1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 #ifndef NOINLINE
  46 #define NOINLINE
  47 #endif
  48 #ifndef ALWAYSINLINE
  49 #define ALWAYSINLINE inline
  50 #endif
  51 #ifndef PRAGMA_DIAG_PUSH
  52 #define PRAGMA_DIAG_PUSH
  53 #endif
  54 #ifndef PRAGMA_DIAG_POP
  55 #define PRAGMA_DIAG_POP
  56 #endif
  57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  59 #endif
  60 #ifndef PRAGMA_FORMAT_IGNORED
  61 #define PRAGMA_FORMAT_IGNORED
  62 #endif
  63 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  64 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  65 #endif
  66 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  67 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  68 #endif
  69 #ifndef ATTRIBUTE_PRINTF
  70 #define ATTRIBUTE_PRINTF(fmt, vargs)
  71 #endif
  72 #ifndef ATTRIBUTE_SCANF
  73 #define ATTRIBUTE_SCANF(fmt, vargs)
  74 #endif
  75 
  76 
  77 #include "utilities/macros.hpp"
  78 
  79 // This file holds all globally used constants & types, class (forward)
  80 // declarations and a few frequently used utility functions.
  81 
  82 //----------------------------------------------------------------------------------------------------
  83 // Constants
  84 
  85 const int LogBytesPerShort   = 1;
  86 const int LogBytesPerInt     = 2;
  87 #ifdef _LP64
  88 const int LogBytesPerWord    = 3;
  89 #else
  90 const int LogBytesPerWord    = 2;
  91 #endif
  92 const int LogBytesPerLong    = 3;
  93 
  94 const int BytesPerShort      = 1 << LogBytesPerShort;
  95 const int BytesPerInt        = 1 << LogBytesPerInt;
  96 const int BytesPerWord       = 1 << LogBytesPerWord;
  97 const int BytesPerLong       = 1 << LogBytesPerLong;
  98 
  99 const int LogBitsPerByte     = 3;
 100 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 101 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 102 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 103 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 104 
 105 const int BitsPerByte        = 1 << LogBitsPerByte;
 106 const int BitsPerShort       = 1 << LogBitsPerShort;
 107 const int BitsPerInt         = 1 << LogBitsPerInt;
 108 const int BitsPerWord        = 1 << LogBitsPerWord;
 109 const int BitsPerLong        = 1 << LogBitsPerLong;
 110 
 111 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 112 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 113 
 114 const int WordsPerLong       = 2;       // Number of stack entries for longs
 115 
 116 const int oopSize            = sizeof(char*); // Full-width oop
 117 extern int heapOopSize;                       // Oop within a java object
 118 const int wordSize           = sizeof(char*);
 119 const int longSize           = sizeof(jlong);
 120 const int jintSize           = sizeof(jint);
 121 const int size_tSize         = sizeof(size_t);
 122 
 123 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 124 
 125 extern int LogBytesPerHeapOop;                // Oop within a java object
 126 extern int LogBitsPerHeapOop;
 127 extern int BytesPerHeapOop;
 128 extern int BitsPerHeapOop;
 129 
 130 const int BitsPerJavaInteger = 32;
 131 const int BitsPerJavaLong    = 64;
 132 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 133 
 134 // Size of a char[] needed to represent a jint as a string in decimal.
 135 const int jintAsStringSize = 12;
 136 
 137 // In fact this should be
 138 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 139 // see os::set_memory_serialize_page()
 140 #ifdef _LP64
 141 const int SerializePageShiftCount = 4;
 142 #else
 143 const int SerializePageShiftCount = 3;
 144 #endif
 145 
 146 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 147 // pointer into the heap.  We require that object sizes be measured in
 148 // units of heap words, so that that
 149 //   HeapWord* hw;
 150 //   hw += oop(hw)->foo();
 151 // works, where foo is a method (like size or scavenge) that returns the
 152 // object size.
 153 class HeapWord {
 154   friend class VMStructs;
 155  private:
 156   char* i;
 157 #ifndef PRODUCT
 158  public:
 159   char* value() { return i; }
 160 #endif
 161 };
 162 
 163 // Analogous opaque struct for metadata allocated from
 164 // metaspaces.
 165 class MetaWord {
 166  private:
 167   char* i;
 168 };
 169 
 170 // HeapWordSize must be 2^LogHeapWordSize.
 171 const int HeapWordSize        = sizeof(HeapWord);
 172 #ifdef _LP64
 173 const int LogHeapWordSize     = 3;
 174 #else
 175 const int LogHeapWordSize     = 2;
 176 #endif
 177 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 178 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 179 
 180 // The larger HeapWordSize for 64bit requires larger heaps
 181 // for the same application running in 64bit.  See bug 4967770.
 182 // The minimum alignment to a heap word size is done.  Other
 183 // parts of the memory system may require additional alignment
 184 // and are responsible for those alignments.
 185 #ifdef _LP64
 186 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 187 #else
 188 #define ScaleForWordSize(x) (x)
 189 #endif
 190 
 191 // The minimum number of native machine words necessary to contain "byte_size"
 192 // bytes.
 193 inline size_t heap_word_size(size_t byte_size) {
 194   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 195 }
 196 
 197 const size_t K                  = 1024;
 198 const size_t M                  = K*K;
 199 const size_t G                  = M*K;
 200 const size_t HWperKB            = K / sizeof(HeapWord);
 201 
 202 // Constants for converting from a base unit to milli-base units.  For
 203 // example from seconds to milliseconds and microseconds
 204 
 205 const int MILLIUNITS    = 1000;         // milli units per base unit
 206 const int MICROUNITS    = 1000000;      // micro units per base unit
 207 const int NANOUNITS     = 1000000000;   // nano units per base unit
 208 
 209 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 210 const jint  NANOSECS_PER_MILLISEC = 1000000;
 211 
 212 inline const char* proper_unit_for_byte_size(size_t s) {
 213 #ifdef _LP64
 214   if (s >= 10*G) {
 215     return "G";
 216   }
 217 #endif
 218   if (s >= 10*M) {
 219     return "M";
 220   } else if (s >= 10*K) {
 221     return "K";
 222   } else {
 223     return "B";
 224   }
 225 }
 226 
 227 template <class T>
 228 inline T byte_size_in_proper_unit(T s) {
 229 #ifdef _LP64
 230   if (s >= 10*G) {
 231     return (T)(s/G);
 232   }
 233 #endif
 234   if (s >= 10*M) {
 235     return (T)(s/M);
 236   } else if (s >= 10*K) {
 237     return (T)(s/K);
 238   } else {
 239     return s;
 240   }
 241 }
 242 
 243 inline const char* exact_unit_for_byte_size(size_t s) {
 244 #ifdef _LP64
 245   if (s >= G && (s % G) == 0) {
 246     return "G";
 247   }
 248 #endif
 249   if (s >= M && (s % M) == 0) {
 250     return "M";
 251   }
 252   if (s >= K && (s % K) == 0) {
 253     return "K";
 254   }
 255   return "B";
 256 }
 257 
 258 inline size_t byte_size_in_exact_unit(size_t s) {
 259 #ifdef _LP64
 260   if (s >= G && (s % G) == 0) {
 261     return s / G;
 262   }
 263 #endif
 264   if (s >= M && (s % M) == 0) {
 265     return s / M;
 266   }
 267   if (s >= K && (s % K) == 0) {
 268     return s / K;
 269   }
 270   return s;
 271 }
 272 
 273 //----------------------------------------------------------------------------------------------------
 274 // VM type definitions
 275 
 276 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 277 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 278 
 279 typedef intptr_t  intx;
 280 typedef uintptr_t uintx;
 281 
 282 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 283 const intx  max_intx  = (uintx)min_intx - 1;
 284 const uintx max_uintx = (uintx)-1;
 285 
 286 // Table of values:
 287 //      sizeof intx         4               8
 288 // min_intx             0x80000000      0x8000000000000000
 289 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 290 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 291 
 292 typedef unsigned int uint;   NEEDS_CLEANUP
 293 
 294 
 295 //----------------------------------------------------------------------------------------------------
 296 // Java type definitions
 297 
 298 // All kinds of 'plain' byte addresses
 299 typedef   signed char s_char;
 300 typedef unsigned char u_char;
 301 typedef u_char*       address;
 302 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 303                                     // except for some implementations of a C++
 304                                     // linkage pointer to function. Should never
 305                                     // need one of those to be placed in this
 306                                     // type anyway.
 307 
 308 //  Utility functions to "portably" (?) bit twiddle pointers
 309 //  Where portable means keep ANSI C++ compilers quiet
 310 
 311 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 312 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 313 
 314 //  Utility functions to "portably" make cast to/from function pointers.
 315 
 316 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 317 inline address_word  castable_address(address x)              { return address_word(x) ; }
 318 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 319 
 320 // Pointer subtraction.
 321 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 322 // the range we might need to find differences from one end of the heap
 323 // to the other.
 324 // A typical use might be:
 325 //     if (pointer_delta(end(), top()) >= size) {
 326 //       // enough room for an object of size
 327 //       ...
 328 // and then additions like
 329 //       ... top() + size ...
 330 // are safe because we know that top() is at least size below end().
 331 inline size_t pointer_delta(const void* left,
 332                             const void* right,
 333                             size_t element_size) {
 334   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 335 }
 336 // A version specialized for HeapWord*'s.
 337 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 338   return pointer_delta(left, right, sizeof(HeapWord));
 339 }
 340 // A version specialized for MetaWord*'s.
 341 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 342   return pointer_delta(left, right, sizeof(MetaWord));
 343 }
 344 
 345 //
 346 // ANSI C++ does not allow casting from one pointer type to a function pointer
 347 // directly without at best a warning. This macro accomplishes it silently
 348 // In every case that is present at this point the value be cast is a pointer
 349 // to a C linkage function. In some case the type used for the cast reflects
 350 // that linkage and a picky compiler would not complain. In other cases because
 351 // there is no convenient place to place a typedef with extern C linkage (i.e
 352 // a platform dependent header file) it doesn't. At this point no compiler seems
 353 // picky enough to catch these instances (which are few). It is possible that
 354 // using templates could fix these for all cases. This use of templates is likely
 355 // so far from the middle of the road that it is likely to be problematic in
 356 // many C++ compilers.
 357 //
 358 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 359 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 360 
 361 // Unsigned byte types for os and stream.hpp
 362 
 363 // Unsigned one, two, four and eigth byte quantities used for describing
 364 // the .class file format. See JVM book chapter 4.
 365 
 366 typedef jubyte  u1;
 367 typedef jushort u2;
 368 typedef juint   u4;
 369 typedef julong  u8;
 370 
 371 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 372 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 373 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 374 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 375 
 376 typedef jbyte  s1;
 377 typedef jshort s2;
 378 typedef jint   s4;
 379 typedef jlong  s8;
 380 
 381 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 382 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 383 const jshort min_jshort = -(1 << 15);    // smallest jshort
 384 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 385 
 386 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 387 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 388 
 389 //----------------------------------------------------------------------------------------------------
 390 // JVM spec restrictions
 391 
 392 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 393 
 394 // Default ProtectionDomainCacheSize values
 395 
 396 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 397 
 398 //----------------------------------------------------------------------------------------------------
 399 // Default and minimum StringTableSize values
 400 
 401 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 402 const int minimumStringTableSize = 1009;
 403 
 404 const int defaultSymbolTableSize = 20011;
 405 const int minimumSymbolTableSize = 1009;
 406 
 407 
 408 //----------------------------------------------------------------------------------------------------
 409 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 410 //
 411 // Determines whether on-the-fly class replacement and frame popping are enabled.
 412 
 413 #define HOTSWAP
 414 
 415 //----------------------------------------------------------------------------------------------------
 416 // Object alignment, in units of HeapWords.
 417 //
 418 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 419 // reference fields can be naturally aligned.
 420 
 421 extern int MinObjAlignment;
 422 extern int MinObjAlignmentInBytes;
 423 extern int MinObjAlignmentInBytesMask;
 424 
 425 extern int LogMinObjAlignment;
 426 extern int LogMinObjAlignmentInBytes;
 427 
 428 const int LogKlassAlignmentInBytes = 3;
 429 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 430 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 431 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 432 
 433 // Maximal size of heap where unscaled compression can be used. Also upper bound
 434 // for heap placement: 4GB.
 435 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 436 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 437 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 438 extern uint64_t OopEncodingHeapMax;
 439 
 440 // Maximal size of compressed class space. Above this limit compression is not possible.
 441 // Also upper bound for placement of zero based class space. (Class space is further limited
 442 // to be < 3G, see arguments.cpp.)
 443 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 444 
 445 // Machine dependent stuff
 446 
 447 // States of Restricted Transactional Memory usage.
 448 enum RTMState {
 449   NoRTM      = 0x2, // Don't use RTM
 450   UseRTM     = 0x1, // Use RTM
 451   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 452 };
 453 
 454 // The maximum size of the code cache.  Can be overridden by targets.
 455 #define CODE_CACHE_SIZE_LIMIT (2*G)
 456 // Allow targets to reduce the default size of the code cache.
 457 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 458 
 459 #ifdef TARGET_ARCH_x86
 460 # include "globalDefinitions_x86.hpp"
 461 #endif
 462 #ifdef TARGET_ARCH_sparc
 463 # include "globalDefinitions_sparc.hpp"
 464 #endif
 465 #ifdef TARGET_ARCH_zero
 466 # include "globalDefinitions_zero.hpp"
 467 #endif
 468 #ifdef TARGET_ARCH_arm
 469 # include "globalDefinitions_arm.hpp"
 470 #endif
 471 #ifdef TARGET_ARCH_ppc
 472 # include "globalDefinitions_ppc.hpp"
 473 #endif
 474 #ifdef TARGET_ARCH_aarch64
 475 # include "globalDefinitions_aarch64.hpp"
 476 #endif
 477 
 478 #ifndef INCLUDE_RTM_OPT
 479 #define INCLUDE_RTM_OPT 0
 480 #endif
 481 #if INCLUDE_RTM_OPT
 482 #define RTM_OPT_ONLY(code) code
 483 #else
 484 #define RTM_OPT_ONLY(code)
 485 #endif
 486 
 487 // To assure the IRIW property on processors that are not multiple copy
 488 // atomic, sync instructions must be issued between volatile reads to
 489 // assure their ordering, instead of after volatile stores.
 490 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 491 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 492 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 493 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 494 #else
 495 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 496 #endif
 497 
 498 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 499 // Note: this value must be a power of 2
 500 
 501 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 502 
 503 // Signed variants of alignment helpers.  There are two versions of each, a macro
 504 // for use in places like enum definitions that require compile-time constant
 505 // expressions and a function for all other places so as to get type checking.
 506 
 507 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 508 
 509 inline bool is_size_aligned(size_t size, size_t alignment) {
 510   return align_size_up_(size, alignment) == size;
 511 }
 512 
 513 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 514   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 515 }
 516 
 517 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 518   return align_size_up_(size, alignment);
 519 }
 520 
 521 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 522 
 523 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 524   return align_size_down_(size, alignment);
 525 }
 526 
 527 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 528 
 529 inline void* align_ptr_up(const void* ptr, size_t alignment) {
 530   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 531 }
 532 
 533 inline void* align_ptr_down(void* ptr, size_t alignment) {
 534   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 535 }
 536 
 537 // Align metaspace objects by rounding up to natural word boundary
 538 
 539 inline intptr_t align_metadata_size(intptr_t size) {
 540   return align_size_up(size, 1);
 541 }
 542 
 543 // Align objects in the Java Heap by rounding up their size, in HeapWord units.
 544 // Since the size is given in words this is somewhat of a nop, but
 545 // distinguishes it from align_object_size.
 546 inline intptr_t align_object_size(intptr_t size) {
 547   return align_size_up(size, MinObjAlignment);
 548 }
 549 
 550 inline bool is_object_aligned(intptr_t addr) {
 551   return addr == align_object_size(addr);
 552 }
 553 
 554 // Pad out certain offsets to jlong alignment, in HeapWord units.
 555 
 556 inline intptr_t align_object_offset(intptr_t offset) {
 557   return align_size_up(offset, HeapWordsPerLong);
 558 }
 559 
 560 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 561 
 562 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 563   size_t aligned_size = align_size_down_(size, alignment);
 564   return aligned_size > 0 ? aligned_size : alignment;
 565 }
 566 
 567 // Clamp an address to be within a specific page
 568 // 1. If addr is on the page it is returned as is
 569 // 2. If addr is above the page_address the start of the *next* page will be returned
 570 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 571 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 572   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 573     // address is in the specified page, just return it as is
 574     return addr;
 575   } else if (addr > page_address) {
 576     // address is above specified page, return start of next page
 577     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 578   } else {
 579     // address is below specified page, return start of page
 580     return (address)align_size_down(intptr_t(page_address), page_size);
 581   }
 582 }
 583 
 584 
 585 // The expected size in bytes of a cache line, used to pad data structures.
 586 #ifndef DEFAULT_CACHE_LINE_SIZE
 587   #define DEFAULT_CACHE_LINE_SIZE 64
 588 #endif
 589 
 590 
 591 //----------------------------------------------------------------------------------------------------
 592 // Utility macros for compilers
 593 // used to silence compiler warnings
 594 
 595 #define Unused_Variable(var) var
 596 
 597 
 598 //----------------------------------------------------------------------------------------------------
 599 // Miscellaneous
 600 
 601 // 6302670 Eliminate Hotspot __fabsf dependency
 602 // All fabs() callers should call this function instead, which will implicitly
 603 // convert the operand to double, avoiding a dependency on __fabsf which
 604 // doesn't exist in early versions of Solaris 8.
 605 inline double fabsd(double value) {
 606   return fabs(value);
 607 }
 608 
 609 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 610 // is zero, return 0.0.
 611 template<typename T>
 612 inline double percent_of(T numerator, T denominator) {
 613   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 614 }
 615 
 616 //----------------------------------------------------------------------------------------------------
 617 // Special casts
 618 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 619 typedef union {
 620   jfloat f;
 621   jint i;
 622 } FloatIntConv;
 623 
 624 typedef union {
 625   jdouble d;
 626   jlong l;
 627   julong ul;
 628 } DoubleLongConv;
 629 
 630 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 631 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 632 
 633 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 634 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 635 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 636 
 637 inline jint low (jlong value)                    { return jint(value); }
 638 inline jint high(jlong value)                    { return jint(value >> 32); }
 639 
 640 // the fancy casts are a hopefully portable way
 641 // to do unsigned 32 to 64 bit type conversion
 642 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 643                                                    *value |= (jlong)(julong)(juint)low; }
 644 
 645 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 646                                                    *value |= (jlong)high       << 32; }
 647 
 648 inline jlong jlong_from(jint h, jint l) {
 649   jlong result = 0; // initialization to avoid warning
 650   set_high(&result, h);
 651   set_low(&result,  l);
 652   return result;
 653 }
 654 
 655 union jlong_accessor {
 656   jint  words[2];
 657   jlong long_value;
 658 };
 659 
 660 void basic_types_init(); // cannot define here; uses assert
 661 
 662 
 663 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 664 enum BasicType {
 665   T_BOOLEAN     =  4,
 666   T_CHAR        =  5,
 667   T_FLOAT       =  6,
 668   T_DOUBLE      =  7,
 669   T_BYTE        =  8,
 670   T_SHORT       =  9,
 671   T_INT         = 10,
 672   T_LONG        = 11,
 673   T_OBJECT      = 12,
 674   T_ARRAY       = 13,
 675   T_VOID        = 14,
 676   T_ADDRESS     = 15,
 677   T_NARROWOOP   = 16,
 678   T_METADATA    = 17,
 679   T_NARROWKLASS = 18,
 680   T_CONFLICT    = 19, // for stack value type with conflicting contents
 681   T_ILLEGAL     = 99
 682 };
 683 
 684 inline bool is_java_primitive(BasicType t) {
 685   return T_BOOLEAN <= t && t <= T_LONG;
 686 }
 687 
 688 inline bool is_subword_type(BasicType t) {
 689   // these guys are processed exactly like T_INT in calling sequences:
 690   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 691 }
 692 
 693 inline bool is_signed_subword_type(BasicType t) {
 694   return (t == T_BYTE || t == T_SHORT);
 695 }
 696 
 697 // Convert a char from a classfile signature to a BasicType
 698 inline BasicType char2type(char c) {
 699   switch( c ) {
 700   case 'B': return T_BYTE;
 701   case 'C': return T_CHAR;
 702   case 'D': return T_DOUBLE;
 703   case 'F': return T_FLOAT;
 704   case 'I': return T_INT;
 705   case 'J': return T_LONG;
 706   case 'S': return T_SHORT;
 707   case 'Z': return T_BOOLEAN;
 708   case 'V': return T_VOID;
 709   case 'L': return T_OBJECT;
 710   case '[': return T_ARRAY;
 711   }
 712   return T_ILLEGAL;
 713 }
 714 
 715 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 716 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 717 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 718 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 719 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 720 extern BasicType name2type(const char* name);
 721 
 722 // Auxiliary math routines
 723 // least common multiple
 724 extern size_t lcm(size_t a, size_t b);
 725 
 726 
 727 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 728 enum BasicTypeSize {
 729   T_BOOLEAN_size     = 1,
 730   T_CHAR_size        = 1,
 731   T_FLOAT_size       = 1,
 732   T_DOUBLE_size      = 2,
 733   T_BYTE_size        = 1,
 734   T_SHORT_size       = 1,
 735   T_INT_size         = 1,
 736   T_LONG_size        = 2,
 737   T_OBJECT_size      = 1,
 738   T_ARRAY_size       = 1,
 739   T_NARROWOOP_size   = 1,
 740   T_NARROWKLASS_size = 1,
 741   T_VOID_size        = 0
 742 };
 743 
 744 
 745 // maps a BasicType to its instance field storage type:
 746 // all sub-word integral types are widened to T_INT
 747 extern BasicType type2field[T_CONFLICT+1];
 748 extern BasicType type2wfield[T_CONFLICT+1];
 749 
 750 
 751 // size in bytes
 752 enum ArrayElementSize {
 753   T_BOOLEAN_aelem_bytes     = 1,
 754   T_CHAR_aelem_bytes        = 2,
 755   T_FLOAT_aelem_bytes       = 4,
 756   T_DOUBLE_aelem_bytes      = 8,
 757   T_BYTE_aelem_bytes        = 1,
 758   T_SHORT_aelem_bytes       = 2,
 759   T_INT_aelem_bytes         = 4,
 760   T_LONG_aelem_bytes        = 8,
 761 #ifdef _LP64
 762   T_OBJECT_aelem_bytes      = 8,
 763   T_ARRAY_aelem_bytes       = 8,
 764 #else
 765   T_OBJECT_aelem_bytes      = 4,
 766   T_ARRAY_aelem_bytes       = 4,
 767 #endif
 768   T_NARROWOOP_aelem_bytes   = 4,
 769   T_NARROWKLASS_aelem_bytes = 4,
 770   T_VOID_aelem_bytes        = 0
 771 };
 772 
 773 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 774 #ifdef ASSERT
 775 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 776 #else
 777 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 778 #endif
 779 
 780 
 781 // JavaValue serves as a container for arbitrary Java values.
 782 
 783 class JavaValue {
 784 
 785  public:
 786   typedef union JavaCallValue {
 787     jfloat   f;
 788     jdouble  d;
 789     jint     i;
 790     jlong    l;
 791     jobject  h;
 792   } JavaCallValue;
 793 
 794  private:
 795   BasicType _type;
 796   JavaCallValue _value;
 797 
 798  public:
 799   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 800 
 801   JavaValue(jfloat value) {
 802     _type    = T_FLOAT;
 803     _value.f = value;
 804   }
 805 
 806   JavaValue(jdouble value) {
 807     _type    = T_DOUBLE;
 808     _value.d = value;
 809   }
 810 
 811  jfloat get_jfloat() const { return _value.f; }
 812  jdouble get_jdouble() const { return _value.d; }
 813  jint get_jint() const { return _value.i; }
 814  jlong get_jlong() const { return _value.l; }
 815  jobject get_jobject() const { return _value.h; }
 816  JavaCallValue* get_value_addr() { return &_value; }
 817  BasicType get_type() const { return _type; }
 818 
 819  void set_jfloat(jfloat f) { _value.f = f;}
 820  void set_jdouble(jdouble d) { _value.d = d;}
 821  void set_jint(jint i) { _value.i = i;}
 822  void set_jlong(jlong l) { _value.l = l;}
 823  void set_jobject(jobject h) { _value.h = h;}
 824  void set_type(BasicType t) { _type = t; }
 825 
 826  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 827  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 828  jchar get_jchar() const { return (jchar) (_value.i);}
 829  jshort get_jshort() const { return (jshort) (_value.i);}
 830 
 831 };
 832 
 833 
 834 #define STACK_BIAS      0
 835 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 836 // in order to extend the reach of the stack pointer.
 837 #if defined(SPARC) && defined(_LP64)
 838 #undef STACK_BIAS
 839 #define STACK_BIAS      0x7ff
 840 #endif
 841 
 842 
 843 // TosState describes the top-of-stack state before and after the execution of
 844 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 845 // registers. The TosState corresponds to the 'machine representation' of this cached
 846 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 847 // as well as a 5th state in case the top-of-stack value is actually on the top
 848 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 849 // state when it comes to machine representation but is used separately for (oop)
 850 // type specific operations (e.g. verification code).
 851 
 852 enum TosState {         // describes the tos cache contents
 853   btos = 0,             // byte, bool tos cached
 854   ztos = 1,             // byte, bool tos cached
 855   ctos = 2,             // char tos cached
 856   stos = 3,             // short tos cached
 857   itos = 4,             // int tos cached
 858   ltos = 5,             // long tos cached
 859   ftos = 6,             // float tos cached
 860   dtos = 7,             // double tos cached
 861   atos = 8,             // object cached
 862   vtos = 9,             // tos not cached
 863   number_of_states,
 864   ilgl                  // illegal state: should not occur
 865 };
 866 
 867 
 868 inline TosState as_TosState(BasicType type) {
 869   switch (type) {
 870     case T_BYTE   : return btos;
 871     case T_BOOLEAN: return ztos;
 872     case T_CHAR   : return ctos;
 873     case T_SHORT  : return stos;
 874     case T_INT    : return itos;
 875     case T_LONG   : return ltos;
 876     case T_FLOAT  : return ftos;
 877     case T_DOUBLE : return dtos;
 878     case T_VOID   : return vtos;
 879     case T_ARRAY  : // fall through
 880     case T_OBJECT : return atos;
 881   }
 882   return ilgl;
 883 }
 884 
 885 inline BasicType as_BasicType(TosState state) {
 886   switch (state) {
 887     case btos : return T_BYTE;
 888     case ztos : return T_BOOLEAN;
 889     case ctos : return T_CHAR;
 890     case stos : return T_SHORT;
 891     case itos : return T_INT;
 892     case ltos : return T_LONG;
 893     case ftos : return T_FLOAT;
 894     case dtos : return T_DOUBLE;
 895     case atos : return T_OBJECT;
 896     case vtos : return T_VOID;
 897   }
 898   return T_ILLEGAL;
 899 }
 900 
 901 
 902 // Helper function to convert BasicType info into TosState
 903 // Note: Cannot define here as it uses global constant at the time being.
 904 TosState as_TosState(BasicType type);
 905 
 906 
 907 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 908 // information is needed by the safepoint code.
 909 //
 910 // There are 4 essential states:
 911 //
 912 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 913 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 914 //  _thread_in_vm       : Executing in the vm
 915 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 916 //
 917 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 918 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 919 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 920 //
 921 // Given a state, the xxxx_trans state can always be found by adding 1.
 922 //
 923 enum JavaThreadState {
 924   _thread_uninitialized     =  0, // should never happen (missing initialization)
 925   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 926   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 927   _thread_in_native         =  4, // running in native code
 928   _thread_in_native_trans   =  5, // corresponding transition state
 929   _thread_in_vm             =  6, // running in VM
 930   _thread_in_vm_trans       =  7, // corresponding transition state
 931   _thread_in_Java           =  8, // running in Java or in stub code
 932   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 933   _thread_blocked           = 10, // blocked in vm
 934   _thread_blocked_trans     = 11, // corresponding transition state
 935   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 936 };
 937 
 938 
 939 // Handy constants for deciding which compiler mode to use.
 940 enum MethodCompilation {
 941   InvocationEntryBci = -1     // i.e., not a on-stack replacement compilation
 942 };
 943 
 944 // Enumeration to distinguish tiers of compilation
 945 enum CompLevel {
 946   CompLevel_any               = -1,
 947   CompLevel_all               = -1,
 948   CompLevel_none              = 0,         // Interpreter
 949   CompLevel_simple            = 1,         // C1
 950   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 951   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 952   CompLevel_full_optimization = 4,         // C2, Shark or JVMCI
 953 
 954 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
 955   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered or JVMCI and tiered
 956 #elif defined(COMPILER1)
 957   CompLevel_highest_tier      = CompLevel_simple,             // pure C1 or JVMCI
 958 #else
 959   CompLevel_highest_tier      = CompLevel_none,
 960 #endif
 961 
 962 #if defined(TIERED)
 963   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 964 #elif defined(COMPILER1) || INCLUDE_JVMCI
 965   CompLevel_initial_compile   = CompLevel_simple              // pure C1 or JVMCI
 966 #elif defined(COMPILER2) || defined(SHARK)
 967   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 968 #else
 969   CompLevel_initial_compile   = CompLevel_none
 970 #endif
 971 };
 972 
 973 inline bool is_c1_compile(int comp_level) {
 974   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 975 }
 976 
 977 inline bool is_c2_compile(int comp_level) {
 978   return comp_level == CompLevel_full_optimization;
 979 }
 980 
 981 inline bool is_highest_tier_compile(int comp_level) {
 982   return comp_level == CompLevel_highest_tier;
 983 }
 984 
 985 inline bool is_compile(int comp_level) {
 986   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 987 }
 988 
 989 //----------------------------------------------------------------------------------------------------
 990 // 'Forward' declarations of frequently used classes
 991 // (in order to reduce interface dependencies & reduce
 992 // number of unnecessary compilations after changes)
 993 
 994 class ClassFileStream;
 995 
 996 class Event;
 997 
 998 class Thread;
 999 class  VMThread;
1000 class  JavaThread;
1001 class Threads;
1002 
1003 class VM_Operation;
1004 class VMOperationQueue;
1005 
1006 class CodeBlob;
1007 class  CompiledMethod;
1008 class   nmethod;
1009 class RuntimeBlob;
1010 class  OSRAdapter;
1011 class  I2CAdapter;
1012 class  C2IAdapter;
1013 class CompiledIC;
1014 class relocInfo;
1015 class ScopeDesc;
1016 class PcDesc;
1017 
1018 class Recompiler;
1019 class Recompilee;
1020 class RecompilationPolicy;
1021 class RFrame;
1022 class  CompiledRFrame;
1023 class  InterpretedRFrame;
1024 
1025 class frame;
1026 
1027 class vframe;
1028 class   javaVFrame;
1029 class     interpretedVFrame;
1030 class     compiledVFrame;
1031 class     deoptimizedVFrame;
1032 class   externalVFrame;
1033 class     entryVFrame;
1034 
1035 class RegisterMap;
1036 
1037 class Mutex;
1038 class Monitor;
1039 class BasicLock;
1040 class BasicObjectLock;
1041 
1042 class PeriodicTask;
1043 
1044 class JavaCallWrapper;
1045 
1046 class   oopDesc;
1047 class   metaDataOopDesc;
1048 
1049 class NativeCall;
1050 
1051 class zone;
1052 
1053 class StubQueue;
1054 
1055 class outputStream;
1056 
1057 class ResourceArea;
1058 
1059 class DebugInformationRecorder;
1060 class ScopeValue;
1061 class CompressedStream;
1062 class   DebugInfoReadStream;
1063 class   DebugInfoWriteStream;
1064 class LocationValue;
1065 class ConstantValue;
1066 class IllegalValue;
1067 
1068 class PrivilegedElement;
1069 class MonitorArray;
1070 
1071 class MonitorInfo;
1072 
1073 class OffsetClosure;
1074 class OopMapCache;
1075 class InterpreterOopMap;
1076 class OopMapCacheEntry;
1077 class OSThread;
1078 
1079 typedef int (*OSThreadStartFunc)(void*);
1080 
1081 class Space;
1082 
1083 class JavaValue;
1084 class methodHandle;
1085 class JavaCallArguments;
1086 
1087 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1088 
1089 extern void basic_fatal(const char* msg);
1090 
1091 
1092 //----------------------------------------------------------------------------------------------------
1093 // Special constants for debugging
1094 
1095 const jint     badInt           = -3;                       // generic "bad int" value
1096 const long     badAddressVal    = -2;                       // generic "bad address" value
1097 const long     badOopVal        = -1;                       // generic "bad oop" value
1098 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1099 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1100 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1101 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1102 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1103 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
1104 const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1105 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1106 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1107 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1108 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1109 
1110 
1111 // (These must be implemented as #defines because C++ compilers are
1112 // not obligated to inline non-integral constants!)
1113 #define       badAddress        ((address)::badAddressVal)
1114 #define       badOop            (cast_to_oop(::badOopVal))
1115 #define       badHeapWord       (::badHeapWordVal)
1116 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1117 
1118 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1119 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1120 
1121 //----------------------------------------------------------------------------------------------------
1122 // Utility functions for bitfield manipulations
1123 
1124 const intptr_t AllBits    = ~0; // all bits set in a word
1125 const intptr_t NoBits     =  0; // no bits set in a word
1126 const jlong    NoLongBits =  0; // no bits set in a long
1127 const intptr_t OneBit     =  1; // only right_most bit set in a word
1128 
1129 // get a word with the n.th or the right-most or left-most n bits set
1130 // (note: #define used only so that they can be used in enum constant definitions)
1131 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1132 #define right_n_bits(n)   (nth_bit(n) - 1)
1133 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
1134 
1135 // bit-operations using a mask m
1136 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1137 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1138 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1139 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1140 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1141 
1142 // bit-operations using the n.th bit
1143 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1144 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1145 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1146 
1147 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1148 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1149   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1150 }
1151 
1152 
1153 //----------------------------------------------------------------------------------------------------
1154 // Utility functions for integers
1155 
1156 // Avoid use of global min/max macros which may cause unwanted double
1157 // evaluation of arguments.
1158 #ifdef max
1159 #undef max
1160 #endif
1161 
1162 #ifdef min
1163 #undef min
1164 #endif
1165 
1166 #define max(a,b) Do_not_use_max_use_MAX2_instead
1167 #define min(a,b) Do_not_use_min_use_MIN2_instead
1168 
1169 // It is necessary to use templates here. Having normal overloaded
1170 // functions does not work because it is necessary to provide both 32-
1171 // and 64-bit overloaded functions, which does not work, and having
1172 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1173 // will be even more error-prone than macros.
1174 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1175 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1176 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1177 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1178 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1179 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1180 
1181 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1182 
1183 // true if x is a power of 2, false otherwise
1184 inline bool is_power_of_2(intptr_t x) {
1185   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1186 }
1187 
1188 // long version of is_power_of_2
1189 inline bool is_power_of_2_long(jlong x) {
1190   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1191 }
1192 
1193 // Returns largest i such that 2^i <= x.
1194 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1195 // If x == 0, the function returns -1.
1196 inline int log2_intptr(intptr_t x) {
1197   int i = -1;
1198   uintptr_t p = 1;
1199   while (p != 0 && p <= (uintptr_t)x) {
1200     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1201     i++; p *= 2;
1202   }
1203   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1204   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1205   return i;
1206 }
1207 
1208 //* largest i such that 2^i <= x
1209 //  A negative value of 'x' will return '63'
1210 inline int log2_long(jlong x) {
1211   int i = -1;
1212   julong p =  1;
1213   while (p != 0 && p <= (julong)x) {
1214     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1215     i++; p *= 2;
1216   }
1217   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1218   // (if p = 0 then overflow occurred and i = 63)
1219   return i;
1220 }
1221 
1222 //* the argument must be exactly a power of 2
1223 inline int exact_log2(intptr_t x) {
1224   #ifdef ASSERT
1225     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1226   #endif
1227   return log2_intptr(x);
1228 }
1229 
1230 //* the argument must be exactly a power of 2
1231 inline int exact_log2_long(jlong x) {
1232   #ifdef ASSERT
1233     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1234   #endif
1235   return log2_long(x);
1236 }
1237 
1238 
1239 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1240 inline intptr_t round_to(intptr_t x, uintx s) {
1241   #ifdef ASSERT
1242     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1243   #endif
1244   const uintx m = s - 1;
1245   return mask_bits(x + m, ~m);
1246 }
1247 
1248 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1249 inline intptr_t round_down(intptr_t x, uintx s) {
1250   #ifdef ASSERT
1251     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1252   #endif
1253   const uintx m = s - 1;
1254   return mask_bits(x, ~m);
1255 }
1256 
1257 
1258 inline bool is_odd (intx x) { return x & 1;      }
1259 inline bool is_even(intx x) { return !is_odd(x); }
1260 
1261 // "to" should be greater than "from."
1262 inline intx byte_size(void* from, void* to) {
1263   return (address)to - (address)from;
1264 }
1265 
1266 //----------------------------------------------------------------------------------------------------
1267 // Avoid non-portable casts with these routines (DEPRECATED)
1268 
1269 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1270 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1271 
1272 // Given sequence of four bytes, build into a 32-bit word
1273 // following the conventions used in class files.
1274 // On the 386, this could be realized with a simple address cast.
1275 //
1276 
1277 // This routine takes eight bytes:
1278 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1279   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1280        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1281        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1282        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1283        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1284        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1285        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1286        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1287 }
1288 
1289 // This routine takes four bytes:
1290 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1291   return  (( u4(c1) << 24 )  &  0xff000000)
1292        |  (( u4(c2) << 16 )  &  0x00ff0000)
1293        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1294        |  (( u4(c4) <<  0 )  &  0x000000ff);
1295 }
1296 
1297 // And this one works if the four bytes are contiguous in memory:
1298 inline u4 build_u4_from( u1* p ) {
1299   return  build_u4_from( p[0], p[1], p[2], p[3] );
1300 }
1301 
1302 // Ditto for two-byte ints:
1303 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1304   return  u2((( u2(c1) <<  8 )  &  0xff00)
1305           |  (( u2(c2) <<  0 )  &  0x00ff));
1306 }
1307 
1308 // And this one works if the two bytes are contiguous in memory:
1309 inline u2 build_u2_from( u1* p ) {
1310   return  build_u2_from( p[0], p[1] );
1311 }
1312 
1313 // Ditto for floats:
1314 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1315   u4 u = build_u4_from( c1, c2, c3, c4 );
1316   return  *(jfloat*)&u;
1317 }
1318 
1319 inline jfloat build_float_from( u1* p ) {
1320   u4 u = build_u4_from( p );
1321   return  *(jfloat*)&u;
1322 }
1323 
1324 
1325 // now (64-bit) longs
1326 
1327 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1328   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1329        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1330        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1331        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1332        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1333        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1334        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1335        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1336 }
1337 
1338 inline jlong build_long_from( u1* p ) {
1339   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1340 }
1341 
1342 
1343 // Doubles, too!
1344 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1345   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1346   return  *(jdouble*)&u;
1347 }
1348 
1349 inline jdouble build_double_from( u1* p ) {
1350   jlong u = build_long_from( p );
1351   return  *(jdouble*)&u;
1352 }
1353 
1354 
1355 // Portable routines to go the other way:
1356 
1357 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1358   c1 = u1(x >> 8);
1359   c2 = u1(x);
1360 }
1361 
1362 inline void explode_short_to( u2 x, u1* p ) {
1363   explode_short_to( x, p[0], p[1]);
1364 }
1365 
1366 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1367   c1 = u1(x >> 24);
1368   c2 = u1(x >> 16);
1369   c3 = u1(x >>  8);
1370   c4 = u1(x);
1371 }
1372 
1373 inline void explode_int_to( u4 x, u1* p ) {
1374   explode_int_to( x, p[0], p[1], p[2], p[3]);
1375 }
1376 
1377 
1378 // Pack and extract shorts to/from ints:
1379 
1380 inline int extract_low_short_from_int(jint x) {
1381   return x & 0xffff;
1382 }
1383 
1384 inline int extract_high_short_from_int(jint x) {
1385   return (x >> 16) & 0xffff;
1386 }
1387 
1388 inline int build_int_from_shorts( jushort low, jushort high ) {
1389   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1390 }
1391 
1392 // Convert pointer to intptr_t, for use in printing pointers.
1393 inline intptr_t p2i(const void * p) {
1394   return (intptr_t) p;
1395 }
1396 
1397 // swap a & b
1398 template<class T> static void swap(T& a, T& b) {
1399   T tmp = a;
1400   a = b;
1401   b = tmp;
1402 }
1403 
1404 // Printf-style formatters for fixed- and variable-width types as pointers and
1405 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1406 // doesn't provide appropriate definitions, they should be provided in
1407 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1408 
1409 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1410 
1411 // Format 32-bit quantities.
1412 #define INT32_FORMAT           "%" PRId32
1413 #define UINT32_FORMAT          "%" PRIu32
1414 #define INT32_FORMAT_W(width)  "%" #width PRId32
1415 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1416 
1417 #define PTR32_FORMAT           "0x%08" PRIx32
1418 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
1419 
1420 // Format 64-bit quantities.
1421 #define INT64_FORMAT           "%" PRId64
1422 #define UINT64_FORMAT          "%" PRIu64
1423 #define UINT64_FORMAT_X        "%" PRIx64
1424 #define INT64_FORMAT_W(width)  "%" #width PRId64
1425 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1426 
1427 #define PTR64_FORMAT           "0x%016" PRIx64
1428 
1429 // Format jlong, if necessary
1430 #ifndef JLONG_FORMAT
1431 #define JLONG_FORMAT           INT64_FORMAT
1432 #endif
1433 #ifndef JULONG_FORMAT
1434 #define JULONG_FORMAT          UINT64_FORMAT
1435 #endif
1436 #ifndef JULONG_FORMAT_X
1437 #define JULONG_FORMAT_X        UINT64_FORMAT_X
1438 #endif
1439 
1440 // Format pointers which change size between 32- and 64-bit.
1441 #ifdef  _LP64
1442 #define INTPTR_FORMAT "0x%016" PRIxPTR
1443 #define PTR_FORMAT    "0x%016" PRIxPTR
1444 #else   // !_LP64
1445 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1446 #define PTR_FORMAT    "0x%08"  PRIxPTR
1447 #endif  // _LP64
1448 
1449 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1450 
1451 #define SSIZE_FORMAT             "%"   PRIdPTR
1452 #define SIZE_FORMAT              "%"   PRIuPTR
1453 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
1454 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
1455 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
1456 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1457 
1458 #define INTX_FORMAT           "%" PRIdPTR
1459 #define UINTX_FORMAT          "%" PRIuPTR
1460 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1461 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1462 
1463 
1464 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1465 
1466 //----------------------------------------------------------------------------------------------------
1467 // Sum and product which can never overflow: they wrap, just like the
1468 // Java operations.  Note that we don't intend these to be used for
1469 // general-purpose arithmetic: their purpose is to emulate Java
1470 // operations.
1471 
1472 // The goal of this code to avoid undefined or implementation-defined
1473 // behavior.  The use of an lvalue to reference cast is explicitly
1474 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1475 // 15 in C++03]
1476 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1477 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1478   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1479   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1480   return reinterpret_cast<TYPE&>(ures);                 \
1481 }
1482 
1483 JAVA_INTEGER_OP(+, java_add, jint, juint)
1484 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1485 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1486 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1487 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1488 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1489 
1490 #undef JAVA_INTEGER_OP
1491 
1492 // Dereference vptr
1493 // All C++ compilers that we know of have the vtbl pointer in the first
1494 // word.  If there are exceptions, this function needs to be made compiler
1495 // specific.
1496 static inline void* dereference_vptr(const void* addr) {
1497   return *(void**)addr;
1498 }
1499 
1500 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP