL) {
 381       relocate(rspec);
 382       emit_address(c);
 383       end_a_const(c1);
 384     }
 385     return ptr;
 386   }
 387 
 388   // Bootstrapping aid to cope with delayed determination of constants.
 389   // Returns a static address which will eventually contain the constant.
 390   // The value zero (NULL) stands instead of a constant which is still uncomputed.
 391   // Thus, the eventual value of the constant must not be zero.
 392   // This is fine, since this is designed for embedding object field
 393   // offsets in code which must be generated before the object class is loaded.
 394   // Field offsets are never zero, since an object's header (mark word)
 395   // is located at offset zero.
 396   RegisterOrConstant delayed_value(int(*value_fn)(), Register tmp, int offset = 0);
 397   RegisterOrConstant delayed_value(address(*value_fn)(), Register tmp, int offset = 0);
 398   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) = 0;
 399   // Last overloading is platform-dependent; look in assembler_<arch>.cpp.
 400   static intptr_t* delayed_value_addr(int(*constant_fn)());
 401   static intptr_t* delayed_value_addr(address(*constant_fn)());
 402   static void update_delayed_values();
 403 
 404   // Bang stack to trigger StackOverflowError at a safe location
 405   // implementation delegates to machine-specific bang_stack_with_offset
 406   void generate_stack_overflow_check( int frame_size_in_bytes );
 407   virtual void bang_stack_with_offset(int offset) = 0;
 408 
 409 
 410   /**
 411    * A platform-dependent method to patch a jump instruction that refers
 412    * to this label.
 413    *
 414    * @param branch the location of the instruction to patch
 415    * @param masm the assembler which generated the branch
 416    */
 417   void pd_patch_instruction(address branch, address target);
 418 
 419 };
 420 
 421 #include CPU_HEADER(assembler)
 422 
 423 #endif // SHARE_VM_ASM_ASSEMBLER_HPP