1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeBlob.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/dependencies.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc/shared/gcLocker.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/iterator.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/objArrayOop.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/verifyOopClosure.hpp"
  42 #include "runtime/arguments.hpp"
  43 #include "runtime/compilationPolicy.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/handles.inline.hpp"
  46 #include "runtime/icache.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "runtime/sweeper.hpp"
  50 #include "services/memoryService.hpp"
  51 #include "trace/tracing.hpp"
  52 #include "utilities/xmlstream.hpp"
  53 #ifdef COMPILER1
  54 #include "c1/c1_Compilation.hpp"
  55 #include "c1/c1_Compiler.hpp"
  56 #endif
  57 #ifdef COMPILER2
  58 #include "opto/c2compiler.hpp"
  59 #include "opto/compile.hpp"
  60 #include "opto/node.hpp"
  61 #endif
  62 
  63 // Helper class for printing in CodeCache
  64 class CodeBlob_sizes {
  65  private:
  66   int count;
  67   int total_size;
  68   int header_size;
  69   int code_size;
  70   int stub_size;
  71   int relocation_size;
  72   int scopes_oop_size;
  73   int scopes_metadata_size;
  74   int scopes_data_size;
  75   int scopes_pcs_size;
  76 
  77  public:
  78   CodeBlob_sizes() {
  79     count            = 0;
  80     total_size       = 0;
  81     header_size      = 0;
  82     code_size        = 0;
  83     stub_size        = 0;
  84     relocation_size  = 0;
  85     scopes_oop_size  = 0;
  86     scopes_metadata_size  = 0;
  87     scopes_data_size = 0;
  88     scopes_pcs_size  = 0;
  89   }
  90 
  91   int total()                                    { return total_size; }
  92   bool is_empty()                                { return count == 0; }
  93 
  94   void print(const char* title) {
  95     tty->print_cr(" #%d %s = %dK (hdr %d%%,  loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
  96                   count,
  97                   title,
  98                   (int)(total() / K),
  99                   header_size             * 100 / total_size,
 100                   relocation_size         * 100 / total_size,
 101                   code_size               * 100 / total_size,
 102                   stub_size               * 100 / total_size,
 103                   scopes_oop_size         * 100 / total_size,
 104                   scopes_metadata_size    * 100 / total_size,
 105                   scopes_data_size        * 100 / total_size,
 106                   scopes_pcs_size         * 100 / total_size);
 107   }
 108 
 109   void add(CodeBlob* cb) {
 110     count++;
 111     total_size       += cb->size();
 112     header_size      += cb->header_size();
 113     relocation_size  += cb->relocation_size();
 114     if (cb->is_nmethod()) {
 115       nmethod* nm = cb->as_nmethod_or_null();
 116       code_size        += nm->insts_size();
 117       stub_size        += nm->stub_size();
 118 
 119       scopes_oop_size  += nm->oops_size();
 120       scopes_metadata_size  += nm->metadata_size();
 121       scopes_data_size += nm->scopes_data_size();
 122       scopes_pcs_size  += nm->scopes_pcs_size();
 123     } else {
 124       code_size        += cb->code_size();
 125     }
 126   }
 127 };
 128 
 129 // Iterate over all CodeHeaps
 130 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 131 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 132 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
 133 
 134 address CodeCache::_low_bound = 0;
 135 address CodeCache::_high_bound = 0;
 136 int CodeCache::_number_of_nmethods_with_dependencies = 0;
 137 bool CodeCache::_needs_cache_clean = false;
 138 nmethod* CodeCache::_scavenge_root_nmethods = NULL;
 139 
 140 // Initialize array of CodeHeaps
 141 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 142 
 143 void CodeCache::check_heap_sizes(size_t non_nmethod_size, size_t profiled_size, size_t non_profiled_size, size_t cache_size, bool all_set) {
 144   size_t total_size = non_nmethod_size + profiled_size + non_profiled_size;
 145   // Prepare error message
 146   const char* error = "Invalid code heap sizes";
 147   err_msg message("NonNMethodCodeHeapSize (%zuK) + ProfiledCodeHeapSize (%zuK) + NonProfiledCodeHeapSize (%zuK) = %zuK",
 148           non_nmethod_size/K, profiled_size/K, non_profiled_size/K, total_size/K);
 149 
 150   if (total_size > cache_size) {
 151     // Some code heap sizes were explicitly set: total_size must be <= cache_size
 152     message.append(" is greater than ReservedCodeCacheSize (%zuK).", cache_size/K);
 153     vm_exit_during_initialization(error, message);
 154   } else if (all_set && total_size != cache_size) {
 155     // All code heap sizes were explicitly set: total_size must equal cache_size
 156     message.append(" is not equal to ReservedCodeCacheSize (%zuK).", cache_size/K);
 157     vm_exit_during_initialization(error, message);
 158   }
 159 }
 160 
 161 void CodeCache::initialize_heaps() {
 162   bool non_nmethod_set      = FLAG_IS_CMDLINE(NonNMethodCodeHeapSize);
 163   bool profiled_set         = FLAG_IS_CMDLINE(ProfiledCodeHeapSize);
 164   bool non_profiled_set     = FLAG_IS_CMDLINE(NonProfiledCodeHeapSize);
 165   size_t min_size           = os::vm_page_size();
 166   size_t cache_size         = ReservedCodeCacheSize;
 167   size_t non_nmethod_size   = NonNMethodCodeHeapSize;
 168   size_t profiled_size      = ProfiledCodeHeapSize;
 169   size_t non_profiled_size  = NonProfiledCodeHeapSize;
 170   // Check if total size set via command line flags exceeds the reserved size
 171   check_heap_sizes((non_nmethod_set  ? non_nmethod_size  : min_size),
 172                    (profiled_set     ? profiled_size     : min_size),
 173                    (non_profiled_set ? non_profiled_size : min_size),
 174                    cache_size,
 175                    non_nmethod_set && profiled_set && non_profiled_set);
 176 
 177   // Determine size of compiler buffers
 178   size_t code_buffers_size = 0;
 179 #ifdef COMPILER1
 180   // C1 temporary code buffers (see Compiler::init_buffer_blob())
 181   const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 182   code_buffers_size += c1_count * Compiler::code_buffer_size();
 183 #endif
 184 #ifdef COMPILER2
 185   // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
 186   const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 187   // Initial size of constant table (this may be increased if a compiled method needs more space)
 188   code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
 189 #endif
 190 
 191   // Increase default non_nmethod_size to account for compiler buffers
 192   if (!non_nmethod_set) {
 193     non_nmethod_size += code_buffers_size;
 194   }
 195   // Calculate default CodeHeap sizes if not set by user
 196   if (!non_nmethod_set && !profiled_set && !non_profiled_set) {
 197     // Check if we have enough space for the non-nmethod code heap
 198     if (cache_size > non_nmethod_size) {
 199       // Use the default value for non_nmethod_size and one half of the
 200       // remaining size for non-profiled and one half for profiled methods
 201       size_t remaining_size = cache_size - non_nmethod_size;
 202       profiled_size = remaining_size / 2;
 203       non_profiled_size = remaining_size - profiled_size;
 204     } else {
 205       // Use all space for the non-nmethod heap and set other heaps to minimal size
 206       non_nmethod_size = cache_size - 2 * min_size;
 207       profiled_size = min_size;
 208       non_profiled_size = min_size;
 209     }
 210   } else if (!non_nmethod_set || !profiled_set || !non_profiled_set) {
 211     // The user explicitly set some code heap sizes. Increase or decrease the (default)
 212     // sizes of the other code heaps accordingly. First adapt non-profiled and profiled
 213     // code heap sizes and then only change non-nmethod code heap size if still necessary.
 214     intx diff_size = cache_size - (non_nmethod_size + profiled_size + non_profiled_size);
 215     if (non_profiled_set) {
 216       if (!profiled_set) {
 217         // Adapt size of profiled code heap
 218         if (diff_size < 0 && ((intx)profiled_size + diff_size) <= 0) {
 219           // Not enough space available, set to minimum size
 220           diff_size += profiled_size - min_size;
 221           profiled_size = min_size;
 222         } else {
 223           profiled_size += diff_size;
 224           diff_size = 0;
 225         }
 226       }
 227     } else if (profiled_set) {
 228       // Adapt size of non-profiled code heap
 229       if (diff_size < 0 && ((intx)non_profiled_size + diff_size) <= 0) {
 230         // Not enough space available, set to minimum size
 231         diff_size += non_profiled_size - min_size;
 232         non_profiled_size = min_size;
 233       } else {
 234         non_profiled_size += diff_size;
 235         diff_size = 0;
 236       }
 237     } else if (non_nmethod_set) {
 238       // Distribute remaining size between profiled and non-profiled code heaps
 239       diff_size = cache_size - non_nmethod_size;
 240       profiled_size = diff_size / 2;
 241       non_profiled_size = diff_size - profiled_size;
 242       diff_size = 0;
 243     }
 244     if (diff_size != 0) {
 245       // Use non-nmethod code heap for remaining space requirements
 246       assert(!non_nmethod_set && ((intx)non_nmethod_size + diff_size) > 0, "sanity");
 247       non_nmethod_size += diff_size;
 248     }
 249   }
 250 
 251   // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
 252   if(!heap_available(CodeBlobType::MethodProfiled)) {
 253     non_profiled_size += profiled_size;
 254     profiled_size = 0;
 255   }
 256   // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
 257   if(!heap_available(CodeBlobType::MethodNonProfiled)) {
 258     non_nmethod_size += non_profiled_size;
 259     non_profiled_size = 0;
 260   }
 261   // Make sure we have enough space for VM internal code
 262   uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
 263   if (non_nmethod_size < (min_code_cache_size + code_buffers_size)) {
 264     vm_exit_during_initialization(err_msg(
 265         "Not enough space in non-nmethod code heap to run VM: %zuK < %zuK",
 266         non_nmethod_size/K, (min_code_cache_size + code_buffers_size)/K));
 267   }
 268 
 269   // Verify sizes and update flag values
 270   assert(non_profiled_size + profiled_size + non_nmethod_size == cache_size, "Invalid code heap sizes");
 271   FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, non_nmethod_size);
 272   FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
 273   FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
 274 
 275   // Align CodeHeaps
 276   size_t alignment = heap_alignment();
 277   non_nmethod_size = align_size_up(non_nmethod_size, alignment);
 278   profiled_size   = align_size_down(profiled_size, alignment);
 279 
 280   // Reserve one continuous chunk of memory for CodeHeaps and split it into
 281   // parts for the individual heaps. The memory layout looks like this:
 282   // ---------- high -----------
 283   //    Non-profiled nmethods
 284   //      Profiled nmethods
 285   //         Non-nmethods
 286   // ---------- low ------------
 287   ReservedCodeSpace rs = reserve_heap_memory(cache_size);
 288   ReservedSpace non_method_space    = rs.first_part(non_nmethod_size);
 289   ReservedSpace rest                = rs.last_part(non_nmethod_size);
 290   ReservedSpace profiled_space      = rest.first_part(profiled_size);
 291   ReservedSpace non_profiled_space  = rest.last_part(profiled_size);
 292 
 293   // Non-nmethods (stubs, adapters, ...)
 294   add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
 295   // Tier 2 and tier 3 (profiled) methods
 296   add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
 297   // Tier 1 and tier 4 (non-profiled) methods and native methods
 298   add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
 299 }
 300 
 301 size_t CodeCache::heap_alignment() {
 302   // If large page support is enabled, align code heaps according to large
 303   // page size to make sure that code cache is covered by large pages.
 304   const size_t page_size = os::can_execute_large_page_memory() ?
 305              os::page_size_for_region_unaligned(ReservedCodeCacheSize, 8) :
 306              os::vm_page_size();
 307   return MAX2(page_size, (size_t) os::vm_allocation_granularity());
 308 }
 309 
 310 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
 311   // Determine alignment
 312   const size_t page_size = os::can_execute_large_page_memory() ?
 313           MIN2(os::page_size_for_region_aligned(InitialCodeCacheSize, 8),
 314                os::page_size_for_region_aligned(size, 8)) :
 315           os::vm_page_size();
 316   const size_t granularity = os::vm_allocation_granularity();
 317   const size_t r_align = MAX2(page_size, granularity);
 318   const size_t r_size = align_size_up(size, r_align);
 319   const size_t rs_align = page_size == (size_t) os::vm_page_size() ? 0 :
 320     MAX2(page_size, granularity);
 321 
 322   ReservedCodeSpace rs(r_size, rs_align, rs_align > 0);
 323 
 324   if (!rs.is_reserved()) {
 325     vm_exit_during_initialization("Could not reserve enough space for code cache");
 326   }
 327 
 328   // Initialize bounds
 329   _low_bound = (address)rs.base();
 330   _high_bound = _low_bound + rs.size();
 331 
 332   return rs;
 333 }
 334 
 335 bool CodeCache::heap_available(int code_blob_type) {
 336   if (!SegmentedCodeCache) {
 337     // No segmentation: use a single code heap
 338     return (code_blob_type == CodeBlobType::All);
 339   } else if (Arguments::is_interpreter_only()) {
 340     // Interpreter only: we don't need any method code heaps
 341     return (code_blob_type == CodeBlobType::NonNMethod);
 342   } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
 343     // Tiered compilation: use all code heaps
 344     return (code_blob_type < CodeBlobType::All);
 345   } else {
 346     // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
 347     return (code_blob_type == CodeBlobType::NonNMethod) ||
 348            (code_blob_type == CodeBlobType::MethodNonProfiled);
 349   }
 350 }
 351 
 352 const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
 353   switch(code_blob_type) {
 354   case CodeBlobType::NonNMethod:
 355     return "NonNMethodCodeHeapSize";
 356     break;
 357   case CodeBlobType::MethodNonProfiled:
 358     return "NonProfiledCodeHeapSize";
 359     break;
 360   case CodeBlobType::MethodProfiled:
 361     return "ProfiledCodeHeapSize";
 362     break;
 363   }
 364   ShouldNotReachHere();
 365   return NULL;
 366 }
 367 
 368 void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
 369   // Check if heap is needed
 370   if (!heap_available(code_blob_type)) {
 371     return;
 372   }
 373 
 374   // Create CodeHeap
 375   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 376   _heaps->append(heap);
 377 
 378   // Reserve Space
 379   size_t size_initial = MIN2(InitialCodeCacheSize, rs.size());
 380   size_initial = round_to(size_initial, os::vm_page_size());
 381   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 382     vm_exit_during_initialization("Could not reserve enough space for code cache");
 383   }
 384 
 385   // Register the CodeHeap
 386   MemoryService::add_code_heap_memory_pool(heap, name);
 387 }
 388 
 389 CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
 390   assert(cb != NULL, "CodeBlob is null");
 391   FOR_ALL_HEAPS(heap) {
 392     if ((*heap)->contains(cb)) {
 393       return *heap;
 394     }
 395   }
 396   ShouldNotReachHere();
 397   return NULL;
 398 }
 399 
 400 CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
 401   FOR_ALL_HEAPS(heap) {
 402     if ((*heap)->accepts(code_blob_type)) {
 403       return *heap;
 404     }
 405   }
 406   return NULL;
 407 }
 408 
 409 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 410   assert_locked_or_safepoint(CodeCache_lock);
 411   assert(heap != NULL, "heap is null");
 412   return (CodeBlob*)heap->first();
 413 }
 414 
 415 CodeBlob* CodeCache::first_blob(int code_blob_type) {
 416   if (heap_available(code_blob_type)) {
 417     return first_blob(get_code_heap(code_blob_type));
 418   } else {
 419     return NULL;
 420   }
 421 }
 422 
 423 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 424   assert_locked_or_safepoint(CodeCache_lock);
 425   assert(heap != NULL, "heap is null");
 426   return (CodeBlob*)heap->next(cb);
 427 }
 428 
 429 CodeBlob* CodeCache::next_blob(CodeBlob* cb) {
 430   return next_blob(get_code_heap(cb), cb);
 431 }
 432 
 433 /**
 434  * Do not seize the CodeCache lock here--if the caller has not
 435  * already done so, we are going to lose bigtime, since the code
 436  * cache will contain a garbage CodeBlob until the caller can
 437  * run the constructor for the CodeBlob subclass he is busy
 438  * instantiating.
 439  */
 440 CodeBlob* CodeCache::allocate(int size, int code_blob_type, int orig_code_blob_type) {
 441   // Possibly wakes up the sweeper thread.
 442   NMethodSweeper::notify(code_blob_type);
 443   assert_locked_or_safepoint(CodeCache_lock);
 444   assert(size > 0, "Code cache allocation request must be > 0 but is %d", size);
 445   if (size <= 0) {
 446     return NULL;
 447   }
 448   CodeBlob* cb = NULL;
 449 
 450   // Get CodeHeap for the given CodeBlobType
 451   CodeHeap* heap = get_code_heap(code_blob_type);
 452   assert(heap != NULL, "heap is null");
 453 
 454   while (true) {
 455     cb = (CodeBlob*)heap->allocate(size);
 456     if (cb != NULL) break;
 457     if (!heap->expand_by(CodeCacheExpansionSize)) {
 458       // Save original type for error reporting
 459       if (orig_code_blob_type == CodeBlobType::All) {
 460         orig_code_blob_type = code_blob_type;
 461       }
 462       // Expansion failed
 463       if (SegmentedCodeCache) {
 464         // Fallback solution: Try to store code in another code heap.
 465         // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
 466         // Note that in the sweeper, we check the reverse_free_ratio of the code heap
 467         // and force stack scanning if less than 10% of the code heap are free.
 468         int type = code_blob_type;
 469         switch (type) {
 470         case CodeBlobType::NonNMethod:
 471           type = CodeBlobType::MethodNonProfiled;
 472           break;
 473         case CodeBlobType::MethodNonProfiled:
 474           type = CodeBlobType::MethodProfiled;
 475           break;
 476         case CodeBlobType::MethodProfiled:
 477           // Avoid loop if we already tried that code heap
 478           if (type == orig_code_blob_type) {
 479             type = CodeBlobType::MethodNonProfiled;
 480           }
 481           break;
 482         }
 483         if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
 484           if (PrintCodeCacheExtension) {
 485             tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
 486                           heap->name(), get_code_heap(type)->name());
 487           }
 488           return allocate(size, type, orig_code_blob_type);
 489         }
 490       }
 491       MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 492       CompileBroker::handle_full_code_cache(orig_code_blob_type);
 493       return NULL;
 494     }
 495     if (PrintCodeCacheExtension) {
 496       ResourceMark rm;
 497       if (_heaps->length() >= 1) {
 498         tty->print("%s", heap->name());
 499       } else {
 500         tty->print("CodeCache");
 501       }
 502       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
 503                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 504                     (address)heap->high() - (address)heap->low_boundary());
 505     }
 506   }
 507   print_trace("allocation", cb, size);
 508   return cb;
 509 }
 510 
 511 void CodeCache::free(CodeBlob* cb) {
 512   assert_locked_or_safepoint(CodeCache_lock);
 513   CodeHeap* heap = get_code_heap(cb);
 514   print_trace("free", cb);
 515   if (cb->is_nmethod()) {
 516     heap->set_nmethod_count(heap->nmethod_count() - 1);
 517     if (((nmethod *)cb)->has_dependencies()) {
 518       _number_of_nmethods_with_dependencies--;
 519     }
 520   }
 521   if (cb->is_adapter_blob()) {
 522     heap->set_adapter_count(heap->adapter_count() - 1);
 523   }
 524 
 525   // Get heap for given CodeBlob and deallocate
 526   get_code_heap(cb)->deallocate(cb);
 527 
 528   assert(heap->blob_count() >= 0, "sanity check");
 529 }
 530 
 531 void CodeCache::commit(CodeBlob* cb) {
 532   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 533   assert_locked_or_safepoint(CodeCache_lock);
 534   CodeHeap* heap = get_code_heap(cb);
 535   if (cb->is_nmethod()) {
 536     heap->set_nmethod_count(heap->nmethod_count() + 1);
 537     if (((nmethod *)cb)->has_dependencies()) {
 538       _number_of_nmethods_with_dependencies++;
 539     }
 540   }
 541   if (cb->is_adapter_blob()) {
 542     heap->set_adapter_count(heap->adapter_count() + 1);
 543   }
 544 
 545   // flush the hardware I-cache
 546   ICache::invalidate_range(cb->content_begin(), cb->content_size());
 547 }
 548 
 549 bool CodeCache::contains(void *p) {
 550   // It should be ok to call contains without holding a lock
 551   FOR_ALL_HEAPS(heap) {
 552     if ((*heap)->contains(p)) {
 553       return true;
 554     }
 555   }
 556   return false;
 557 }
 558 
 559 // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
 560 // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
 561 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 562 CodeBlob* CodeCache::find_blob(void* start) {
 563   CodeBlob* result = find_blob_unsafe(start);
 564   // We could potentially look up non_entrant methods
 565   guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || is_error_reported(), "unsafe access to zombie method");
 566   return result;
 567 }
 568 
 569 // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
 570 // what you are doing)
 571 CodeBlob* CodeCache::find_blob_unsafe(void* start) {
 572   // NMT can walk the stack before code cache is created
 573   if (_heaps != NULL && !_heaps->is_empty()) {
 574     FOR_ALL_HEAPS(heap) {
 575       CodeBlob* result = (CodeBlob*) (*heap)->find_start(start);
 576       if (result != NULL && result->blob_contains((address)start)) {
 577         return result;
 578       }
 579     }
 580   }
 581   return NULL;
 582 }
 583 
 584 nmethod* CodeCache::find_nmethod(void* start) {
 585   CodeBlob* cb = find_blob(start);
 586   assert(cb->is_nmethod(), "did not find an nmethod");
 587   return (nmethod*)cb;
 588 }
 589 
 590 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 591   assert_locked_or_safepoint(CodeCache_lock);
 592   FOR_ALL_HEAPS(heap) {
 593     FOR_ALL_BLOBS(cb, *heap) {
 594       f(cb);
 595     }
 596   }
 597 }
 598 
 599 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 600   assert_locked_or_safepoint(CodeCache_lock);
 601   NMethodIterator iter;
 602   while(iter.next()) {
 603     f(iter.method());
 604   }
 605 }
 606 
 607 void CodeCache::metadata_do(void f(Metadata* m)) {
 608   assert_locked_or_safepoint(CodeCache_lock);
 609   NMethodIterator iter;
 610   while(iter.next_alive()) {
 611     iter.method()->metadata_do(f);
 612   }
 613 }
 614 
 615 int CodeCache::alignment_unit() {
 616   return (int)_heaps->first()->alignment_unit();
 617 }
 618 
 619 int CodeCache::alignment_offset() {
 620   return (int)_heaps->first()->alignment_offset();
 621 }
 622 
 623 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 624 void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
 625   assert_locked_or_safepoint(CodeCache_lock);
 626   CompiledMethodIterator iter;
 627   while(iter.next_alive()) {
 628     iter.method()->do_unloading(is_alive, unloading_occurred);
 629   }
 630 }
 631 
 632 void CodeCache::blobs_do(CodeBlobClosure* f) {
 633   assert_locked_or_safepoint(CodeCache_lock);
 634   FOR_ALL_HEAPS(heap) {
 635     FOR_ALL_BLOBS(cb, *heap) {
 636       if (cb->is_alive()) {
 637         f->do_code_blob(cb);
 638 
 639 #ifdef ASSERT
 640         if (cb->is_nmethod())
 641         ((nmethod*)cb)->verify_scavenge_root_oops();
 642 #endif //ASSERT
 643       }
 644     }
 645   }
 646 }
 647 
 648 // Walk the list of methods which might contain non-perm oops.
 649 void CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure* f) {
 650   assert_locked_or_safepoint(CodeCache_lock);
 651 
 652   if (UseG1GC) {
 653     return;
 654   }
 655 
 656   const bool fix_relocations = f->fix_relocations();
 657   debug_only(mark_scavenge_root_nmethods());
 658 
 659   nmethod* prev = NULL;
 660   nmethod* cur = scavenge_root_nmethods();
 661   while (cur != NULL) {
 662     debug_only(cur->clear_scavenge_root_marked());
 663     assert(cur->scavenge_root_not_marked(), "");
 664     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 665 
 666     bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
 667     if (TraceScavenge) {
 668       cur->print_on(tty, is_live ? "scavenge root" : "dead scavenge root"); tty->cr();
 669     }
 670     if (is_live) {
 671       // Perform cur->oops_do(f), maybe just once per nmethod.
 672       f->do_code_blob(cur);
 673     }
 674     nmethod* const next = cur->scavenge_root_link();
 675     // The scavengable nmethod list must contain all methods with scavengable
 676     // oops. It is safe to include more nmethod on the list, but we do not
 677     // expect any live non-scavengable nmethods on the list.
 678     if (fix_relocations) {
 679       if (!is_live || !cur->detect_scavenge_root_oops()) {
 680         unlink_scavenge_root_nmethod(cur, prev);
 681       } else {
 682         prev = cur;
 683       }
 684     }
 685     cur = next;
 686   }
 687 
 688   // Check for stray marks.
 689   debug_only(verify_perm_nmethods(NULL));
 690 }
 691 
 692 void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
 693   assert_locked_or_safepoint(CodeCache_lock);
 694 
 695   if (UseG1GC) {
 696     return;
 697   }
 698 
 699   nm->set_on_scavenge_root_list();
 700   nm->set_scavenge_root_link(_scavenge_root_nmethods);
 701   set_scavenge_root_nmethods(nm);
 702   print_trace("add_scavenge_root", nm);
 703 }
 704 
 705 void CodeCache::unlink_scavenge_root_nmethod(nmethod* nm, nmethod* prev) {
 706   assert_locked_or_safepoint(CodeCache_lock);
 707 
 708   assert((prev == NULL && scavenge_root_nmethods() == nm) ||
 709          (prev != NULL && prev->scavenge_root_link() == nm), "precondition");
 710 
 711   assert(!UseG1GC, "G1 does not use the scavenge_root_nmethods list");
 712 
 713   print_trace("unlink_scavenge_root", nm);
 714   if (prev == NULL) {
 715     set_scavenge_root_nmethods(nm->scavenge_root_link());
 716   } else {
 717     prev->set_scavenge_root_link(nm->scavenge_root_link());
 718   }
 719   nm->set_scavenge_root_link(NULL);
 720   nm->clear_on_scavenge_root_list();
 721 }
 722 
 723 void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
 724   assert_locked_or_safepoint(CodeCache_lock);
 725 
 726   if (UseG1GC) {
 727     return;
 728   }
 729 
 730   print_trace("drop_scavenge_root", nm);
 731   nmethod* prev = NULL;
 732   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 733     if (cur == nm) {
 734       unlink_scavenge_root_nmethod(cur, prev);
 735       return;
 736     }
 737     prev = cur;
 738   }
 739   assert(false, "should have been on list");
 740 }
 741 
 742 void CodeCache::prune_scavenge_root_nmethods() {
 743   assert_locked_or_safepoint(CodeCache_lock);
 744 
 745   if (UseG1GC) {
 746     return;
 747   }
 748 
 749   debug_only(mark_scavenge_root_nmethods());
 750 
 751   nmethod* last = NULL;
 752   nmethod* cur = scavenge_root_nmethods();
 753   while (cur != NULL) {
 754     nmethod* next = cur->scavenge_root_link();
 755     debug_only(cur->clear_scavenge_root_marked());
 756     assert(cur->scavenge_root_not_marked(), "");
 757     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 758 
 759     if (!cur->is_zombie() && !cur->is_unloaded()
 760         && cur->detect_scavenge_root_oops()) {
 761       // Keep it.  Advance 'last' to prevent deletion.
 762       last = cur;
 763     } else {
 764       // Prune it from the list, so we don't have to look at it any more.
 765       print_trace("prune_scavenge_root", cur);
 766       unlink_scavenge_root_nmethod(cur, last);
 767     }
 768     cur = next;
 769   }
 770 
 771   // Check for stray marks.
 772   debug_only(verify_perm_nmethods(NULL));
 773 }
 774 
 775 #ifndef PRODUCT
 776 void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
 777   if (UseG1GC) {
 778     return;
 779   }
 780 
 781   // While we are here, verify the integrity of the list.
 782   mark_scavenge_root_nmethods();
 783   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 784     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 785     cur->clear_scavenge_root_marked();
 786   }
 787   verify_perm_nmethods(f);
 788 }
 789 
 790 // Temporarily mark nmethods that are claimed to be on the non-perm list.
 791 void CodeCache::mark_scavenge_root_nmethods() {
 792   NMethodIterator iter;
 793   while(iter.next_alive()) {
 794     nmethod* nm = iter.method();
 795     assert(nm->scavenge_root_not_marked(), "clean state");
 796     if (nm->on_scavenge_root_list())
 797       nm->set_scavenge_root_marked();
 798   }
 799 }
 800 
 801 // If the closure is given, run it on the unlisted nmethods.
 802 // Also make sure that the effects of mark_scavenge_root_nmethods is gone.
 803 void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
 804   NMethodIterator iter;
 805   while(iter.next_alive()) {
 806     nmethod* nm = iter.method();
 807     bool call_f = (f_or_null != NULL);
 808     assert(nm->scavenge_root_not_marked(), "must be already processed");
 809     if (nm->on_scavenge_root_list())
 810       call_f = false;  // don't show this one to the client
 811     nm->verify_scavenge_root_oops();
 812     if (call_f)  f_or_null->do_code_blob(nm);
 813   }
 814 }
 815 #endif //PRODUCT
 816 
 817 void CodeCache::verify_clean_inline_caches() {
 818 #ifdef ASSERT
 819   NMethodIterator iter;
 820   while(iter.next_alive()) {
 821     nmethod* nm = iter.method();
 822     assert(!nm->is_unloaded(), "Tautology");
 823     nm->verify_clean_inline_caches();
 824     nm->verify();
 825   }
 826 #endif
 827 }
 828 
 829 void CodeCache::verify_icholder_relocations() {
 830 #ifdef ASSERT
 831   // make sure that we aren't leaking icholders
 832   int count = 0;
 833   FOR_ALL_HEAPS(heap) {
 834     FOR_ALL_BLOBS(cb, *heap) {
 835       if (cb->is_nmethod()) {
 836         nmethod* nm = (nmethod*)cb;
 837         count += nm->verify_icholder_relocations();
 838       }
 839     }
 840   }
 841 
 842   assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
 843          CompiledICHolder::live_count(), "must agree");
 844 #endif
 845 }
 846 
 847 void CodeCache::gc_prologue() {
 848 }
 849 
 850 void CodeCache::gc_epilogue() {
 851   assert_locked_or_safepoint(CodeCache_lock);
 852   NOT_DEBUG(if (needs_cache_clean())) {
 853     CompiledMethodIterator iter;
 854     while(iter.next_alive()) {
 855       CompiledMethod* cm = iter.method();
 856       assert(!cm->is_unloaded(), "Tautology");
 857       DEBUG_ONLY(if (needs_cache_clean())) {
 858         cm->cleanup_inline_caches();
 859       }
 860       DEBUG_ONLY(cm->verify());
 861       DEBUG_ONLY(cm->verify_oop_relocations());
 862     }
 863   }
 864 
 865   set_needs_cache_clean(false);
 866   prune_scavenge_root_nmethods();
 867 
 868   verify_icholder_relocations();
 869 }
 870 
 871 void CodeCache::verify_oops() {
 872   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 873   VerifyOopClosure voc;
 874   NMethodIterator iter;
 875   while(iter.next_alive()) {
 876     nmethod* nm = iter.method();
 877     nm->oops_do(&voc);
 878     nm->verify_oop_relocations();
 879   }
 880 }
 881 
 882 int CodeCache::blob_count(int code_blob_type) {
 883   CodeHeap* heap = get_code_heap(code_blob_type);
 884   return (heap != NULL) ? heap->blob_count() : 0;
 885 }
 886 
 887 int CodeCache::blob_count() {
 888   int count = 0;
 889   FOR_ALL_HEAPS(heap) {
 890     count += (*heap)->blob_count();
 891   }
 892   return count;
 893 }
 894 
 895 int CodeCache::nmethod_count(int code_blob_type) {
 896   CodeHeap* heap = get_code_heap(code_blob_type);
 897   return (heap != NULL) ? heap->nmethod_count() : 0;
 898 }
 899 
 900 int CodeCache::nmethod_count() {
 901   int count = 0;
 902   FOR_ALL_HEAPS(heap) {
 903     count += (*heap)->nmethod_count();
 904   }
 905   return count;
 906 }
 907 
 908 int CodeCache::adapter_count(int code_blob_type) {
 909   CodeHeap* heap = get_code_heap(code_blob_type);
 910   return (heap != NULL) ? heap->adapter_count() : 0;
 911 }
 912 
 913 int CodeCache::adapter_count() {
 914   int count = 0;
 915   FOR_ALL_HEAPS(heap) {
 916     count += (*heap)->adapter_count();
 917   }
 918   return count;
 919 }
 920 
 921 address CodeCache::low_bound(int code_blob_type) {
 922   CodeHeap* heap = get_code_heap(code_blob_type);
 923   return (heap != NULL) ? (address)heap->low_boundary() : NULL;
 924 }
 925 
 926 address CodeCache::high_bound(int code_blob_type) {
 927   CodeHeap* heap = get_code_heap(code_blob_type);
 928   return (heap != NULL) ? (address)heap->high_boundary() : NULL;
 929 }
 930 
 931 size_t CodeCache::capacity() {
 932   size_t cap = 0;
 933   FOR_ALL_HEAPS(heap) {
 934     cap += (*heap)->capacity();
 935   }
 936   return cap;
 937 }
 938 
 939 size_t CodeCache::unallocated_capacity(int code_blob_type) {
 940   CodeHeap* heap = get_code_heap(code_blob_type);
 941   return (heap != NULL) ? heap->unallocated_capacity() : 0;
 942 }
 943 
 944 size_t CodeCache::unallocated_capacity() {
 945   size_t unallocated_cap = 0;
 946   FOR_ALL_HEAPS(heap) {
 947     unallocated_cap += (*heap)->unallocated_capacity();
 948   }
 949   return unallocated_cap;
 950 }
 951 
 952 size_t CodeCache::max_capacity() {
 953   size_t max_cap = 0;
 954   FOR_ALL_HEAPS(heap) {
 955     max_cap += (*heap)->max_capacity();
 956   }
 957   return max_cap;
 958 }
 959 
 960 /**
 961  * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
 962  * is free, reverse_free_ratio() returns 4.
 963  */
 964 double CodeCache::reverse_free_ratio(int code_blob_type) {
 965   CodeHeap* heap = get_code_heap(code_blob_type);
 966   if (heap == NULL) {
 967     return 0;
 968   }
 969 
 970   double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
 971   double max_capacity = (double)heap->max_capacity();
 972   double result = max_capacity / unallocated_capacity;
 973   assert (max_capacity >= unallocated_capacity, "Must be");
 974   assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
 975   return result;
 976 }
 977 
 978 size_t CodeCache::bytes_allocated_in_freelists() {
 979   size_t allocated_bytes = 0;
 980   FOR_ALL_HEAPS(heap) {
 981     allocated_bytes += (*heap)->allocated_in_freelist();
 982   }
 983   return allocated_bytes;
 984 }
 985 
 986 int CodeCache::allocated_segments() {
 987   int number_of_segments = 0;
 988   FOR_ALL_HEAPS(heap) {
 989     number_of_segments += (*heap)->allocated_segments();
 990   }
 991   return number_of_segments;
 992 }
 993 
 994 size_t CodeCache::freelists_length() {
 995   size_t length = 0;
 996   FOR_ALL_HEAPS(heap) {
 997     length += (*heap)->freelist_length();
 998   }
 999   return length;
1000 }
1001 
1002 void icache_init();
1003 
1004 void CodeCache::initialize() {
1005   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
1006 #ifdef COMPILER2
1007   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
1008 #endif
1009   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
1010   // This was originally just a check of the alignment, causing failure, instead, round
1011   // the code cache to the page size.  In particular, Solaris is moving to a larger
1012   // default page size.
1013   CodeCacheExpansionSize = round_to(CodeCacheExpansionSize, os::vm_page_size());
1014 
1015   if (SegmentedCodeCache) {
1016     // Use multiple code heaps
1017     initialize_heaps();
1018   } else {
1019     // Use a single code heap
1020     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, 0);
1021     FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
1022     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
1023     ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
1024     add_heap(rs, "CodeCache", CodeBlobType::All);
1025   }
1026 
1027   // Initialize ICache flush mechanism
1028   // This service is needed for os::register_code_area
1029   icache_init();
1030 
1031   // Give OS a chance to register generated code area.
1032   // This is used on Windows 64 bit platforms to register
1033   // Structured Exception Handlers for our generated code.
1034   os::register_code_area((char*)low_bound(), (char*)high_bound());
1035 }
1036 
1037 void codeCache_init() {
1038   CodeCache::initialize();
1039 }
1040 
1041 //------------------------------------------------------------------------------------------------
1042 
1043 int CodeCache::number_of_nmethods_with_dependencies() {
1044   return _number_of_nmethods_with_dependencies;
1045 }
1046 
1047 void CodeCache::clear_inline_caches() {
1048   assert_locked_or_safepoint(CodeCache_lock);
1049   CompiledMethodIterator iter;
1050   while(iter.next_alive()) {
1051     iter.method()->clear_inline_caches();
1052   }
1053 }
1054 
1055 void CodeCache::cleanup_inline_caches() {
1056   assert_locked_or_safepoint(CodeCache_lock);
1057   NMethodIterator iter;
1058   while(iter.next_alive()) {
1059     iter.method()->cleanup_inline_caches(/*clean_all=*/true);
1060   }
1061 }
1062 
1063 // Keeps track of time spent for checking dependencies
1064 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
1065 
1066 int CodeCache::mark_for_deoptimization(KlassDepChange& changes) {
1067   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1068   int number_of_marked_CodeBlobs = 0;
1069 
1070   // search the hierarchy looking for nmethods which are affected by the loading of this class
1071 
1072   // then search the interfaces this class implements looking for nmethods
1073   // which might be dependent of the fact that an interface only had one
1074   // implementor.
1075   // nmethod::check_all_dependencies works only correctly, if no safepoint
1076   // can happen
1077   NoSafepointVerifier nsv;
1078   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1079     Klass* d = str.klass();
1080     number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
1081   }
1082 
1083 #ifndef PRODUCT
1084   if (VerifyDependencies) {
1085     // Object pointers are used as unique identifiers for dependency arguments. This
1086     // is only possible if no safepoint, i.e., GC occurs during the verification code.
1087     dependentCheckTime.start();
1088     nmethod::check_all_dependencies(changes);
1089     dependentCheckTime.stop();
1090   }
1091 #endif
1092 
1093   return number_of_marked_CodeBlobs;
1094 }
1095 
1096 CompiledMethod* CodeCache::find_compiled(void* start) {
1097   CodeBlob *cb = find_blob(start);
1098   assert(cb == NULL || cb->is_compiled(), "did not find an compiled_method");
1099   return (CompiledMethod*)cb;
1100 }
1101 
1102 #ifdef HOTSWAP
1103 int CodeCache::mark_for_evol_deoptimization(instanceKlassHandle dependee) {
1104   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1105   int number_of_marked_CodeBlobs = 0;
1106 
1107   // Deoptimize all methods of the evolving class itself
1108   Array<Method*>* old_methods = dependee->methods();
1109   for (int i = 0; i < old_methods->length(); i++) {
1110     ResourceMark rm;
1111     Method* old_method = old_methods->at(i);
1112     CompiledMethod* nm = old_method->code();
1113     if (nm != NULL) {
1114       nm->mark_for_deoptimization();
1115       number_of_marked_CodeBlobs++;
1116     }
1117   }
1118 
1119   CompiledMethodIterator iter;
1120   while(iter.next_alive()) {
1121     CompiledMethod* nm = iter.method();
1122     if (nm->is_marked_for_deoptimization()) {
1123       // ...Already marked in the previous pass; don't count it again.
1124     } else if (nm->is_evol_dependent_on(dependee())) {
1125       ResourceMark rm;
1126       nm->mark_for_deoptimization();
1127       number_of_marked_CodeBlobs++;
1128     } else  {
1129       // flush caches in case they refer to a redefined Method*
1130       nm->clear_inline_caches();
1131     }
1132   }
1133 
1134   return number_of_marked_CodeBlobs;
1135 }
1136 #endif // HOTSWAP
1137 
1138 
1139 // Deoptimize all methods
1140 void CodeCache::mark_all_nmethods_for_deoptimization() {
1141   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1142   CompiledMethodIterator iter;
1143   while(iter.next_alive()) {
1144     CompiledMethod* nm = iter.method();
1145     if (!nm->method()->is_method_handle_intrinsic()) {
1146       nm->mark_for_deoptimization();
1147     }
1148   }
1149 }
1150 
1151 int CodeCache::mark_for_deoptimization(Method* dependee) {
1152   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1153   int number_of_marked_CodeBlobs = 0;
1154 
1155   CompiledMethodIterator iter;
1156   while(iter.next_alive()) {
1157     CompiledMethod* nm = iter.method();
1158     if (nm->is_dependent_on_method(dependee)) {
1159       ResourceMark rm;
1160       nm->mark_for_deoptimization();
1161       number_of_marked_CodeBlobs++;
1162     }
1163   }
1164 
1165   return number_of_marked_CodeBlobs;
1166 }
1167 
1168 void CodeCache::make_marked_nmethods_not_entrant() {
1169   assert_locked_or_safepoint(CodeCache_lock);
1170   CompiledMethodIterator iter;
1171   while(iter.next_alive()) {
1172     CompiledMethod* nm = iter.method();
1173     if (nm->is_marked_for_deoptimization()) {
1174       nm->make_not_entrant();
1175     }
1176   }
1177 }
1178 
1179 // Flushes compiled methods dependent on dependee.
1180 void CodeCache::flush_dependents_on(instanceKlassHandle dependee) {
1181   assert_lock_strong(Compile_lock);
1182 
1183   if (number_of_nmethods_with_dependencies() == 0) return;
1184 
1185   // CodeCache can only be updated by a thread_in_VM and they will all be
1186   // stopped during the safepoint so CodeCache will be safe to update without
1187   // holding the CodeCache_lock.
1188 
1189   KlassDepChange changes(dependee);
1190 
1191   // Compute the dependent nmethods
1192   if (mark_for_deoptimization(changes) > 0) {
1193     // At least one nmethod has been marked for deoptimization
1194     VM_Deoptimize op;
1195     VMThread::execute(&op);
1196   }
1197 }
1198 
1199 #ifdef HOTSWAP
1200 // Flushes compiled methods dependent on dependee in the evolutionary sense
1201 void CodeCache::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
1202   // --- Compile_lock is not held. However we are at a safepoint.
1203   assert_locked_or_safepoint(Compile_lock);
1204   if (number_of_nmethods_with_dependencies() == 0) return;
1205 
1206   // CodeCache can only be updated by a thread_in_VM and they will all be
1207   // stopped during the safepoint so CodeCache will be safe to update without
1208   // holding the CodeCache_lock.
1209 
1210   // Compute the dependent nmethods
1211   if (mark_for_evol_deoptimization(ev_k_h) > 0) {
1212     // At least one nmethod has been marked for deoptimization
1213 
1214     // All this already happens inside a VM_Operation, so we'll do all the work here.
1215     // Stuff copied from VM_Deoptimize and modified slightly.
1216 
1217     // We do not want any GCs to happen while we are in the middle of this VM operation
1218     ResourceMark rm;
1219     DeoptimizationMarker dm;
1220 
1221     // Deoptimize all activations depending on marked nmethods
1222     Deoptimization::deoptimize_dependents();
1223 
1224     // Make the dependent methods not entrant
1225     make_marked_nmethods_not_entrant();
1226   }
1227 }
1228 #endif // HOTSWAP
1229 
1230 
1231 // Flushes compiled methods dependent on dependee
1232 void CodeCache::flush_dependents_on_method(methodHandle m_h) {
1233   // --- Compile_lock is not held. However we are at a safepoint.
1234   assert_locked_or_safepoint(Compile_lock);
1235 
1236   // CodeCache can only be updated by a thread_in_VM and they will all be
1237   // stopped dring the safepoint so CodeCache will be safe to update without
1238   // holding the CodeCache_lock.
1239 
1240   // Compute the dependent nmethods
1241   if (mark_for_deoptimization(m_h()) > 0) {
1242     // At least one nmethod has been marked for deoptimization
1243 
1244     // All this already happens inside a VM_Operation, so we'll do all the work here.
1245     // Stuff copied from VM_Deoptimize and modified slightly.
1246 
1247     // We do not want any GCs to happen while we are in the middle of this VM operation
1248     ResourceMark rm;
1249     DeoptimizationMarker dm;
1250 
1251     // Deoptimize all activations depending on marked nmethods
1252     Deoptimization::deoptimize_dependents();
1253 
1254     // Make the dependent methods not entrant
1255     make_marked_nmethods_not_entrant();
1256   }
1257 }
1258 
1259 void CodeCache::verify() {
1260   assert_locked_or_safepoint(CodeCache_lock);
1261   FOR_ALL_HEAPS(heap) {
1262     (*heap)->verify();
1263     FOR_ALL_BLOBS(cb, *heap) {
1264       if (cb->is_alive()) {
1265         cb->verify();
1266       }
1267     }
1268   }
1269 }
1270 
1271 // A CodeHeap is full. Print out warning and report event.
1272 void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1273   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1274   CodeHeap* heap = get_code_heap(code_blob_type);
1275   assert(heap != NULL, "heap is null");
1276 
1277   if ((heap->full_count() == 0) || print) {
1278     // Not yet reported for this heap, report
1279     if (SegmentedCodeCache) {
1280       warning("%s is full. Compiler has been disabled.", get_code_heap_name(code_blob_type));
1281       warning("Try increasing the code heap size using -XX:%s=", get_code_heap_flag_name(code_blob_type));
1282     } else {
1283       warning("CodeCache is full. Compiler has been disabled.");
1284       warning("Try increasing the code cache size using -XX:ReservedCodeCacheSize=");
1285     }
1286     ResourceMark rm;
1287     stringStream s;
1288     // Dump code cache  into a buffer before locking the tty,
1289     {
1290       MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1291       print_summary(&s);
1292     }
1293     ttyLocker ttyl;
1294     tty->print("%s", s.as_string());
1295   }
1296 
1297   heap->report_full();
1298 
1299   EventCodeCacheFull event;
1300   if (event.should_commit()) {
1301     event.set_codeBlobType((u1)code_blob_type);
1302     event.set_startAddress((u8)heap->low_boundary());
1303     event.set_commitedTopAddress((u8)heap->high());
1304     event.set_reservedTopAddress((u8)heap->high_boundary());
1305     event.set_entryCount(heap->blob_count());
1306     event.set_methodCount(heap->nmethod_count());
1307     event.set_adaptorCount(heap->adapter_count());
1308     event.set_unallocatedCapacity(heap->unallocated_capacity());
1309     event.set_fullCount(heap->full_count());
1310     event.commit();
1311   }
1312 }
1313 
1314 void CodeCache::print_memory_overhead() {
1315   size_t wasted_bytes = 0;
1316   FOR_ALL_HEAPS(heap) {
1317       CodeHeap* curr_heap = *heap;
1318       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1319         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1320         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1321       }
1322   }
1323   // Print bytes that are allocated in the freelist
1324   ttyLocker ttl;
1325   tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1326   tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1327   tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1328   tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1329 }
1330 
1331 //------------------------------------------------------------------------------------------------
1332 // Non-product version
1333 
1334 #ifndef PRODUCT
1335 
1336 void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1337   if (PrintCodeCache2) {  // Need to add a new flag
1338     ResourceMark rm;
1339     if (size == 0)  size = cb->size();
1340     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1341   }
1342 }
1343 
1344 void CodeCache::print_internals() {
1345   int nmethodCount = 0;
1346   int runtimeStubCount = 0;
1347   int adapterCount = 0;
1348   int deoptimizationStubCount = 0;
1349   int uncommonTrapStubCount = 0;
1350   int bufferBlobCount = 0;
1351   int total = 0;
1352   int nmethodAlive = 0;
1353   int nmethodNotEntrant = 0;
1354   int nmethodZombie = 0;
1355   int nmethodUnloaded = 0;
1356   int nmethodJava = 0;
1357   int nmethodNative = 0;
1358   int max_nm_size = 0;
1359   ResourceMark rm;
1360 
1361   int i = 0;
1362   FOR_ALL_HEAPS(heap) {
1363     if ((_heaps->length() >= 1) && Verbose) {
1364       tty->print_cr("-- %s --", (*heap)->name());
1365     }
1366     FOR_ALL_BLOBS(cb, *heap) {
1367       total++;
1368       if (cb->is_nmethod()) {
1369         nmethod* nm = (nmethod*)cb;
1370 
1371         if (Verbose && nm->method() != NULL) {
1372           ResourceMark rm;
1373           char *method_name = nm->method()->name_and_sig_as_C_string();
1374           tty->print("%s", method_name);
1375           if(nm->is_alive()) { tty->print_cr(" alive"); }
1376           if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1377           if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1378         }
1379 
1380         nmethodCount++;
1381 
1382         if(nm->is_alive()) { nmethodAlive++; }
1383         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1384         if(nm->is_zombie()) { nmethodZombie++; }
1385         if(nm->is_unloaded()) { nmethodUnloaded++; }
1386         if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1387 
1388         if(nm->method() != NULL && nm->is_java_method()) {
1389           nmethodJava++;
1390           max_nm_size = MAX2(max_nm_size, nm->size());
1391         }
1392       } else if (cb->is_runtime_stub()) {
1393         runtimeStubCount++;
1394       } else if (cb->is_deoptimization_stub()) {
1395         deoptimizationStubCount++;
1396       } else if (cb->is_uncommon_trap_stub()) {
1397         uncommonTrapStubCount++;
1398       } else if (cb->is_adapter_blob()) {
1399         adapterCount++;
1400       } else if (cb->is_buffer_blob()) {
1401         bufferBlobCount++;
1402       }
1403     }
1404   }
1405 
1406   int bucketSize = 512;
1407   int bucketLimit = max_nm_size / bucketSize + 1;
1408   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1409   memset(buckets, 0, sizeof(int) * bucketLimit);
1410 
1411   NMethodIterator iter;
1412   while(iter.next()) {
1413     nmethod* nm = iter.method();
1414     if(nm->method() != NULL && nm->is_java_method()) {
1415       buckets[nm->size() / bucketSize]++;
1416     }
1417   }
1418 
1419   tty->print_cr("Code Cache Entries (total of %d)",total);
1420   tty->print_cr("-------------------------------------------------");
1421   tty->print_cr("nmethods: %d",nmethodCount);
1422   tty->print_cr("\talive: %d",nmethodAlive);
1423   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1424   tty->print_cr("\tzombie: %d",nmethodZombie);
1425   tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1426   tty->print_cr("\tjava: %d",nmethodJava);
1427   tty->print_cr("\tnative: %d",nmethodNative);
1428   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1429   tty->print_cr("adapters: %d",adapterCount);
1430   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1431   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1432   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1433   tty->print_cr("\nnmethod size distribution (non-zombie java)");
1434   tty->print_cr("-------------------------------------------------");
1435 
1436   for(int i=0; i<bucketLimit; i++) {
1437     if(buckets[i] != 0) {
1438       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1439       tty->fill_to(40);
1440       tty->print_cr("%d",buckets[i]);
1441     }
1442   }
1443 
1444   FREE_C_HEAP_ARRAY(int, buckets);
1445   print_memory_overhead();
1446 }
1447 
1448 #endif // !PRODUCT
1449 
1450 void CodeCache::print() {
1451   print_summary(tty);
1452 
1453 #ifndef PRODUCT
1454   if (!Verbose) return;
1455 
1456   CodeBlob_sizes live;
1457   CodeBlob_sizes dead;
1458 
1459   FOR_ALL_HEAPS(heap) {
1460     FOR_ALL_BLOBS(cb, *heap) {
1461       if (!cb->is_alive()) {
1462         dead.add(cb);
1463       } else {
1464         live.add(cb);
1465       }
1466     }
1467   }
1468 
1469   tty->print_cr("CodeCache:");
1470   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1471 
1472   if (!live.is_empty()) {
1473     live.print("live");
1474   }
1475   if (!dead.is_empty()) {
1476     dead.print("dead");
1477   }
1478 
1479   if (WizardMode) {
1480      // print the oop_map usage
1481     int code_size = 0;
1482     int number_of_blobs = 0;
1483     int number_of_oop_maps = 0;
1484     int map_size = 0;
1485     FOR_ALL_HEAPS(heap) {
1486       FOR_ALL_BLOBS(cb, *heap) {
1487         if (cb->is_alive()) {
1488           number_of_blobs++;
1489           code_size += cb->code_size();
1490           ImmutableOopMapSet* set = cb->oop_maps();
1491           if (set != NULL) {
1492             number_of_oop_maps += set->count();
1493             map_size           += set->nr_of_bytes();
1494           }
1495         }
1496       }
1497     }
1498     tty->print_cr("OopMaps");
1499     tty->print_cr("  #blobs    = %d", number_of_blobs);
1500     tty->print_cr("  code size = %d", code_size);
1501     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1502     tty->print_cr("  map size  = %d", map_size);
1503   }
1504 
1505 #endif // !PRODUCT
1506 }
1507 
1508 void CodeCache::print_summary(outputStream* st, bool detailed) {
1509   FOR_ALL_HEAPS(heap_iterator) {
1510     CodeHeap* heap = (*heap_iterator);
1511     size_t total = (heap->high_boundary() - heap->low_boundary());
1512     if (_heaps->length() >= 1) {
1513       st->print("%s:", heap->name());
1514     } else {
1515       st->print("CodeCache:");
1516     }
1517     st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1518                  "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1519                  total/K, (total - heap->unallocated_capacity())/K,
1520                  heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1521 
1522     if (detailed) {
1523       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1524                    p2i(heap->low_boundary()),
1525                    p2i(heap->high()),
1526                    p2i(heap->high_boundary()));
1527     }
1528   }
1529 
1530   if (detailed) {
1531     st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1532                        " adapters=" UINT32_FORMAT,
1533                        blob_count(), nmethod_count(), adapter_count());
1534     st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1535                  "enabled" : Arguments::mode() == Arguments::_int ?
1536                  "disabled (interpreter mode)" :
1537                  "disabled (not enough contiguous free space left)");
1538   }
1539 }
1540 
1541 void CodeCache::print_codelist(outputStream* st) {
1542   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1543 
1544   NMethodIterator iter;
1545   while(iter.next_alive()) {
1546     nmethod* nm = iter.method();
1547     ResourceMark rm;
1548     char *method_name = nm->method()->name_and_sig_as_C_string();
1549     st->print_cr("%d %d %s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1550                  nm->compile_id(), nm->comp_level(), method_name, (intptr_t)nm->header_begin(),
1551                  (intptr_t)nm->code_begin(), (intptr_t)nm->code_end());
1552   }
1553 }
1554 
1555 void CodeCache::print_layout(outputStream* st) {
1556   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1557   ResourceMark rm;
1558   print_summary(st, true);
1559 }
1560 
1561 void CodeCache::log_state(outputStream* st) {
1562   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1563             " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1564             blob_count(), nmethod_count(), adapter_count(),
1565             unallocated_capacity());
1566 }
1567 
1568 // Initialize iterator to given compiled method
1569 void CompiledMethodIterator::initialize(CompiledMethod* cm) {
1570   _code_blob = (CodeBlob*)cm;
1571   if (!SegmentedCodeCache) {
1572     // Iterate over all CodeBlobs
1573     _code_blob_type = CodeBlobType::All;
1574   } else if (cm != NULL) {
1575     _code_blob_type = CodeCache::get_code_blob_type(cm);
1576   } else {
1577     // Only iterate over method code heaps, starting with non-profiled
1578     _code_blob_type = CodeBlobType::MethodNonProfiled;
1579   }
1580 }
1581 
1582 // Advance iterator to the next compiled method in the current code heap
1583 bool CompiledMethodIterator::next_compiled_method() {
1584   // Get first method CodeBlob
1585   if (_code_blob == NULL) {
1586     _code_blob = CodeCache::first_blob(_code_blob_type);
1587     if (_code_blob == NULL) {
1588       return false;
1589     } else if (_code_blob->is_nmethod()) {
1590       return true;
1591     }
1592   }
1593   // Search for next method CodeBlob
1594   _code_blob = CodeCache::next_blob(_code_blob);
1595   while (_code_blob != NULL && !_code_blob->is_compiled()) {
1596     _code_blob = CodeCache::next_blob(_code_blob);
1597   }
1598   return _code_blob != NULL;
1599 }