/* * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2014, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // no precompiled headers #include "asm/macroAssembler.hpp" #include "classfile/classLoader.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "code/codeCache.hpp" #include "code/icBuffer.hpp" #include "code/vtableStubs.hpp" #include "code/nativeInst.hpp" #include "interpreter/interpreter.hpp" #include "jvm_linux.h" #include "memory/allocation.inline.hpp" #include "os_share_linux.hpp" #include "prims/jniFastGetField.hpp" #include "prims/jvm.h" #include "prims/jvm_misc.hpp" #include "runtime/arguments.hpp" #include "runtime/extendedPC.hpp" #include "runtime/frame.inline.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/java.hpp" #include "runtime/javaCalls.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/osThread.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/thread.inline.hpp" #include "runtime/timer.hpp" #include "utilities/events.hpp" #include "utilities/vmError.hpp" #ifdef BUILTIN_SIM #include "../../../../../../simulator/simulator.hpp" #endif // put OS-includes here # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include #ifdef BUILTIN_SIM #define REG_SP REG_RSP #define REG_PC REG_RIP #define REG_FP REG_RBP #define SPELL_REG_SP "rsp" #define SPELL_REG_FP "rbp" #else #define REG_FP 29 #define SPELL_REG_SP "sp" #define SPELL_REG_FP "x29" #endif address os::current_stack_pointer() { register void *esp __asm__ (SPELL_REG_SP); return (address) esp; } char* os::non_memory_address_word() { // Must never look like an address returned by reserve_memory, // even in its subfields (as defined by the CPU immediate fields, // if the CPU splits constants across multiple instructions). return (char*) 0xffffffffffff; } void os::initialize_thread(Thread *thr) { } address os::Linux::ucontext_get_pc(const ucontext_t * uc) { #ifdef BUILTIN_SIM return (address)uc->uc_mcontext.gregs[REG_PC]; #else return (address)uc->uc_mcontext.pc; #endif } void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) { #ifdef BUILTIN_SIM uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc; #else uc->uc_mcontext.pc = (intptr_t)pc; #endif } intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) { #ifdef BUILTIN_SIM return (intptr_t*)uc->uc_mcontext.gregs[REG_SP]; #else return (intptr_t*)uc->uc_mcontext.sp; #endif } intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) { #ifdef BUILTIN_SIM return (intptr_t*)uc->uc_mcontext.gregs[REG_FP]; #else return (intptr_t*)uc->uc_mcontext.regs[REG_FP]; #endif } // For Forte Analyzer AsyncGetCallTrace profiling support - thread // is currently interrupted by SIGPROF. // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal // frames. Currently we don't do that on Linux, so it's the same as // os::fetch_frame_from_context(). ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread, const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) { assert(thread != NULL, "just checking"); assert(ret_sp != NULL, "just checking"); assert(ret_fp != NULL, "just checking"); return os::fetch_frame_from_context(uc, ret_sp, ret_fp); } ExtendedPC os::fetch_frame_from_context(const void* ucVoid, intptr_t** ret_sp, intptr_t** ret_fp) { ExtendedPC epc; const ucontext_t* uc = (const ucontext_t*)ucVoid; if (uc != NULL) { epc = ExtendedPC(os::Linux::ucontext_get_pc(uc)); if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc); if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc); } else { // construct empty ExtendedPC for return value checking epc = ExtendedPC(NULL); if (ret_sp) *ret_sp = (intptr_t *)NULL; if (ret_fp) *ret_fp = (intptr_t *)NULL; } return epc; } frame os::fetch_frame_from_context(const void* ucVoid) { intptr_t* sp; intptr_t* fp; ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp); return frame(sp, fp, epc.pc()); } // By default, gcc always saves frame pointer rfp on this stack. This // may get turned off by -fomit-frame-pointer. frame os::get_sender_for_C_frame(frame* fr) { #ifdef BUILTIN_SIM return frame(fr->sender_sp(), fr->link(), fr->sender_pc()); #else return frame(fr->link(), fr->link(), fr->sender_pc()); #endif } intptr_t* _get_previous_fp() { register intptr_t **ebp __asm__ (SPELL_REG_FP); return (intptr_t*) *ebp; // we want what it points to. } frame os::current_frame() { intptr_t* fp = _get_previous_fp(); frame myframe((intptr_t*)os::current_stack_pointer(), (intptr_t*)fp, CAST_FROM_FN_PTR(address, os::current_frame)); if (os::is_first_C_frame(&myframe)) { // stack is not walkable return frame(); } else { return os::get_sender_for_C_frame(&myframe); } } // Utility functions // From IA32 System Programming Guide enum { trap_page_fault = 0xE }; #ifdef BUILTIN_SIM extern "C" void Fetch32PFI () ; extern "C" void Fetch32Resume () ; extern "C" void FetchNPFI () ; extern "C" void FetchNResume () ; #endif extern "C" JNIEXPORT int JVM_handle_linux_signal(int sig, siginfo_t* info, void* ucVoid, int abort_if_unrecognized) { ucontext_t* uc = (ucontext_t*) ucVoid; Thread* t = Thread::current_or_null_safe(); // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away // (no destructors can be run) os::WatcherThreadCrashProtection::check_crash_protection(sig, t); SignalHandlerMark shm(t); // Note: it's not uncommon that JNI code uses signal/sigset to install // then restore certain signal handler (e.g. to temporarily block SIGPIPE, // or have a SIGILL handler when detecting CPU type). When that happens, // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To // avoid unnecessary crash when libjsig is not preloaded, try handle signals // that do not require siginfo/ucontext first. if (sig == SIGPIPE || sig == SIGXFSZ) { // allow chained handler to go first if (os::Linux::chained_handler(sig, info, ucVoid)) { return true; } else { // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219 return true; } } JavaThread* thread = NULL; VMThread* vmthread = NULL; if (os::Linux::signal_handlers_are_installed) { if (t != NULL ){ if(t->is_Java_thread()) { thread = (JavaThread*)t; } else if(t->is_VM_thread()){ vmthread = (VMThread *)t; } } } /* NOTE: does not seem to work on linux. if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) { // can't decode this kind of signal info = NULL; } else { assert(sig == info->si_signo, "bad siginfo"); } */ // decide if this trap can be handled by a stub address stub = NULL; address pc = NULL; //%note os_trap_1 if (info != NULL && uc != NULL && thread != NULL) { pc = (address) os::Linux::ucontext_get_pc(uc); #ifdef BUILTIN_SIM if (pc == (address) Fetch32PFI) { uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ; return 1 ; } if (pc == (address) FetchNPFI) { uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ; return 1 ; } #else if (StubRoutines::is_safefetch_fault(pc)) { os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc)); return 1; } #endif // Handle ALL stack overflow variations here if (sig == SIGSEGV) { address addr = (address) info->si_addr; // check if fault address is within thread stack if (thread->on_local_stack(addr)) { // stack overflow if (thread->in_stack_yellow_reserved_zone(addr)) { thread->disable_stack_yellow_reserved_zone(); if (thread->thread_state() == _thread_in_Java) { // Throw a stack overflow exception. Guard pages will be reenabled // while unwinding the stack. stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW); } else { // Thread was in the vm or native code. Return and try to finish. return 1; } } else if (thread->in_stack_red_zone(addr)) { // Fatal red zone violation. Disable the guard pages and fall through // to handle_unexpected_exception way down below. thread->disable_stack_red_zone(); tty->print_raw_cr("An irrecoverable stack overflow has occurred."); // This is a likely cause, but hard to verify. Let's just print // it as a hint. tty->print_raw_cr("Please check if any of your loaded .so files has " "enabled executable stack (see man page execstack(8))"); } else { // Accessing stack address below sp may cause SEGV if current // thread has MAP_GROWSDOWN stack. This should only happen when // current thread was created by user code with MAP_GROWSDOWN flag // and then attached to VM. See notes in os_linux.cpp. if (thread->osthread()->expanding_stack() == 0) { thread->osthread()->set_expanding_stack(); if (os::Linux::manually_expand_stack(thread, addr)) { thread->osthread()->clear_expanding_stack(); return 1; } thread->osthread()->clear_expanding_stack(); } else { fatal("recursive segv. expanding stack."); } } } } if (thread->thread_state() == _thread_in_Java) { // Java thread running in Java code => find exception handler if any // a fault inside compiled code, the interpreter, or a stub // Handle signal from NativeJump::patch_verified_entry(). if ((sig == SIGILL || sig == SIGTRAP) && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant()) { if (TraceTraps) { tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL"); } stub = SharedRuntime::get_handle_wrong_method_stub(); } else if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) { stub = SharedRuntime::get_poll_stub(pc); } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) { // BugId 4454115: A read from a MappedByteBuffer can fault // here if the underlying file has been truncated. // Do not crash the VM in such a case. CodeBlob* cb = CodeCache::find_blob_unsafe(pc); CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL; if (nm != NULL && nm->has_unsafe_access()) { address next_pc = pc + NativeCall::instruction_size; stub = SharedRuntime::handle_unsafe_access(thread, next_pc); } } else if (sig == SIGFPE && (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) { stub = SharedRuntime:: continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO); } else if (sig == SIGSEGV && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) { // Determination of interpreter/vtable stub/compiled code null exception stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL); } } else if (thread->thread_state() == _thread_in_vm && sig == SIGBUS && /* info->si_code == BUS_OBJERR && */ thread->doing_unsafe_access()) { address next_pc = pc + NativeCall::instruction_size; stub = SharedRuntime::handle_unsafe_access(thread, next_pc); } // jni_fast_GetField can trap at certain pc's if a GC kicks in // and the heap gets shrunk before the field access. if ((sig == SIGSEGV) || (sig == SIGBUS)) { address addr = JNI_FastGetField::find_slowcase_pc(pc); if (addr != (address)-1) { stub = addr; } } // Check to see if we caught the safepoint code in the // process of write protecting the memory serialization page. // It write enables the page immediately after protecting it // so we can just return to retry the write. if ((sig == SIGSEGV) && os::is_memory_serialize_page(thread, (address) info->si_addr)) { // Block current thread until the memory serialize page permission restored. os::block_on_serialize_page_trap(); return true; } } if (stub != NULL) { // save all thread context in case we need to restore it if (thread != NULL) thread->set_saved_exception_pc(pc); os::Linux::ucontext_set_pc(uc, stub); return true; } // signal-chaining if (os::Linux::chained_handler(sig, info, ucVoid)) { return true; } if (!abort_if_unrecognized) { // caller wants another chance, so give it to him return false; } if (pc == NULL && uc != NULL) { pc = os::Linux::ucontext_get_pc(uc); } // unmask current signal sigset_t newset; sigemptyset(&newset); sigaddset(&newset, sig); sigprocmask(SIG_UNBLOCK, &newset, NULL); VMError::report_and_die(t, sig, pc, info, ucVoid); ShouldNotReachHere(); return true; // Mute compiler } void os::Linux::init_thread_fpu_state(void) { } int os::Linux::get_fpu_control_word(void) { return 0; } void os::Linux::set_fpu_control_word(int fpu_control) { } // Check that the linux kernel version is 2.4 or higher since earlier // versions do not support SSE without patches. bool os::supports_sse() { return true; } bool os::is_allocatable(size_t bytes) { return true; } //////////////////////////////////////////////////////////////////////////////// // thread stack size_t os::Posix::_compiler_thread_min_stack_allowed = 64 * K; size_t os::Posix::_java_thread_min_stack_allowed = 64 * K; size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K; // return default stack size for thr_type size_t os::Posix::default_stack_size(os::ThreadType thr_type) { // default stack size (compiler thread needs larger stack) size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M); return s; } ///////////////////////////////////////////////////////////////////////////// // helper functions for fatal error handler void os::print_context(outputStream *st, const void *context) { if (context == NULL) return; const ucontext_t *uc = (const ucontext_t*)context; st->print_cr("Registers:"); #ifdef BUILTIN_SIM st->print( "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]); st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]); st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]); st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]); st->cr(); st->print( "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]); st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]); st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]); st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]); st->cr(); st->print( "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]); st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]); st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]); st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]); st->cr(); st->print( "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]); st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]); st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]); st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]); st->cr(); st->print( "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]); st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]); st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]); st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]); st->cr(); st->print(" TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]); st->cr(); #else for (int r = 0; r < 31; r++) st->print_cr( "R%d=" INTPTR_FORMAT, r, (size_t)uc->uc_mcontext.regs[r]); #endif st->cr(); intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc); st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp)); print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t)); st->cr(); // Note: it may be unsafe to inspect memory near pc. For example, pc may // point to garbage if entry point in an nmethod is corrupted. Leave // this at the end, and hope for the best. address pc = os::Linux::ucontext_get_pc(uc); st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc)); print_hex_dump(st, pc - 32, pc + 32, sizeof(char)); } void os::print_register_info(outputStream *st, const void *context) { if (context == NULL) return; const ucontext_t *uc = (const ucontext_t*)context; st->print_cr("Register to memory mapping:"); st->cr(); // this is horrendously verbose but the layout of the registers in the // context does not match how we defined our abstract Register set, so // we can't just iterate through the gregs area // this is only for the "general purpose" registers #ifdef BUILTIN_SIM st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]); st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]); st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]); st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]); st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]); st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]); st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]); st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]); st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]); st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]); st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]); st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]); st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]); st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]); st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]); st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]); #else for (int r = 0; r < 31; r++) st->print_cr( "R%d=" INTPTR_FORMAT, r, (uintptr_t)uc->uc_mcontext.regs[r]); #endif st->cr(); } void os::setup_fpu() { } #ifndef PRODUCT void os::verify_stack_alignment() { assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment"); } #endif int os::extra_bang_size_in_bytes() { // AArch64 does not require the additional stack bang. return 0; } extern "C" { int SpinPause() { return 0; } void _Copy_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) { if (from > to) { jshort *end = from + count; while (from < end) *(to++) = *(from++); } else if (from < to) { jshort *end = from; from += count - 1; to += count - 1; while (from >= end) *(to--) = *(from--); } } void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) { if (from > to) { jint *end = from + count; while (from < end) *(to++) = *(from++); } else if (from < to) { jint *end = from; from += count - 1; to += count - 1; while (from >= end) *(to--) = *(from--); } } void _Copy_conjoint_jlongs_atomic(jlong* from, jlong* to, size_t count) { if (from > to) { jlong *end = from + count; while (from < end) os::atomic_copy64(from++, to++); } else if (from < to) { jlong *end = from; from += count - 1; to += count - 1; while (from >= end) os::atomic_copy64(from--, to--); } } void _Copy_arrayof_conjoint_bytes(HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count); } void _Copy_arrayof_conjoint_jshorts(HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count * 2); } void _Copy_arrayof_conjoint_jints(HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count * 4); } void _Copy_arrayof_conjoint_jlongs(HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count * 8); } };