1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 #ifndef NOINLINE
  46 #define NOINLINE
  47 #endif
  48 #ifndef ALWAYSINLINE
  49 #define ALWAYSINLINE inline
  50 #endif
  51 #ifndef PRAGMA_DIAG_PUSH
  52 #define PRAGMA_DIAG_PUSH
  53 #endif
  54 #ifndef PRAGMA_DIAG_POP
  55 #define PRAGMA_DIAG_POP
  56 #endif
  57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  59 #endif
  60 #ifndef PRAGMA_FORMAT_IGNORED
  61 #define PRAGMA_FORMAT_IGNORED
  62 #endif
  63 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  64 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  65 #endif
  66 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  67 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  68 #endif
  69 #ifndef ATTRIBUTE_PRINTF
  70 #define ATTRIBUTE_PRINTF(fmt, vargs)
  71 #endif
  72 #ifndef ATTRIBUTE_SCANF
  73 #define ATTRIBUTE_SCANF(fmt, vargs)
  74 #endif
  75 
  76 #include "utilities/macros.hpp"
  77 
  78 // This file holds all globally used constants & types, class (forward)
  79 // declarations and a few frequently used utility functions.
  80 
  81 //----------------------------------------------------------------------------------------------------
  82 // Constants
  83 
  84 const int LogBytesPerShort   = 1;
  85 const int LogBytesPerInt     = 2;
  86 #ifdef _LP64
  87 const int LogBytesPerWord    = 3;
  88 #else
  89 const int LogBytesPerWord    = 2;
  90 #endif
  91 const int LogBytesPerLong    = 3;
  92 
  93 const int BytesPerShort      = 1 << LogBytesPerShort;
  94 const int BytesPerInt        = 1 << LogBytesPerInt;
  95 const int BytesPerWord       = 1 << LogBytesPerWord;
  96 const int BytesPerLong       = 1 << LogBytesPerLong;
  97 
  98 const int LogBitsPerByte     = 3;
  99 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 100 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 101 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 102 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 103 
 104 const int BitsPerByte        = 1 << LogBitsPerByte;
 105 const int BitsPerShort       = 1 << LogBitsPerShort;
 106 const int BitsPerInt         = 1 << LogBitsPerInt;
 107 const int BitsPerWord        = 1 << LogBitsPerWord;
 108 const int BitsPerLong        = 1 << LogBitsPerLong;
 109 
 110 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 111 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 112 
 113 const int WordsPerLong       = 2;       // Number of stack entries for longs
 114 
 115 const int oopSize            = sizeof(char*); // Full-width oop
 116 extern int heapOopSize;                       // Oop within a java object
 117 const int wordSize           = sizeof(char*);
 118 const int longSize           = sizeof(jlong);
 119 const int jintSize           = sizeof(jint);
 120 const int size_tSize         = sizeof(size_t);
 121 
 122 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 123 
 124 extern int LogBytesPerHeapOop;                // Oop within a java object
 125 extern int LogBitsPerHeapOop;
 126 extern int BytesPerHeapOop;
 127 extern int BitsPerHeapOop;
 128 
 129 const int BitsPerJavaInteger = 32;
 130 const int BitsPerJavaLong    = 64;
 131 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 132 
 133 // Size of a char[] needed to represent a jint as a string in decimal.
 134 const int jintAsStringSize = 12;
 135 
 136 // In fact this should be
 137 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 138 // see os::set_memory_serialize_page()
 139 #ifdef _LP64
 140 const int SerializePageShiftCount = 4;
 141 #else
 142 const int SerializePageShiftCount = 3;
 143 #endif
 144 
 145 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 146 // pointer into the heap.  We require that object sizes be measured in
 147 // units of heap words, so that that
 148 //   HeapWord* hw;
 149 //   hw += oop(hw)->foo();
 150 // works, where foo is a method (like size or scavenge) that returns the
 151 // object size.
 152 class HeapWord {
 153   friend class VMStructs;
 154  private:
 155   char* i;
 156 #ifndef PRODUCT
 157  public:
 158   char* value() { return i; }
 159 #endif
 160 };
 161 
 162 // Analogous opaque struct for metadata allocated from
 163 // metaspaces.
 164 class MetaWord {
 165  private:
 166   char* i;
 167 };
 168 
 169 // HeapWordSize must be 2^LogHeapWordSize.
 170 const int HeapWordSize        = sizeof(HeapWord);
 171 #ifdef _LP64
 172 const int LogHeapWordSize     = 3;
 173 #else
 174 const int LogHeapWordSize     = 2;
 175 #endif
 176 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 177 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 178 
 179 // The larger HeapWordSize for 64bit requires larger heaps
 180 // for the same application running in 64bit.  See bug 4967770.
 181 // The minimum alignment to a heap word size is done.  Other
 182 // parts of the memory system may require additional alignment
 183 // and are responsible for those alignments.
 184 #ifdef _LP64
 185 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 186 #else
 187 #define ScaleForWordSize(x) (x)
 188 #endif
 189 
 190 // The minimum number of native machine words necessary to contain "byte_size"
 191 // bytes.
 192 inline size_t heap_word_size(size_t byte_size) {
 193   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 194 }
 195 
 196 const size_t K                  = 1024;
 197 const size_t M                  = K*K;
 198 const size_t G                  = M*K;
 199 const size_t HWperKB            = K / sizeof(HeapWord);
 200 
 201 // Constants for converting from a base unit to milli-base units.  For
 202 // example from seconds to milliseconds and microseconds
 203 
 204 const int MILLIUNITS    = 1000;         // milli units per base unit
 205 const int MICROUNITS    = 1000000;      // micro units per base unit
 206 const int NANOUNITS     = 1000000000;   // nano units per base unit
 207 
 208 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 209 const jint  NANOSECS_PER_MILLISEC = 1000000;
 210 
 211 inline const char* proper_unit_for_byte_size(size_t s) {
 212 #ifdef _LP64
 213   if (s >= 10*G) {
 214     return "G";
 215   }
 216 #endif
 217   if (s >= 10*M) {
 218     return "M";
 219   } else if (s >= 10*K) {
 220     return "K";
 221   } else {
 222     return "B";
 223   }
 224 }
 225 
 226 template <class T>
 227 inline T byte_size_in_proper_unit(T s) {
 228 #ifdef _LP64
 229   if (s >= 10*G) {
 230     return (T)(s/G);
 231   }
 232 #endif
 233   if (s >= 10*M) {
 234     return (T)(s/M);
 235   } else if (s >= 10*K) {
 236     return (T)(s/K);
 237   } else {
 238     return s;
 239   }
 240 }
 241 
 242 inline const char* exact_unit_for_byte_size(size_t s) {
 243 #ifdef _LP64
 244   if (s >= G && (s % G) == 0) {
 245     return "G";
 246   }
 247 #endif
 248   if (s >= M && (s % M) == 0) {
 249     return "M";
 250   }
 251   if (s >= K && (s % K) == 0) {
 252     return "K";
 253   }
 254   return "B";
 255 }
 256 
 257 inline size_t byte_size_in_exact_unit(size_t s) {
 258 #ifdef _LP64
 259   if (s >= G && (s % G) == 0) {
 260     return s / G;
 261   }
 262 #endif
 263   if (s >= M && (s % M) == 0) {
 264     return s / M;
 265   }
 266   if (s >= K && (s % K) == 0) {
 267     return s / K;
 268   }
 269   return s;
 270 }
 271 
 272 //----------------------------------------------------------------------------------------------------
 273 // VM type definitions
 274 
 275 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 276 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 277 
 278 typedef intptr_t  intx;
 279 typedef uintptr_t uintx;
 280 
 281 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 282 const intx  max_intx  = (uintx)min_intx - 1;
 283 const uintx max_uintx = (uintx)-1;
 284 
 285 // Table of values:
 286 //      sizeof intx         4               8
 287 // min_intx             0x80000000      0x8000000000000000
 288 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 289 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 290 
 291 typedef unsigned int uint;   NEEDS_CLEANUP
 292 
 293 
 294 //----------------------------------------------------------------------------------------------------
 295 // Java type definitions
 296 
 297 // All kinds of 'plain' byte addresses
 298 typedef   signed char s_char;
 299 typedef unsigned char u_char;
 300 typedef u_char*       address;
 301 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 302                                     // except for some implementations of a C++
 303                                     // linkage pointer to function. Should never
 304                                     // need one of those to be placed in this
 305                                     // type anyway.
 306 
 307 //  Utility functions to "portably" (?) bit twiddle pointers
 308 //  Where portable means keep ANSI C++ compilers quiet
 309 
 310 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 311 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 312 
 313 //  Utility functions to "portably" make cast to/from function pointers.
 314 
 315 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 316 inline address_word  castable_address(address x)              { return address_word(x) ; }
 317 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 318 
 319 // Pointer subtraction.
 320 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 321 // the range we might need to find differences from one end of the heap
 322 // to the other.
 323 // A typical use might be:
 324 //     if (pointer_delta(end(), top()) >= size) {
 325 //       // enough room for an object of size
 326 //       ...
 327 // and then additions like
 328 //       ... top() + size ...
 329 // are safe because we know that top() is at least size below end().
 330 inline size_t pointer_delta(const void* left,
 331                             const void* right,
 332                             size_t element_size) {
 333   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 334 }
 335 // A version specialized for HeapWord*'s.
 336 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 337   return pointer_delta(left, right, sizeof(HeapWord));
 338 }
 339 // A version specialized for MetaWord*'s.
 340 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 341   return pointer_delta(left, right, sizeof(MetaWord));
 342 }
 343 
 344 //
 345 // ANSI C++ does not allow casting from one pointer type to a function pointer
 346 // directly without at best a warning. This macro accomplishes it silently
 347 // In every case that is present at this point the value be cast is a pointer
 348 // to a C linkage function. In some case the type used for the cast reflects
 349 // that linkage and a picky compiler would not complain. In other cases because
 350 // there is no convenient place to place a typedef with extern C linkage (i.e
 351 // a platform dependent header file) it doesn't. At this point no compiler seems
 352 // picky enough to catch these instances (which are few). It is possible that
 353 // using templates could fix these for all cases. This use of templates is likely
 354 // so far from the middle of the road that it is likely to be problematic in
 355 // many C++ compilers.
 356 //
 357 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 358 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 359 
 360 // Unsigned byte types for os and stream.hpp
 361 
 362 // Unsigned one, two, four and eigth byte quantities used for describing
 363 // the .class file format. See JVM book chapter 4.
 364 
 365 typedef jubyte  u1;
 366 typedef jushort u2;
 367 typedef juint   u4;
 368 typedef julong  u8;
 369 
 370 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 371 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 372 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 373 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 374 
 375 typedef jbyte  s1;
 376 typedef jshort s2;
 377 typedef jint   s4;
 378 typedef jlong  s8;
 379 
 380 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 381 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 382 const jshort min_jshort = -(1 << 15);    // smallest jshort
 383 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 384 
 385 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 386 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 387 
 388 //----------------------------------------------------------------------------------------------------
 389 // JVM spec restrictions
 390 
 391 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 392 
 393 // Default ProtectionDomainCacheSize values
 394 
 395 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 396 
 397 //----------------------------------------------------------------------------------------------------
 398 // Default and minimum StringTableSize values
 399 
 400 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 401 const int minimumStringTableSize = 1009;
 402 
 403 const int defaultSymbolTableSize = 20011;
 404 const int minimumSymbolTableSize = 1009;
 405 
 406 
 407 //----------------------------------------------------------------------------------------------------
 408 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 409 //
 410 // Determines whether on-the-fly class replacement and frame popping are enabled.
 411 
 412 #define HOTSWAP
 413 
 414 //----------------------------------------------------------------------------------------------------
 415 // Object alignment, in units of HeapWords.
 416 //
 417 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 418 // reference fields can be naturally aligned.
 419 
 420 extern int MinObjAlignment;
 421 extern int MinObjAlignmentInBytes;
 422 extern int MinObjAlignmentInBytesMask;
 423 
 424 extern int LogMinObjAlignment;
 425 extern int LogMinObjAlignmentInBytes;
 426 
 427 const int LogKlassAlignmentInBytes = 3;
 428 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 429 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 430 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 431 
 432 // Maximal size of heap where unscaled compression can be used. Also upper bound
 433 // for heap placement: 4GB.
 434 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 435 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 436 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 437 extern uint64_t OopEncodingHeapMax;
 438 
 439 // Maximal size of compressed class space. Above this limit compression is not possible.
 440 // Also upper bound for placement of zero based class space. (Class space is further limited
 441 // to be < 3G, see arguments.cpp.)
 442 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 443 
 444 // Machine dependent stuff
 445 
 446 // States of Restricted Transactional Memory usage.
 447 enum RTMState {
 448   NoRTM      = 0x2, // Don't use RTM
 449   UseRTM     = 0x1, // Use RTM
 450   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 451 };
 452 
 453 // The maximum size of the code cache.  Can be overridden by targets.
 454 #define CODE_CACHE_SIZE_LIMIT (2*G)
 455 // Allow targets to reduce the default size of the code cache.
 456 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 457 
 458 #include CPU_HEADER(globalDefinitions)
 459 
 460 #ifndef INCLUDE_RTM_OPT
 461 #define INCLUDE_RTM_OPT 0
 462 #endif
 463 #if INCLUDE_RTM_OPT
 464 #define RTM_OPT_ONLY(code) code
 465 #else
 466 #define RTM_OPT_ONLY(code)
 467 #endif
 468 
 469 // To assure the IRIW property on processors that are not multiple copy
 470 // atomic, sync instructions must be issued between volatile reads to
 471 // assure their ordering, instead of after volatile stores.
 472 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 473 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 474 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 475 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 476 #else
 477 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 478 #endif
 479 
 480 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 481 // Note: this value must be a power of 2
 482 
 483 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 484 
 485 // Signed variants of alignment helpers.  There are two versions of each, a macro
 486 // for use in places like enum definitions that require compile-time constant
 487 // expressions and a function for all other places so as to get type checking.
 488 
 489 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 490 
 491 inline bool is_size_aligned(size_t size, size_t alignment) {
 492   return align_size_up_(size, alignment) == size;
 493 }
 494 
 495 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 496   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 497 }
 498 
 499 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 500   return align_size_up_(size, alignment);
 501 }
 502 
 503 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 504 
 505 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 506   return align_size_down_(size, alignment);
 507 }
 508 
 509 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 510 
 511 inline void* align_ptr_up(const void* ptr, size_t alignment) {
 512   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 513 }
 514 
 515 inline void* align_ptr_down(void* ptr, size_t alignment) {
 516   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 517 }
 518 
 519 // Align metaspace objects by rounding up to natural word boundary
 520 
 521 inline intptr_t align_metadata_size(intptr_t size) {
 522   return align_size_up(size, 1);
 523 }
 524 
 525 // Align objects in the Java Heap by rounding up their size, in HeapWord units.
 526 // Since the size is given in words this is somewhat of a nop, but
 527 // distinguishes it from align_object_size.
 528 inline intptr_t align_object_size(intptr_t size) {
 529   return align_size_up(size, MinObjAlignment);
 530 }
 531 
 532 inline bool is_object_aligned(intptr_t addr) {
 533   return addr == align_object_size(addr);
 534 }
 535 
 536 // Pad out certain offsets to jlong alignment, in HeapWord units.
 537 
 538 inline intptr_t align_object_offset(intptr_t offset) {
 539   return align_size_up(offset, HeapWordsPerLong);
 540 }
 541 
 542 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 543 
 544 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 545   size_t aligned_size = align_size_down_(size, alignment);
 546   return aligned_size > 0 ? aligned_size : alignment;
 547 }
 548 
 549 // Clamp an address to be within a specific page
 550 // 1. If addr is on the page it is returned as is
 551 // 2. If addr is above the page_address the start of the *next* page will be returned
 552 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 553 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 554   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 555     // address is in the specified page, just return it as is
 556     return addr;
 557   } else if (addr > page_address) {
 558     // address is above specified page, return start of next page
 559     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 560   } else {
 561     // address is below specified page, return start of page
 562     return (address)align_size_down(intptr_t(page_address), page_size);
 563   }
 564 }
 565 
 566 
 567 // The expected size in bytes of a cache line, used to pad data structures.
 568 #ifndef DEFAULT_CACHE_LINE_SIZE
 569   #define DEFAULT_CACHE_LINE_SIZE 64
 570 #endif
 571 
 572 
 573 //----------------------------------------------------------------------------------------------------
 574 // Utility macros for compilers
 575 // used to silence compiler warnings
 576 
 577 #define Unused_Variable(var) var
 578 
 579 
 580 //----------------------------------------------------------------------------------------------------
 581 // Miscellaneous
 582 
 583 // 6302670 Eliminate Hotspot __fabsf dependency
 584 // All fabs() callers should call this function instead, which will implicitly
 585 // convert the operand to double, avoiding a dependency on __fabsf which
 586 // doesn't exist in early versions of Solaris 8.
 587 inline double fabsd(double value) {
 588   return fabs(value);
 589 }
 590 
 591 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 592 // is zero, return 0.0.
 593 template<typename T>
 594 inline double percent_of(T numerator, T denominator) {
 595   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 596 }
 597 
 598 //----------------------------------------------------------------------------------------------------
 599 // Special casts
 600 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 601 typedef union {
 602   jfloat f;
 603   jint i;
 604 } FloatIntConv;
 605 
 606 typedef union {
 607   jdouble d;
 608   jlong l;
 609   julong ul;
 610 } DoubleLongConv;
 611 
 612 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 613 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 614 
 615 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 616 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 617 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 618 
 619 inline jint low (jlong value)                    { return jint(value); }
 620 inline jint high(jlong value)                    { return jint(value >> 32); }
 621 
 622 // the fancy casts are a hopefully portable way
 623 // to do unsigned 32 to 64 bit type conversion
 624 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 625                                                    *value |= (jlong)(julong)(juint)low; }
 626 
 627 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 628                                                    *value |= (jlong)high       << 32; }
 629 
 630 inline jlong jlong_from(jint h, jint l) {
 631   jlong result = 0; // initialization to avoid warning
 632   set_high(&result, h);
 633   set_low(&result,  l);
 634   return result;
 635 }
 636 
 637 union jlong_accessor {
 638   jint  words[2];
 639   jlong long_value;
 640 };
 641 
 642 void basic_types_init(); // cannot define here; uses assert
 643 
 644 
 645 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 646 enum BasicType {
 647   T_BOOLEAN     =  4,
 648   T_CHAR        =  5,
 649   T_FLOAT       =  6,
 650   T_DOUBLE      =  7,
 651   T_BYTE        =  8,
 652   T_SHORT       =  9,
 653   T_INT         = 10,
 654   T_LONG        = 11,
 655   T_OBJECT      = 12,
 656   T_ARRAY       = 13,
 657   T_VOID        = 14,
 658   T_ADDRESS     = 15,
 659   T_NARROWOOP   = 16,
 660   T_METADATA    = 17,
 661   T_NARROWKLASS = 18,
 662   T_CONFLICT    = 19, // for stack value type with conflicting contents
 663   T_ILLEGAL     = 99
 664 };
 665 
 666 inline bool is_java_primitive(BasicType t) {
 667   return T_BOOLEAN <= t && t <= T_LONG;
 668 }
 669 
 670 inline bool is_subword_type(BasicType t) {
 671   // these guys are processed exactly like T_INT in calling sequences:
 672   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 673 }
 674 
 675 inline bool is_signed_subword_type(BasicType t) {
 676   return (t == T_BYTE || t == T_SHORT);
 677 }
 678 
 679 // Convert a char from a classfile signature to a BasicType
 680 inline BasicType char2type(char c) {
 681   switch( c ) {
 682   case 'B': return T_BYTE;
 683   case 'C': return T_CHAR;
 684   case 'D': return T_DOUBLE;
 685   case 'F': return T_FLOAT;
 686   case 'I': return T_INT;
 687   case 'J': return T_LONG;
 688   case 'S': return T_SHORT;
 689   case 'Z': return T_BOOLEAN;
 690   case 'V': return T_VOID;
 691   case 'L': return T_OBJECT;
 692   case '[': return T_ARRAY;
 693   }
 694   return T_ILLEGAL;
 695 }
 696 
 697 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 698 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 699 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 700 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 701 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 702 extern BasicType name2type(const char* name);
 703 
 704 // Auxiliary math routines
 705 // least common multiple
 706 extern size_t lcm(size_t a, size_t b);
 707 
 708 
 709 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 710 enum BasicTypeSize {
 711   T_BOOLEAN_size     = 1,
 712   T_CHAR_size        = 1,
 713   T_FLOAT_size       = 1,
 714   T_DOUBLE_size      = 2,
 715   T_BYTE_size        = 1,
 716   T_SHORT_size       = 1,
 717   T_INT_size         = 1,
 718   T_LONG_size        = 2,
 719   T_OBJECT_size      = 1,
 720   T_ARRAY_size       = 1,
 721   T_NARROWOOP_size   = 1,
 722   T_NARROWKLASS_size = 1,
 723   T_VOID_size        = 0
 724 };
 725 
 726 
 727 // maps a BasicType to its instance field storage type:
 728 // all sub-word integral types are widened to T_INT
 729 extern BasicType type2field[T_CONFLICT+1];
 730 extern BasicType type2wfield[T_CONFLICT+1];
 731 
 732 
 733 // size in bytes
 734 enum ArrayElementSize {
 735   T_BOOLEAN_aelem_bytes     = 1,
 736   T_CHAR_aelem_bytes        = 2,
 737   T_FLOAT_aelem_bytes       = 4,
 738   T_DOUBLE_aelem_bytes      = 8,
 739   T_BYTE_aelem_bytes        = 1,
 740   T_SHORT_aelem_bytes       = 2,
 741   T_INT_aelem_bytes         = 4,
 742   T_LONG_aelem_bytes        = 8,
 743 #ifdef _LP64
 744   T_OBJECT_aelem_bytes      = 8,
 745   T_ARRAY_aelem_bytes       = 8,
 746 #else
 747   T_OBJECT_aelem_bytes      = 4,
 748   T_ARRAY_aelem_bytes       = 4,
 749 #endif
 750   T_NARROWOOP_aelem_bytes   = 4,
 751   T_NARROWKLASS_aelem_bytes = 4,
 752   T_VOID_aelem_bytes        = 0
 753 };
 754 
 755 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 756 #ifdef ASSERT
 757 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 758 #else
 759 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 760 #endif
 761 
 762 
 763 // JavaValue serves as a container for arbitrary Java values.
 764 
 765 class JavaValue {
 766 
 767  public:
 768   typedef union JavaCallValue {
 769     jfloat   f;
 770     jdouble  d;
 771     jint     i;
 772     jlong    l;
 773     jobject  h;
 774   } JavaCallValue;
 775 
 776  private:
 777   BasicType _type;
 778   JavaCallValue _value;
 779 
 780  public:
 781   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 782 
 783   JavaValue(jfloat value) {
 784     _type    = T_FLOAT;
 785     _value.f = value;
 786   }
 787 
 788   JavaValue(jdouble value) {
 789     _type    = T_DOUBLE;
 790     _value.d = value;
 791   }
 792 
 793  jfloat get_jfloat() const { return _value.f; }
 794  jdouble get_jdouble() const { return _value.d; }
 795  jint get_jint() const { return _value.i; }
 796  jlong get_jlong() const { return _value.l; }
 797  jobject get_jobject() const { return _value.h; }
 798  JavaCallValue* get_value_addr() { return &_value; }
 799  BasicType get_type() const { return _type; }
 800 
 801  void set_jfloat(jfloat f) { _value.f = f;}
 802  void set_jdouble(jdouble d) { _value.d = d;}
 803  void set_jint(jint i) { _value.i = i;}
 804  void set_jlong(jlong l) { _value.l = l;}
 805  void set_jobject(jobject h) { _value.h = h;}
 806  void set_type(BasicType t) { _type = t; }
 807 
 808  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 809  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 810  jchar get_jchar() const { return (jchar) (_value.i);}
 811  jshort get_jshort() const { return (jshort) (_value.i);}
 812 
 813 };
 814 
 815 
 816 #define STACK_BIAS      0
 817 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 818 // in order to extend the reach of the stack pointer.
 819 #if defined(SPARC) && defined(_LP64)
 820 #undef STACK_BIAS
 821 #define STACK_BIAS      0x7ff
 822 #endif
 823 
 824 
 825 // TosState describes the top-of-stack state before and after the execution of
 826 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 827 // registers. The TosState corresponds to the 'machine representation' of this cached
 828 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 829 // as well as a 5th state in case the top-of-stack value is actually on the top
 830 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 831 // state when it comes to machine representation but is used separately for (oop)
 832 // type specific operations (e.g. verification code).
 833 
 834 enum TosState {         // describes the tos cache contents
 835   btos = 0,             // byte, bool tos cached
 836   ztos = 1,             // byte, bool tos cached
 837   ctos = 2,             // char tos cached
 838   stos = 3,             // short tos cached
 839   itos = 4,             // int tos cached
 840   ltos = 5,             // long tos cached
 841   ftos = 6,             // float tos cached
 842   dtos = 7,             // double tos cached
 843   atos = 8,             // object cached
 844   vtos = 9,             // tos not cached
 845   number_of_states,
 846   ilgl                  // illegal state: should not occur
 847 };
 848 
 849 
 850 inline TosState as_TosState(BasicType type) {
 851   switch (type) {
 852     case T_BYTE   : return btos;
 853     case T_BOOLEAN: return ztos;
 854     case T_CHAR   : return ctos;
 855     case T_SHORT  : return stos;
 856     case T_INT    : return itos;
 857     case T_LONG   : return ltos;
 858     case T_FLOAT  : return ftos;
 859     case T_DOUBLE : return dtos;
 860     case T_VOID   : return vtos;
 861     case T_ARRAY  : // fall through
 862     case T_OBJECT : return atos;
 863   }
 864   return ilgl;
 865 }
 866 
 867 inline BasicType as_BasicType(TosState state) {
 868   switch (state) {
 869     case btos : return T_BYTE;
 870     case ztos : return T_BOOLEAN;
 871     case ctos : return T_CHAR;
 872     case stos : return T_SHORT;
 873     case itos : return T_INT;
 874     case ltos : return T_LONG;
 875     case ftos : return T_FLOAT;
 876     case dtos : return T_DOUBLE;
 877     case atos : return T_OBJECT;
 878     case vtos : return T_VOID;
 879   }
 880   return T_ILLEGAL;
 881 }
 882 
 883 
 884 // Helper function to convert BasicType info into TosState
 885 // Note: Cannot define here as it uses global constant at the time being.
 886 TosState as_TosState(BasicType type);
 887 
 888 
 889 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 890 // information is needed by the safepoint code.
 891 //
 892 // There are 4 essential states:
 893 //
 894 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 895 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 896 //  _thread_in_vm       : Executing in the vm
 897 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 898 //
 899 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 900 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 901 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 902 //
 903 // Given a state, the xxxx_trans state can always be found by adding 1.
 904 //
 905 enum JavaThreadState {
 906   _thread_uninitialized     =  0, // should never happen (missing initialization)
 907   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 908   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 909   _thread_in_native         =  4, // running in native code
 910   _thread_in_native_trans   =  5, // corresponding transition state
 911   _thread_in_vm             =  6, // running in VM
 912   _thread_in_vm_trans       =  7, // corresponding transition state
 913   _thread_in_Java           =  8, // running in Java or in stub code
 914   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 915   _thread_blocked           = 10, // blocked in vm
 916   _thread_blocked_trans     = 11, // corresponding transition state
 917   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 918 };
 919 
 920 
 921 // Handy constants for deciding which compiler mode to use.
 922 enum MethodCompilation {
 923   InvocationEntryBci = -1     // i.e., not a on-stack replacement compilation
 924 };
 925 
 926 // Enumeration to distinguish tiers of compilation
 927 enum CompLevel {
 928   CompLevel_any               = -1,
 929   CompLevel_all               = -1,
 930   CompLevel_none              = 0,         // Interpreter
 931   CompLevel_simple            = 1,         // C1
 932   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 933   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 934   CompLevel_full_optimization = 4,         // C2, Shark or JVMCI
 935 
 936 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
 937   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered or JVMCI and tiered
 938 #elif defined(COMPILER1)
 939   CompLevel_highest_tier      = CompLevel_simple,             // pure C1 or JVMCI
 940 #else
 941   CompLevel_highest_tier      = CompLevel_none,
 942 #endif
 943 
 944 #if defined(TIERED)
 945   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 946 #elif defined(COMPILER1) || INCLUDE_JVMCI
 947   CompLevel_initial_compile   = CompLevel_simple              // pure C1 or JVMCI
 948 #elif defined(COMPILER2) || defined(SHARK)
 949   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 950 #else
 951   CompLevel_initial_compile   = CompLevel_none
 952 #endif
 953 };
 954 
 955 inline bool is_c1_compile(int comp_level) {
 956   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 957 }
 958 
 959 inline bool is_c2_compile(int comp_level) {
 960   return comp_level == CompLevel_full_optimization;
 961 }
 962 
 963 inline bool is_highest_tier_compile(int comp_level) {
 964   return comp_level == CompLevel_highest_tier;
 965 }
 966 
 967 inline bool is_compile(int comp_level) {
 968   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 969 }
 970 
 971 //----------------------------------------------------------------------------------------------------
 972 // 'Forward' declarations of frequently used classes
 973 // (in order to reduce interface dependencies & reduce
 974 // number of unnecessary compilations after changes)
 975 
 976 class ClassFileStream;
 977 
 978 class Event;
 979 
 980 class Thread;
 981 class  VMThread;
 982 class  JavaThread;
 983 class Threads;
 984 
 985 class VM_Operation;
 986 class VMOperationQueue;
 987 
 988 class CodeBlob;
 989 class  CompiledMethod;
 990 class   nmethod;
 991 class RuntimeBlob;
 992 class  OSRAdapter;
 993 class  I2CAdapter;
 994 class  C2IAdapter;
 995 class CompiledIC;
 996 class relocInfo;
 997 class ScopeDesc;
 998 class PcDesc;
 999 
1000 class Recompiler;
1001 class Recompilee;
1002 class RecompilationPolicy;
1003 class RFrame;
1004 class  CompiledRFrame;
1005 class  InterpretedRFrame;
1006 
1007 class frame;
1008 
1009 class vframe;
1010 class   javaVFrame;
1011 class     interpretedVFrame;
1012 class     compiledVFrame;
1013 class     deoptimizedVFrame;
1014 class   externalVFrame;
1015 class     entryVFrame;
1016 
1017 class RegisterMap;
1018 
1019 class Mutex;
1020 class Monitor;
1021 class BasicLock;
1022 class BasicObjectLock;
1023 
1024 class PeriodicTask;
1025 
1026 class JavaCallWrapper;
1027 
1028 class   oopDesc;
1029 class   metaDataOopDesc;
1030 
1031 class NativeCall;
1032 
1033 class zone;
1034 
1035 class StubQueue;
1036 
1037 class outputStream;
1038 
1039 class ResourceArea;
1040 
1041 class DebugInformationRecorder;
1042 class ScopeValue;
1043 class CompressedStream;
1044 class   DebugInfoReadStream;
1045 class   DebugInfoWriteStream;
1046 class LocationValue;
1047 class ConstantValue;
1048 class IllegalValue;
1049 
1050 class PrivilegedElement;
1051 class MonitorArray;
1052 
1053 class MonitorInfo;
1054 
1055 class OffsetClosure;
1056 class OopMapCache;
1057 class InterpreterOopMap;
1058 class OopMapCacheEntry;
1059 class OSThread;
1060 
1061 typedef int (*OSThreadStartFunc)(void*);
1062 
1063 class Space;
1064 
1065 class JavaValue;
1066 class methodHandle;
1067 class JavaCallArguments;
1068 
1069 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1070 
1071 extern void basic_fatal(const char* msg);
1072 
1073 
1074 //----------------------------------------------------------------------------------------------------
1075 // Special constants for debugging
1076 
1077 const jint     badInt           = -3;                       // generic "bad int" value
1078 const long     badAddressVal    = -2;                       // generic "bad address" value
1079 const long     badOopVal        = -1;                       // generic "bad oop" value
1080 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1081 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1082 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1083 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1084 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1085 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
1086 const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1087 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1088 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1089 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1090 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1091 
1092 
1093 // (These must be implemented as #defines because C++ compilers are
1094 // not obligated to inline non-integral constants!)
1095 #define       badAddress        ((address)::badAddressVal)
1096 #define       badOop            (cast_to_oop(::badOopVal))
1097 #define       badHeapWord       (::badHeapWordVal)
1098 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1099 
1100 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1101 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1102 
1103 //----------------------------------------------------------------------------------------------------
1104 // Utility functions for bitfield manipulations
1105 
1106 const intptr_t AllBits    = ~0; // all bits set in a word
1107 const intptr_t NoBits     =  0; // no bits set in a word
1108 const jlong    NoLongBits =  0; // no bits set in a long
1109 const intptr_t OneBit     =  1; // only right_most bit set in a word
1110 
1111 // get a word with the n.th or the right-most or left-most n bits set
1112 // (note: #define used only so that they can be used in enum constant definitions)
1113 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1114 #define right_n_bits(n)   (nth_bit(n) - 1)
1115 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
1116 
1117 // bit-operations using a mask m
1118 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1119 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1120 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1121 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1122 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1123 
1124 // bit-operations using the n.th bit
1125 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1126 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1127 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1128 
1129 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1130 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1131   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1132 }
1133 
1134 
1135 //----------------------------------------------------------------------------------------------------
1136 // Utility functions for integers
1137 
1138 // Avoid use of global min/max macros which may cause unwanted double
1139 // evaluation of arguments.
1140 #ifdef max
1141 #undef max
1142 #endif
1143 
1144 #ifdef min
1145 #undef min
1146 #endif
1147 
1148 #define max(a,b) Do_not_use_max_use_MAX2_instead
1149 #define min(a,b) Do_not_use_min_use_MIN2_instead
1150 
1151 // It is necessary to use templates here. Having normal overloaded
1152 // functions does not work because it is necessary to provide both 32-
1153 // and 64-bit overloaded functions, which does not work, and having
1154 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1155 // will be even more error-prone than macros.
1156 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1157 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1158 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1159 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1160 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1161 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1162 
1163 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1164 
1165 // true if x is a power of 2, false otherwise
1166 inline bool is_power_of_2(intptr_t x) {
1167   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1168 }
1169 
1170 // long version of is_power_of_2
1171 inline bool is_power_of_2_long(jlong x) {
1172   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1173 }
1174 
1175 // Returns largest i such that 2^i <= x.
1176 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1177 // If x == 0, the function returns -1.
1178 inline int log2_intptr(intptr_t x) {
1179   int i = -1;
1180   uintptr_t p = 1;
1181   while (p != 0 && p <= (uintptr_t)x) {
1182     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1183     i++; p *= 2;
1184   }
1185   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1186   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1187   return i;
1188 }
1189 
1190 //* largest i such that 2^i <= x
1191 //  A negative value of 'x' will return '63'
1192 inline int log2_long(jlong x) {
1193   int i = -1;
1194   julong p =  1;
1195   while (p != 0 && p <= (julong)x) {
1196     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1197     i++; p *= 2;
1198   }
1199   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1200   // (if p = 0 then overflow occurred and i = 63)
1201   return i;
1202 }
1203 
1204 //* the argument must be exactly a power of 2
1205 inline int exact_log2(intptr_t x) {
1206   #ifdef ASSERT
1207     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1208   #endif
1209   return log2_intptr(x);
1210 }
1211 
1212 //* the argument must be exactly a power of 2
1213 inline int exact_log2_long(jlong x) {
1214   #ifdef ASSERT
1215     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1216   #endif
1217   return log2_long(x);
1218 }
1219 
1220 
1221 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1222 inline intptr_t round_to(intptr_t x, uintx s) {
1223   #ifdef ASSERT
1224     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1225   #endif
1226   const uintx m = s - 1;
1227   return mask_bits(x + m, ~m);
1228 }
1229 
1230 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1231 inline intptr_t round_down(intptr_t x, uintx s) {
1232   #ifdef ASSERT
1233     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1234   #endif
1235   const uintx m = s - 1;
1236   return mask_bits(x, ~m);
1237 }
1238 
1239 
1240 inline bool is_odd (intx x) { return x & 1;      }
1241 inline bool is_even(intx x) { return !is_odd(x); }
1242 
1243 // "to" should be greater than "from."
1244 inline intx byte_size(void* from, void* to) {
1245   return (address)to - (address)from;
1246 }
1247 
1248 //----------------------------------------------------------------------------------------------------
1249 // Avoid non-portable casts with these routines (DEPRECATED)
1250 
1251 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1252 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1253 
1254 // Given sequence of four bytes, build into a 32-bit word
1255 // following the conventions used in class files.
1256 // On the 386, this could be realized with a simple address cast.
1257 //
1258 
1259 // This routine takes eight bytes:
1260 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1261   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1262        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1263        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1264        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1265        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1266        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1267        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1268        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1269 }
1270 
1271 // This routine takes four bytes:
1272 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1273   return  (( u4(c1) << 24 )  &  0xff000000)
1274        |  (( u4(c2) << 16 )  &  0x00ff0000)
1275        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1276        |  (( u4(c4) <<  0 )  &  0x000000ff);
1277 }
1278 
1279 // And this one works if the four bytes are contiguous in memory:
1280 inline u4 build_u4_from( u1* p ) {
1281   return  build_u4_from( p[0], p[1], p[2], p[3] );
1282 }
1283 
1284 // Ditto for two-byte ints:
1285 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1286   return  u2((( u2(c1) <<  8 )  &  0xff00)
1287           |  (( u2(c2) <<  0 )  &  0x00ff));
1288 }
1289 
1290 // And this one works if the two bytes are contiguous in memory:
1291 inline u2 build_u2_from( u1* p ) {
1292   return  build_u2_from( p[0], p[1] );
1293 }
1294 
1295 // Ditto for floats:
1296 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1297   u4 u = build_u4_from( c1, c2, c3, c4 );
1298   return  *(jfloat*)&u;
1299 }
1300 
1301 inline jfloat build_float_from( u1* p ) {
1302   u4 u = build_u4_from( p );
1303   return  *(jfloat*)&u;
1304 }
1305 
1306 
1307 // now (64-bit) longs
1308 
1309 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1310   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1311        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1312        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1313        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1314        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1315        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1316        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1317        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1318 }
1319 
1320 inline jlong build_long_from( u1* p ) {
1321   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1322 }
1323 
1324 
1325 // Doubles, too!
1326 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1327   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1328   return  *(jdouble*)&u;
1329 }
1330 
1331 inline jdouble build_double_from( u1* p ) {
1332   jlong u = build_long_from( p );
1333   return  *(jdouble*)&u;
1334 }
1335 
1336 
1337 // Portable routines to go the other way:
1338 
1339 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1340   c1 = u1(x >> 8);
1341   c2 = u1(x);
1342 }
1343 
1344 inline void explode_short_to( u2 x, u1* p ) {
1345   explode_short_to( x, p[0], p[1]);
1346 }
1347 
1348 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1349   c1 = u1(x >> 24);
1350   c2 = u1(x >> 16);
1351   c3 = u1(x >>  8);
1352   c4 = u1(x);
1353 }
1354 
1355 inline void explode_int_to( u4 x, u1* p ) {
1356   explode_int_to( x, p[0], p[1], p[2], p[3]);
1357 }
1358 
1359 
1360 // Pack and extract shorts to/from ints:
1361 
1362 inline int extract_low_short_from_int(jint x) {
1363   return x & 0xffff;
1364 }
1365 
1366 inline int extract_high_short_from_int(jint x) {
1367   return (x >> 16) & 0xffff;
1368 }
1369 
1370 inline int build_int_from_shorts( jushort low, jushort high ) {
1371   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1372 }
1373 
1374 // Convert pointer to intptr_t, for use in printing pointers.
1375 inline intptr_t p2i(const void * p) {
1376   return (intptr_t) p;
1377 }
1378 
1379 // swap a & b
1380 template<class T> static void swap(T& a, T& b) {
1381   T tmp = a;
1382   a = b;
1383   b = tmp;
1384 }
1385 
1386 // Printf-style formatters for fixed- and variable-width types as pointers and
1387 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1388 // doesn't provide appropriate definitions, they should be provided in
1389 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1390 
1391 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1392 
1393 // Format 32-bit quantities.
1394 #define INT32_FORMAT           "%" PRId32
1395 #define UINT32_FORMAT          "%" PRIu32
1396 #define INT32_FORMAT_W(width)  "%" #width PRId32
1397 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1398 
1399 #define PTR32_FORMAT           "0x%08" PRIx32
1400 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
1401 
1402 // Format 64-bit quantities.
1403 #define INT64_FORMAT           "%" PRId64
1404 #define UINT64_FORMAT          "%" PRIu64
1405 #define UINT64_FORMAT_X        "%" PRIx64
1406 #define INT64_FORMAT_W(width)  "%" #width PRId64
1407 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1408 
1409 #define PTR64_FORMAT           "0x%016" PRIx64
1410 
1411 // Format jlong, if necessary
1412 #ifndef JLONG_FORMAT
1413 #define JLONG_FORMAT           INT64_FORMAT
1414 #endif
1415 #ifndef JULONG_FORMAT
1416 #define JULONG_FORMAT          UINT64_FORMAT
1417 #endif
1418 #ifndef JULONG_FORMAT_X
1419 #define JULONG_FORMAT_X        UINT64_FORMAT_X
1420 #endif
1421 
1422 // Format pointers which change size between 32- and 64-bit.
1423 #ifdef  _LP64
1424 #define INTPTR_FORMAT "0x%016" PRIxPTR
1425 #define PTR_FORMAT    "0x%016" PRIxPTR
1426 #else   // !_LP64
1427 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1428 #define PTR_FORMAT    "0x%08"  PRIxPTR
1429 #endif  // _LP64
1430 
1431 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1432 
1433 #define SSIZE_FORMAT             "%"   PRIdPTR
1434 #define SIZE_FORMAT              "%"   PRIuPTR
1435 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
1436 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
1437 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
1438 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1439 
1440 #define INTX_FORMAT           "%" PRIdPTR
1441 #define UINTX_FORMAT          "%" PRIuPTR
1442 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1443 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1444 
1445 
1446 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1447 
1448 //----------------------------------------------------------------------------------------------------
1449 // Sum and product which can never overflow: they wrap, just like the
1450 // Java operations.  Note that we don't intend these to be used for
1451 // general-purpose arithmetic: their purpose is to emulate Java
1452 // operations.
1453 
1454 // The goal of this code to avoid undefined or implementation-defined
1455 // behavior.  The use of an lvalue to reference cast is explicitly
1456 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1457 // 15 in C++03]
1458 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1459 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1460   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1461   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1462   return reinterpret_cast<TYPE&>(ures);                 \
1463 }
1464 
1465 JAVA_INTEGER_OP(+, java_add, jint, juint)
1466 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1467 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1468 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1469 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1470 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1471 
1472 #undef JAVA_INTEGER_OP
1473 
1474 // Dereference vptr
1475 // All C++ compilers that we know of have the vtbl pointer in the first
1476 // word.  If there are exceptions, this function needs to be made compiler
1477 // specific.
1478 static inline void* dereference_vptr(const void* addr) {
1479   return *(void**)addr;
1480 }
1481 
1482 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP