1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/vm_version.hpp"
  41 #include "utilities/bitMap.inline.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/heapRegion.hpp"
  45 #endif // INCLUDE_ALL_GCS
  46 #ifdef TRACE_HAVE_INTRINSICS
  47 #include "trace/traceMacros.hpp"
  48 #endif
  49 
  50 #ifdef ASSERT
  51 #define __ gen()->lir(__FILE__, __LINE__)->
  52 #else
  53 #define __ gen()->lir()->
  54 #endif
  55 
  56 #ifndef PATCHED_ADDR
  57 #define PATCHED_ADDR  (max_jint)
  58 #endif
  59 
  60 void PhiResolverState::reset(int max_vregs) {
  61   // Initialize array sizes
  62   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _virtual_operands.trunc_to(0);
  64   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _other_operands.trunc_to(0);
  66   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  67   _vreg_table.trunc_to(0);
  68 }
  69 
  70 
  71 
  72 //--------------------------------------------------------------
  73 // PhiResolver
  74 
  75 // Resolves cycles:
  76 //
  77 //  r1 := r2  becomes  temp := r1
  78 //  r2 := r1           r1 := r2
  79 //                     r2 := temp
  80 // and orders moves:
  81 //
  82 //  r2 := r3  becomes  r1 := r2
  83 //  r1 := r2           r2 := r3
  84 
  85 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  86  : _gen(gen)
  87  , _state(gen->resolver_state())
  88  , _temp(LIR_OprFact::illegalOpr)
  89 {
  90   // reinitialize the shared state arrays
  91   _state.reset(max_vregs);
  92 }
  93 
  94 
  95 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  96   assert(src->is_valid(), "");
  97   assert(dest->is_valid(), "");
  98   __ move(src, dest);
  99 }
 100 
 101 
 102 void PhiResolver::move_temp_to(LIR_Opr dest) {
 103   assert(_temp->is_valid(), "");
 104   emit_move(_temp, dest);
 105   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 106 }
 107 
 108 
 109 void PhiResolver::move_to_temp(LIR_Opr src) {
 110   assert(_temp->is_illegal(), "");
 111   _temp = _gen->new_register(src->type());
 112   emit_move(src, _temp);
 113 }
 114 
 115 
 116 // Traverse assignment graph in depth first order and generate moves in post order
 117 // ie. two assignments: b := c, a := b start with node c:
 118 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 119 // Generates moves in this order: move b to a and move c to b
 120 // ie. cycle a := b, b := a start with node a
 121 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 122 // Generates moves in this order: move b to temp, move a to b, move temp to a
 123 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 124   if (!dest->visited()) {
 125     dest->set_visited();
 126     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 127       move(dest, dest->destination_at(i));
 128     }
 129   } else if (!dest->start_node()) {
 130     // cylce in graph detected
 131     assert(_loop == NULL, "only one loop valid!");
 132     _loop = dest;
 133     move_to_temp(src->operand());
 134     return;
 135   } // else dest is a start node
 136 
 137   if (!dest->assigned()) {
 138     if (_loop == dest) {
 139       move_temp_to(dest->operand());
 140       dest->set_assigned();
 141     } else if (src != NULL) {
 142       emit_move(src->operand(), dest->operand());
 143       dest->set_assigned();
 144     }
 145   }
 146 }
 147 
 148 
 149 PhiResolver::~PhiResolver() {
 150   int i;
 151   // resolve any cycles in moves from and to virtual registers
 152   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 153     ResolveNode* node = virtual_operands().at(i);
 154     if (!node->visited()) {
 155       _loop = NULL;
 156       move(NULL, node);
 157       node->set_start_node();
 158       assert(_temp->is_illegal(), "move_temp_to() call missing");
 159     }
 160   }
 161 
 162   // generate move for move from non virtual register to abitrary destination
 163   for (i = other_operands().length() - 1; i >= 0; i --) {
 164     ResolveNode* node = other_operands().at(i);
 165     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 166       emit_move(node->operand(), node->destination_at(j)->operand());
 167     }
 168   }
 169 }
 170 
 171 
 172 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 173   ResolveNode* node;
 174   if (opr->is_virtual()) {
 175     int vreg_num = opr->vreg_number();
 176     node = vreg_table().at_grow(vreg_num, NULL);
 177     assert(node == NULL || node->operand() == opr, "");
 178     if (node == NULL) {
 179       node = new ResolveNode(opr);
 180       vreg_table().at_put(vreg_num, node);
 181     }
 182     // Make sure that all virtual operands show up in the list when
 183     // they are used as the source of a move.
 184     if (source && !virtual_operands().contains(node)) {
 185       virtual_operands().append(node);
 186     }
 187   } else {
 188     assert(source, "");
 189     node = new ResolveNode(opr);
 190     other_operands().append(node);
 191   }
 192   return node;
 193 }
 194 
 195 
 196 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 197   assert(dest->is_virtual(), "");
 198   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 199   assert(src->is_valid(), "");
 200   assert(dest->is_valid(), "");
 201   ResolveNode* source = source_node(src);
 202   source->append(destination_node(dest));
 203 }
 204 
 205 
 206 //--------------------------------------------------------------
 207 // LIRItem
 208 
 209 void LIRItem::set_result(LIR_Opr opr) {
 210   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 211   value()->set_operand(opr);
 212 
 213   if (opr->is_virtual()) {
 214     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 215   }
 216 
 217   _result = opr;
 218 }
 219 
 220 void LIRItem::load_item() {
 221   if (result()->is_illegal()) {
 222     // update the items result
 223     _result = value()->operand();
 224   }
 225   if (!result()->is_register()) {
 226     LIR_Opr reg = _gen->new_register(value()->type());
 227     __ move(result(), reg);
 228     if (result()->is_constant()) {
 229       _result = reg;
 230     } else {
 231       set_result(reg);
 232     }
 233   }
 234 }
 235 
 236 
 237 void LIRItem::load_for_store(BasicType type) {
 238   if (_gen->can_store_as_constant(value(), type)) {
 239     _result = value()->operand();
 240     if (!_result->is_constant()) {
 241       _result = LIR_OprFact::value_type(value()->type());
 242     }
 243   } else if (type == T_BYTE || type == T_BOOLEAN) {
 244     load_byte_item();
 245   } else {
 246     load_item();
 247   }
 248 }
 249 
 250 void LIRItem::load_item_force(LIR_Opr reg) {
 251   LIR_Opr r = result();
 252   if (r != reg) {
 253 #if !defined(ARM) && !defined(E500V2)
 254     if (r->type() != reg->type()) {
 255       // moves between different types need an intervening spill slot
 256       r = _gen->force_to_spill(r, reg->type());
 257     }
 258 #endif
 259     __ move(r, reg);
 260     _result = reg;
 261   }
 262 }
 263 
 264 ciObject* LIRItem::get_jobject_constant() const {
 265   ObjectType* oc = type()->as_ObjectType();
 266   if (oc) {
 267     return oc->constant_value();
 268   }
 269   return NULL;
 270 }
 271 
 272 
 273 jint LIRItem::get_jint_constant() const {
 274   assert(is_constant() && value() != NULL, "");
 275   assert(type()->as_IntConstant() != NULL, "type check");
 276   return type()->as_IntConstant()->value();
 277 }
 278 
 279 
 280 jint LIRItem::get_address_constant() const {
 281   assert(is_constant() && value() != NULL, "");
 282   assert(type()->as_AddressConstant() != NULL, "type check");
 283   return type()->as_AddressConstant()->value();
 284 }
 285 
 286 
 287 jfloat LIRItem::get_jfloat_constant() const {
 288   assert(is_constant() && value() != NULL, "");
 289   assert(type()->as_FloatConstant() != NULL, "type check");
 290   return type()->as_FloatConstant()->value();
 291 }
 292 
 293 
 294 jdouble LIRItem::get_jdouble_constant() const {
 295   assert(is_constant() && value() != NULL, "");
 296   assert(type()->as_DoubleConstant() != NULL, "type check");
 297   return type()->as_DoubleConstant()->value();
 298 }
 299 
 300 
 301 jlong LIRItem::get_jlong_constant() const {
 302   assert(is_constant() && value() != NULL, "");
 303   assert(type()->as_LongConstant() != NULL, "type check");
 304   return type()->as_LongConstant()->value();
 305 }
 306 
 307 
 308 
 309 //--------------------------------------------------------------
 310 
 311 
 312 void LIRGenerator::init() {
 313   _bs = Universe::heap()->barrier_set();
 314 }
 315 
 316 
 317 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 318 #ifndef PRODUCT
 319   if (PrintIRWithLIR) {
 320     block->print();
 321   }
 322 #endif
 323 
 324   // set up the list of LIR instructions
 325   assert(block->lir() == NULL, "LIR list already computed for this block");
 326   _lir = new LIR_List(compilation(), block);
 327   block->set_lir(_lir);
 328 
 329   __ branch_destination(block->label());
 330 
 331   if (LIRTraceExecution &&
 332       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 333       !block->is_set(BlockBegin::exception_entry_flag)) {
 334     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 335     trace_block_entry(block);
 336   }
 337 }
 338 
 339 
 340 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 341 #ifndef PRODUCT
 342   if (PrintIRWithLIR) {
 343     tty->cr();
 344   }
 345 #endif
 346 
 347   // LIR_Opr for unpinned constants shouldn't be referenced by other
 348   // blocks so clear them out after processing the block.
 349   for (int i = 0; i < _unpinned_constants.length(); i++) {
 350     _unpinned_constants.at(i)->clear_operand();
 351   }
 352   _unpinned_constants.trunc_to(0);
 353 
 354   // clear our any registers for other local constants
 355   _constants.trunc_to(0);
 356   _reg_for_constants.trunc_to(0);
 357 }
 358 
 359 
 360 void LIRGenerator::block_do(BlockBegin* block) {
 361   CHECK_BAILOUT();
 362 
 363   block_do_prolog(block);
 364   set_block(block);
 365 
 366   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 367     if (instr->is_pinned()) do_root(instr);
 368   }
 369 
 370   set_block(NULL);
 371   block_do_epilog(block);
 372 }
 373 
 374 
 375 //-------------------------LIRGenerator-----------------------------
 376 
 377 // This is where the tree-walk starts; instr must be root;
 378 void LIRGenerator::do_root(Value instr) {
 379   CHECK_BAILOUT();
 380 
 381   InstructionMark im(compilation(), instr);
 382 
 383   assert(instr->is_pinned(), "use only with roots");
 384   assert(instr->subst() == instr, "shouldn't have missed substitution");
 385 
 386   instr->visit(this);
 387 
 388   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 389          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 390 }
 391 
 392 
 393 // This is called for each node in tree; the walk stops if a root is reached
 394 void LIRGenerator::walk(Value instr) {
 395   InstructionMark im(compilation(), instr);
 396   //stop walk when encounter a root
 397   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 398     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 399   } else {
 400     assert(instr->subst() == instr, "shouldn't have missed substitution");
 401     instr->visit(this);
 402     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 403   }
 404 }
 405 
 406 
 407 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 408   assert(state != NULL, "state must be defined");
 409 
 410 #ifndef PRODUCT
 411   state->verify();
 412 #endif
 413 
 414   ValueStack* s = state;
 415   for_each_state(s) {
 416     if (s->kind() == ValueStack::EmptyExceptionState) {
 417       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 418       continue;
 419     }
 420 
 421     int index;
 422     Value value;
 423     for_each_stack_value(s, index, value) {
 424       assert(value->subst() == value, "missed substitution");
 425       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 426         walk(value);
 427         assert(value->operand()->is_valid(), "must be evaluated now");
 428       }
 429     }
 430 
 431     int bci = s->bci();
 432     IRScope* scope = s->scope();
 433     ciMethod* method = scope->method();
 434 
 435     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 436     if (bci == SynchronizationEntryBCI) {
 437       if (x->as_ExceptionObject() || x->as_Throw()) {
 438         // all locals are dead on exit from the synthetic unlocker
 439         liveness.clear();
 440       } else {
 441         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 442       }
 443     }
 444     if (!liveness.is_valid()) {
 445       // Degenerate or breakpointed method.
 446       bailout("Degenerate or breakpointed method");
 447     } else {
 448       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 449       for_each_local_value(s, index, value) {
 450         assert(value->subst() == value, "missed substition");
 451         if (liveness.at(index) && !value->type()->is_illegal()) {
 452           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 453             walk(value);
 454             assert(value->operand()->is_valid(), "must be evaluated now");
 455           }
 456         } else {
 457           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 458           s->invalidate_local(index);
 459         }
 460       }
 461     }
 462   }
 463 
 464   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 465 }
 466 
 467 
 468 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 469   return state_for(x, x->exception_state());
 470 }
 471 
 472 
 473 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 474   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 475    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 476    * the class. */
 477   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 478     assert(info != NULL, "info must be set if class is not loaded");
 479     __ klass2reg_patch(NULL, r, info);
 480   } else {
 481     // no patching needed
 482     __ metadata2reg(obj->constant_encoding(), r);
 483   }
 484 }
 485 
 486 
 487 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 488                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 489   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 490   if (index->is_constant()) {
 491     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 492                 index->as_jint(), null_check_info);
 493     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 494   } else {
 495     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 496                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 497     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 498   }
 499 }
 500 
 501 
 502 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 503   CodeStub* stub = new RangeCheckStub(info, index, true);
 504   if (index->is_constant()) {
 505     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 506     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 507   } else {
 508     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 509                 java_nio_Buffer::limit_offset(), T_INT, info);
 510     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 511   }
 512   __ move(index, result);
 513 }
 514 
 515 
 516 
 517 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 518   LIR_Opr result_op = result;
 519   LIR_Opr left_op   = left;
 520   LIR_Opr right_op  = right;
 521 
 522   if (TwoOperandLIRForm && left_op != result_op) {
 523     assert(right_op != result_op, "malformed");
 524     __ move(left_op, result_op);
 525     left_op = result_op;
 526   }
 527 
 528   switch(code) {
 529     case Bytecodes::_dadd:
 530     case Bytecodes::_fadd:
 531     case Bytecodes::_ladd:
 532     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 533     case Bytecodes::_fmul:
 534     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 535 
 536     case Bytecodes::_dmul:
 537       {
 538         if (is_strictfp) {
 539           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 540         } else {
 541           __ mul(left_op, right_op, result_op); break;
 542         }
 543       }
 544       break;
 545 
 546     case Bytecodes::_imul:
 547       {
 548         bool    did_strength_reduce = false;
 549 
 550         if (right->is_constant()) {
 551           int c = right->as_jint();
 552           if (is_power_of_2(c)) {
 553             // do not need tmp here
 554             __ shift_left(left_op, exact_log2(c), result_op);
 555             did_strength_reduce = true;
 556           } else {
 557             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 558           }
 559         }
 560         // we couldn't strength reduce so just emit the multiply
 561         if (!did_strength_reduce) {
 562           __ mul(left_op, right_op, result_op);
 563         }
 564       }
 565       break;
 566 
 567     case Bytecodes::_dsub:
 568     case Bytecodes::_fsub:
 569     case Bytecodes::_lsub:
 570     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 571 
 572     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 573     // ldiv and lrem are implemented with a direct runtime call
 574 
 575     case Bytecodes::_ddiv:
 576       {
 577         if (is_strictfp) {
 578           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 579         } else {
 580           __ div (left_op, right_op, result_op); break;
 581         }
 582       }
 583       break;
 584 
 585     case Bytecodes::_drem:
 586     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 587 
 588     default: ShouldNotReachHere();
 589   }
 590 }
 591 
 592 
 593 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 594   arithmetic_op(code, result, left, right, false, tmp);
 595 }
 596 
 597 
 598 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 599   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 600 }
 601 
 602 
 603 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 604   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 605 }
 606 
 607 
 608 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 609 
 610   if (TwoOperandLIRForm && value != result_op
 611       // Only 32bit right shifts require two operand form on S390.
 612       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 613     assert(count != result_op, "malformed");
 614     __ move(value, result_op);
 615     value = result_op;
 616   }
 617 
 618   assert(count->is_constant() || count->is_register(), "must be");
 619   switch(code) {
 620   case Bytecodes::_ishl:
 621   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 622   case Bytecodes::_ishr:
 623   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 624   case Bytecodes::_iushr:
 625   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 626   default: ShouldNotReachHere();
 627   }
 628 }
 629 
 630 
 631 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 632   if (TwoOperandLIRForm && left_op != result_op) {
 633     assert(right_op != result_op, "malformed");
 634     __ move(left_op, result_op);
 635     left_op = result_op;
 636   }
 637 
 638   switch(code) {
 639     case Bytecodes::_iand:
 640     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 641 
 642     case Bytecodes::_ior:
 643     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 644 
 645     case Bytecodes::_ixor:
 646     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 647 
 648     default: ShouldNotReachHere();
 649   }
 650 }
 651 
 652 
 653 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 654   if (!GenerateSynchronizationCode) return;
 655   // for slow path, use debug info for state after successful locking
 656   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 657   __ load_stack_address_monitor(monitor_no, lock);
 658   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 659   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 660 }
 661 
 662 
 663 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 664   if (!GenerateSynchronizationCode) return;
 665   // setup registers
 666   LIR_Opr hdr = lock;
 667   lock = new_hdr;
 668   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 669   __ load_stack_address_monitor(monitor_no, lock);
 670   __ unlock_object(hdr, object, lock, scratch, slow_path);
 671 }
 672 
 673 #ifndef PRODUCT
 674 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 675   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 676     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 677   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 678     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 679   }
 680 }
 681 #endif
 682 
 683 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 684   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 685   // If klass is not loaded we do not know if the klass has finalizers:
 686   if (UseFastNewInstance && klass->is_loaded()
 687       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 688 
 689     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 690 
 691     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 692 
 693     assert(klass->is_loaded(), "must be loaded");
 694     // allocate space for instance
 695     assert(klass->size_helper() >= 0, "illegal instance size");
 696     const int instance_size = align_object_size(klass->size_helper());
 697     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 698                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 699   } else {
 700     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 701     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 702     __ branch_destination(slow_path->continuation());
 703   }
 704 }
 705 
 706 
 707 static bool is_constant_zero(Instruction* inst) {
 708   IntConstant* c = inst->type()->as_IntConstant();
 709   if (c) {
 710     return (c->value() == 0);
 711   }
 712   return false;
 713 }
 714 
 715 
 716 static bool positive_constant(Instruction* inst) {
 717   IntConstant* c = inst->type()->as_IntConstant();
 718   if (c) {
 719     return (c->value() >= 0);
 720   }
 721   return false;
 722 }
 723 
 724 
 725 static ciArrayKlass* as_array_klass(ciType* type) {
 726   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 727     return (ciArrayKlass*)type;
 728   } else {
 729     return NULL;
 730   }
 731 }
 732 
 733 static ciType* phi_declared_type(Phi* phi) {
 734   ciType* t = phi->operand_at(0)->declared_type();
 735   if (t == NULL) {
 736     return NULL;
 737   }
 738   for(int i = 1; i < phi->operand_count(); i++) {
 739     if (t != phi->operand_at(i)->declared_type()) {
 740       return NULL;
 741     }
 742   }
 743   return t;
 744 }
 745 
 746 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 747   Instruction* src     = x->argument_at(0);
 748   Instruction* src_pos = x->argument_at(1);
 749   Instruction* dst     = x->argument_at(2);
 750   Instruction* dst_pos = x->argument_at(3);
 751   Instruction* length  = x->argument_at(4);
 752 
 753   // first try to identify the likely type of the arrays involved
 754   ciArrayKlass* expected_type = NULL;
 755   bool is_exact = false, src_objarray = false, dst_objarray = false;
 756   {
 757     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 758     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 759     Phi* phi;
 760     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 761       src_declared_type = as_array_klass(phi_declared_type(phi));
 762     }
 763     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 764     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 765     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 766       dst_declared_type = as_array_klass(phi_declared_type(phi));
 767     }
 768 
 769     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 770       // the types exactly match so the type is fully known
 771       is_exact = true;
 772       expected_type = src_exact_type;
 773     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 774       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 775       ciArrayKlass* src_type = NULL;
 776       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 777         src_type = (ciArrayKlass*) src_exact_type;
 778       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 779         src_type = (ciArrayKlass*) src_declared_type;
 780       }
 781       if (src_type != NULL) {
 782         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 783           is_exact = true;
 784           expected_type = dst_type;
 785         }
 786       }
 787     }
 788     // at least pass along a good guess
 789     if (expected_type == NULL) expected_type = dst_exact_type;
 790     if (expected_type == NULL) expected_type = src_declared_type;
 791     if (expected_type == NULL) expected_type = dst_declared_type;
 792 
 793     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 794     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 795   }
 796 
 797   // if a probable array type has been identified, figure out if any
 798   // of the required checks for a fast case can be elided.
 799   int flags = LIR_OpArrayCopy::all_flags;
 800 
 801   if (!src_objarray)
 802     flags &= ~LIR_OpArrayCopy::src_objarray;
 803   if (!dst_objarray)
 804     flags &= ~LIR_OpArrayCopy::dst_objarray;
 805 
 806   if (!x->arg_needs_null_check(0))
 807     flags &= ~LIR_OpArrayCopy::src_null_check;
 808   if (!x->arg_needs_null_check(2))
 809     flags &= ~LIR_OpArrayCopy::dst_null_check;
 810 
 811 
 812   if (expected_type != NULL) {
 813     Value length_limit = NULL;
 814 
 815     IfOp* ifop = length->as_IfOp();
 816     if (ifop != NULL) {
 817       // look for expressions like min(v, a.length) which ends up as
 818       //   x > y ? y : x  or  x >= y ? y : x
 819       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 820           ifop->x() == ifop->fval() &&
 821           ifop->y() == ifop->tval()) {
 822         length_limit = ifop->y();
 823       }
 824     }
 825 
 826     // try to skip null checks and range checks
 827     NewArray* src_array = src->as_NewArray();
 828     if (src_array != NULL) {
 829       flags &= ~LIR_OpArrayCopy::src_null_check;
 830       if (length_limit != NULL &&
 831           src_array->length() == length_limit &&
 832           is_constant_zero(src_pos)) {
 833         flags &= ~LIR_OpArrayCopy::src_range_check;
 834       }
 835     }
 836 
 837     NewArray* dst_array = dst->as_NewArray();
 838     if (dst_array != NULL) {
 839       flags &= ~LIR_OpArrayCopy::dst_null_check;
 840       if (length_limit != NULL &&
 841           dst_array->length() == length_limit &&
 842           is_constant_zero(dst_pos)) {
 843         flags &= ~LIR_OpArrayCopy::dst_range_check;
 844       }
 845     }
 846 
 847     // check from incoming constant values
 848     if (positive_constant(src_pos))
 849       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 850     if (positive_constant(dst_pos))
 851       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 852     if (positive_constant(length))
 853       flags &= ~LIR_OpArrayCopy::length_positive_check;
 854 
 855     // see if the range check can be elided, which might also imply
 856     // that src or dst is non-null.
 857     ArrayLength* al = length->as_ArrayLength();
 858     if (al != NULL) {
 859       if (al->array() == src) {
 860         // it's the length of the source array
 861         flags &= ~LIR_OpArrayCopy::length_positive_check;
 862         flags &= ~LIR_OpArrayCopy::src_null_check;
 863         if (is_constant_zero(src_pos))
 864           flags &= ~LIR_OpArrayCopy::src_range_check;
 865       }
 866       if (al->array() == dst) {
 867         // it's the length of the destination array
 868         flags &= ~LIR_OpArrayCopy::length_positive_check;
 869         flags &= ~LIR_OpArrayCopy::dst_null_check;
 870         if (is_constant_zero(dst_pos))
 871           flags &= ~LIR_OpArrayCopy::dst_range_check;
 872       }
 873     }
 874     if (is_exact) {
 875       flags &= ~LIR_OpArrayCopy::type_check;
 876     }
 877   }
 878 
 879   IntConstant* src_int = src_pos->type()->as_IntConstant();
 880   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 881   if (src_int && dst_int) {
 882     int s_offs = src_int->value();
 883     int d_offs = dst_int->value();
 884     if (src_int->value() >= dst_int->value()) {
 885       flags &= ~LIR_OpArrayCopy::overlapping;
 886     }
 887     if (expected_type != NULL) {
 888       BasicType t = expected_type->element_type()->basic_type();
 889       int element_size = type2aelembytes(t);
 890       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 891           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 892         flags &= ~LIR_OpArrayCopy::unaligned;
 893       }
 894     }
 895   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 896     // src and dest positions are the same, or dst is zero so assume
 897     // nonoverlapping copy.
 898     flags &= ~LIR_OpArrayCopy::overlapping;
 899   }
 900 
 901   if (src == dst) {
 902     // moving within a single array so no type checks are needed
 903     if (flags & LIR_OpArrayCopy::type_check) {
 904       flags &= ~LIR_OpArrayCopy::type_check;
 905     }
 906   }
 907   *flagsp = flags;
 908   *expected_typep = (ciArrayKlass*)expected_type;
 909 }
 910 
 911 
 912 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 913   assert(opr->is_register(), "why spill if item is not register?");
 914 
 915   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 916     LIR_Opr result = new_register(T_FLOAT);
 917     set_vreg_flag(result, must_start_in_memory);
 918     assert(opr->is_register(), "only a register can be spilled");
 919     assert(opr->value_type()->is_float(), "rounding only for floats available");
 920     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 921     return result;
 922   }
 923   return opr;
 924 }
 925 
 926 
 927 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 928   assert(type2size[t] == type2size[value->type()],
 929          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 930   if (!value->is_register()) {
 931     // force into a register
 932     LIR_Opr r = new_register(value->type());
 933     __ move(value, r);
 934     value = r;
 935   }
 936 
 937   // create a spill location
 938   LIR_Opr tmp = new_register(t);
 939   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 940 
 941   // move from register to spill
 942   __ move(value, tmp);
 943   return tmp;
 944 }
 945 
 946 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 947   if (if_instr->should_profile()) {
 948     ciMethod* method = if_instr->profiled_method();
 949     assert(method != NULL, "method should be set if branch is profiled");
 950     ciMethodData* md = method->method_data_or_null();
 951     assert(md != NULL, "Sanity");
 952     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 953     assert(data != NULL, "must have profiling data");
 954     assert(data->is_BranchData(), "need BranchData for two-way branches");
 955     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 956     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 957     if (if_instr->is_swapped()) {
 958       int t = taken_count_offset;
 959       taken_count_offset = not_taken_count_offset;
 960       not_taken_count_offset = t;
 961     }
 962 
 963     LIR_Opr md_reg = new_register(T_METADATA);
 964     __ metadata2reg(md->constant_encoding(), md_reg);
 965 
 966     LIR_Opr data_offset_reg = new_pointer_register();
 967     __ cmove(lir_cond(cond),
 968              LIR_OprFact::intptrConst(taken_count_offset),
 969              LIR_OprFact::intptrConst(not_taken_count_offset),
 970              data_offset_reg, as_BasicType(if_instr->x()->type()));
 971 
 972     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 973     LIR_Opr data_reg = new_pointer_register();
 974     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 975     __ move(data_addr, data_reg);
 976     // Use leal instead of add to avoid destroying condition codes on x86
 977     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 978     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 979     __ move(data_reg, data_addr);
 980   }
 981 }
 982 
 983 // Phi technique:
 984 // This is about passing live values from one basic block to the other.
 985 // In code generated with Java it is rather rare that more than one
 986 // value is on the stack from one basic block to the other.
 987 // We optimize our technique for efficient passing of one value
 988 // (of type long, int, double..) but it can be extended.
 989 // When entering or leaving a basic block, all registers and all spill
 990 // slots are release and empty. We use the released registers
 991 // and spill slots to pass the live values from one block
 992 // to the other. The topmost value, i.e., the value on TOS of expression
 993 // stack is passed in registers. All other values are stored in spilling
 994 // area. Every Phi has an index which designates its spill slot
 995 // At exit of a basic block, we fill the register(s) and spill slots.
 996 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 997 // and locks necessary registers and spilling slots.
 998 
 999 
1000 // move current value to referenced phi function
1001 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1002   Phi* phi = sux_val->as_Phi();
1003   // cur_val can be null without phi being null in conjunction with inlining
1004   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1005     Phi* cur_phi = cur_val->as_Phi();
1006     if (cur_phi != NULL && cur_phi->is_illegal()) {
1007       // Phi and local would need to get invalidated
1008       // (which is unexpected for Linear Scan).
1009       // But this case is very rare so we simply bail out.
1010       bailout("propagation of illegal phi");
1011       return;
1012     }
1013     LIR_Opr operand = cur_val->operand();
1014     if (operand->is_illegal()) {
1015       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1016              "these can be produced lazily");
1017       operand = operand_for_instruction(cur_val);
1018     }
1019     resolver->move(operand, operand_for_instruction(phi));
1020   }
1021 }
1022 
1023 
1024 // Moves all stack values into their PHI position
1025 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1026   BlockBegin* bb = block();
1027   if (bb->number_of_sux() == 1) {
1028     BlockBegin* sux = bb->sux_at(0);
1029     assert(sux->number_of_preds() > 0, "invalid CFG");
1030 
1031     // a block with only one predecessor never has phi functions
1032     if (sux->number_of_preds() > 1) {
1033       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1034       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1035 
1036       ValueStack* sux_state = sux->state();
1037       Value sux_value;
1038       int index;
1039 
1040       assert(cur_state->scope() == sux_state->scope(), "not matching");
1041       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1042       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1043 
1044       for_each_stack_value(sux_state, index, sux_value) {
1045         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1046       }
1047 
1048       for_each_local_value(sux_state, index, sux_value) {
1049         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1050       }
1051 
1052       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1053     }
1054   }
1055 }
1056 
1057 
1058 LIR_Opr LIRGenerator::new_register(BasicType type) {
1059   int vreg = _virtual_register_number;
1060   // add a little fudge factor for the bailout, since the bailout is
1061   // only checked periodically.  This gives a few extra registers to
1062   // hand out before we really run out, which helps us keep from
1063   // tripping over assertions.
1064   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1065     bailout("out of virtual registers");
1066     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1067       // wrap it around
1068       _virtual_register_number = LIR_OprDesc::vreg_base;
1069     }
1070   }
1071   _virtual_register_number += 1;
1072   return LIR_OprFact::virtual_register(vreg, type);
1073 }
1074 
1075 
1076 // Try to lock using register in hint
1077 LIR_Opr LIRGenerator::rlock(Value instr) {
1078   return new_register(instr->type());
1079 }
1080 
1081 
1082 // does an rlock and sets result
1083 LIR_Opr LIRGenerator::rlock_result(Value x) {
1084   LIR_Opr reg = rlock(x);
1085   set_result(x, reg);
1086   return reg;
1087 }
1088 
1089 
1090 // does an rlock and sets result
1091 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1092   LIR_Opr reg;
1093   switch (type) {
1094   case T_BYTE:
1095   case T_BOOLEAN:
1096     reg = rlock_byte(type);
1097     break;
1098   default:
1099     reg = rlock(x);
1100     break;
1101   }
1102 
1103   set_result(x, reg);
1104   return reg;
1105 }
1106 
1107 
1108 //---------------------------------------------------------------------
1109 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1110   ObjectType* oc = value->type()->as_ObjectType();
1111   if (oc) {
1112     return oc->constant_value();
1113   }
1114   return NULL;
1115 }
1116 
1117 
1118 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1119   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1120   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1121 
1122   // no moves are created for phi functions at the begin of exception
1123   // handlers, so assign operands manually here
1124   for_each_phi_fun(block(), phi,
1125                    operand_for_instruction(phi));
1126 
1127   LIR_Opr thread_reg = getThreadPointer();
1128   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1129                exceptionOopOpr());
1130   __ move_wide(LIR_OprFact::oopConst(NULL),
1131                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1132   __ move_wide(LIR_OprFact::oopConst(NULL),
1133                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1134 
1135   LIR_Opr result = new_register(T_OBJECT);
1136   __ move(exceptionOopOpr(), result);
1137   set_result(x, result);
1138 }
1139 
1140 
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 //----------------------------------------------------------------------
1144 //----------------------------------------------------------------------
1145 //                        visitor functions
1146 //----------------------------------------------------------------------
1147 //----------------------------------------------------------------------
1148 //----------------------------------------------------------------------
1149 //----------------------------------------------------------------------
1150 
1151 void LIRGenerator::do_Phi(Phi* x) {
1152   // phi functions are never visited directly
1153   ShouldNotReachHere();
1154 }
1155 
1156 
1157 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1158 void LIRGenerator::do_Constant(Constant* x) {
1159   if (x->state_before() != NULL) {
1160     // Any constant with a ValueStack requires patching so emit the patch here
1161     LIR_Opr reg = rlock_result(x);
1162     CodeEmitInfo* info = state_for(x, x->state_before());
1163     __ oop2reg_patch(NULL, reg, info);
1164   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1165     if (!x->is_pinned()) {
1166       // unpinned constants are handled specially so that they can be
1167       // put into registers when they are used multiple times within a
1168       // block.  After the block completes their operand will be
1169       // cleared so that other blocks can't refer to that register.
1170       set_result(x, load_constant(x));
1171     } else {
1172       LIR_Opr res = x->operand();
1173       if (!res->is_valid()) {
1174         res = LIR_OprFact::value_type(x->type());
1175       }
1176       if (res->is_constant()) {
1177         LIR_Opr reg = rlock_result(x);
1178         __ move(res, reg);
1179       } else {
1180         set_result(x, res);
1181       }
1182     }
1183   } else {
1184     set_result(x, LIR_OprFact::value_type(x->type()));
1185   }
1186 }
1187 
1188 
1189 void LIRGenerator::do_Local(Local* x) {
1190   // operand_for_instruction has the side effect of setting the result
1191   // so there's no need to do it here.
1192   operand_for_instruction(x);
1193 }
1194 
1195 
1196 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1197   Unimplemented();
1198 }
1199 
1200 
1201 void LIRGenerator::do_Return(Return* x) {
1202   if (compilation()->env()->dtrace_method_probes()) {
1203     BasicTypeList signature;
1204     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1205     signature.append(T_METADATA); // Method*
1206     LIR_OprList* args = new LIR_OprList();
1207     args->append(getThreadPointer());
1208     LIR_Opr meth = new_register(T_METADATA);
1209     __ metadata2reg(method()->constant_encoding(), meth);
1210     args->append(meth);
1211     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1212   }
1213 
1214   if (x->type()->is_void()) {
1215     __ return_op(LIR_OprFact::illegalOpr);
1216   } else {
1217     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1218     LIRItem result(x->result(), this);
1219 
1220     result.load_item_force(reg);
1221     __ return_op(result.result());
1222   }
1223   set_no_result(x);
1224 }
1225 
1226 // Examble: ref.get()
1227 // Combination of LoadField and g1 pre-write barrier
1228 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1229 
1230   const int referent_offset = java_lang_ref_Reference::referent_offset;
1231   guarantee(referent_offset > 0, "referent offset not initialized");
1232 
1233   assert(x->number_of_arguments() == 1, "wrong type");
1234 
1235   LIRItem reference(x->argument_at(0), this);
1236   reference.load_item();
1237 
1238   // need to perform the null check on the reference objecy
1239   CodeEmitInfo* info = NULL;
1240   if (x->needs_null_check()) {
1241     info = state_for(x);
1242   }
1243 
1244   LIR_Address* referent_field_adr =
1245     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1246 
1247   LIR_Opr result = rlock_result(x);
1248 
1249   __ load(referent_field_adr, result, info);
1250 
1251   // Register the value in the referent field with the pre-barrier
1252   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1253               result /* pre_val */,
1254               false  /* do_load */,
1255               false  /* patch */,
1256               NULL   /* info */);
1257 }
1258 
1259 // Example: clazz.isInstance(object)
1260 void LIRGenerator::do_isInstance(Intrinsic* x) {
1261   assert(x->number_of_arguments() == 2, "wrong type");
1262 
1263   // TODO could try to substitute this node with an equivalent InstanceOf
1264   // if clazz is known to be a constant Class. This will pick up newly found
1265   // constants after HIR construction. I'll leave this to a future change.
1266 
1267   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1268   // could follow the aastore example in a future change.
1269 
1270   LIRItem clazz(x->argument_at(0), this);
1271   LIRItem object(x->argument_at(1), this);
1272   clazz.load_item();
1273   object.load_item();
1274   LIR_Opr result = rlock_result(x);
1275 
1276   // need to perform null check on clazz
1277   if (x->needs_null_check()) {
1278     CodeEmitInfo* info = state_for(x);
1279     __ null_check(clazz.result(), info);
1280   }
1281 
1282   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1283                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1284                                      x->type(),
1285                                      NULL); // NULL CodeEmitInfo results in a leaf call
1286   __ move(call_result, result);
1287 }
1288 
1289 // Example: object.getClass ()
1290 void LIRGenerator::do_getClass(Intrinsic* x) {
1291   assert(x->number_of_arguments() == 1, "wrong type");
1292 
1293   LIRItem rcvr(x->argument_at(0), this);
1294   rcvr.load_item();
1295   LIR_Opr temp = new_register(T_METADATA);
1296   LIR_Opr result = rlock_result(x);
1297 
1298   // need to perform the null check on the rcvr
1299   CodeEmitInfo* info = NULL;
1300   if (x->needs_null_check()) {
1301     info = state_for(x);
1302   }
1303 
1304   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1305   // meaning of these two is mixed up (see JDK-8026837).
1306   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1307   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1308 }
1309 
1310 // java.lang.Class::isPrimitive()
1311 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1312   assert(x->number_of_arguments() == 1, "wrong type");
1313 
1314   LIRItem rcvr(x->argument_at(0), this);
1315   rcvr.load_item();
1316   LIR_Opr temp = new_register(T_METADATA);
1317   LIR_Opr result = rlock_result(x);
1318 
1319   CodeEmitInfo* info = NULL;
1320   if (x->needs_null_check()) {
1321     info = state_for(x);
1322   }
1323 
1324   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1325   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1326   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1327 }
1328 
1329 
1330 // Example: Thread.currentThread()
1331 void LIRGenerator::do_currentThread(Intrinsic* x) {
1332   assert(x->number_of_arguments() == 0, "wrong type");
1333   LIR_Opr reg = rlock_result(x);
1334   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1335 }
1336 
1337 
1338 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1339   assert(x->number_of_arguments() == 1, "wrong type");
1340   LIRItem receiver(x->argument_at(0), this);
1341 
1342   receiver.load_item();
1343   BasicTypeList signature;
1344   signature.append(T_OBJECT); // receiver
1345   LIR_OprList* args = new LIR_OprList();
1346   args->append(receiver.result());
1347   CodeEmitInfo* info = state_for(x, x->state());
1348   call_runtime(&signature, args,
1349                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1350                voidType, info);
1351 
1352   set_no_result(x);
1353 }
1354 
1355 
1356 //------------------------local access--------------------------------------
1357 
1358 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1359   if (x->operand()->is_illegal()) {
1360     Constant* c = x->as_Constant();
1361     if (c != NULL) {
1362       x->set_operand(LIR_OprFact::value_type(c->type()));
1363     } else {
1364       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1365       // allocate a virtual register for this local or phi
1366       x->set_operand(rlock(x));
1367       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1368     }
1369   }
1370   return x->operand();
1371 }
1372 
1373 
1374 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1375   if (opr->is_virtual()) {
1376     return instruction_for_vreg(opr->vreg_number());
1377   }
1378   return NULL;
1379 }
1380 
1381 
1382 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1383   if (reg_num < _instruction_for_operand.length()) {
1384     return _instruction_for_operand.at(reg_num);
1385   }
1386   return NULL;
1387 }
1388 
1389 
1390 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1391   if (_vreg_flags.size_in_bits() == 0) {
1392     BitMap2D temp(100, num_vreg_flags);
1393     _vreg_flags = temp;
1394   }
1395   _vreg_flags.at_put_grow(vreg_num, f, true);
1396 }
1397 
1398 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1399   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1400     return false;
1401   }
1402   return _vreg_flags.at(vreg_num, f);
1403 }
1404 
1405 
1406 // Block local constant handling.  This code is useful for keeping
1407 // unpinned constants and constants which aren't exposed in the IR in
1408 // registers.  Unpinned Constant instructions have their operands
1409 // cleared when the block is finished so that other blocks can't end
1410 // up referring to their registers.
1411 
1412 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1413   assert(!x->is_pinned(), "only for unpinned constants");
1414   _unpinned_constants.append(x);
1415   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1416 }
1417 
1418 
1419 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1420   BasicType t = c->type();
1421   for (int i = 0; i < _constants.length(); i++) {
1422     LIR_Const* other = _constants.at(i);
1423     if (t == other->type()) {
1424       switch (t) {
1425       case T_INT:
1426       case T_FLOAT:
1427         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1428         break;
1429       case T_LONG:
1430       case T_DOUBLE:
1431         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1432         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1433         break;
1434       case T_OBJECT:
1435         if (c->as_jobject() != other->as_jobject()) continue;
1436         break;
1437       }
1438       return _reg_for_constants.at(i);
1439     }
1440   }
1441 
1442   LIR_Opr result = new_register(t);
1443   __ move((LIR_Opr)c, result);
1444   _constants.append(c);
1445   _reg_for_constants.append(result);
1446   return result;
1447 }
1448 
1449 // Various barriers
1450 
1451 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1452                                bool do_load, bool patch, CodeEmitInfo* info) {
1453   // Do the pre-write barrier, if any.
1454   switch (_bs->kind()) {
1455 #if INCLUDE_ALL_GCS
1456     case BarrierSet::G1SATBCTLogging:
1457       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1458       break;
1459 #endif // INCLUDE_ALL_GCS
1460     case BarrierSet::CardTableForRS:
1461     case BarrierSet::CardTableExtension:
1462       // No pre barriers
1463       break;
1464     case BarrierSet::ModRef:
1465       // No pre barriers
1466       break;
1467     default      :
1468       ShouldNotReachHere();
1469 
1470   }
1471 }
1472 
1473 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1474   switch (_bs->kind()) {
1475 #if INCLUDE_ALL_GCS
1476     case BarrierSet::G1SATBCTLogging:
1477       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1478       break;
1479 #endif // INCLUDE_ALL_GCS
1480     case BarrierSet::CardTableForRS:
1481     case BarrierSet::CardTableExtension:
1482       CardTableModRef_post_barrier(addr,  new_val);
1483       break;
1484     case BarrierSet::ModRef:
1485       // No post barriers
1486       break;
1487     default      :
1488       ShouldNotReachHere();
1489     }
1490 }
1491 
1492 ////////////////////////////////////////////////////////////////////////
1493 #if INCLUDE_ALL_GCS
1494 
1495 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1496                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1497   // First we test whether marking is in progress.
1498   BasicType flag_type;
1499   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1500     flag_type = T_INT;
1501   } else {
1502     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1503               "Assumption");
1504     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1505     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1506     flag_type = T_BOOLEAN;
1507   }
1508   LIR_Opr thrd = getThreadPointer();
1509   LIR_Address* mark_active_flag_addr =
1510     new LIR_Address(thrd,
1511                     in_bytes(JavaThread::satb_mark_queue_offset() +
1512                              SATBMarkQueue::byte_offset_of_active()),
1513                     flag_type);
1514   // Read the marking-in-progress flag.
1515   LIR_Opr flag_val = new_register(T_INT);
1516   __ load(mark_active_flag_addr, flag_val);
1517   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1518 
1519   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1520 
1521   CodeStub* slow;
1522 
1523   if (do_load) {
1524     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1525     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1526 
1527     if (patch)
1528       pre_val_patch_code = lir_patch_normal;
1529 
1530     pre_val = new_register(T_OBJECT);
1531 
1532     if (!addr_opr->is_address()) {
1533       assert(addr_opr->is_register(), "must be");
1534       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1535     }
1536     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1537   } else {
1538     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1539     assert(pre_val->is_register(), "must be");
1540     assert(pre_val->type() == T_OBJECT, "must be an object");
1541     assert(info == NULL, "sanity");
1542 
1543     slow = new G1PreBarrierStub(pre_val);
1544   }
1545 
1546   __ branch(lir_cond_notEqual, T_INT, slow);
1547   __ branch_destination(slow->continuation());
1548 }
1549 
1550 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1551   // If the "new_val" is a constant NULL, no barrier is necessary.
1552   if (new_val->is_constant() &&
1553       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1554 
1555   if (!new_val->is_register()) {
1556     LIR_Opr new_val_reg = new_register(T_OBJECT);
1557     if (new_val->is_constant()) {
1558       __ move(new_val, new_val_reg);
1559     } else {
1560       __ leal(new_val, new_val_reg);
1561     }
1562     new_val = new_val_reg;
1563   }
1564   assert(new_val->is_register(), "must be a register at this point");
1565 
1566   if (addr->is_address()) {
1567     LIR_Address* address = addr->as_address_ptr();
1568     LIR_Opr ptr = new_pointer_register();
1569     if (!address->index()->is_valid() && address->disp() == 0) {
1570       __ move(address->base(), ptr);
1571     } else {
1572       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1573       __ leal(addr, ptr);
1574     }
1575     addr = ptr;
1576   }
1577   assert(addr->is_register(), "must be a register at this point");
1578 
1579   LIR_Opr xor_res = new_pointer_register();
1580   LIR_Opr xor_shift_res = new_pointer_register();
1581   if (TwoOperandLIRForm ) {
1582     __ move(addr, xor_res);
1583     __ logical_xor(xor_res, new_val, xor_res);
1584     __ move(xor_res, xor_shift_res);
1585     __ unsigned_shift_right(xor_shift_res,
1586                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1587                             xor_shift_res,
1588                             LIR_OprDesc::illegalOpr());
1589   } else {
1590     __ logical_xor(addr, new_val, xor_res);
1591     __ unsigned_shift_right(xor_res,
1592                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1593                             xor_shift_res,
1594                             LIR_OprDesc::illegalOpr());
1595   }
1596 
1597   if (!new_val->is_register()) {
1598     LIR_Opr new_val_reg = new_register(T_OBJECT);
1599     __ leal(new_val, new_val_reg);
1600     new_val = new_val_reg;
1601   }
1602   assert(new_val->is_register(), "must be a register at this point");
1603 
1604   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1605 
1606   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1607   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1608   __ branch_destination(slow->continuation());
1609 }
1610 
1611 #endif // INCLUDE_ALL_GCS
1612 ////////////////////////////////////////////////////////////////////////
1613 
1614 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1615   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1616   assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1617   LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1618   if (addr->is_address()) {
1619     LIR_Address* address = addr->as_address_ptr();
1620     // ptr cannot be an object because we use this barrier for array card marks
1621     // and addr can point in the middle of an array.
1622     LIR_Opr ptr = new_pointer_register();
1623     if (!address->index()->is_valid() && address->disp() == 0) {
1624       __ move(address->base(), ptr);
1625     } else {
1626       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1627       __ leal(addr, ptr);
1628     }
1629     addr = ptr;
1630   }
1631   assert(addr->is_register(), "must be a register at this point");
1632 
1633 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1634   CardTableModRef_post_barrier_helper(addr, card_table_base);
1635 #else
1636   LIR_Opr tmp = new_pointer_register();
1637   if (TwoOperandLIRForm) {
1638     __ move(addr, tmp);
1639     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1640   } else {
1641     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1642   }
1643 
1644   LIR_Address* card_addr;
1645   if (can_inline_as_constant(card_table_base)) {
1646     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1647   } else {
1648     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1649   }
1650 
1651   LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
1652   if (UseCondCardMark) {
1653     LIR_Opr cur_value = new_register(T_INT);
1654     if (UseConcMarkSweepGC) {
1655       __ membar_storeload();
1656     }
1657     __ move(card_addr, cur_value);
1658 
1659     LabelObj* L_already_dirty = new LabelObj();
1660     __ cmp(lir_cond_equal, cur_value, dirty);
1661     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1662     __ move(dirty, card_addr);
1663     __ branch_destination(L_already_dirty->label());
1664   } else {
1665     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1666       __ membar_storestore();
1667     }
1668     __ move(dirty, card_addr);
1669   }
1670 #endif
1671 }
1672 
1673 
1674 //------------------------field access--------------------------------------
1675 
1676 // Comment copied form templateTable_i486.cpp
1677 // ----------------------------------------------------------------------------
1678 // Volatile variables demand their effects be made known to all CPU's in
1679 // order.  Store buffers on most chips allow reads & writes to reorder; the
1680 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1681 // memory barrier (i.e., it's not sufficient that the interpreter does not
1682 // reorder volatile references, the hardware also must not reorder them).
1683 //
1684 // According to the new Java Memory Model (JMM):
1685 // (1) All volatiles are serialized wrt to each other.
1686 // ALSO reads & writes act as aquire & release, so:
1687 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1688 // the read float up to before the read.  It's OK for non-volatile memory refs
1689 // that happen before the volatile read to float down below it.
1690 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1691 // that happen BEFORE the write float down to after the write.  It's OK for
1692 // non-volatile memory refs that happen after the volatile write to float up
1693 // before it.
1694 //
1695 // We only put in barriers around volatile refs (they are expensive), not
1696 // _between_ memory refs (that would require us to track the flavor of the
1697 // previous memory refs).  Requirements (2) and (3) require some barriers
1698 // before volatile stores and after volatile loads.  These nearly cover
1699 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1700 // case is placed after volatile-stores although it could just as well go
1701 // before volatile-loads.
1702 
1703 
1704 void LIRGenerator::do_StoreField(StoreField* x) {
1705   bool needs_patching = x->needs_patching();
1706   bool is_volatile = x->field()->is_volatile();
1707   BasicType field_type = x->field_type();
1708   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1709 
1710   CodeEmitInfo* info = NULL;
1711   if (needs_patching) {
1712     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1713     info = state_for(x, x->state_before());
1714   } else if (x->needs_null_check()) {
1715     NullCheck* nc = x->explicit_null_check();
1716     if (nc == NULL) {
1717       info = state_for(x);
1718     } else {
1719       info = state_for(nc);
1720     }
1721   }
1722 
1723 
1724   LIRItem object(x->obj(), this);
1725   LIRItem value(x->value(),  this);
1726 
1727   object.load_item();
1728 
1729   if (is_volatile || needs_patching) {
1730     // load item if field is volatile (fewer special cases for volatiles)
1731     // load item if field not initialized
1732     // load item if field not constant
1733     // because of code patching we cannot inline constants
1734     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1735       value.load_byte_item();
1736     } else  {
1737       value.load_item();
1738     }
1739   } else {
1740     value.load_for_store(field_type);
1741   }
1742 
1743   set_no_result(x);
1744 
1745 #ifndef PRODUCT
1746   if (PrintNotLoaded && needs_patching) {
1747     tty->print_cr("   ###class not loaded at store_%s bci %d",
1748                   x->is_static() ?  "static" : "field", x->printable_bci());
1749   }
1750 #endif
1751 
1752   if (x->needs_null_check() &&
1753       (needs_patching ||
1754        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1755     // emit an explicit null check because the offset is too large
1756     __ null_check(object.result(), new CodeEmitInfo(info));
1757   }
1758 
1759   LIR_Address* address;
1760   if (needs_patching) {
1761     // we need to patch the offset in the instruction so don't allow
1762     // generate_address to try to be smart about emitting the -1.
1763     // Otherwise the patching code won't know how to find the
1764     // instruction to patch.
1765     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1766   } else {
1767     address = generate_address(object.result(), x->offset(), field_type);
1768   }
1769 
1770   if (is_volatile && os::is_MP()) {
1771     __ membar_release();
1772   }
1773 
1774   if (is_oop) {
1775     // Do the pre-write barrier, if any.
1776     pre_barrier(LIR_OprFact::address(address),
1777                 LIR_OprFact::illegalOpr /* pre_val */,
1778                 true /* do_load*/,
1779                 needs_patching,
1780                 (info ? new CodeEmitInfo(info) : NULL));
1781   }
1782 
1783   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1784   if (needs_atomic_access && !needs_patching) {
1785     volatile_field_store(value.result(), address, info);
1786   } else {
1787     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1788     __ store(value.result(), address, info, patch_code);
1789   }
1790 
1791   if (is_oop) {
1792     // Store to object so mark the card of the header
1793     post_barrier(object.result(), value.result());
1794   }
1795 
1796   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1797     __ membar();
1798   }
1799 }
1800 
1801 
1802 void LIRGenerator::do_LoadField(LoadField* x) {
1803   bool needs_patching = x->needs_patching();
1804   bool is_volatile = x->field()->is_volatile();
1805   BasicType field_type = x->field_type();
1806 
1807   CodeEmitInfo* info = NULL;
1808   if (needs_patching) {
1809     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1810     info = state_for(x, x->state_before());
1811   } else if (x->needs_null_check()) {
1812     NullCheck* nc = x->explicit_null_check();
1813     if (nc == NULL) {
1814       info = state_for(x);
1815     } else {
1816       info = state_for(nc);
1817     }
1818   }
1819 
1820   LIRItem object(x->obj(), this);
1821 
1822   object.load_item();
1823 
1824 #ifndef PRODUCT
1825   if (PrintNotLoaded && needs_patching) {
1826     tty->print_cr("   ###class not loaded at load_%s bci %d",
1827                   x->is_static() ?  "static" : "field", x->printable_bci());
1828   }
1829 #endif
1830 
1831   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1832   if (x->needs_null_check() &&
1833       (needs_patching ||
1834        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1835        stress_deopt)) {
1836     LIR_Opr obj = object.result();
1837     if (stress_deopt) {
1838       obj = new_register(T_OBJECT);
1839       __ move(LIR_OprFact::oopConst(NULL), obj);
1840     }
1841     // emit an explicit null check because the offset is too large
1842     __ null_check(obj, new CodeEmitInfo(info));
1843   }
1844 
1845   LIR_Opr reg = rlock_result(x, field_type);
1846   LIR_Address* address;
1847   if (needs_patching) {
1848     // we need to patch the offset in the instruction so don't allow
1849     // generate_address to try to be smart about emitting the -1.
1850     // Otherwise the patching code won't know how to find the
1851     // instruction to patch.
1852     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1853   } else {
1854     address = generate_address(object.result(), x->offset(), field_type);
1855   }
1856 
1857   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1858     __ membar();
1859   }
1860 
1861   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1862   if (needs_atomic_access && !needs_patching) {
1863     volatile_field_load(address, reg, info);
1864   } else {
1865     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1866     __ load(address, reg, info, patch_code);
1867   }
1868 
1869   if (is_volatile && os::is_MP()) {
1870     __ membar_acquire();
1871   }
1872 }
1873 
1874 
1875 //------------------------java.nio.Buffer.checkIndex------------------------
1876 
1877 // int java.nio.Buffer.checkIndex(int)
1878 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1879   // NOTE: by the time we are in checkIndex() we are guaranteed that
1880   // the buffer is non-null (because checkIndex is package-private and
1881   // only called from within other methods in the buffer).
1882   assert(x->number_of_arguments() == 2, "wrong type");
1883   LIRItem buf  (x->argument_at(0), this);
1884   LIRItem index(x->argument_at(1), this);
1885   buf.load_item();
1886   index.load_item();
1887 
1888   LIR_Opr result = rlock_result(x);
1889   if (GenerateRangeChecks) {
1890     CodeEmitInfo* info = state_for(x);
1891     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1892     if (index.result()->is_constant()) {
1893       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1894       __ branch(lir_cond_belowEqual, T_INT, stub);
1895     } else {
1896       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1897                   java_nio_Buffer::limit_offset(), T_INT, info);
1898       __ branch(lir_cond_aboveEqual, T_INT, stub);
1899     }
1900     __ move(index.result(), result);
1901   } else {
1902     // Just load the index into the result register
1903     __ move(index.result(), result);
1904   }
1905 }
1906 
1907 
1908 //------------------------array access--------------------------------------
1909 
1910 
1911 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1912   LIRItem array(x->array(), this);
1913   array.load_item();
1914   LIR_Opr reg = rlock_result(x);
1915 
1916   CodeEmitInfo* info = NULL;
1917   if (x->needs_null_check()) {
1918     NullCheck* nc = x->explicit_null_check();
1919     if (nc == NULL) {
1920       info = state_for(x);
1921     } else {
1922       info = state_for(nc);
1923     }
1924     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1925       LIR_Opr obj = new_register(T_OBJECT);
1926       __ move(LIR_OprFact::oopConst(NULL), obj);
1927       __ null_check(obj, new CodeEmitInfo(info));
1928     }
1929   }
1930   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1931 }
1932 
1933 
1934 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1935   bool use_length = x->length() != NULL;
1936   LIRItem array(x->array(), this);
1937   LIRItem index(x->index(), this);
1938   LIRItem length(this);
1939   bool needs_range_check = x->compute_needs_range_check();
1940 
1941   if (use_length && needs_range_check) {
1942     length.set_instruction(x->length());
1943     length.load_item();
1944   }
1945 
1946   array.load_item();
1947   if (index.is_constant() && can_inline_as_constant(x->index())) {
1948     // let it be a constant
1949     index.dont_load_item();
1950   } else {
1951     index.load_item();
1952   }
1953 
1954   CodeEmitInfo* range_check_info = state_for(x);
1955   CodeEmitInfo* null_check_info = NULL;
1956   if (x->needs_null_check()) {
1957     NullCheck* nc = x->explicit_null_check();
1958     if (nc != NULL) {
1959       null_check_info = state_for(nc);
1960     } else {
1961       null_check_info = range_check_info;
1962     }
1963     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1964       LIR_Opr obj = new_register(T_OBJECT);
1965       __ move(LIR_OprFact::oopConst(NULL), obj);
1966       __ null_check(obj, new CodeEmitInfo(null_check_info));
1967     }
1968   }
1969 
1970   // emit array address setup early so it schedules better
1971   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1972 
1973   if (GenerateRangeChecks && needs_range_check) {
1974     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1975       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1976     } else if (use_length) {
1977       // TODO: use a (modified) version of array_range_check that does not require a
1978       //       constant length to be loaded to a register
1979       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1980       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1981     } else {
1982       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1983       // The range check performs the null check, so clear it out for the load
1984       null_check_info = NULL;
1985     }
1986   }
1987 
1988   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1989 }
1990 
1991 
1992 void LIRGenerator::do_NullCheck(NullCheck* x) {
1993   if (x->can_trap()) {
1994     LIRItem value(x->obj(), this);
1995     value.load_item();
1996     CodeEmitInfo* info = state_for(x);
1997     __ null_check(value.result(), info);
1998   }
1999 }
2000 
2001 
2002 void LIRGenerator::do_TypeCast(TypeCast* x) {
2003   LIRItem value(x->obj(), this);
2004   value.load_item();
2005   // the result is the same as from the node we are casting
2006   set_result(x, value.result());
2007 }
2008 
2009 
2010 void LIRGenerator::do_Throw(Throw* x) {
2011   LIRItem exception(x->exception(), this);
2012   exception.load_item();
2013   set_no_result(x);
2014   LIR_Opr exception_opr = exception.result();
2015   CodeEmitInfo* info = state_for(x, x->state());
2016 
2017 #ifndef PRODUCT
2018   if (PrintC1Statistics) {
2019     increment_counter(Runtime1::throw_count_address(), T_INT);
2020   }
2021 #endif
2022 
2023   // check if the instruction has an xhandler in any of the nested scopes
2024   bool unwind = false;
2025   if (info->exception_handlers()->length() == 0) {
2026     // this throw is not inside an xhandler
2027     unwind = true;
2028   } else {
2029     // get some idea of the throw type
2030     bool type_is_exact = true;
2031     ciType* throw_type = x->exception()->exact_type();
2032     if (throw_type == NULL) {
2033       type_is_exact = false;
2034       throw_type = x->exception()->declared_type();
2035     }
2036     if (throw_type != NULL && throw_type->is_instance_klass()) {
2037       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2038       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2039     }
2040   }
2041 
2042   // do null check before moving exception oop into fixed register
2043   // to avoid a fixed interval with an oop during the null check.
2044   // Use a copy of the CodeEmitInfo because debug information is
2045   // different for null_check and throw.
2046   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2047     // if the exception object wasn't created using new then it might be null.
2048     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2049   }
2050 
2051   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2052     // we need to go through the exception lookup path to get JVMTI
2053     // notification done
2054     unwind = false;
2055   }
2056 
2057   // move exception oop into fixed register
2058   __ move(exception_opr, exceptionOopOpr());
2059 
2060   if (unwind) {
2061     __ unwind_exception(exceptionOopOpr());
2062   } else {
2063     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2064   }
2065 }
2066 
2067 
2068 void LIRGenerator::do_RoundFP(RoundFP* x) {
2069   LIRItem input(x->input(), this);
2070   input.load_item();
2071   LIR_Opr input_opr = input.result();
2072   assert(input_opr->is_register(), "why round if value is not in a register?");
2073   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2074   if (input_opr->is_single_fpu()) {
2075     set_result(x, round_item(input_opr)); // This code path not currently taken
2076   } else {
2077     LIR_Opr result = new_register(T_DOUBLE);
2078     set_vreg_flag(result, must_start_in_memory);
2079     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2080     set_result(x, result);
2081   }
2082 }
2083 
2084 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2085 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2086 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2087   LIRItem base(x->base(), this);
2088   LIRItem idx(this);
2089 
2090   base.load_item();
2091   if (x->has_index()) {
2092     idx.set_instruction(x->index());
2093     idx.load_nonconstant();
2094   }
2095 
2096   LIR_Opr reg = rlock_result(x, x->basic_type());
2097 
2098   int   log2_scale = 0;
2099   if (x->has_index()) {
2100     log2_scale = x->log2_scale();
2101   }
2102 
2103   assert(!x->has_index() || idx.value() == x->index(), "should match");
2104 
2105   LIR_Opr base_op = base.result();
2106   LIR_Opr index_op = idx.result();
2107 #ifndef _LP64
2108   if (base_op->type() == T_LONG) {
2109     base_op = new_register(T_INT);
2110     __ convert(Bytecodes::_l2i, base.result(), base_op);
2111   }
2112   if (x->has_index()) {
2113     if (index_op->type() == T_LONG) {
2114       LIR_Opr long_index_op = index_op;
2115       if (index_op->is_constant()) {
2116         long_index_op = new_register(T_LONG);
2117         __ move(index_op, long_index_op);
2118       }
2119       index_op = new_register(T_INT);
2120       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2121     } else {
2122       assert(x->index()->type()->tag() == intTag, "must be");
2123     }
2124   }
2125   // At this point base and index should be all ints.
2126   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2127   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2128 #else
2129   if (x->has_index()) {
2130     if (index_op->type() == T_INT) {
2131       if (!index_op->is_constant()) {
2132         index_op = new_register(T_LONG);
2133         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2134       }
2135     } else {
2136       assert(index_op->type() == T_LONG, "must be");
2137       if (index_op->is_constant()) {
2138         index_op = new_register(T_LONG);
2139         __ move(idx.result(), index_op);
2140       }
2141     }
2142   }
2143   // At this point base is a long non-constant
2144   // Index is a long register or a int constant.
2145   // We allow the constant to stay an int because that would allow us a more compact encoding by
2146   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2147   // move it into a register first.
2148   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2149   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2150                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2151 #endif
2152 
2153   BasicType dst_type = x->basic_type();
2154 
2155   LIR_Address* addr;
2156   if (index_op->is_constant()) {
2157     assert(log2_scale == 0, "must not have a scale");
2158     assert(index_op->type() == T_INT, "only int constants supported");
2159     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2160   } else {
2161 #ifdef X86
2162     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2163 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2164     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2165 #else
2166     if (index_op->is_illegal() || log2_scale == 0) {
2167       addr = new LIR_Address(base_op, index_op, dst_type);
2168     } else {
2169       LIR_Opr tmp = new_pointer_register();
2170       __ shift_left(index_op, log2_scale, tmp);
2171       addr = new LIR_Address(base_op, tmp, dst_type);
2172     }
2173 #endif
2174   }
2175 
2176   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2177     __ unaligned_move(addr, reg);
2178   } else {
2179     if (dst_type == T_OBJECT && x->is_wide()) {
2180       __ move_wide(addr, reg);
2181     } else {
2182       __ move(addr, reg);
2183     }
2184   }
2185 }
2186 
2187 
2188 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2189   int  log2_scale = 0;
2190   BasicType type = x->basic_type();
2191 
2192   if (x->has_index()) {
2193     log2_scale = x->log2_scale();
2194   }
2195 
2196   LIRItem base(x->base(), this);
2197   LIRItem value(x->value(), this);
2198   LIRItem idx(this);
2199 
2200   base.load_item();
2201   if (x->has_index()) {
2202     idx.set_instruction(x->index());
2203     idx.load_item();
2204   }
2205 
2206   if (type == T_BYTE || type == T_BOOLEAN) {
2207     value.load_byte_item();
2208   } else {
2209     value.load_item();
2210   }
2211 
2212   set_no_result(x);
2213 
2214   LIR_Opr base_op = base.result();
2215   LIR_Opr index_op = idx.result();
2216 
2217 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2218   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2219 #else
2220 #ifndef _LP64
2221   if (base_op->type() == T_LONG) {
2222     base_op = new_register(T_INT);
2223     __ convert(Bytecodes::_l2i, base.result(), base_op);
2224   }
2225   if (x->has_index()) {
2226     if (index_op->type() == T_LONG) {
2227       index_op = new_register(T_INT);
2228       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2229     }
2230   }
2231   // At this point base and index should be all ints and not constants
2232   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2233   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2234 #else
2235   if (x->has_index()) {
2236     if (index_op->type() == T_INT) {
2237       index_op = new_register(T_LONG);
2238       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2239     }
2240   }
2241   // At this point base and index are long and non-constant
2242   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2243   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2244 #endif
2245 
2246   if (log2_scale != 0) {
2247     // temporary fix (platform dependent code without shift on Intel would be better)
2248     // TODO: ARM also allows embedded shift in the address
2249     LIR_Opr tmp = new_pointer_register();
2250     if (TwoOperandLIRForm) {
2251       __ move(index_op, tmp);
2252       index_op = tmp;
2253     }
2254     __ shift_left(index_op, log2_scale, tmp);
2255     if (!TwoOperandLIRForm) {
2256       index_op = tmp;
2257     }
2258   }
2259 
2260   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2261 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2262   __ move(value.result(), addr);
2263 }
2264 
2265 
2266 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2267   BasicType type = x->basic_type();
2268   LIRItem src(x->object(), this);
2269   LIRItem off(x->offset(), this);
2270 
2271   off.load_item();
2272   src.load_item();
2273 
2274   LIR_Opr value = rlock_result(x, x->basic_type());
2275 
2276   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2277     __ membar();
2278   }
2279 
2280   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2281 
2282 #if INCLUDE_ALL_GCS
2283   // We might be reading the value of the referent field of a
2284   // Reference object in order to attach it back to the live
2285   // object graph. If G1 is enabled then we need to record
2286   // the value that is being returned in an SATB log buffer.
2287   //
2288   // We need to generate code similar to the following...
2289   //
2290   // if (offset == java_lang_ref_Reference::referent_offset) {
2291   //   if (src != NULL) {
2292   //     if (klass(src)->reference_type() != REF_NONE) {
2293   //       pre_barrier(..., value, ...);
2294   //     }
2295   //   }
2296   // }
2297 
2298   if (UseG1GC && type == T_OBJECT) {
2299     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2300     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2301     bool gen_source_check = true;    // Assume we need to check the src object for null.
2302     bool gen_type_check = true;      // Assume we need to check the reference_type.
2303 
2304     if (off.is_constant()) {
2305       jlong off_con = (off.type()->is_int() ?
2306                         (jlong) off.get_jint_constant() :
2307                         off.get_jlong_constant());
2308 
2309 
2310       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2311         // The constant offset is something other than referent_offset.
2312         // We can skip generating/checking the remaining guards and
2313         // skip generation of the code stub.
2314         gen_pre_barrier = false;
2315       } else {
2316         // The constant offset is the same as referent_offset -
2317         // we do not need to generate a runtime offset check.
2318         gen_offset_check = false;
2319       }
2320     }
2321 
2322     // We don't need to generate stub if the source object is an array
2323     if (gen_pre_barrier && src.type()->is_array()) {
2324       gen_pre_barrier = false;
2325     }
2326 
2327     if (gen_pre_barrier) {
2328       // We still need to continue with the checks.
2329       if (src.is_constant()) {
2330         ciObject* src_con = src.get_jobject_constant();
2331         guarantee(src_con != NULL, "no source constant");
2332 
2333         if (src_con->is_null_object()) {
2334           // The constant src object is null - We can skip
2335           // generating the code stub.
2336           gen_pre_barrier = false;
2337         } else {
2338           // Non-null constant source object. We still have to generate
2339           // the slow stub - but we don't need to generate the runtime
2340           // null object check.
2341           gen_source_check = false;
2342         }
2343       }
2344     }
2345     if (gen_pre_barrier && !PatchALot) {
2346       // Can the klass of object be statically determined to be
2347       // a sub-class of Reference?
2348       ciType* type = src.value()->declared_type();
2349       if ((type != NULL) && type->is_loaded()) {
2350         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2351           gen_type_check = false;
2352         } else if (type->is_klass() &&
2353                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2354           // Not Reference and not Object klass.
2355           gen_pre_barrier = false;
2356         }
2357       }
2358     }
2359 
2360     if (gen_pre_barrier) {
2361       LabelObj* Lcont = new LabelObj();
2362 
2363       // We can have generate one runtime check here. Let's start with
2364       // the offset check.
2365       if (gen_offset_check) {
2366         // if (offset != referent_offset) -> continue
2367         // If offset is an int then we can do the comparison with the
2368         // referent_offset constant; otherwise we need to move
2369         // referent_offset into a temporary register and generate
2370         // a reg-reg compare.
2371 
2372         LIR_Opr referent_off;
2373 
2374         if (off.type()->is_int()) {
2375           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2376         } else {
2377           assert(off.type()->is_long(), "what else?");
2378           referent_off = new_register(T_LONG);
2379           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2380         }
2381         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2382         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2383       }
2384       if (gen_source_check) {
2385         // offset is a const and equals referent offset
2386         // if (source == null) -> continue
2387         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2388         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2389       }
2390       LIR_Opr src_klass = new_register(T_OBJECT);
2391       if (gen_type_check) {
2392         // We have determined that offset == referent_offset && src != null.
2393         // if (src->_klass->_reference_type == REF_NONE) -> continue
2394         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2395         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2396         LIR_Opr reference_type = new_register(T_INT);
2397         __ move(reference_type_addr, reference_type);
2398         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2399         __ branch(lir_cond_equal, T_INT, Lcont->label());
2400       }
2401       {
2402         // We have determined that src->_klass->_reference_type != REF_NONE
2403         // so register the value in the referent field with the pre-barrier.
2404         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2405                     value  /* pre_val */,
2406                     false  /* do_load */,
2407                     false  /* patch */,
2408                     NULL   /* info */);
2409       }
2410       __ branch_destination(Lcont->label());
2411     }
2412   }
2413 #endif // INCLUDE_ALL_GCS
2414 
2415   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2416 
2417   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
2418   if (type == T_BOOLEAN) {
2419     LabelObj* equalZeroLabel = new LabelObj();
2420     __ cmp(lir_cond_equal, value, 0);
2421     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
2422     __ move(LIR_OprFact::intConst(1), value);
2423     __ branch_destination(equalZeroLabel->label());
2424   }
2425 }
2426 
2427 
2428 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2429   BasicType type = x->basic_type();
2430   LIRItem src(x->object(), this);
2431   LIRItem off(x->offset(), this);
2432   LIRItem data(x->value(), this);
2433 
2434   src.load_item();
2435   if (type == T_BOOLEAN || type == T_BYTE) {
2436     data.load_byte_item();
2437   } else {
2438     data.load_item();
2439   }
2440   off.load_item();
2441 
2442   set_no_result(x);
2443 
2444   if (x->is_volatile() && os::is_MP()) __ membar_release();
2445   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2446   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2447 }
2448 
2449 
2450 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2451   int lng = x->length();
2452 
2453   for (int i = 0; i < lng; i++) {
2454     SwitchRange* one_range = x->at(i);
2455     int low_key = one_range->low_key();
2456     int high_key = one_range->high_key();
2457     BlockBegin* dest = one_range->sux();
2458     if (low_key == high_key) {
2459       __ cmp(lir_cond_equal, value, low_key);
2460       __ branch(lir_cond_equal, T_INT, dest);
2461     } else if (high_key - low_key == 1) {
2462       __ cmp(lir_cond_equal, value, low_key);
2463       __ branch(lir_cond_equal, T_INT, dest);
2464       __ cmp(lir_cond_equal, value, high_key);
2465       __ branch(lir_cond_equal, T_INT, dest);
2466     } else {
2467       LabelObj* L = new LabelObj();
2468       __ cmp(lir_cond_less, value, low_key);
2469       __ branch(lir_cond_less, T_INT, L->label());
2470       __ cmp(lir_cond_lessEqual, value, high_key);
2471       __ branch(lir_cond_lessEqual, T_INT, dest);
2472       __ branch_destination(L->label());
2473     }
2474   }
2475   __ jump(default_sux);
2476 }
2477 
2478 
2479 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2480   SwitchRangeList* res = new SwitchRangeList();
2481   int len = x->length();
2482   if (len > 0) {
2483     BlockBegin* sux = x->sux_at(0);
2484     int key = x->lo_key();
2485     BlockBegin* default_sux = x->default_sux();
2486     SwitchRange* range = new SwitchRange(key, sux);
2487     for (int i = 0; i < len; i++, key++) {
2488       BlockBegin* new_sux = x->sux_at(i);
2489       if (sux == new_sux) {
2490         // still in same range
2491         range->set_high_key(key);
2492       } else {
2493         // skip tests which explicitly dispatch to the default
2494         if (sux != default_sux) {
2495           res->append(range);
2496         }
2497         range = new SwitchRange(key, new_sux);
2498       }
2499       sux = new_sux;
2500     }
2501     if (res->length() == 0 || res->last() != range)  res->append(range);
2502   }
2503   return res;
2504 }
2505 
2506 
2507 // we expect the keys to be sorted by increasing value
2508 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2509   SwitchRangeList* res = new SwitchRangeList();
2510   int len = x->length();
2511   if (len > 0) {
2512     BlockBegin* default_sux = x->default_sux();
2513     int key = x->key_at(0);
2514     BlockBegin* sux = x->sux_at(0);
2515     SwitchRange* range = new SwitchRange(key, sux);
2516     for (int i = 1; i < len; i++) {
2517       int new_key = x->key_at(i);
2518       BlockBegin* new_sux = x->sux_at(i);
2519       if (key+1 == new_key && sux == new_sux) {
2520         // still in same range
2521         range->set_high_key(new_key);
2522       } else {
2523         // skip tests which explicitly dispatch to the default
2524         if (range->sux() != default_sux) {
2525           res->append(range);
2526         }
2527         range = new SwitchRange(new_key, new_sux);
2528       }
2529       key = new_key;
2530       sux = new_sux;
2531     }
2532     if (res->length() == 0 || res->last() != range)  res->append(range);
2533   }
2534   return res;
2535 }
2536 
2537 
2538 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2539   LIRItem tag(x->tag(), this);
2540   tag.load_item();
2541   set_no_result(x);
2542 
2543   if (x->is_safepoint()) {
2544     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2545   }
2546 
2547   // move values into phi locations
2548   move_to_phi(x->state());
2549 
2550   int lo_key = x->lo_key();
2551   int hi_key = x->hi_key();
2552   int len = x->length();
2553   LIR_Opr value = tag.result();
2554   if (UseTableRanges) {
2555     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2556   } else {
2557     for (int i = 0; i < len; i++) {
2558       __ cmp(lir_cond_equal, value, i + lo_key);
2559       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2560     }
2561     __ jump(x->default_sux());
2562   }
2563 }
2564 
2565 
2566 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2567   LIRItem tag(x->tag(), this);
2568   tag.load_item();
2569   set_no_result(x);
2570 
2571   if (x->is_safepoint()) {
2572     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2573   }
2574 
2575   // move values into phi locations
2576   move_to_phi(x->state());
2577 
2578   LIR_Opr value = tag.result();
2579   if (UseTableRanges) {
2580     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2581   } else {
2582     int len = x->length();
2583     for (int i = 0; i < len; i++) {
2584       __ cmp(lir_cond_equal, value, x->key_at(i));
2585       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2586     }
2587     __ jump(x->default_sux());
2588   }
2589 }
2590 
2591 
2592 void LIRGenerator::do_Goto(Goto* x) {
2593   set_no_result(x);
2594 
2595   if (block()->next()->as_OsrEntry()) {
2596     // need to free up storage used for OSR entry point
2597     LIR_Opr osrBuffer = block()->next()->operand();
2598     BasicTypeList signature;
2599     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2600     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2601     __ move(osrBuffer, cc->args()->at(0));
2602     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2603                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2604   }
2605 
2606   if (x->is_safepoint()) {
2607     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2608 
2609     // increment backedge counter if needed
2610     CodeEmitInfo* info = state_for(x, state);
2611     increment_backedge_counter(info, x->profiled_bci());
2612     CodeEmitInfo* safepoint_info = state_for(x, state);
2613     __ safepoint(safepoint_poll_register(), safepoint_info);
2614   }
2615 
2616   // Gotos can be folded Ifs, handle this case.
2617   if (x->should_profile()) {
2618     ciMethod* method = x->profiled_method();
2619     assert(method != NULL, "method should be set if branch is profiled");
2620     ciMethodData* md = method->method_data_or_null();
2621     assert(md != NULL, "Sanity");
2622     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2623     assert(data != NULL, "must have profiling data");
2624     int offset;
2625     if (x->direction() == Goto::taken) {
2626       assert(data->is_BranchData(), "need BranchData for two-way branches");
2627       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2628     } else if (x->direction() == Goto::not_taken) {
2629       assert(data->is_BranchData(), "need BranchData for two-way branches");
2630       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2631     } else {
2632       assert(data->is_JumpData(), "need JumpData for branches");
2633       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2634     }
2635     LIR_Opr md_reg = new_register(T_METADATA);
2636     __ metadata2reg(md->constant_encoding(), md_reg);
2637 
2638     increment_counter(new LIR_Address(md_reg, offset,
2639                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2640   }
2641 
2642   // emit phi-instruction move after safepoint since this simplifies
2643   // describing the state as the safepoint.
2644   move_to_phi(x->state());
2645 
2646   __ jump(x->default_sux());
2647 }
2648 
2649 /**
2650  * Emit profiling code if needed for arguments, parameters, return value types
2651  *
2652  * @param md                    MDO the code will update at runtime
2653  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2654  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2655  * @param profiled_k            current profile
2656  * @param obj                   IR node for the object to be profiled
2657  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2658  *                              Set once we find an update to make and use for next ones.
2659  * @param not_null              true if we know obj cannot be null
2660  * @param signature_at_call_k   signature at call for obj
2661  * @param callee_signature_k    signature of callee for obj
2662  *                              at call and callee signatures differ at method handle call
2663  * @return                      the only klass we know will ever be seen at this profile point
2664  */
2665 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2666                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2667                                     ciKlass* callee_signature_k) {
2668   ciKlass* result = NULL;
2669   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2670   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2671   // known not to be null or null bit already set and already set to
2672   // unknown: nothing we can do to improve profiling
2673   if (!do_null && !do_update) {
2674     return result;
2675   }
2676 
2677   ciKlass* exact_klass = NULL;
2678   Compilation* comp = Compilation::current();
2679   if (do_update) {
2680     // try to find exact type, using CHA if possible, so that loading
2681     // the klass from the object can be avoided
2682     ciType* type = obj->exact_type();
2683     if (type == NULL) {
2684       type = obj->declared_type();
2685       type = comp->cha_exact_type(type);
2686     }
2687     assert(type == NULL || type->is_klass(), "type should be class");
2688     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2689 
2690     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2691   }
2692 
2693   if (!do_null && !do_update) {
2694     return result;
2695   }
2696 
2697   ciKlass* exact_signature_k = NULL;
2698   if (do_update) {
2699     // Is the type from the signature exact (the only one possible)?
2700     exact_signature_k = signature_at_call_k->exact_klass();
2701     if (exact_signature_k == NULL) {
2702       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2703     } else {
2704       result = exact_signature_k;
2705       // Known statically. No need to emit any code: prevent
2706       // LIR_Assembler::emit_profile_type() from emitting useless code
2707       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2708     }
2709     // exact_klass and exact_signature_k can be both non NULL but
2710     // different if exact_klass is loaded after the ciObject for
2711     // exact_signature_k is created.
2712     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2713       // sometimes the type of the signature is better than the best type
2714       // the compiler has
2715       exact_klass = exact_signature_k;
2716     }
2717     if (callee_signature_k != NULL &&
2718         callee_signature_k != signature_at_call_k) {
2719       ciKlass* improved_klass = callee_signature_k->exact_klass();
2720       if (improved_klass == NULL) {
2721         improved_klass = comp->cha_exact_type(callee_signature_k);
2722       }
2723       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2724         exact_klass = exact_signature_k;
2725       }
2726     }
2727     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2728   }
2729 
2730   if (!do_null && !do_update) {
2731     return result;
2732   }
2733 
2734   if (mdp == LIR_OprFact::illegalOpr) {
2735     mdp = new_register(T_METADATA);
2736     __ metadata2reg(md->constant_encoding(), mdp);
2737     if (md_base_offset != 0) {
2738       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2739       mdp = new_pointer_register();
2740       __ leal(LIR_OprFact::address(base_type_address), mdp);
2741     }
2742   }
2743   LIRItem value(obj, this);
2744   value.load_item();
2745   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2746                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2747   return result;
2748 }
2749 
2750 // profile parameters on entry to the root of the compilation
2751 void LIRGenerator::profile_parameters(Base* x) {
2752   if (compilation()->profile_parameters()) {
2753     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2754     ciMethodData* md = scope()->method()->method_data_or_null();
2755     assert(md != NULL, "Sanity");
2756 
2757     if (md->parameters_type_data() != NULL) {
2758       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2759       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2760       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2761       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2762         LIR_Opr src = args->at(i);
2763         assert(!src->is_illegal(), "check");
2764         BasicType t = src->type();
2765         if (t == T_OBJECT || t == T_ARRAY) {
2766           intptr_t profiled_k = parameters->type(j);
2767           Local* local = x->state()->local_at(java_index)->as_Local();
2768           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2769                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2770                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2771           // If the profile is known statically set it once for all and do not emit any code
2772           if (exact != NULL) {
2773             md->set_parameter_type(j, exact);
2774           }
2775           j++;
2776         }
2777         java_index += type2size[t];
2778       }
2779     }
2780   }
2781 }
2782 
2783 void LIRGenerator::do_Base(Base* x) {
2784   __ std_entry(LIR_OprFact::illegalOpr);
2785   // Emit moves from physical registers / stack slots to virtual registers
2786   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2787   IRScope* irScope = compilation()->hir()->top_scope();
2788   int java_index = 0;
2789   for (int i = 0; i < args->length(); i++) {
2790     LIR_Opr src = args->at(i);
2791     assert(!src->is_illegal(), "check");
2792     BasicType t = src->type();
2793 
2794     // Types which are smaller than int are passed as int, so
2795     // correct the type which passed.
2796     switch (t) {
2797     case T_BYTE:
2798     case T_BOOLEAN:
2799     case T_SHORT:
2800     case T_CHAR:
2801       t = T_INT;
2802       break;
2803     }
2804 
2805     LIR_Opr dest = new_register(t);
2806     __ move(src, dest);
2807 
2808     // Assign new location to Local instruction for this local
2809     Local* local = x->state()->local_at(java_index)->as_Local();
2810     assert(local != NULL, "Locals for incoming arguments must have been created");
2811 #ifndef __SOFTFP__
2812     // The java calling convention passes double as long and float as int.
2813     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2814 #endif // __SOFTFP__
2815     local->set_operand(dest);
2816     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2817     java_index += type2size[t];
2818   }
2819 
2820   if (compilation()->env()->dtrace_method_probes()) {
2821     BasicTypeList signature;
2822     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2823     signature.append(T_METADATA); // Method*
2824     LIR_OprList* args = new LIR_OprList();
2825     args->append(getThreadPointer());
2826     LIR_Opr meth = new_register(T_METADATA);
2827     __ metadata2reg(method()->constant_encoding(), meth);
2828     args->append(meth);
2829     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2830   }
2831 
2832   if (method()->is_synchronized()) {
2833     LIR_Opr obj;
2834     if (method()->is_static()) {
2835       obj = new_register(T_OBJECT);
2836       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2837     } else {
2838       Local* receiver = x->state()->local_at(0)->as_Local();
2839       assert(receiver != NULL, "must already exist");
2840       obj = receiver->operand();
2841     }
2842     assert(obj->is_valid(), "must be valid");
2843 
2844     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2845       LIR_Opr lock = syncLockOpr();
2846       __ load_stack_address_monitor(0, lock);
2847 
2848       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2849       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2850 
2851       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2852       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2853     }
2854   }
2855   if (compilation()->age_code()) {
2856     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2857     decrement_age(info);
2858   }
2859   // increment invocation counters if needed
2860   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2861     profile_parameters(x);
2862     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2863     increment_invocation_counter(info);
2864   }
2865 
2866   // all blocks with a successor must end with an unconditional jump
2867   // to the successor even if they are consecutive
2868   __ jump(x->default_sux());
2869 }
2870 
2871 
2872 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2873   // construct our frame and model the production of incoming pointer
2874   // to the OSR buffer.
2875   __ osr_entry(LIR_Assembler::osrBufferPointer());
2876   LIR_Opr result = rlock_result(x);
2877   __ move(LIR_Assembler::osrBufferPointer(), result);
2878 }
2879 
2880 
2881 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2882   assert(args->length() == arg_list->length(),
2883          "args=%d, arg_list=%d", args->length(), arg_list->length());
2884   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2885     LIRItem* param = args->at(i);
2886     LIR_Opr loc = arg_list->at(i);
2887     if (loc->is_register()) {
2888       param->load_item_force(loc);
2889     } else {
2890       LIR_Address* addr = loc->as_address_ptr();
2891       param->load_for_store(addr->type());
2892       if (addr->type() == T_OBJECT) {
2893         __ move_wide(param->result(), addr);
2894       } else
2895         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2896           __ unaligned_move(param->result(), addr);
2897         } else {
2898           __ move(param->result(), addr);
2899         }
2900     }
2901   }
2902 
2903   if (x->has_receiver()) {
2904     LIRItem* receiver = args->at(0);
2905     LIR_Opr loc = arg_list->at(0);
2906     if (loc->is_register()) {
2907       receiver->load_item_force(loc);
2908     } else {
2909       assert(loc->is_address(), "just checking");
2910       receiver->load_for_store(T_OBJECT);
2911       __ move_wide(receiver->result(), loc->as_address_ptr());
2912     }
2913   }
2914 }
2915 
2916 
2917 // Visits all arguments, returns appropriate items without loading them
2918 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2919   LIRItemList* argument_items = new LIRItemList();
2920   if (x->has_receiver()) {
2921     LIRItem* receiver = new LIRItem(x->receiver(), this);
2922     argument_items->append(receiver);
2923   }
2924   for (int i = 0; i < x->number_of_arguments(); i++) {
2925     LIRItem* param = new LIRItem(x->argument_at(i), this);
2926     argument_items->append(param);
2927   }
2928   return argument_items;
2929 }
2930 
2931 
2932 // The invoke with receiver has following phases:
2933 //   a) traverse and load/lock receiver;
2934 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2935 //   c) push receiver on stack
2936 //   d) load each of the items and push on stack
2937 //   e) unlock receiver
2938 //   f) move receiver into receiver-register %o0
2939 //   g) lock result registers and emit call operation
2940 //
2941 // Before issuing a call, we must spill-save all values on stack
2942 // that are in caller-save register. "spill-save" moves those registers
2943 // either in a free callee-save register or spills them if no free
2944 // callee save register is available.
2945 //
2946 // The problem is where to invoke spill-save.
2947 // - if invoked between e) and f), we may lock callee save
2948 //   register in "spill-save" that destroys the receiver register
2949 //   before f) is executed
2950 // - if we rearrange f) to be earlier (by loading %o0) it
2951 //   may destroy a value on the stack that is currently in %o0
2952 //   and is waiting to be spilled
2953 // - if we keep the receiver locked while doing spill-save,
2954 //   we cannot spill it as it is spill-locked
2955 //
2956 void LIRGenerator::do_Invoke(Invoke* x) {
2957   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2958 
2959   LIR_OprList* arg_list = cc->args();
2960   LIRItemList* args = invoke_visit_arguments(x);
2961   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2962 
2963   // setup result register
2964   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2965   if (x->type() != voidType) {
2966     result_register = result_register_for(x->type());
2967   }
2968 
2969   CodeEmitInfo* info = state_for(x, x->state());
2970 
2971   invoke_load_arguments(x, args, arg_list);
2972 
2973   if (x->has_receiver()) {
2974     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2975     receiver = args->at(0)->result();
2976   }
2977 
2978   // emit invoke code
2979   bool optimized = x->target_is_loaded() && x->target_is_final();
2980   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2981 
2982   // JSR 292
2983   // Preserve the SP over MethodHandle call sites, if needed.
2984   ciMethod* target = x->target();
2985   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2986                                   target->is_method_handle_intrinsic() ||
2987                                   target->is_compiled_lambda_form());
2988   if (is_method_handle_invoke) {
2989     info->set_is_method_handle_invoke(true);
2990     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2991         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2992     }
2993   }
2994 
2995   switch (x->code()) {
2996     case Bytecodes::_invokestatic:
2997       __ call_static(target, result_register,
2998                      SharedRuntime::get_resolve_static_call_stub(),
2999                      arg_list, info);
3000       break;
3001     case Bytecodes::_invokespecial:
3002     case Bytecodes::_invokevirtual:
3003     case Bytecodes::_invokeinterface:
3004       // for final target we still produce an inline cache, in order
3005       // to be able to call mixed mode
3006       if (x->code() == Bytecodes::_invokespecial || optimized) {
3007         __ call_opt_virtual(target, receiver, result_register,
3008                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3009                             arg_list, info);
3010       } else if (x->vtable_index() < 0) {
3011         __ call_icvirtual(target, receiver, result_register,
3012                           SharedRuntime::get_resolve_virtual_call_stub(),
3013                           arg_list, info);
3014       } else {
3015         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3016         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3017         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3018       }
3019       break;
3020     case Bytecodes::_invokedynamic: {
3021       __ call_dynamic(target, receiver, result_register,
3022                       SharedRuntime::get_resolve_static_call_stub(),
3023                       arg_list, info);
3024       break;
3025     }
3026     default:
3027       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3028       break;
3029   }
3030 
3031   // JSR 292
3032   // Restore the SP after MethodHandle call sites, if needed.
3033   if (is_method_handle_invoke
3034       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3035     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3036   }
3037 
3038   if (x->type()->is_float() || x->type()->is_double()) {
3039     // Force rounding of results from non-strictfp when in strictfp
3040     // scope (or when we don't know the strictness of the callee, to
3041     // be safe.)
3042     if (method()->is_strict()) {
3043       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3044         result_register = round_item(result_register);
3045       }
3046     }
3047   }
3048 
3049   if (result_register->is_valid()) {
3050     LIR_Opr result = rlock_result(x);
3051     __ move(result_register, result);
3052   }
3053 }
3054 
3055 
3056 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3057   assert(x->number_of_arguments() == 1, "wrong type");
3058   LIRItem value       (x->argument_at(0), this);
3059   LIR_Opr reg = rlock_result(x);
3060   value.load_item();
3061   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3062   __ move(tmp, reg);
3063 }
3064 
3065 
3066 
3067 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3068 void LIRGenerator::do_IfOp(IfOp* x) {
3069 #ifdef ASSERT
3070   {
3071     ValueTag xtag = x->x()->type()->tag();
3072     ValueTag ttag = x->tval()->type()->tag();
3073     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3074     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3075     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3076   }
3077 #endif
3078 
3079   LIRItem left(x->x(), this);
3080   LIRItem right(x->y(), this);
3081   left.load_item();
3082   if (can_inline_as_constant(right.value())) {
3083     right.dont_load_item();
3084   } else {
3085     right.load_item();
3086   }
3087 
3088   LIRItem t_val(x->tval(), this);
3089   LIRItem f_val(x->fval(), this);
3090   t_val.dont_load_item();
3091   f_val.dont_load_item();
3092   LIR_Opr reg = rlock_result(x);
3093 
3094   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3095   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3096 }
3097 
3098 #ifdef TRACE_HAVE_INTRINSICS
3099 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3100   CodeEmitInfo* info = state_for(x);
3101   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3102 
3103   assert(info != NULL, "must have info");
3104   LIRItem arg(x->argument_at(0), this);
3105 
3106   arg.load_item();
3107   LIR_Opr klass = new_register(T_METADATA);
3108   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3109   LIR_Opr id = new_register(T_LONG);
3110   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3111   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3112 
3113   __ move(trace_id_addr, id);
3114   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3115   __ store(id, trace_id_addr);
3116 
3117 #ifdef TRACE_ID_META_BITS
3118   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3119 #endif
3120 #ifdef TRACE_ID_CLASS_SHIFT
3121   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
3122 #endif
3123 
3124   __ move(id, rlock_result(x));
3125 }
3126 #endif
3127 
3128 
3129 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3130   assert(x->number_of_arguments() == 0, "wrong type");
3131   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3132   BasicTypeList signature;
3133   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3134   LIR_Opr reg = result_register_for(x->type());
3135   __ call_runtime_leaf(routine, getThreadTemp(),
3136                        reg, new LIR_OprList());
3137   LIR_Opr result = rlock_result(x);
3138   __ move(reg, result);
3139 }
3140 
3141 
3142 
3143 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3144   switch (x->id()) {
3145   case vmIntrinsics::_intBitsToFloat      :
3146   case vmIntrinsics::_doubleToRawLongBits :
3147   case vmIntrinsics::_longBitsToDouble    :
3148   case vmIntrinsics::_floatToRawIntBits   : {
3149     do_FPIntrinsics(x);
3150     break;
3151   }
3152 
3153 #ifdef TRACE_HAVE_INTRINSICS
3154   case vmIntrinsics::_getClassId:
3155     do_ClassIDIntrinsic(x);
3156     break;
3157   case vmIntrinsics::_counterTime:
3158     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3159     break;
3160 #endif
3161 
3162   case vmIntrinsics::_currentTimeMillis:
3163     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3164     break;
3165 
3166   case vmIntrinsics::_nanoTime:
3167     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3168     break;
3169 
3170   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3171   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3172   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3173   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3174   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3175 
3176   case vmIntrinsics::_dlog:           // fall through
3177   case vmIntrinsics::_dlog10:         // fall through
3178   case vmIntrinsics::_dabs:           // fall through
3179   case vmIntrinsics::_dsqrt:          // fall through
3180   case vmIntrinsics::_dtan:           // fall through
3181   case vmIntrinsics::_dsin :          // fall through
3182   case vmIntrinsics::_dcos :          // fall through
3183   case vmIntrinsics::_dexp :          // fall through
3184   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3185   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3186 
3187   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3188   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3189 
3190   // java.nio.Buffer.checkIndex
3191   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3192 
3193   case vmIntrinsics::_compareAndSwapObject:
3194     do_CompareAndSwap(x, objectType);
3195     break;
3196   case vmIntrinsics::_compareAndSwapInt:
3197     do_CompareAndSwap(x, intType);
3198     break;
3199   case vmIntrinsics::_compareAndSwapLong:
3200     do_CompareAndSwap(x, longType);
3201     break;
3202 
3203   case vmIntrinsics::_loadFence :
3204     if (os::is_MP()) __ membar_acquire();
3205     break;
3206   case vmIntrinsics::_storeFence:
3207     if (os::is_MP()) __ membar_release();
3208     break;
3209   case vmIntrinsics::_fullFence :
3210     if (os::is_MP()) __ membar();
3211     break;
3212   case vmIntrinsics::_onSpinWait:
3213     __ on_spin_wait();
3214     break;
3215   case vmIntrinsics::_Reference_get:
3216     do_Reference_get(x);
3217     break;
3218 
3219   case vmIntrinsics::_updateCRC32:
3220   case vmIntrinsics::_updateBytesCRC32:
3221   case vmIntrinsics::_updateByteBufferCRC32:
3222     do_update_CRC32(x);
3223     break;
3224 
3225   case vmIntrinsics::_updateBytesCRC32C:
3226   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3227     do_update_CRC32C(x);
3228     break;
3229 
3230   case vmIntrinsics::_vectorizedMismatch:
3231     do_vectorizedMismatch(x);
3232     break;
3233 
3234   default: ShouldNotReachHere(); break;
3235   }
3236 }
3237 
3238 void LIRGenerator::profile_arguments(ProfileCall* x) {
3239   if (compilation()->profile_arguments()) {
3240     int bci = x->bci_of_invoke();
3241     ciMethodData* md = x->method()->method_data_or_null();
3242     ciProfileData* data = md->bci_to_data(bci);
3243     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3244         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3245       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3246       int base_offset = md->byte_offset_of_slot(data, extra);
3247       LIR_Opr mdp = LIR_OprFact::illegalOpr;
3248       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3249 
3250       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3251       int start = 0;
3252       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3253       if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3254         // first argument is not profiled at call (method handle invoke)
3255         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3256         start = 1;
3257       }
3258       ciSignature* callee_signature = x->callee()->signature();
3259       // method handle call to virtual method
3260       bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3261       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3262 
3263       bool ignored_will_link;
3264       ciSignature* signature_at_call = NULL;
3265       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3266       ciSignatureStream signature_at_call_stream(signature_at_call);
3267 
3268       // if called through method handle invoke, some arguments may have been popped
3269       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3270         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3271         ciKlass* exact = profile_type(md, base_offset, off,
3272                                       args->type(i), x->profiled_arg_at(i+start), mdp,
3273                                       !x->arg_needs_null_check(i+start),
3274                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3275         if (exact != NULL) {
3276           md->set_argument_type(bci, i, exact);
3277         }
3278       }
3279     } else {
3280 #ifdef ASSERT
3281       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3282       int n = x->nb_profiled_args();
3283       assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3284                                                   (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3285              "only at JSR292 bytecodes");
3286 #endif
3287     }
3288   }
3289 }
3290 
3291 // profile parameters on entry to an inlined method
3292 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3293   if (compilation()->profile_parameters() && x->inlined()) {
3294     ciMethodData* md = x->callee()->method_data_or_null();
3295     if (md != NULL) {
3296       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3297       if (parameters_type_data != NULL) {
3298         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3299         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3300         bool has_receiver = !x->callee()->is_static();
3301         ciSignature* sig = x->callee()->signature();
3302         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3303         int i = 0; // to iterate on the Instructions
3304         Value arg = x->recv();
3305         bool not_null = false;
3306         int bci = x->bci_of_invoke();
3307         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3308         // The first parameter is the receiver so that's what we start
3309         // with if it exists. One exception is method handle call to
3310         // virtual method: the receiver is in the args list
3311         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3312           i = 1;
3313           arg = x->profiled_arg_at(0);
3314           not_null = !x->arg_needs_null_check(0);
3315         }
3316         int k = 0; // to iterate on the profile data
3317         for (;;) {
3318           intptr_t profiled_k = parameters->type(k);
3319           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3320                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3321                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3322           // If the profile is known statically set it once for all and do not emit any code
3323           if (exact != NULL) {
3324             md->set_parameter_type(k, exact);
3325           }
3326           k++;
3327           if (k >= parameters_type_data->number_of_parameters()) {
3328 #ifdef ASSERT
3329             int extra = 0;
3330             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3331                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3332                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3333               extra += 1;
3334             }
3335             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3336 #endif
3337             break;
3338           }
3339           arg = x->profiled_arg_at(i);
3340           not_null = !x->arg_needs_null_check(i);
3341           i++;
3342         }
3343       }
3344     }
3345   }
3346 }
3347 
3348 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3349   // Need recv in a temporary register so it interferes with the other temporaries
3350   LIR_Opr recv = LIR_OprFact::illegalOpr;
3351   LIR_Opr mdo = new_register(T_OBJECT);
3352   // tmp is used to hold the counters on SPARC
3353   LIR_Opr tmp = new_pointer_register();
3354 
3355   if (x->nb_profiled_args() > 0) {
3356     profile_arguments(x);
3357   }
3358 
3359   // profile parameters on inlined method entry including receiver
3360   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3361     profile_parameters_at_call(x);
3362   }
3363 
3364   if (x->recv() != NULL) {
3365     LIRItem value(x->recv(), this);
3366     value.load_item();
3367     recv = new_register(T_OBJECT);
3368     __ move(value.result(), recv);
3369   }
3370   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3371 }
3372 
3373 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3374   int bci = x->bci_of_invoke();
3375   ciMethodData* md = x->method()->method_data_or_null();
3376   ciProfileData* data = md->bci_to_data(bci);
3377   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3378   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3379   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3380 
3381   bool ignored_will_link;
3382   ciSignature* signature_at_call = NULL;
3383   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3384 
3385   // The offset within the MDO of the entry to update may be too large
3386   // to be used in load/store instructions on some platforms. So have
3387   // profile_type() compute the address of the profile in a register.
3388   ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3389                                 ret->type(), x->ret(), mdp,
3390                                 !x->needs_null_check(),
3391                                 signature_at_call->return_type()->as_klass(),
3392                                 x->callee()->signature()->return_type()->as_klass());
3393   if (exact != NULL) {
3394     md->set_return_type(bci, exact);
3395   }
3396 }
3397 
3398 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3399   // We can safely ignore accessors here, since c2 will inline them anyway,
3400   // accessors are also always mature.
3401   if (!x->inlinee()->is_accessor()) {
3402     CodeEmitInfo* info = state_for(x, x->state(), true);
3403     // Notify the runtime very infrequently only to take care of counter overflows
3404     int freq_log = Tier23InlineeNotifyFreqLog;
3405     double scale;
3406     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3407       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3408     }
3409     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3410   }
3411 }
3412 
3413 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3414   int freq_log = 0;
3415   int level = compilation()->env()->comp_level();
3416   if (level == CompLevel_limited_profile) {
3417     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3418   } else if (level == CompLevel_full_profile) {
3419     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3420   } else {
3421     ShouldNotReachHere();
3422   }
3423   // Increment the appropriate invocation/backedge counter and notify the runtime.
3424   double scale;
3425   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3426     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3427   }
3428   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3429 }
3430 
3431 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3432   ciMethod* method = info->scope()->method();
3433   MethodCounters* mc_adr = method->ensure_method_counters();
3434   if (mc_adr != NULL) {
3435     LIR_Opr mc = new_pointer_register();
3436     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3437     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3438     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3439     LIR_Opr result = new_register(T_INT);
3440     __ load(counter, result);
3441     __ sub(result, LIR_OprFact::intConst(1), result);
3442     __ store(result, counter);
3443     // DeoptimizeStub will reexecute from the current state in code info.
3444     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3445                                          Deoptimization::Action_make_not_entrant);
3446     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3447     __ branch(lir_cond_lessEqual, T_INT, deopt);
3448   }
3449 }
3450 
3451 
3452 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3453                                                 ciMethod *method, int frequency,
3454                                                 int bci, bool backedge, bool notify) {
3455   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3456   int level = _compilation->env()->comp_level();
3457   assert(level > CompLevel_simple, "Shouldn't be here");
3458 
3459   int offset = -1;
3460   LIR_Opr counter_holder = NULL;
3461   if (level == CompLevel_limited_profile) {
3462     MethodCounters* counters_adr = method->ensure_method_counters();
3463     if (counters_adr == NULL) {
3464       bailout("method counters allocation failed");
3465       return;
3466     }
3467     counter_holder = new_pointer_register();
3468     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3469     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3470                                  MethodCounters::invocation_counter_offset());
3471   } else if (level == CompLevel_full_profile) {
3472     counter_holder = new_register(T_METADATA);
3473     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3474                                  MethodData::invocation_counter_offset());
3475     ciMethodData* md = method->method_data_or_null();
3476     assert(md != NULL, "Sanity");
3477     __ metadata2reg(md->constant_encoding(), counter_holder);
3478   } else {
3479     ShouldNotReachHere();
3480   }
3481   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3482   LIR_Opr result = new_register(T_INT);
3483   __ load(counter, result);
3484   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3485   __ store(result, counter);
3486   if (notify && (!backedge || UseOnStackReplacement)) {
3487     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3488     // The bci for info can point to cmp for if's we want the if bci
3489     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3490     int freq = frequency << InvocationCounter::count_shift;
3491     if (freq == 0) {
3492       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3493     } else {
3494       LIR_Opr mask = load_immediate(freq, T_INT);
3495       __ logical_and(result, mask, result);
3496       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3497       __ branch(lir_cond_equal, T_INT, overflow);
3498     }
3499     __ branch_destination(overflow->continuation());
3500   }
3501 }
3502 
3503 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3504   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3505   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3506 
3507   if (x->pass_thread()) {
3508     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3509     args->append(getThreadPointer());
3510   }
3511 
3512   for (int i = 0; i < x->number_of_arguments(); i++) {
3513     Value a = x->argument_at(i);
3514     LIRItem* item = new LIRItem(a, this);
3515     item->load_item();
3516     args->append(item->result());
3517     signature->append(as_BasicType(a->type()));
3518   }
3519 
3520   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3521   if (x->type() == voidType) {
3522     set_no_result(x);
3523   } else {
3524     __ move(result, rlock_result(x));
3525   }
3526 }
3527 
3528 #ifdef ASSERT
3529 void LIRGenerator::do_Assert(Assert *x) {
3530   ValueTag tag = x->x()->type()->tag();
3531   If::Condition cond = x->cond();
3532 
3533   LIRItem xitem(x->x(), this);
3534   LIRItem yitem(x->y(), this);
3535   LIRItem* xin = &xitem;
3536   LIRItem* yin = &yitem;
3537 
3538   assert(tag == intTag, "Only integer assertions are valid!");
3539 
3540   xin->load_item();
3541   yin->dont_load_item();
3542 
3543   set_no_result(x);
3544 
3545   LIR_Opr left = xin->result();
3546   LIR_Opr right = yin->result();
3547 
3548   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3549 }
3550 #endif
3551 
3552 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3553 
3554 
3555   Instruction *a = x->x();
3556   Instruction *b = x->y();
3557   if (!a || StressRangeCheckElimination) {
3558     assert(!b || StressRangeCheckElimination, "B must also be null");
3559 
3560     CodeEmitInfo *info = state_for(x, x->state());
3561     CodeStub* stub = new PredicateFailedStub(info);
3562 
3563     __ jump(stub);
3564   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3565     int a_int = a->type()->as_IntConstant()->value();
3566     int b_int = b->type()->as_IntConstant()->value();
3567 
3568     bool ok = false;
3569 
3570     switch(x->cond()) {
3571       case Instruction::eql: ok = (a_int == b_int); break;
3572       case Instruction::neq: ok = (a_int != b_int); break;
3573       case Instruction::lss: ok = (a_int < b_int); break;
3574       case Instruction::leq: ok = (a_int <= b_int); break;
3575       case Instruction::gtr: ok = (a_int > b_int); break;
3576       case Instruction::geq: ok = (a_int >= b_int); break;
3577       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3578       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3579       default: ShouldNotReachHere();
3580     }
3581 
3582     if (ok) {
3583 
3584       CodeEmitInfo *info = state_for(x, x->state());
3585       CodeStub* stub = new PredicateFailedStub(info);
3586 
3587       __ jump(stub);
3588     }
3589   } else {
3590 
3591     ValueTag tag = x->x()->type()->tag();
3592     If::Condition cond = x->cond();
3593     LIRItem xitem(x->x(), this);
3594     LIRItem yitem(x->y(), this);
3595     LIRItem* xin = &xitem;
3596     LIRItem* yin = &yitem;
3597 
3598     assert(tag == intTag, "Only integer deoptimizations are valid!");
3599 
3600     xin->load_item();
3601     yin->dont_load_item();
3602     set_no_result(x);
3603 
3604     LIR_Opr left = xin->result();
3605     LIR_Opr right = yin->result();
3606 
3607     CodeEmitInfo *info = state_for(x, x->state());
3608     CodeStub* stub = new PredicateFailedStub(info);
3609 
3610     __ cmp(lir_cond(cond), left, right);
3611     __ branch(lir_cond(cond), right->type(), stub);
3612   }
3613 }
3614 
3615 
3616 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3617   LIRItemList args(1);
3618   LIRItem value(arg1, this);
3619   args.append(&value);
3620   BasicTypeList signature;
3621   signature.append(as_BasicType(arg1->type()));
3622 
3623   return call_runtime(&signature, &args, entry, result_type, info);
3624 }
3625 
3626 
3627 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3628   LIRItemList args(2);
3629   LIRItem value1(arg1, this);
3630   LIRItem value2(arg2, this);
3631   args.append(&value1);
3632   args.append(&value2);
3633   BasicTypeList signature;
3634   signature.append(as_BasicType(arg1->type()));
3635   signature.append(as_BasicType(arg2->type()));
3636 
3637   return call_runtime(&signature, &args, entry, result_type, info);
3638 }
3639 
3640 
3641 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3642                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3643   // get a result register
3644   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3645   LIR_Opr result = LIR_OprFact::illegalOpr;
3646   if (result_type->tag() != voidTag) {
3647     result = new_register(result_type);
3648     phys_reg = result_register_for(result_type);
3649   }
3650 
3651   // move the arguments into the correct location
3652   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3653   assert(cc->length() == args->length(), "argument mismatch");
3654   for (int i = 0; i < args->length(); i++) {
3655     LIR_Opr arg = args->at(i);
3656     LIR_Opr loc = cc->at(i);
3657     if (loc->is_register()) {
3658       __ move(arg, loc);
3659     } else {
3660       LIR_Address* addr = loc->as_address_ptr();
3661 //           if (!can_store_as_constant(arg)) {
3662 //             LIR_Opr tmp = new_register(arg->type());
3663 //             __ move(arg, tmp);
3664 //             arg = tmp;
3665 //           }
3666       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3667         __ unaligned_move(arg, addr);
3668       } else {
3669         __ move(arg, addr);
3670       }
3671     }
3672   }
3673 
3674   if (info) {
3675     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3676   } else {
3677     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3678   }
3679   if (result->is_valid()) {
3680     __ move(phys_reg, result);
3681   }
3682   return result;
3683 }
3684 
3685 
3686 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3687                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3688   // get a result register
3689   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3690   LIR_Opr result = LIR_OprFact::illegalOpr;
3691   if (result_type->tag() != voidTag) {
3692     result = new_register(result_type);
3693     phys_reg = result_register_for(result_type);
3694   }
3695 
3696   // move the arguments into the correct location
3697   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3698 
3699   assert(cc->length() == args->length(), "argument mismatch");
3700   for (int i = 0; i < args->length(); i++) {
3701     LIRItem* arg = args->at(i);
3702     LIR_Opr loc = cc->at(i);
3703     if (loc->is_register()) {
3704       arg->load_item_force(loc);
3705     } else {
3706       LIR_Address* addr = loc->as_address_ptr();
3707       arg->load_for_store(addr->type());
3708       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3709         __ unaligned_move(arg->result(), addr);
3710       } else {
3711         __ move(arg->result(), addr);
3712       }
3713     }
3714   }
3715 
3716   if (info) {
3717     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3718   } else {
3719     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3720   }
3721   if (result->is_valid()) {
3722     __ move(phys_reg, result);
3723   }
3724   return result;
3725 }
3726 
3727 void LIRGenerator::do_MemBar(MemBar* x) {
3728   if (os::is_MP()) {
3729     LIR_Code code = x->code();
3730     switch(code) {
3731       case lir_membar_acquire   : __ membar_acquire(); break;
3732       case lir_membar_release   : __ membar_release(); break;
3733       case lir_membar           : __ membar(); break;
3734       case lir_membar_loadload  : __ membar_loadload(); break;
3735       case lir_membar_storestore: __ membar_storestore(); break;
3736       case lir_membar_loadstore : __ membar_loadstore(); break;
3737       case lir_membar_storeload : __ membar_storeload(); break;
3738       default                   : ShouldNotReachHere(); break;
3739     }
3740   }
3741 }
3742 
3743 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3744   if (x->check_boolean()) {
3745     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3746     if (TwoOperandLIRForm) {
3747       __ move(value, value_fixed);
3748       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3749     } else {
3750       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3751     }
3752     LIR_Opr klass = new_register(T_METADATA);
3753     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3754     null_check_info = NULL;
3755     LIR_Opr layout = new_register(T_INT);
3756     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3757     int diffbit = Klass::layout_helper_boolean_diffbit();
3758     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3759     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3760     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3761     value = value_fixed;
3762   }
3763   return value;
3764 }