1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 #ifndef _GNU_SOURCE
 110   #define _GNU_SOURCE
 111   #include <sched.h>
 112   #undef _GNU_SOURCE
 113 #else
 114   #include <sched.h>
 115 #endif
 116 
 117 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 118 // getrusage() is prepared to handle the associated failure.
 119 #ifndef RUSAGE_THREAD
 120   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 121 #endif
 122 
 123 #define MAX_PATH    (2 * K)
 124 
 125 #define MAX_SECS 100000000
 126 
 127 // for timer info max values which include all bits
 128 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 129 
 130 #define LARGEPAGES_BIT (1 << 6)
 131 ////////////////////////////////////////////////////////////////////////////////
 132 // global variables
 133 julong os::Linux::_physical_memory = 0;
 134 
 135 address   os::Linux::_initial_thread_stack_bottom = NULL;
 136 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 137 
 138 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 139 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 140 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 141 Mutex* os::Linux::_createThread_lock = NULL;
 142 pthread_t os::Linux::_main_thread;
 143 int os::Linux::_page_size = -1;
 144 bool os::Linux::_supports_fast_thread_cpu_time = false;
 145 uint32_t os::Linux::_os_version = 0;
 146 const char * os::Linux::_glibc_version = NULL;
 147 const char * os::Linux::_libpthread_version = NULL;
 148 pthread_condattr_t os::Linux::_condattr[1];
 149 
 150 static jlong initial_time_count=0;
 151 
 152 static int clock_tics_per_sec = 100;
 153 
 154 // For diagnostics to print a message once. see run_periodic_checks
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 // Signal number used to suspend/resume a thread
 159 
 160 // do not use any signal number less than SIGSEGV, see 4355769
 161 static int SR_signum = SIGUSR2;
 162 sigset_t SR_sigset;
 163 
 164 // Declarations
 165 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 166 
 167 // utility functions
 168 
 169 static int SR_initialize();
 170 
 171 julong os::available_memory() {
 172   return Linux::available_memory();
 173 }
 174 
 175 julong os::Linux::available_memory() {
 176   // values in struct sysinfo are "unsigned long"
 177   struct sysinfo si;
 178   sysinfo(&si);
 179 
 180   return (julong)si.freeram * si.mem_unit;
 181 }
 182 
 183 julong os::physical_memory() {
 184   return Linux::physical_memory();
 185 }
 186 
 187 // Return true if user is running as root.
 188 
 189 bool os::have_special_privileges() {
 190   static bool init = false;
 191   static bool privileges = false;
 192   if (!init) {
 193     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 194     init = true;
 195   }
 196   return privileges;
 197 }
 198 
 199 
 200 #ifndef SYS_gettid
 201 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 202   #ifdef __ia64__
 203     #define SYS_gettid 1105
 204   #else
 205     #ifdef __i386__
 206       #define SYS_gettid 224
 207     #else
 208       #ifdef __amd64__
 209         #define SYS_gettid 186
 210       #else
 211         #ifdef __sparc__
 212           #define SYS_gettid 143
 213         #else
 214           #error define gettid for the arch
 215         #endif
 216       #endif
 217     #endif
 218   #endif
 219 #endif
 220 
 221 // Cpu architecture string
 222 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 223 
 224 
 225 // pid_t gettid()
 226 //
 227 // Returns the kernel thread id of the currently running thread. Kernel
 228 // thread id is used to access /proc.
 229 pid_t os::Linux::gettid() {
 230   int rslt = syscall(SYS_gettid);
 231   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 232   return (pid_t)rslt;
 233 }
 234 
 235 // Most versions of linux have a bug where the number of processors are
 236 // determined by looking at the /proc file system.  In a chroot environment,
 237 // the system call returns 1.  This causes the VM to act as if it is
 238 // a single processor and elide locking (see is_MP() call).
 239 static bool unsafe_chroot_detected = false;
 240 static const char *unstable_chroot_error = "/proc file system not found.\n"
 241                      "Java may be unstable running multithreaded in a chroot "
 242                      "environment on Linux when /proc filesystem is not mounted.";
 243 
 244 void os::Linux::initialize_system_info() {
 245   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 246   if (processor_count() == 1) {
 247     pid_t pid = os::Linux::gettid();
 248     char fname[32];
 249     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 250     FILE *fp = fopen(fname, "r");
 251     if (fp == NULL) {
 252       unsafe_chroot_detected = true;
 253     } else {
 254       fclose(fp);
 255     }
 256   }
 257   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 258   assert(processor_count() > 0, "linux error");
 259 }
 260 
 261 void os::init_system_properties_values() {
 262   // The next steps are taken in the product version:
 263   //
 264   // Obtain the JAVA_HOME value from the location of libjvm.so.
 265   // This library should be located at:
 266   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 267   //
 268   // If "/jre/lib/" appears at the right place in the path, then we
 269   // assume libjvm.so is installed in a JDK and we use this path.
 270   //
 271   // Otherwise exit with message: "Could not create the Java virtual machine."
 272   //
 273   // The following extra steps are taken in the debugging version:
 274   //
 275   // If "/jre/lib/" does NOT appear at the right place in the path
 276   // instead of exit check for $JAVA_HOME environment variable.
 277   //
 278   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 279   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 280   // it looks like libjvm.so is installed there
 281   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 282   //
 283   // Otherwise exit.
 284   //
 285   // Important note: if the location of libjvm.so changes this
 286   // code needs to be changed accordingly.
 287 
 288   // See ld(1):
 289   //      The linker uses the following search paths to locate required
 290   //      shared libraries:
 291   //        1: ...
 292   //        ...
 293   //        7: The default directories, normally /lib and /usr/lib.
 294 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 295   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 296 #else
 297   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 298 #endif
 299 
 300 // Base path of extensions installed on the system.
 301 #define SYS_EXT_DIR     "/usr/java/packages"
 302 #define EXTENSIONS_DIR  "/lib/ext"
 303 
 304   // Buffer that fits several sprintfs.
 305   // Note that the space for the colon and the trailing null are provided
 306   // by the nulls included by the sizeof operator.
 307   const size_t bufsize =
 308     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 309          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 310   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 311 
 312   // sysclasspath, java_home, dll_dir
 313   {
 314     char *pslash;
 315     os::jvm_path(buf, bufsize);
 316 
 317     // Found the full path to libjvm.so.
 318     // Now cut the path to <java_home>/jre if we can.
 319     pslash = strrchr(buf, '/');
 320     if (pslash != NULL) {
 321       *pslash = '\0';            // Get rid of /libjvm.so.
 322     }
 323     pslash = strrchr(buf, '/');
 324     if (pslash != NULL) {
 325       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 326     }
 327     Arguments::set_dll_dir(buf);
 328 
 329     if (pslash != NULL) {
 330       pslash = strrchr(buf, '/');
 331       if (pslash != NULL) {
 332         *pslash = '\0';          // Get rid of /<arch>.
 333         pslash = strrchr(buf, '/');
 334         if (pslash != NULL) {
 335           *pslash = '\0';        // Get rid of /lib.
 336         }
 337       }
 338     }
 339     Arguments::set_java_home(buf);
 340     set_boot_path('/', ':');
 341   }
 342 
 343   // Where to look for native libraries.
 344   //
 345   // Note: Due to a legacy implementation, most of the library path
 346   // is set in the launcher. This was to accomodate linking restrictions
 347   // on legacy Linux implementations (which are no longer supported).
 348   // Eventually, all the library path setting will be done here.
 349   //
 350   // However, to prevent the proliferation of improperly built native
 351   // libraries, the new path component /usr/java/packages is added here.
 352   // Eventually, all the library path setting will be done here.
 353   {
 354     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 355     // should always exist (until the legacy problem cited above is
 356     // addressed).
 357     const char *v = ::getenv("LD_LIBRARY_PATH");
 358     const char *v_colon = ":";
 359     if (v == NULL) { v = ""; v_colon = ""; }
 360     // That's +1 for the colon and +1 for the trailing '\0'.
 361     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 362                                                      strlen(v) + 1 +
 363                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 364                                                      mtInternal);
 365     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 366     Arguments::set_library_path(ld_library_path);
 367     FREE_C_HEAP_ARRAY(char, ld_library_path);
 368   }
 369 
 370   // Extensions directories.
 371   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 372   Arguments::set_ext_dirs(buf);
 373 
 374   FREE_C_HEAP_ARRAY(char, buf);
 375 
 376 #undef DEFAULT_LIBPATH
 377 #undef SYS_EXT_DIR
 378 #undef EXTENSIONS_DIR
 379 }
 380 
 381 ////////////////////////////////////////////////////////////////////////////////
 382 // breakpoint support
 383 
 384 void os::breakpoint() {
 385   BREAKPOINT;
 386 }
 387 
 388 extern "C" void breakpoint() {
 389   // use debugger to set breakpoint here
 390 }
 391 
 392 ////////////////////////////////////////////////////////////////////////////////
 393 // signal support
 394 
 395 debug_only(static bool signal_sets_initialized = false);
 396 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 397 
 398 bool os::Linux::is_sig_ignored(int sig) {
 399   struct sigaction oact;
 400   sigaction(sig, (struct sigaction*)NULL, &oact);
 401   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 402                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 403   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 404     return true;
 405   } else {
 406     return false;
 407   }
 408 }
 409 
 410 void os::Linux::signal_sets_init() {
 411   // Should also have an assertion stating we are still single-threaded.
 412   assert(!signal_sets_initialized, "Already initialized");
 413   // Fill in signals that are necessarily unblocked for all threads in
 414   // the VM. Currently, we unblock the following signals:
 415   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 416   //                         by -Xrs (=ReduceSignalUsage));
 417   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 418   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 419   // the dispositions or masks wrt these signals.
 420   // Programs embedding the VM that want to use the above signals for their
 421   // own purposes must, at this time, use the "-Xrs" option to prevent
 422   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 423   // (See bug 4345157, and other related bugs).
 424   // In reality, though, unblocking these signals is really a nop, since
 425   // these signals are not blocked by default.
 426   sigemptyset(&unblocked_sigs);
 427   sigemptyset(&allowdebug_blocked_sigs);
 428   sigaddset(&unblocked_sigs, SIGILL);
 429   sigaddset(&unblocked_sigs, SIGSEGV);
 430   sigaddset(&unblocked_sigs, SIGBUS);
 431   sigaddset(&unblocked_sigs, SIGFPE);
 432 #if defined(PPC64)
 433   sigaddset(&unblocked_sigs, SIGTRAP);
 434 #endif
 435   sigaddset(&unblocked_sigs, SR_signum);
 436 
 437   if (!ReduceSignalUsage) {
 438     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 439       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 440       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 441     }
 442     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 443       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 444       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 445     }
 446     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 447       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 448       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 449     }
 450   }
 451   // Fill in signals that are blocked by all but the VM thread.
 452   sigemptyset(&vm_sigs);
 453   if (!ReduceSignalUsage) {
 454     sigaddset(&vm_sigs, BREAK_SIGNAL);
 455   }
 456   debug_only(signal_sets_initialized = true);
 457 
 458 }
 459 
 460 // These are signals that are unblocked while a thread is running Java.
 461 // (For some reason, they get blocked by default.)
 462 sigset_t* os::Linux::unblocked_signals() {
 463   assert(signal_sets_initialized, "Not initialized");
 464   return &unblocked_sigs;
 465 }
 466 
 467 // These are the signals that are blocked while a (non-VM) thread is
 468 // running Java. Only the VM thread handles these signals.
 469 sigset_t* os::Linux::vm_signals() {
 470   assert(signal_sets_initialized, "Not initialized");
 471   return &vm_sigs;
 472 }
 473 
 474 // These are signals that are blocked during cond_wait to allow debugger in
 475 sigset_t* os::Linux::allowdebug_blocked_signals() {
 476   assert(signal_sets_initialized, "Not initialized");
 477   return &allowdebug_blocked_sigs;
 478 }
 479 
 480 void os::Linux::hotspot_sigmask(Thread* thread) {
 481 
 482   //Save caller's signal mask before setting VM signal mask
 483   sigset_t caller_sigmask;
 484   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 485 
 486   OSThread* osthread = thread->osthread();
 487   osthread->set_caller_sigmask(caller_sigmask);
 488 
 489   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 490 
 491   if (!ReduceSignalUsage) {
 492     if (thread->is_VM_thread()) {
 493       // Only the VM thread handles BREAK_SIGNAL ...
 494       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 495     } else {
 496       // ... all other threads block BREAK_SIGNAL
 497       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 498     }
 499   }
 500 }
 501 
 502 //////////////////////////////////////////////////////////////////////////////
 503 // detecting pthread library
 504 
 505 void os::Linux::libpthread_init() {
 506   // Save glibc and pthread version strings.
 507 #if !defined(_CS_GNU_LIBC_VERSION) || \
 508     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 509   #error "glibc too old (< 2.3.2)"
 510 #endif
 511 
 512   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 513   assert(n > 0, "cannot retrieve glibc version");
 514   char *str = (char *)malloc(n, mtInternal);
 515   confstr(_CS_GNU_LIBC_VERSION, str, n);
 516   os::Linux::set_glibc_version(str);
 517 
 518   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 519   assert(n > 0, "cannot retrieve pthread version");
 520   str = (char *)malloc(n, mtInternal);
 521   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 522   os::Linux::set_libpthread_version(str);
 523 }
 524 
 525 /////////////////////////////////////////////////////////////////////////////
 526 // thread stack expansion
 527 
 528 // os::Linux::manually_expand_stack() takes care of expanding the thread
 529 // stack. Note that this is normally not needed: pthread stacks allocate
 530 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 531 // committed. Therefore it is not necessary to expand the stack manually.
 532 //
 533 // Manually expanding the stack was historically needed on LinuxThreads
 534 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 535 // it is kept to deal with very rare corner cases:
 536 //
 537 // For one, user may run the VM on an own implementation of threads
 538 // whose stacks are - like the old LinuxThreads - implemented using
 539 // mmap(MAP_GROWSDOWN).
 540 //
 541 // Also, this coding may be needed if the VM is running on the primordial
 542 // thread. Normally we avoid running on the primordial thread; however,
 543 // user may still invoke the VM on the primordial thread.
 544 //
 545 // The following historical comment describes the details about running
 546 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 547 
 548 
 549 // Force Linux kernel to expand current thread stack. If "bottom" is close
 550 // to the stack guard, caller should block all signals.
 551 //
 552 // MAP_GROWSDOWN:
 553 //   A special mmap() flag that is used to implement thread stacks. It tells
 554 //   kernel that the memory region should extend downwards when needed. This
 555 //   allows early versions of LinuxThreads to only mmap the first few pages
 556 //   when creating a new thread. Linux kernel will automatically expand thread
 557 //   stack as needed (on page faults).
 558 //
 559 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 560 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 561 //   region, it's hard to tell if the fault is due to a legitimate stack
 562 //   access or because of reading/writing non-exist memory (e.g. buffer
 563 //   overrun). As a rule, if the fault happens below current stack pointer,
 564 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 565 //   application (see Linux kernel fault.c).
 566 //
 567 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 568 //   stack overflow detection.
 569 //
 570 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 571 //   not use MAP_GROWSDOWN.
 572 //
 573 // To get around the problem and allow stack banging on Linux, we need to
 574 // manually expand thread stack after receiving the SIGSEGV.
 575 //
 576 // There are two ways to expand thread stack to address "bottom", we used
 577 // both of them in JVM before 1.5:
 578 //   1. adjust stack pointer first so that it is below "bottom", and then
 579 //      touch "bottom"
 580 //   2. mmap() the page in question
 581 //
 582 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 583 // if current sp is already near the lower end of page 101, and we need to
 584 // call mmap() to map page 100, it is possible that part of the mmap() frame
 585 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 586 // That will destroy the mmap() frame and cause VM to crash.
 587 //
 588 // The following code works by adjusting sp first, then accessing the "bottom"
 589 // page to force a page fault. Linux kernel will then automatically expand the
 590 // stack mapping.
 591 //
 592 // _expand_stack_to() assumes its frame size is less than page size, which
 593 // should always be true if the function is not inlined.
 594 
 595 static void NOINLINE _expand_stack_to(address bottom) {
 596   address sp;
 597   size_t size;
 598   volatile char *p;
 599 
 600   // Adjust bottom to point to the largest address within the same page, it
 601   // gives us a one-page buffer if alloca() allocates slightly more memory.
 602   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 603   bottom += os::Linux::page_size() - 1;
 604 
 605   // sp might be slightly above current stack pointer; if that's the case, we
 606   // will alloca() a little more space than necessary, which is OK. Don't use
 607   // os::current_stack_pointer(), as its result can be slightly below current
 608   // stack pointer, causing us to not alloca enough to reach "bottom".
 609   sp = (address)&sp;
 610 
 611   if (sp > bottom) {
 612     size = sp - bottom;
 613     p = (volatile char *)alloca(size);
 614     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 615     p[0] = '\0';
 616   }
 617 }
 618 
 619 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 620   assert(t!=NULL, "just checking");
 621   assert(t->osthread()->expanding_stack(), "expand should be set");
 622   assert(t->stack_base() != NULL, "stack_base was not initialized");
 623 
 624   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 625     sigset_t mask_all, old_sigset;
 626     sigfillset(&mask_all);
 627     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 628     _expand_stack_to(addr);
 629     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 630     return true;
 631   }
 632   return false;
 633 }
 634 
 635 //////////////////////////////////////////////////////////////////////////////
 636 // create new thread
 637 
 638 // Thread start routine for all newly created threads
 639 static void *thread_native_entry(Thread *thread) {
 640   // Try to randomize the cache line index of hot stack frames.
 641   // This helps when threads of the same stack traces evict each other's
 642   // cache lines. The threads can be either from the same JVM instance, or
 643   // from different JVM instances. The benefit is especially true for
 644   // processors with hyperthreading technology.
 645   static int counter = 0;
 646   int pid = os::current_process_id();
 647   alloca(((pid ^ counter++) & 7) * 128);
 648 
 649   thread->initialize_thread_current();
 650 
 651   OSThread* osthread = thread->osthread();
 652   Monitor* sync = osthread->startThread_lock();
 653 
 654   osthread->set_thread_id(os::current_thread_id());
 655 
 656   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 657     os::current_thread_id(), (uintx) pthread_self());
 658 
 659   if (UseNUMA) {
 660     int lgrp_id = os::numa_get_group_id();
 661     if (lgrp_id != -1) {
 662       thread->set_lgrp_id(lgrp_id);
 663     }
 664   }
 665   // initialize signal mask for this thread
 666   os::Linux::hotspot_sigmask(thread);
 667 
 668   // initialize floating point control register
 669   os::Linux::init_thread_fpu_state();
 670 
 671   // handshaking with parent thread
 672   {
 673     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 674 
 675     // notify parent thread
 676     osthread->set_state(INITIALIZED);
 677     sync->notify_all();
 678 
 679     // wait until os::start_thread()
 680     while (osthread->get_state() == INITIALIZED) {
 681       sync->wait(Mutex::_no_safepoint_check_flag);
 682     }
 683   }
 684 
 685   // call one more level start routine
 686   thread->run();
 687 
 688   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 689     os::current_thread_id(), (uintx) pthread_self());
 690 
 691   // If a thread has not deleted itself ("delete this") as part of its
 692   // termination sequence, we have to ensure thread-local-storage is
 693   // cleared before we actually terminate. No threads should ever be
 694   // deleted asynchronously with respect to their termination.
 695   if (Thread::current_or_null_safe() != NULL) {
 696     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 697     thread->clear_thread_current();
 698   }
 699 
 700   return 0;
 701 }
 702 
 703 bool os::create_thread(Thread* thread, ThreadType thr_type,
 704                        size_t req_stack_size) {
 705   assert(thread->osthread() == NULL, "caller responsible");
 706 
 707   // Allocate the OSThread object
 708   OSThread* osthread = new OSThread(NULL, NULL);
 709   if (osthread == NULL) {
 710     return false;
 711   }
 712 
 713   // set the correct thread state
 714   osthread->set_thread_type(thr_type);
 715 
 716   // Initial state is ALLOCATED but not INITIALIZED
 717   osthread->set_state(ALLOCATED);
 718 
 719   thread->set_osthread(osthread);
 720 
 721   // init thread attributes
 722   pthread_attr_t attr;
 723   pthread_attr_init(&attr);
 724   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 725 
 726   // Calculate stack size if it's not specified by caller.
 727   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 728   // In the Linux NPTL pthread implementation the guard size mechanism
 729   // is not implemented properly. The posix standard requires adding
 730   // the size of the guard pages to the stack size, instead Linux
 731   // takes the space out of 'stacksize'. Thus we adapt the requested
 732   // stack_size by the size of the guard pages to mimick proper
 733   // behaviour.
 734   stack_size = align_size_up(stack_size + os::Linux::default_guard_size(thr_type), vm_page_size());
 735   pthread_attr_setstacksize(&attr, stack_size);
 736 
 737   // glibc guard page
 738   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 739 
 740   ThreadState state;
 741 
 742   {
 743     pthread_t tid;
 744     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 745 
 746     char buf[64];
 747     if (ret == 0) {
 748       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 749         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 750     } else {
 751       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 752         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 753     }
 754 
 755     pthread_attr_destroy(&attr);
 756 
 757     if (ret != 0) {
 758       // Need to clean up stuff we've allocated so far
 759       thread->set_osthread(NULL);
 760       delete osthread;
 761       return false;
 762     }
 763 
 764     // Store pthread info into the OSThread
 765     osthread->set_pthread_id(tid);
 766 
 767     // Wait until child thread is either initialized or aborted
 768     {
 769       Monitor* sync_with_child = osthread->startThread_lock();
 770       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 771       while ((state = osthread->get_state()) == ALLOCATED) {
 772         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 773       }
 774     }
 775   }
 776 
 777   // Aborted due to thread limit being reached
 778   if (state == ZOMBIE) {
 779     thread->set_osthread(NULL);
 780     delete osthread;
 781     return false;
 782   }
 783 
 784   // The thread is returned suspended (in state INITIALIZED),
 785   // and is started higher up in the call chain
 786   assert(state == INITIALIZED, "race condition");
 787   return true;
 788 }
 789 
 790 /////////////////////////////////////////////////////////////////////////////
 791 // attach existing thread
 792 
 793 // bootstrap the main thread
 794 bool os::create_main_thread(JavaThread* thread) {
 795   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 796   return create_attached_thread(thread);
 797 }
 798 
 799 bool os::create_attached_thread(JavaThread* thread) {
 800 #ifdef ASSERT
 801   thread->verify_not_published();
 802 #endif
 803 
 804   // Allocate the OSThread object
 805   OSThread* osthread = new OSThread(NULL, NULL);
 806 
 807   if (osthread == NULL) {
 808     return false;
 809   }
 810 
 811   // Store pthread info into the OSThread
 812   osthread->set_thread_id(os::Linux::gettid());
 813   osthread->set_pthread_id(::pthread_self());
 814 
 815   // initialize floating point control register
 816   os::Linux::init_thread_fpu_state();
 817 
 818   // Initial thread state is RUNNABLE
 819   osthread->set_state(RUNNABLE);
 820 
 821   thread->set_osthread(osthread);
 822 
 823   if (UseNUMA) {
 824     int lgrp_id = os::numa_get_group_id();
 825     if (lgrp_id != -1) {
 826       thread->set_lgrp_id(lgrp_id);
 827     }
 828   }
 829 
 830   if (os::Linux::is_initial_thread()) {
 831     // If current thread is initial thread, its stack is mapped on demand,
 832     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 833     // the entire stack region to avoid SEGV in stack banging.
 834     // It is also useful to get around the heap-stack-gap problem on SuSE
 835     // kernel (see 4821821 for details). We first expand stack to the top
 836     // of yellow zone, then enable stack yellow zone (order is significant,
 837     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 838     // is no gap between the last two virtual memory regions.
 839 
 840     JavaThread *jt = (JavaThread *)thread;
 841     address addr = jt->stack_reserved_zone_base();
 842     assert(addr != NULL, "initialization problem?");
 843     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 844 
 845     osthread->set_expanding_stack();
 846     os::Linux::manually_expand_stack(jt, addr);
 847     osthread->clear_expanding_stack();
 848   }
 849 
 850   // initialize signal mask for this thread
 851   // and save the caller's signal mask
 852   os::Linux::hotspot_sigmask(thread);
 853 
 854   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 855     os::current_thread_id(), (uintx) pthread_self());
 856 
 857   return true;
 858 }
 859 
 860 void os::pd_start_thread(Thread* thread) {
 861   OSThread * osthread = thread->osthread();
 862   assert(osthread->get_state() != INITIALIZED, "just checking");
 863   Monitor* sync_with_child = osthread->startThread_lock();
 864   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 865   sync_with_child->notify();
 866 }
 867 
 868 // Free Linux resources related to the OSThread
 869 void os::free_thread(OSThread* osthread) {
 870   assert(osthread != NULL, "osthread not set");
 871 
 872   // We are told to free resources of the argument thread,
 873   // but we can only really operate on the current thread.
 874   assert(Thread::current()->osthread() == osthread,
 875          "os::free_thread but not current thread");
 876 
 877 #ifdef ASSERT
 878   sigset_t current;
 879   sigemptyset(&current);
 880   pthread_sigmask(SIG_SETMASK, NULL, &current);
 881   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 882 #endif
 883 
 884   // Restore caller's signal mask
 885   sigset_t sigmask = osthread->caller_sigmask();
 886   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 887 
 888   delete osthread;
 889 }
 890 
 891 //////////////////////////////////////////////////////////////////////////////
 892 // initial thread
 893 
 894 // Check if current thread is the initial thread, similar to Solaris thr_main.
 895 bool os::Linux::is_initial_thread(void) {
 896   char dummy;
 897   // If called before init complete, thread stack bottom will be null.
 898   // Can be called if fatal error occurs before initialization.
 899   if (initial_thread_stack_bottom() == NULL) return false;
 900   assert(initial_thread_stack_bottom() != NULL &&
 901          initial_thread_stack_size()   != 0,
 902          "os::init did not locate initial thread's stack region");
 903   if ((address)&dummy >= initial_thread_stack_bottom() &&
 904       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 905     return true;
 906   } else {
 907     return false;
 908   }
 909 }
 910 
 911 // Find the virtual memory area that contains addr
 912 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 913   FILE *fp = fopen("/proc/self/maps", "r");
 914   if (fp) {
 915     address low, high;
 916     while (!feof(fp)) {
 917       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 918         if (low <= addr && addr < high) {
 919           if (vma_low)  *vma_low  = low;
 920           if (vma_high) *vma_high = high;
 921           fclose(fp);
 922           return true;
 923         }
 924       }
 925       for (;;) {
 926         int ch = fgetc(fp);
 927         if (ch == EOF || ch == (int)'\n') break;
 928       }
 929     }
 930     fclose(fp);
 931   }
 932   return false;
 933 }
 934 
 935 // Locate initial thread stack. This special handling of initial thread stack
 936 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 937 // bogus value for initial thread.
 938 void os::Linux::capture_initial_stack(size_t max_size) {
 939   // stack size is the easy part, get it from RLIMIT_STACK
 940   struct rlimit rlim;
 941   getrlimit(RLIMIT_STACK, &rlim);
 942   size_t stack_size = rlim.rlim_cur;
 943 
 944   // 6308388: a bug in ld.so will relocate its own .data section to the
 945   //   lower end of primordial stack; reduce ulimit -s value a little bit
 946   //   so we won't install guard page on ld.so's data section.
 947   stack_size -= 2 * page_size();
 948 
 949   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
 950   //   7.1, in both cases we will get 2G in return value.
 951   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
 952   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
 953   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
 954   //   in case other parts in glibc still assumes 2M max stack size.
 955   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
 956   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
 957   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
 958     stack_size = 2 * K * K IA64_ONLY(*2);
 959   }
 960   // Try to figure out where the stack base (top) is. This is harder.
 961   //
 962   // When an application is started, glibc saves the initial stack pointer in
 963   // a global variable "__libc_stack_end", which is then used by system
 964   // libraries. __libc_stack_end should be pretty close to stack top. The
 965   // variable is available since the very early days. However, because it is
 966   // a private interface, it could disappear in the future.
 967   //
 968   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 969   // to __libc_stack_end, it is very close to stack top, but isn't the real
 970   // stack top. Note that /proc may not exist if VM is running as a chroot
 971   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 972   // /proc/<pid>/stat could change in the future (though unlikely).
 973   //
 974   // We try __libc_stack_end first. If that doesn't work, look for
 975   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 976   // as a hint, which should work well in most cases.
 977 
 978   uintptr_t stack_start;
 979 
 980   // try __libc_stack_end first
 981   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 982   if (p && *p) {
 983     stack_start = *p;
 984   } else {
 985     // see if we can get the start_stack field from /proc/self/stat
 986     FILE *fp;
 987     int pid;
 988     char state;
 989     int ppid;
 990     int pgrp;
 991     int session;
 992     int nr;
 993     int tpgrp;
 994     unsigned long flags;
 995     unsigned long minflt;
 996     unsigned long cminflt;
 997     unsigned long majflt;
 998     unsigned long cmajflt;
 999     unsigned long utime;
1000     unsigned long stime;
1001     long cutime;
1002     long cstime;
1003     long prio;
1004     long nice;
1005     long junk;
1006     long it_real;
1007     uintptr_t start;
1008     uintptr_t vsize;
1009     intptr_t rss;
1010     uintptr_t rsslim;
1011     uintptr_t scodes;
1012     uintptr_t ecode;
1013     int i;
1014 
1015     // Figure what the primordial thread stack base is. Code is inspired
1016     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1017     // followed by command name surrounded by parentheses, state, etc.
1018     char stat[2048];
1019     int statlen;
1020 
1021     fp = fopen("/proc/self/stat", "r");
1022     if (fp) {
1023       statlen = fread(stat, 1, 2047, fp);
1024       stat[statlen] = '\0';
1025       fclose(fp);
1026 
1027       // Skip pid and the command string. Note that we could be dealing with
1028       // weird command names, e.g. user could decide to rename java launcher
1029       // to "java 1.4.2 :)", then the stat file would look like
1030       //                1234 (java 1.4.2 :)) R ... ...
1031       // We don't really need to know the command string, just find the last
1032       // occurrence of ")" and then start parsing from there. See bug 4726580.
1033       char * s = strrchr(stat, ')');
1034 
1035       i = 0;
1036       if (s) {
1037         // Skip blank chars
1038         do { s++; } while (s && isspace(*s));
1039 
1040 #define _UFM UINTX_FORMAT
1041 #define _DFM INTX_FORMAT
1042 
1043         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1044         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1045         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1046                    &state,          // 3  %c
1047                    &ppid,           // 4  %d
1048                    &pgrp,           // 5  %d
1049                    &session,        // 6  %d
1050                    &nr,             // 7  %d
1051                    &tpgrp,          // 8  %d
1052                    &flags,          // 9  %lu
1053                    &minflt,         // 10 %lu
1054                    &cminflt,        // 11 %lu
1055                    &majflt,         // 12 %lu
1056                    &cmajflt,        // 13 %lu
1057                    &utime,          // 14 %lu
1058                    &stime,          // 15 %lu
1059                    &cutime,         // 16 %ld
1060                    &cstime,         // 17 %ld
1061                    &prio,           // 18 %ld
1062                    &nice,           // 19 %ld
1063                    &junk,           // 20 %ld
1064                    &it_real,        // 21 %ld
1065                    &start,          // 22 UINTX_FORMAT
1066                    &vsize,          // 23 UINTX_FORMAT
1067                    &rss,            // 24 INTX_FORMAT
1068                    &rsslim,         // 25 UINTX_FORMAT
1069                    &scodes,         // 26 UINTX_FORMAT
1070                    &ecode,          // 27 UINTX_FORMAT
1071                    &stack_start);   // 28 UINTX_FORMAT
1072       }
1073 
1074 #undef _UFM
1075 #undef _DFM
1076 
1077       if (i != 28 - 2) {
1078         assert(false, "Bad conversion from /proc/self/stat");
1079         // product mode - assume we are the initial thread, good luck in the
1080         // embedded case.
1081         warning("Can't detect initial thread stack location - bad conversion");
1082         stack_start = (uintptr_t) &rlim;
1083       }
1084     } else {
1085       // For some reason we can't open /proc/self/stat (for example, running on
1086       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1087       // most cases, so don't abort:
1088       warning("Can't detect initial thread stack location - no /proc/self/stat");
1089       stack_start = (uintptr_t) &rlim;
1090     }
1091   }
1092 
1093   // Now we have a pointer (stack_start) very close to the stack top, the
1094   // next thing to do is to figure out the exact location of stack top. We
1095   // can find out the virtual memory area that contains stack_start by
1096   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1097   // and its upper limit is the real stack top. (again, this would fail if
1098   // running inside chroot, because /proc may not exist.)
1099 
1100   uintptr_t stack_top;
1101   address low, high;
1102   if (find_vma((address)stack_start, &low, &high)) {
1103     // success, "high" is the true stack top. (ignore "low", because initial
1104     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1105     stack_top = (uintptr_t)high;
1106   } else {
1107     // failed, likely because /proc/self/maps does not exist
1108     warning("Can't detect initial thread stack location - find_vma failed");
1109     // best effort: stack_start is normally within a few pages below the real
1110     // stack top, use it as stack top, and reduce stack size so we won't put
1111     // guard page outside stack.
1112     stack_top = stack_start;
1113     stack_size -= 16 * page_size();
1114   }
1115 
1116   // stack_top could be partially down the page so align it
1117   stack_top = align_size_up(stack_top, page_size());
1118 
1119   if (max_size && stack_size > max_size) {
1120     _initial_thread_stack_size = max_size;
1121   } else {
1122     _initial_thread_stack_size = stack_size;
1123   }
1124 
1125   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1126   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1127 }
1128 
1129 ////////////////////////////////////////////////////////////////////////////////
1130 // time support
1131 
1132 // Time since start-up in seconds to a fine granularity.
1133 // Used by VMSelfDestructTimer and the MemProfiler.
1134 double os::elapsedTime() {
1135 
1136   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1137 }
1138 
1139 jlong os::elapsed_counter() {
1140   return javaTimeNanos() - initial_time_count;
1141 }
1142 
1143 jlong os::elapsed_frequency() {
1144   return NANOSECS_PER_SEC; // nanosecond resolution
1145 }
1146 
1147 bool os::supports_vtime() { return true; }
1148 bool os::enable_vtime()   { return false; }
1149 bool os::vtime_enabled()  { return false; }
1150 
1151 double os::elapsedVTime() {
1152   struct rusage usage;
1153   int retval = getrusage(RUSAGE_THREAD, &usage);
1154   if (retval == 0) {
1155     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1156   } else {
1157     // better than nothing, but not much
1158     return elapsedTime();
1159   }
1160 }
1161 
1162 jlong os::javaTimeMillis() {
1163   timeval time;
1164   int status = gettimeofday(&time, NULL);
1165   assert(status != -1, "linux error");
1166   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1167 }
1168 
1169 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1170   timeval time;
1171   int status = gettimeofday(&time, NULL);
1172   assert(status != -1, "linux error");
1173   seconds = jlong(time.tv_sec);
1174   nanos = jlong(time.tv_usec) * 1000;
1175 }
1176 
1177 
1178 #ifndef CLOCK_MONOTONIC
1179   #define CLOCK_MONOTONIC (1)
1180 #endif
1181 
1182 void os::Linux::clock_init() {
1183   // we do dlopen's in this particular order due to bug in linux
1184   // dynamical loader (see 6348968) leading to crash on exit
1185   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1186   if (handle == NULL) {
1187     handle = dlopen("librt.so", RTLD_LAZY);
1188   }
1189 
1190   if (handle) {
1191     int (*clock_getres_func)(clockid_t, struct timespec*) =
1192            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1193     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1194            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1195     if (clock_getres_func && clock_gettime_func) {
1196       // See if monotonic clock is supported by the kernel. Note that some
1197       // early implementations simply return kernel jiffies (updated every
1198       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1199       // for nano time (though the monotonic property is still nice to have).
1200       // It's fixed in newer kernels, however clock_getres() still returns
1201       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1202       // resolution for now. Hopefully as people move to new kernels, this
1203       // won't be a problem.
1204       struct timespec res;
1205       struct timespec tp;
1206       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1207           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1208         // yes, monotonic clock is supported
1209         _clock_gettime = clock_gettime_func;
1210         return;
1211       } else {
1212         // close librt if there is no monotonic clock
1213         dlclose(handle);
1214       }
1215     }
1216   }
1217   warning("No monotonic clock was available - timed services may " \
1218           "be adversely affected if the time-of-day clock changes");
1219 }
1220 
1221 #ifndef SYS_clock_getres
1222   #if defined(X86) || defined(PPC64) || defined(S390)
1223     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1224     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1225   #else
1226     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1227     #define sys_clock_getres(x,y)  -1
1228   #endif
1229 #else
1230   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1231 #endif
1232 
1233 void os::Linux::fast_thread_clock_init() {
1234   if (!UseLinuxPosixThreadCPUClocks) {
1235     return;
1236   }
1237   clockid_t clockid;
1238   struct timespec tp;
1239   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1240       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1241 
1242   // Switch to using fast clocks for thread cpu time if
1243   // the sys_clock_getres() returns 0 error code.
1244   // Note, that some kernels may support the current thread
1245   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1246   // returned by the pthread_getcpuclockid().
1247   // If the fast Posix clocks are supported then the sys_clock_getres()
1248   // must return at least tp.tv_sec == 0 which means a resolution
1249   // better than 1 sec. This is extra check for reliability.
1250 
1251   if (pthread_getcpuclockid_func &&
1252       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1253       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1254     _supports_fast_thread_cpu_time = true;
1255     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1256   }
1257 }
1258 
1259 jlong os::javaTimeNanos() {
1260   if (os::supports_monotonic_clock()) {
1261     struct timespec tp;
1262     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1263     assert(status == 0, "gettime error");
1264     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1265     return result;
1266   } else {
1267     timeval time;
1268     int status = gettimeofday(&time, NULL);
1269     assert(status != -1, "linux error");
1270     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1271     return 1000 * usecs;
1272   }
1273 }
1274 
1275 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1276   if (os::supports_monotonic_clock()) {
1277     info_ptr->max_value = ALL_64_BITS;
1278 
1279     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1280     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1281     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1282   } else {
1283     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1284     info_ptr->max_value = ALL_64_BITS;
1285 
1286     // gettimeofday is a real time clock so it skips
1287     info_ptr->may_skip_backward = true;
1288     info_ptr->may_skip_forward = true;
1289   }
1290 
1291   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1292 }
1293 
1294 // Return the real, user, and system times in seconds from an
1295 // arbitrary fixed point in the past.
1296 bool os::getTimesSecs(double* process_real_time,
1297                       double* process_user_time,
1298                       double* process_system_time) {
1299   struct tms ticks;
1300   clock_t real_ticks = times(&ticks);
1301 
1302   if (real_ticks == (clock_t) (-1)) {
1303     return false;
1304   } else {
1305     double ticks_per_second = (double) clock_tics_per_sec;
1306     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1307     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1308     *process_real_time = ((double) real_ticks) / ticks_per_second;
1309 
1310     return true;
1311   }
1312 }
1313 
1314 
1315 char * os::local_time_string(char *buf, size_t buflen) {
1316   struct tm t;
1317   time_t long_time;
1318   time(&long_time);
1319   localtime_r(&long_time, &t);
1320   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1321                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1322                t.tm_hour, t.tm_min, t.tm_sec);
1323   return buf;
1324 }
1325 
1326 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1327   return localtime_r(clock, res);
1328 }
1329 
1330 ////////////////////////////////////////////////////////////////////////////////
1331 // runtime exit support
1332 
1333 // Note: os::shutdown() might be called very early during initialization, or
1334 // called from signal handler. Before adding something to os::shutdown(), make
1335 // sure it is async-safe and can handle partially initialized VM.
1336 void os::shutdown() {
1337 
1338   // allow PerfMemory to attempt cleanup of any persistent resources
1339   perfMemory_exit();
1340 
1341   // needs to remove object in file system
1342   AttachListener::abort();
1343 
1344   // flush buffered output, finish log files
1345   ostream_abort();
1346 
1347   // Check for abort hook
1348   abort_hook_t abort_hook = Arguments::abort_hook();
1349   if (abort_hook != NULL) {
1350     abort_hook();
1351   }
1352 
1353 }
1354 
1355 // Note: os::abort() might be called very early during initialization, or
1356 // called from signal handler. Before adding something to os::abort(), make
1357 // sure it is async-safe and can handle partially initialized VM.
1358 void os::abort(bool dump_core, void* siginfo, const void* context) {
1359   os::shutdown();
1360   if (dump_core) {
1361 #ifndef PRODUCT
1362     fdStream out(defaultStream::output_fd());
1363     out.print_raw("Current thread is ");
1364     char buf[16];
1365     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1366     out.print_raw_cr(buf);
1367     out.print_raw_cr("Dumping core ...");
1368 #endif
1369     ::abort(); // dump core
1370   }
1371 
1372   ::exit(1);
1373 }
1374 
1375 // Die immediately, no exit hook, no abort hook, no cleanup.
1376 void os::die() {
1377   ::abort();
1378 }
1379 
1380 
1381 // This method is a copy of JDK's sysGetLastErrorString
1382 // from src/solaris/hpi/src/system_md.c
1383 
1384 size_t os::lasterror(char *buf, size_t len) {
1385   if (errno == 0)  return 0;
1386 
1387   const char *s = os::strerror(errno);
1388   size_t n = ::strlen(s);
1389   if (n >= len) {
1390     n = len - 1;
1391   }
1392   ::strncpy(buf, s, n);
1393   buf[n] = '\0';
1394   return n;
1395 }
1396 
1397 // thread_id is kernel thread id (similar to Solaris LWP id)
1398 intx os::current_thread_id() { return os::Linux::gettid(); }
1399 int os::current_process_id() {
1400   return ::getpid();
1401 }
1402 
1403 // DLL functions
1404 
1405 const char* os::dll_file_extension() { return ".so"; }
1406 
1407 // This must be hard coded because it's the system's temporary
1408 // directory not the java application's temp directory, ala java.io.tmpdir.
1409 const char* os::get_temp_directory() { return "/tmp"; }
1410 
1411 static bool file_exists(const char* filename) {
1412   struct stat statbuf;
1413   if (filename == NULL || strlen(filename) == 0) {
1414     return false;
1415   }
1416   return os::stat(filename, &statbuf) == 0;
1417 }
1418 
1419 bool os::dll_build_name(char* buffer, size_t buflen,
1420                         const char* pname, const char* fname) {
1421   bool retval = false;
1422   // Copied from libhpi
1423   const size_t pnamelen = pname ? strlen(pname) : 0;
1424 
1425   // Return error on buffer overflow.
1426   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1427     return retval;
1428   }
1429 
1430   if (pnamelen == 0) {
1431     snprintf(buffer, buflen, "lib%s.so", fname);
1432     retval = true;
1433   } else if (strchr(pname, *os::path_separator()) != NULL) {
1434     int n;
1435     char** pelements = split_path(pname, &n);
1436     if (pelements == NULL) {
1437       return false;
1438     }
1439     for (int i = 0; i < n; i++) {
1440       // Really shouldn't be NULL, but check can't hurt
1441       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1442         continue; // skip the empty path values
1443       }
1444       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1445       if (file_exists(buffer)) {
1446         retval = true;
1447         break;
1448       }
1449     }
1450     // release the storage
1451     for (int i = 0; i < n; i++) {
1452       if (pelements[i] != NULL) {
1453         FREE_C_HEAP_ARRAY(char, pelements[i]);
1454       }
1455     }
1456     if (pelements != NULL) {
1457       FREE_C_HEAP_ARRAY(char*, pelements);
1458     }
1459   } else {
1460     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1461     retval = true;
1462   }
1463   return retval;
1464 }
1465 
1466 // check if addr is inside libjvm.so
1467 bool os::address_is_in_vm(address addr) {
1468   static address libjvm_base_addr;
1469   Dl_info dlinfo;
1470 
1471   if (libjvm_base_addr == NULL) {
1472     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1473       libjvm_base_addr = (address)dlinfo.dli_fbase;
1474     }
1475     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1476   }
1477 
1478   if (dladdr((void *)addr, &dlinfo) != 0) {
1479     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1480   }
1481 
1482   return false;
1483 }
1484 
1485 bool os::dll_address_to_function_name(address addr, char *buf,
1486                                       int buflen, int *offset,
1487                                       bool demangle) {
1488   // buf is not optional, but offset is optional
1489   assert(buf != NULL, "sanity check");
1490 
1491   Dl_info dlinfo;
1492 
1493   if (dladdr((void*)addr, &dlinfo) != 0) {
1494     // see if we have a matching symbol
1495     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1496       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1497         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1498       }
1499       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1500       return true;
1501     }
1502     // no matching symbol so try for just file info
1503     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1504       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1505                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1506         return true;
1507       }
1508     }
1509   }
1510 
1511   buf[0] = '\0';
1512   if (offset != NULL) *offset = -1;
1513   return false;
1514 }
1515 
1516 struct _address_to_library_name {
1517   address addr;          // input : memory address
1518   size_t  buflen;        //         size of fname
1519   char*   fname;         // output: library name
1520   address base;          //         library base addr
1521 };
1522 
1523 static int address_to_library_name_callback(struct dl_phdr_info *info,
1524                                             size_t size, void *data) {
1525   int i;
1526   bool found = false;
1527   address libbase = NULL;
1528   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1529 
1530   // iterate through all loadable segments
1531   for (i = 0; i < info->dlpi_phnum; i++) {
1532     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1533     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1534       // base address of a library is the lowest address of its loaded
1535       // segments.
1536       if (libbase == NULL || libbase > segbase) {
1537         libbase = segbase;
1538       }
1539       // see if 'addr' is within current segment
1540       if (segbase <= d->addr &&
1541           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1542         found = true;
1543       }
1544     }
1545   }
1546 
1547   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1548   // so dll_address_to_library_name() can fall through to use dladdr() which
1549   // can figure out executable name from argv[0].
1550   if (found && info->dlpi_name && info->dlpi_name[0]) {
1551     d->base = libbase;
1552     if (d->fname) {
1553       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1554     }
1555     return 1;
1556   }
1557   return 0;
1558 }
1559 
1560 bool os::dll_address_to_library_name(address addr, char* buf,
1561                                      int buflen, int* offset) {
1562   // buf is not optional, but offset is optional
1563   assert(buf != NULL, "sanity check");
1564 
1565   Dl_info dlinfo;
1566   struct _address_to_library_name data;
1567 
1568   // There is a bug in old glibc dladdr() implementation that it could resolve
1569   // to wrong library name if the .so file has a base address != NULL. Here
1570   // we iterate through the program headers of all loaded libraries to find
1571   // out which library 'addr' really belongs to. This workaround can be
1572   // removed once the minimum requirement for glibc is moved to 2.3.x.
1573   data.addr = addr;
1574   data.fname = buf;
1575   data.buflen = buflen;
1576   data.base = NULL;
1577   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1578 
1579   if (rslt) {
1580     // buf already contains library name
1581     if (offset) *offset = addr - data.base;
1582     return true;
1583   }
1584   if (dladdr((void*)addr, &dlinfo) != 0) {
1585     if (dlinfo.dli_fname != NULL) {
1586       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1587     }
1588     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1589       *offset = addr - (address)dlinfo.dli_fbase;
1590     }
1591     return true;
1592   }
1593 
1594   buf[0] = '\0';
1595   if (offset) *offset = -1;
1596   return false;
1597 }
1598 
1599 // Loads .dll/.so and
1600 // in case of error it checks if .dll/.so was built for the
1601 // same architecture as Hotspot is running on
1602 
1603 
1604 // Remember the stack's state. The Linux dynamic linker will change
1605 // the stack to 'executable' at most once, so we must safepoint only once.
1606 bool os::Linux::_stack_is_executable = false;
1607 
1608 // VM operation that loads a library.  This is necessary if stack protection
1609 // of the Java stacks can be lost during loading the library.  If we
1610 // do not stop the Java threads, they can stack overflow before the stacks
1611 // are protected again.
1612 class VM_LinuxDllLoad: public VM_Operation {
1613  private:
1614   const char *_filename;
1615   char *_ebuf;
1616   int _ebuflen;
1617   void *_lib;
1618  public:
1619   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1620     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1621   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1622   void doit() {
1623     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1624     os::Linux::_stack_is_executable = true;
1625   }
1626   void* loaded_library() { return _lib; }
1627 };
1628 
1629 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1630   void * result = NULL;
1631   bool load_attempted = false;
1632 
1633   // Check whether the library to load might change execution rights
1634   // of the stack. If they are changed, the protection of the stack
1635   // guard pages will be lost. We need a safepoint to fix this.
1636   //
1637   // See Linux man page execstack(8) for more info.
1638   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1639     ElfFile ef(filename);
1640     if (!ef.specifies_noexecstack()) {
1641       if (!is_init_completed()) {
1642         os::Linux::_stack_is_executable = true;
1643         // This is OK - No Java threads have been created yet, and hence no
1644         // stack guard pages to fix.
1645         //
1646         // This should happen only when you are building JDK7 using a very
1647         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1648         //
1649         // Dynamic loader will make all stacks executable after
1650         // this function returns, and will not do that again.
1651         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1652       } else {
1653         warning("You have loaded library %s which might have disabled stack guard. "
1654                 "The VM will try to fix the stack guard now.\n"
1655                 "It's highly recommended that you fix the library with "
1656                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1657                 filename);
1658 
1659         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1660         JavaThread *jt = JavaThread::current();
1661         if (jt->thread_state() != _thread_in_native) {
1662           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1663           // that requires ExecStack. Cannot enter safe point. Let's give up.
1664           warning("Unable to fix stack guard. Giving up.");
1665         } else {
1666           if (!LoadExecStackDllInVMThread) {
1667             // This is for the case where the DLL has an static
1668             // constructor function that executes JNI code. We cannot
1669             // load such DLLs in the VMThread.
1670             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1671           }
1672 
1673           ThreadInVMfromNative tiv(jt);
1674           debug_only(VMNativeEntryWrapper vew;)
1675 
1676           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1677           VMThread::execute(&op);
1678           if (LoadExecStackDllInVMThread) {
1679             result = op.loaded_library();
1680           }
1681           load_attempted = true;
1682         }
1683       }
1684     }
1685   }
1686 
1687   if (!load_attempted) {
1688     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1689   }
1690 
1691   if (result != NULL) {
1692     // Successful loading
1693     return result;
1694   }
1695 
1696   Elf32_Ehdr elf_head;
1697   int diag_msg_max_length=ebuflen-strlen(ebuf);
1698   char* diag_msg_buf=ebuf+strlen(ebuf);
1699 
1700   if (diag_msg_max_length==0) {
1701     // No more space in ebuf for additional diagnostics message
1702     return NULL;
1703   }
1704 
1705 
1706   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1707 
1708   if (file_descriptor < 0) {
1709     // Can't open library, report dlerror() message
1710     return NULL;
1711   }
1712 
1713   bool failed_to_read_elf_head=
1714     (sizeof(elf_head)!=
1715      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1716 
1717   ::close(file_descriptor);
1718   if (failed_to_read_elf_head) {
1719     // file i/o error - report dlerror() msg
1720     return NULL;
1721   }
1722 
1723   typedef struct {
1724     Elf32_Half    code;         // Actual value as defined in elf.h
1725     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1726     unsigned char elf_class;    // 32 or 64 bit
1727     unsigned char endianess;    // MSB or LSB
1728     char*         name;         // String representation
1729   } arch_t;
1730 
1731 #ifndef EM_486
1732   #define EM_486          6               /* Intel 80486 */
1733 #endif
1734 #ifndef EM_AARCH64
1735   #define EM_AARCH64    183               /* ARM AARCH64 */
1736 #endif
1737 
1738   static const arch_t arch_array[]={
1739     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1740     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1741     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1742     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1743     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1744     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1745     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1746     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1747 #if defined(VM_LITTLE_ENDIAN)
1748     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1749 #else
1750     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1751 #endif
1752     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1753     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1754     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1755     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1756     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1757     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1758     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1759     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1760   };
1761 
1762 #if  (defined IA32)
1763   static  Elf32_Half running_arch_code=EM_386;
1764 #elif   (defined AMD64)
1765   static  Elf32_Half running_arch_code=EM_X86_64;
1766 #elif  (defined IA64)
1767   static  Elf32_Half running_arch_code=EM_IA_64;
1768 #elif  (defined __sparc) && (defined _LP64)
1769   static  Elf32_Half running_arch_code=EM_SPARCV9;
1770 #elif  (defined __sparc) && (!defined _LP64)
1771   static  Elf32_Half running_arch_code=EM_SPARC;
1772 #elif  (defined __powerpc64__)
1773   static  Elf32_Half running_arch_code=EM_PPC64;
1774 #elif  (defined __powerpc__)
1775   static  Elf32_Half running_arch_code=EM_PPC;
1776 #elif  (defined AARCH64)
1777   static  Elf32_Half running_arch_code=EM_AARCH64;
1778 #elif  (defined ARM)
1779   static  Elf32_Half running_arch_code=EM_ARM;
1780 #elif  (defined S390)
1781   static  Elf32_Half running_arch_code=EM_S390;
1782 #elif  (defined ALPHA)
1783   static  Elf32_Half running_arch_code=EM_ALPHA;
1784 #elif  (defined MIPSEL)
1785   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1786 #elif  (defined PARISC)
1787   static  Elf32_Half running_arch_code=EM_PARISC;
1788 #elif  (defined MIPS)
1789   static  Elf32_Half running_arch_code=EM_MIPS;
1790 #elif  (defined M68K)
1791   static  Elf32_Half running_arch_code=EM_68K;
1792 #else
1793     #error Method os::dll_load requires that one of following is defined:\
1794         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, __sparc
1795 #endif
1796 
1797   // Identify compatability class for VM's architecture and library's architecture
1798   // Obtain string descriptions for architectures
1799 
1800   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1801   int running_arch_index=-1;
1802 
1803   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1804     if (running_arch_code == arch_array[i].code) {
1805       running_arch_index    = i;
1806     }
1807     if (lib_arch.code == arch_array[i].code) {
1808       lib_arch.compat_class = arch_array[i].compat_class;
1809       lib_arch.name         = arch_array[i].name;
1810     }
1811   }
1812 
1813   assert(running_arch_index != -1,
1814          "Didn't find running architecture code (running_arch_code) in arch_array");
1815   if (running_arch_index == -1) {
1816     // Even though running architecture detection failed
1817     // we may still continue with reporting dlerror() message
1818     return NULL;
1819   }
1820 
1821   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1822     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1823     return NULL;
1824   }
1825 
1826 #ifndef S390
1827   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1828     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1829     return NULL;
1830   }
1831 #endif // !S390
1832 
1833   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1834     if (lib_arch.name!=NULL) {
1835       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1836                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1837                  lib_arch.name, arch_array[running_arch_index].name);
1838     } else {
1839       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1840                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1841                  lib_arch.code,
1842                  arch_array[running_arch_index].name);
1843     }
1844   }
1845 
1846   return NULL;
1847 }
1848 
1849 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1850                                 int ebuflen) {
1851   void * result = ::dlopen(filename, RTLD_LAZY);
1852   if (result == NULL) {
1853     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1854     ebuf[ebuflen-1] = '\0';
1855   }
1856   return result;
1857 }
1858 
1859 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1860                                        int ebuflen) {
1861   void * result = NULL;
1862   if (LoadExecStackDllInVMThread) {
1863     result = dlopen_helper(filename, ebuf, ebuflen);
1864   }
1865 
1866   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1867   // library that requires an executable stack, or which does not have this
1868   // stack attribute set, dlopen changes the stack attribute to executable. The
1869   // read protection of the guard pages gets lost.
1870   //
1871   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1872   // may have been queued at the same time.
1873 
1874   if (!_stack_is_executable) {
1875     JavaThread *jt = Threads::first();
1876 
1877     while (jt) {
1878       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1879           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1880         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1881           warning("Attempt to reguard stack yellow zone failed.");
1882         }
1883       }
1884       jt = jt->next();
1885     }
1886   }
1887 
1888   return result;
1889 }
1890 
1891 void* os::dll_lookup(void* handle, const char* name) {
1892   void* res = dlsym(handle, name);
1893   return res;
1894 }
1895 
1896 void* os::get_default_process_handle() {
1897   return (void*)::dlopen(NULL, RTLD_LAZY);
1898 }
1899 
1900 static bool _print_ascii_file(const char* filename, outputStream* st) {
1901   int fd = ::open(filename, O_RDONLY);
1902   if (fd == -1) {
1903     return false;
1904   }
1905 
1906   char buf[33];
1907   int bytes;
1908   buf[32] = '\0';
1909   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1910     st->print_raw(buf, bytes);
1911   }
1912 
1913   ::close(fd);
1914 
1915   return true;
1916 }
1917 
1918 void os::print_dll_info(outputStream *st) {
1919   st->print_cr("Dynamic libraries:");
1920 
1921   char fname[32];
1922   pid_t pid = os::Linux::gettid();
1923 
1924   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1925 
1926   if (!_print_ascii_file(fname, st)) {
1927     st->print("Can not get library information for pid = %d\n", pid);
1928   }
1929 }
1930 
1931 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1932   FILE *procmapsFile = NULL;
1933 
1934   // Open the procfs maps file for the current process
1935   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1936     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1937     char line[PATH_MAX + 100];
1938 
1939     // Read line by line from 'file'
1940     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1941       u8 base, top, offset, inode;
1942       char permissions[5];
1943       char device[6];
1944       char name[PATH_MAX + 1];
1945 
1946       // Parse fields from line
1947       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1948              &base, &top, permissions, &offset, device, &inode, name);
1949 
1950       // Filter by device id '00:00' so that we only get file system mapped files.
1951       if (strcmp(device, "00:00") != 0) {
1952 
1953         // Call callback with the fields of interest
1954         if(callback(name, (address)base, (address)top, param)) {
1955           // Oops abort, callback aborted
1956           fclose(procmapsFile);
1957           return 1;
1958         }
1959       }
1960     }
1961     fclose(procmapsFile);
1962   }
1963   return 0;
1964 }
1965 
1966 void os::print_os_info_brief(outputStream* st) {
1967   os::Linux::print_distro_info(st);
1968 
1969   os::Posix::print_uname_info(st);
1970 
1971   os::Linux::print_libversion_info(st);
1972 
1973 }
1974 
1975 void os::print_os_info(outputStream* st) {
1976   st->print("OS:");
1977 
1978   os::Linux::print_distro_info(st);
1979 
1980   os::Posix::print_uname_info(st);
1981 
1982   // Print warning if unsafe chroot environment detected
1983   if (unsafe_chroot_detected) {
1984     st->print("WARNING!! ");
1985     st->print_cr("%s", unstable_chroot_error);
1986   }
1987 
1988   os::Linux::print_libversion_info(st);
1989 
1990   os::Posix::print_rlimit_info(st);
1991 
1992   os::Posix::print_load_average(st);
1993 
1994   os::Linux::print_full_memory_info(st);
1995 }
1996 
1997 // Try to identify popular distros.
1998 // Most Linux distributions have a /etc/XXX-release file, which contains
1999 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2000 // file that also contains the OS version string. Some have more than one
2001 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2002 // /etc/redhat-release.), so the order is important.
2003 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2004 // their own specific XXX-release file as well as a redhat-release file.
2005 // Because of this the XXX-release file needs to be searched for before the
2006 // redhat-release file.
2007 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2008 // search for redhat-release / SuSE-release needs to be before lsb-release.
2009 // Since the lsb-release file is the new standard it needs to be searched
2010 // before the older style release files.
2011 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2012 // next to last resort.  The os-release file is a new standard that contains
2013 // distribution information and the system-release file seems to be an old
2014 // standard that has been replaced by the lsb-release and os-release files.
2015 // Searching for the debian_version file is the last resort.  It contains
2016 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2017 // "Debian " is printed before the contents of the debian_version file.
2018 
2019 const char* distro_files[] = {
2020   "/etc/oracle-release",
2021   "/etc/mandriva-release",
2022   "/etc/mandrake-release",
2023   "/etc/sun-release",
2024   "/etc/redhat-release",
2025   "/etc/SuSE-release",
2026   "/etc/lsb-release",
2027   "/etc/turbolinux-release",
2028   "/etc/gentoo-release",
2029   "/etc/ltib-release",
2030   "/etc/angstrom-version",
2031   "/etc/system-release",
2032   "/etc/os-release",
2033   NULL };
2034 
2035 void os::Linux::print_distro_info(outputStream* st) {
2036   for (int i = 0;; i++) {
2037     const char* file = distro_files[i];
2038     if (file == NULL) {
2039       break;  // done
2040     }
2041     // If file prints, we found it.
2042     if (_print_ascii_file(file, st)) {
2043       return;
2044     }
2045   }
2046 
2047   if (file_exists("/etc/debian_version")) {
2048     st->print("Debian ");
2049     _print_ascii_file("/etc/debian_version", st);
2050   } else {
2051     st->print("Linux");
2052   }
2053   st->cr();
2054 }
2055 
2056 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2057   char buf[256];
2058   while (fgets(buf, sizeof(buf), fp)) {
2059     // Edit out extra stuff in expected format
2060     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2061       char* ptr = strstr(buf, "\"");  // the name is in quotes
2062       if (ptr != NULL) {
2063         ptr++; // go beyond first quote
2064         char* nl = strchr(ptr, '\"');
2065         if (nl != NULL) *nl = '\0';
2066         strncpy(distro, ptr, length);
2067       } else {
2068         ptr = strstr(buf, "=");
2069         ptr++; // go beyond equals then
2070         char* nl = strchr(ptr, '\n');
2071         if (nl != NULL) *nl = '\0';
2072         strncpy(distro, ptr, length);
2073       }
2074       return;
2075     } else if (get_first_line) {
2076       char* nl = strchr(buf, '\n');
2077       if (nl != NULL) *nl = '\0';
2078       strncpy(distro, buf, length);
2079       return;
2080     }
2081   }
2082   // print last line and close
2083   char* nl = strchr(buf, '\n');
2084   if (nl != NULL) *nl = '\0';
2085   strncpy(distro, buf, length);
2086 }
2087 
2088 static void parse_os_info(char* distro, size_t length, const char* file) {
2089   FILE* fp = fopen(file, "r");
2090   if (fp != NULL) {
2091     // if suse format, print out first line
2092     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2093     parse_os_info_helper(fp, distro, length, get_first_line);
2094     fclose(fp);
2095   }
2096 }
2097 
2098 void os::get_summary_os_info(char* buf, size_t buflen) {
2099   for (int i = 0;; i++) {
2100     const char* file = distro_files[i];
2101     if (file == NULL) {
2102       break; // ran out of distro_files
2103     }
2104     if (file_exists(file)) {
2105       parse_os_info(buf, buflen, file);
2106       return;
2107     }
2108   }
2109   // special case for debian
2110   if (file_exists("/etc/debian_version")) {
2111     strncpy(buf, "Debian ", buflen);
2112     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2113   } else {
2114     strncpy(buf, "Linux", buflen);
2115   }
2116 }
2117 
2118 void os::Linux::print_libversion_info(outputStream* st) {
2119   // libc, pthread
2120   st->print("libc:");
2121   st->print("%s ", os::Linux::glibc_version());
2122   st->print("%s ", os::Linux::libpthread_version());
2123   st->cr();
2124 }
2125 
2126 void os::Linux::print_full_memory_info(outputStream* st) {
2127   st->print("\n/proc/meminfo:\n");
2128   _print_ascii_file("/proc/meminfo", st);
2129   st->cr();
2130 }
2131 
2132 void os::print_memory_info(outputStream* st) {
2133 
2134   st->print("Memory:");
2135   st->print(" %dk page", os::vm_page_size()>>10);
2136 
2137   // values in struct sysinfo are "unsigned long"
2138   struct sysinfo si;
2139   sysinfo(&si);
2140 
2141   st->print(", physical " UINT64_FORMAT "k",
2142             os::physical_memory() >> 10);
2143   st->print("(" UINT64_FORMAT "k free)",
2144             os::available_memory() >> 10);
2145   st->print(", swap " UINT64_FORMAT "k",
2146             ((jlong)si.totalswap * si.mem_unit) >> 10);
2147   st->print("(" UINT64_FORMAT "k free)",
2148             ((jlong)si.freeswap * si.mem_unit) >> 10);
2149   st->cr();
2150 }
2151 
2152 // Print the first "model name" line and the first "flags" line
2153 // that we find and nothing more. We assume "model name" comes
2154 // before "flags" so if we find a second "model name", then the
2155 // "flags" field is considered missing.
2156 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2157 #if defined(IA32) || defined(AMD64)
2158   // Other platforms have less repetitive cpuinfo files
2159   FILE *fp = fopen("/proc/cpuinfo", "r");
2160   if (fp) {
2161     while (!feof(fp)) {
2162       if (fgets(buf, buflen, fp)) {
2163         // Assume model name comes before flags
2164         bool model_name_printed = false;
2165         if (strstr(buf, "model name") != NULL) {
2166           if (!model_name_printed) {
2167             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2168             st->print_raw(buf);
2169             model_name_printed = true;
2170           } else {
2171             // model name printed but not flags?  Odd, just return
2172             fclose(fp);
2173             return true;
2174           }
2175         }
2176         // print the flags line too
2177         if (strstr(buf, "flags") != NULL) {
2178           st->print_raw(buf);
2179           fclose(fp);
2180           return true;
2181         }
2182       }
2183     }
2184     fclose(fp);
2185   }
2186 #endif // x86 platforms
2187   return false;
2188 }
2189 
2190 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2191   // Only print the model name if the platform provides this as a summary
2192   if (!print_model_name_and_flags(st, buf, buflen)) {
2193     st->print("\n/proc/cpuinfo:\n");
2194     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2195       st->print_cr("  <Not Available>");
2196     }
2197   }
2198 }
2199 
2200 #if defined(AMD64) || defined(IA32) || defined(X32)
2201 const char* search_string = "model name";
2202 #elif defined(PPC64)
2203 const char* search_string = "cpu";
2204 #elif defined(S390)
2205 const char* search_string = "processor";
2206 #elif defined(SPARC)
2207 const char* search_string = "cpu";
2208 #else
2209 const char* search_string = "Processor";
2210 #endif
2211 
2212 // Parses the cpuinfo file for string representing the model name.
2213 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2214   FILE* fp = fopen("/proc/cpuinfo", "r");
2215   if (fp != NULL) {
2216     while (!feof(fp)) {
2217       char buf[256];
2218       if (fgets(buf, sizeof(buf), fp)) {
2219         char* start = strstr(buf, search_string);
2220         if (start != NULL) {
2221           char *ptr = start + strlen(search_string);
2222           char *end = buf + strlen(buf);
2223           while (ptr != end) {
2224              // skip whitespace and colon for the rest of the name.
2225              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2226                break;
2227              }
2228              ptr++;
2229           }
2230           if (ptr != end) {
2231             // reasonable string, get rid of newline and keep the rest
2232             char* nl = strchr(buf, '\n');
2233             if (nl != NULL) *nl = '\0';
2234             strncpy(cpuinfo, ptr, length);
2235             fclose(fp);
2236             return;
2237           }
2238         }
2239       }
2240     }
2241     fclose(fp);
2242   }
2243   // cpuinfo not found or parsing failed, just print generic string.  The entire
2244   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2245 #if   defined(AARCH64)
2246   strncpy(cpuinfo, "AArch64", length);
2247 #elif defined(AMD64)
2248   strncpy(cpuinfo, "x86_64", length);
2249 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2250   strncpy(cpuinfo, "ARM", length);
2251 #elif defined(IA32)
2252   strncpy(cpuinfo, "x86_32", length);
2253 #elif defined(IA64)
2254   strncpy(cpuinfo, "IA64", length);
2255 #elif defined(PPC)
2256   strncpy(cpuinfo, "PPC64", length);
2257 #elif defined(S390)
2258   strncpy(cpuinfo, "S390", length);
2259 #elif defined(SPARC)
2260   strncpy(cpuinfo, "sparcv9", length);
2261 #elif defined(ZERO_LIBARCH)
2262   strncpy(cpuinfo, ZERO_LIBARCH, length);
2263 #else
2264   strncpy(cpuinfo, "unknown", length);
2265 #endif
2266 }
2267 
2268 static void print_signal_handler(outputStream* st, int sig,
2269                                  char* buf, size_t buflen);
2270 
2271 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2272   st->print_cr("Signal Handlers:");
2273   print_signal_handler(st, SIGSEGV, buf, buflen);
2274   print_signal_handler(st, SIGBUS , buf, buflen);
2275   print_signal_handler(st, SIGFPE , buf, buflen);
2276   print_signal_handler(st, SIGPIPE, buf, buflen);
2277   print_signal_handler(st, SIGXFSZ, buf, buflen);
2278   print_signal_handler(st, SIGILL , buf, buflen);
2279   print_signal_handler(st, SR_signum, buf, buflen);
2280   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2281   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2282   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2283   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2284 #if defined(PPC64)
2285   print_signal_handler(st, SIGTRAP, buf, buflen);
2286 #endif
2287 }
2288 
2289 static char saved_jvm_path[MAXPATHLEN] = {0};
2290 
2291 // Find the full path to the current module, libjvm.so
2292 void os::jvm_path(char *buf, jint buflen) {
2293   // Error checking.
2294   if (buflen < MAXPATHLEN) {
2295     assert(false, "must use a large-enough buffer");
2296     buf[0] = '\0';
2297     return;
2298   }
2299   // Lazy resolve the path to current module.
2300   if (saved_jvm_path[0] != 0) {
2301     strcpy(buf, saved_jvm_path);
2302     return;
2303   }
2304 
2305   char dli_fname[MAXPATHLEN];
2306   bool ret = dll_address_to_library_name(
2307                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2308                                          dli_fname, sizeof(dli_fname), NULL);
2309   assert(ret, "cannot locate libjvm");
2310   char *rp = NULL;
2311   if (ret && dli_fname[0] != '\0') {
2312     rp = realpath(dli_fname, buf);
2313   }
2314   if (rp == NULL) {
2315     return;
2316   }
2317 
2318   if (Arguments::sun_java_launcher_is_altjvm()) {
2319     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2320     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2321     // If "/jre/lib/" appears at the right place in the string, then
2322     // assume we are installed in a JDK and we're done. Otherwise, check
2323     // for a JAVA_HOME environment variable and fix up the path so it
2324     // looks like libjvm.so is installed there (append a fake suffix
2325     // hotspot/libjvm.so).
2326     const char *p = buf + strlen(buf) - 1;
2327     for (int count = 0; p > buf && count < 5; ++count) {
2328       for (--p; p > buf && *p != '/'; --p)
2329         /* empty */ ;
2330     }
2331 
2332     if (strncmp(p, "/jre/lib/", 9) != 0) {
2333       // Look for JAVA_HOME in the environment.
2334       char* java_home_var = ::getenv("JAVA_HOME");
2335       if (java_home_var != NULL && java_home_var[0] != 0) {
2336         char* jrelib_p;
2337         int len;
2338 
2339         // Check the current module name "libjvm.so".
2340         p = strrchr(buf, '/');
2341         if (p == NULL) {
2342           return;
2343         }
2344         assert(strstr(p, "/libjvm") == p, "invalid library name");
2345 
2346         rp = realpath(java_home_var, buf);
2347         if (rp == NULL) {
2348           return;
2349         }
2350 
2351         // determine if this is a legacy image or modules image
2352         // modules image doesn't have "jre" subdirectory
2353         len = strlen(buf);
2354         assert(len < buflen, "Ran out of buffer room");
2355         jrelib_p = buf + len;
2356         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2357         if (0 != access(buf, F_OK)) {
2358           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2359         }
2360 
2361         if (0 == access(buf, F_OK)) {
2362           // Use current module name "libjvm.so"
2363           len = strlen(buf);
2364           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2365         } else {
2366           // Go back to path of .so
2367           rp = realpath(dli_fname, buf);
2368           if (rp == NULL) {
2369             return;
2370           }
2371         }
2372       }
2373     }
2374   }
2375 
2376   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2377   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2378 }
2379 
2380 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2381   // no prefix required, not even "_"
2382 }
2383 
2384 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2385   // no suffix required
2386 }
2387 
2388 ////////////////////////////////////////////////////////////////////////////////
2389 // sun.misc.Signal support
2390 
2391 static volatile jint sigint_count = 0;
2392 
2393 static void UserHandler(int sig, void *siginfo, void *context) {
2394   // 4511530 - sem_post is serialized and handled by the manager thread. When
2395   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2396   // don't want to flood the manager thread with sem_post requests.
2397   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2398     return;
2399   }
2400 
2401   // Ctrl-C is pressed during error reporting, likely because the error
2402   // handler fails to abort. Let VM die immediately.
2403   if (sig == SIGINT && is_error_reported()) {
2404     os::die();
2405   }
2406 
2407   os::signal_notify(sig);
2408 }
2409 
2410 void* os::user_handler() {
2411   return CAST_FROM_FN_PTR(void*, UserHandler);
2412 }
2413 
2414 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2415   struct timespec ts;
2416   // Semaphore's are always associated with CLOCK_REALTIME
2417   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2418   // see unpackTime for discussion on overflow checking
2419   if (sec >= MAX_SECS) {
2420     ts.tv_sec += MAX_SECS;
2421     ts.tv_nsec = 0;
2422   } else {
2423     ts.tv_sec += sec;
2424     ts.tv_nsec += nsec;
2425     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2426       ts.tv_nsec -= NANOSECS_PER_SEC;
2427       ++ts.tv_sec; // note: this must be <= max_secs
2428     }
2429   }
2430 
2431   return ts;
2432 }
2433 
2434 extern "C" {
2435   typedef void (*sa_handler_t)(int);
2436   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2437 }
2438 
2439 void* os::signal(int signal_number, void* handler) {
2440   struct sigaction sigAct, oldSigAct;
2441 
2442   sigfillset(&(sigAct.sa_mask));
2443   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2444   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2445 
2446   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2447     // -1 means registration failed
2448     return (void *)-1;
2449   }
2450 
2451   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2452 }
2453 
2454 void os::signal_raise(int signal_number) {
2455   ::raise(signal_number);
2456 }
2457 
2458 // The following code is moved from os.cpp for making this
2459 // code platform specific, which it is by its very nature.
2460 
2461 // Will be modified when max signal is changed to be dynamic
2462 int os::sigexitnum_pd() {
2463   return NSIG;
2464 }
2465 
2466 // a counter for each possible signal value
2467 static volatile jint pending_signals[NSIG+1] = { 0 };
2468 
2469 // Linux(POSIX) specific hand shaking semaphore.
2470 static sem_t sig_sem;
2471 static PosixSemaphore sr_semaphore;
2472 
2473 void os::signal_init_pd() {
2474   // Initialize signal structures
2475   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2476 
2477   // Initialize signal semaphore
2478   ::sem_init(&sig_sem, 0, 0);
2479 }
2480 
2481 void os::signal_notify(int sig) {
2482   Atomic::inc(&pending_signals[sig]);
2483   ::sem_post(&sig_sem);
2484 }
2485 
2486 static int check_pending_signals(bool wait) {
2487   Atomic::store(0, &sigint_count);
2488   for (;;) {
2489     for (int i = 0; i < NSIG + 1; i++) {
2490       jint n = pending_signals[i];
2491       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2492         return i;
2493       }
2494     }
2495     if (!wait) {
2496       return -1;
2497     }
2498     JavaThread *thread = JavaThread::current();
2499     ThreadBlockInVM tbivm(thread);
2500 
2501     bool threadIsSuspended;
2502     do {
2503       thread->set_suspend_equivalent();
2504       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2505       ::sem_wait(&sig_sem);
2506 
2507       // were we externally suspended while we were waiting?
2508       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2509       if (threadIsSuspended) {
2510         // The semaphore has been incremented, but while we were waiting
2511         // another thread suspended us. We don't want to continue running
2512         // while suspended because that would surprise the thread that
2513         // suspended us.
2514         ::sem_post(&sig_sem);
2515 
2516         thread->java_suspend_self();
2517       }
2518     } while (threadIsSuspended);
2519   }
2520 }
2521 
2522 int os::signal_lookup() {
2523   return check_pending_signals(false);
2524 }
2525 
2526 int os::signal_wait() {
2527   return check_pending_signals(true);
2528 }
2529 
2530 ////////////////////////////////////////////////////////////////////////////////
2531 // Virtual Memory
2532 
2533 int os::vm_page_size() {
2534   // Seems redundant as all get out
2535   assert(os::Linux::page_size() != -1, "must call os::init");
2536   return os::Linux::page_size();
2537 }
2538 
2539 // Solaris allocates memory by pages.
2540 int os::vm_allocation_granularity() {
2541   assert(os::Linux::page_size() != -1, "must call os::init");
2542   return os::Linux::page_size();
2543 }
2544 
2545 // Rationale behind this function:
2546 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2547 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2548 //  samples for JITted code. Here we create private executable mapping over the code cache
2549 //  and then we can use standard (well, almost, as mapping can change) way to provide
2550 //  info for the reporting script by storing timestamp and location of symbol
2551 void linux_wrap_code(char* base, size_t size) {
2552   static volatile jint cnt = 0;
2553 
2554   if (!UseOprofile) {
2555     return;
2556   }
2557 
2558   char buf[PATH_MAX+1];
2559   int num = Atomic::add(1, &cnt);
2560 
2561   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2562            os::get_temp_directory(), os::current_process_id(), num);
2563   unlink(buf);
2564 
2565   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2566 
2567   if (fd != -1) {
2568     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2569     if (rv != (off_t)-1) {
2570       if (::write(fd, "", 1) == 1) {
2571         mmap(base, size,
2572              PROT_READ|PROT_WRITE|PROT_EXEC,
2573              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2574       }
2575     }
2576     ::close(fd);
2577     unlink(buf);
2578   }
2579 }
2580 
2581 static bool recoverable_mmap_error(int err) {
2582   // See if the error is one we can let the caller handle. This
2583   // list of errno values comes from JBS-6843484. I can't find a
2584   // Linux man page that documents this specific set of errno
2585   // values so while this list currently matches Solaris, it may
2586   // change as we gain experience with this failure mode.
2587   switch (err) {
2588   case EBADF:
2589   case EINVAL:
2590   case ENOTSUP:
2591     // let the caller deal with these errors
2592     return true;
2593 
2594   default:
2595     // Any remaining errors on this OS can cause our reserved mapping
2596     // to be lost. That can cause confusion where different data
2597     // structures think they have the same memory mapped. The worst
2598     // scenario is if both the VM and a library think they have the
2599     // same memory mapped.
2600     return false;
2601   }
2602 }
2603 
2604 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2605                                     int err) {
2606   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2607           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2608           os::strerror(err), err);
2609 }
2610 
2611 static void warn_fail_commit_memory(char* addr, size_t size,
2612                                     size_t alignment_hint, bool exec,
2613                                     int err) {
2614   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2615           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2616           alignment_hint, exec, os::strerror(err), err);
2617 }
2618 
2619 // NOTE: Linux kernel does not really reserve the pages for us.
2620 //       All it does is to check if there are enough free pages
2621 //       left at the time of mmap(). This could be a potential
2622 //       problem.
2623 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2624   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2625   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2626                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2627   if (res != (uintptr_t) MAP_FAILED) {
2628     if (UseNUMAInterleaving) {
2629       numa_make_global(addr, size);
2630     }
2631     return 0;
2632   }
2633 
2634   int err = errno;  // save errno from mmap() call above
2635 
2636   if (!recoverable_mmap_error(err)) {
2637     warn_fail_commit_memory(addr, size, exec, err);
2638     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2639   }
2640 
2641   return err;
2642 }
2643 
2644 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2645   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2646 }
2647 
2648 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2649                                   const char* mesg) {
2650   assert(mesg != NULL, "mesg must be specified");
2651   int err = os::Linux::commit_memory_impl(addr, size, exec);
2652   if (err != 0) {
2653     // the caller wants all commit errors to exit with the specified mesg:
2654     warn_fail_commit_memory(addr, size, exec, err);
2655     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2656   }
2657 }
2658 
2659 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2660 #ifndef MAP_HUGETLB
2661   #define MAP_HUGETLB 0x40000
2662 #endif
2663 
2664 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2665 #ifndef MADV_HUGEPAGE
2666   #define MADV_HUGEPAGE 14
2667 #endif
2668 
2669 int os::Linux::commit_memory_impl(char* addr, size_t size,
2670                                   size_t alignment_hint, bool exec) {
2671   int err = os::Linux::commit_memory_impl(addr, size, exec);
2672   if (err == 0) {
2673     realign_memory(addr, size, alignment_hint);
2674   }
2675   return err;
2676 }
2677 
2678 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2679                           bool exec) {
2680   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2681 }
2682 
2683 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2684                                   size_t alignment_hint, bool exec,
2685                                   const char* mesg) {
2686   assert(mesg != NULL, "mesg must be specified");
2687   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2688   if (err != 0) {
2689     // the caller wants all commit errors to exit with the specified mesg:
2690     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2691     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2692   }
2693 }
2694 
2695 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2696   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2697     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2698     // be supported or the memory may already be backed by huge pages.
2699     ::madvise(addr, bytes, MADV_HUGEPAGE);
2700   }
2701 }
2702 
2703 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2704   // This method works by doing an mmap over an existing mmaping and effectively discarding
2705   // the existing pages. However it won't work for SHM-based large pages that cannot be
2706   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2707   // small pages on top of the SHM segment. This method always works for small pages, so we
2708   // allow that in any case.
2709   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2710     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2711   }
2712 }
2713 
2714 void os::numa_make_global(char *addr, size_t bytes) {
2715   Linux::numa_interleave_memory(addr, bytes);
2716 }
2717 
2718 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2719 // bind policy to MPOL_PREFERRED for the current thread.
2720 #define USE_MPOL_PREFERRED 0
2721 
2722 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2723   // To make NUMA and large pages more robust when both enabled, we need to ease
2724   // the requirements on where the memory should be allocated. MPOL_BIND is the
2725   // default policy and it will force memory to be allocated on the specified
2726   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2727   // the specified node, but will not force it. Using this policy will prevent
2728   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2729   // free large pages.
2730   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2731   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2732 }
2733 
2734 bool os::numa_topology_changed() { return false; }
2735 
2736 size_t os::numa_get_groups_num() {
2737   int max_node = Linux::numa_max_node();
2738   return max_node > 0 ? max_node + 1 : 1;
2739 }
2740 
2741 int os::numa_get_group_id() {
2742   int cpu_id = Linux::sched_getcpu();
2743   if (cpu_id != -1) {
2744     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2745     if (lgrp_id != -1) {
2746       return lgrp_id;
2747     }
2748   }
2749   return 0;
2750 }
2751 
2752 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2753   for (size_t i = 0; i < size; i++) {
2754     ids[i] = i;
2755   }
2756   return size;
2757 }
2758 
2759 bool os::get_page_info(char *start, page_info* info) {
2760   return false;
2761 }
2762 
2763 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2764                      page_info* page_found) {
2765   return end;
2766 }
2767 
2768 
2769 int os::Linux::sched_getcpu_syscall(void) {
2770   unsigned int cpu = 0;
2771   int retval = -1;
2772 
2773 #if defined(IA32)
2774   #ifndef SYS_getcpu
2775     #define SYS_getcpu 318
2776   #endif
2777   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2778 #elif defined(AMD64)
2779 // Unfortunately we have to bring all these macros here from vsyscall.h
2780 // to be able to compile on old linuxes.
2781   #define __NR_vgetcpu 2
2782   #define VSYSCALL_START (-10UL << 20)
2783   #define VSYSCALL_SIZE 1024
2784   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2785   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2786   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2787   retval = vgetcpu(&cpu, NULL, NULL);
2788 #endif
2789 
2790   return (retval == -1) ? retval : cpu;
2791 }
2792 
2793 // Something to do with the numa-aware allocator needs these symbols
2794 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2795 extern "C" JNIEXPORT void numa_error(char *where) { }
2796 
2797 
2798 // If we are running with libnuma version > 2, then we should
2799 // be trying to use symbols with versions 1.1
2800 // If we are running with earlier version, which did not have symbol versions,
2801 // we should use the base version.
2802 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2803   void *f = dlvsym(handle, name, "libnuma_1.1");
2804   if (f == NULL) {
2805     f = dlsym(handle, name);
2806   }
2807   return f;
2808 }
2809 
2810 bool os::Linux::libnuma_init() {
2811   // sched_getcpu() should be in libc.
2812   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2813                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2814 
2815   // If it's not, try a direct syscall.
2816   if (sched_getcpu() == -1) {
2817     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2818                                     (void*)&sched_getcpu_syscall));
2819   }
2820 
2821   if (sched_getcpu() != -1) { // Does it work?
2822     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2823     if (handle != NULL) {
2824       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2825                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2826       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2827                                        libnuma_dlsym(handle, "numa_max_node")));
2828       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2829                                         libnuma_dlsym(handle, "numa_available")));
2830       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2831                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2832       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2833                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2834       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2835                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2836 
2837 
2838       if (numa_available() != -1) {
2839         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2840         // Create a cpu -> node mapping
2841         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2842         rebuild_cpu_to_node_map();
2843         return true;
2844       }
2845     }
2846   }
2847   return false;
2848 }
2849 
2850 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2851   // Creating guard page is very expensive. Java thread has HotSpot
2852   // guard pages, only enable glibc guard page for non-Java threads.
2853   // (Remember: compiler thread is a Java thread, too!)
2854   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2855 }
2856 
2857 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2858 // The table is later used in get_node_by_cpu().
2859 void os::Linux::rebuild_cpu_to_node_map() {
2860   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2861                               // in libnuma (possible values are starting from 16,
2862                               // and continuing up with every other power of 2, but less
2863                               // than the maximum number of CPUs supported by kernel), and
2864                               // is a subject to change (in libnuma version 2 the requirements
2865                               // are more reasonable) we'll just hardcode the number they use
2866                               // in the library.
2867   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2868 
2869   size_t cpu_num = processor_count();
2870   size_t cpu_map_size = NCPUS / BitsPerCLong;
2871   size_t cpu_map_valid_size =
2872     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2873 
2874   cpu_to_node()->clear();
2875   cpu_to_node()->at_grow(cpu_num - 1);
2876   size_t node_num = numa_get_groups_num();
2877 
2878   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2879   for (size_t i = 0; i < node_num; i++) {
2880     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2881       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2882         if (cpu_map[j] != 0) {
2883           for (size_t k = 0; k < BitsPerCLong; k++) {
2884             if (cpu_map[j] & (1UL << k)) {
2885               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2886             }
2887           }
2888         }
2889       }
2890     }
2891   }
2892   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2893 }
2894 
2895 int os::Linux::get_node_by_cpu(int cpu_id) {
2896   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2897     return cpu_to_node()->at(cpu_id);
2898   }
2899   return -1;
2900 }
2901 
2902 GrowableArray<int>* os::Linux::_cpu_to_node;
2903 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2904 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2905 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2906 os::Linux::numa_available_func_t os::Linux::_numa_available;
2907 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2908 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2909 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2910 unsigned long* os::Linux::_numa_all_nodes;
2911 
2912 bool os::pd_uncommit_memory(char* addr, size_t size) {
2913   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2914                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2915   return res  != (uintptr_t) MAP_FAILED;
2916 }
2917 
2918 static address get_stack_commited_bottom(address bottom, size_t size) {
2919   address nbot = bottom;
2920   address ntop = bottom + size;
2921 
2922   size_t page_sz = os::vm_page_size();
2923   unsigned pages = size / page_sz;
2924 
2925   unsigned char vec[1];
2926   unsigned imin = 1, imax = pages + 1, imid;
2927   int mincore_return_value = 0;
2928 
2929   assert(imin <= imax, "Unexpected page size");
2930 
2931   while (imin < imax) {
2932     imid = (imax + imin) / 2;
2933     nbot = ntop - (imid * page_sz);
2934 
2935     // Use a trick with mincore to check whether the page is mapped or not.
2936     // mincore sets vec to 1 if page resides in memory and to 0 if page
2937     // is swapped output but if page we are asking for is unmapped
2938     // it returns -1,ENOMEM
2939     mincore_return_value = mincore(nbot, page_sz, vec);
2940 
2941     if (mincore_return_value == -1) {
2942       // Page is not mapped go up
2943       // to find first mapped page
2944       if (errno != EAGAIN) {
2945         assert(errno == ENOMEM, "Unexpected mincore errno");
2946         imax = imid;
2947       }
2948     } else {
2949       // Page is mapped go down
2950       // to find first not mapped page
2951       imin = imid + 1;
2952     }
2953   }
2954 
2955   nbot = nbot + page_sz;
2956 
2957   // Adjust stack bottom one page up if last checked page is not mapped
2958   if (mincore_return_value == -1) {
2959     nbot = nbot + page_sz;
2960   }
2961 
2962   return nbot;
2963 }
2964 
2965 
2966 // Linux uses a growable mapping for the stack, and if the mapping for
2967 // the stack guard pages is not removed when we detach a thread the
2968 // stack cannot grow beyond the pages where the stack guard was
2969 // mapped.  If at some point later in the process the stack expands to
2970 // that point, the Linux kernel cannot expand the stack any further
2971 // because the guard pages are in the way, and a segfault occurs.
2972 //
2973 // However, it's essential not to split the stack region by unmapping
2974 // a region (leaving a hole) that's already part of the stack mapping,
2975 // so if the stack mapping has already grown beyond the guard pages at
2976 // the time we create them, we have to truncate the stack mapping.
2977 // So, we need to know the extent of the stack mapping when
2978 // create_stack_guard_pages() is called.
2979 
2980 // We only need this for stacks that are growable: at the time of
2981 // writing thread stacks don't use growable mappings (i.e. those
2982 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2983 // only applies to the main thread.
2984 
2985 // If the (growable) stack mapping already extends beyond the point
2986 // where we're going to put our guard pages, truncate the mapping at
2987 // that point by munmap()ping it.  This ensures that when we later
2988 // munmap() the guard pages we don't leave a hole in the stack
2989 // mapping. This only affects the main/initial thread
2990 
2991 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2992   if (os::Linux::is_initial_thread()) {
2993     // As we manually grow stack up to bottom inside create_attached_thread(),
2994     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2995     // we don't need to do anything special.
2996     // Check it first, before calling heavy function.
2997     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2998     unsigned char vec[1];
2999 
3000     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3001       // Fallback to slow path on all errors, including EAGAIN
3002       stack_extent = (uintptr_t) get_stack_commited_bottom(
3003                                                            os::Linux::initial_thread_stack_bottom(),
3004                                                            (size_t)addr - stack_extent);
3005     }
3006 
3007     if (stack_extent < (uintptr_t)addr) {
3008       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3009     }
3010   }
3011 
3012   return os::commit_memory(addr, size, !ExecMem);
3013 }
3014 
3015 // If this is a growable mapping, remove the guard pages entirely by
3016 // munmap()ping them.  If not, just call uncommit_memory(). This only
3017 // affects the main/initial thread, but guard against future OS changes
3018 // It's safe to always unmap guard pages for initial thread because we
3019 // always place it right after end of the mapped region
3020 
3021 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3022   uintptr_t stack_extent, stack_base;
3023 
3024   if (os::Linux::is_initial_thread()) {
3025     return ::munmap(addr, size) == 0;
3026   }
3027 
3028   return os::uncommit_memory(addr, size);
3029 }
3030 
3031 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3032 // at 'requested_addr'. If there are existing memory mappings at the same
3033 // location, however, they will be overwritten. If 'fixed' is false,
3034 // 'requested_addr' is only treated as a hint, the return value may or
3035 // may not start from the requested address. Unlike Linux mmap(), this
3036 // function returns NULL to indicate failure.
3037 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3038   char * addr;
3039   int flags;
3040 
3041   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3042   if (fixed) {
3043     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3044     flags |= MAP_FIXED;
3045   }
3046 
3047   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3048   // touch an uncommitted page. Otherwise, the read/write might
3049   // succeed if we have enough swap space to back the physical page.
3050   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3051                        flags, -1, 0);
3052 
3053   return addr == MAP_FAILED ? NULL : addr;
3054 }
3055 
3056 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3057 //   (req_addr != NULL) or with a given alignment.
3058 //  - bytes shall be a multiple of alignment.
3059 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3060 //  - alignment sets the alignment at which memory shall be allocated.
3061 //     It must be a multiple of allocation granularity.
3062 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3063 //  req_addr or NULL.
3064 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3065 
3066   size_t extra_size = bytes;
3067   if (req_addr == NULL && alignment > 0) {
3068     extra_size += alignment;
3069   }
3070 
3071   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3072     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3073     -1, 0);
3074   if (start == MAP_FAILED) {
3075     start = NULL;
3076   } else {
3077     if (req_addr != NULL) {
3078       if (start != req_addr) {
3079         ::munmap(start, extra_size);
3080         start = NULL;
3081       }
3082     } else {
3083       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3084       char* const end_aligned = start_aligned + bytes;
3085       char* const end = start + extra_size;
3086       if (start_aligned > start) {
3087         ::munmap(start, start_aligned - start);
3088       }
3089       if (end_aligned < end) {
3090         ::munmap(end_aligned, end - end_aligned);
3091       }
3092       start = start_aligned;
3093     }
3094   }
3095   return start;
3096 }
3097 
3098 static int anon_munmap(char * addr, size_t size) {
3099   return ::munmap(addr, size) == 0;
3100 }
3101 
3102 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3103                             size_t alignment_hint) {
3104   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3105 }
3106 
3107 bool os::pd_release_memory(char* addr, size_t size) {
3108   return anon_munmap(addr, size);
3109 }
3110 
3111 static bool linux_mprotect(char* addr, size_t size, int prot) {
3112   // Linux wants the mprotect address argument to be page aligned.
3113   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3114 
3115   // According to SUSv3, mprotect() should only be used with mappings
3116   // established by mmap(), and mmap() always maps whole pages. Unaligned
3117   // 'addr' likely indicates problem in the VM (e.g. trying to change
3118   // protection of malloc'ed or statically allocated memory). Check the
3119   // caller if you hit this assert.
3120   assert(addr == bottom, "sanity check");
3121 
3122   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3123   return ::mprotect(bottom, size, prot) == 0;
3124 }
3125 
3126 // Set protections specified
3127 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3128                         bool is_committed) {
3129   unsigned int p = 0;
3130   switch (prot) {
3131   case MEM_PROT_NONE: p = PROT_NONE; break;
3132   case MEM_PROT_READ: p = PROT_READ; break;
3133   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3134   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3135   default:
3136     ShouldNotReachHere();
3137   }
3138   // is_committed is unused.
3139   return linux_mprotect(addr, bytes, p);
3140 }
3141 
3142 bool os::guard_memory(char* addr, size_t size) {
3143   return linux_mprotect(addr, size, PROT_NONE);
3144 }
3145 
3146 bool os::unguard_memory(char* addr, size_t size) {
3147   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3148 }
3149 
3150 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3151                                                     size_t page_size) {
3152   bool result = false;
3153   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3154                  MAP_ANONYMOUS|MAP_PRIVATE,
3155                  -1, 0);
3156   if (p != MAP_FAILED) {
3157     void *aligned_p = align_ptr_up(p, page_size);
3158 
3159     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3160 
3161     munmap(p, page_size * 2);
3162   }
3163 
3164   if (warn && !result) {
3165     warning("TransparentHugePages is not supported by the operating system.");
3166   }
3167 
3168   return result;
3169 }
3170 
3171 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3172   bool result = false;
3173   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3174                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3175                  -1, 0);
3176 
3177   if (p != MAP_FAILED) {
3178     // We don't know if this really is a huge page or not.
3179     FILE *fp = fopen("/proc/self/maps", "r");
3180     if (fp) {
3181       while (!feof(fp)) {
3182         char chars[257];
3183         long x = 0;
3184         if (fgets(chars, sizeof(chars), fp)) {
3185           if (sscanf(chars, "%lx-%*x", &x) == 1
3186               && x == (long)p) {
3187             if (strstr (chars, "hugepage")) {
3188               result = true;
3189               break;
3190             }
3191           }
3192         }
3193       }
3194       fclose(fp);
3195     }
3196     munmap(p, page_size);
3197   }
3198 
3199   if (warn && !result) {
3200     warning("HugeTLBFS is not supported by the operating system.");
3201   }
3202 
3203   return result;
3204 }
3205 
3206 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3207 //
3208 // From the coredump_filter documentation:
3209 //
3210 // - (bit 0) anonymous private memory
3211 // - (bit 1) anonymous shared memory
3212 // - (bit 2) file-backed private memory
3213 // - (bit 3) file-backed shared memory
3214 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3215 //           effective only if the bit 2 is cleared)
3216 // - (bit 5) hugetlb private memory
3217 // - (bit 6) hugetlb shared memory
3218 //
3219 static void set_coredump_filter(void) {
3220   FILE *f;
3221   long cdm;
3222 
3223   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3224     return;
3225   }
3226 
3227   if (fscanf(f, "%lx", &cdm) != 1) {
3228     fclose(f);
3229     return;
3230   }
3231 
3232   rewind(f);
3233 
3234   if ((cdm & LARGEPAGES_BIT) == 0) {
3235     cdm |= LARGEPAGES_BIT;
3236     fprintf(f, "%#lx", cdm);
3237   }
3238 
3239   fclose(f);
3240 }
3241 
3242 // Large page support
3243 
3244 static size_t _large_page_size = 0;
3245 
3246 size_t os::Linux::find_large_page_size() {
3247   size_t large_page_size = 0;
3248 
3249   // large_page_size on Linux is used to round up heap size. x86 uses either
3250   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3251   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3252   // page as large as 256M.
3253   //
3254   // Here we try to figure out page size by parsing /proc/meminfo and looking
3255   // for a line with the following format:
3256   //    Hugepagesize:     2048 kB
3257   //
3258   // If we can't determine the value (e.g. /proc is not mounted, or the text
3259   // format has been changed), we'll use the largest page size supported by
3260   // the processor.
3261 
3262 #ifndef ZERO
3263   large_page_size =
3264     AARCH64_ONLY(2 * M)
3265     AMD64_ONLY(2 * M)
3266     ARM32_ONLY(2 * M)
3267     IA32_ONLY(4 * M)
3268     IA64_ONLY(256 * M)
3269     PPC_ONLY(4 * M)
3270     S390_ONLY(1 * M)
3271     SPARC_ONLY(4 * M);
3272 #endif // ZERO
3273 
3274   FILE *fp = fopen("/proc/meminfo", "r");
3275   if (fp) {
3276     while (!feof(fp)) {
3277       int x = 0;
3278       char buf[16];
3279       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3280         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3281           large_page_size = x * K;
3282           break;
3283         }
3284       } else {
3285         // skip to next line
3286         for (;;) {
3287           int ch = fgetc(fp);
3288           if (ch == EOF || ch == (int)'\n') break;
3289         }
3290       }
3291     }
3292     fclose(fp);
3293   }
3294 
3295   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3296     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3297             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3298             proper_unit_for_byte_size(large_page_size));
3299   }
3300 
3301   return large_page_size;
3302 }
3303 
3304 size_t os::Linux::setup_large_page_size() {
3305   _large_page_size = Linux::find_large_page_size();
3306   const size_t default_page_size = (size_t)Linux::page_size();
3307   if (_large_page_size > default_page_size) {
3308     _page_sizes[0] = _large_page_size;
3309     _page_sizes[1] = default_page_size;
3310     _page_sizes[2] = 0;
3311   }
3312 
3313   return _large_page_size;
3314 }
3315 
3316 bool os::Linux::setup_large_page_type(size_t page_size) {
3317   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3318       FLAG_IS_DEFAULT(UseSHM) &&
3319       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3320 
3321     // The type of large pages has not been specified by the user.
3322 
3323     // Try UseHugeTLBFS and then UseSHM.
3324     UseHugeTLBFS = UseSHM = true;
3325 
3326     // Don't try UseTransparentHugePages since there are known
3327     // performance issues with it turned on. This might change in the future.
3328     UseTransparentHugePages = false;
3329   }
3330 
3331   if (UseTransparentHugePages) {
3332     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3333     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3334       UseHugeTLBFS = false;
3335       UseSHM = false;
3336       return true;
3337     }
3338     UseTransparentHugePages = false;
3339   }
3340 
3341   if (UseHugeTLBFS) {
3342     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3343     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3344       UseSHM = false;
3345       return true;
3346     }
3347     UseHugeTLBFS = false;
3348   }
3349 
3350   return UseSHM;
3351 }
3352 
3353 void os::large_page_init() {
3354   if (!UseLargePages &&
3355       !UseTransparentHugePages &&
3356       !UseHugeTLBFS &&
3357       !UseSHM) {
3358     // Not using large pages.
3359     return;
3360   }
3361 
3362   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3363     // The user explicitly turned off large pages.
3364     // Ignore the rest of the large pages flags.
3365     UseTransparentHugePages = false;
3366     UseHugeTLBFS = false;
3367     UseSHM = false;
3368     return;
3369   }
3370 
3371   size_t large_page_size = Linux::setup_large_page_size();
3372   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3373 
3374   set_coredump_filter();
3375 }
3376 
3377 #ifndef SHM_HUGETLB
3378   #define SHM_HUGETLB 04000
3379 #endif
3380 
3381 #define shm_warning_format(format, ...)              \
3382   do {                                               \
3383     if (UseLargePages &&                             \
3384         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3385          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3386          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3387       warning(format, __VA_ARGS__);                  \
3388     }                                                \
3389   } while (0)
3390 
3391 #define shm_warning(str) shm_warning_format("%s", str)
3392 
3393 #define shm_warning_with_errno(str)                \
3394   do {                                             \
3395     int err = errno;                               \
3396     shm_warning_format(str " (error = %d)", err);  \
3397   } while (0)
3398 
3399 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3400   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3401 
3402   if (!is_size_aligned(alignment, SHMLBA)) {
3403     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3404     return NULL;
3405   }
3406 
3407   // To ensure that we get 'alignment' aligned memory from shmat,
3408   // we pre-reserve aligned virtual memory and then attach to that.
3409 
3410   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3411   if (pre_reserved_addr == NULL) {
3412     // Couldn't pre-reserve aligned memory.
3413     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3414     return NULL;
3415   }
3416 
3417   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3418   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3419 
3420   if ((intptr_t)addr == -1) {
3421     int err = errno;
3422     shm_warning_with_errno("Failed to attach shared memory.");
3423 
3424     assert(err != EACCES, "Unexpected error");
3425     assert(err != EIDRM,  "Unexpected error");
3426     assert(err != EINVAL, "Unexpected error");
3427 
3428     // Since we don't know if the kernel unmapped the pre-reserved memory area
3429     // we can't unmap it, since that would potentially unmap memory that was
3430     // mapped from other threads.
3431     return NULL;
3432   }
3433 
3434   return addr;
3435 }
3436 
3437 static char* shmat_at_address(int shmid, char* req_addr) {
3438   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3439     assert(false, "Requested address needs to be SHMLBA aligned");
3440     return NULL;
3441   }
3442 
3443   char* addr = (char*)shmat(shmid, req_addr, 0);
3444 
3445   if ((intptr_t)addr == -1) {
3446     shm_warning_with_errno("Failed to attach shared memory.");
3447     return NULL;
3448   }
3449 
3450   return addr;
3451 }
3452 
3453 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3454   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3455   if (req_addr != NULL) {
3456     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3457     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3458     return shmat_at_address(shmid, req_addr);
3459   }
3460 
3461   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3462   // return large page size aligned memory addresses when req_addr == NULL.
3463   // However, if the alignment is larger than the large page size, we have
3464   // to manually ensure that the memory returned is 'alignment' aligned.
3465   if (alignment > os::large_page_size()) {
3466     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3467     return shmat_with_alignment(shmid, bytes, alignment);
3468   } else {
3469     return shmat_at_address(shmid, NULL);
3470   }
3471 }
3472 
3473 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3474                                             char* req_addr, bool exec) {
3475   // "exec" is passed in but not used.  Creating the shared image for
3476   // the code cache doesn't have an SHM_X executable permission to check.
3477   assert(UseLargePages && UseSHM, "only for SHM large pages");
3478   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3479   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3480 
3481   if (!is_size_aligned(bytes, os::large_page_size())) {
3482     return NULL; // Fallback to small pages.
3483   }
3484 
3485   // Create a large shared memory region to attach to based on size.
3486   // Currently, size is the total size of the heap.
3487   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3488   if (shmid == -1) {
3489     // Possible reasons for shmget failure:
3490     // 1. shmmax is too small for Java heap.
3491     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3492     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3493     // 2. not enough large page memory.
3494     //    > check available large pages: cat /proc/meminfo
3495     //    > increase amount of large pages:
3496     //          echo new_value > /proc/sys/vm/nr_hugepages
3497     //      Note 1: different Linux may use different name for this property,
3498     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3499     //      Note 2: it's possible there's enough physical memory available but
3500     //            they are so fragmented after a long run that they can't
3501     //            coalesce into large pages. Try to reserve large pages when
3502     //            the system is still "fresh".
3503     shm_warning_with_errno("Failed to reserve shared memory.");
3504     return NULL;
3505   }
3506 
3507   // Attach to the region.
3508   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3509 
3510   // Remove shmid. If shmat() is successful, the actual shared memory segment
3511   // will be deleted when it's detached by shmdt() or when the process
3512   // terminates. If shmat() is not successful this will remove the shared
3513   // segment immediately.
3514   shmctl(shmid, IPC_RMID, NULL);
3515 
3516   return addr;
3517 }
3518 
3519 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3520                                         int error) {
3521   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3522 
3523   bool warn_on_failure = UseLargePages &&
3524       (!FLAG_IS_DEFAULT(UseLargePages) ||
3525        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3526        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3527 
3528   if (warn_on_failure) {
3529     char msg[128];
3530     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3531                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3532     warning("%s", msg);
3533   }
3534 }
3535 
3536 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3537                                                         char* req_addr,
3538                                                         bool exec) {
3539   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3540   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3541   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3542 
3543   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3544   char* addr = (char*)::mmap(req_addr, bytes, prot,
3545                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3546                              -1, 0);
3547 
3548   if (addr == MAP_FAILED) {
3549     warn_on_large_pages_failure(req_addr, bytes, errno);
3550     return NULL;
3551   }
3552 
3553   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3554 
3555   return addr;
3556 }
3557 
3558 // Reserve memory using mmap(MAP_HUGETLB).
3559 //  - bytes shall be a multiple of alignment.
3560 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3561 //  - alignment sets the alignment at which memory shall be allocated.
3562 //     It must be a multiple of allocation granularity.
3563 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3564 //  req_addr or NULL.
3565 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3566                                                          size_t alignment,
3567                                                          char* req_addr,
3568                                                          bool exec) {
3569   size_t large_page_size = os::large_page_size();
3570   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3571 
3572   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3573   assert(is_size_aligned(bytes, alignment), "Must be");
3574 
3575   // First reserve - but not commit - the address range in small pages.
3576   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3577 
3578   if (start == NULL) {
3579     return NULL;
3580   }
3581 
3582   assert(is_ptr_aligned(start, alignment), "Must be");
3583 
3584   char* end = start + bytes;
3585 
3586   // Find the regions of the allocated chunk that can be promoted to large pages.
3587   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3588   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3589 
3590   size_t lp_bytes = lp_end - lp_start;
3591 
3592   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3593 
3594   if (lp_bytes == 0) {
3595     // The mapped region doesn't even span the start and the end of a large page.
3596     // Fall back to allocate a non-special area.
3597     ::munmap(start, end - start);
3598     return NULL;
3599   }
3600 
3601   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3602 
3603   void* result;
3604 
3605   // Commit small-paged leading area.
3606   if (start != lp_start) {
3607     result = ::mmap(start, lp_start - start, prot,
3608                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3609                     -1, 0);
3610     if (result == MAP_FAILED) {
3611       ::munmap(lp_start, end - lp_start);
3612       return NULL;
3613     }
3614   }
3615 
3616   // Commit large-paged area.
3617   result = ::mmap(lp_start, lp_bytes, prot,
3618                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3619                   -1, 0);
3620   if (result == MAP_FAILED) {
3621     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3622     // If the mmap above fails, the large pages region will be unmapped and we
3623     // have regions before and after with small pages. Release these regions.
3624     //
3625     // |  mapped  |  unmapped  |  mapped  |
3626     // ^          ^            ^          ^
3627     // start      lp_start     lp_end     end
3628     //
3629     ::munmap(start, lp_start - start);
3630     ::munmap(lp_end, end - lp_end);
3631     return NULL;
3632   }
3633 
3634   // Commit small-paged trailing area.
3635   if (lp_end != end) {
3636     result = ::mmap(lp_end, end - lp_end, prot,
3637                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3638                     -1, 0);
3639     if (result == MAP_FAILED) {
3640       ::munmap(start, lp_end - start);
3641       return NULL;
3642     }
3643   }
3644 
3645   return start;
3646 }
3647 
3648 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3649                                                    size_t alignment,
3650                                                    char* req_addr,
3651                                                    bool exec) {
3652   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3653   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3654   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3655   assert(is_power_of_2(os::large_page_size()), "Must be");
3656   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3657 
3658   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3659     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3660   } else {
3661     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3662   }
3663 }
3664 
3665 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3666                                  char* req_addr, bool exec) {
3667   assert(UseLargePages, "only for large pages");
3668 
3669   char* addr;
3670   if (UseSHM) {
3671     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3672   } else {
3673     assert(UseHugeTLBFS, "must be");
3674     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3675   }
3676 
3677   if (addr != NULL) {
3678     if (UseNUMAInterleaving) {
3679       numa_make_global(addr, bytes);
3680     }
3681 
3682     // The memory is committed
3683     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3684   }
3685 
3686   return addr;
3687 }
3688 
3689 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3690   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3691   return shmdt(base) == 0;
3692 }
3693 
3694 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3695   return pd_release_memory(base, bytes);
3696 }
3697 
3698 bool os::release_memory_special(char* base, size_t bytes) {
3699   bool res;
3700   if (MemTracker::tracking_level() > NMT_minimal) {
3701     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3702     res = os::Linux::release_memory_special_impl(base, bytes);
3703     if (res) {
3704       tkr.record((address)base, bytes);
3705     }
3706 
3707   } else {
3708     res = os::Linux::release_memory_special_impl(base, bytes);
3709   }
3710   return res;
3711 }
3712 
3713 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3714   assert(UseLargePages, "only for large pages");
3715   bool res;
3716 
3717   if (UseSHM) {
3718     res = os::Linux::release_memory_special_shm(base, bytes);
3719   } else {
3720     assert(UseHugeTLBFS, "must be");
3721     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3722   }
3723   return res;
3724 }
3725 
3726 size_t os::large_page_size() {
3727   return _large_page_size;
3728 }
3729 
3730 // With SysV SHM the entire memory region must be allocated as shared
3731 // memory.
3732 // HugeTLBFS allows application to commit large page memory on demand.
3733 // However, when committing memory with HugeTLBFS fails, the region
3734 // that was supposed to be committed will lose the old reservation
3735 // and allow other threads to steal that memory region. Because of this
3736 // behavior we can't commit HugeTLBFS memory.
3737 bool os::can_commit_large_page_memory() {
3738   return UseTransparentHugePages;
3739 }
3740 
3741 bool os::can_execute_large_page_memory() {
3742   return UseTransparentHugePages || UseHugeTLBFS;
3743 }
3744 
3745 // Reserve memory at an arbitrary address, only if that area is
3746 // available (and not reserved for something else).
3747 
3748 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3749   const int max_tries = 10;
3750   char* base[max_tries];
3751   size_t size[max_tries];
3752   const size_t gap = 0x000000;
3753 
3754   // Assert only that the size is a multiple of the page size, since
3755   // that's all that mmap requires, and since that's all we really know
3756   // about at this low abstraction level.  If we need higher alignment,
3757   // we can either pass an alignment to this method or verify alignment
3758   // in one of the methods further up the call chain.  See bug 5044738.
3759   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3760 
3761   // Repeatedly allocate blocks until the block is allocated at the
3762   // right spot.
3763 
3764   // Linux mmap allows caller to pass an address as hint; give it a try first,
3765   // if kernel honors the hint then we can return immediately.
3766   char * addr = anon_mmap(requested_addr, bytes, false);
3767   if (addr == requested_addr) {
3768     return requested_addr;
3769   }
3770 
3771   if (addr != NULL) {
3772     // mmap() is successful but it fails to reserve at the requested address
3773     anon_munmap(addr, bytes);
3774   }
3775 
3776   int i;
3777   for (i = 0; i < max_tries; ++i) {
3778     base[i] = reserve_memory(bytes);
3779 
3780     if (base[i] != NULL) {
3781       // Is this the block we wanted?
3782       if (base[i] == requested_addr) {
3783         size[i] = bytes;
3784         break;
3785       }
3786 
3787       // Does this overlap the block we wanted? Give back the overlapped
3788       // parts and try again.
3789 
3790       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3791       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3792         unmap_memory(base[i], top_overlap);
3793         base[i] += top_overlap;
3794         size[i] = bytes - top_overlap;
3795       } else {
3796         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3797         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3798           unmap_memory(requested_addr, bottom_overlap);
3799           size[i] = bytes - bottom_overlap;
3800         } else {
3801           size[i] = bytes;
3802         }
3803       }
3804     }
3805   }
3806 
3807   // Give back the unused reserved pieces.
3808 
3809   for (int j = 0; j < i; ++j) {
3810     if (base[j] != NULL) {
3811       unmap_memory(base[j], size[j]);
3812     }
3813   }
3814 
3815   if (i < max_tries) {
3816     return requested_addr;
3817   } else {
3818     return NULL;
3819   }
3820 }
3821 
3822 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3823   return ::read(fd, buf, nBytes);
3824 }
3825 
3826 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3827   return ::pread(fd, buf, nBytes, offset);
3828 }
3829 
3830 // Short sleep, direct OS call.
3831 //
3832 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3833 // sched_yield(2) will actually give up the CPU:
3834 //
3835 //   * Alone on this pariticular CPU, keeps running.
3836 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3837 //     (pre 2.6.39).
3838 //
3839 // So calling this with 0 is an alternative.
3840 //
3841 void os::naked_short_sleep(jlong ms) {
3842   struct timespec req;
3843 
3844   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3845   req.tv_sec = 0;
3846   if (ms > 0) {
3847     req.tv_nsec = (ms % 1000) * 1000000;
3848   } else {
3849     req.tv_nsec = 1;
3850   }
3851 
3852   nanosleep(&req, NULL);
3853 
3854   return;
3855 }
3856 
3857 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3858 void os::infinite_sleep() {
3859   while (true) {    // sleep forever ...
3860     ::sleep(100);   // ... 100 seconds at a time
3861   }
3862 }
3863 
3864 // Used to convert frequent JVM_Yield() to nops
3865 bool os::dont_yield() {
3866   return DontYieldALot;
3867 }
3868 
3869 void os::naked_yield() {
3870   sched_yield();
3871 }
3872 
3873 ////////////////////////////////////////////////////////////////////////////////
3874 // thread priority support
3875 
3876 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3877 // only supports dynamic priority, static priority must be zero. For real-time
3878 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3879 // However, for large multi-threaded applications, SCHED_RR is not only slower
3880 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3881 // of 5 runs - Sep 2005).
3882 //
3883 // The following code actually changes the niceness of kernel-thread/LWP. It
3884 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3885 // not the entire user process, and user level threads are 1:1 mapped to kernel
3886 // threads. It has always been the case, but could change in the future. For
3887 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3888 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3889 
3890 int os::java_to_os_priority[CriticalPriority + 1] = {
3891   19,              // 0 Entry should never be used
3892 
3893    4,              // 1 MinPriority
3894    3,              // 2
3895    2,              // 3
3896 
3897    1,              // 4
3898    0,              // 5 NormPriority
3899   -1,              // 6
3900 
3901   -2,              // 7
3902   -3,              // 8
3903   -4,              // 9 NearMaxPriority
3904 
3905   -5,              // 10 MaxPriority
3906 
3907   -5               // 11 CriticalPriority
3908 };
3909 
3910 static int prio_init() {
3911   if (ThreadPriorityPolicy == 1) {
3912     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3913     // if effective uid is not root. Perhaps, a more elegant way of doing
3914     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3915     if (geteuid() != 0) {
3916       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3917         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3918       }
3919       ThreadPriorityPolicy = 0;
3920     }
3921   }
3922   if (UseCriticalJavaThreadPriority) {
3923     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3924   }
3925   return 0;
3926 }
3927 
3928 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3929   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3930 
3931   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3932   return (ret == 0) ? OS_OK : OS_ERR;
3933 }
3934 
3935 OSReturn os::get_native_priority(const Thread* const thread,
3936                                  int *priority_ptr) {
3937   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3938     *priority_ptr = java_to_os_priority[NormPriority];
3939     return OS_OK;
3940   }
3941 
3942   errno = 0;
3943   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3944   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3945 }
3946 
3947 // Hint to the underlying OS that a task switch would not be good.
3948 // Void return because it's a hint and can fail.
3949 void os::hint_no_preempt() {}
3950 
3951 ////////////////////////////////////////////////////////////////////////////////
3952 // suspend/resume support
3953 
3954 //  the low-level signal-based suspend/resume support is a remnant from the
3955 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3956 //  within hotspot. Now there is a single use-case for this:
3957 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3958 //      that runs in the watcher thread.
3959 //  The remaining code is greatly simplified from the more general suspension
3960 //  code that used to be used.
3961 //
3962 //  The protocol is quite simple:
3963 //  - suspend:
3964 //      - sends a signal to the target thread
3965 //      - polls the suspend state of the osthread using a yield loop
3966 //      - target thread signal handler (SR_handler) sets suspend state
3967 //        and blocks in sigsuspend until continued
3968 //  - resume:
3969 //      - sets target osthread state to continue
3970 //      - sends signal to end the sigsuspend loop in the SR_handler
3971 //
3972 //  Note that the SR_lock plays no role in this suspend/resume protocol,
3973 //  but is checked for NULL in SR_handler as a thread termination indicator.
3974 
3975 static void resume_clear_context(OSThread *osthread) {
3976   osthread->set_ucontext(NULL);
3977   osthread->set_siginfo(NULL);
3978 }
3979 
3980 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3981                                  ucontext_t* context) {
3982   osthread->set_ucontext(context);
3983   osthread->set_siginfo(siginfo);
3984 }
3985 
3986 // Handler function invoked when a thread's execution is suspended or
3987 // resumed. We have to be careful that only async-safe functions are
3988 // called here (Note: most pthread functions are not async safe and
3989 // should be avoided.)
3990 //
3991 // Note: sigwait() is a more natural fit than sigsuspend() from an
3992 // interface point of view, but sigwait() prevents the signal hander
3993 // from being run. libpthread would get very confused by not having
3994 // its signal handlers run and prevents sigwait()'s use with the
3995 // mutex granting granting signal.
3996 //
3997 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3998 //
3999 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4000   // Save and restore errno to avoid confusing native code with EINTR
4001   // after sigsuspend.
4002   int old_errno = errno;
4003 
4004   Thread* thread = Thread::current_or_null_safe();
4005   assert(thread != NULL, "Missing current thread in SR_handler");
4006 
4007   // On some systems we have seen signal delivery get "stuck" until the signal
4008   // mask is changed as part of thread termination. Check that the current thread
4009   // has not already terminated (via SR_lock()) - else the following assertion
4010   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4011   // destructor has completed.
4012 
4013   if (thread->SR_lock() == NULL) {
4014     return;
4015   }
4016 
4017   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4018 
4019   OSThread* osthread = thread->osthread();
4020 
4021   os::SuspendResume::State current = osthread->sr.state();
4022   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4023     suspend_save_context(osthread, siginfo, context);
4024 
4025     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4026     os::SuspendResume::State state = osthread->sr.suspended();
4027     if (state == os::SuspendResume::SR_SUSPENDED) {
4028       sigset_t suspend_set;  // signals for sigsuspend()
4029       sigemptyset(&suspend_set);
4030       // get current set of blocked signals and unblock resume signal
4031       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4032       sigdelset(&suspend_set, SR_signum);
4033 
4034       sr_semaphore.signal();
4035       // wait here until we are resumed
4036       while (1) {
4037         sigsuspend(&suspend_set);
4038 
4039         os::SuspendResume::State result = osthread->sr.running();
4040         if (result == os::SuspendResume::SR_RUNNING) {
4041           sr_semaphore.signal();
4042           break;
4043         }
4044       }
4045 
4046     } else if (state == os::SuspendResume::SR_RUNNING) {
4047       // request was cancelled, continue
4048     } else {
4049       ShouldNotReachHere();
4050     }
4051 
4052     resume_clear_context(osthread);
4053   } else if (current == os::SuspendResume::SR_RUNNING) {
4054     // request was cancelled, continue
4055   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4056     // ignore
4057   } else {
4058     // ignore
4059   }
4060 
4061   errno = old_errno;
4062 }
4063 
4064 static int SR_initialize() {
4065   struct sigaction act;
4066   char *s;
4067 
4068   // Get signal number to use for suspend/resume
4069   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4070     int sig = ::strtol(s, 0, 10);
4071     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4072         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4073       SR_signum = sig;
4074     } else {
4075       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4076               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4077     }
4078   }
4079 
4080   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4081          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4082 
4083   sigemptyset(&SR_sigset);
4084   sigaddset(&SR_sigset, SR_signum);
4085 
4086   // Set up signal handler for suspend/resume
4087   act.sa_flags = SA_RESTART|SA_SIGINFO;
4088   act.sa_handler = (void (*)(int)) SR_handler;
4089 
4090   // SR_signum is blocked by default.
4091   // 4528190 - We also need to block pthread restart signal (32 on all
4092   // supported Linux platforms). Note that LinuxThreads need to block
4093   // this signal for all threads to work properly. So we don't have
4094   // to use hard-coded signal number when setting up the mask.
4095   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4096 
4097   if (sigaction(SR_signum, &act, 0) == -1) {
4098     return -1;
4099   }
4100 
4101   // Save signal flag
4102   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4103   return 0;
4104 }
4105 
4106 static int sr_notify(OSThread* osthread) {
4107   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4108   assert_status(status == 0, status, "pthread_kill");
4109   return status;
4110 }
4111 
4112 // "Randomly" selected value for how long we want to spin
4113 // before bailing out on suspending a thread, also how often
4114 // we send a signal to a thread we want to resume
4115 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4116 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4117 
4118 // returns true on success and false on error - really an error is fatal
4119 // but this seems the normal response to library errors
4120 static bool do_suspend(OSThread* osthread) {
4121   assert(osthread->sr.is_running(), "thread should be running");
4122   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4123 
4124   // mark as suspended and send signal
4125   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4126     // failed to switch, state wasn't running?
4127     ShouldNotReachHere();
4128     return false;
4129   }
4130 
4131   if (sr_notify(osthread) != 0) {
4132     ShouldNotReachHere();
4133   }
4134 
4135   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4136   while (true) {
4137     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4138       break;
4139     } else {
4140       // timeout
4141       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4142       if (cancelled == os::SuspendResume::SR_RUNNING) {
4143         return false;
4144       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4145         // make sure that we consume the signal on the semaphore as well
4146         sr_semaphore.wait();
4147         break;
4148       } else {
4149         ShouldNotReachHere();
4150         return false;
4151       }
4152     }
4153   }
4154 
4155   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4156   return true;
4157 }
4158 
4159 static void do_resume(OSThread* osthread) {
4160   assert(osthread->sr.is_suspended(), "thread should be suspended");
4161   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4162 
4163   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4164     // failed to switch to WAKEUP_REQUEST
4165     ShouldNotReachHere();
4166     return;
4167   }
4168 
4169   while (true) {
4170     if (sr_notify(osthread) == 0) {
4171       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4172         if (osthread->sr.is_running()) {
4173           return;
4174         }
4175       }
4176     } else {
4177       ShouldNotReachHere();
4178     }
4179   }
4180 
4181   guarantee(osthread->sr.is_running(), "Must be running!");
4182 }
4183 
4184 ///////////////////////////////////////////////////////////////////////////////////
4185 // signal handling (except suspend/resume)
4186 
4187 // This routine may be used by user applications as a "hook" to catch signals.
4188 // The user-defined signal handler must pass unrecognized signals to this
4189 // routine, and if it returns true (non-zero), then the signal handler must
4190 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4191 // routine will never retun false (zero), but instead will execute a VM panic
4192 // routine kill the process.
4193 //
4194 // If this routine returns false, it is OK to call it again.  This allows
4195 // the user-defined signal handler to perform checks either before or after
4196 // the VM performs its own checks.  Naturally, the user code would be making
4197 // a serious error if it tried to handle an exception (such as a null check
4198 // or breakpoint) that the VM was generating for its own correct operation.
4199 //
4200 // This routine may recognize any of the following kinds of signals:
4201 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4202 // It should be consulted by handlers for any of those signals.
4203 //
4204 // The caller of this routine must pass in the three arguments supplied
4205 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4206 // field of the structure passed to sigaction().  This routine assumes that
4207 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4208 //
4209 // Note that the VM will print warnings if it detects conflicting signal
4210 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4211 //
4212 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4213                                                  siginfo_t* siginfo,
4214                                                  void* ucontext,
4215                                                  int abort_if_unrecognized);
4216 
4217 void signalHandler(int sig, siginfo_t* info, void* uc) {
4218   assert(info != NULL && uc != NULL, "it must be old kernel");
4219   int orig_errno = errno;  // Preserve errno value over signal handler.
4220   JVM_handle_linux_signal(sig, info, uc, true);
4221   errno = orig_errno;
4222 }
4223 
4224 
4225 // This boolean allows users to forward their own non-matching signals
4226 // to JVM_handle_linux_signal, harmlessly.
4227 bool os::Linux::signal_handlers_are_installed = false;
4228 
4229 // For signal-chaining
4230 struct sigaction sigact[NSIG];
4231 uint64_t sigs = 0;
4232 #if (64 < NSIG-1)
4233 #error "Not all signals can be encoded in sigs. Adapt its type!"
4234 #endif
4235 bool os::Linux::libjsig_is_loaded = false;
4236 typedef struct sigaction *(*get_signal_t)(int);
4237 get_signal_t os::Linux::get_signal_action = NULL;
4238 
4239 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4240   struct sigaction *actp = NULL;
4241 
4242   if (libjsig_is_loaded) {
4243     // Retrieve the old signal handler from libjsig
4244     actp = (*get_signal_action)(sig);
4245   }
4246   if (actp == NULL) {
4247     // Retrieve the preinstalled signal handler from jvm
4248     actp = get_preinstalled_handler(sig);
4249   }
4250 
4251   return actp;
4252 }
4253 
4254 static bool call_chained_handler(struct sigaction *actp, int sig,
4255                                  siginfo_t *siginfo, void *context) {
4256   // Call the old signal handler
4257   if (actp->sa_handler == SIG_DFL) {
4258     // It's more reasonable to let jvm treat it as an unexpected exception
4259     // instead of taking the default action.
4260     return false;
4261   } else if (actp->sa_handler != SIG_IGN) {
4262     if ((actp->sa_flags & SA_NODEFER) == 0) {
4263       // automaticlly block the signal
4264       sigaddset(&(actp->sa_mask), sig);
4265     }
4266 
4267     sa_handler_t hand = NULL;
4268     sa_sigaction_t sa = NULL;
4269     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4270     // retrieve the chained handler
4271     if (siginfo_flag_set) {
4272       sa = actp->sa_sigaction;
4273     } else {
4274       hand = actp->sa_handler;
4275     }
4276 
4277     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4278       actp->sa_handler = SIG_DFL;
4279     }
4280 
4281     // try to honor the signal mask
4282     sigset_t oset;
4283     sigemptyset(&oset);
4284     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4285 
4286     // call into the chained handler
4287     if (siginfo_flag_set) {
4288       (*sa)(sig, siginfo, context);
4289     } else {
4290       (*hand)(sig);
4291     }
4292 
4293     // restore the signal mask
4294     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4295   }
4296   // Tell jvm's signal handler the signal is taken care of.
4297   return true;
4298 }
4299 
4300 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4301   bool chained = false;
4302   // signal-chaining
4303   if (UseSignalChaining) {
4304     struct sigaction *actp = get_chained_signal_action(sig);
4305     if (actp != NULL) {
4306       chained = call_chained_handler(actp, sig, siginfo, context);
4307     }
4308   }
4309   return chained;
4310 }
4311 
4312 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4313   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4314     return &sigact[sig];
4315   }
4316   return NULL;
4317 }
4318 
4319 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4320   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4321   sigact[sig] = oldAct;
4322   sigs |= (uint64_t)1 << (sig-1);
4323 }
4324 
4325 // for diagnostic
4326 int sigflags[NSIG];
4327 
4328 int os::Linux::get_our_sigflags(int sig) {
4329   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4330   return sigflags[sig];
4331 }
4332 
4333 void os::Linux::set_our_sigflags(int sig, int flags) {
4334   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4335   if (sig > 0 && sig < NSIG) {
4336     sigflags[sig] = flags;
4337   }
4338 }
4339 
4340 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4341   // Check for overwrite.
4342   struct sigaction oldAct;
4343   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4344 
4345   void* oldhand = oldAct.sa_sigaction
4346                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4347                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4348   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4349       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4350       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4351     if (AllowUserSignalHandlers || !set_installed) {
4352       // Do not overwrite; user takes responsibility to forward to us.
4353       return;
4354     } else if (UseSignalChaining) {
4355       // save the old handler in jvm
4356       save_preinstalled_handler(sig, oldAct);
4357       // libjsig also interposes the sigaction() call below and saves the
4358       // old sigaction on it own.
4359     } else {
4360       fatal("Encountered unexpected pre-existing sigaction handler "
4361             "%#lx for signal %d.", (long)oldhand, sig);
4362     }
4363   }
4364 
4365   struct sigaction sigAct;
4366   sigfillset(&(sigAct.sa_mask));
4367   sigAct.sa_handler = SIG_DFL;
4368   if (!set_installed) {
4369     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4370   } else {
4371     sigAct.sa_sigaction = signalHandler;
4372     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4373   }
4374   // Save flags, which are set by ours
4375   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4376   sigflags[sig] = sigAct.sa_flags;
4377 
4378   int ret = sigaction(sig, &sigAct, &oldAct);
4379   assert(ret == 0, "check");
4380 
4381   void* oldhand2  = oldAct.sa_sigaction
4382                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4383                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4384   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4385 }
4386 
4387 // install signal handlers for signals that HotSpot needs to
4388 // handle in order to support Java-level exception handling.
4389 
4390 void os::Linux::install_signal_handlers() {
4391   if (!signal_handlers_are_installed) {
4392     signal_handlers_are_installed = true;
4393 
4394     // signal-chaining
4395     typedef void (*signal_setting_t)();
4396     signal_setting_t begin_signal_setting = NULL;
4397     signal_setting_t end_signal_setting = NULL;
4398     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4399                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4400     if (begin_signal_setting != NULL) {
4401       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4402                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4403       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4404                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4405       libjsig_is_loaded = true;
4406       assert(UseSignalChaining, "should enable signal-chaining");
4407     }
4408     if (libjsig_is_loaded) {
4409       // Tell libjsig jvm is setting signal handlers
4410       (*begin_signal_setting)();
4411     }
4412 
4413     set_signal_handler(SIGSEGV, true);
4414     set_signal_handler(SIGPIPE, true);
4415     set_signal_handler(SIGBUS, true);
4416     set_signal_handler(SIGILL, true);
4417     set_signal_handler(SIGFPE, true);
4418 #if defined(PPC64)
4419     set_signal_handler(SIGTRAP, true);
4420 #endif
4421     set_signal_handler(SIGXFSZ, true);
4422 
4423     if (libjsig_is_loaded) {
4424       // Tell libjsig jvm finishes setting signal handlers
4425       (*end_signal_setting)();
4426     }
4427 
4428     // We don't activate signal checker if libjsig is in place, we trust ourselves
4429     // and if UserSignalHandler is installed all bets are off.
4430     // Log that signal checking is off only if -verbose:jni is specified.
4431     if (CheckJNICalls) {
4432       if (libjsig_is_loaded) {
4433         if (PrintJNIResolving) {
4434           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4435         }
4436         check_signals = false;
4437       }
4438       if (AllowUserSignalHandlers) {
4439         if (PrintJNIResolving) {
4440           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4441         }
4442         check_signals = false;
4443       }
4444     }
4445   }
4446 }
4447 
4448 // This is the fastest way to get thread cpu time on Linux.
4449 // Returns cpu time (user+sys) for any thread, not only for current.
4450 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4451 // It might work on 2.6.10+ with a special kernel/glibc patch.
4452 // For reference, please, see IEEE Std 1003.1-2004:
4453 //   http://www.unix.org/single_unix_specification
4454 
4455 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4456   struct timespec tp;
4457   int rc = os::Linux::clock_gettime(clockid, &tp);
4458   assert(rc == 0, "clock_gettime is expected to return 0 code");
4459 
4460   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4461 }
4462 
4463 void os::Linux::initialize_os_info() {
4464   assert(_os_version == 0, "OS info already initialized");
4465 
4466   struct utsname _uname;
4467 
4468   uint32_t major;
4469   uint32_t minor;
4470   uint32_t fix;
4471 
4472   int rc;
4473 
4474   // Kernel version is unknown if
4475   // verification below fails.
4476   _os_version = 0x01000000;
4477 
4478   rc = uname(&_uname);
4479   if (rc != -1) {
4480 
4481     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4482     if (rc == 3) {
4483 
4484       if (major < 256 && minor < 256 && fix < 256) {
4485         // Kernel version format is as expected,
4486         // set it overriding unknown state.
4487         _os_version = (major << 16) |
4488                       (minor << 8 ) |
4489                       (fix   << 0 ) ;
4490       }
4491     }
4492   }
4493 }
4494 
4495 uint32_t os::Linux::os_version() {
4496   assert(_os_version != 0, "not initialized");
4497   return _os_version & 0x00FFFFFF;
4498 }
4499 
4500 bool os::Linux::os_version_is_known() {
4501   assert(_os_version != 0, "not initialized");
4502   return _os_version & 0x01000000 ? false : true;
4503 }
4504 
4505 /////
4506 // glibc on Linux platform uses non-documented flag
4507 // to indicate, that some special sort of signal
4508 // trampoline is used.
4509 // We will never set this flag, and we should
4510 // ignore this flag in our diagnostic
4511 #ifdef SIGNIFICANT_SIGNAL_MASK
4512   #undef SIGNIFICANT_SIGNAL_MASK
4513 #endif
4514 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4515 
4516 static const char* get_signal_handler_name(address handler,
4517                                            char* buf, int buflen) {
4518   int offset = 0;
4519   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4520   if (found) {
4521     // skip directory names
4522     const char *p1, *p2;
4523     p1 = buf;
4524     size_t len = strlen(os::file_separator());
4525     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4526     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4527   } else {
4528     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4529   }
4530   return buf;
4531 }
4532 
4533 static void print_signal_handler(outputStream* st, int sig,
4534                                  char* buf, size_t buflen) {
4535   struct sigaction sa;
4536 
4537   sigaction(sig, NULL, &sa);
4538 
4539   // See comment for SIGNIFICANT_SIGNAL_MASK define
4540   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4541 
4542   st->print("%s: ", os::exception_name(sig, buf, buflen));
4543 
4544   address handler = (sa.sa_flags & SA_SIGINFO)
4545     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4546     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4547 
4548   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4549     st->print("SIG_DFL");
4550   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4551     st->print("SIG_IGN");
4552   } else {
4553     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4554   }
4555 
4556   st->print(", sa_mask[0]=");
4557   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4558 
4559   address rh = VMError::get_resetted_sighandler(sig);
4560   // May be, handler was resetted by VMError?
4561   if (rh != NULL) {
4562     handler = rh;
4563     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4564   }
4565 
4566   st->print(", sa_flags=");
4567   os::Posix::print_sa_flags(st, sa.sa_flags);
4568 
4569   // Check: is it our handler?
4570   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4571       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4572     // It is our signal handler
4573     // check for flags, reset system-used one!
4574     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4575       st->print(
4576                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4577                 os::Linux::get_our_sigflags(sig));
4578     }
4579   }
4580   st->cr();
4581 }
4582 
4583 
4584 #define DO_SIGNAL_CHECK(sig)                      \
4585   do {                                            \
4586     if (!sigismember(&check_signal_done, sig)) {  \
4587       os::Linux::check_signal_handler(sig);       \
4588     }                                             \
4589   } while (0)
4590 
4591 // This method is a periodic task to check for misbehaving JNI applications
4592 // under CheckJNI, we can add any periodic checks here
4593 
4594 void os::run_periodic_checks() {
4595   if (check_signals == false) return;
4596 
4597   // SEGV and BUS if overridden could potentially prevent
4598   // generation of hs*.log in the event of a crash, debugging
4599   // such a case can be very challenging, so we absolutely
4600   // check the following for a good measure:
4601   DO_SIGNAL_CHECK(SIGSEGV);
4602   DO_SIGNAL_CHECK(SIGILL);
4603   DO_SIGNAL_CHECK(SIGFPE);
4604   DO_SIGNAL_CHECK(SIGBUS);
4605   DO_SIGNAL_CHECK(SIGPIPE);
4606   DO_SIGNAL_CHECK(SIGXFSZ);
4607 #if defined(PPC64)
4608   DO_SIGNAL_CHECK(SIGTRAP);
4609 #endif
4610 
4611   // ReduceSignalUsage allows the user to override these handlers
4612   // see comments at the very top and jvm_solaris.h
4613   if (!ReduceSignalUsage) {
4614     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4615     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4616     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4617     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4618   }
4619 
4620   DO_SIGNAL_CHECK(SR_signum);
4621 }
4622 
4623 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4624 
4625 static os_sigaction_t os_sigaction = NULL;
4626 
4627 void os::Linux::check_signal_handler(int sig) {
4628   char buf[O_BUFLEN];
4629   address jvmHandler = NULL;
4630 
4631 
4632   struct sigaction act;
4633   if (os_sigaction == NULL) {
4634     // only trust the default sigaction, in case it has been interposed
4635     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4636     if (os_sigaction == NULL) return;
4637   }
4638 
4639   os_sigaction(sig, (struct sigaction*)NULL, &act);
4640 
4641 
4642   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4643 
4644   address thisHandler = (act.sa_flags & SA_SIGINFO)
4645     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4646     : CAST_FROM_FN_PTR(address, act.sa_handler);
4647 
4648 
4649   switch (sig) {
4650   case SIGSEGV:
4651   case SIGBUS:
4652   case SIGFPE:
4653   case SIGPIPE:
4654   case SIGILL:
4655   case SIGXFSZ:
4656     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4657     break;
4658 
4659   case SHUTDOWN1_SIGNAL:
4660   case SHUTDOWN2_SIGNAL:
4661   case SHUTDOWN3_SIGNAL:
4662   case BREAK_SIGNAL:
4663     jvmHandler = (address)user_handler();
4664     break;
4665 
4666   default:
4667     if (sig == SR_signum) {
4668       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4669     } else {
4670       return;
4671     }
4672     break;
4673   }
4674 
4675   if (thisHandler != jvmHandler) {
4676     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4677     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4678     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4679     // No need to check this sig any longer
4680     sigaddset(&check_signal_done, sig);
4681     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4682     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4683       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4684                     exception_name(sig, buf, O_BUFLEN));
4685     }
4686   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4687     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4688     tty->print("expected:");
4689     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4690     tty->cr();
4691     tty->print("  found:");
4692     os::Posix::print_sa_flags(tty, act.sa_flags);
4693     tty->cr();
4694     // No need to check this sig any longer
4695     sigaddset(&check_signal_done, sig);
4696   }
4697 
4698   // Dump all the signal
4699   if (sigismember(&check_signal_done, sig)) {
4700     print_signal_handlers(tty, buf, O_BUFLEN);
4701   }
4702 }
4703 
4704 extern void report_error(char* file_name, int line_no, char* title,
4705                          char* format, ...);
4706 
4707 // this is called _before_ the most of global arguments have been parsed
4708 void os::init(void) {
4709   char dummy;   // used to get a guess on initial stack address
4710 //  first_hrtime = gethrtime();
4711 
4712   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4713 
4714   init_random(1234567);
4715 
4716   ThreadCritical::initialize();
4717 
4718   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4719   if (Linux::page_size() == -1) {
4720     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4721           os::strerror(errno));
4722   }
4723   init_page_sizes((size_t) Linux::page_size());
4724 
4725   Linux::initialize_system_info();
4726 
4727   Linux::initialize_os_info();
4728 
4729   // main_thread points to the aboriginal thread
4730   Linux::_main_thread = pthread_self();
4731 
4732   Linux::clock_init();
4733   initial_time_count = javaTimeNanos();
4734 
4735   // pthread_condattr initialization for monotonic clock
4736   int status;
4737   pthread_condattr_t* _condattr = os::Linux::condAttr();
4738   if ((status = pthread_condattr_init(_condattr)) != 0) {
4739     fatal("pthread_condattr_init: %s", os::strerror(status));
4740   }
4741   // Only set the clock if CLOCK_MONOTONIC is available
4742   if (os::supports_monotonic_clock()) {
4743     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4744       if (status == EINVAL) {
4745         warning("Unable to use monotonic clock with relative timed-waits" \
4746                 " - changes to the time-of-day clock may have adverse affects");
4747       } else {
4748         fatal("pthread_condattr_setclock: %s", os::strerror(status));
4749       }
4750     }
4751   }
4752   // else it defaults to CLOCK_REALTIME
4753 
4754   // retrieve entry point for pthread_setname_np
4755   Linux::_pthread_setname_np =
4756     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4757 
4758 }
4759 
4760 // To install functions for atexit system call
4761 extern "C" {
4762   static void perfMemory_exit_helper() {
4763     perfMemory_exit();
4764   }
4765 }
4766 
4767 // this is called _after_ the global arguments have been parsed
4768 jint os::init_2(void) {
4769   Linux::fast_thread_clock_init();
4770 
4771   // Allocate a single page and mark it as readable for safepoint polling
4772   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4773   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4774 
4775   os::set_polling_page(polling_page);
4776   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4777 
4778   if (!UseMembar) {
4779     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4780     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4781     os::set_memory_serialize_page(mem_serialize_page);
4782     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4783   }
4784 
4785   // initialize suspend/resume support - must do this before signal_sets_init()
4786   if (SR_initialize() != 0) {
4787     perror("SR_initialize failed");
4788     return JNI_ERR;
4789   }
4790 
4791   Linux::signal_sets_init();
4792   Linux::install_signal_handlers();
4793 
4794   // Check and sets minimum stack sizes against command line options
4795   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4796     return JNI_ERR;
4797   }
4798   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4799 
4800 #if defined(IA32)
4801   workaround_expand_exec_shield_cs_limit();
4802 #endif
4803 
4804   Linux::libpthread_init();
4805   log_info(os)("HotSpot is running with %s, %s",
4806                Linux::glibc_version(), Linux::libpthread_version());
4807 
4808   if (UseNUMA) {
4809     if (!Linux::libnuma_init()) {
4810       UseNUMA = false;
4811     } else {
4812       if ((Linux::numa_max_node() < 1)) {
4813         // There's only one node(they start from 0), disable NUMA.
4814         UseNUMA = false;
4815       }
4816     }
4817     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4818     // we can make the adaptive lgrp chunk resizing work. If the user specified
4819     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4820     // disable adaptive resizing.
4821     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4822       if (FLAG_IS_DEFAULT(UseNUMA)) {
4823         UseNUMA = false;
4824       } else {
4825         if (FLAG_IS_DEFAULT(UseLargePages) &&
4826             FLAG_IS_DEFAULT(UseSHM) &&
4827             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4828           UseLargePages = false;
4829         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4830           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4831           UseAdaptiveSizePolicy = false;
4832           UseAdaptiveNUMAChunkSizing = false;
4833         }
4834       }
4835     }
4836     if (!UseNUMA && ForceNUMA) {
4837       UseNUMA = true;
4838     }
4839   }
4840 
4841   if (MaxFDLimit) {
4842     // set the number of file descriptors to max. print out error
4843     // if getrlimit/setrlimit fails but continue regardless.
4844     struct rlimit nbr_files;
4845     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4846     if (status != 0) {
4847       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4848     } else {
4849       nbr_files.rlim_cur = nbr_files.rlim_max;
4850       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4851       if (status != 0) {
4852         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4853       }
4854     }
4855   }
4856 
4857   // Initialize lock used to serialize thread creation (see os::create_thread)
4858   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4859 
4860   // at-exit methods are called in the reverse order of their registration.
4861   // atexit functions are called on return from main or as a result of a
4862   // call to exit(3C). There can be only 32 of these functions registered
4863   // and atexit() does not set errno.
4864 
4865   if (PerfAllowAtExitRegistration) {
4866     // only register atexit functions if PerfAllowAtExitRegistration is set.
4867     // atexit functions can be delayed until process exit time, which
4868     // can be problematic for embedded VM situations. Embedded VMs should
4869     // call DestroyJavaVM() to assure that VM resources are released.
4870 
4871     // note: perfMemory_exit_helper atexit function may be removed in
4872     // the future if the appropriate cleanup code can be added to the
4873     // VM_Exit VMOperation's doit method.
4874     if (atexit(perfMemory_exit_helper) != 0) {
4875       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4876     }
4877   }
4878 
4879   // initialize thread priority policy
4880   prio_init();
4881 
4882   return JNI_OK;
4883 }
4884 
4885 // Mark the polling page as unreadable
4886 void os::make_polling_page_unreadable(void) {
4887   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4888     fatal("Could not disable polling page");
4889   }
4890 }
4891 
4892 // Mark the polling page as readable
4893 void os::make_polling_page_readable(void) {
4894   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4895     fatal("Could not enable polling page");
4896   }
4897 }
4898 
4899 // older glibc versions don't have this macro (which expands to
4900 // an optimized bit-counting function) so we have to roll our own
4901 #ifndef CPU_COUNT
4902 
4903 static int _cpu_count(const cpu_set_t* cpus) {
4904   int count = 0;
4905   // only look up to the number of configured processors
4906   for (int i = 0; i < os::processor_count(); i++) {
4907     if (CPU_ISSET(i, cpus)) {
4908       count++;
4909     }
4910   }
4911   return count;
4912 }
4913 
4914 #define CPU_COUNT(cpus) _cpu_count(cpus)
4915 
4916 #endif // CPU_COUNT
4917 
4918 // Get the current number of available processors for this process.
4919 // This value can change at any time during a process's lifetime.
4920 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4921 // If it appears there may be more than 1024 processors then we do a
4922 // dynamic check - see 6515172 for details.
4923 // If anything goes wrong we fallback to returning the number of online
4924 // processors - which can be greater than the number available to the process.
4925 int os::active_processor_count() {
4926   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4927   cpu_set_t* cpus_p = &cpus;
4928   int cpus_size = sizeof(cpu_set_t);
4929 
4930   int configured_cpus = processor_count();  // upper bound on available cpus
4931   int cpu_count = 0;
4932 
4933 // old build platforms may not support dynamic cpu sets
4934 #ifdef CPU_ALLOC
4935 
4936   // To enable easy testing of the dynamic path on different platforms we
4937   // introduce a diagnostic flag: UseCpuAllocPath
4938   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4939     // kernel may use a mask bigger than cpu_set_t
4940     log_trace(os)("active_processor_count: using dynamic path %s"
4941                   "- configured processors: %d",
4942                   UseCpuAllocPath ? "(forced) " : "",
4943                   configured_cpus);
4944     cpus_p = CPU_ALLOC(configured_cpus);
4945     if (cpus_p != NULL) {
4946       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4947       // zero it just to be safe
4948       CPU_ZERO_S(cpus_size, cpus_p);
4949     }
4950     else {
4951        // failed to allocate so fallback to online cpus
4952        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4953        log_trace(os)("active_processor_count: "
4954                      "CPU_ALLOC failed (%s) - using "
4955                      "online processor count: %d",
4956                      os::strerror(errno), online_cpus);
4957        return online_cpus;
4958     }
4959   }
4960   else {
4961     log_trace(os)("active_processor_count: using static path - configured processors: %d",
4962                   configured_cpus);
4963   }
4964 #else // CPU_ALLOC
4965 // these stubs won't be executed
4966 #define CPU_COUNT_S(size, cpus) -1
4967 #define CPU_FREE(cpus)
4968 
4969   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4970                 configured_cpus);
4971 #endif // CPU_ALLOC
4972 
4973   // pid 0 means the current thread - which we have to assume represents the process
4974   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
4975     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4976       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
4977     }
4978     else {
4979       cpu_count = CPU_COUNT(cpus_p);
4980     }
4981     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
4982   }
4983   else {
4984     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
4985     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
4986             "which may exceed available processors", os::strerror(errno), cpu_count);
4987   }
4988 
4989   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4990     CPU_FREE(cpus_p);
4991   }
4992 
4993   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
4994   return cpu_count;
4995 }
4996 
4997 void os::set_native_thread_name(const char *name) {
4998   if (Linux::_pthread_setname_np) {
4999     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5000     snprintf(buf, sizeof(buf), "%s", name);
5001     buf[sizeof(buf) - 1] = '\0';
5002     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5003     // ERANGE should not happen; all other errors should just be ignored.
5004     assert(rc != ERANGE, "pthread_setname_np failed");
5005   }
5006 }
5007 
5008 bool os::distribute_processes(uint length, uint* distribution) {
5009   // Not yet implemented.
5010   return false;
5011 }
5012 
5013 bool os::bind_to_processor(uint processor_id) {
5014   // Not yet implemented.
5015   return false;
5016 }
5017 
5018 ///
5019 
5020 void os::SuspendedThreadTask::internal_do_task() {
5021   if (do_suspend(_thread->osthread())) {
5022     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5023     do_task(context);
5024     do_resume(_thread->osthread());
5025   }
5026 }
5027 
5028 class PcFetcher : public os::SuspendedThreadTask {
5029  public:
5030   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5031   ExtendedPC result();
5032  protected:
5033   void do_task(const os::SuspendedThreadTaskContext& context);
5034  private:
5035   ExtendedPC _epc;
5036 };
5037 
5038 ExtendedPC PcFetcher::result() {
5039   guarantee(is_done(), "task is not done yet.");
5040   return _epc;
5041 }
5042 
5043 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5044   Thread* thread = context.thread();
5045   OSThread* osthread = thread->osthread();
5046   if (osthread->ucontext() != NULL) {
5047     _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
5048   } else {
5049     // NULL context is unexpected, double-check this is the VMThread
5050     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5051   }
5052 }
5053 
5054 // Suspends the target using the signal mechanism and then grabs the PC before
5055 // resuming the target. Used by the flat-profiler only
5056 ExtendedPC os::get_thread_pc(Thread* thread) {
5057   // Make sure that it is called by the watcher for the VMThread
5058   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5059   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5060 
5061   PcFetcher fetcher(thread);
5062   fetcher.run();
5063   return fetcher.result();
5064 }
5065 
5066 ////////////////////////////////////////////////////////////////////////////////
5067 // debug support
5068 
5069 bool os::find(address addr, outputStream* st) {
5070   Dl_info dlinfo;
5071   memset(&dlinfo, 0, sizeof(dlinfo));
5072   if (dladdr(addr, &dlinfo) != 0) {
5073     st->print(PTR_FORMAT ": ", p2i(addr));
5074     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5075       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5076                 p2i(addr) - p2i(dlinfo.dli_saddr));
5077     } else if (dlinfo.dli_fbase != NULL) {
5078       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5079     } else {
5080       st->print("<absolute address>");
5081     }
5082     if (dlinfo.dli_fname != NULL) {
5083       st->print(" in %s", dlinfo.dli_fname);
5084     }
5085     if (dlinfo.dli_fbase != NULL) {
5086       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5087     }
5088     st->cr();
5089 
5090     if (Verbose) {
5091       // decode some bytes around the PC
5092       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5093       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5094       address       lowest = (address) dlinfo.dli_sname;
5095       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5096       if (begin < lowest)  begin = lowest;
5097       Dl_info dlinfo2;
5098       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5099           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5100         end = (address) dlinfo2.dli_saddr;
5101       }
5102       Disassembler::decode(begin, end, st);
5103     }
5104     return true;
5105   }
5106   return false;
5107 }
5108 
5109 ////////////////////////////////////////////////////////////////////////////////
5110 // misc
5111 
5112 // This does not do anything on Linux. This is basically a hook for being
5113 // able to use structured exception handling (thread-local exception filters)
5114 // on, e.g., Win32.
5115 void
5116 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5117                          JavaCallArguments* args, Thread* thread) {
5118   f(value, method, args, thread);
5119 }
5120 
5121 void os::print_statistics() {
5122 }
5123 
5124 bool os::message_box(const char* title, const char* message) {
5125   int i;
5126   fdStream err(defaultStream::error_fd());
5127   for (i = 0; i < 78; i++) err.print_raw("=");
5128   err.cr();
5129   err.print_raw_cr(title);
5130   for (i = 0; i < 78; i++) err.print_raw("-");
5131   err.cr();
5132   err.print_raw_cr(message);
5133   for (i = 0; i < 78; i++) err.print_raw("=");
5134   err.cr();
5135 
5136   char buf[16];
5137   // Prevent process from exiting upon "read error" without consuming all CPU
5138   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5139 
5140   return buf[0] == 'y' || buf[0] == 'Y';
5141 }
5142 
5143 int os::stat(const char *path, struct stat *sbuf) {
5144   char pathbuf[MAX_PATH];
5145   if (strlen(path) > MAX_PATH - 1) {
5146     errno = ENAMETOOLONG;
5147     return -1;
5148   }
5149   os::native_path(strcpy(pathbuf, path));
5150   return ::stat(pathbuf, sbuf);
5151 }
5152 
5153 // Is a (classpath) directory empty?
5154 bool os::dir_is_empty(const char* path) {
5155   DIR *dir = NULL;
5156   struct dirent *ptr;
5157 
5158   dir = opendir(path);
5159   if (dir == NULL) return true;
5160 
5161   // Scan the directory
5162   bool result = true;
5163   char buf[sizeof(struct dirent) + MAX_PATH];
5164   while (result && (ptr = ::readdir(dir)) != NULL) {
5165     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5166       result = false;
5167     }
5168   }
5169   closedir(dir);
5170   return result;
5171 }
5172 
5173 // This code originates from JDK's sysOpen and open64_w
5174 // from src/solaris/hpi/src/system_md.c
5175 
5176 int os::open(const char *path, int oflag, int mode) {
5177   if (strlen(path) > MAX_PATH - 1) {
5178     errno = ENAMETOOLONG;
5179     return -1;
5180   }
5181 
5182   // All file descriptors that are opened in the Java process and not
5183   // specifically destined for a subprocess should have the close-on-exec
5184   // flag set.  If we don't set it, then careless 3rd party native code
5185   // might fork and exec without closing all appropriate file descriptors
5186   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5187   // turn might:
5188   //
5189   // - cause end-of-file to fail to be detected on some file
5190   //   descriptors, resulting in mysterious hangs, or
5191   //
5192   // - might cause an fopen in the subprocess to fail on a system
5193   //   suffering from bug 1085341.
5194   //
5195   // (Yes, the default setting of the close-on-exec flag is a Unix
5196   // design flaw)
5197   //
5198   // See:
5199   // 1085341: 32-bit stdio routines should support file descriptors >255
5200   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5201   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5202   //
5203   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5204   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5205   // because it saves a system call and removes a small window where the flag
5206   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5207   // and we fall back to using FD_CLOEXEC (see below).
5208 #ifdef O_CLOEXEC
5209   oflag |= O_CLOEXEC;
5210 #endif
5211 
5212   int fd = ::open64(path, oflag, mode);
5213   if (fd == -1) return -1;
5214 
5215   //If the open succeeded, the file might still be a directory
5216   {
5217     struct stat64 buf64;
5218     int ret = ::fstat64(fd, &buf64);
5219     int st_mode = buf64.st_mode;
5220 
5221     if (ret != -1) {
5222       if ((st_mode & S_IFMT) == S_IFDIR) {
5223         errno = EISDIR;
5224         ::close(fd);
5225         return -1;
5226       }
5227     } else {
5228       ::close(fd);
5229       return -1;
5230     }
5231   }
5232 
5233 #ifdef FD_CLOEXEC
5234   // Validate that the use of the O_CLOEXEC flag on open above worked.
5235   // With recent kernels, we will perform this check exactly once.
5236   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5237   if (!O_CLOEXEC_is_known_to_work) {
5238     int flags = ::fcntl(fd, F_GETFD);
5239     if (flags != -1) {
5240       if ((flags & FD_CLOEXEC) != 0)
5241         O_CLOEXEC_is_known_to_work = 1;
5242       else
5243         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5244     }
5245   }
5246 #endif
5247 
5248   return fd;
5249 }
5250 
5251 
5252 // create binary file, rewriting existing file if required
5253 int os::create_binary_file(const char* path, bool rewrite_existing) {
5254   int oflags = O_WRONLY | O_CREAT;
5255   if (!rewrite_existing) {
5256     oflags |= O_EXCL;
5257   }
5258   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5259 }
5260 
5261 // return current position of file pointer
5262 jlong os::current_file_offset(int fd) {
5263   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5264 }
5265 
5266 // move file pointer to the specified offset
5267 jlong os::seek_to_file_offset(int fd, jlong offset) {
5268   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5269 }
5270 
5271 // This code originates from JDK's sysAvailable
5272 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5273 
5274 int os::available(int fd, jlong *bytes) {
5275   jlong cur, end;
5276   int mode;
5277   struct stat64 buf64;
5278 
5279   if (::fstat64(fd, &buf64) >= 0) {
5280     mode = buf64.st_mode;
5281     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5282       int n;
5283       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5284         *bytes = n;
5285         return 1;
5286       }
5287     }
5288   }
5289   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5290     return 0;
5291   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5292     return 0;
5293   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5294     return 0;
5295   }
5296   *bytes = end - cur;
5297   return 1;
5298 }
5299 
5300 // Map a block of memory.
5301 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5302                         char *addr, size_t bytes, bool read_only,
5303                         bool allow_exec) {
5304   int prot;
5305   int flags = MAP_PRIVATE;
5306 
5307   if (read_only) {
5308     prot = PROT_READ;
5309   } else {
5310     prot = PROT_READ | PROT_WRITE;
5311   }
5312 
5313   if (allow_exec) {
5314     prot |= PROT_EXEC;
5315   }
5316 
5317   if (addr != NULL) {
5318     flags |= MAP_FIXED;
5319   }
5320 
5321   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5322                                      fd, file_offset);
5323   if (mapped_address == MAP_FAILED) {
5324     return NULL;
5325   }
5326   return mapped_address;
5327 }
5328 
5329 
5330 // Remap a block of memory.
5331 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5332                           char *addr, size_t bytes, bool read_only,
5333                           bool allow_exec) {
5334   // same as map_memory() on this OS
5335   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5336                         allow_exec);
5337 }
5338 
5339 
5340 // Unmap a block of memory.
5341 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5342   return munmap(addr, bytes) == 0;
5343 }
5344 
5345 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5346 
5347 static clockid_t thread_cpu_clockid(Thread* thread) {
5348   pthread_t tid = thread->osthread()->pthread_id();
5349   clockid_t clockid;
5350 
5351   // Get thread clockid
5352   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5353   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5354   return clockid;
5355 }
5356 
5357 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5358 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5359 // of a thread.
5360 //
5361 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5362 // the fast estimate available on the platform.
5363 
5364 jlong os::current_thread_cpu_time() {
5365   if (os::Linux::supports_fast_thread_cpu_time()) {
5366     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5367   } else {
5368     // return user + sys since the cost is the same
5369     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5370   }
5371 }
5372 
5373 jlong os::thread_cpu_time(Thread* thread) {
5374   // consistent with what current_thread_cpu_time() returns
5375   if (os::Linux::supports_fast_thread_cpu_time()) {
5376     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5377   } else {
5378     return slow_thread_cpu_time(thread, true /* user + sys */);
5379   }
5380 }
5381 
5382 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5383   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5384     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5385   } else {
5386     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5387   }
5388 }
5389 
5390 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5391   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5392     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5393   } else {
5394     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5395   }
5396 }
5397 
5398 //  -1 on error.
5399 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5400   pid_t  tid = thread->osthread()->thread_id();
5401   char *s;
5402   char stat[2048];
5403   int statlen;
5404   char proc_name[64];
5405   int count;
5406   long sys_time, user_time;
5407   char cdummy;
5408   int idummy;
5409   long ldummy;
5410   FILE *fp;
5411 
5412   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5413   fp = fopen(proc_name, "r");
5414   if (fp == NULL) return -1;
5415   statlen = fread(stat, 1, 2047, fp);
5416   stat[statlen] = '\0';
5417   fclose(fp);
5418 
5419   // Skip pid and the command string. Note that we could be dealing with
5420   // weird command names, e.g. user could decide to rename java launcher
5421   // to "java 1.4.2 :)", then the stat file would look like
5422   //                1234 (java 1.4.2 :)) R ... ...
5423   // We don't really need to know the command string, just find the last
5424   // occurrence of ")" and then start parsing from there. See bug 4726580.
5425   s = strrchr(stat, ')');
5426   if (s == NULL) return -1;
5427 
5428   // Skip blank chars
5429   do { s++; } while (s && isspace(*s));
5430 
5431   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5432                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5433                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5434                  &user_time, &sys_time);
5435   if (count != 13) return -1;
5436   if (user_sys_cpu_time) {
5437     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5438   } else {
5439     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5440   }
5441 }
5442 
5443 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5444   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5445   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5446   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5447   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5448 }
5449 
5450 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5451   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5452   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5453   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5454   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5455 }
5456 
5457 bool os::is_thread_cpu_time_supported() {
5458   return true;
5459 }
5460 
5461 // System loadavg support.  Returns -1 if load average cannot be obtained.
5462 // Linux doesn't yet have a (official) notion of processor sets,
5463 // so just return the system wide load average.
5464 int os::loadavg(double loadavg[], int nelem) {
5465   return ::getloadavg(loadavg, nelem);
5466 }
5467 
5468 void os::pause() {
5469   char filename[MAX_PATH];
5470   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5471     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5472   } else {
5473     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5474   }
5475 
5476   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5477   if (fd != -1) {
5478     struct stat buf;
5479     ::close(fd);
5480     while (::stat(filename, &buf) == 0) {
5481       (void)::poll(NULL, 0, 100);
5482     }
5483   } else {
5484     jio_fprintf(stderr,
5485                 "Could not open pause file '%s', continuing immediately.\n", filename);
5486   }
5487 }
5488 
5489 
5490 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5491 // comment paragraphs are worth repeating here:
5492 //
5493 // Assumption:
5494 //    Only one parker can exist on an event, which is why we allocate
5495 //    them per-thread. Multiple unparkers can coexist.
5496 //
5497 // _Event serves as a restricted-range semaphore.
5498 //   -1 : thread is blocked, i.e. there is a waiter
5499 //    0 : neutral: thread is running or ready,
5500 //        could have been signaled after a wait started
5501 //    1 : signaled - thread is running or ready
5502 //
5503 
5504 // utility to compute the abstime argument to timedwait:
5505 // millis is the relative timeout time
5506 // abstime will be the absolute timeout time
5507 // TODO: replace compute_abstime() with unpackTime()
5508 
5509 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5510   if (millis < 0)  millis = 0;
5511 
5512   jlong seconds = millis / 1000;
5513   millis %= 1000;
5514   if (seconds > 50000000) { // see man cond_timedwait(3T)
5515     seconds = 50000000;
5516   }
5517 
5518   if (os::supports_monotonic_clock()) {
5519     struct timespec now;
5520     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5521     assert_status(status == 0, status, "clock_gettime");
5522     abstime->tv_sec = now.tv_sec  + seconds;
5523     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5524     if (nanos >= NANOSECS_PER_SEC) {
5525       abstime->tv_sec += 1;
5526       nanos -= NANOSECS_PER_SEC;
5527     }
5528     abstime->tv_nsec = nanos;
5529   } else {
5530     struct timeval now;
5531     int status = gettimeofday(&now, NULL);
5532     assert(status == 0, "gettimeofday");
5533     abstime->tv_sec = now.tv_sec  + seconds;
5534     long usec = now.tv_usec + millis * 1000;
5535     if (usec >= 1000000) {
5536       abstime->tv_sec += 1;
5537       usec -= 1000000;
5538     }
5539     abstime->tv_nsec = usec * 1000;
5540   }
5541   return abstime;
5542 }
5543 
5544 void os::PlatformEvent::park() {       // AKA "down()"
5545   // Transitions for _Event:
5546   //   -1 => -1 : illegal
5547   //    1 =>  0 : pass - return immediately
5548   //    0 => -1 : block; then set _Event to 0 before returning
5549 
5550   // Invariant: Only the thread associated with the Event/PlatformEvent
5551   // may call park().
5552   // TODO: assert that _Assoc != NULL or _Assoc == Self
5553   assert(_nParked == 0, "invariant");
5554 
5555   int v;
5556   for (;;) {
5557     v = _Event;
5558     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5559   }
5560   guarantee(v >= 0, "invariant");
5561   if (v == 0) {
5562     // Do this the hard way by blocking ...
5563     int status = pthread_mutex_lock(_mutex);
5564     assert_status(status == 0, status, "mutex_lock");
5565     guarantee(_nParked == 0, "invariant");
5566     ++_nParked;
5567     while (_Event < 0) {
5568       status = pthread_cond_wait(_cond, _mutex);
5569       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5570       // Treat this the same as if the wait was interrupted
5571       if (status == ETIME) { status = EINTR; }
5572       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5573     }
5574     --_nParked;
5575 
5576     _Event = 0;
5577     status = pthread_mutex_unlock(_mutex);
5578     assert_status(status == 0, status, "mutex_unlock");
5579     // Paranoia to ensure our locked and lock-free paths interact
5580     // correctly with each other.
5581     OrderAccess::fence();
5582   }
5583   guarantee(_Event >= 0, "invariant");
5584 }
5585 
5586 int os::PlatformEvent::park(jlong millis) {
5587   // Transitions for _Event:
5588   //   -1 => -1 : illegal
5589   //    1 =>  0 : pass - return immediately
5590   //    0 => -1 : block; then set _Event to 0 before returning
5591 
5592   guarantee(_nParked == 0, "invariant");
5593 
5594   int v;
5595   for (;;) {
5596     v = _Event;
5597     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5598   }
5599   guarantee(v >= 0, "invariant");
5600   if (v != 0) return OS_OK;
5601 
5602   // We do this the hard way, by blocking the thread.
5603   // Consider enforcing a minimum timeout value.
5604   struct timespec abst;
5605   compute_abstime(&abst, millis);
5606 
5607   int ret = OS_TIMEOUT;
5608   int status = pthread_mutex_lock(_mutex);
5609   assert_status(status == 0, status, "mutex_lock");
5610   guarantee(_nParked == 0, "invariant");
5611   ++_nParked;
5612 
5613   // Object.wait(timo) will return because of
5614   // (a) notification
5615   // (b) timeout
5616   // (c) thread.interrupt
5617   //
5618   // Thread.interrupt and object.notify{All} both call Event::set.
5619   // That is, we treat thread.interrupt as a special case of notification.
5620   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5621   // We assume all ETIME returns are valid.
5622   //
5623   // TODO: properly differentiate simultaneous notify+interrupt.
5624   // In that case, we should propagate the notify to another waiter.
5625 
5626   while (_Event < 0) {
5627     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5628     assert_status(status == 0 || status == EINTR ||
5629                   status == ETIME || status == ETIMEDOUT,
5630                   status, "cond_timedwait");
5631     if (!FilterSpuriousWakeups) break;                 // previous semantics
5632     if (status == ETIME || status == ETIMEDOUT) break;
5633     // We consume and ignore EINTR and spurious wakeups.
5634   }
5635   --_nParked;
5636   if (_Event >= 0) {
5637     ret = OS_OK;
5638   }
5639   _Event = 0;
5640   status = pthread_mutex_unlock(_mutex);
5641   assert_status(status == 0, status, "mutex_unlock");
5642   assert(_nParked == 0, "invariant");
5643   // Paranoia to ensure our locked and lock-free paths interact
5644   // correctly with each other.
5645   OrderAccess::fence();
5646   return ret;
5647 }
5648 
5649 void os::PlatformEvent::unpark() {
5650   // Transitions for _Event:
5651   //    0 => 1 : just return
5652   //    1 => 1 : just return
5653   //   -1 => either 0 or 1; must signal target thread
5654   //         That is, we can safely transition _Event from -1 to either
5655   //         0 or 1.
5656   // See also: "Semaphores in Plan 9" by Mullender & Cox
5657   //
5658   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5659   // that it will take two back-to-back park() calls for the owning
5660   // thread to block. This has the benefit of forcing a spurious return
5661   // from the first park() call after an unpark() call which will help
5662   // shake out uses of park() and unpark() without condition variables.
5663 
5664   if (Atomic::xchg(1, &_Event) >= 0) return;
5665 
5666   // Wait for the thread associated with the event to vacate
5667   int status = pthread_mutex_lock(_mutex);
5668   assert_status(status == 0, status, "mutex_lock");
5669   int AnyWaiters = _nParked;
5670   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5671   status = pthread_mutex_unlock(_mutex);
5672   assert_status(status == 0, status, "mutex_unlock");
5673   if (AnyWaiters != 0) {
5674     // Note that we signal() *after* dropping the lock for "immortal" Events.
5675     // This is safe and avoids a common class of  futile wakeups.  In rare
5676     // circumstances this can cause a thread to return prematurely from
5677     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5678     // will simply re-test the condition and re-park itself.
5679     // This provides particular benefit if the underlying platform does not
5680     // provide wait morphing.
5681     status = pthread_cond_signal(_cond);
5682     assert_status(status == 0, status, "cond_signal");
5683   }
5684 }
5685 
5686 
5687 // JSR166
5688 // -------------------------------------------------------
5689 
5690 // The solaris and linux implementations of park/unpark are fairly
5691 // conservative for now, but can be improved. They currently use a
5692 // mutex/condvar pair, plus a a count.
5693 // Park decrements count if > 0, else does a condvar wait.  Unpark
5694 // sets count to 1 and signals condvar.  Only one thread ever waits
5695 // on the condvar. Contention seen when trying to park implies that someone
5696 // is unparking you, so don't wait. And spurious returns are fine, so there
5697 // is no need to track notifications.
5698 
5699 // This code is common to linux and solaris and will be moved to a
5700 // common place in dolphin.
5701 //
5702 // The passed in time value is either a relative time in nanoseconds
5703 // or an absolute time in milliseconds. Either way it has to be unpacked
5704 // into suitable seconds and nanoseconds components and stored in the
5705 // given timespec structure.
5706 // Given time is a 64-bit value and the time_t used in the timespec is only
5707 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5708 // overflow if times way in the future are given. Further on Solaris versions
5709 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5710 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5711 // As it will be 28 years before "now + 100000000" will overflow we can
5712 // ignore overflow and just impose a hard-limit on seconds using the value
5713 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5714 // years from "now".
5715 
5716 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5717   assert(time > 0, "convertTime");
5718   time_t max_secs = 0;
5719 
5720   if (!os::supports_monotonic_clock() || isAbsolute) {
5721     struct timeval now;
5722     int status = gettimeofday(&now, NULL);
5723     assert(status == 0, "gettimeofday");
5724 
5725     max_secs = now.tv_sec + MAX_SECS;
5726 
5727     if (isAbsolute) {
5728       jlong secs = time / 1000;
5729       if (secs > max_secs) {
5730         absTime->tv_sec = max_secs;
5731       } else {
5732         absTime->tv_sec = secs;
5733       }
5734       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5735     } else {
5736       jlong secs = time / NANOSECS_PER_SEC;
5737       if (secs >= MAX_SECS) {
5738         absTime->tv_sec = max_secs;
5739         absTime->tv_nsec = 0;
5740       } else {
5741         absTime->tv_sec = now.tv_sec + secs;
5742         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5743         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5744           absTime->tv_nsec -= NANOSECS_PER_SEC;
5745           ++absTime->tv_sec; // note: this must be <= max_secs
5746         }
5747       }
5748     }
5749   } else {
5750     // must be relative using monotonic clock
5751     struct timespec now;
5752     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5753     assert_status(status == 0, status, "clock_gettime");
5754     max_secs = now.tv_sec + MAX_SECS;
5755     jlong secs = time / NANOSECS_PER_SEC;
5756     if (secs >= MAX_SECS) {
5757       absTime->tv_sec = max_secs;
5758       absTime->tv_nsec = 0;
5759     } else {
5760       absTime->tv_sec = now.tv_sec + secs;
5761       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5762       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5763         absTime->tv_nsec -= NANOSECS_PER_SEC;
5764         ++absTime->tv_sec; // note: this must be <= max_secs
5765       }
5766     }
5767   }
5768   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5769   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5770   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5771   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5772 }
5773 
5774 void Parker::park(bool isAbsolute, jlong time) {
5775   // Ideally we'd do something useful while spinning, such
5776   // as calling unpackTime().
5777 
5778   // Optional fast-path check:
5779   // Return immediately if a permit is available.
5780   // We depend on Atomic::xchg() having full barrier semantics
5781   // since we are doing a lock-free update to _counter.
5782   if (Atomic::xchg(0, &_counter) > 0) return;
5783 
5784   Thread* thread = Thread::current();
5785   assert(thread->is_Java_thread(), "Must be JavaThread");
5786   JavaThread *jt = (JavaThread *)thread;
5787 
5788   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5789   // Check interrupt before trying to wait
5790   if (Thread::is_interrupted(thread, false)) {
5791     return;
5792   }
5793 
5794   // Next, demultiplex/decode time arguments
5795   timespec absTime;
5796   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5797     return;
5798   }
5799   if (time > 0) {
5800     unpackTime(&absTime, isAbsolute, time);
5801   }
5802 
5803 
5804   // Enter safepoint region
5805   // Beware of deadlocks such as 6317397.
5806   // The per-thread Parker:: mutex is a classic leaf-lock.
5807   // In particular a thread must never block on the Threads_lock while
5808   // holding the Parker:: mutex.  If safepoints are pending both the
5809   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5810   ThreadBlockInVM tbivm(jt);
5811 
5812   // Don't wait if cannot get lock since interference arises from
5813   // unblocking.  Also. check interrupt before trying wait
5814   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5815     return;
5816   }
5817 
5818   int status;
5819   if (_counter > 0)  { // no wait needed
5820     _counter = 0;
5821     status = pthread_mutex_unlock(_mutex);
5822     assert_status(status == 0, status, "invariant");
5823     // Paranoia to ensure our locked and lock-free paths interact
5824     // correctly with each other and Java-level accesses.
5825     OrderAccess::fence();
5826     return;
5827   }
5828 
5829 #ifdef ASSERT
5830   // Don't catch signals while blocked; let the running threads have the signals.
5831   // (This allows a debugger to break into the running thread.)
5832   sigset_t oldsigs;
5833   sigemptyset(&oldsigs);
5834   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5835   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5836 #endif
5837 
5838   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5839   jt->set_suspend_equivalent();
5840   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5841 
5842   assert(_cur_index == -1, "invariant");
5843   if (time == 0) {
5844     _cur_index = REL_INDEX; // arbitrary choice when not timed
5845     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5846   } else {
5847     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5848     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5849   }
5850   _cur_index = -1;
5851   assert_status(status == 0 || status == EINTR ||
5852                 status == ETIME || status == ETIMEDOUT,
5853                 status, "cond_timedwait");
5854 
5855 #ifdef ASSERT
5856   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5857 #endif
5858 
5859   _counter = 0;
5860   status = pthread_mutex_unlock(_mutex);
5861   assert_status(status == 0, status, "invariant");
5862   // Paranoia to ensure our locked and lock-free paths interact
5863   // correctly with each other and Java-level accesses.
5864   OrderAccess::fence();
5865 
5866   // If externally suspended while waiting, re-suspend
5867   if (jt->handle_special_suspend_equivalent_condition()) {
5868     jt->java_suspend_self();
5869   }
5870 }
5871 
5872 void Parker::unpark() {
5873   int status = pthread_mutex_lock(_mutex);
5874   assert_status(status == 0, status, "invariant");
5875   const int s = _counter;
5876   _counter = 1;
5877   // must capture correct index before unlocking
5878   int index = _cur_index;
5879   status = pthread_mutex_unlock(_mutex);
5880   assert_status(status == 0, status, "invariant");
5881   if (s < 1 && index != -1) {
5882     // thread is definitely parked
5883     status = pthread_cond_signal(&_cond[index]);
5884     assert_status(status == 0, status, "invariant");
5885   }
5886 }
5887 
5888 
5889 extern char** environ;
5890 
5891 // Run the specified command in a separate process. Return its exit value,
5892 // or -1 on failure (e.g. can't fork a new process).
5893 // Unlike system(), this function can be called from signal handler. It
5894 // doesn't block SIGINT et al.
5895 int os::fork_and_exec(char* cmd) {
5896   const char * argv[4] = {"sh", "-c", cmd, NULL};
5897 
5898   pid_t pid = fork();
5899 
5900   if (pid < 0) {
5901     // fork failed
5902     return -1;
5903 
5904   } else if (pid == 0) {
5905     // child process
5906 
5907     execve("/bin/sh", (char* const*)argv, environ);
5908 
5909     // execve failed
5910     _exit(-1);
5911 
5912   } else  {
5913     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5914     // care about the actual exit code, for now.
5915 
5916     int status;
5917 
5918     // Wait for the child process to exit.  This returns immediately if
5919     // the child has already exited. */
5920     while (waitpid(pid, &status, 0) < 0) {
5921       switch (errno) {
5922       case ECHILD: return 0;
5923       case EINTR: break;
5924       default: return -1;
5925       }
5926     }
5927 
5928     if (WIFEXITED(status)) {
5929       // The child exited normally; get its exit code.
5930       return WEXITSTATUS(status);
5931     } else if (WIFSIGNALED(status)) {
5932       // The child exited because of a signal
5933       // The best value to return is 0x80 + signal number,
5934       // because that is what all Unix shells do, and because
5935       // it allows callers to distinguish between process exit and
5936       // process death by signal.
5937       return 0x80 + WTERMSIG(status);
5938     } else {
5939       // Unknown exit code; pass it through
5940       return status;
5941     }
5942   }
5943 }
5944 
5945 // is_headless_jre()
5946 //
5947 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5948 // in order to report if we are running in a headless jre
5949 //
5950 // Since JDK8 xawt/libmawt.so was moved into the same directory
5951 // as libawt.so, and renamed libawt_xawt.so
5952 //
5953 bool os::is_headless_jre() {
5954   struct stat statbuf;
5955   char buf[MAXPATHLEN];
5956   char libmawtpath[MAXPATHLEN];
5957   const char *xawtstr  = "/xawt/libmawt.so";
5958   const char *new_xawtstr = "/libawt_xawt.so";
5959   char *p;
5960 
5961   // Get path to libjvm.so
5962   os::jvm_path(buf, sizeof(buf));
5963 
5964   // Get rid of libjvm.so
5965   p = strrchr(buf, '/');
5966   if (p == NULL) {
5967     return false;
5968   } else {
5969     *p = '\0';
5970   }
5971 
5972   // Get rid of client or server
5973   p = strrchr(buf, '/');
5974   if (p == NULL) {
5975     return false;
5976   } else {
5977     *p = '\0';
5978   }
5979 
5980   // check xawt/libmawt.so
5981   strcpy(libmawtpath, buf);
5982   strcat(libmawtpath, xawtstr);
5983   if (::stat(libmawtpath, &statbuf) == 0) return false;
5984 
5985   // check libawt_xawt.so
5986   strcpy(libmawtpath, buf);
5987   strcat(libmawtpath, new_xawtstr);
5988   if (::stat(libmawtpath, &statbuf) == 0) return false;
5989 
5990   return true;
5991 }
5992 
5993 // Get the default path to the core file
5994 // Returns the length of the string
5995 int os::get_core_path(char* buffer, size_t bufferSize) {
5996   /*
5997    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5998    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5999    */
6000   const int core_pattern_len = 129;
6001   char core_pattern[core_pattern_len] = {0};
6002 
6003   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
6004   if (core_pattern_file == -1) {
6005     return -1;
6006   }
6007 
6008   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
6009   ::close(core_pattern_file);
6010   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
6011     return -1;
6012   }
6013   if (core_pattern[ret-1] == '\n') {
6014     core_pattern[ret-1] = '\0';
6015   } else {
6016     core_pattern[ret] = '\0';
6017   }
6018 
6019   char *pid_pos = strstr(core_pattern, "%p");
6020   int written;
6021 
6022   if (core_pattern[0] == '/') {
6023     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
6024   } else {
6025     char cwd[PATH_MAX];
6026 
6027     const char* p = get_current_directory(cwd, PATH_MAX);
6028     if (p == NULL) {
6029       return -1;
6030     }
6031 
6032     if (core_pattern[0] == '|') {
6033       written = jio_snprintf(buffer, bufferSize,
6034                              "\"%s\" (or dumping to %s/core.%d)",
6035                              &core_pattern[1], p, current_process_id());
6036     } else {
6037       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6038     }
6039   }
6040 
6041   if (written < 0) {
6042     return -1;
6043   }
6044 
6045   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6046     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6047 
6048     if (core_uses_pid_file != -1) {
6049       char core_uses_pid = 0;
6050       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6051       ::close(core_uses_pid_file);
6052 
6053       if (core_uses_pid == '1') {
6054         jio_snprintf(buffer + written, bufferSize - written,
6055                                           ".%d", current_process_id());
6056       }
6057     }
6058   }
6059 
6060   return strlen(buffer);
6061 }
6062 
6063 bool os::start_debugging(char *buf, int buflen) {
6064   int len = (int)strlen(buf);
6065   char *p = &buf[len];
6066 
6067   jio_snprintf(p, buflen-len,
6068                "\n\n"
6069                "Do you want to debug the problem?\n\n"
6070                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6071                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6072                "Otherwise, press RETURN to abort...",
6073                os::current_process_id(), os::current_process_id(),
6074                os::current_thread_id(), os::current_thread_id());
6075 
6076   bool yes = os::message_box("Unexpected Error", buf);
6077 
6078   if (yes) {
6079     // yes, user asked VM to launch debugger
6080     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6081                  os::current_process_id(), os::current_process_id());
6082 
6083     os::fork_and_exec(buf);
6084     yes = false;
6085   }
6086   return yes;
6087 }
6088 
6089 
6090 // Java/Compiler thread:
6091 //
6092 //   Low memory addresses
6093 // P0 +------------------------+
6094 //    |                        |\  Java thread created by VM does not have glibc
6095 //    |    glibc guard page    | - guard page, attached Java thread usually has
6096 //    |                        |/  1 page glibc guard.
6097 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6098 //    |                        |\
6099 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6100 //    |                        |/
6101 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6102 //    |                        |\
6103 //    |      Normal Stack      | -
6104 //    |                        |/
6105 // P2 +------------------------+ Thread::stack_base()
6106 //
6107 // Non-Java thread:
6108 //
6109 //   Low memory addresses
6110 // P0 +------------------------+
6111 //    |                        |\
6112 //    |  glibc guard page      | - usually 1 page
6113 //    |                        |/
6114 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6115 //    |                        |\
6116 //    |      Normal Stack      | -
6117 //    |                        |/
6118 // P2 +------------------------+ Thread::stack_base()
6119 //
6120 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6121 //    returned from pthread_attr_getstack().
6122 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6123 //    of the stack size given in pthread_attr. We work around this for
6124 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6125 //
6126 #ifndef ZERO
6127 static void current_stack_region(address * bottom, size_t * size) {
6128   if (os::Linux::is_initial_thread()) {
6129     // initial thread needs special handling because pthread_getattr_np()
6130     // may return bogus value.
6131     *bottom = os::Linux::initial_thread_stack_bottom();
6132     *size   = os::Linux::initial_thread_stack_size();
6133   } else {
6134     pthread_attr_t attr;
6135 
6136     int rslt = pthread_getattr_np(pthread_self(), &attr);
6137 
6138     // JVM needs to know exact stack location, abort if it fails
6139     if (rslt != 0) {
6140       if (rslt == ENOMEM) {
6141         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6142       } else {
6143         fatal("pthread_getattr_np failed with errno = %d", rslt);
6144       }
6145     }
6146 
6147     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6148       fatal("Cannot locate current stack attributes!");
6149     }
6150 
6151     // Work around NPTL stack guard error.
6152     size_t guard_size = 0;
6153     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6154     if (rslt != 0) {
6155       fatal("pthread_attr_getguardsize failed with errno = %d", rslt);
6156     }
6157     *bottom += guard_size;
6158     *size   -= guard_size;
6159 
6160     pthread_attr_destroy(&attr);
6161 
6162   }
6163   assert(os::current_stack_pointer() >= *bottom &&
6164          os::current_stack_pointer() < *bottom + *size, "just checking");
6165 }
6166 
6167 address os::current_stack_base() {
6168   address bottom;
6169   size_t size;
6170   current_stack_region(&bottom, &size);
6171   return (bottom + size);
6172 }
6173 
6174 size_t os::current_stack_size() {
6175   // This stack size includes the usable stack and HotSpot guard pages
6176   // (for the threads that have Hotspot guard pages).
6177   address bottom;
6178   size_t size;
6179   current_stack_region(&bottom, &size);
6180   return size;
6181 }
6182 #endif
6183 
6184 static inline struct timespec get_mtime(const char* filename) {
6185   struct stat st;
6186   int ret = os::stat(filename, &st);
6187   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6188   return st.st_mtim;
6189 }
6190 
6191 int os::compare_file_modified_times(const char* file1, const char* file2) {
6192   struct timespec filetime1 = get_mtime(file1);
6193   struct timespec filetime2 = get_mtime(file2);
6194   int diff = filetime1.tv_sec - filetime2.tv_sec;
6195   if (diff == 0) {
6196     return filetime1.tv_nsec - filetime2.tv_nsec;
6197   }
6198   return diff;
6199 }
6200 
6201 /////////////// Unit tests ///////////////
6202 
6203 #ifndef PRODUCT
6204 
6205 #define test_log(...)              \
6206   do {                             \
6207     if (VerboseInternalVMTests) {  \
6208       tty->print_cr(__VA_ARGS__);  \
6209       tty->flush();                \
6210     }                              \
6211   } while (false)
6212 
6213 class TestReserveMemorySpecial : AllStatic {
6214  public:
6215   static void small_page_write(void* addr, size_t size) {
6216     size_t page_size = os::vm_page_size();
6217 
6218     char* end = (char*)addr + size;
6219     for (char* p = (char*)addr; p < end; p += page_size) {
6220       *p = 1;
6221     }
6222   }
6223 
6224   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6225     if (!UseHugeTLBFS) {
6226       return;
6227     }
6228 
6229     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6230 
6231     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6232 
6233     if (addr != NULL) {
6234       small_page_write(addr, size);
6235 
6236       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6237     }
6238   }
6239 
6240   static void test_reserve_memory_special_huge_tlbfs_only() {
6241     if (!UseHugeTLBFS) {
6242       return;
6243     }
6244 
6245     size_t lp = os::large_page_size();
6246 
6247     for (size_t size = lp; size <= lp * 10; size += lp) {
6248       test_reserve_memory_special_huge_tlbfs_only(size);
6249     }
6250   }
6251 
6252   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6253     size_t lp = os::large_page_size();
6254     size_t ag = os::vm_allocation_granularity();
6255 
6256     // sizes to test
6257     const size_t sizes[] = {
6258       lp, lp + ag, lp + lp / 2, lp * 2,
6259       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6260       lp * 10, lp * 10 + lp / 2
6261     };
6262     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6263 
6264     // For each size/alignment combination, we test three scenarios:
6265     // 1) with req_addr == NULL
6266     // 2) with a non-null req_addr at which we expect to successfully allocate
6267     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6268     //    expect the allocation to either fail or to ignore req_addr
6269 
6270     // Pre-allocate two areas; they shall be as large as the largest allocation
6271     //  and aligned to the largest alignment we will be testing.
6272     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6273     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6274       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6275       -1, 0);
6276     assert(mapping1 != MAP_FAILED, "should work");
6277 
6278     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6279       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6280       -1, 0);
6281     assert(mapping2 != MAP_FAILED, "should work");
6282 
6283     // Unmap the first mapping, but leave the second mapping intact: the first
6284     // mapping will serve as a value for a "good" req_addr (case 2). The second
6285     // mapping, still intact, as "bad" req_addr (case 3).
6286     ::munmap(mapping1, mapping_size);
6287 
6288     // Case 1
6289     test_log("%s, req_addr NULL:", __FUNCTION__);
6290     test_log("size            align           result");
6291 
6292     for (int i = 0; i < num_sizes; i++) {
6293       const size_t size = sizes[i];
6294       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6295         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6296         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6297                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6298         if (p != NULL) {
6299           assert(is_ptr_aligned(p, alignment), "must be");
6300           small_page_write(p, size);
6301           os::Linux::release_memory_special_huge_tlbfs(p, size);
6302         }
6303       }
6304     }
6305 
6306     // Case 2
6307     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6308     test_log("size            align           req_addr         result");
6309 
6310     for (int i = 0; i < num_sizes; i++) {
6311       const size_t size = sizes[i];
6312       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6313         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6314         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6315         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6316                  size, alignment, p2i(req_addr), p2i(p),
6317                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6318         if (p != NULL) {
6319           assert(p == req_addr, "must be");
6320           small_page_write(p, size);
6321           os::Linux::release_memory_special_huge_tlbfs(p, size);
6322         }
6323       }
6324     }
6325 
6326     // Case 3
6327     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6328     test_log("size            align           req_addr         result");
6329 
6330     for (int i = 0; i < num_sizes; i++) {
6331       const size_t size = sizes[i];
6332       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6333         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6334         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6335         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6336                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6337         // as the area around req_addr contains already existing mappings, the API should always
6338         // return NULL (as per contract, it cannot return another address)
6339         assert(p == NULL, "must be");
6340       }
6341     }
6342 
6343     ::munmap(mapping2, mapping_size);
6344 
6345   }
6346 
6347   static void test_reserve_memory_special_huge_tlbfs() {
6348     if (!UseHugeTLBFS) {
6349       return;
6350     }
6351 
6352     test_reserve_memory_special_huge_tlbfs_only();
6353     test_reserve_memory_special_huge_tlbfs_mixed();
6354   }
6355 
6356   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6357     if (!UseSHM) {
6358       return;
6359     }
6360 
6361     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6362 
6363     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6364 
6365     if (addr != NULL) {
6366       assert(is_ptr_aligned(addr, alignment), "Check");
6367       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6368 
6369       small_page_write(addr, size);
6370 
6371       os::Linux::release_memory_special_shm(addr, size);
6372     }
6373   }
6374 
6375   static void test_reserve_memory_special_shm() {
6376     size_t lp = os::large_page_size();
6377     size_t ag = os::vm_allocation_granularity();
6378 
6379     for (size_t size = ag; size < lp * 3; size += ag) {
6380       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6381         test_reserve_memory_special_shm(size, alignment);
6382       }
6383     }
6384   }
6385 
6386   static void test() {
6387     test_reserve_memory_special_huge_tlbfs();
6388     test_reserve_memory_special_shm();
6389   }
6390 };
6391 
6392 void TestReserveMemorySpecial_test() {
6393   TestReserveMemorySpecial::test();
6394 }
6395 
6396 #endif