/* * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "registerSaver_s390.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interp_masm.hpp" #include "nativeInst_s390.hpp" #include "oops/instanceOop.hpp" #include "oops/objArrayKlass.hpp" #include "oops/oop.inline.hpp" #include "prims/methodHandles.hpp" #include "runtime/frame.inline.hpp" #include "runtime/handles.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubCodeGenerator.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/thread.inline.hpp" // Declaration and definition of StubGenerator (no .hpp file). // For a more detailed description of the stub routine structure // see the comment in stubRoutines.hpp. #ifdef PRODUCT #define __ _masm-> #else #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)-> #endif #define BLOCK_COMMENT(str) if (PrintAssembly) __ block_comment(str) #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") // ----------------------------------------------------------------------- // Stub Code definitions class StubGenerator: public StubCodeGenerator { private: //---------------------------------------------------------------------- // Call stubs are used to call Java from C. // // Arguments: // // R2 - call wrapper address : address // R3 - result : intptr_t* // R4 - result type : BasicType // R5 - method : method // R6 - frame mgr entry point : address // [SP+160] - parameter block : intptr_t* // [SP+172] - parameter count in words : int // [SP+176] - thread : Thread* // address generate_call_stub(address& return_address) { // Set up a new C frame, copy Java arguments, call frame manager // or native_entry, and process result. StubCodeMark mark(this, "StubRoutines", "call_stub"); address start = __ pc(); Register r_arg_call_wrapper_addr = Z_ARG1; Register r_arg_result_addr = Z_ARG2; Register r_arg_result_type = Z_ARG3; Register r_arg_method = Z_ARG4; Register r_arg_entry = Z_ARG5; // offsets to fp #define d_arg_thread 176 #define d_arg_argument_addr 160 #define d_arg_argument_count 168+4 Register r_entryframe_fp = Z_tmp_1; Register r_top_of_arguments_addr = Z_ARG4; Register r_new_arg_entry = Z_R14; // macros for frame offsets #define call_wrapper_address_offset \ _z_entry_frame_locals_neg(call_wrapper_address) #define result_address_offset \ _z_entry_frame_locals_neg(result_address) #define result_type_offset \ _z_entry_frame_locals_neg(result_type) #define arguments_tos_address_offset \ _z_entry_frame_locals_neg(arguments_tos_address) { // // STACK on entry to call_stub: // // F1 [C_FRAME] // ... // Register r_argument_addr = Z_tmp_3; Register r_argumentcopy_addr = Z_tmp_4; Register r_argument_size_in_bytes = Z_ARG5; Register r_frame_size = Z_R1; Label arguments_copied; // Save non-volatile registers to ABI of caller frame. BLOCK_COMMENT("save registers, push frame {"); __ z_stmg(Z_R6, Z_R14, 16, Z_SP); __ z_std(Z_F8, 96, Z_SP); __ z_std(Z_F9, 104, Z_SP); __ z_std(Z_F10, 112, Z_SP); __ z_std(Z_F11, 120, Z_SP); __ z_std(Z_F12, 128, Z_SP); __ z_std(Z_F13, 136, Z_SP); __ z_std(Z_F14, 144, Z_SP); __ z_std(Z_F15, 152, Z_SP); // // Push ENTRY_FRAME including arguments: // // F0 [TOP_IJAVA_FRAME_ABI] // [outgoing Java arguments] // [ENTRY_FRAME_LOCALS] // F1 [C_FRAME] // ... // // Calculate new frame size and push frame. #define abi_plus_locals_size \ (frame::z_top_ijava_frame_abi_size + frame::z_entry_frame_locals_size) if (abi_plus_locals_size % BytesPerWord == 0) { // Preload constant part of frame size. __ load_const_optimized(r_frame_size, -abi_plus_locals_size/BytesPerWord); // Keep copy of our frame pointer (caller's SP). __ z_lgr(r_entryframe_fp, Z_SP); // Add space required by arguments to frame size. __ z_slgf(r_frame_size, d_arg_argument_count, Z_R0, Z_SP); // Move Z_ARG5 early, it will be used as a local. __ z_lgr(r_new_arg_entry, r_arg_entry); // Convert frame size from words to bytes. __ z_sllg(r_frame_size, r_frame_size, LogBytesPerWord); __ push_frame(r_frame_size, r_entryframe_fp, false/*don't copy SP*/, true /*frame size sign inverted*/); } else { guarantee(false, "frame sizes should be multiples of word size (BytesPerWord)"); } BLOCK_COMMENT("} save, push"); // Load argument registers for call. BLOCK_COMMENT("prepare/copy arguments {"); __ z_lgr(Z_method, r_arg_method); __ z_lg(Z_thread, d_arg_thread, r_entryframe_fp); // Calculate top_of_arguments_addr which will be tos (not prepushed) later. // Wimply use SP + frame::top_ijava_frame_size. __ add2reg(r_top_of_arguments_addr, frame::z_top_ijava_frame_abi_size - BytesPerWord, Z_SP); // Initialize call_stub locals (step 1). if ((call_wrapper_address_offset + BytesPerWord == result_address_offset) && (result_address_offset + BytesPerWord == result_type_offset) && (result_type_offset + BytesPerWord == arguments_tos_address_offset)) { __ z_stmg(r_arg_call_wrapper_addr, r_top_of_arguments_addr, call_wrapper_address_offset, r_entryframe_fp); } else { __ z_stg(r_arg_call_wrapper_addr, call_wrapper_address_offset, r_entryframe_fp); __ z_stg(r_arg_result_addr, result_address_offset, r_entryframe_fp); __ z_stg(r_arg_result_type, result_type_offset, r_entryframe_fp); __ z_stg(r_top_of_arguments_addr, arguments_tos_address_offset, r_entryframe_fp); } // Copy Java arguments. // Any arguments to copy? __ load_and_test_int2long(Z_R1, Address(r_entryframe_fp, d_arg_argument_count)); __ z_bre(arguments_copied); // Prepare loop and copy arguments in reverse order. { // Calculate argument size in bytes. __ z_sllg(r_argument_size_in_bytes, Z_R1, LogBytesPerWord); // Get addr of first incoming Java argument. __ z_lg(r_argument_addr, d_arg_argument_addr, r_entryframe_fp); // Let r_argumentcopy_addr point to last outgoing Java argument. __ add2reg(r_argumentcopy_addr, BytesPerWord, r_top_of_arguments_addr); // = Z_SP+160 effectively. // Let r_argument_addr point to last incoming Java argument. __ add2reg_with_index(r_argument_addr, -BytesPerWord, r_argument_size_in_bytes, r_argument_addr); // Now loop while Z_R1 > 0 and copy arguments. { Label next_argument; __ bind(next_argument); // Mem-mem move. __ z_mvc(0, BytesPerWord-1, r_argumentcopy_addr, 0, r_argument_addr); __ add2reg(r_argument_addr, -BytesPerWord); __ add2reg(r_argumentcopy_addr, BytesPerWord); __ z_brct(Z_R1, next_argument); } } // End of argument copy loop. __ bind(arguments_copied); } BLOCK_COMMENT("} arguments"); BLOCK_COMMENT("call {"); { // Call frame manager or native entry. // // Register state on entry to frame manager / native entry: // // Z_ARG1 = r_top_of_arguments_addr - intptr_t *sender tos (prepushed) // Lesp = (SP) + copied_arguments_offset - 8 // Z_method - method // Z_thread - JavaThread* // // Here, the usual SP is the initial_caller_sp. __ z_lgr(Z_R10, Z_SP); // Z_esp points to the slot below the last argument. __ z_lgr(Z_esp, r_top_of_arguments_addr); // // Stack on entry to frame manager / native entry: // // F0 [TOP_IJAVA_FRAME_ABI] // [outgoing Java arguments] // [ENTRY_FRAME_LOCALS] // F1 [C_FRAME] // ... // // Do a light-weight C-call here, r_new_arg_entry holds the address // of the interpreter entry point (frame manager or native entry) // and save runtime-value of return_pc in return_address // (call by reference argument). return_address = __ call_stub(r_new_arg_entry); } BLOCK_COMMENT("} call"); { BLOCK_COMMENT("restore registers {"); // Returned from frame manager or native entry. // Now pop frame, process result, and return to caller. // // Stack on exit from frame manager / native entry: // // F0 [ABI] // ... // [ENTRY_FRAME_LOCALS] // F1 [C_FRAME] // ... // // Just pop the topmost frame ... // Label ret_is_object; Label ret_is_long; Label ret_is_float; Label ret_is_double; // Restore frame pointer. __ z_lg(r_entryframe_fp, _z_abi(callers_sp), Z_SP); // Pop frame. Done here to minimize stalls. __ z_lg(Z_SP, _z_abi(callers_sp), Z_SP); // Reload some volatile registers which we've spilled before the call // to frame manager / native entry. // Access all locals via frame pointer, because we know nothing about // the topmost frame's size. __ z_lg(r_arg_result_addr, result_address_offset, r_entryframe_fp); __ z_lg(r_arg_result_type, result_type_offset, r_entryframe_fp); // Restore non-volatiles. __ z_lmg(Z_R6, Z_R14, 16, Z_SP); __ z_ld(Z_F8, 96, Z_SP); __ z_ld(Z_F9, 104, Z_SP); __ z_ld(Z_F10, 112, Z_SP); __ z_ld(Z_F11, 120, Z_SP); __ z_ld(Z_F12, 128, Z_SP); __ z_ld(Z_F13, 136, Z_SP); __ z_ld(Z_F14, 144, Z_SP); __ z_ld(Z_F15, 152, Z_SP); BLOCK_COMMENT("} restore"); // // Stack on exit from call_stub: // // 0 [C_FRAME] // ... // // No call_stub frames left. // // All non-volatiles have been restored at this point!! //------------------------------------------------------------------------ // The following code makes some assumptions on the T_ enum values. // The enum is defined in globalDefinitions.hpp. // The validity of the assumptions is tested as far as possible. // The assigned values should not be shuffled // T_BOOLEAN==4 - lowest used enum value // T_NARROWOOP==16 - largest used enum value //------------------------------------------------------------------------ BLOCK_COMMENT("process result {"); Label firstHandler; int handlerLen= 8; #ifdef ASSERT char assertMsg[] = "check BasicType definition in globalDefinitions.hpp"; __ z_chi(r_arg_result_type, T_BOOLEAN); __ asm_assert_low(assertMsg, 0x0234); __ z_chi(r_arg_result_type, T_NARROWOOP); __ asm_assert_high(assertMsg, 0x0235); #endif __ add2reg(r_arg_result_type, -T_BOOLEAN); // Remove offset. __ z_larl(Z_R1, firstHandler); // location of first handler __ z_sllg(r_arg_result_type, r_arg_result_type, 3); // Each handler is 8 bytes long. __ z_bc(MacroAssembler::bcondAlways, 0, r_arg_result_type, Z_R1); __ align(handlerLen); __ bind(firstHandler); // T_BOOLEAN: guarantee(T_BOOLEAN == 4, "check BasicType definition in globalDefinitions.hpp"); __ z_st(Z_RET, 0, r_arg_result_addr); __ z_br(Z_R14); // Return to caller. __ align(handlerLen); // T_CHAR: guarantee(T_CHAR == T_BOOLEAN+1, "check BasicType definition in globalDefinitions.hpp"); __ z_st(Z_RET, 0, r_arg_result_addr); __ z_br(Z_R14); // Return to caller. __ align(handlerLen); // T_FLOAT: guarantee(T_FLOAT == T_CHAR+1, "check BasicType definition in globalDefinitions.hpp"); __ z_ste(Z_FRET, 0, r_arg_result_addr); __ z_br(Z_R14); // Return to caller. __ align(handlerLen); // T_DOUBLE: guarantee(T_DOUBLE == T_FLOAT+1, "check BasicType definition in globalDefinitions.hpp"); __ z_std(Z_FRET, 0, r_arg_result_addr); __ z_br(Z_R14); // Return to caller. __ align(handlerLen); // T_BYTE: guarantee(T_BYTE == T_DOUBLE+1, "check BasicType definition in globalDefinitions.hpp"); __ z_st(Z_RET, 0, r_arg_result_addr); __ z_br(Z_R14); // Return to caller. __ align(handlerLen); // T_SHORT: guarantee(T_SHORT == T_BYTE+1, "check BasicType definition in globalDefinitions.hpp"); __ z_st(Z_RET, 0, r_arg_result_addr); __ z_br(Z_R14); // Return to caller. __ align(handlerLen); // T_INT: guarantee(T_INT == T_SHORT+1, "check BasicType definition in globalDefinitions.hpp"); __ z_st(Z_RET, 0, r_arg_result_addr); __ z_br(Z_R14); // Return to caller. __ align(handlerLen); // T_LONG: guarantee(T_LONG == T_INT+1, "check BasicType definition in globalDefinitions.hpp"); __ z_stg(Z_RET, 0, r_arg_result_addr); __ z_br(Z_R14); // Return to caller. __ align(handlerLen); // T_OBJECT: guarantee(T_OBJECT == T_LONG+1, "check BasicType definition in globalDefinitions.hpp"); __ z_stg(Z_RET, 0, r_arg_result_addr); __ z_br(Z_R14); // Return to caller. __ align(handlerLen); // T_ARRAY: guarantee(T_ARRAY == T_OBJECT+1, "check BasicType definition in globalDefinitions.hpp"); __ z_stg(Z_RET, 0, r_arg_result_addr); __ z_br(Z_R14); // Return to caller. __ align(handlerLen); // T_VOID: guarantee(T_VOID == T_ARRAY+1, "check BasicType definition in globalDefinitions.hpp"); __ z_stg(Z_RET, 0, r_arg_result_addr); __ z_br(Z_R14); // Return to caller. __ align(handlerLen); // T_ADDRESS: guarantee(T_ADDRESS == T_VOID+1, "check BasicType definition in globalDefinitions.hpp"); __ z_stg(Z_RET, 0, r_arg_result_addr); __ z_br(Z_R14); // Return to caller. __ align(handlerLen); // T_NARROWOOP: guarantee(T_NARROWOOP == T_ADDRESS+1, "check BasicType definition in globalDefinitions.hpp"); __ z_st(Z_RET, 0, r_arg_result_addr); __ z_br(Z_R14); // Return to caller. __ align(handlerLen); BLOCK_COMMENT("} process result"); } return start; } // Return point for a Java call if there's an exception thrown in // Java code. The exception is caught and transformed into a // pending exception stored in JavaThread that can be tested from // within the VM. address generate_catch_exception() { StubCodeMark mark(this, "StubRoutines", "catch_exception"); address start = __ pc(); // // Registers alive // // Z_thread // Z_ARG1 - address of pending exception // Z_ARG2 - return address in call stub // const Register exception_file = Z_R0; const Register exception_line = Z_R1; __ load_const_optimized(exception_file, (void*)__FILE__); __ load_const_optimized(exception_line, (void*)__LINE__); __ z_stg(Z_ARG1, thread_(pending_exception)); // Store into `char *'. __ z_stg(exception_file, thread_(exception_file)); // Store into `int'. __ z_st(exception_line, thread_(exception_line)); // Complete return to VM. assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before"); // Continue in call stub. __ z_br(Z_ARG2); return start; } // Continuation point for runtime calls returning with a pending // exception. The pending exception check happened in the runtime // or native call stub. The pending exception in Thread is // converted into a Java-level exception. // // Read: // Z_R14: pc the runtime library callee wants to return to. // Since the exception occurred in the callee, the return pc // from the point of view of Java is the exception pc. // // Invalidate: // Volatile registers (except below). // // Update: // Z_ARG1: exception // (Z_R14 is unchanged and is live out). // address generate_forward_exception() { StubCodeMark mark(this, "StubRoutines", "forward_exception"); address start = __ pc(); #define pending_exception_offset in_bytes(Thread::pending_exception_offset()) #ifdef ASSERT // Get pending exception oop. __ z_lg(Z_ARG1, pending_exception_offset, Z_thread); // Make sure that this code is only executed if there is a pending exception. { Label L; __ z_ltgr(Z_ARG1, Z_ARG1); __ z_brne(L); __ stop("StubRoutines::forward exception: no pending exception (1)"); __ bind(L); } __ verify_oop(Z_ARG1, "StubRoutines::forward exception: not an oop"); #endif __ z_lgr(Z_ARG2, Z_R14); // Copy exception pc into Z_ARG2. __ save_return_pc(); __ push_frame_abi160(0); // Find exception handler. __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), Z_thread, Z_ARG2); // Copy handler's address. __ z_lgr(Z_R1, Z_RET); __ pop_frame(); __ restore_return_pc(); // Set up the arguments for the exception handler: // - Z_ARG1: exception oop // - Z_ARG2: exception pc // Load pending exception oop. __ z_lg(Z_ARG1, pending_exception_offset, Z_thread); // The exception pc is the return address in the caller, // must load it into Z_ARG2 __ z_lgr(Z_ARG2, Z_R14); #ifdef ASSERT // Make sure exception is set. { Label L; __ z_ltgr(Z_ARG1, Z_ARG1); __ z_brne(L); __ stop("StubRoutines::forward exception: no pending exception (2)"); __ bind(L); } #endif // Clear the pending exception. __ clear_mem(Address(Z_thread, pending_exception_offset), sizeof(void *)); // Jump to exception handler __ z_br(Z_R1 /*handler address*/); return start; #undef pending_exception_offset } // Continuation point for throwing of implicit exceptions that are // not handled in the current activation. Fabricates an exception // oop and initiates normal exception dispatching in this // frame. Only callee-saved registers are preserved (through the // normal RegisterMap handling). If the compiler // needs all registers to be preserved between the fault point and // the exception handler then it must assume responsibility for that // in AbstractCompiler::continuation_for_implicit_null_exception or // continuation_for_implicit_division_by_zero_exception. All other // implicit exceptions (e.g., NullPointerException or // AbstractMethodError on entry) are either at call sites or // otherwise assume that stack unwinding will be initiated, so // caller saved registers were assumed volatile in the compiler. // Note that we generate only this stub into a RuntimeStub, because // it needs to be properly traversed and ignored during GC, so we // change the meaning of the "__" macro within this method. // Note: the routine set_pc_not_at_call_for_caller in // SharedRuntime.cpp requires that this code be generated into a // RuntimeStub. #undef __ #define __ masm-> address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc, Register arg1 = noreg, Register arg2 = noreg) { int insts_size = 256; int locs_size = 0; CodeBuffer code(name, insts_size, locs_size); MacroAssembler* masm = new MacroAssembler(&code); int framesize_in_bytes; address start = __ pc(); __ save_return_pc(); framesize_in_bytes = __ push_frame_abi160(0); address frame_complete_pc = __ pc(); if (restore_saved_exception_pc) { __ unimplemented("StubGenerator::throw_exception", 74); } // Note that we always have a runtime stub frame on the top of stack at this point. __ get_PC(Z_R1); __ set_last_Java_frame(/*sp*/Z_SP, /*pc*/Z_R1); // Do the call. BLOCK_COMMENT("call runtime_entry"); __ call_VM_leaf(runtime_entry, Z_thread, arg1, arg2); __ reset_last_Java_frame(); #ifdef ASSERT // Make sure that this code is only executed if there is a pending exception. { Label L; __ z_lg(Z_R0, in_bytes(Thread::pending_exception_offset()), Z_thread); __ z_ltgr(Z_R0, Z_R0); __ z_brne(L); __ stop("StubRoutines::throw_exception: no pending exception"); __ bind(L); } #endif __ pop_frame(); __ restore_return_pc(); __ load_const_optimized(Z_R1, StubRoutines::forward_exception_entry()); __ z_br(Z_R1); RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete_pc - start, framesize_in_bytes/wordSize, NULL /*oop_maps*/, false); return stub->entry_point(); } #undef __ #ifdef PRODUCT #define __ _masm-> #else #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)-> #endif //---------------------------------------------------------------------- // The following routine generates a subroutine to throw an asynchronous // UnknownError when an unsafe access gets a fault that could not be // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.) // // Arguments: // trapping PC: ?? // // Results: // Posts an asynchronous exception, skips the trapping instruction. // address generate_handler_for_unsafe_access() { StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access"); { address start = __ pc(); __ unimplemented("StubRoutines::handler_for_unsafe_access", 86); return start; } } // Support for uint StubRoutine::zarch::partial_subtype_check(Klass // sub, Klass super); // // Arguments: // ret : Z_RET, returned // sub : Z_ARG2, argument, not changed // super: Z_ARG3, argument, not changed // // raddr: Z_R14, blown by call // address generate_partial_subtype_check() { StubCodeMark mark(this, "StubRoutines", "partial_subtype_check"); Label miss; address start = __ pc(); const Register Rsubklass = Z_ARG2; // subklass const Register Rsuperklass = Z_ARG3; // superklass // No args, but tmp registers that are killed. const Register Rlength = Z_ARG4; // cache array length const Register Rarray_ptr = Z_ARG5; // Current value from cache array. if (UseCompressedOops) { assert(Universe::heap() != NULL, "java heap must be initialized to generate partial_subtype_check stub"); } // Always take the slow path (see SPARC). __ check_klass_subtype_slow_path(Rsubklass, Rsuperklass, Rarray_ptr, Rlength, NULL, &miss); // Match falls through here. __ clear_reg(Z_RET); // Zero indicates a match. Set EQ flag in CC. __ z_br(Z_R14); __ BIND(miss); __ load_const_optimized(Z_RET, 1); // One indicates a miss. __ z_ltgr(Z_RET, Z_RET); // Set NE flag in CR. __ z_br(Z_R14); return start; } // Return address of code to be called from code generated by // MacroAssembler::verify_oop. // // Don't generate, rather use C++ code. address generate_verify_oop_subroutine() { // Don't generate a StubCodeMark, because no code is generated! // Generating the mark triggers notifying the oprofile jvmti agent // about the dynamic code generation, but the stub without // code (code_size == 0) confuses opjitconv // StubCodeMark mark(this, "StubRoutines", "verify_oop_stub"); address start = 0; return start; } // Generate pre-write barrier for array. // // Input: // addr - register containing starting address // count - register containing element count // // The input registers are overwritten. void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) { BarrierSet* const bs = Universe::heap()->barrier_set(); switch (bs->kind()) { case BarrierSet::G1SATBCTLogging: // With G1, don't generate the call if we statically know that the target in uninitialized. if (!dest_uninitialized) { // Is marking active? Label filtered; Register Rtmp1 = Z_R0; const int active_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()); if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) { __ load_and_test_int(Rtmp1, Address(Z_thread, active_offset)); } else { guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption"); __ load_and_test_byte(Rtmp1, Address(Z_thread, active_offset)); } __ z_bre(filtered); // Activity indicator is zero, so there is no marking going on currently. // __ push_frame_abi160(0); (void) RegisterSaver::save_live_registers(_masm, RegisterSaver::arg_registers); __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), addr, count); (void) RegisterSaver::restore_live_registers(_masm, RegisterSaver::arg_registers); // __ pop_frame(); __ bind(filtered); } break; case BarrierSet::CardTableForRS: case BarrierSet::CardTableExtension: case BarrierSet::ModRef: break; default: ShouldNotReachHere(); } } // Generate post-write barrier for array. // // Input: // addr - register containing starting address // count - register containing element count // // The input registers are overwritten. void gen_write_ref_array_post_barrier(Register addr, Register count, bool branchToEnd) { BarrierSet* const bs = Universe::heap()->barrier_set(); switch (bs->kind()) { case BarrierSet::G1SATBCTLogging: { if (branchToEnd) { // __ push_frame_abi160(0); (void) RegisterSaver::save_live_registers(_masm, RegisterSaver::arg_registers); __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), addr, count); (void) RegisterSaver::restore_live_registers(_masm, RegisterSaver::arg_registers); // __ pop_frame(); } else { // Tail call: call c and return to stub caller. address entry_point = CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post); if (Z_ARG1 != addr) __ z_lgr(Z_ARG1, addr); if (Z_ARG2 != count) __ z_lgr(Z_ARG2, count); __ load_const(Z_R1, entry_point); __ z_br(Z_R1); // Branch without linking, callee will return to stub caller. } } break; case BarrierSet::CardTableForRS: case BarrierSet::CardTableExtension: // These cases formerly known as // void array_store_check(Register addr, Register count, bool branchToEnd). { NearLabel doXC, done; CardTableModRefBS* ct = (CardTableModRefBS*)bs; assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code"); assert_different_registers(Z_R0, Z_R1, addr, count); // Nothing to do if count <= 0. if (branchToEnd) { __ compare64_and_branch(count, (intptr_t) 0, Assembler::bcondNotHigh, done); } else { __ z_ltgr(count, count); __ z_bcr(Assembler::bcondNotPositive, Z_R14); } // Note: We can't combine the shifts. We could lose a carry // from calculating the array end address. // count = (count-1)*BytesPerHeapOop + addr // Count holds addr of last oop in array then. __ z_sllg(count, count, LogBytesPerHeapOop); __ add2reg_with_index(count, -BytesPerHeapOop, count, addr); // Get base address of card table. __ load_const_optimized(Z_R1, (address)ct->byte_map_base); // count = (count>>shift) - (addr>>shift) __ z_srlg(addr, addr, CardTableModRefBS::card_shift); __ z_srlg(count, count, CardTableModRefBS::card_shift); // Prefetch first elements of card table for update. if (VM_Version::has_Prefetch()) { __ z_pfd(0x02, 0, addr, Z_R1); } // Special case: clear just one byte. __ clear_reg(Z_R0, true, false); // Used for doOneByte. __ z_sgr(count, addr); // Count = n-1 now, CC used for brc below. __ z_stc(Z_R0, 0, addr, Z_R1); // Must preserve CC from z_sgr. if (branchToEnd) { __ z_brz(done); } else { __ z_bcr(Assembler::bcondZero, Z_R14); } __ z_cghi(count, 255); __ z_brnh(doXC); // MVCLE: clear a long area. // Start addr of card table range = base + addr. // # bytes in card table range = (count + 1) __ add2reg_with_index(Z_R0, 0, Z_R1, addr); __ add2reg(Z_R1, 1, count); // dirty hack: // There are just two callers. Both pass // count in Z_ARG3 = Z_R4 // addr in Z_ARG2 = Z_R3 // ==> use Z_ARG2 as src len reg = 0 // Z_ARG1 as src addr (ignored) assert(count == Z_ARG3, "count: unexpected register number"); assert(addr == Z_ARG2, "addr: unexpected register number"); __ clear_reg(Z_ARG2, true, false); __ MacroAssembler::move_long_ext(Z_R0, Z_ARG1, 0); if (branchToEnd) { __ z_bru(done); } else { __ z_bcr(Assembler::bcondAlways, Z_R14); } // XC: clear a short area. Label XC_template; // Instr template, never exec directly! __ bind(XC_template); __ z_xc(0, 0, addr, 0, addr); __ bind(doXC); // start addr of card table range = base + addr // end addr of card table range = base + addr + count __ add2reg_with_index(addr, 0, Z_R1, addr); if (VM_Version::has_ExecuteExtensions()) { __ z_exrl(count, XC_template); // Execute XC with var. len. } else { __ z_larl(Z_R1, XC_template); __ z_ex(count, 0, Z_R0, Z_R1); // Execute XC with var. len. } if (!branchToEnd) { __ z_br(Z_R14); } __ bind(done); } break; case BarrierSet::ModRef: if (!branchToEnd) { __ z_br(Z_R14); } break; default: ShouldNotReachHere(); } } // This is to test that the count register contains a positive int value. // Required because C2 does not respect int to long conversion for stub calls. void assert_positive_int(Register count) { #ifdef ASSERT __ z_srag(Z_R0, count, 31); // Just leave the sign (must be zero) in Z_R0. __ asm_assert_eq("missing zero extend", 0xAFFE); #endif } // Generate overlap test for array copy stubs. // If no actual overlap is detected, control is transferred to the // "normal" copy stub (entry address passed in disjoint_copy_target). // Otherwise, execution continues with the code generated by the // caller of array_overlap_test. // // Input: // Z_ARG1 - from // Z_ARG2 - to // Z_ARG3 - element count void array_overlap_test(address disjoint_copy_target, int log2_elem_size) { __ MacroAssembler::compare_and_branch_optimized(Z_ARG2, Z_ARG1, Assembler::bcondNotHigh, disjoint_copy_target, /*len64=*/true, /*has_sign=*/false); Register index = Z_ARG3; if (log2_elem_size > 0) { __ z_sllg(Z_R1, Z_ARG3, log2_elem_size); // byte count index = Z_R1; } __ add2reg_with_index(Z_R1, 0, index, Z_ARG1); // First byte after "from" range. __ MacroAssembler::compare_and_branch_optimized(Z_R1, Z_ARG2, Assembler::bcondNotHigh, disjoint_copy_target, /*len64=*/true, /*has_sign=*/false); // Destructive overlap: let caller generate code for that. } // Generate stub for disjoint array copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: Z_ARG1 // to: Z_ARG2 // count: Z_ARG3 treated as signed void generate_disjoint_copy(bool aligned, int element_size, bool branchToEnd, bool restoreArgs) { // This is the zarch specific stub generator for general array copy tasks. // It has the following prereqs and features: // // - No destructive overlap allowed (else unpredictable results). // - Destructive overlap does not exist if the leftmost byte of the target // does not coincide with any of the source bytes (except the leftmost). // // Register usage upon entry: // Z_ARG1 == Z_R2 : address of source array // Z_ARG2 == Z_R3 : address of target array // Z_ARG3 == Z_R4 : length of operands (# of elements on entry) // // Register usage within the generator: // - Z_R0 and Z_R1 are KILLed by the stub routine (target addr/len). // Used as pair register operand in complex moves, scratch registers anyway. // - Z_R5 is KILLed by the stub routine (source register pair addr/len) (even/odd reg). // Same as R0/R1, but no scratch register. // - Z_ARG1, Z_ARG2, Z_ARG3 are USEd but preserved by the stub routine, // but they might get temporarily overwritten. Register save_reg = Z_ARG4; // (= Z_R5), holds original target operand address for restore. { Register llen_reg = Z_R1; // Holds left operand len (odd reg). Register laddr_reg = Z_R0; // Holds left operand addr (even reg), overlaps with data_reg. Register rlen_reg = Z_R5; // Holds right operand len (odd reg), overlaps with save_reg. Register raddr_reg = Z_R4; // Holds right operand addr (even reg), overlaps with len_reg. Register data_reg = Z_R0; // Holds copied data chunk in alignment process and copy loop. Register len_reg = Z_ARG3; // Holds operand len (#elements at entry, #bytes shortly after). Register dst_reg = Z_ARG2; // Holds left (target) operand addr. Register src_reg = Z_ARG1; // Holds right (source) operand addr. Label doMVCLOOP, doMVCLOOPcount, doMVCLOOPiterate; Label doMVCUnrolled; NearLabel doMVC, doMVCgeneral, done; Label MVC_template; address pcMVCblock_b, pcMVCblock_e; bool usedMVCLE = true; bool usedMVCLOOP = true; bool usedMVCUnrolled = false; bool usedMVC = false; bool usedMVCgeneral = false; int stride; Register stride_reg; Register ix_reg; assert((element_size<=256) && (256%element_size == 0), "element size must be <= 256, power of 2"); unsigned int log2_size = exact_log2(element_size); switch (element_size) { case 1: BLOCK_COMMENT("ARRAYCOPY DISJOINT byte {"); break; case 2: BLOCK_COMMENT("ARRAYCOPY DISJOINT short {"); break; case 4: BLOCK_COMMENT("ARRAYCOPY DISJOINT int {"); break; case 8: BLOCK_COMMENT("ARRAYCOPY DISJOINT long {"); break; default: BLOCK_COMMENT("ARRAYCOPY DISJOINT {"); break; } assert_positive_int(len_reg); BLOCK_COMMENT("preparation {"); // No copying if len <= 0. if (branchToEnd) { __ compare64_and_branch(len_reg, (intptr_t) 0, Assembler::bcondNotHigh, done); } else { if (VM_Version::has_CompareBranch()) { __ z_cgib(len_reg, 0, Assembler::bcondNotHigh, 0, Z_R14); } else { __ z_ltgr(len_reg, len_reg); __ z_bcr(Assembler::bcondNotPositive, Z_R14); } } // Prefetch just one cache line. Speculative opt for short arrays. // Do not use Z_R1 in prefetch. Is undefined here. if (VM_Version::has_Prefetch()) { __ z_pfd(0x01, 0, Z_R0, src_reg); // Fetch access. __ z_pfd(0x02, 0, Z_R0, dst_reg); // Store access. } BLOCK_COMMENT("} preparation"); // Save args only if really needed. // Keep len test local to branch. Is generated only once. BLOCK_COMMENT("mode selection {"); // Special handling for arrays with only a few elements. // Nothing fancy: just an executed MVC. if (log2_size > 0) { __ z_sllg(Z_R1, len_reg, log2_size); // Remember #bytes in Z_R1. } if (element_size != 8) { __ z_cghi(len_reg, 256/element_size); __ z_brnh(doMVC); usedMVC = true; } if (element_size == 8) { // Long and oop arrays are always aligned. __ z_cghi(len_reg, 256/element_size); __ z_brnh(doMVCUnrolled); usedMVCUnrolled = true; } // Prefetch another cache line. We, for sure, have more than one line to copy. if (VM_Version::has_Prefetch()) { __ z_pfd(0x01, 256, Z_R0, src_reg); // Fetch access. __ z_pfd(0x02, 256, Z_R0, dst_reg); // Store access. } if (restoreArgs) { // Remember entry value of ARG2 to restore all arguments later from that knowledge. __ z_lgr(save_reg, dst_reg); } __ z_cghi(len_reg, 4096/element_size); if (log2_size == 0) { __ z_lgr(Z_R1, len_reg); // Init Z_R1 with #bytes } __ z_brnh(doMVCLOOP); // Fall through to MVCLE case. BLOCK_COMMENT("} mode selection"); // MVCLE: for long arrays // DW aligned: Best performance for sizes > 4kBytes. // unaligned: Least complex for sizes > 256 bytes. if (usedMVCLE) { BLOCK_COMMENT("mode MVCLE {"); // Setup registers for mvcle. //__ z_lgr(llen_reg, len_reg);// r1 <- r4 #bytes already in Z_R1, aka llen_reg. __ z_lgr(laddr_reg, dst_reg); // r0 <- r3 __ z_lgr(raddr_reg, src_reg); // r4 <- r2 __ z_lgr(rlen_reg, llen_reg); // r5 <- r1 __ MacroAssembler::move_long_ext(laddr_reg, raddr_reg, 0xb0); // special: bypass cache // __ MacroAssembler::move_long_ext(laddr_reg, raddr_reg, 0xb8); // special: Hold data in cache. // __ MacroAssembler::move_long_ext(laddr_reg, raddr_reg, 0); if (restoreArgs) { // MVCLE updates the source (Z_R4,Z_R5) and target (Z_R0,Z_R1) register pairs. // Dst_reg (Z_ARG2) and src_reg (Z_ARG1) are left untouched. No restore required. // Len_reg (Z_ARG3) is destroyed and must be restored. __ z_slgr(laddr_reg, dst_reg); // copied #bytes if (log2_size > 0) { __ z_srag(Z_ARG3, laddr_reg, log2_size); // Convert back to #elements. } else { __ z_lgr(Z_ARG3, laddr_reg); } } if (branchToEnd) { __ z_bru(done); } else { __ z_br(Z_R14); } BLOCK_COMMENT("} mode MVCLE"); } // No fallthru possible here. // MVCUnrolled: for short, aligned arrays. if (usedMVCUnrolled) { BLOCK_COMMENT("mode MVC unrolled {"); stride = 8; // Generate unrolled MVC instructions. for (int ii = 32; ii > 1; ii--) { __ z_mvc(0, ii * stride-1, dst_reg, 0, src_reg); // ii*8 byte copy if (branchToEnd) { __ z_bru(done); } else { __ z_br(Z_R14); } } pcMVCblock_b = __ pc(); __ z_mvc(0, 1 * stride-1, dst_reg, 0, src_reg); // 8 byte copy if (branchToEnd) { __ z_bru(done); } else { __ z_br(Z_R14); } pcMVCblock_e = __ pc(); Label MVC_ListEnd; __ bind(MVC_ListEnd); // This is an absolute fast path: // - Array len in bytes must be not greater than 256. // - Array len in bytes must be an integer mult of DW // to save expensive handling of trailing bytes. // - Argument restore is not done, // i.e. previous code must not alter arguments (this code doesn't either). __ bind(doMVCUnrolled); // Avoid mul, prefer shift where possible. // Combine shift right (for #DW) with shift left (for block size). // Set CC for zero test below (asm_assert). // Note: #bytes comes in Z_R1, #DW in len_reg. unsigned int MVCblocksize = pcMVCblock_e - pcMVCblock_b; unsigned int logMVCblocksize = 0xffffffffU; // Pacify compiler ("used uninitialized" warning). if (log2_size > 0) { // Len was scaled into Z_R1. switch (MVCblocksize) { case 8: logMVCblocksize = 3; __ z_ltgr(Z_R0, Z_R1); // #bytes is index break; // reasonable size, use shift case 16: logMVCblocksize = 4; __ z_slag(Z_R0, Z_R1, logMVCblocksize-log2_size); break; // reasonable size, use shift default: logMVCblocksize = 0; __ z_ltgr(Z_R0, len_reg); // #DW for mul break; // all other sizes: use mul } } else { guarantee(log2_size, "doMVCUnrolled: only for DW entities"); } // This test (and branch) is redundant. Previous code makes sure that // - element count > 0 // - element size == 8. // Thus, len reg should never be zero here. We insert an asm_assert() here, // just to double-check and to be on the safe side. __ asm_assert(false, "zero len cannot occur", 99); __ z_larl(Z_R1, MVC_ListEnd); // Get addr of last instr block. // Avoid mul, prefer shift where possible. if (logMVCblocksize == 0) { __ z_mghi(Z_R0, MVCblocksize); } __ z_slgr(Z_R1, Z_R0); __ z_br(Z_R1); BLOCK_COMMENT("} mode MVC unrolled"); } // No fallthru possible here. // MVC execute template // Must always generate. Usage may be switched on below. // There is no suitable place after here to put the template. __ bind(MVC_template); __ z_mvc(0,0,dst_reg,0,src_reg); // Instr template, never exec directly! // MVC Loop: for medium-sized arrays // Only for DW aligned arrays (src and dst). // #bytes to copy must be at least 256!!! // Non-aligned cases handled separately. stride = 256; stride_reg = Z_R1; // Holds #bytes when control arrives here. ix_reg = Z_ARG3; // Alias for len_reg. if (usedMVCLOOP) { BLOCK_COMMENT("mode MVC loop {"); __ bind(doMVCLOOP); __ z_lcgr(ix_reg, Z_R1); // Ix runs from -(n-2)*stride to 1*stride (inclusive). __ z_llill(stride_reg, stride); __ add2reg(ix_reg, 2*stride); // Thus: increment ix by 2*stride. __ bind(doMVCLOOPiterate); __ z_mvc(0, stride-1, dst_reg, 0, src_reg); __ add2reg(dst_reg, stride); __ add2reg(src_reg, stride); __ bind(doMVCLOOPcount); __ z_brxlg(ix_reg, stride_reg, doMVCLOOPiterate); // Don 't use add2reg() here, since we must set the condition code! __ z_aghi(ix_reg, -2*stride); // Compensate incr from above: zero diff means "all copied". if (restoreArgs) { __ z_lcgr(Z_R1, ix_reg); // Prepare ix_reg for copy loop, #bytes expected in Z_R1. __ z_brnz(doMVCgeneral); // We're not done yet, ix_reg is not zero. // ARG1, ARG2, and ARG3 were altered by the code above, so restore them building on save_reg. __ z_slgr(dst_reg, save_reg); // copied #bytes __ z_slgr(src_reg, dst_reg); // = ARG1 (now restored) if (log2_size) { __ z_srag(Z_ARG3, dst_reg, log2_size); // Convert back to #elements to restore ARG3. } else { __ z_lgr(Z_ARG3, dst_reg); } __ z_lgr(Z_ARG2, save_reg); // ARG2 now restored. if (branchToEnd) { __ z_bru(done); } else { __ z_br(Z_R14); } } else { if (branchToEnd) { __ z_brz(done); // CC set by aghi instr. } else { __ z_bcr(Assembler::bcondZero, Z_R14); // We're all done if zero. } __ z_lcgr(Z_R1, ix_reg); // Prepare ix_reg for copy loop, #bytes expected in Z_R1. // __ z_bru(doMVCgeneral); // fallthru } usedMVCgeneral = true; BLOCK_COMMENT("} mode MVC loop"); } // Fallthru to doMVCgeneral // MVCgeneral: for short, unaligned arrays, after other copy operations // Somewhat expensive due to use of EX instruction, but simple. if (usedMVCgeneral) { BLOCK_COMMENT("mode MVC general {"); __ bind(doMVCgeneral); __ add2reg(len_reg, -1, Z_R1); // Get #bytes-1 for EXECUTE. if (VM_Version::has_ExecuteExtensions()) { __ z_exrl(len_reg, MVC_template); // Execute MVC with variable length. } else { __ z_larl(Z_R1, MVC_template); // Get addr of instr template. __ z_ex(len_reg, 0, Z_R0, Z_R1); // Execute MVC with variable length. } // penalty: 9 ticks if (restoreArgs) { // ARG1, ARG2, and ARG3 were altered by code executed before, so restore them building on save_reg __ z_slgr(dst_reg, save_reg); // Copied #bytes without the "doMVCgeneral" chunk __ z_slgr(src_reg, dst_reg); // = ARG1 (now restored), was not advanced for "doMVCgeneral" chunk __ add2reg_with_index(dst_reg, 1, len_reg, dst_reg); // Len of executed MVC was not accounted for, yet. if (log2_size) { __ z_srag(Z_ARG3, dst_reg, log2_size); // Convert back to #elements to restore ARG3 } else { __ z_lgr(Z_ARG3, dst_reg); } __ z_lgr(Z_ARG2, save_reg); // ARG2 now restored. } if (usedMVC) { if (branchToEnd) { __ z_bru(done); } else { __ z_br(Z_R14); } } else { if (!branchToEnd) __ z_br(Z_R14); } BLOCK_COMMENT("} mode MVC general"); } // Fallthru possible if following block not generated. // MVC: for short, unaligned arrays // Somewhat expensive due to use of EX instruction, but simple. penalty: 9 ticks. // Differs from doMVCgeneral in reconstruction of ARG2, ARG3, and ARG4. if (usedMVC) { BLOCK_COMMENT("mode MVC {"); __ bind(doMVC); // get #bytes-1 for EXECUTE if (log2_size) { __ add2reg(Z_R1, -1); // Length was scaled into Z_R1. } else { __ add2reg(Z_R1, -1, len_reg); // Length was not scaled. } if (VM_Version::has_ExecuteExtensions()) { __ z_exrl(Z_R1, MVC_template); // Execute MVC with variable length. } else { __ z_lgr(Z_R0, Z_R5); // Save ARG4, may be unnecessary. __ z_larl(Z_R5, MVC_template); // Get addr of instr template. __ z_ex(Z_R1, 0, Z_R0, Z_R5); // Execute MVC with variable length. __ z_lgr(Z_R5, Z_R0); // Restore ARG4, may be unnecessary. } if (!branchToEnd) { __ z_br(Z_R14); } BLOCK_COMMENT("} mode MVC"); } __ bind(done); switch (element_size) { case 1: BLOCK_COMMENT("} ARRAYCOPY DISJOINT byte "); break; case 2: BLOCK_COMMENT("} ARRAYCOPY DISJOINT short"); break; case 4: BLOCK_COMMENT("} ARRAYCOPY DISJOINT int "); break; case 8: BLOCK_COMMENT("} ARRAYCOPY DISJOINT long "); break; default: BLOCK_COMMENT("} ARRAYCOPY DISJOINT "); break; } } } // Generate stub for conjoint array copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. // // Arguments for generated stub: // from: Z_ARG1 // to: Z_ARG2 // count: Z_ARG3 treated as signed void generate_conjoint_copy(bool aligned, int element_size, bool branchToEnd) { // This is the zarch specific stub generator for general array copy tasks. // It has the following prereqs and features: // // - Destructive overlap exists and is handled by reverse copy. // - Destructive overlap exists if the leftmost byte of the target // does coincide with any of the source bytes (except the leftmost). // - Z_R0 and Z_R1 are KILLed by the stub routine (data and stride) // - Z_ARG1 and Z_ARG2 are USEd but preserved by the stub routine. // - Z_ARG3 is USED but preserved by the stub routine. // - Z_ARG4 is used as index register and is thus KILLed. // { Register stride_reg = Z_R1; // Stride & compare value in loop (negative element_size). Register data_reg = Z_R0; // Holds value of currently processed element. Register ix_reg = Z_ARG4; // Holds byte index of currently processed element. Register len_reg = Z_ARG3; // Holds length (in #elements) of arrays. Register dst_reg = Z_ARG2; // Holds left operand addr. Register src_reg = Z_ARG1; // Holds right operand addr. assert(256%element_size == 0, "Element size must be power of 2."); assert(element_size <= 8, "Can't handle more than DW units."); switch (element_size) { case 1: BLOCK_COMMENT("ARRAYCOPY CONJOINT byte {"); break; case 2: BLOCK_COMMENT("ARRAYCOPY CONJOINT short {"); break; case 4: BLOCK_COMMENT("ARRAYCOPY CONJOINT int {"); break; case 8: BLOCK_COMMENT("ARRAYCOPY CONJOINT long {"); break; default: BLOCK_COMMENT("ARRAYCOPY CONJOINT {"); break; } assert_positive_int(len_reg); if (VM_Version::has_Prefetch()) { __ z_pfd(0x01, 0, Z_R0, src_reg); // Fetch access. __ z_pfd(0x02, 0, Z_R0, dst_reg); // Store access. } unsigned int log2_size = exact_log2(element_size); if (log2_size) { __ z_sllg(ix_reg, len_reg, log2_size); } else { __ z_lgr(ix_reg, len_reg); } // Optimize reverse copy loop. // Main loop copies DW units which may be unaligned. Unaligned access adds some penalty ticks. // Unaligned DW access (neither fetch nor store) is DW-atomic, but should be alignment-atomic. // Preceding the main loop, some bytes are copied to obtain a DW-multiple remaining length. Label countLoop1; Label copyLoop1; Label skipBY; Label skipHW; int stride = -8; __ load_const_optimized(stride_reg, stride); // Prepare for DW copy loop. if (element_size == 8) // Nothing to do here. __ z_bru(countLoop1); else { // Do not generate dead code. __ z_tmll(ix_reg, 7); // Check the "odd" bits. __ z_bre(countLoop1); // There are none, very good! } if (log2_size == 0) { // Handle leftover Byte. __ z_tmll(ix_reg, 1); __ z_bre(skipBY); __ z_lb(data_reg, -1, ix_reg, src_reg); __ z_stcy(data_reg, -1, ix_reg, dst_reg); __ add2reg(ix_reg, -1); // Decrement delayed to avoid AGI. __ bind(skipBY); // fallthru } if (log2_size <= 1) { // Handle leftover HW. __ z_tmll(ix_reg, 2); __ z_bre(skipHW); __ z_lhy(data_reg, -2, ix_reg, src_reg); __ z_sthy(data_reg, -2, ix_reg, dst_reg); __ add2reg(ix_reg, -2); // Decrement delayed to avoid AGI. __ bind(skipHW); __ z_tmll(ix_reg, 4); __ z_bre(countLoop1); // fallthru } if (log2_size <= 2) { // There are just 4 bytes (left) that need to be copied. __ z_ly(data_reg, -4, ix_reg, src_reg); __ z_sty(data_reg, -4, ix_reg, dst_reg); __ add2reg(ix_reg, -4); // Decrement delayed to avoid AGI. __ z_bru(countLoop1); } // Control can never get to here. Never! Never ever! __ z_illtrap(0x99); __ bind(copyLoop1); __ z_lg(data_reg, 0, ix_reg, src_reg); __ z_stg(data_reg, 0, ix_reg, dst_reg); __ bind(countLoop1); __ z_brxhg(ix_reg, stride_reg, copyLoop1); if (!branchToEnd) __ z_br(Z_R14); switch (element_size) { case 1: BLOCK_COMMENT("} ARRAYCOPY CONJOINT byte "); break; case 2: BLOCK_COMMENT("} ARRAYCOPY CONJOINT short"); break; case 4: BLOCK_COMMENT("} ARRAYCOPY CONJOINT int "); break; case 8: BLOCK_COMMENT("} ARRAYCOPY CONJOINT long "); break; default: BLOCK_COMMENT("} ARRAYCOPY CONJOINT "); break; } } } // Generate stub for disjoint byte copy. If "aligned" is true, the // "from" and "to" addresses are assumed to be heapword aligned. address generate_disjoint_byte_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); // This is the zarch specific stub generator for byte array copy. // Refer to generate_disjoint_copy for a list of prereqs and features: unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). generate_disjoint_copy(aligned, 1, false, false); return __ addr_at(start_off); } address generate_disjoint_short_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); // This is the zarch specific stub generator for short array copy. // Refer to generate_disjoint_copy for a list of prereqs and features: unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). generate_disjoint_copy(aligned, 2, false, false); return __ addr_at(start_off); } address generate_disjoint_int_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); // This is the zarch specific stub generator for int array copy. // Refer to generate_disjoint_copy for a list of prereqs and features: unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). generate_disjoint_copy(aligned, 4, false, false); return __ addr_at(start_off); } address generate_disjoint_long_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); // This is the zarch specific stub generator for long array copy. // Refer to generate_disjoint_copy for a list of prereqs and features: unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). generate_disjoint_copy(aligned, 8, false, false); return __ addr_at(start_off); } address generate_disjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) { StubCodeMark mark(this, "StubRoutines", name); // This is the zarch specific stub generator for oop array copy. // Refer to generate_disjoint_copy for a list of prereqs and features. unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). unsigned int size = UseCompressedOops ? 4 : 8; gen_write_ref_array_pre_barrier(Z_ARG2, Z_ARG3, dest_uninitialized); generate_disjoint_copy(aligned, size, true, true); gen_write_ref_array_post_barrier(Z_ARG2, Z_ARG3, false); return __ addr_at(start_off); } address generate_conjoint_byte_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); // This is the zarch specific stub generator for overlapping byte array copy. // Refer to generate_conjoint_copy for a list of prereqs and features: unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). address nooverlap_target = aligned ? StubRoutines::arrayof_jbyte_disjoint_arraycopy() : StubRoutines::jbyte_disjoint_arraycopy(); array_overlap_test(nooverlap_target, 0); // Branch away to nooverlap_target if disjoint. generate_conjoint_copy(aligned, 1, false); return __ addr_at(start_off); } address generate_conjoint_short_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); // This is the zarch specific stub generator for overlapping short array copy. // Refer to generate_conjoint_copy for a list of prereqs and features: unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). address nooverlap_target = aligned ? StubRoutines::arrayof_jshort_disjoint_arraycopy() : StubRoutines::jshort_disjoint_arraycopy(); array_overlap_test(nooverlap_target, 1); // Branch away to nooverlap_target if disjoint. generate_conjoint_copy(aligned, 2, false); return __ addr_at(start_off); } address generate_conjoint_int_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); // This is the zarch specific stub generator for overlapping int array copy. // Refer to generate_conjoint_copy for a list of prereqs and features: unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). address nooverlap_target = aligned ? StubRoutines::arrayof_jint_disjoint_arraycopy() : StubRoutines::jint_disjoint_arraycopy(); array_overlap_test(nooverlap_target, 2); // Branch away to nooverlap_target if disjoint. generate_conjoint_copy(aligned, 4, false); return __ addr_at(start_off); } address generate_conjoint_long_copy(bool aligned, const char * name) { StubCodeMark mark(this, "StubRoutines", name); // This is the zarch specific stub generator for overlapping long array copy. // Refer to generate_conjoint_copy for a list of prereqs and features: unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). address nooverlap_target = aligned ? StubRoutines::arrayof_jlong_disjoint_arraycopy() : StubRoutines::jlong_disjoint_arraycopy(); array_overlap_test(nooverlap_target, 3); // Branch away to nooverlap_target if disjoint. generate_conjoint_copy(aligned, 8, false); return __ addr_at(start_off); } address generate_conjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) { StubCodeMark mark(this, "StubRoutines", name); // This is the zarch specific stub generator for overlapping oop array copy. // Refer to generate_conjoint_copy for a list of prereqs and features. unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). unsigned int size = UseCompressedOops ? 4 : 8; unsigned int shift = UseCompressedOops ? 2 : 3; address nooverlap_target = aligned ? StubRoutines::arrayof_oop_disjoint_arraycopy(dest_uninitialized) : StubRoutines::oop_disjoint_arraycopy(dest_uninitialized); // Branch to disjoint_copy (if applicable) before pre_barrier to avoid double pre_barrier. array_overlap_test(nooverlap_target, shift); // Branch away to nooverlap_target if disjoint. gen_write_ref_array_pre_barrier(Z_ARG2, Z_ARG3, dest_uninitialized); generate_conjoint_copy(aligned, size, true); // Must preserve ARG2, ARG3. gen_write_ref_array_post_barrier(Z_ARG2, Z_ARG3, false); return __ addr_at(start_off); } void generate_arraycopy_stubs() { // Note: the disjoint stubs must be generated first, some of // the conjoint stubs use them. StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy (false, "jbyte_disjoint_arraycopy"); StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy"); StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy (false, "jint_disjoint_arraycopy"); StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy (false, "jlong_disjoint_arraycopy"); StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy (false, "oop_disjoint_arraycopy", false); StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy (false, "oop_disjoint_arraycopy_uninit", true); StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy (true, "arrayof_jbyte_disjoint_arraycopy"); StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy"); StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy (true, "arrayof_jint_disjoint_arraycopy"); StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy (true, "arrayof_jlong_disjoint_arraycopy"); StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy (true, "arrayof_oop_disjoint_arraycopy", false); StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy (true, "arrayof_oop_disjoint_arraycopy_uninit", true); StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy (false, "jbyte_arraycopy"); StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy"); StubRoutines::_jint_arraycopy = generate_conjoint_int_copy (false, "jint_arraycopy"); StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy (false, "jlong_arraycopy"); StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy (false, "oop_arraycopy", false); StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy (false, "oop_arraycopy_uninit", true); StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy (true, "arrayof_jbyte_arraycopy"); StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy"); StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy (true, "arrayof_jint_arraycopy"); StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy (true, "arrayof_jlong_arraycopy"); StubRoutines::_arrayof_oop_arraycopy = generate_conjoint_oop_copy (true, "arrayof_oop_arraycopy", false); StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy (true, "arrayof_oop_arraycopy_uninit", true); } void generate_safefetch(const char* name, int size, address* entry, address* fault_pc, address* continuation_pc) { // safefetch signatures: // int SafeFetch32(int* adr, int errValue); // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue); // // arguments: // Z_ARG1 = adr // Z_ARG2 = errValue // // result: // Z_RET = *adr or errValue StubCodeMark mark(this, "StubRoutines", name); // entry point // Load *adr into Z_ARG2, may fault. *entry = *fault_pc = __ pc(); switch (size) { case 4: // Sign extended int32_t. __ z_lgf(Z_ARG2, 0, Z_ARG1); break; case 8: // int64_t __ z_lg(Z_ARG2, 0, Z_ARG1); break; default: ShouldNotReachHere(); } // Return errValue or *adr. *continuation_pc = __ pc(); __ z_lgr(Z_RET, Z_ARG2); __ z_br(Z_R14); } // Call interface for AES_encryptBlock, AES_decryptBlock stubs. // // Z_ARG1 - source data block. Ptr to leftmost byte to be processed. // Z_ARG2 - destination data block. Ptr to leftmost byte to be stored. // For in-place encryption/decryption, ARG1 and ARG2 can point // to the same piece of storage. // Z_ARG3 - Crypto key address (expanded key). The first n bits of // the expanded key constitute the original AES- key (see below). // // Z_RET - return value. First unprocessed byte offset in src buffer. // // Some remarks: // The crypto key, as passed from the caller to these encryption stubs, // is a so-called expanded key. It is derived from the original key // by the Rijndael key schedule, see http://en.wikipedia.org/wiki/Rijndael_key_schedule // With the expanded key, the cipher/decipher task is decomposed in // multiple, less complex steps, called rounds. Sun SPARC and Intel // processors obviously implement support for those less complex steps. // z/Architecture provides instructions for full cipher/decipher complexity. // Therefore, we need the original, not the expanded key here. // Luckily, the first n bits of an AES- expanded key are formed // by the original key itself. That takes us out of trouble. :-) // The key length (in bytes) relation is as follows: // original expanded rounds key bit keylen // key bytes key bytes length in words // 16 176 11 128 44 // 24 208 13 192 52 // 32 240 15 256 60 // // The crypto instructions used in the AES* stubs have some specific register requirements. // Z_R0 holds the crypto function code. Please refer to the KM/KMC instruction // description in the "z/Architecture Principles of Operation" manual for details. // Z_R1 holds the parameter block address. The parameter block contains the cryptographic key // (KM instruction) and the chaining value (KMC instruction). // dst must designate an even-numbered register, holding the address of the output message. // src must designate an even/odd register pair, holding the address/length of the original message // Helper function which generates code to // - load the function code in register fCode (== Z_R0) // - load the data block length (depends on cipher function) in register srclen if requested. // - is_decipher switches between cipher/decipher function codes // - set_len requests (if true) loading the data block length in register srclen void generate_load_AES_fCode(Register keylen, Register fCode, Register srclen, bool is_decipher) { BLOCK_COMMENT("Set fCode {"); { Label fCode_set; int mode = is_decipher ? VM_Version::CipherMode::decipher : VM_Version::CipherMode::cipher; bool identical_dataBlk_len = (VM_Version::Cipher::_AES128_dataBlk == VM_Version::Cipher::_AES192_dataBlk) && (VM_Version::Cipher::_AES128_dataBlk == VM_Version::Cipher::_AES256_dataBlk); // Expanded key length is 44/52/60 * 4 bytes for AES-128/AES-192/AES-256. __ z_cghi(keylen, 52); __ z_lghi(fCode, VM_Version::Cipher::_AES256 + mode); if (!identical_dataBlk_len) { __ z_lghi(srclen, VM_Version::Cipher::_AES256_dataBlk); } __ z_brh(fCode_set); // keyLen > 52: AES256 __ z_lghi(fCode, VM_Version::Cipher::_AES192 + mode); if (!identical_dataBlk_len) { __ z_lghi(srclen, VM_Version::Cipher::_AES192_dataBlk); } __ z_bre(fCode_set); // keyLen == 52: AES192 __ z_lghi(fCode, VM_Version::Cipher::_AES128 + mode); if (!identical_dataBlk_len) { __ z_lghi(srclen, VM_Version::Cipher::_AES128_dataBlk); } // __ z_brl(fCode_set); // keyLen < 52: AES128 // fallthru __ bind(fCode_set); if (identical_dataBlk_len) { __ z_lghi(srclen, VM_Version::Cipher::_AES128_dataBlk); } } BLOCK_COMMENT("} Set fCode"); } // Push a parameter block for the cipher/decipher instruction on the stack. // NOTE: // Before returning, the stub has to copy the chaining value from // the parmBlk, where it was updated by the crypto instruction, back // to the chaining value array the address of which was passed in the cv argument. // As all the available registers are used and modified by KMC, we need to save // the key length across the KMC instruction. We do so by spilling it to the stack, // just preceding the parmBlk (at (parmBlk - 8)). void generate_push_parmBlk(Register keylen, Register fCode, Register parmBlk, Register key, Register cv, bool is_decipher) { const int AES_parmBlk_align = 32; const int AES_parmBlk_addspace = AES_parmBlk_align; // Must be multiple of AES_parmblk_align. int cv_len, key_len; int mode = is_decipher ? VM_Version::CipherMode::decipher : VM_Version::CipherMode::cipher; Label parmBlk_128, parmBlk_192, parmBlk_256, parmBlk_set; BLOCK_COMMENT("push parmBlk {"); if (VM_Version::has_Crypto_AES() ) { __ z_cghi(keylen, 52); } if (VM_Version::has_Crypto_AES256()) { __ z_brh(parmBlk_256); } // keyLen > 52: AES256 if (VM_Version::has_Crypto_AES192()) { __ z_bre(parmBlk_192); } // keyLen == 52: AES192 if (VM_Version::has_Crypto_AES128()) { __ z_brl(parmBlk_128); } // keyLen < 52: AES128 // Security net: requested AES function not available on this CPU. // NOTE: // As of now (March 2015), this safety net is not required. JCE policy files limit the // cryptographic strength of the keys used to 128 bit. If we have AES hardware support // at all, we have at least AES-128. __ stop_static("AES key strength not supported by CPU. Use -XX:-UseAES as remedy.", 0); if (VM_Version::has_Crypto_AES128()) { __ bind(parmBlk_128); cv_len = VM_Version::Cipher::_AES128_dataBlk; key_len = VM_Version::Cipher::_AES128_parmBlk_C - cv_len; __ z_lay(parmBlk, -(VM_Version::Cipher::_AES128_parmBlk_C+AES_parmBlk_align)+(AES_parmBlk_align-1), Z_SP); __ z_nill(parmBlk, (~(AES_parmBlk_align-1)) & 0xffff); // align parameter block // Resize the frame to accommodate for the aligned parameter block and other stuff. // There is room for stuff in the range [parmBlk-AES_parmBlk_addspace, parmBlk). __ z_stg(keylen, -8, parmBlk); // Spill keylen for later use. __ z_stg(Z_SP, -16, parmBlk); // Spill SP for easy revert. __ z_aghi(parmBlk, -AES_parmBlk_addspace); // Additional space for keylen, etc.. __ resize_frame_absolute(parmBlk, keylen, true); // Resize frame with parmBlk being the new SP. __ z_aghi(parmBlk, AES_parmBlk_addspace); // Restore parameter block address. __ z_mvc(0, cv_len-1, parmBlk, 0, cv); // Copy cv. __ z_mvc(cv_len, key_len-1, parmBlk, 0, key); // Copy key. __ z_lghi(fCode, VM_Version::Cipher::_AES128 + mode); if (VM_Version::has_Crypto_AES192() || VM_Version::has_Crypto_AES256()) { __ z_bru(parmBlk_set); // Fallthru otherwise. } } if (VM_Version::has_Crypto_AES192()) { __ bind(parmBlk_192); cv_len = VM_Version::Cipher::_AES192_dataBlk; key_len = VM_Version::Cipher::_AES192_parmBlk_C - cv_len; __ z_lay(parmBlk, -(VM_Version::Cipher::_AES192_parmBlk_C+AES_parmBlk_align)+(AES_parmBlk_align-1), Z_SP); __ z_nill(parmBlk, (~(AES_parmBlk_align-1)) & 0xffff); // Align parameter block. // Resize the frame to accommodate for the aligned parameter block and other stuff. // There is room for stuff in the range [parmBlk-AES_parmBlk_addspace, parmBlk). __ z_stg(keylen, -8, parmBlk); // Spill keylen for later use. __ z_stg(Z_SP, -16, parmBlk); // Spill SP for easy revert. __ z_aghi(parmBlk, -AES_parmBlk_addspace); // Additional space for keylen, etc.. __ resize_frame_absolute(parmBlk, keylen, true); // Resize frame with parmBlk being the new SP. __ z_aghi(parmBlk, AES_parmBlk_addspace); // Restore parameter block address. __ z_mvc(0, cv_len-1, parmBlk, 0, cv); // Copy cv. __ z_mvc(cv_len, key_len-1, parmBlk, 0, key); // Copy key. __ z_lghi(fCode, VM_Version::Cipher::_AES192 + mode); if (VM_Version::has_Crypto_AES256()) { __ z_bru(parmBlk_set); // Fallthru otherwise. } } if (VM_Version::has_Crypto_AES256()) { __ bind(parmBlk_256); cv_len = VM_Version::Cipher::_AES256_dataBlk; key_len = VM_Version::Cipher::_AES256_parmBlk_C - cv_len; __ z_lay(parmBlk, -(VM_Version::Cipher::_AES256_parmBlk_C+AES_parmBlk_align)+(AES_parmBlk_align-1), Z_SP); __ z_nill(parmBlk, (~(AES_parmBlk_align-1)) & 0xffff); // Align parameter block. // Resize the frame to accommodate for the aligned parameter block and other stuff. // There is room for stuff in the range [parmBlk-AES_parmBlk_addspace, parmBlk). __ z_stg(keylen, -8, parmBlk); // Spill keylen for later use. __ z_stg(Z_SP, -16, parmBlk); // Spill SP for easy revert. __ z_aghi(parmBlk, -AES_parmBlk_addspace); // Additional space for keylen, etc.. __ resize_frame_absolute(parmBlk, keylen, true); // Resize frame with parmBlk being the new SP. __ z_aghi(parmBlk, AES_parmBlk_addspace); // Restore parameter block address. __ z_mvc(0, cv_len-1, parmBlk, 0, cv); // Copy cv. __ z_mvc(cv_len, key_len-1, parmBlk, 0, key); // Copy key. __ z_lghi(fCode, VM_Version::Cipher::_AES256 + mode); // __ z_bru(parmBlk_set); // fallthru } __ bind(parmBlk_set); BLOCK_COMMENT("} push parmBlk"); } // Pop a parameter block from the stack. The chaining value portion of the parameter block // is copied back to the cv array as it is needed for subsequent cipher steps. // The keylen value as well as the original SP (before resizing) was pushed to the stack // when pushing the parameter block. void generate_pop_parmBlk(Register keylen, Register parmBlk, Register key, Register cv) { BLOCK_COMMENT("pop parmBlk {"); bool identical_dataBlk_len = (VM_Version::Cipher::_AES128_dataBlk == VM_Version::Cipher::_AES192_dataBlk) && (VM_Version::Cipher::_AES128_dataBlk == VM_Version::Cipher::_AES256_dataBlk); if (identical_dataBlk_len) { int cv_len = VM_Version::Cipher::_AES128_dataBlk; __ z_mvc(0, cv_len-1, cv, 0, parmBlk); // Copy cv. } else { int cv_len; Label parmBlk_128, parmBlk_192, parmBlk_256, parmBlk_set; __ z_lg(keylen, -8, parmBlk); // restore keylen __ z_cghi(keylen, 52); if (VM_Version::has_Crypto_AES256()) __ z_brh(parmBlk_256); // keyLen > 52: AES256 if (VM_Version::has_Crypto_AES192()) __ z_bre(parmBlk_192); // keyLen == 52: AES192 // if (VM_Version::has_Crypto_AES128()) __ z_brl(parmBlk_128); // keyLen < 52: AES128 // fallthru // Security net: there is no one here. If we would need it, we should have // fallen into it already when pushing the parameter block. if (VM_Version::has_Crypto_AES128()) { __ bind(parmBlk_128); cv_len = VM_Version::Cipher::_AES128_dataBlk; __ z_mvc(0, cv_len-1, cv, 0, parmBlk); // Copy cv. if (VM_Version::has_Crypto_AES192() || VM_Version::has_Crypto_AES256()) { __ z_bru(parmBlk_set); } } if (VM_Version::has_Crypto_AES192()) { __ bind(parmBlk_192); cv_len = VM_Version::Cipher::_AES192_dataBlk; __ z_mvc(0, cv_len-1, cv, 0, parmBlk); // Copy cv. if (VM_Version::has_Crypto_AES256()) { __ z_bru(parmBlk_set); } } if (VM_Version::has_Crypto_AES256()) { __ bind(parmBlk_256); cv_len = VM_Version::Cipher::_AES256_dataBlk; __ z_mvc(0, cv_len-1, cv, 0, parmBlk); // Copy cv. // __ z_bru(parmBlk_set); // fallthru } __ bind(parmBlk_set); } __ z_lg(Z_SP, -16, parmBlk); // Revert resize_frame_absolute. BLOCK_COMMENT("} pop parmBlk"); } // Compute AES encrypt function. address generate_AES_encryptBlock(const char* name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). Register from = Z_ARG1; // source byte array Register to = Z_ARG2; // destination byte array Register key = Z_ARG3; // expanded key array const Register keylen = Z_R0; // Temporarily (until fCode is set) holds the expanded key array length. const Register fCode = Z_R0; // crypto function code const Register parmBlk = Z_R1; // parameter block address (points to crypto key) const Register src = Z_ARG1; // is Z_R2 const Register srclen = Z_ARG2; // Overwrites destination address. const Register dst = Z_ARG3; // Overwrites expanded key address. // Read key len of expanded key (in 4-byte words). __ z_lgf(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); // Copy arguments to registers as required by crypto instruction. __ z_lgr(parmBlk, key); // crypto key (in T_INT array). // __ z_lgr(src, from); // Copy not needed, src/from are identical. __ z_lgr(dst, to); // Copy destination address to even register. // Construct function code in Z_R0, data block length in Z_ARG2. generate_load_AES_fCode(keylen, fCode, srclen, false); __ km(dst, src); // Cipher the message. __ z_br(Z_R14); return __ addr_at(start_off); } // Compute AES decrypt function. address generate_AES_decryptBlock(const char* name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). Register from = Z_ARG1; // source byte array Register to = Z_ARG2; // destination byte array Register key = Z_ARG3; // expanded key array, not preset at entry!!! const Register keylen = Z_R0; // Temporarily (until fCode is set) holds the expanded key array length. const Register fCode = Z_R0; // crypto function code const Register parmBlk = Z_R1; // parameter block address (points to crypto key) const Register src = Z_ARG1; // is Z_R2 const Register srclen = Z_ARG2; // Overwrites destination address. const Register dst = Z_ARG3; // Overwrites key address. // Read key len of expanded key (in 4-byte words). __ z_lgf(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); // Copy arguments to registers as required by crypto instruction. __ z_lgr(parmBlk, key); // Copy crypto key address. // __ z_lgr(src, from); // Copy not needed, src/from are identical. __ z_lgr(dst, to); // Copy destination address to even register. // Construct function code in Z_R0, data block length in Z_ARG2. generate_load_AES_fCode(keylen, fCode, srclen, true); __ km(dst, src); // Cipher the message. __ z_br(Z_R14); return __ addr_at(start_off); } // These stubs receive the addresses of the cryptographic key and of the chaining value as two separate // arguments (registers "key" and "cv", respectively). The KMC instruction, on the other hand, requires // chaining value and key to be, in this sequence, adjacent in storage. Thus, we need to allocate some // thread-local working storage. Using heap memory incurs all the hassles of allocating/freeing. // Stack space, on the contrary, is deallocated automatically when we return from the stub to the caller. // *** WARNING *** // Please note that we do not formally allocate stack space, nor do we // update the stack pointer. Therefore, no function calls are allowed // and nobody else must use the stack range where the parameter block // is located. // We align the parameter block to the next available octoword. // // Compute chained AES encrypt function. address generate_cipherBlockChaining_AES_encrypt(const char* name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). Register from = Z_ARG1; // source byte array (clear text) Register to = Z_ARG2; // destination byte array (ciphered) Register key = Z_ARG3; // expanded key array. Register cv = Z_ARG4; // chaining value const Register msglen = Z_ARG5; // Total length of the msg to be encrypted. Value must be returned // in Z_RET upon completion of this stub. Is 32-bit integer. const Register keylen = Z_R0; // Expanded key length, as read from key array. Temp only. const Register fCode = Z_R0; // crypto function code const Register parmBlk = Z_R1; // parameter block address (points to crypto key) const Register src = Z_ARG1; // is Z_R2 const Register srclen = Z_ARG2; // Overwrites destination address. const Register dst = Z_ARG3; // Overwrites key address. // Read key len of expanded key (in 4-byte words). __ z_lgf(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); // Construct parm block address in parmBlk (== Z_R1), copy cv and key to parm block. // Construct function code in Z_R0. generate_push_parmBlk(keylen, fCode, parmBlk, key, cv, false); // Prepare other registers for instruction. // __ z_lgr(src, from); // Not needed, registers are the same. __ z_lgr(dst, to); __ z_llgfr(srclen, msglen); // We pass the offsets as ints, not as longs as required. __ kmc(dst, src); // Cipher the message. generate_pop_parmBlk(keylen, parmBlk, key, cv); __ z_llgfr(Z_RET, msglen); // We pass the offsets as ints, not as longs as required. __ z_br(Z_R14); return __ addr_at(start_off); } // Compute chained AES encrypt function. address generate_cipherBlockChaining_AES_decrypt(const char* name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). Register from = Z_ARG1; // source byte array (ciphered) Register to = Z_ARG2; // destination byte array (clear text) Register key = Z_ARG3; // expanded key array, not preset at entry!!! Register cv = Z_ARG4; // chaining value const Register msglen = Z_ARG5; // Total length of the msg to be encrypted. Value must be returned // in Z_RET upon completion of this stub. const Register keylen = Z_R0; // Expanded key length, as read from key array. Temp only. const Register fCode = Z_R0; // crypto function code const Register parmBlk = Z_R1; // parameter block address (points to crypto key) const Register src = Z_ARG1; // is Z_R2 const Register srclen = Z_ARG2; // Overwrites destination address. const Register dst = Z_ARG3; // Overwrites key address. // Read key len of expanded key (in 4-byte words). __ z_lgf(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); // Construct parm block address in parmBlk (== Z_R1), copy cv and key to parm block. // Construct function code in Z_R0. generate_push_parmBlk(keylen, fCode, parmBlk, key, cv, true); // Prepare other registers for instruction. // __ z_lgr(src, from); // Not needed, registers are the same. __ z_lgr(dst, to); __ z_lgr(srclen, msglen); __ kmc(dst, src); // Decipher the message. generate_pop_parmBlk(keylen, parmBlk, key, cv); __ z_lgr(Z_RET, msglen); __ z_br(Z_R14); return __ addr_at(start_off); } // Call interface for all SHA* stubs. // // Z_ARG1 - source data block. Ptr to leftmost byte to be processed. // Z_ARG2 - current SHA state. Ptr to state area. This area serves as // parameter block as required by the crypto instruction. // Z_ARG3 - current byte offset in source data block. // Z_ARG4 - last byte offset in source data block. // (Z_ARG4 - Z_ARG3) gives the #bytes remaining to be processed. // // Z_RET - return value. First unprocessed byte offset in src buffer. // // A few notes on the call interface: // - All stubs, whether they are single-block or multi-block, are assumed to // digest an integer multiple of the data block length of data. All data // blocks are digested using the intermediate message digest (KIMD) instruction. // Special end processing, as done by the KLMD instruction, seems to be // emulated by the calling code. // // - Z_ARG1 addresses the first byte of source data. The offset (Z_ARG3) is // already accounted for. // // - The current SHA state (the intermediate message digest value) is contained // in an area addressed by Z_ARG2. The area size depends on the SHA variant // and is accessible via the enum VM_Version::MsgDigest::_SHA_parmBlk_I // // - The single-block stub is expected to digest exactly one data block, starting // at the address passed in Z_ARG1. // // - The multi-block stub is expected to digest all data blocks which start in // the offset interval [srcOff(Z_ARG3), srcLimit(Z_ARG4)). The exact difference // (srcLimit-srcOff), rounded up to the next multiple of the data block length, // gives the number of blocks to digest. It must be assumed that the calling code // provides for a large enough source data buffer. // // Compute SHA-1 function. address generate_SHA1_stub(bool multiBlock, const char* name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). const Register srcBuff = Z_ARG1; // Points to first block to process (offset already added). const Register SHAState = Z_ARG2; // Only on entry. Reused soon thereafter for kimd register pairs. const Register srcOff = Z_ARG3; // int const Register srcLimit = Z_ARG4; // Only passed in multiBlock case. int const Register SHAState_local = Z_R1; const Register SHAState_save = Z_ARG3; const Register srcBufLen = Z_ARG2; // Destroys state address, must be copied before. Label useKLMD, rtn; __ load_const_optimized(Z_R0, (int)VM_Version::MsgDigest::_SHA1); // function code __ z_lgr(SHAState_local, SHAState); // SHAState == parameter block if (multiBlock) { // Process everything from offset to limit. // The following description is valid if we get a raw (unpimped) source data buffer, // spanning the range between [srcOff(Z_ARG3), srcLimit(Z_ARG4)). As detailled above, // the calling convention for these stubs is different. We leave the description in // to inform the reader what must be happening hidden in the calling code. // // The data block to be processed can have arbitrary length, i.e. its length does not // need to be an integer multiple of SHA_datablk. Therefore, we need to implement // two different paths. If the length is an integer multiple, we use KIMD, saving us // to copy the SHA state back and forth. If the length is odd, we copy the SHA state // to the stack, execute a KLMD instruction on it and copy the result back to the // caller's SHA state location. // Total #srcBuff blocks to process. if (VM_Version::has_DistinctOpnds()) { __ z_srk(srcBufLen, srcLimit, srcOff); // exact difference __ z_ahi(srcBufLen, VM_Version::MsgDigest::_SHA1_dataBlk-1); // round up __ z_nill(srcBufLen, (~(VM_Version::MsgDigest::_SHA1_dataBlk-1)) & 0xffff); __ z_ark(srcLimit, srcOff, srcBufLen); // Srclimit temporarily holds return value. __ z_llgfr(srcBufLen, srcBufLen); // Cast to 64-bit. } else { __ z_lgfr(srcBufLen, srcLimit); // Exact difference. srcLimit passed as int. __ z_sgfr(srcBufLen, srcOff); // SrcOff passed as int, now properly casted to long. __ z_aghi(srcBufLen, VM_Version::MsgDigest::_SHA1_dataBlk-1); // round up __ z_nill(srcBufLen, (~(VM_Version::MsgDigest::_SHA1_dataBlk-1)) & 0xffff); __ z_lgr(srcLimit, srcOff); // SrcLimit temporarily holds return value. __ z_agr(srcLimit, srcBufLen); } // Integral #blocks to digest? // As a result of the calculations above, srcBufLen MUST be an integer // multiple of _SHA1_dataBlk, or else we are in big trouble. // We insert an asm_assert into the KLMD case to guard against that. __ z_tmll(srcBufLen, VM_Version::MsgDigest::_SHA1_dataBlk-1); __ z_brc(Assembler::bcondNotAllZero, useKLMD); // Process all full blocks. __ kimd(srcBuff); __ z_lgr(Z_RET, srcLimit); // Offset of first unprocessed byte in buffer. } else { // Process one data block only. __ load_const_optimized(srcBufLen, (int)VM_Version::MsgDigest::_SHA1_dataBlk); // #srcBuff bytes to process __ kimd(srcBuff); __ add2reg(Z_RET, (int)VM_Version::MsgDigest::_SHA1_dataBlk, srcOff); // Offset of first unprocessed byte in buffer. No 32 to 64 bit extension needed. } __ bind(rtn); __ z_br(Z_R14); if (multiBlock) { __ bind(useKLMD); #if 1 // Security net: this stub is believed to be called for full-sized data blocks only // NOTE: The following code is believed to be correct, but is is not tested. __ stop_static("SHA128 stub can digest full data blocks only. Use -XX:-UseSHA as remedy.", 0); #endif } return __ addr_at(start_off); } // Compute SHA-256 function. address generate_SHA256_stub(bool multiBlock, const char* name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). const Register srcBuff = Z_ARG1; const Register SHAState = Z_ARG2; // Only on entry. Reused soon thereafter. const Register SHAState_local = Z_R1; const Register SHAState_save = Z_ARG3; const Register srcOff = Z_ARG3; const Register srcLimit = Z_ARG4; const Register srcBufLen = Z_ARG2; // Destroys state address, must be copied before. Label useKLMD, rtn; __ load_const_optimized(Z_R0, (int)VM_Version::MsgDigest::_SHA256); // function code __ z_lgr(SHAState_local, SHAState); // SHAState == parameter block if (multiBlock) { // Process everything from offset to limit. // The following description is valid if we get a raw (unpimped) source data buffer, // spanning the range between [srcOff(Z_ARG3), srcLimit(Z_ARG4)). As detailled above, // the calling convention for these stubs is different. We leave the description in // to inform the reader what must be happening hidden in the calling code. // // The data block to be processed can have arbitrary length, i.e. its length does not // need to be an integer multiple of SHA_datablk. Therefore, we need to implement // two different paths. If the length is an integer multiple, we use KIMD, saving us // to copy the SHA state back and forth. If the length is odd, we copy the SHA state // to the stack, execute a KLMD instruction on it and copy the result back to the // caller's SHA state location. // total #srcBuff blocks to process if (VM_Version::has_DistinctOpnds()) { __ z_srk(srcBufLen, srcLimit, srcOff); // exact difference __ z_ahi(srcBufLen, VM_Version::MsgDigest::_SHA256_dataBlk-1); // round up __ z_nill(srcBufLen, (~(VM_Version::MsgDigest::_SHA256_dataBlk-1)) & 0xffff); __ z_ark(srcLimit, srcOff, srcBufLen); // Srclimit temporarily holds return value. __ z_llgfr(srcBufLen, srcBufLen); // Cast to 64-bit. } else { __ z_lgfr(srcBufLen, srcLimit); // exact difference __ z_sgfr(srcBufLen, srcOff); __ z_aghi(srcBufLen, VM_Version::MsgDigest::_SHA256_dataBlk-1); // round up __ z_nill(srcBufLen, (~(VM_Version::MsgDigest::_SHA256_dataBlk-1)) & 0xffff); __ z_lgr(srcLimit, srcOff); // Srclimit temporarily holds return value. __ z_agr(srcLimit, srcBufLen); } // Integral #blocks to digest? // As a result of the calculations above, srcBufLen MUST be an integer // multiple of _SHA1_dataBlk, or else we are in big trouble. // We insert an asm_assert into the KLMD case to guard against that. __ z_tmll(srcBufLen, VM_Version::MsgDigest::_SHA256_dataBlk-1); __ z_brc(Assembler::bcondNotAllZero, useKLMD); // Process all full blocks. __ kimd(srcBuff); __ z_lgr(Z_RET, srcLimit); // Offset of first unprocessed byte in buffer. } else { // Process one data block only. __ load_const_optimized(srcBufLen, (int)VM_Version::MsgDigest::_SHA256_dataBlk); // #srcBuff bytes to process __ kimd(srcBuff); __ add2reg(Z_RET, (int)VM_Version::MsgDigest::_SHA256_dataBlk, srcOff); // Offset of first unprocessed byte in buffer. } __ bind(rtn); __ z_br(Z_R14); if (multiBlock) { __ bind(useKLMD); #if 1 // Security net: this stub is believed to be called for full-sized data blocks only. // NOTE: // The following code is believed to be correct, but is is not tested. __ stop_static("SHA256 stub can digest full data blocks only. Use -XX:-UseSHA as remedy.", 0); #endif } return __ addr_at(start_off); } // Compute SHA-512 function. address generate_SHA512_stub(bool multiBlock, const char* name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). const Register srcBuff = Z_ARG1; const Register SHAState = Z_ARG2; // Only on entry. Reused soon thereafter. const Register SHAState_local = Z_R1; const Register SHAState_save = Z_ARG3; const Register srcOff = Z_ARG3; const Register srcLimit = Z_ARG4; const Register srcBufLen = Z_ARG2; // Destroys state address, must be copied before. Label useKLMD, rtn; __ load_const_optimized(Z_R0, (int)VM_Version::MsgDigest::_SHA512); // function code __ z_lgr(SHAState_local, SHAState); // SHAState == parameter block if (multiBlock) { // Process everything from offset to limit. // The following description is valid if we get a raw (unpimped) source data buffer, // spanning the range between [srcOff(Z_ARG3), srcLimit(Z_ARG4)). As detailled above, // the calling convention for these stubs is different. We leave the description in // to inform the reader what must be happening hidden in the calling code. // // The data block to be processed can have arbitrary length, i.e. its length does not // need to be an integer multiple of SHA_datablk. Therefore, we need to implement // two different paths. If the length is an integer multiple, we use KIMD, saving us // to copy the SHA state back and forth. If the length is odd, we copy the SHA state // to the stack, execute a KLMD instruction on it and copy the result back to the // caller's SHA state location. // total #srcBuff blocks to process if (VM_Version::has_DistinctOpnds()) { __ z_srk(srcBufLen, srcLimit, srcOff); // exact difference __ z_ahi(srcBufLen, VM_Version::MsgDigest::_SHA512_dataBlk-1); // round up __ z_nill(srcBufLen, (~(VM_Version::MsgDigest::_SHA512_dataBlk-1)) & 0xffff); __ z_ark(srcLimit, srcOff, srcBufLen); // Srclimit temporarily holds return value. __ z_llgfr(srcBufLen, srcBufLen); // Cast to 64-bit. } else { __ z_lgfr(srcBufLen, srcLimit); // exact difference __ z_sgfr(srcBufLen, srcOff); __ z_aghi(srcBufLen, VM_Version::MsgDigest::_SHA512_dataBlk-1); // round up __ z_nill(srcBufLen, (~(VM_Version::MsgDigest::_SHA512_dataBlk-1)) & 0xffff); __ z_lgr(srcLimit, srcOff); // Srclimit temporarily holds return value. __ z_agr(srcLimit, srcBufLen); } // integral #blocks to digest? // As a result of the calculations above, srcBufLen MUST be an integer // multiple of _SHA1_dataBlk, or else we are in big trouble. // We insert an asm_assert into the KLMD case to guard against that. __ z_tmll(srcBufLen, VM_Version::MsgDigest::_SHA512_dataBlk-1); __ z_brc(Assembler::bcondNotAllZero, useKLMD); // Process all full blocks. __ kimd(srcBuff); __ z_lgr(Z_RET, srcLimit); // Offset of first unprocessed byte in buffer. } else { // Process one data block only. __ load_const_optimized(srcBufLen, (int)VM_Version::MsgDigest::_SHA512_dataBlk); // #srcBuff bytes to process __ kimd(srcBuff); __ add2reg(Z_RET, (int)VM_Version::MsgDigest::_SHA512_dataBlk, srcOff); // Offset of first unprocessed byte in buffer. } __ bind(rtn); __ z_br(Z_R14); if (multiBlock) { __ bind(useKLMD); #if 1 // Security net: this stub is believed to be called for full-sized data blocks only // NOTE: // The following code is believed to be correct, but is is not tested. __ stop_static("SHA512 stub can digest full data blocks only. Use -XX:-UseSHA as remedy.", 0); #endif } return __ addr_at(start_off); } // Arguments: // Z_ARG1 - int crc // Z_ARG2 - byte* buf // Z_ARG3 - int length (of buffer) // // Result: // Z_RET - int crc result // // Compute CRC32 function. address generate_CRC32_updateBytes(const char* name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); unsigned int start_off = __ offset(); // Remember stub start address (is rtn value). // arguments to kernel_crc32: Register crc = Z_ARG1; // Current checksum, preset by caller or result from previous call, int. Register data = Z_ARG2; // source byte array Register dataLen = Z_ARG3; // #bytes to process, int Register table = Z_ARG4; // crc table address const Register t0 = Z_R10; // work reg for kernel* emitters const Register t1 = Z_R11; // work reg for kernel* emitters const Register t2 = Z_R12; // work reg for kernel* emitters const Register t3 = Z_R13; // work reg for kernel* emitters assert_different_registers(crc, data, dataLen, table); // We pass these values as ints, not as longs as required by C calling convention. // Crc used as int. __ z_llgfr(dataLen, dataLen); StubRoutines::zarch::generate_load_crc_table_addr(_masm, table); __ resize_frame(-(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers. __ z_stmg(Z_R10, Z_R13, 1*8, Z_SP); // Spill regs 10..11 to make them available as work registers. __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3); __ z_lmg(Z_R10, Z_R13, 1*8, Z_SP); // Spill regs 10..11 back from stack. __ resize_frame(+(6*8), Z_R0, true); // Resize frame to provide add'l space to spill 5 registers. __ z_llgfr(Z_RET, crc); // Updated crc is function result. No copying required, just zero upper 32 bits. __ z_br(Z_R14); // Result already in Z_RET == Z_ARG1. return __ addr_at(start_off); } // Arguments: // Z_ARG1 - x address // Z_ARG2 - x length // Z_ARG3 - y address // Z_ARG4 - y length // Z_ARG5 - z address // 160[Z_SP] - z length address generate_multiplyToLen() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "multiplyToLen"); address start = __ pc(); const Register x = Z_ARG1; const Register xlen = Z_ARG2; const Register y = Z_ARG3; const Register ylen = Z_ARG4; const Register z = Z_ARG5; // zlen is passed on the stack: // Address zlen(Z_SP, _z_abi(remaining_cargs)); // Next registers will be saved on stack in multiply_to_len(). const Register tmp1 = Z_tmp_1; const Register tmp2 = Z_tmp_2; const Register tmp3 = Z_tmp_3; const Register tmp4 = Z_tmp_4; const Register tmp5 = Z_R9; BLOCK_COMMENT("Entry:"); __ z_llgfr(xlen, xlen); __ z_llgfr(ylen, ylen); __ multiply_to_len(x, xlen, y, ylen, z, tmp1, tmp2, tmp3, tmp4, tmp5); __ z_br(Z_R14); // Return to caller. return start; } void generate_initial() { // Generates all stubs and initializes the entry points. // Entry points that exist in all platforms. // Note: This is code that could be shared among different // platforms - however the benefit seems to be smaller than the // disadvantage of having a much more complicated generator // structure. See also comment in stubRoutines.hpp. StubRoutines::_forward_exception_entry = generate_forward_exception(); StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address); StubRoutines::_catch_exception_entry = generate_catch_exception(); // Build this early so it's available for the interpreter. StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false); //---------------------------------------------------------------------- // Entry points that are platform specific. // Build this early so it's available for the interpreter. StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false); if (UseCRC32Intrinsics) { // We have no CRC32 table on z/Architecture. StubRoutines::_crc_table_adr = (address)StubRoutines::zarch::_crc_table; StubRoutines::_updateBytesCRC32 = generate_CRC32_updateBytes("CRC32_updateBytes"); } // Comapct string intrinsics: Translate table for string inflate intrinsic. Used by trot instruction. StubRoutines::zarch::_trot_table_addr = (address)StubRoutines::zarch::_trot_table; } void generate_all() { // Generates all stubs and initializes the entry points. StubRoutines::zarch::_partial_subtype_check = generate_partial_subtype_check(); // These entry points require SharedInfo::stack0 to be set up in non-core builds. StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false); StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false); StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false); StubRoutines::zarch::_handler_for_unsafe_access_entry = generate_handler_for_unsafe_access(); // Support for verify_oop (must happen after universe_init). StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine(); // Arraycopy stubs used by compilers. generate_arraycopy_stubs(); // safefetch stubs generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry, &StubRoutines::_safefetch32_fault_pc, &StubRoutines::_safefetch32_continuation_pc); generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry, &StubRoutines::_safefetchN_fault_pc, &StubRoutines::_safefetchN_continuation_pc); // Generate AES intrinsics code. if (UseAESIntrinsics) { StubRoutines::_aescrypt_encryptBlock = generate_AES_encryptBlock("AES_encryptBlock"); StubRoutines::_aescrypt_decryptBlock = generate_AES_decryptBlock("AES_decryptBlock"); StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_AES_encrypt("AES_encryptBlock_chaining"); StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_AES_decrypt("AES_decryptBlock_chaining"); } // Generate SHA1/SHA256/SHA512 intrinsics code. if (UseSHA1Intrinsics) { StubRoutines::_sha1_implCompress = generate_SHA1_stub(false, "SHA1_singleBlock"); StubRoutines::_sha1_implCompressMB = generate_SHA1_stub(true, "SHA1_multiBlock"); } if (UseSHA256Intrinsics) { StubRoutines::_sha256_implCompress = generate_SHA256_stub(false, "SHA256_singleBlock"); StubRoutines::_sha256_implCompressMB = generate_SHA256_stub(true, "SHA256_multiBlock"); } if (UseSHA512Intrinsics) { StubRoutines::_sha512_implCompress = generate_SHA512_stub(false, "SHA512_singleBlock"); StubRoutines::_sha512_implCompressMB = generate_SHA512_stub(true, "SHA512_multiBlock"); } #ifdef COMPILER2 if (UseMultiplyToLenIntrinsic) { StubRoutines::_multiplyToLen = generate_multiplyToLen(); } if (UseMontgomeryMultiplyIntrinsic) { StubRoutines::_montgomeryMultiply = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); } if (UseMontgomerySquareIntrinsic) { StubRoutines::_montgomerySquare = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); } #endif } public: StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) { // Replace the standard masm with a special one: _masm = new MacroAssembler(code); _stub_count = !all ? 0x100 : 0x200; if (all) { generate_all(); } else { generate_initial(); } } private: int _stub_count; void stub_prolog(StubCodeDesc* cdesc) { #ifdef ASSERT // Put extra information in the stub code, to make it more readable. // Write the high part of the address. // [RGV] Check if there is a dependency on the size of this prolog. __ emit_32((intptr_t)cdesc >> 32); __ emit_32((intptr_t)cdesc); __ emit_32(++_stub_count); #endif align(true); } void align(bool at_header = false) { // z/Architecture cache line size is 256 bytes. // There is no obvious benefit in aligning stub // code to cache lines. Use CodeEntryAlignment instead. const unsigned int icache_line_size = CodeEntryAlignment; const unsigned int icache_half_line_size = MIN2(32, CodeEntryAlignment); if (at_header) { while ((intptr_t)(__ pc()) % icache_line_size != 0) { __ emit_16(0); } } else { while ((intptr_t)(__ pc()) % icache_half_line_size != 0) { __ z_nop(); } } } }; void StubGenerator_generate(CodeBuffer* code, bool all) { StubGenerator g(code, all); }