/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ // This file is available under and governed by the GNU General Public // License version 2 only, as published by the Free Software Foundation. // However, the following notice accompanied the original version of this // file: // //--------------------------------------------------------------------------------- // // Little Color Management System // Copyright (c) 1998-2016 Marti Maria Saguer // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // //--------------------------------------------------------------------------------- // #include "lcms2_internal.h" // Tag Serialization ----------------------------------------------------------------------------- // This file implements every single tag and tag type as described in the ICC spec. Some types // have been deprecated, like ncl and Data. There is no implementation for those types as there // are no profiles holding them. The programmer can also extend this list by defining his own types // by using the appropriate plug-in. There are three types of plug ins regarding that. First type // allows to define new tags using any existing type. Next plug-in type allows to define new types // and the third one is very specific: allows to extend the number of elements in the multiprocessing // elements special type. //-------------------------------------------------------------------------------------------------- // Some broken types #define cmsCorbisBrokenXYZtype ((cmsTagTypeSignature) 0x17A505B8) #define cmsMonacoBrokenCurveType ((cmsTagTypeSignature) 0x9478ee00) // This is the linked list that keeps track of the defined types typedef struct _cmsTagTypeLinkedList_st { cmsTagTypeHandler Handler; struct _cmsTagTypeLinkedList_st* Next; } _cmsTagTypeLinkedList; // Some macros to define callbacks. #define READ_FN(x) Type_##x##_Read #define WRITE_FN(x) Type_##x##_Write #define FREE_FN(x) Type_##x##_Free #define DUP_FN(x) Type_##x##_Dup // Helper macro to define a handler. Callbacks do have a fixed naming convention. #define TYPE_HANDLER(t, x) { (t), READ_FN(x), WRITE_FN(x), DUP_FN(x), FREE_FN(x), NULL, 0 } // Helper macro to define a MPE handler. Callbacks do have a fixed naming convention #define TYPE_MPE_HANDLER(t, x) { (t), READ_FN(x), WRITE_FN(x), GenericMPEdup, GenericMPEfree, NULL, 0 } // Register a new type handler. This routine is shared between normal types and MPE. LinkedList points to the optional list head static cmsBool RegisterTypesPlugin(cmsContext id, cmsPluginBase* Data, _cmsMemoryClient pos) { cmsPluginTagType* Plugin = (cmsPluginTagType*) Data; _cmsTagTypePluginChunkType* ctx = ( _cmsTagTypePluginChunkType*) _cmsContextGetClientChunk(id, pos); _cmsTagTypeLinkedList *pt; // Calling the function with NULL as plug-in would unregister the plug in. if (Data == NULL) { // There is no need to set free the memory, as pool is destroyed as a whole. ctx ->TagTypes = NULL; return TRUE; } // Registering happens in plug-in memory pool. pt = (_cmsTagTypeLinkedList*) _cmsPluginMalloc(id, sizeof(_cmsTagTypeLinkedList)); if (pt == NULL) return FALSE; pt ->Handler = Plugin ->Handler; pt ->Next = ctx ->TagTypes; ctx ->TagTypes = pt; return TRUE; } // Return handler for a given type or NULL if not found. Shared between normal types and MPE. It first tries the additons // made by plug-ins and then the built-in defaults. static cmsTagTypeHandler* GetHandler(cmsTagTypeSignature sig, _cmsTagTypeLinkedList* PluginLinkedList, _cmsTagTypeLinkedList* DefaultLinkedList) { _cmsTagTypeLinkedList* pt; for (pt = PluginLinkedList; pt != NULL; pt = pt ->Next) { if (sig == pt -> Handler.Signature) return &pt ->Handler; } for (pt = DefaultLinkedList; pt != NULL; pt = pt ->Next) { if (sig == pt -> Handler.Signature) return &pt ->Handler; } return NULL; } // Auxiliary to convert UTF-32 to UTF-16 in some cases static cmsBool _cmsWriteWCharArray(cmsIOHANDLER* io, cmsUInt32Number n, const wchar_t* Array) { cmsUInt32Number i; _cmsAssert(io != NULL); _cmsAssert(!(Array == NULL && n > 0)); for (i=0; i < n; i++) { if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) Array[i])) return FALSE; } return TRUE; } // Auxiliary to read an array of wchar_t static cmsBool _cmsReadWCharArray(cmsIOHANDLER* io, cmsUInt32Number n, wchar_t* Array) { cmsUInt32Number i; cmsUInt16Number tmp; _cmsAssert(io != NULL); for (i=0; i < n; i++) { if (Array != NULL) { if (!_cmsReadUInt16Number(io, &tmp)) return FALSE; Array[i] = (wchar_t) tmp; } else { if (!_cmsReadUInt16Number(io, NULL)) return FALSE; } } return TRUE; } // To deal with position tables typedef cmsBool (* PositionTableEntryFn)(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Cargo, cmsUInt32Number n, cmsUInt32Number SizeOfTag); // Helper function to deal with position tables as described in ICC spec 4.3 // A table of n elements is readed, where first comes n records containing offsets and sizes and // then a block containing the data itself. This allows to reuse same data in more than one entry static cmsBool ReadPositionTable(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number Count, cmsUInt32Number BaseOffset, void *Cargo, PositionTableEntryFn ElementFn) { cmsUInt32Number i; cmsUInt32Number *ElementOffsets = NULL, *ElementSizes = NULL; // Let's take the offsets to each element ElementOffsets = (cmsUInt32Number *) _cmsCalloc(io ->ContextID, Count, sizeof(cmsUInt32Number)); if (ElementOffsets == NULL) goto Error; ElementSizes = (cmsUInt32Number *) _cmsCalloc(io ->ContextID, Count, sizeof(cmsUInt32Number)); if (ElementSizes == NULL) goto Error; for (i=0; i < Count; i++) { if (!_cmsReadUInt32Number(io, &ElementOffsets[i])) goto Error; if (!_cmsReadUInt32Number(io, &ElementSizes[i])) goto Error; ElementOffsets[i] += BaseOffset; } // Seek to each element and read it for (i=0; i < Count; i++) { if (!io -> Seek(io, ElementOffsets[i])) goto Error; // This is the reader callback if (!ElementFn(self, io, Cargo, i, ElementSizes[i])) goto Error; } // Success if (ElementOffsets != NULL) _cmsFree(io ->ContextID, ElementOffsets); if (ElementSizes != NULL) _cmsFree(io ->ContextID, ElementSizes); return TRUE; Error: if (ElementOffsets != NULL) _cmsFree(io ->ContextID, ElementOffsets); if (ElementSizes != NULL) _cmsFree(io ->ContextID, ElementSizes); return FALSE; } // Same as anterior, but for write position tables static cmsBool WritePositionTable(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number SizeOfTag, cmsUInt32Number Count, cmsUInt32Number BaseOffset, void *Cargo, PositionTableEntryFn ElementFn) { cmsUInt32Number i; cmsUInt32Number DirectoryPos, CurrentPos, Before; cmsUInt32Number *ElementOffsets = NULL, *ElementSizes = NULL; // Create table ElementOffsets = (cmsUInt32Number *) _cmsCalloc(io ->ContextID, Count, sizeof(cmsUInt32Number)); if (ElementOffsets == NULL) goto Error; ElementSizes = (cmsUInt32Number *) _cmsCalloc(io ->ContextID, Count, sizeof(cmsUInt32Number)); if (ElementSizes == NULL) goto Error; // Keep starting position of curve offsets DirectoryPos = io ->Tell(io); // Write a fake directory to be filled latter on for (i=0; i < Count; i++) { if (!_cmsWriteUInt32Number(io, 0)) goto Error; // Offset if (!_cmsWriteUInt32Number(io, 0)) goto Error; // size } // Write each element. Keep track of the size as well. for (i=0; i < Count; i++) { Before = io ->Tell(io); ElementOffsets[i] = Before - BaseOffset; // Callback to write... if (!ElementFn(self, io, Cargo, i, SizeOfTag)) goto Error; // Now the size ElementSizes[i] = io ->Tell(io) - Before; } // Write the directory CurrentPos = io ->Tell(io); if (!io ->Seek(io, DirectoryPos)) goto Error; for (i=0; i < Count; i++) { if (!_cmsWriteUInt32Number(io, ElementOffsets[i])) goto Error; if (!_cmsWriteUInt32Number(io, ElementSizes[i])) goto Error; } if (!io ->Seek(io, CurrentPos)) goto Error; if (ElementOffsets != NULL) _cmsFree(io ->ContextID, ElementOffsets); if (ElementSizes != NULL) _cmsFree(io ->ContextID, ElementSizes); return TRUE; Error: if (ElementOffsets != NULL) _cmsFree(io ->ContextID, ElementOffsets); if (ElementSizes != NULL) _cmsFree(io ->ContextID, ElementSizes); return FALSE; } // ******************************************************************************** // Type XYZ. Only one value is allowed // ******************************************************************************** //The XYZType contains an array of three encoded values for the XYZ tristimulus //values. Tristimulus values must be non-negative. The signed encoding allows for //implementation optimizations by minimizing the number of fixed formats. static void *Type_XYZ_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsCIEXYZ* xyz; *nItems = 0; xyz = (cmsCIEXYZ*) _cmsMallocZero(self ->ContextID, sizeof(cmsCIEXYZ)); if (xyz == NULL) return NULL; if (!_cmsReadXYZNumber(io, xyz)) { _cmsFree(self ->ContextID, xyz); return NULL; } *nItems = 1; return (void*) xyz; cmsUNUSED_PARAMETER(SizeOfTag); } static cmsBool Type_XYZ_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { return _cmsWriteXYZNumber(io, (cmsCIEXYZ*) Ptr); cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void* Type_XYZ_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return _cmsDupMem(self ->ContextID, Ptr, sizeof(cmsCIEXYZ)); cmsUNUSED_PARAMETER(n); } static void Type_XYZ_Free(struct _cms_typehandler_struct* self, void *Ptr) { _cmsFree(self ->ContextID, Ptr); } static cmsTagTypeSignature DecideXYZtype(cmsFloat64Number ICCVersion, const void *Data) { return cmsSigXYZType; cmsUNUSED_PARAMETER(ICCVersion); cmsUNUSED_PARAMETER(Data); } // ******************************************************************************** // Type chromaticity. Only one value is allowed // ******************************************************************************** // The chromaticity tag type provides basic chromaticity data and type of // phosphors or colorants of a monitor to applications and utilities. static void *Type_Chromaticity_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsCIExyYTRIPLE* chrm; cmsUInt16Number nChans, Table; *nItems = 0; chrm = (cmsCIExyYTRIPLE*) _cmsMallocZero(self ->ContextID, sizeof(cmsCIExyYTRIPLE)); if (chrm == NULL) return NULL; if (!_cmsReadUInt16Number(io, &nChans)) goto Error; // Let's recover from a bug introduced in early versions of lcms1 if (nChans == 0 && SizeOfTag == 32) { if (!_cmsReadUInt16Number(io, NULL)) goto Error; if (!_cmsReadUInt16Number(io, &nChans)) goto Error; } if (nChans != 3) goto Error; if (!_cmsReadUInt16Number(io, &Table)) goto Error; if (!_cmsRead15Fixed16Number(io, &chrm ->Red.x)) goto Error; if (!_cmsRead15Fixed16Number(io, &chrm ->Red.y)) goto Error; chrm ->Red.Y = 1.0; if (!_cmsRead15Fixed16Number(io, &chrm ->Green.x)) goto Error; if (!_cmsRead15Fixed16Number(io, &chrm ->Green.y)) goto Error; chrm ->Green.Y = 1.0; if (!_cmsRead15Fixed16Number(io, &chrm ->Blue.x)) goto Error; if (!_cmsRead15Fixed16Number(io, &chrm ->Blue.y)) goto Error; chrm ->Blue.Y = 1.0; *nItems = 1; return (void*) chrm; Error: _cmsFree(self ->ContextID, (void*) chrm); return NULL; cmsUNUSED_PARAMETER(SizeOfTag); } static cmsBool SaveOneChromaticity(cmsFloat64Number x, cmsFloat64Number y, cmsIOHANDLER* io) { if (!_cmsWriteUInt32Number(io, _cmsDoubleTo15Fixed16(x))) return FALSE; if (!_cmsWriteUInt32Number(io, _cmsDoubleTo15Fixed16(y))) return FALSE; return TRUE; } static cmsBool Type_Chromaticity_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsCIExyYTRIPLE* chrm = (cmsCIExyYTRIPLE*) Ptr; if (!_cmsWriteUInt16Number(io, 3)) return FALSE; // nChannels if (!_cmsWriteUInt16Number(io, 0)) return FALSE; // Table if (!SaveOneChromaticity(chrm -> Red.x, chrm -> Red.y, io)) return FALSE; if (!SaveOneChromaticity(chrm -> Green.x, chrm -> Green.y, io)) return FALSE; if (!SaveOneChromaticity(chrm -> Blue.x, chrm -> Blue.y, io)) return FALSE; return TRUE; cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void* Type_Chromaticity_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return _cmsDupMem(self ->ContextID, Ptr, sizeof(cmsCIExyYTRIPLE)); cmsUNUSED_PARAMETER(n); } static void Type_Chromaticity_Free(struct _cms_typehandler_struct* self, void* Ptr) { _cmsFree(self ->ContextID, Ptr); } // ******************************************************************************** // Type cmsSigColorantOrderType // ******************************************************************************** // This is an optional tag which specifies the laydown order in which colorants will // be printed on an n-colorant device. The laydown order may be the same as the // channel generation order listed in the colorantTableTag or the channel order of a // colour space such as CMYK, in which case this tag is not needed. When this is not // the case (for example, ink-towers sometimes use the order KCMY), this tag may be // used to specify the laydown order of the colorants. static void *Type_ColorantOrderType_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsUInt8Number* ColorantOrder; cmsUInt32Number Count; *nItems = 0; if (!_cmsReadUInt32Number(io, &Count)) return NULL; if (Count > cmsMAXCHANNELS) return NULL; ColorantOrder = (cmsUInt8Number*) _cmsCalloc(self ->ContextID, cmsMAXCHANNELS, sizeof(cmsUInt8Number)); if (ColorantOrder == NULL) return NULL; // We use FF as end marker memset(ColorantOrder, 0xFF, cmsMAXCHANNELS * sizeof(cmsUInt8Number)); if (io ->Read(io, ColorantOrder, sizeof(cmsUInt8Number), Count) != Count) { _cmsFree(self ->ContextID, (void*) ColorantOrder); return NULL; } *nItems = 1; return (void*) ColorantOrder; cmsUNUSED_PARAMETER(SizeOfTag); } static cmsBool Type_ColorantOrderType_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsUInt8Number* ColorantOrder = (cmsUInt8Number*) Ptr; cmsUInt32Number i, sz, Count; // Get the length for (Count=i=0; i < cmsMAXCHANNELS; i++) { if (ColorantOrder[i] != 0xFF) Count++; } if (!_cmsWriteUInt32Number(io, Count)) return FALSE; sz = Count * sizeof(cmsUInt8Number); if (!io -> Write(io, sz, ColorantOrder)) return FALSE; return TRUE; cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void* Type_ColorantOrderType_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return _cmsDupMem(self ->ContextID, Ptr, cmsMAXCHANNELS * sizeof(cmsUInt8Number)); cmsUNUSED_PARAMETER(n); } static void Type_ColorantOrderType_Free(struct _cms_typehandler_struct* self, void* Ptr) { _cmsFree(self ->ContextID, Ptr); } // ******************************************************************************** // Type cmsSigS15Fixed16ArrayType // ******************************************************************************** // This type represents an array of generic 4-byte/32-bit fixed point quantity. // The number of values is determined from the size of the tag. static void *Type_S15Fixed16_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsFloat64Number* array_double; cmsUInt32Number i, n; *nItems = 0; n = SizeOfTag / sizeof(cmsUInt32Number); array_double = (cmsFloat64Number*) _cmsCalloc(self ->ContextID, n, sizeof(cmsFloat64Number)); if (array_double == NULL) return NULL; for (i=0; i < n; i++) { if (!_cmsRead15Fixed16Number(io, &array_double[i])) { _cmsFree(self ->ContextID, array_double); return NULL; } } *nItems = n; return (void*) array_double; } static cmsBool Type_S15Fixed16_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsFloat64Number* Value = (cmsFloat64Number*) Ptr; cmsUInt32Number i; for (i=0; i < nItems; i++) { if (!_cmsWrite15Fixed16Number(io, Value[i])) return FALSE; } return TRUE; cmsUNUSED_PARAMETER(self); } static void* Type_S15Fixed16_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return _cmsDupMem(self ->ContextID, Ptr, n * sizeof(cmsFloat64Number)); } static void Type_S15Fixed16_Free(struct _cms_typehandler_struct* self, void* Ptr) { _cmsFree(self ->ContextID, Ptr); } // ******************************************************************************** // Type cmsSigU16Fixed16ArrayType // ******************************************************************************** // This type represents an array of generic 4-byte/32-bit quantity. // The number of values is determined from the size of the tag. static void *Type_U16Fixed16_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsFloat64Number* array_double; cmsUInt32Number v; cmsUInt32Number i, n; *nItems = 0; n = SizeOfTag / sizeof(cmsUInt32Number); array_double = (cmsFloat64Number*) _cmsCalloc(self ->ContextID, n, sizeof(cmsFloat64Number)); if (array_double == NULL) return NULL; for (i=0; i < n; i++) { if (!_cmsReadUInt32Number(io, &v)) { _cmsFree(self ->ContextID, (void*) array_double); return NULL; } // Convert to cmsFloat64Number array_double[i] = (cmsFloat64Number) (v / 65536.0); } *nItems = n; return (void*) array_double; } static cmsBool Type_U16Fixed16_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsFloat64Number* Value = (cmsFloat64Number*) Ptr; cmsUInt32Number i; for (i=0; i < nItems; i++) { cmsUInt32Number v = (cmsUInt32Number) floor(Value[i]*65536.0 + 0.5); if (!_cmsWriteUInt32Number(io, v)) return FALSE; } return TRUE; cmsUNUSED_PARAMETER(self); } static void* Type_U16Fixed16_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return _cmsDupMem(self ->ContextID, Ptr, n * sizeof(cmsFloat64Number)); } static void Type_U16Fixed16_Free(struct _cms_typehandler_struct* self, void* Ptr) { _cmsFree(self ->ContextID, Ptr); } // ******************************************************************************** // Type cmsSigSignatureType // ******************************************************************************** // // The signatureType contains a four-byte sequence, Sequences of less than four // characters are padded at the end with spaces, 20h. // Typically this type is used for registered tags that can be displayed on many // development systems as a sequence of four characters. static void *Type_Signature_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsSignature* SigPtr = (cmsSignature*) _cmsMalloc(self ->ContextID, sizeof(cmsSignature)); if (SigPtr == NULL) return NULL; if (!_cmsReadUInt32Number(io, SigPtr)) return NULL; *nItems = 1; return SigPtr; cmsUNUSED_PARAMETER(SizeOfTag); } static cmsBool Type_Signature_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsSignature* SigPtr = (cmsSignature*) Ptr; return _cmsWriteUInt32Number(io, *SigPtr); cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void* Type_Signature_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return _cmsDupMem(self ->ContextID, Ptr, n * sizeof(cmsSignature)); } static void Type_Signature_Free(struct _cms_typehandler_struct* self, void* Ptr) { _cmsFree(self ->ContextID, Ptr); } // ******************************************************************************** // Type cmsSigTextType // ******************************************************************************** // // The textType is a simple text structure that contains a 7-bit ASCII text string. // The length of the string is obtained by subtracting 8 from the element size portion // of the tag itself. This string must be terminated with a 00h byte. static void *Type_Text_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { char* Text = NULL; cmsMLU* mlu = NULL; // Create a container mlu = cmsMLUalloc(self ->ContextID, 1); if (mlu == NULL) return NULL; *nItems = 0; // We need to store the "\0" at the end, so +1 if (SizeOfTag == UINT_MAX) goto Error; Text = (char*) _cmsMalloc(self ->ContextID, SizeOfTag + 1); if (Text == NULL) goto Error; if (io -> Read(io, Text, sizeof(char), SizeOfTag) != SizeOfTag) goto Error; // Make sure text is properly ended Text[SizeOfTag] = 0; *nItems = 1; // Keep the result if (!cmsMLUsetASCII(mlu, cmsNoLanguage, cmsNoCountry, Text)) goto Error; _cmsFree(self ->ContextID, Text); return (void*) mlu; Error: if (mlu != NULL) cmsMLUfree(mlu); if (Text != NULL) _cmsFree(self ->ContextID, Text); return NULL; } // The conversion implies to choose a language. So, we choose the actual language. static cmsBool Type_Text_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsMLU* mlu = (cmsMLU*) Ptr; cmsUInt32Number size; cmsBool rc; char* Text; // Get the size of the string. Note there is an extra "\0" at the end size = cmsMLUgetASCII(mlu, cmsNoLanguage, cmsNoCountry, NULL, 0); if (size == 0) return FALSE; // Cannot be zero! // Create memory Text = (char*) _cmsMalloc(self ->ContextID, size); if (Text == NULL) return FALSE; cmsMLUgetASCII(mlu, cmsNoLanguage, cmsNoCountry, Text, size); // Write it, including separator rc = io ->Write(io, size, Text); _cmsFree(self ->ContextID, Text); return rc; cmsUNUSED_PARAMETER(nItems); } static void* Type_Text_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return (void*) cmsMLUdup((cmsMLU*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_Text_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsMLU* mlu = (cmsMLU*) Ptr; cmsMLUfree(mlu); return; cmsUNUSED_PARAMETER(self); } static cmsTagTypeSignature DecideTextType(cmsFloat64Number ICCVersion, const void *Data) { if (ICCVersion >= 4.0) return cmsSigMultiLocalizedUnicodeType; return cmsSigTextType; cmsUNUSED_PARAMETER(Data); } // ******************************************************************************** // Type cmsSigDataType // ******************************************************************************** // General purpose data type static void *Type_Data_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsICCData* BinData; cmsUInt32Number LenOfData; *nItems = 0; if (SizeOfTag < sizeof(cmsUInt32Number)) return NULL; LenOfData = SizeOfTag - sizeof(cmsUInt32Number); if (LenOfData > INT_MAX) return NULL; BinData = (cmsICCData*) _cmsMalloc(self ->ContextID, sizeof(cmsICCData) + LenOfData - 1); if (BinData == NULL) return NULL; BinData ->len = LenOfData; if (!_cmsReadUInt32Number(io, &BinData->flag)) { _cmsFree(self ->ContextID, BinData); return NULL; } if (io -> Read(io, BinData ->data, sizeof(cmsUInt8Number), LenOfData) != LenOfData) { _cmsFree(self ->ContextID, BinData); return NULL; } *nItems = 1; return (void*) BinData; } static cmsBool Type_Data_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsICCData* BinData = (cmsICCData*) Ptr; if (!_cmsWriteUInt32Number(io, BinData ->flag)) return FALSE; return io ->Write(io, BinData ->len, BinData ->data); cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void* Type_Data_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { cmsICCData* BinData = (cmsICCData*) Ptr; return _cmsDupMem(self ->ContextID, Ptr, sizeof(cmsICCData) + BinData ->len - 1); cmsUNUSED_PARAMETER(n); } static void Type_Data_Free(struct _cms_typehandler_struct* self, void* Ptr) { _cmsFree(self ->ContextID, Ptr); } // ******************************************************************************** // Type cmsSigTextDescriptionType // ******************************************************************************** static void *Type_Text_Description_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { char* Text = NULL; cmsMLU* mlu = NULL; cmsUInt32Number AsciiCount; cmsUInt32Number i, UnicodeCode, UnicodeCount; cmsUInt16Number ScriptCodeCode, Dummy; cmsUInt8Number ScriptCodeCount; *nItems = 0; // One dword should be there if (SizeOfTag < sizeof(cmsUInt32Number)) return NULL; // Read len of ASCII if (!_cmsReadUInt32Number(io, &AsciiCount)) return NULL; SizeOfTag -= sizeof(cmsUInt32Number); // Check for size if (SizeOfTag < AsciiCount) return NULL; // All seems Ok, allocate the container mlu = cmsMLUalloc(self ->ContextID, 1); if (mlu == NULL) return NULL; // As many memory as size of tag Text = (char*) _cmsMalloc(self ->ContextID, AsciiCount + 1); if (Text == NULL) goto Error; // Read it if (io ->Read(io, Text, sizeof(char), AsciiCount) != AsciiCount) goto Error; SizeOfTag -= AsciiCount; // Make sure there is a terminator Text[AsciiCount] = 0; // Set the MLU entry. From here we can be tolerant to wrong types if (!cmsMLUsetASCII(mlu, cmsNoLanguage, cmsNoCountry, Text)) goto Error; _cmsFree(self ->ContextID, (void*) Text); Text = NULL; // Skip Unicode code if (SizeOfTag < 2* sizeof(cmsUInt32Number)) goto Done; if (!_cmsReadUInt32Number(io, &UnicodeCode)) goto Done; if (!_cmsReadUInt32Number(io, &UnicodeCount)) goto Done; SizeOfTag -= 2* sizeof(cmsUInt32Number); if (SizeOfTag < UnicodeCount*sizeof(cmsUInt16Number)) goto Done; for (i=0; i < UnicodeCount; i++) { if (!io ->Read(io, &Dummy, sizeof(cmsUInt16Number), 1)) goto Done; } SizeOfTag -= UnicodeCount*sizeof(cmsUInt16Number); // Skip ScriptCode code if present. Some buggy profiles does have less // data that stricttly required. We need to skip it as this type may come // embedded in other types. if (SizeOfTag >= sizeof(cmsUInt16Number) + sizeof(cmsUInt8Number) + 67) { if (!_cmsReadUInt16Number(io, &ScriptCodeCode)) goto Done; if (!_cmsReadUInt8Number(io, &ScriptCodeCount)) goto Done; // Skip rest of tag for (i=0; i < 67; i++) { if (!io ->Read(io, &Dummy, sizeof(cmsUInt8Number), 1)) goto Error; } } Done: *nItems = 1; return mlu; Error: if (Text) _cmsFree(self ->ContextID, (void*) Text); if (mlu) cmsMLUfree(mlu); return NULL; } // This tag can come IN UNALIGNED SIZE. In order to prevent issues, we force zeros on description to align it static cmsBool Type_Text_Description_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsMLU* mlu = (cmsMLU*) Ptr; char *Text = NULL; wchar_t *Wide = NULL; cmsUInt32Number len, len_text, len_tag_requirement, len_aligned; cmsBool rc = FALSE; char Filler[68]; // Used below for writting zeroes memset(Filler, 0, sizeof(Filler)); // Get the len of string len = cmsMLUgetASCII(mlu, cmsNoLanguage, cmsNoCountry, NULL, 0); // Specification ICC.1:2001-04 (v2.4.0): It has been found that textDescriptionType can contain misaligned data //(see clause 4.1 for the definition of “aligned”). Because the Unicode language // code and Unicode count immediately follow the ASCII description, their // alignment is not correct if the ASCII count is not a multiple of four. The // ScriptCode code is misaligned when the ASCII count is odd. Profile reading and // writing software must be written carefully in order to handle these alignment // problems. // // The above last sentence suggest to handle alignment issues in the // parser. The provided example (Table 69 on Page 60) makes this clear. // The padding only in the ASCII count is not sufficient for a aligned tag // size, with the same text size in ASCII and Unicode. // Null strings if (len <= 0) { Text = (char*) _cmsDupMem(self ->ContextID, "", sizeof(char)); Wide = (wchar_t*) _cmsDupMem(self ->ContextID, L"", sizeof(wchar_t)); } else { // Create independent buffers Text = (char*) _cmsCalloc(self ->ContextID, len, sizeof(char)); if (Text == NULL) goto Error; Wide = (wchar_t*) _cmsCalloc(self ->ContextID, len, sizeof(wchar_t)); if (Wide == NULL) goto Error; // Get both representations. cmsMLUgetASCII(mlu, cmsNoLanguage, cmsNoCountry, Text, len * sizeof(char)); cmsMLUgetWide(mlu, cmsNoLanguage, cmsNoCountry, Wide, len * sizeof(wchar_t)); } // Tell the real text len including the null terminator and padding len_text = (cmsUInt32Number) strlen(Text) + 1; // Compute an total tag size requirement len_tag_requirement = (8+4+len_text+4+4+2*len_text+2+1+67); len_aligned = _cmsALIGNLONG(len_tag_requirement); // * cmsUInt32Number count; * Description length // * cmsInt8Number desc[count] * NULL terminated ascii string // * cmsUInt32Number ucLangCode; * UniCode language code // * cmsUInt32Number ucCount; * UniCode description length // * cmsInt16Number ucDesc[ucCount];* The UniCode description // * cmsUInt16Number scCode; * ScriptCode code // * cmsUInt8Number scCount; * ScriptCode count // * cmsInt8Number scDesc[67]; * ScriptCode Description if (!_cmsWriteUInt32Number(io, len_text)) goto Error; if (!io ->Write(io, len_text, Text)) goto Error; if (!_cmsWriteUInt32Number(io, 0)) goto Error; // ucLanguageCode if (!_cmsWriteUInt32Number(io, len_text)) goto Error; // Note that in some compilers sizeof(cmsUInt16Number) != sizeof(wchar_t) if (!_cmsWriteWCharArray(io, len_text, Wide)) goto Error; // ScriptCode Code & count (unused) if (!_cmsWriteUInt16Number(io, 0)) goto Error; if (!_cmsWriteUInt8Number(io, 0)) goto Error; if (!io ->Write(io, 67, Filler)) goto Error; // possibly add pad at the end of tag if(len_aligned - len_tag_requirement > 0) if (!io ->Write(io, len_aligned - len_tag_requirement, Filler)) goto Error; rc = TRUE; Error: if (Text) _cmsFree(self ->ContextID, Text); if (Wide) _cmsFree(self ->ContextID, Wide); return rc; cmsUNUSED_PARAMETER(nItems); } static void* Type_Text_Description_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return (void*) cmsMLUdup((cmsMLU*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_Text_Description_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsMLU* mlu = (cmsMLU*) Ptr; cmsMLUfree(mlu); return; cmsUNUSED_PARAMETER(self); } static cmsTagTypeSignature DecideTextDescType(cmsFloat64Number ICCVersion, const void *Data) { if (ICCVersion >= 4.0) return cmsSigMultiLocalizedUnicodeType; return cmsSigTextDescriptionType; cmsUNUSED_PARAMETER(Data); } // ******************************************************************************** // Type cmsSigCurveType // ******************************************************************************** static void *Type_Curve_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsUInt32Number Count; cmsToneCurve* NewGamma; *nItems = 0; if (!_cmsReadUInt32Number(io, &Count)) return NULL; switch (Count) { case 0: // Linear. { cmsFloat64Number SingleGamma = 1.0; NewGamma = cmsBuildParametricToneCurve(self ->ContextID, 1, &SingleGamma); if (!NewGamma) return NULL; *nItems = 1; return NewGamma; } case 1: // Specified as the exponent of gamma function { cmsUInt16Number SingleGammaFixed; cmsFloat64Number SingleGamma; if (!_cmsReadUInt16Number(io, &SingleGammaFixed)) return NULL; SingleGamma = _cms8Fixed8toDouble(SingleGammaFixed); *nItems = 1; return cmsBuildParametricToneCurve(self ->ContextID, 1, &SingleGamma); } default: // Curve if (Count > 0x7FFF) return NULL; // This is to prevent bad guys for doing bad things NewGamma = cmsBuildTabulatedToneCurve16(self ->ContextID, Count, NULL); if (!NewGamma) return NULL; if (!_cmsReadUInt16Array(io, Count, NewGamma -> Table16)) return NULL; *nItems = 1; return NewGamma; } cmsUNUSED_PARAMETER(SizeOfTag); } static cmsBool Type_Curve_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsToneCurve* Curve = (cmsToneCurve*) Ptr; if (Curve ->nSegments == 1 && Curve ->Segments[0].Type == 1) { // Single gamma, preserve number cmsUInt16Number SingleGammaFixed = _cmsDoubleTo8Fixed8(Curve ->Segments[0].Params[0]); if (!_cmsWriteUInt32Number(io, 1)) return FALSE; if (!_cmsWriteUInt16Number(io, SingleGammaFixed)) return FALSE; return TRUE; } if (!_cmsWriteUInt32Number(io, Curve ->nEntries)) return FALSE; return _cmsWriteUInt16Array(io, Curve ->nEntries, Curve ->Table16); cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void* Type_Curve_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return (void*) cmsDupToneCurve((cmsToneCurve*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_Curve_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsToneCurve* gamma = (cmsToneCurve*) Ptr; cmsFreeToneCurve(gamma); return; cmsUNUSED_PARAMETER(self); } // ******************************************************************************** // Type cmsSigParametricCurveType // ******************************************************************************** // Decide which curve type to use on writting static cmsTagTypeSignature DecideCurveType(cmsFloat64Number ICCVersion, const void *Data) { cmsToneCurve* Curve = (cmsToneCurve*) Data; if (ICCVersion < 4.0) return cmsSigCurveType; if (Curve ->nSegments != 1) return cmsSigCurveType; // Only 1-segment curves can be saved as parametric if (Curve ->Segments[0].Type < 0) return cmsSigCurveType; // Only non-inverted curves if (Curve ->Segments[0].Type > 5) return cmsSigCurveType; // Only ICC parametric curves return cmsSigParametricCurveType; } static void *Type_ParametricCurve_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { static const int ParamsByType[] = { 1, 3, 4, 5, 7 }; cmsFloat64Number Params[10]; cmsUInt16Number Type; int i, n; cmsToneCurve* NewGamma; if (!_cmsReadUInt16Number(io, &Type)) return NULL; if (!_cmsReadUInt16Number(io, NULL)) return NULL; // Reserved if (Type > 4) { cmsSignalError(self->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unknown parametric curve type '%d'", Type); return NULL; } memset(Params, 0, sizeof(Params)); n = ParamsByType[Type]; for (i=0; i < n; i++) { if (!_cmsRead15Fixed16Number(io, &Params[i])) return NULL; } NewGamma = cmsBuildParametricToneCurve(self ->ContextID, Type+1, Params); *nItems = 1; return NewGamma; cmsUNUSED_PARAMETER(SizeOfTag); } static cmsBool Type_ParametricCurve_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsToneCurve* Curve = (cmsToneCurve*) Ptr; int i, nParams, typen; static const int ParamsByType[] = { 0, 1, 3, 4, 5, 7 }; typen = Curve -> Segments[0].Type; if (Curve ->nSegments > 1 || typen < 1) { cmsSignalError(self->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Multisegment or Inverted parametric curves cannot be written"); return FALSE; } if (typen > 5) { cmsSignalError(self->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unsupported parametric curve"); return FALSE; } nParams = ParamsByType[typen]; if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) (Curve ->Segments[0].Type - 1))) return FALSE; if (!_cmsWriteUInt16Number(io, 0)) return FALSE; // Reserved for (i=0; i < nParams; i++) { if (!_cmsWrite15Fixed16Number(io, Curve -> Segments[0].Params[i])) return FALSE; } return TRUE; cmsUNUSED_PARAMETER(nItems); } static void* Type_ParametricCurve_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return (void*) cmsDupToneCurve((cmsToneCurve*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_ParametricCurve_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsToneCurve* gamma = (cmsToneCurve*) Ptr; cmsFreeToneCurve(gamma); return; cmsUNUSED_PARAMETER(self); } // ******************************************************************************** // Type cmsSigDateTimeType // ******************************************************************************** // A 12-byte value representation of the time and date, where the byte usage is assigned // as specified in table 1. The actual values are encoded as 16-bit unsigned integers // (uInt16Number - see 5.1.6). // // All the dateTimeNumber values in a profile shall be in Coordinated Universal Time // (UTC, also known as GMT or ZULU Time). Profile writers are required to convert local // time to UTC when setting these values. Programmes that display these values may show // the dateTimeNumber as UTC, show the equivalent local time (at current locale), or // display both UTC and local versions of the dateTimeNumber. static void *Type_DateTime_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsDateTimeNumber timestamp; struct tm * NewDateTime; *nItems = 0; NewDateTime = (struct tm*) _cmsMalloc(self ->ContextID, sizeof(struct tm)); if (NewDateTime == NULL) return NULL; if (io->Read(io, ×tamp, sizeof(cmsDateTimeNumber), 1) != 1) return NULL; _cmsDecodeDateTimeNumber(×tamp, NewDateTime); *nItems = 1; return NewDateTime; cmsUNUSED_PARAMETER(SizeOfTag); } static cmsBool Type_DateTime_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { struct tm * DateTime = (struct tm*) Ptr; cmsDateTimeNumber timestamp; _cmsEncodeDateTimeNumber(×tamp, DateTime); if (!io ->Write(io, sizeof(cmsDateTimeNumber), ×tamp)) return FALSE; return TRUE; cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void* Type_DateTime_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return _cmsDupMem(self ->ContextID, Ptr, sizeof(struct tm)); cmsUNUSED_PARAMETER(n); } static void Type_DateTime_Free(struct _cms_typehandler_struct* self, void* Ptr) { _cmsFree(self ->ContextID, Ptr); } // ******************************************************************************** // Type icMeasurementType // ******************************************************************************** /* The measurementType information refers only to the internal profile data and is meant to provide profile makers an alternative to the default measurement specifications. */ static void *Type_Measurement_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsICCMeasurementConditions mc; memset(&mc, 0, sizeof(mc)); if (!_cmsReadUInt32Number(io, &mc.Observer)) return NULL; if (!_cmsReadXYZNumber(io, &mc.Backing)) return NULL; if (!_cmsReadUInt32Number(io, &mc.Geometry)) return NULL; if (!_cmsRead15Fixed16Number(io, &mc.Flare)) return NULL; if (!_cmsReadUInt32Number(io, &mc.IlluminantType)) return NULL; *nItems = 1; return _cmsDupMem(self ->ContextID, &mc, sizeof(cmsICCMeasurementConditions)); cmsUNUSED_PARAMETER(SizeOfTag); } static cmsBool Type_Measurement_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsICCMeasurementConditions* mc =(cmsICCMeasurementConditions*) Ptr; if (!_cmsWriteUInt32Number(io, mc->Observer)) return FALSE; if (!_cmsWriteXYZNumber(io, &mc->Backing)) return FALSE; if (!_cmsWriteUInt32Number(io, mc->Geometry)) return FALSE; if (!_cmsWrite15Fixed16Number(io, mc->Flare)) return FALSE; if (!_cmsWriteUInt32Number(io, mc->IlluminantType)) return FALSE; return TRUE; cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void* Type_Measurement_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return _cmsDupMem(self ->ContextID, Ptr, sizeof(cmsICCMeasurementConditions)); cmsUNUSED_PARAMETER(n); } static void Type_Measurement_Free(struct _cms_typehandler_struct* self, void* Ptr) { _cmsFree(self ->ContextID, Ptr); } // ******************************************************************************** // Type cmsSigMultiLocalizedUnicodeType // ******************************************************************************** // // Do NOT trust SizeOfTag as there is an issue on the definition of profileSequenceDescTag. See the TechNote from // Max Derhak and Rohit Patil about this: basically the size of the string table should be guessed and cannot be // taken from the size of tag if this tag is embedded as part of bigger structures (profileSequenceDescTag, for instance) // static void *Type_MLU_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsMLU* mlu; cmsUInt32Number Count, RecLen, NumOfWchar; cmsUInt32Number SizeOfHeader; cmsUInt32Number Len, Offset; cmsUInt32Number i; wchar_t* Block; cmsUInt32Number BeginOfThisString, EndOfThisString, LargestPosition; *nItems = 0; if (!_cmsReadUInt32Number(io, &Count)) return NULL; if (!_cmsReadUInt32Number(io, &RecLen)) return NULL; if (RecLen != 12) { cmsSignalError(self->ContextID, cmsERROR_UNKNOWN_EXTENSION, "multiLocalizedUnicodeType of len != 12 is not supported."); return NULL; } mlu = cmsMLUalloc(self ->ContextID, Count); if (mlu == NULL) return NULL; mlu ->UsedEntries = Count; SizeOfHeader = 12 * Count + sizeof(_cmsTagBase); LargestPosition = 0; for (i=0; i < Count; i++) { if (!_cmsReadUInt16Number(io, &mlu ->Entries[i].Language)) goto Error; if (!_cmsReadUInt16Number(io, &mlu ->Entries[i].Country)) goto Error; // Now deal with Len and offset. if (!_cmsReadUInt32Number(io, &Len)) goto Error; if (!_cmsReadUInt32Number(io, &Offset)) goto Error; // Check for overflow if (Offset < (SizeOfHeader + 8)) goto Error; // True begin of the string BeginOfThisString = Offset - SizeOfHeader - 8; // Ajust to wchar_t elements mlu ->Entries[i].Len = (Len * sizeof(wchar_t)) / sizeof(cmsUInt16Number); mlu ->Entries[i].StrW = (BeginOfThisString * sizeof(wchar_t)) / sizeof(cmsUInt16Number); // To guess maximum size, add offset + len EndOfThisString = BeginOfThisString + Len; if (EndOfThisString > LargestPosition) LargestPosition = EndOfThisString; } // Now read the remaining of tag and fill all strings. Subtract the directory SizeOfTag = (LargestPosition * sizeof(wchar_t)) / sizeof(cmsUInt16Number); if (SizeOfTag == 0) { Block = NULL; NumOfWchar = 0; } else { Block = (wchar_t*) _cmsMalloc(self ->ContextID, SizeOfTag); if (Block == NULL) goto Error; NumOfWchar = SizeOfTag / sizeof(wchar_t); if (!_cmsReadWCharArray(io, NumOfWchar, Block)) goto Error; } mlu ->MemPool = Block; mlu ->PoolSize = SizeOfTag; mlu ->PoolUsed = SizeOfTag; *nItems = 1; return (void*) mlu; Error: if (mlu) cmsMLUfree(mlu); return NULL; } static cmsBool Type_MLU_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsMLU* mlu =(cmsMLU*) Ptr; cmsUInt32Number HeaderSize; cmsUInt32Number Len, Offset; cmsUInt32Number i; if (Ptr == NULL) { // Empty placeholder if (!_cmsWriteUInt32Number(io, 0)) return FALSE; if (!_cmsWriteUInt32Number(io, 12)) return FALSE; return TRUE; } if (!_cmsWriteUInt32Number(io, mlu ->UsedEntries)) return FALSE; if (!_cmsWriteUInt32Number(io, 12)) return FALSE; HeaderSize = 12 * mlu ->UsedEntries + sizeof(_cmsTagBase); for (i=0; i < mlu ->UsedEntries; i++) { Len = mlu ->Entries[i].Len; Offset = mlu ->Entries[i].StrW; Len = (Len * sizeof(cmsUInt16Number)) / sizeof(wchar_t); Offset = (Offset * sizeof(cmsUInt16Number)) / sizeof(wchar_t) + HeaderSize + 8; if (!_cmsWriteUInt16Number(io, mlu ->Entries[i].Language)) return FALSE; if (!_cmsWriteUInt16Number(io, mlu ->Entries[i].Country)) return FALSE; if (!_cmsWriteUInt32Number(io, Len)) return FALSE; if (!_cmsWriteUInt32Number(io, Offset)) return FALSE; } if (!_cmsWriteWCharArray(io, mlu ->PoolUsed / sizeof(wchar_t), (wchar_t*) mlu ->MemPool)) return FALSE; return TRUE; cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void* Type_MLU_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return (void*) cmsMLUdup((cmsMLU*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_MLU_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsMLUfree((cmsMLU*) Ptr); return; cmsUNUSED_PARAMETER(self); } // ******************************************************************************** // Type cmsSigLut8Type // ******************************************************************************** // Decide which LUT type to use on writting static cmsTagTypeSignature DecideLUTtypeA2B(cmsFloat64Number ICCVersion, const void *Data) { cmsPipeline* Lut = (cmsPipeline*) Data; if (ICCVersion < 4.0) { if (Lut ->SaveAs8Bits) return cmsSigLut8Type; return cmsSigLut16Type; } else { return cmsSigLutAtoBType; } } static cmsTagTypeSignature DecideLUTtypeB2A(cmsFloat64Number ICCVersion, const void *Data) { cmsPipeline* Lut = (cmsPipeline*) Data; if (ICCVersion < 4.0) { if (Lut ->SaveAs8Bits) return cmsSigLut8Type; return cmsSigLut16Type; } else { return cmsSigLutBtoAType; } } /* This structure represents a colour transform using tables of 8-bit precision. This type contains four processing elements: a 3 by 3 matrix (which shall be the identity matrix unless the input colour space is XYZ), a set of one dimensional input tables, a multidimensional lookup table, and a set of one dimensional output tables. Data is processed using these elements via the following sequence: (matrix) -> (1d input tables) -> (multidimensional lookup table - CLUT) -> (1d output tables) Byte Position Field Length (bytes) Content Encoded as... 8 1 Number of Input Channels (i) uInt8Number 9 1 Number of Output Channels (o) uInt8Number 10 1 Number of CLUT grid points (identical for each side) (g) uInt8Number 11 1 Reserved for padding (fill with 00h) 12..15 4 Encoded e00 parameter s15Fixed16Number */ // Read 8 bit tables as gamma functions static cmsBool Read8bitTables(cmsContext ContextID, cmsIOHANDLER* io, cmsPipeline* lut, int nChannels) { cmsUInt8Number* Temp = NULL; int i, j; cmsToneCurve* Tables[cmsMAXCHANNELS]; if (nChannels > cmsMAXCHANNELS) return FALSE; if (nChannels <= 0) return FALSE; memset(Tables, 0, sizeof(Tables)); Temp = (cmsUInt8Number*) _cmsMalloc(ContextID, 256); if (Temp == NULL) return FALSE; for (i=0; i < nChannels; i++) { Tables[i] = cmsBuildTabulatedToneCurve16(ContextID, 256, NULL); if (Tables[i] == NULL) goto Error; } for (i=0; i < nChannels; i++) { if (io ->Read(io, Temp, 256, 1) != 1) goto Error; for (j=0; j < 256; j++) Tables[i]->Table16[j] = (cmsUInt16Number) FROM_8_TO_16(Temp[j]); } _cmsFree(ContextID, Temp); Temp = NULL; if (!cmsPipelineInsertStage(lut, cmsAT_END, cmsStageAllocToneCurves(ContextID, nChannels, Tables))) goto Error; for (i=0; i < nChannels; i++) cmsFreeToneCurve(Tables[i]); return TRUE; Error: for (i=0; i < nChannels; i++) { if (Tables[i]) cmsFreeToneCurve(Tables[i]); } if (Temp) _cmsFree(ContextID, Temp); return FALSE; } static cmsBool Write8bitTables(cmsContext ContextID, cmsIOHANDLER* io, cmsUInt32Number n, _cmsStageToneCurvesData* Tables) { int j; cmsUInt32Number i; cmsUInt8Number val; for (i=0; i < n; i++) { if (Tables) { // Usual case of identity curves if ((Tables ->TheCurves[i]->nEntries == 2) && (Tables->TheCurves[i]->Table16[0] == 0) && (Tables->TheCurves[i]->Table16[1] == 65535)) { for (j=0; j < 256; j++) { if (!_cmsWriteUInt8Number(io, (cmsUInt8Number) j)) return FALSE; } } else if (Tables ->TheCurves[i]->nEntries != 256) { cmsSignalError(ContextID, cmsERROR_RANGE, "LUT8 needs 256 entries on prelinearization"); return FALSE; } else for (j=0; j < 256; j++) { val = (cmsUInt8Number) FROM_16_TO_8(Tables->TheCurves[i]->Table16[j]); if (!_cmsWriteUInt8Number(io, val)) return FALSE; } } } return TRUE; } // Check overflow static cmsUInt32Number uipow(cmsUInt32Number n, cmsUInt32Number a, cmsUInt32Number b) { cmsUInt32Number rv = 1, rc; if (a == 0) return 0; if (n == 0) return 0; for (; b > 0; b--) { rv *= a; // Check for overflow if (rv > UINT_MAX / a) return (cmsUInt32Number) -1; } rc = rv * n; if (rv != rc / n) return (cmsUInt32Number) -1; return rc; } // That will create a MPE LUT with Matrix, pre tables, CLUT and post tables. // 8 bit lut may be scaled easely to v4 PCS, but we need also to properly adjust // PCS on BToAxx tags and AtoB if abstract. We need to fix input direction. static void *Type_LUT8_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsUInt8Number InputChannels, OutputChannels, CLUTpoints; cmsUInt8Number* Temp = NULL; cmsPipeline* NewLUT = NULL; cmsUInt32Number nTabSize, i; cmsFloat64Number Matrix[3*3]; *nItems = 0; if (!_cmsReadUInt8Number(io, &InputChannels)) goto Error; if (!_cmsReadUInt8Number(io, &OutputChannels)) goto Error; if (!_cmsReadUInt8Number(io, &CLUTpoints)) goto Error; if (CLUTpoints == 1) goto Error; // Impossible value, 0 for no CLUT and then 2 at least // Padding if (!_cmsReadUInt8Number(io, NULL)) goto Error; // Do some checking if (InputChannels > cmsMAXCHANNELS) goto Error; if (OutputChannels > cmsMAXCHANNELS) goto Error; // Allocates an empty Pipeline NewLUT = cmsPipelineAlloc(self ->ContextID, InputChannels, OutputChannels); if (NewLUT == NULL) goto Error; // Read the Matrix if (!_cmsRead15Fixed16Number(io, &Matrix[0])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[1])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[2])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[3])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[4])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[5])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[6])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[7])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[8])) goto Error; // Only operates if not identity... if ((InputChannels == 3) && !_cmsMAT3isIdentity((cmsMAT3*) Matrix)) { if (!cmsPipelineInsertStage(NewLUT, cmsAT_BEGIN, cmsStageAllocMatrix(self ->ContextID, 3, 3, Matrix, NULL))) goto Error; } // Get input tables if (!Read8bitTables(self ->ContextID, io, NewLUT, InputChannels)) goto Error; // Get 3D CLUT. Check the overflow.... nTabSize = uipow(OutputChannels, CLUTpoints, InputChannels); if (nTabSize == (cmsUInt32Number) -1) goto Error; if (nTabSize > 0) { cmsUInt16Number *PtrW, *T; PtrW = T = (cmsUInt16Number*) _cmsCalloc(self ->ContextID, nTabSize, sizeof(cmsUInt16Number)); if (T == NULL) goto Error; Temp = (cmsUInt8Number*) _cmsMalloc(self ->ContextID, nTabSize); if (Temp == NULL) { _cmsFree(self ->ContextID, T); goto Error; } if (io ->Read(io, Temp, nTabSize, 1) != 1) { _cmsFree(self ->ContextID, T); _cmsFree(self ->ContextID, Temp); goto Error; } for (i = 0; i < nTabSize; i++) { *PtrW++ = FROM_8_TO_16(Temp[i]); } _cmsFree(self ->ContextID, Temp); Temp = NULL; if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, cmsStageAllocCLut16bit(self ->ContextID, CLUTpoints, InputChannels, OutputChannels, T))) goto Error; _cmsFree(self ->ContextID, T); } // Get output tables if (!Read8bitTables(self ->ContextID, io, NewLUT, OutputChannels)) goto Error; *nItems = 1; return NewLUT; Error: if (NewLUT != NULL) cmsPipelineFree(NewLUT); return NULL; cmsUNUSED_PARAMETER(SizeOfTag); } // We only allow a specific MPE structure: Matrix plus prelin, plus clut, plus post-lin. static cmsBool Type_LUT8_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsUInt32Number j, nTabSize; cmsUInt8Number val; cmsPipeline* NewLUT = (cmsPipeline*) Ptr; cmsStage* mpe; _cmsStageToneCurvesData* PreMPE = NULL, *PostMPE = NULL; _cmsStageMatrixData* MatMPE = NULL; _cmsStageCLutData* clut = NULL; int clutPoints; // Disassemble the LUT into components. mpe = NewLUT -> Elements; if (mpe ->Type == cmsSigMatrixElemType) { MatMPE = (_cmsStageMatrixData*) mpe ->Data; mpe = mpe -> Next; } if (mpe != NULL && mpe ->Type == cmsSigCurveSetElemType) { PreMPE = (_cmsStageToneCurvesData*) mpe ->Data; mpe = mpe -> Next; } if (mpe != NULL && mpe ->Type == cmsSigCLutElemType) { clut = (_cmsStageCLutData*) mpe -> Data; mpe = mpe ->Next; } if (mpe != NULL && mpe ->Type == cmsSigCurveSetElemType) { PostMPE = (_cmsStageToneCurvesData*) mpe ->Data; mpe = mpe -> Next; } // That should be all if (mpe != NULL) { cmsSignalError(mpe->ContextID, cmsERROR_UNKNOWN_EXTENSION, "LUT is not suitable to be saved as LUT8"); return FALSE; } if (clut == NULL) clutPoints = 0; else clutPoints = clut->Params->nSamples[0]; if (!_cmsWriteUInt8Number(io, (cmsUInt8Number) NewLUT ->InputChannels)) return FALSE; if (!_cmsWriteUInt8Number(io, (cmsUInt8Number) NewLUT ->OutputChannels)) return FALSE; if (!_cmsWriteUInt8Number(io, (cmsUInt8Number) clutPoints)) return FALSE; if (!_cmsWriteUInt8Number(io, 0)) return FALSE; // Padding if (MatMPE != NULL) { if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[0])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[1])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[2])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[3])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[4])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[5])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[6])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[7])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[8])) return FALSE; } else { if (!_cmsWrite15Fixed16Number(io, 1)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 1)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 1)) return FALSE; } // The prelinearization table if (!Write8bitTables(self ->ContextID, io, NewLUT ->InputChannels, PreMPE)) return FALSE; nTabSize = uipow(NewLUT->OutputChannels, clutPoints, NewLUT ->InputChannels); if (nTabSize == (cmsUInt32Number) -1) return FALSE; if (nTabSize > 0) { // The 3D CLUT. if (clut != NULL) { for (j=0; j < nTabSize; j++) { val = (cmsUInt8Number) FROM_16_TO_8(clut ->Tab.T[j]); if (!_cmsWriteUInt8Number(io, val)) return FALSE; } } } // The postlinearization table if (!Write8bitTables(self ->ContextID, io, NewLUT ->OutputChannels, PostMPE)) return FALSE; return TRUE; cmsUNUSED_PARAMETER(nItems); } static void* Type_LUT8_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return (void*) cmsPipelineDup((cmsPipeline*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_LUT8_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsPipelineFree((cmsPipeline*) Ptr); return; cmsUNUSED_PARAMETER(self); } // ******************************************************************************** // Type cmsSigLut16Type // ******************************************************************************** // Read 16 bit tables as gamma functions static cmsBool Read16bitTables(cmsContext ContextID, cmsIOHANDLER* io, cmsPipeline* lut, int nChannels, int nEntries) { int i; cmsToneCurve* Tables[cmsMAXCHANNELS]; // Maybe an empty table? (this is a lcms extension) if (nEntries <= 0) return TRUE; // Check for malicious profiles if (nEntries < 2) return FALSE; if (nChannels > cmsMAXCHANNELS) return FALSE; // Init table to zero memset(Tables, 0, sizeof(Tables)); for (i=0; i < nChannels; i++) { Tables[i] = cmsBuildTabulatedToneCurve16(ContextID, nEntries, NULL); if (Tables[i] == NULL) goto Error; if (!_cmsReadUInt16Array(io, nEntries, Tables[i]->Table16)) goto Error; } // Add the table (which may certainly be an identity, but this is up to the optimizer, not the reading code) if (!cmsPipelineInsertStage(lut, cmsAT_END, cmsStageAllocToneCurves(ContextID, nChannels, Tables))) goto Error; for (i=0; i < nChannels; i++) cmsFreeToneCurve(Tables[i]); return TRUE; Error: for (i=0; i < nChannels; i++) { if (Tables[i]) cmsFreeToneCurve(Tables[i]); } return FALSE; } static cmsBool Write16bitTables(cmsContext ContextID, cmsIOHANDLER* io, _cmsStageToneCurvesData* Tables) { int j; cmsUInt32Number i; cmsUInt16Number val; int nEntries; _cmsAssert(Tables != NULL); nEntries = Tables->TheCurves[0]->nEntries; for (i=0; i < Tables ->nCurves; i++) { for (j=0; j < nEntries; j++) { val = Tables->TheCurves[i]->Table16[j]; if (!_cmsWriteUInt16Number(io, val)) return FALSE; } } return TRUE; cmsUNUSED_PARAMETER(ContextID); } static void *Type_LUT16_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsUInt8Number InputChannels, OutputChannels, CLUTpoints; cmsPipeline* NewLUT = NULL; cmsUInt32Number nTabSize; cmsFloat64Number Matrix[3*3]; cmsUInt16Number InputEntries, OutputEntries; *nItems = 0; if (!_cmsReadUInt8Number(io, &InputChannels)) return NULL; if (!_cmsReadUInt8Number(io, &OutputChannels)) return NULL; if (!_cmsReadUInt8Number(io, &CLUTpoints)) return NULL; // 255 maximum // Padding if (!_cmsReadUInt8Number(io, NULL)) return NULL; // Do some checking if (InputChannels > cmsMAXCHANNELS) goto Error; if (OutputChannels > cmsMAXCHANNELS) goto Error; // Allocates an empty LUT NewLUT = cmsPipelineAlloc(self ->ContextID, InputChannels, OutputChannels); if (NewLUT == NULL) goto Error; // Read the Matrix if (!_cmsRead15Fixed16Number(io, &Matrix[0])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[1])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[2])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[3])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[4])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[5])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[6])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[7])) goto Error; if (!_cmsRead15Fixed16Number(io, &Matrix[8])) goto Error; // Only operates on 3 channels if ((InputChannels == 3) && !_cmsMAT3isIdentity((cmsMAT3*) Matrix)) { if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, cmsStageAllocMatrix(self ->ContextID, 3, 3, Matrix, NULL))) goto Error; } if (!_cmsReadUInt16Number(io, &InputEntries)) goto Error; if (!_cmsReadUInt16Number(io, &OutputEntries)) goto Error; if (InputEntries > 0x7FFF || OutputEntries > 0x7FFF) goto Error; if (CLUTpoints == 1) goto Error; // Impossible value, 0 for no CLUT and then 2 at least // Get input tables if (!Read16bitTables(self ->ContextID, io, NewLUT, InputChannels, InputEntries)) goto Error; // Get 3D CLUT nTabSize = uipow(OutputChannels, CLUTpoints, InputChannels); if (nTabSize == (cmsUInt32Number) -1) goto Error; if (nTabSize > 0) { cmsUInt16Number *T; T = (cmsUInt16Number*) _cmsCalloc(self ->ContextID, nTabSize, sizeof(cmsUInt16Number)); if (T == NULL) goto Error; if (!_cmsReadUInt16Array(io, nTabSize, T)) { _cmsFree(self ->ContextID, T); goto Error; } if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, cmsStageAllocCLut16bit(self ->ContextID, CLUTpoints, InputChannels, OutputChannels, T))) { _cmsFree(self ->ContextID, T); goto Error; } _cmsFree(self ->ContextID, T); } // Get output tables if (!Read16bitTables(self ->ContextID, io, NewLUT, OutputChannels, OutputEntries)) goto Error; *nItems = 1; return NewLUT; Error: if (NewLUT != NULL) cmsPipelineFree(NewLUT); return NULL; cmsUNUSED_PARAMETER(SizeOfTag); } // We only allow some specific MPE structures: Matrix plus prelin, plus clut, plus post-lin. // Some empty defaults are created for missing parts static cmsBool Type_LUT16_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsUInt32Number nTabSize; cmsPipeline* NewLUT = (cmsPipeline*) Ptr; cmsStage* mpe; _cmsStageToneCurvesData* PreMPE = NULL, *PostMPE = NULL; _cmsStageMatrixData* MatMPE = NULL; _cmsStageCLutData* clut = NULL; int i, InputChannels, OutputChannels, clutPoints; // Disassemble the LUT into components. mpe = NewLUT -> Elements; if (mpe != NULL && mpe ->Type == cmsSigMatrixElemType) { MatMPE = (_cmsStageMatrixData*) mpe ->Data; mpe = mpe -> Next; } if (mpe != NULL && mpe ->Type == cmsSigCurveSetElemType) { PreMPE = (_cmsStageToneCurvesData*) mpe ->Data; mpe = mpe -> Next; } if (mpe != NULL && mpe ->Type == cmsSigCLutElemType) { clut = (_cmsStageCLutData*) mpe -> Data; mpe = mpe ->Next; } if (mpe != NULL && mpe ->Type == cmsSigCurveSetElemType) { PostMPE = (_cmsStageToneCurvesData*) mpe ->Data; mpe = mpe -> Next; } // That should be all if (mpe != NULL) { cmsSignalError(mpe->ContextID, cmsERROR_UNKNOWN_EXTENSION, "LUT is not suitable to be saved as LUT16"); return FALSE; } InputChannels = cmsPipelineInputChannels(NewLUT); OutputChannels = cmsPipelineOutputChannels(NewLUT); if (clut == NULL) clutPoints = 0; else clutPoints = clut->Params->nSamples[0]; if (!_cmsWriteUInt8Number(io, (cmsUInt8Number) InputChannels)) return FALSE; if (!_cmsWriteUInt8Number(io, (cmsUInt8Number) OutputChannels)) return FALSE; if (!_cmsWriteUInt8Number(io, (cmsUInt8Number) clutPoints)) return FALSE; if (!_cmsWriteUInt8Number(io, 0)) return FALSE; // Padding if (MatMPE != NULL) { if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[0])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[1])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[2])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[3])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[4])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[5])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[6])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[7])) return FALSE; if (!_cmsWrite15Fixed16Number(io, MatMPE -> Double[8])) return FALSE; } else { if (!_cmsWrite15Fixed16Number(io, 1)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 1)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 1)) return FALSE; } if (PreMPE != NULL) { if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) PreMPE ->TheCurves[0]->nEntries)) return FALSE; } else { if (!_cmsWriteUInt16Number(io, 2)) return FALSE; } if (PostMPE != NULL) { if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) PostMPE ->TheCurves[0]->nEntries)) return FALSE; } else { if (!_cmsWriteUInt16Number(io, 2)) return FALSE; } // The prelinearization table if (PreMPE != NULL) { if (!Write16bitTables(self ->ContextID, io, PreMPE)) return FALSE; } else { for (i=0; i < InputChannels; i++) { if (!_cmsWriteUInt16Number(io, 0)) return FALSE; if (!_cmsWriteUInt16Number(io, 0xffff)) return FALSE; } } nTabSize = uipow(OutputChannels, clutPoints, InputChannels); if (nTabSize == (cmsUInt32Number) -1) return FALSE; if (nTabSize > 0) { // The 3D CLUT. if (clut != NULL) { if (!_cmsWriteUInt16Array(io, nTabSize, clut->Tab.T)) return FALSE; } } // The postlinearization table if (PostMPE != NULL) { if (!Write16bitTables(self ->ContextID, io, PostMPE)) return FALSE; } else { for (i=0; i < OutputChannels; i++) { if (!_cmsWriteUInt16Number(io, 0)) return FALSE; if (!_cmsWriteUInt16Number(io, 0xffff)) return FALSE; } } return TRUE; cmsUNUSED_PARAMETER(nItems); } static void* Type_LUT16_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return (void*) cmsPipelineDup((cmsPipeline*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_LUT16_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsPipelineFree((cmsPipeline*) Ptr); return; cmsUNUSED_PARAMETER(self); } // ******************************************************************************** // Type cmsSigLutAToBType // ******************************************************************************** // V4 stuff. Read matrix for LutAtoB and LutBtoA static cmsStage* ReadMatrix(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number Offset) { cmsFloat64Number dMat[3*3]; cmsFloat64Number dOff[3]; cmsStage* Mat; // Go to address if (!io -> Seek(io, Offset)) return NULL; // Read the Matrix if (!_cmsRead15Fixed16Number(io, &dMat[0])) return NULL; if (!_cmsRead15Fixed16Number(io, &dMat[1])) return NULL; if (!_cmsRead15Fixed16Number(io, &dMat[2])) return NULL; if (!_cmsRead15Fixed16Number(io, &dMat[3])) return NULL; if (!_cmsRead15Fixed16Number(io, &dMat[4])) return NULL; if (!_cmsRead15Fixed16Number(io, &dMat[5])) return NULL; if (!_cmsRead15Fixed16Number(io, &dMat[6])) return NULL; if (!_cmsRead15Fixed16Number(io, &dMat[7])) return NULL; if (!_cmsRead15Fixed16Number(io, &dMat[8])) return NULL; if (!_cmsRead15Fixed16Number(io, &dOff[0])) return NULL; if (!_cmsRead15Fixed16Number(io, &dOff[1])) return NULL; if (!_cmsRead15Fixed16Number(io, &dOff[2])) return NULL; Mat = cmsStageAllocMatrix(self ->ContextID, 3, 3, dMat, dOff); return Mat; } // V4 stuff. Read CLUT part for LutAtoB and LutBtoA static cmsStage* ReadCLUT(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number Offset, int InputChannels, int OutputChannels) { cmsUInt8Number gridPoints8[cmsMAXCHANNELS]; // Number of grid points in each dimension. cmsUInt32Number GridPoints[cmsMAXCHANNELS], i; cmsUInt8Number Precision; cmsStage* CLUT; _cmsStageCLutData* Data; if (!io -> Seek(io, Offset)) return NULL; if (io -> Read(io, gridPoints8, cmsMAXCHANNELS, 1) != 1) return NULL; for (i=0; i < cmsMAXCHANNELS; i++) { if (gridPoints8[i] == 1) return NULL; // Impossible value, 0 for no CLUT and then 2 at least GridPoints[i] = gridPoints8[i]; } if (!_cmsReadUInt8Number(io, &Precision)) return NULL; if (!_cmsReadUInt8Number(io, NULL)) return NULL; if (!_cmsReadUInt8Number(io, NULL)) return NULL; if (!_cmsReadUInt8Number(io, NULL)) return NULL; CLUT = cmsStageAllocCLut16bitGranular(self ->ContextID, GridPoints, InputChannels, OutputChannels, NULL); if (CLUT == NULL) return NULL; Data = (_cmsStageCLutData*) CLUT ->Data; // Precision can be 1 or 2 bytes if (Precision == 1) { cmsUInt8Number v; for (i=0; i < Data ->nEntries; i++) { if (io ->Read(io, &v, sizeof(cmsUInt8Number), 1) != 1) return NULL; Data ->Tab.T[i] = FROM_8_TO_16(v); } } else if (Precision == 2) { if (!_cmsReadUInt16Array(io, Data->nEntries, Data ->Tab.T)) { cmsStageFree(CLUT); return NULL; } } else { cmsStageFree(CLUT); cmsSignalError(self ->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unknown precision of '%d'", Precision); return NULL; } return CLUT; } static cmsToneCurve* ReadEmbeddedCurve(struct _cms_typehandler_struct* self, cmsIOHANDLER* io) { cmsTagTypeSignature BaseType; cmsUInt32Number nItems; BaseType = _cmsReadTypeBase(io); switch (BaseType) { case cmsSigCurveType: return (cmsToneCurve*) Type_Curve_Read(self, io, &nItems, 0); case cmsSigParametricCurveType: return (cmsToneCurve*) Type_ParametricCurve_Read(self, io, &nItems, 0); default: { char String[5]; _cmsTagSignature2String(String, (cmsTagSignature) BaseType); cmsSignalError(self ->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unknown curve type '%s'", String); } return NULL; } } // Read a set of curves from specific offset static cmsStage* ReadSetOfCurves(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number Offset, cmsUInt32Number nCurves) { cmsToneCurve* Curves[cmsMAXCHANNELS]; cmsUInt32Number i; cmsStage* Lin = NULL; if (nCurves > cmsMAXCHANNELS) return FALSE; if (!io -> Seek(io, Offset)) return FALSE; for (i=0; i < nCurves; i++) Curves[i] = NULL; for (i=0; i < nCurves; i++) { Curves[i] = ReadEmbeddedCurve(self, io); if (Curves[i] == NULL) goto Error; if (!_cmsReadAlignment(io)) goto Error; } Lin = cmsStageAllocToneCurves(self ->ContextID, nCurves, Curves); Error: for (i=0; i < nCurves; i++) cmsFreeToneCurve(Curves[i]); return Lin; } // LutAtoB type // This structure represents a colour transform. The type contains up to five processing // elements which are stored in the AtoBTag tag in the following order: a set of one // dimensional curves, a 3 by 3 matrix with offset terms, a set of one dimensional curves, // a multidimensional lookup table, and a set of one dimensional output curves. // Data are processed using these elements via the following sequence: // //("A" curves) -> (multidimensional lookup table - CLUT) -> ("M" curves) -> (matrix) -> ("B" curves). // /* It is possible to use any or all of these processing elements. At least one processing element must be included.Only the following combinations are allowed: B M - Matrix - B A - CLUT - B A - CLUT - M - Matrix - B */ static void* Type_LUTA2B_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsUInt32Number BaseOffset; cmsUInt8Number inputChan; // Number of input channels cmsUInt8Number outputChan; // Number of output channels cmsUInt32Number offsetB; // Offset to first "B" curve cmsUInt32Number offsetMat; // Offset to matrix cmsUInt32Number offsetM; // Offset to first "M" curve cmsUInt32Number offsetC; // Offset to CLUT cmsUInt32Number offsetA; // Offset to first "A" curve cmsPipeline* NewLUT = NULL; BaseOffset = io ->Tell(io) - sizeof(_cmsTagBase); if (!_cmsReadUInt8Number(io, &inputChan)) return NULL; if (!_cmsReadUInt8Number(io, &outputChan)) return NULL; if (!_cmsReadUInt16Number(io, NULL)) return NULL; if (!_cmsReadUInt32Number(io, &offsetB)) return NULL; if (!_cmsReadUInt32Number(io, &offsetMat)) return NULL; if (!_cmsReadUInt32Number(io, &offsetM)) return NULL; if (!_cmsReadUInt32Number(io, &offsetC)) return NULL; if (!_cmsReadUInt32Number(io, &offsetA)) return NULL; // Allocates an empty LUT NewLUT = cmsPipelineAlloc(self ->ContextID, inputChan, outputChan); if (NewLUT == NULL) return NULL; if (offsetA!= 0) { if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, ReadSetOfCurves(self, io, BaseOffset + offsetA, inputChan))) goto Error; } if (offsetC != 0) { if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, ReadCLUT(self, io, BaseOffset + offsetC, inputChan, outputChan))) goto Error; } if (offsetM != 0) { if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, ReadSetOfCurves(self, io, BaseOffset + offsetM, outputChan))) goto Error; } if (offsetMat != 0) { if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, ReadMatrix(self, io, BaseOffset + offsetMat))) goto Error; } if (offsetB != 0) { if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, ReadSetOfCurves(self, io, BaseOffset + offsetB, outputChan))) goto Error; } *nItems = 1; return NewLUT; Error: cmsPipelineFree(NewLUT); return NULL; cmsUNUSED_PARAMETER(SizeOfTag); } // Write a set of curves static cmsBool WriteMatrix(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsStage* mpe) { _cmsStageMatrixData* m = (_cmsStageMatrixData*) mpe -> Data; // Write the Matrix if (!_cmsWrite15Fixed16Number(io, m -> Double[0])) return FALSE; if (!_cmsWrite15Fixed16Number(io, m -> Double[1])) return FALSE; if (!_cmsWrite15Fixed16Number(io, m -> Double[2])) return FALSE; if (!_cmsWrite15Fixed16Number(io, m -> Double[3])) return FALSE; if (!_cmsWrite15Fixed16Number(io, m -> Double[4])) return FALSE; if (!_cmsWrite15Fixed16Number(io, m -> Double[5])) return FALSE; if (!_cmsWrite15Fixed16Number(io, m -> Double[6])) return FALSE; if (!_cmsWrite15Fixed16Number(io, m -> Double[7])) return FALSE; if (!_cmsWrite15Fixed16Number(io, m -> Double[8])) return FALSE; if (m ->Offset != NULL) { if (!_cmsWrite15Fixed16Number(io, m -> Offset[0])) return FALSE; if (!_cmsWrite15Fixed16Number(io, m -> Offset[1])) return FALSE; if (!_cmsWrite15Fixed16Number(io, m -> Offset[2])) return FALSE; } else { if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; if (!_cmsWrite15Fixed16Number(io, 0)) return FALSE; } return TRUE; cmsUNUSED_PARAMETER(self); } // Write a set of curves static cmsBool WriteSetOfCurves(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsTagTypeSignature Type, cmsStage* mpe) { cmsUInt32Number i, n; cmsTagTypeSignature CurrentType; cmsToneCurve** Curves; n = cmsStageOutputChannels(mpe); Curves = _cmsStageGetPtrToCurveSet(mpe); for (i=0; i < n; i++) { // If this is a table-based curve, use curve type even on V4 CurrentType = Type; if ((Curves[i] ->nSegments == 0)|| ((Curves[i]->nSegments == 2) && (Curves[i] ->Segments[1].Type == 0)) ) CurrentType = cmsSigCurveType; else if (Curves[i] ->Segments[0].Type < 0) CurrentType = cmsSigCurveType; if (!_cmsWriteTypeBase(io, CurrentType)) return FALSE; switch (CurrentType) { case cmsSigCurveType: if (!Type_Curve_Write(self, io, Curves[i], 1)) return FALSE; break; case cmsSigParametricCurveType: if (!Type_ParametricCurve_Write(self, io, Curves[i], 1)) return FALSE; break; default: { char String[5]; _cmsTagSignature2String(String, (cmsTagSignature) Type); cmsSignalError(self ->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unknown curve type '%s'", String); } return FALSE; } if (!_cmsWriteAlignment(io)) return FALSE; } return TRUE; } static cmsBool WriteCLUT(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt8Number Precision, cmsStage* mpe) { cmsUInt8Number gridPoints[cmsMAXCHANNELS]; // Number of grid points in each dimension. cmsUInt32Number i; _cmsStageCLutData* CLUT = ( _cmsStageCLutData*) mpe -> Data; if (CLUT ->HasFloatValues) { cmsSignalError(self ->ContextID, cmsERROR_NOT_SUITABLE, "Cannot save floating point data, CLUT are 8 or 16 bit only"); return FALSE; } memset(gridPoints, 0, sizeof(gridPoints)); for (i=0; i < (cmsUInt32Number) CLUT ->Params ->nInputs; i++) gridPoints[i] = (cmsUInt8Number) CLUT ->Params ->nSamples[i]; if (!io -> Write(io, cmsMAXCHANNELS*sizeof(cmsUInt8Number), gridPoints)) return FALSE; if (!_cmsWriteUInt8Number(io, (cmsUInt8Number) Precision)) return FALSE; if (!_cmsWriteUInt8Number(io, 0)) return FALSE; if (!_cmsWriteUInt8Number(io, 0)) return FALSE; if (!_cmsWriteUInt8Number(io, 0)) return FALSE; // Precision can be 1 or 2 bytes if (Precision == 1) { for (i=0; i < CLUT->nEntries; i++) { if (!_cmsWriteUInt8Number(io, FROM_16_TO_8(CLUT->Tab.T[i]))) return FALSE; } } else if (Precision == 2) { if (!_cmsWriteUInt16Array(io, CLUT->nEntries, CLUT ->Tab.T)) return FALSE; } else { cmsSignalError(self ->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unknown precision of '%d'", Precision); return FALSE; } if (!_cmsWriteAlignment(io)) return FALSE; return TRUE; } static cmsBool Type_LUTA2B_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsPipeline* Lut = (cmsPipeline*) Ptr; int inputChan, outputChan; cmsStage *A = NULL, *B = NULL, *M = NULL; cmsStage * Matrix = NULL; cmsStage * CLUT = NULL; cmsUInt32Number offsetB = 0, offsetMat = 0, offsetM = 0, offsetC = 0, offsetA = 0; cmsUInt32Number BaseOffset, DirectoryPos, CurrentPos; cmsInt32Number CurrentPos0; // Get the base for all offsets BaseOffset = io ->Tell(io) - sizeof(_cmsTagBase); if (Lut ->Elements != NULL) if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCurveSetElemType, &B)) if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, &M, &Matrix, &B)) if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &A, &CLUT, &B)) if (!cmsPipelineCheckAndRetreiveStages(Lut, 5, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, &A, &CLUT, &M, &Matrix, &B)) { cmsSignalError(self->ContextID, cmsERROR_NOT_SUITABLE, "LUT is not suitable to be saved as LutAToB"); return FALSE; } // Get input, output channels inputChan = cmsPipelineInputChannels(Lut); outputChan = cmsPipelineOutputChannels(Lut); // Write channel count if (!_cmsWriteUInt8Number(io, (cmsUInt8Number) inputChan)) return FALSE; if (!_cmsWriteUInt8Number(io, (cmsUInt8Number) outputChan)) return FALSE; if (!_cmsWriteUInt16Number(io, 0)) return FALSE; // Keep directory to be filled latter DirectoryPos = io ->Tell(io); // Write the directory if (!_cmsWriteUInt32Number(io, 0)) return FALSE; if (!_cmsWriteUInt32Number(io, 0)) return FALSE; if (!_cmsWriteUInt32Number(io, 0)) return FALSE; if (!_cmsWriteUInt32Number(io, 0)) return FALSE; if (!_cmsWriteUInt32Number(io, 0)) return FALSE; if (A != NULL) { offsetA = io ->Tell(io) - BaseOffset; if (!WriteSetOfCurves(self, io, cmsSigParametricCurveType, A)) return FALSE; } if (CLUT != NULL) { offsetC = io ->Tell(io) - BaseOffset; if (!WriteCLUT(self, io, Lut ->SaveAs8Bits ? 1 : 2, CLUT)) return FALSE; } if (M != NULL) { offsetM = io ->Tell(io) - BaseOffset; if (!WriteSetOfCurves(self, io, cmsSigParametricCurveType, M)) return FALSE; } if (Matrix != NULL) { offsetMat = io ->Tell(io) - BaseOffset; if (!WriteMatrix(self, io, Matrix)) return FALSE; } if (B != NULL) { offsetB = io ->Tell(io) - BaseOffset; if (!WriteSetOfCurves(self, io, cmsSigParametricCurveType, B)) return FALSE; } CurrentPos0 = io ->Tell(io); if (CurrentPos0 < 0) { return FALSE; } CurrentPos = (cmsUInt32Number)CurrentPos0; if (!io ->Seek(io, DirectoryPos)) return FALSE; if (!_cmsWriteUInt32Number(io, offsetB)) return FALSE; if (!_cmsWriteUInt32Number(io, offsetMat)) return FALSE; if (!_cmsWriteUInt32Number(io, offsetM)) return FALSE; if (!_cmsWriteUInt32Number(io, offsetC)) return FALSE; if (!_cmsWriteUInt32Number(io, offsetA)) return FALSE; if (!io ->Seek(io, CurrentPos)) return FALSE; return TRUE; cmsUNUSED_PARAMETER(nItems); } static void* Type_LUTA2B_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return (void*) cmsPipelineDup((cmsPipeline*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_LUTA2B_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsPipelineFree((cmsPipeline*) Ptr); return; cmsUNUSED_PARAMETER(self); } // LutBToA type static void* Type_LUTB2A_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsUInt8Number inputChan; // Number of input channels cmsUInt8Number outputChan; // Number of output channels cmsUInt32Number BaseOffset; // Actual position in file cmsUInt32Number offsetB; // Offset to first "B" curve cmsUInt32Number offsetMat; // Offset to matrix cmsUInt32Number offsetM; // Offset to first "M" curve cmsUInt32Number offsetC; // Offset to CLUT cmsUInt32Number offsetA; // Offset to first "A" curve cmsPipeline* NewLUT = NULL; BaseOffset = io ->Tell(io) - sizeof(_cmsTagBase); if (!_cmsReadUInt8Number(io, &inputChan)) return NULL; if (!_cmsReadUInt8Number(io, &outputChan)) return NULL; // Padding if (!_cmsReadUInt16Number(io, NULL)) return NULL; if (!_cmsReadUInt32Number(io, &offsetB)) return NULL; if (!_cmsReadUInt32Number(io, &offsetMat)) return NULL; if (!_cmsReadUInt32Number(io, &offsetM)) return NULL; if (!_cmsReadUInt32Number(io, &offsetC)) return NULL; if (!_cmsReadUInt32Number(io, &offsetA)) return NULL; // Allocates an empty LUT NewLUT = cmsPipelineAlloc(self ->ContextID, inputChan, outputChan); if (NewLUT == NULL) return NULL; if (offsetB != 0) { if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, ReadSetOfCurves(self, io, BaseOffset + offsetB, inputChan))) goto Error; } if (offsetMat != 0) { if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, ReadMatrix(self, io, BaseOffset + offsetMat))) goto Error; } if (offsetM != 0) { if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, ReadSetOfCurves(self, io, BaseOffset + offsetM, inputChan))) goto Error; } if (offsetC != 0) { if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, ReadCLUT(self, io, BaseOffset + offsetC, inputChan, outputChan))) goto Error; } if (offsetA!= 0) { if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, ReadSetOfCurves(self, io, BaseOffset + offsetA, outputChan))) goto Error; } *nItems = 1; return NewLUT; Error: cmsPipelineFree(NewLUT); return NULL; cmsUNUSED_PARAMETER(SizeOfTag); } /* B B - Matrix - M B - CLUT - A B - Matrix - M - CLUT - A */ static cmsBool Type_LUTB2A_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsPipeline* Lut = (cmsPipeline*) Ptr; int inputChan, outputChan; cmsStage *A = NULL, *B = NULL, *M = NULL; cmsStage *Matrix = NULL; cmsStage *CLUT = NULL; cmsUInt32Number offsetB = 0, offsetMat = 0, offsetM = 0, offsetC = 0, offsetA = 0; cmsUInt32Number BaseOffset, DirectoryPos, CurrentPos; cmsInt32Number CurrentPos0; BaseOffset = io ->Tell(io) - sizeof(_cmsTagBase); if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCurveSetElemType, &B)) if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, &B, &Matrix, &M)) if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &B, &CLUT, &A)) if (!cmsPipelineCheckAndRetreiveStages(Lut, 5, cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &B, &Matrix, &M, &CLUT, &A)) { cmsSignalError(self->ContextID, cmsERROR_NOT_SUITABLE, "LUT is not suitable to be saved as LutBToA"); return FALSE; } inputChan = cmsPipelineInputChannels(Lut); outputChan = cmsPipelineOutputChannels(Lut); if (!_cmsWriteUInt8Number(io, (cmsUInt8Number) inputChan)) return FALSE; if (!_cmsWriteUInt8Number(io, (cmsUInt8Number) outputChan)) return FALSE; if (!_cmsWriteUInt16Number(io, 0)) return FALSE; DirectoryPos = io ->Tell(io); if (!_cmsWriteUInt32Number(io, 0)) return FALSE; if (!_cmsWriteUInt32Number(io, 0)) return FALSE; if (!_cmsWriteUInt32Number(io, 0)) return FALSE; if (!_cmsWriteUInt32Number(io, 0)) return FALSE; if (!_cmsWriteUInt32Number(io, 0)) return FALSE; if (A != NULL) { offsetA = io ->Tell(io) - BaseOffset; if (!WriteSetOfCurves(self, io, cmsSigParametricCurveType, A)) return FALSE; } if (CLUT != NULL) { offsetC = io ->Tell(io) - BaseOffset; if (!WriteCLUT(self, io, Lut ->SaveAs8Bits ? 1 : 2, CLUT)) return FALSE; } if (M != NULL) { offsetM = io ->Tell(io) - BaseOffset; if (!WriteSetOfCurves(self, io, cmsSigParametricCurveType, M)) return FALSE; } if (Matrix != NULL) { offsetMat = io ->Tell(io) - BaseOffset; if (!WriteMatrix(self, io, Matrix)) return FALSE; } if (B != NULL) { offsetB = io ->Tell(io) - BaseOffset; if (!WriteSetOfCurves(self, io, cmsSigParametricCurveType, B)) return FALSE; } CurrentPos0 = io ->Tell(io); if (CurrentPos0 < 0) { return FALSE; } CurrentPos = (cmsUInt32Number)CurrentPos0; if (!io ->Seek(io, DirectoryPos)) return FALSE; if (!_cmsWriteUInt32Number(io, offsetB)) return FALSE; if (!_cmsWriteUInt32Number(io, offsetMat)) return FALSE; if (!_cmsWriteUInt32Number(io, offsetM)) return FALSE; if (!_cmsWriteUInt32Number(io, offsetC)) return FALSE; if (!_cmsWriteUInt32Number(io, offsetA)) return FALSE; if (!io ->Seek(io, CurrentPos)) return FALSE; return TRUE; cmsUNUSED_PARAMETER(nItems); } static void* Type_LUTB2A_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return (void*) cmsPipelineDup((cmsPipeline*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_LUTB2A_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsPipelineFree((cmsPipeline*) Ptr); return; cmsUNUSED_PARAMETER(self); } // ******************************************************************************** // Type cmsSigColorantTableType // ******************************************************************************** /* The purpose of this tag is to identify the colorants used in the profile by a unique name and set of XYZ or L*a*b* values to give the colorant an unambiguous value. The first colorant listed is the colorant of the first device channel of a lut tag. The second colorant listed is the colorant of the second device channel of a lut tag, and so on. */ static void *Type_ColorantTable_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsUInt32Number i, Count; cmsNAMEDCOLORLIST* List; char Name[34]; cmsUInt16Number PCS[3]; if (!_cmsReadUInt32Number(io, &Count)) return NULL; if (Count > cmsMAXCHANNELS) { cmsSignalError(self->ContextID, cmsERROR_RANGE, "Too many colorants '%d'", Count); return NULL; } List = cmsAllocNamedColorList(self ->ContextID, Count, 0, "", ""); for (i=0; i < Count; i++) { if (io ->Read(io, Name, 32, 1) != 1) goto Error; Name[33] = 0; if (!_cmsReadUInt16Array(io, 3, PCS)) goto Error; if (!cmsAppendNamedColor(List, Name, PCS, NULL)) goto Error; } *nItems = 1; return List; Error: *nItems = 0; cmsFreeNamedColorList(List); return NULL; cmsUNUSED_PARAMETER(SizeOfTag); } // Saves a colorant table. It is using the named color structure for simplicity sake static cmsBool Type_ColorantTable_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsNAMEDCOLORLIST* NamedColorList = (cmsNAMEDCOLORLIST*) Ptr; int i, nColors; nColors = cmsNamedColorCount(NamedColorList); if (!_cmsWriteUInt32Number(io, nColors)) return FALSE; for (i=0; i < nColors; i++) { char root[33]; cmsUInt16Number PCS[3]; if (!cmsNamedColorInfo(NamedColorList, i, root, NULL, NULL, PCS, NULL)) return 0; root[32] = 0; if (!io ->Write(io, 32, root)) return FALSE; if (!_cmsWriteUInt16Array(io, 3, PCS)) return FALSE; } return TRUE; cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void* Type_ColorantTable_Dup(struct _cms_typehandler_struct* self, const void* Ptr, cmsUInt32Number n) { cmsNAMEDCOLORLIST* nc = (cmsNAMEDCOLORLIST*) Ptr; return (void*) cmsDupNamedColorList(nc); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_ColorantTable_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsFreeNamedColorList((cmsNAMEDCOLORLIST*) Ptr); return; cmsUNUSED_PARAMETER(self); } // ******************************************************************************** // Type cmsSigNamedColor2Type // ******************************************************************************** // //The namedColor2Type is a count value and array of structures that provide color //coordinates for 7-bit ASCII color names. For each named color, a PCS and optional //device representation of the color are given. Both representations are 16-bit values. //The device representation corresponds to the header’s “color space of data” field. //This representation should be consistent with the “number of device components” //field in the namedColor2Type. If this field is 0, device coordinates are not provided. //The PCS representation corresponds to the header’s PCS field. The PCS representation //is always provided. Color names are fixed-length, 32-byte fields including null //termination. In order to maintain maximum portability, it is strongly recommended //that special characters of the 7-bit ASCII set not be used. static void *Type_NamedColor_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsUInt32Number vendorFlag; // Bottom 16 bits for ICC use cmsUInt32Number count; // Count of named colors cmsUInt32Number nDeviceCoords; // Num of device coordinates char prefix[32]; // Prefix for each color name char suffix[32]; // Suffix for each color name cmsNAMEDCOLORLIST* v; cmsUInt32Number i; *nItems = 0; if (!_cmsReadUInt32Number(io, &vendorFlag)) return NULL; if (!_cmsReadUInt32Number(io, &count)) return NULL; if (!_cmsReadUInt32Number(io, &nDeviceCoords)) return NULL; if (io -> Read(io, prefix, 32, 1) != 1) return NULL; if (io -> Read(io, suffix, 32, 1) != 1) return NULL; prefix[31] = suffix[31] = 0; v = cmsAllocNamedColorList(self ->ContextID, count, nDeviceCoords, prefix, suffix); if (v == NULL) { cmsSignalError(self->ContextID, cmsERROR_RANGE, "Too many named colors '%d'", count); return NULL; } if (nDeviceCoords > cmsMAXCHANNELS) { cmsSignalError(self->ContextID, cmsERROR_RANGE, "Too many device coordinates '%d'", nDeviceCoords); return 0; } for (i=0; i < count; i++) { cmsUInt16Number PCS[3]; cmsUInt16Number Colorant[cmsMAXCHANNELS]; char Root[33]; memset(Colorant, 0, sizeof(Colorant)); if (io -> Read(io, Root, 32, 1) != 1) return NULL; Root[32] = 0; // To prevent exploits if (!_cmsReadUInt16Array(io, 3, PCS)) goto Error; if (!_cmsReadUInt16Array(io, nDeviceCoords, Colorant)) goto Error; if (!cmsAppendNamedColor(v, Root, PCS, Colorant)) goto Error; } *nItems = 1; return (void*) v ; Error: cmsFreeNamedColorList(v); return NULL; cmsUNUSED_PARAMETER(SizeOfTag); } // Saves a named color list into a named color profile static cmsBool Type_NamedColor_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsNAMEDCOLORLIST* NamedColorList = (cmsNAMEDCOLORLIST*) Ptr; char prefix[33]; // Prefix for each color name char suffix[33]; // Suffix for each color name int i, nColors; nColors = cmsNamedColorCount(NamedColorList); if (!_cmsWriteUInt32Number(io, 0)) return FALSE; if (!_cmsWriteUInt32Number(io, nColors)) return FALSE; if (!_cmsWriteUInt32Number(io, NamedColorList ->ColorantCount)) return FALSE; strncpy(prefix, (const char*) NamedColorList->Prefix, 32); strncpy(suffix, (const char*) NamedColorList->Suffix, 32); suffix[32] = prefix[32] = 0; if (!io ->Write(io, 32, prefix)) return FALSE; if (!io ->Write(io, 32, suffix)) return FALSE; for (i=0; i < nColors; i++) { cmsUInt16Number PCS[3]; cmsUInt16Number Colorant[cmsMAXCHANNELS]; char Root[33]; if (!cmsNamedColorInfo(NamedColorList, i, Root, NULL, NULL, PCS, Colorant)) return 0; Root[32] = 0; if (!io ->Write(io, 32 , Root)) return FALSE; if (!_cmsWriteUInt16Array(io, 3, PCS)) return FALSE; if (!_cmsWriteUInt16Array(io, NamedColorList ->ColorantCount, Colorant)) return FALSE; } return TRUE; cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void* Type_NamedColor_Dup(struct _cms_typehandler_struct* self, const void* Ptr, cmsUInt32Number n) { cmsNAMEDCOLORLIST* nc = (cmsNAMEDCOLORLIST*) Ptr; return (void*) cmsDupNamedColorList(nc); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_NamedColor_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsFreeNamedColorList((cmsNAMEDCOLORLIST*) Ptr); return; cmsUNUSED_PARAMETER(self); } // ******************************************************************************** // Type cmsSigProfileSequenceDescType // ******************************************************************************** // This type is an array of structures, each of which contains information from the // header fields and tags from the original profiles which were combined to create // the final profile. The order of the structures is the order in which the profiles // were combined and includes a structure for the final profile. This provides a // description of the profile sequence from source to destination, // typically used with the DeviceLink profile. static cmsBool ReadEmbeddedText(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsMLU** mlu, cmsUInt32Number SizeOfTag) { cmsTagTypeSignature BaseType; cmsUInt32Number nItems; BaseType = _cmsReadTypeBase(io); switch (BaseType) { case cmsSigTextType: if (*mlu) cmsMLUfree(*mlu); *mlu = (cmsMLU*)Type_Text_Read(self, io, &nItems, SizeOfTag); return (*mlu != NULL); case cmsSigTextDescriptionType: if (*mlu) cmsMLUfree(*mlu); *mlu = (cmsMLU*) Type_Text_Description_Read(self, io, &nItems, SizeOfTag); return (*mlu != NULL); /* TBD: Size is needed for MLU, and we have no idea on which is the available size */ case cmsSigMultiLocalizedUnicodeType: if (*mlu) cmsMLUfree(*mlu); *mlu = (cmsMLU*) Type_MLU_Read(self, io, &nItems, SizeOfTag); return (*mlu != NULL); default: return FALSE; } } static void *Type_ProfileSequenceDesc_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsSEQ* OutSeq; cmsUInt32Number i, Count; *nItems = 0; if (!_cmsReadUInt32Number(io, &Count)) return NULL; if (SizeOfTag < sizeof(cmsUInt32Number)) return NULL; SizeOfTag -= sizeof(cmsUInt32Number); OutSeq = cmsAllocProfileSequenceDescription(self ->ContextID, Count); if (OutSeq == NULL) return NULL; OutSeq ->n = Count; // Get structures as well for (i=0; i < Count; i++) { cmsPSEQDESC* sec = &OutSeq -> seq[i]; if (!_cmsReadUInt32Number(io, &sec ->deviceMfg)) goto Error; if (SizeOfTag < sizeof(cmsUInt32Number)) goto Error; SizeOfTag -= sizeof(cmsUInt32Number); if (!_cmsReadUInt32Number(io, &sec ->deviceModel)) goto Error; if (SizeOfTag < sizeof(cmsUInt32Number)) goto Error; SizeOfTag -= sizeof(cmsUInt32Number); if (!_cmsReadUInt64Number(io, &sec ->attributes)) goto Error; if (SizeOfTag < sizeof(cmsUInt64Number)) goto Error; SizeOfTag -= sizeof(cmsUInt64Number); if (!_cmsReadUInt32Number(io, (cmsUInt32Number *)&sec ->technology)) goto Error; if (SizeOfTag < sizeof(cmsUInt32Number)) goto Error; SizeOfTag -= sizeof(cmsUInt32Number); if (!ReadEmbeddedText(self, io, &sec ->Manufacturer, SizeOfTag)) goto Error; if (!ReadEmbeddedText(self, io, &sec ->Model, SizeOfTag)) goto Error; } *nItems = 1; return OutSeq; Error: cmsFreeProfileSequenceDescription(OutSeq); return NULL; } // Aux--Embed a text description type. It can be of type text description or multilocalized unicode // and it depends of the version number passed on cmsTagDescriptor structure instead of stack static cmsBool SaveDescription(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsMLU* Text) { if (self ->ICCVersion < 0x4000000) { if (!_cmsWriteTypeBase(io, cmsSigTextDescriptionType)) return FALSE; return Type_Text_Description_Write(self, io, Text, 1); } else { if (!_cmsWriteTypeBase(io, cmsSigMultiLocalizedUnicodeType)) return FALSE; return Type_MLU_Write(self, io, Text, 1); } } static cmsBool Type_ProfileSequenceDesc_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsSEQ* Seq = (cmsSEQ*) Ptr; cmsUInt32Number i; if (!_cmsWriteUInt32Number(io, Seq->n)) return FALSE; for (i=0; i < Seq ->n; i++) { cmsPSEQDESC* sec = &Seq -> seq[i]; if (!_cmsWriteUInt32Number(io, sec ->deviceMfg)) return FALSE; if (!_cmsWriteUInt32Number(io, sec ->deviceModel)) return FALSE; if (!_cmsWriteUInt64Number(io, &sec ->attributes)) return FALSE; if (!_cmsWriteUInt32Number(io, sec ->technology)) return FALSE; if (!SaveDescription(self, io, sec ->Manufacturer)) return FALSE; if (!SaveDescription(self, io, sec ->Model)) return FALSE; } return TRUE; cmsUNUSED_PARAMETER(nItems); } static void* Type_ProfileSequenceDesc_Dup(struct _cms_typehandler_struct* self, const void* Ptr, cmsUInt32Number n) { return (void*) cmsDupProfileSequenceDescription((cmsSEQ*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_ProfileSequenceDesc_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsFreeProfileSequenceDescription((cmsSEQ*) Ptr); return; cmsUNUSED_PARAMETER(self); } // ******************************************************************************** // Type cmsSigProfileSequenceIdType // ******************************************************************************** /* In certain workflows using ICC Device Link Profiles, it is necessary to identify the original profiles that were combined to create the Device Link Profile. This type is an array of structures, each of which contains information for identification of a profile used in a sequence */ static cmsBool ReadSeqID(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Cargo, cmsUInt32Number n, cmsUInt32Number SizeOfTag) { cmsSEQ* OutSeq = (cmsSEQ*) Cargo; cmsPSEQDESC* seq = &OutSeq ->seq[n]; if (io -> Read(io, seq ->ProfileID.ID8, 16, 1) != 1) return FALSE; if (!ReadEmbeddedText(self, io, &seq ->Description, SizeOfTag)) return FALSE; return TRUE; } static void *Type_ProfileSequenceId_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsSEQ* OutSeq; cmsUInt32Number Count; cmsUInt32Number BaseOffset; *nItems = 0; // Get actual position as a basis for element offsets BaseOffset = io ->Tell(io) - sizeof(_cmsTagBase); // Get table count if (!_cmsReadUInt32Number(io, &Count)) return NULL; SizeOfTag -= sizeof(cmsUInt32Number); // Allocate an empty structure OutSeq = cmsAllocProfileSequenceDescription(self ->ContextID, Count); if (OutSeq == NULL) return NULL; // Read the position table if (!ReadPositionTable(self, io, Count, BaseOffset, OutSeq, ReadSeqID)) { cmsFreeProfileSequenceDescription(OutSeq); return NULL; } // Success *nItems = 1; return OutSeq; } static cmsBool WriteSeqID(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Cargo, cmsUInt32Number n, cmsUInt32Number SizeOfTag) { cmsSEQ* Seq = (cmsSEQ*) Cargo; if (!io ->Write(io, 16, Seq ->seq[n].ProfileID.ID8)) return FALSE; // Store here the MLU if (!SaveDescription(self, io, Seq ->seq[n].Description)) return FALSE; return TRUE; cmsUNUSED_PARAMETER(SizeOfTag); } static cmsBool Type_ProfileSequenceId_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsSEQ* Seq = (cmsSEQ*) Ptr; cmsUInt32Number BaseOffset; // Keep the base offset BaseOffset = io ->Tell(io) - sizeof(_cmsTagBase); // This is the table count if (!_cmsWriteUInt32Number(io, Seq ->n)) return FALSE; // This is the position table and content if (!WritePositionTable(self, io, 0, Seq ->n, BaseOffset, Seq, WriteSeqID)) return FALSE; return TRUE; cmsUNUSED_PARAMETER(nItems); } static void* Type_ProfileSequenceId_Dup(struct _cms_typehandler_struct* self, const void* Ptr, cmsUInt32Number n) { return (void*) cmsDupProfileSequenceDescription((cmsSEQ*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_ProfileSequenceId_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsFreeProfileSequenceDescription((cmsSEQ*) Ptr); return; cmsUNUSED_PARAMETER(self); } // ******************************************************************************** // Type cmsSigUcrBgType // ******************************************************************************** /* This type contains curves representing the under color removal and black generation and a text string which is a general description of the method used for the ucr/bg. */ static void *Type_UcrBg_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsUcrBg* n = (cmsUcrBg*) _cmsMallocZero(self ->ContextID, sizeof(cmsUcrBg)); cmsUInt32Number CountUcr, CountBg; char* ASCIIString; *nItems = 0; if (n == NULL) return NULL; // First curve is Under color removal if (!_cmsReadUInt32Number(io, &CountUcr)) return NULL; if (SizeOfTag < sizeof(cmsUInt32Number)) return NULL; SizeOfTag -= sizeof(cmsUInt32Number); n ->Ucr = cmsBuildTabulatedToneCurve16(self ->ContextID, CountUcr, NULL); if (n ->Ucr == NULL) return NULL; if (!_cmsReadUInt16Array(io, CountUcr, n ->Ucr->Table16)) return NULL; if (SizeOfTag < sizeof(cmsUInt32Number)) return NULL; SizeOfTag -= CountUcr * sizeof(cmsUInt16Number); // Second curve is Black generation if (!_cmsReadUInt32Number(io, &CountBg)) return NULL; if (SizeOfTag < sizeof(cmsUInt32Number)) return NULL; SizeOfTag -= sizeof(cmsUInt32Number); n ->Bg = cmsBuildTabulatedToneCurve16(self ->ContextID, CountBg, NULL); if (n ->Bg == NULL) return NULL; if (!_cmsReadUInt16Array(io, CountBg, n ->Bg->Table16)) return NULL; if (SizeOfTag < CountBg * sizeof(cmsUInt16Number)) return NULL; SizeOfTag -= CountBg * sizeof(cmsUInt16Number); if (SizeOfTag == UINT_MAX) return NULL; // Now comes the text. The length is specified by the tag size n ->Desc = cmsMLUalloc(self ->ContextID, 1); if (n ->Desc == NULL) return NULL; ASCIIString = (char*) _cmsMalloc(self ->ContextID, SizeOfTag + 1); if (io ->Read(io, ASCIIString, sizeof(char), SizeOfTag) != SizeOfTag) return NULL; ASCIIString[SizeOfTag] = 0; cmsMLUsetASCII(n ->Desc, cmsNoLanguage, cmsNoCountry, ASCIIString); _cmsFree(self ->ContextID, ASCIIString); *nItems = 1; return (void*) n; } static cmsBool Type_UcrBg_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsUcrBg* Value = (cmsUcrBg*) Ptr; cmsUInt32Number TextSize; char* Text; // First curve is Under color removal if (!_cmsWriteUInt32Number(io, Value ->Ucr ->nEntries)) return FALSE; if (!_cmsWriteUInt16Array(io, Value ->Ucr ->nEntries, Value ->Ucr ->Table16)) return FALSE; // Then black generation if (!_cmsWriteUInt32Number(io, Value ->Bg ->nEntries)) return FALSE; if (!_cmsWriteUInt16Array(io, Value ->Bg ->nEntries, Value ->Bg ->Table16)) return FALSE; // Now comes the text. The length is specified by the tag size TextSize = cmsMLUgetASCII(Value ->Desc, cmsNoLanguage, cmsNoCountry, NULL, 0); Text = (char*) _cmsMalloc(self ->ContextID, TextSize); if (cmsMLUgetASCII(Value ->Desc, cmsNoLanguage, cmsNoCountry, Text, TextSize) != TextSize) return FALSE; if (!io ->Write(io, TextSize, Text)) return FALSE; _cmsFree(self ->ContextID, Text); return TRUE; cmsUNUSED_PARAMETER(nItems); } static void* Type_UcrBg_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { cmsUcrBg* Src = (cmsUcrBg*) Ptr; cmsUcrBg* NewUcrBg = (cmsUcrBg*) _cmsMallocZero(self ->ContextID, sizeof(cmsUcrBg)); if (NewUcrBg == NULL) return NULL; NewUcrBg ->Bg = cmsDupToneCurve(Src ->Bg); NewUcrBg ->Ucr = cmsDupToneCurve(Src ->Ucr); NewUcrBg ->Desc = cmsMLUdup(Src ->Desc); return (void*) NewUcrBg; cmsUNUSED_PARAMETER(n); } static void Type_UcrBg_Free(struct _cms_typehandler_struct* self, void *Ptr) { cmsUcrBg* Src = (cmsUcrBg*) Ptr; if (Src ->Ucr) cmsFreeToneCurve(Src ->Ucr); if (Src ->Bg) cmsFreeToneCurve(Src ->Bg); if (Src ->Desc) cmsMLUfree(Src ->Desc); _cmsFree(self ->ContextID, Ptr); } // ******************************************************************************** // Type cmsSigCrdInfoType // ******************************************************************************** /* This type contains the PostScript product name to which this profile corresponds and the names of the companion CRDs. Recall that a single profile can generate multiple CRDs. It is implemented as a MLU being the language code "PS" and then country varies for each element: nm: PostScript product name #0: Rendering intent 0 CRD name #1: Rendering intent 1 CRD name #2: Rendering intent 2 CRD name #3: Rendering intent 3 CRD name */ // Auxiliary, read an string specified as count + string static cmsBool ReadCountAndSting(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsMLU* mlu, cmsUInt32Number* SizeOfTag, const char* Section) { cmsUInt32Number Count; char* Text; if (*SizeOfTag < sizeof(cmsUInt32Number)) return FALSE; if (!_cmsReadUInt32Number(io, &Count)) return FALSE; if (Count > UINT_MAX - sizeof(cmsUInt32Number)) return FALSE; if (*SizeOfTag < Count + sizeof(cmsUInt32Number)) return FALSE; Text = (char*) _cmsMalloc(self ->ContextID, Count+1); if (Text == NULL) return FALSE; if (io ->Read(io, Text, sizeof(cmsUInt8Number), Count) != Count) { _cmsFree(self ->ContextID, Text); return FALSE; } Text[Count] = 0; cmsMLUsetASCII(mlu, "PS", Section, Text); _cmsFree(self ->ContextID, Text); *SizeOfTag -= (Count + sizeof(cmsUInt32Number)); return TRUE; } static cmsBool WriteCountAndSting(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsMLU* mlu, const char* Section) { cmsUInt32Number TextSize; char* Text; TextSize = cmsMLUgetASCII(mlu, "PS", Section, NULL, 0); Text = (char*) _cmsMalloc(self ->ContextID, TextSize); if (!_cmsWriteUInt32Number(io, TextSize)) return FALSE; if (cmsMLUgetASCII(mlu, "PS", Section, Text, TextSize) == 0) return FALSE; if (!io ->Write(io, TextSize, Text)) return FALSE; _cmsFree(self ->ContextID, Text); return TRUE; } static void *Type_CrdInfo_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsMLU* mlu = cmsMLUalloc(self ->ContextID, 5); *nItems = 0; if (!ReadCountAndSting(self, io, mlu, &SizeOfTag, "nm")) goto Error; if (!ReadCountAndSting(self, io, mlu, &SizeOfTag, "#0")) goto Error; if (!ReadCountAndSting(self, io, mlu, &SizeOfTag, "#1")) goto Error; if (!ReadCountAndSting(self, io, mlu, &SizeOfTag, "#2")) goto Error; if (!ReadCountAndSting(self, io, mlu, &SizeOfTag, "#3")) goto Error; *nItems = 1; return (void*) mlu; Error: cmsMLUfree(mlu); return NULL; } static cmsBool Type_CrdInfo_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsMLU* mlu = (cmsMLU*) Ptr; if (!WriteCountAndSting(self, io, mlu, "nm")) goto Error; if (!WriteCountAndSting(self, io, mlu, "#0")) goto Error; if (!WriteCountAndSting(self, io, mlu, "#1")) goto Error; if (!WriteCountAndSting(self, io, mlu, "#2")) goto Error; if (!WriteCountAndSting(self, io, mlu, "#3")) goto Error; return TRUE; Error: return FALSE; cmsUNUSED_PARAMETER(nItems); } static void* Type_CrdInfo_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return (void*) cmsMLUdup((cmsMLU*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_CrdInfo_Free(struct _cms_typehandler_struct* self, void *Ptr) { cmsMLUfree((cmsMLU*) Ptr); return; cmsUNUSED_PARAMETER(self); } // ******************************************************************************** // Type cmsSigScreeningType // ******************************************************************************** // //The screeningType describes various screening parameters including screen //frequency, screening angle, and spot shape. static void *Type_Screening_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsScreening* sc = NULL; cmsUInt32Number i; sc = (cmsScreening*) _cmsMallocZero(self ->ContextID, sizeof(cmsScreening)); if (sc == NULL) return NULL; *nItems = 0; if (!_cmsReadUInt32Number(io, &sc ->Flag)) goto Error; if (!_cmsReadUInt32Number(io, &sc ->nChannels)) goto Error; if (sc ->nChannels > cmsMAXCHANNELS - 1) sc ->nChannels = cmsMAXCHANNELS - 1; for (i=0; i < sc ->nChannels; i++) { if (!_cmsRead15Fixed16Number(io, &sc ->Channels[i].Frequency)) goto Error; if (!_cmsRead15Fixed16Number(io, &sc ->Channels[i].ScreenAngle)) goto Error; if (!_cmsReadUInt32Number(io, &sc ->Channels[i].SpotShape)) goto Error; } *nItems = 1; return (void*) sc; Error: if (sc != NULL) _cmsFree(self ->ContextID, sc); return NULL; cmsUNUSED_PARAMETER(SizeOfTag); } static cmsBool Type_Screening_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsScreening* sc = (cmsScreening* ) Ptr; cmsUInt32Number i; if (!_cmsWriteUInt32Number(io, sc ->Flag)) return FALSE; if (!_cmsWriteUInt32Number(io, sc ->nChannels)) return FALSE; for (i=0; i < sc ->nChannels; i++) { if (!_cmsWrite15Fixed16Number(io, sc ->Channels[i].Frequency)) return FALSE; if (!_cmsWrite15Fixed16Number(io, sc ->Channels[i].ScreenAngle)) return FALSE; if (!_cmsWriteUInt32Number(io, sc ->Channels[i].SpotShape)) return FALSE; } return TRUE; cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void* Type_Screening_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return _cmsDupMem(self ->ContextID, Ptr, sizeof(cmsScreening)); cmsUNUSED_PARAMETER(n); } static void Type_Screening_Free(struct _cms_typehandler_struct* self, void* Ptr) { _cmsFree(self ->ContextID, Ptr); } // ******************************************************************************** // Type cmsSigViewingConditionsType // ******************************************************************************** // //This type represents a set of viewing condition parameters including: //CIE ’absolute’ illuminant white point tristimulus values and CIE ’absolute’ //surround tristimulus values. static void *Type_ViewingConditions_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsICCViewingConditions* vc = NULL; vc = (cmsICCViewingConditions*) _cmsMallocZero(self ->ContextID, sizeof(cmsICCViewingConditions)); if (vc == NULL) return NULL; *nItems = 0; if (!_cmsReadXYZNumber(io, &vc ->IlluminantXYZ)) goto Error; if (!_cmsReadXYZNumber(io, &vc ->SurroundXYZ)) goto Error; if (!_cmsReadUInt32Number(io, &vc ->IlluminantType)) goto Error; *nItems = 1; return (void*) vc; Error: if (vc != NULL) _cmsFree(self ->ContextID, vc); return NULL; cmsUNUSED_PARAMETER(SizeOfTag); } static cmsBool Type_ViewingConditions_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsICCViewingConditions* sc = (cmsICCViewingConditions* ) Ptr; if (!_cmsWriteXYZNumber(io, &sc ->IlluminantXYZ)) return FALSE; if (!_cmsWriteXYZNumber(io, &sc ->SurroundXYZ)) return FALSE; if (!_cmsWriteUInt32Number(io, sc ->IlluminantType)) return FALSE; return TRUE; cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void* Type_ViewingConditions_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return _cmsDupMem(self->ContextID, Ptr, sizeof(cmsICCViewingConditions)); cmsUNUSED_PARAMETER(n); } static void Type_ViewingConditions_Free(struct _cms_typehandler_struct* self, void* Ptr) { _cmsFree(self ->ContextID, Ptr); } // ******************************************************************************** // Type cmsSigMultiProcessElementType // ******************************************************************************** static void* GenericMPEdup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return (void*) cmsStageDup((cmsStage*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void GenericMPEfree(struct _cms_typehandler_struct* self, void *Ptr) { cmsStageFree((cmsStage*) Ptr); return; cmsUNUSED_PARAMETER(self); } // Each curve is stored in one or more curve segments, with break-points specified between curve segments. // The first curve segment always starts at –Infinity, and the last curve segment always ends at +Infinity. The // first and last curve segments shall be specified in terms of a formula, whereas the other segments shall be // specified either in terms of a formula, or by a sampled curve. // Read an embedded segmented curve static cmsToneCurve* ReadSegmentedCurve(struct _cms_typehandler_struct* self, cmsIOHANDLER* io) { cmsCurveSegSignature ElementSig; cmsUInt32Number i, j; cmsUInt16Number nSegments; cmsCurveSegment* Segments; cmsToneCurve* Curve; cmsFloat32Number PrevBreak = -1E22F; // - infinite // Take signature and channels for each element. if (!_cmsReadUInt32Number(io, (cmsUInt32Number*) &ElementSig)) return NULL; // That should be a segmented curve if (ElementSig != cmsSigSegmentedCurve) return NULL; if (!_cmsReadUInt32Number(io, NULL)) return NULL; if (!_cmsReadUInt16Number(io, &nSegments)) return NULL; if (!_cmsReadUInt16Number(io, NULL)) return NULL; if (nSegments < 1) return NULL; Segments = (cmsCurveSegment*) _cmsCalloc(self ->ContextID, nSegments, sizeof(cmsCurveSegment)); if (Segments == NULL) return NULL; // Read breakpoints for (i=0; i < (cmsUInt32Number) nSegments - 1; i++) { Segments[i].x0 = PrevBreak; if (!_cmsReadFloat32Number(io, &Segments[i].x1)) goto Error; PrevBreak = Segments[i].x1; } Segments[nSegments-1].x0 = PrevBreak; Segments[nSegments-1].x1 = 1E22F; // A big cmsFloat32Number number // Read segments for (i=0; i < nSegments; i++) { if (!_cmsReadUInt32Number(io, (cmsUInt32Number*) &ElementSig)) goto Error; if (!_cmsReadUInt32Number(io, NULL)) goto Error; switch (ElementSig) { case cmsSigFormulaCurveSeg: { cmsUInt16Number Type; cmsUInt32Number ParamsByType[] = {4, 5, 5 }; if (!_cmsReadUInt16Number(io, &Type)) goto Error; if (!_cmsReadUInt16Number(io, NULL)) goto Error; Segments[i].Type = Type + 6; if (Type > 2) goto Error; for (j=0; j < ParamsByType[Type]; j++) { cmsFloat32Number f; if (!_cmsReadFloat32Number(io, &f)) goto Error; Segments[i].Params[j] = f; } } break; case cmsSigSampledCurveSeg: { cmsUInt32Number Count; if (!_cmsReadUInt32Number(io, &Count)) return NULL; Segments[i].nGridPoints = Count; Segments[i].SampledPoints = (cmsFloat32Number*) _cmsCalloc(self ->ContextID, Count, sizeof(cmsFloat32Number)); if (Segments[i].SampledPoints == NULL) goto Error; for (j=0; j < Count; j++) { if (!_cmsReadFloat32Number(io, &Segments[i].SampledPoints[j])) goto Error; } } break; default: { char String[5]; _cmsTagSignature2String(String, (cmsTagSignature) ElementSig); cmsSignalError(self->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unknown curve element type '%s' found.", String); } return NULL; } } Curve = cmsBuildSegmentedToneCurve(self ->ContextID, nSegments, Segments); for (i=0; i < nSegments; i++) { if (Segments[i].SampledPoints) _cmsFree(self ->ContextID, Segments[i].SampledPoints); } _cmsFree(self ->ContextID, Segments); return Curve; Error: if (Segments) _cmsFree(self ->ContextID, Segments); return NULL; } static cmsBool ReadMPECurve(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Cargo, cmsUInt32Number n, cmsUInt32Number SizeOfTag) { cmsToneCurve** GammaTables = ( cmsToneCurve**) Cargo; GammaTables[n] = ReadSegmentedCurve(self, io); return (GammaTables[n] != NULL); cmsUNUSED_PARAMETER(SizeOfTag); } static void *Type_MPEcurve_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsStage* mpe = NULL; cmsUInt16Number InputChans, OutputChans; cmsUInt32Number i, BaseOffset; cmsToneCurve** GammaTables; *nItems = 0; // Get actual position as a basis for element offsets BaseOffset = io ->Tell(io) - sizeof(_cmsTagBase); if (!_cmsReadUInt16Number(io, &InputChans)) return NULL; if (!_cmsReadUInt16Number(io, &OutputChans)) return NULL; if (InputChans != OutputChans) return NULL; GammaTables = (cmsToneCurve**) _cmsCalloc(self ->ContextID, InputChans, sizeof(cmsToneCurve*)); if (GammaTables == NULL) return NULL; if (ReadPositionTable(self, io, InputChans, BaseOffset, GammaTables, ReadMPECurve)) { mpe = cmsStageAllocToneCurves(self ->ContextID, InputChans, GammaTables); } else { mpe = NULL; } for (i=0; i < InputChans; i++) { if (GammaTables[i]) cmsFreeToneCurve(GammaTables[i]); } _cmsFree(self ->ContextID, GammaTables); *nItems = (mpe != NULL) ? 1 : 0; return mpe; cmsUNUSED_PARAMETER(SizeOfTag); } // Write a single segmented curve. NO CHECK IS PERFORMED ON VALIDITY static cmsBool WriteSegmentedCurve(cmsIOHANDLER* io, cmsToneCurve* g) { cmsUInt32Number i, j; cmsCurveSegment* Segments = g ->Segments; cmsUInt32Number nSegments = g ->nSegments; if (!_cmsWriteUInt32Number(io, cmsSigSegmentedCurve)) goto Error; if (!_cmsWriteUInt32Number(io, 0)) goto Error; if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) nSegments)) goto Error; if (!_cmsWriteUInt16Number(io, 0)) goto Error; // Write the break-points for (i=0; i < nSegments - 1; i++) { if (!_cmsWriteFloat32Number(io, Segments[i].x1)) goto Error; } // Write the segments for (i=0; i < g ->nSegments; i++) { cmsCurveSegment* ActualSeg = Segments + i; if (ActualSeg -> Type == 0) { // This is a sampled curve if (!_cmsWriteUInt32Number(io, (cmsUInt32Number) cmsSigSampledCurveSeg)) goto Error; if (!_cmsWriteUInt32Number(io, 0)) goto Error; if (!_cmsWriteUInt32Number(io, ActualSeg -> nGridPoints)) goto Error; for (j=0; j < g ->Segments[i].nGridPoints; j++) { if (!_cmsWriteFloat32Number(io, ActualSeg -> SampledPoints[j])) goto Error; } } else { int Type; cmsUInt32Number ParamsByType[] = { 4, 5, 5 }; // This is a formula-based if (!_cmsWriteUInt32Number(io, (cmsUInt32Number) cmsSigFormulaCurveSeg)) goto Error; if (!_cmsWriteUInt32Number(io, 0)) goto Error; // We only allow 1, 2 and 3 as types Type = ActualSeg ->Type - 6; if (Type > 2 || Type < 0) goto Error; if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) Type)) goto Error; if (!_cmsWriteUInt16Number(io, 0)) goto Error; for (j=0; j < ParamsByType[Type]; j++) { if (!_cmsWriteFloat32Number(io, (cmsFloat32Number) ActualSeg ->Params[j])) goto Error; } } // It seems there is no need to align. Code is here, and for safety commented out // if (!_cmsWriteAlignment(io)) goto Error; } return TRUE; Error: return FALSE; } static cmsBool WriteMPECurve(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Cargo, cmsUInt32Number n, cmsUInt32Number SizeOfTag) { _cmsStageToneCurvesData* Curves = (_cmsStageToneCurvesData*) Cargo; return WriteSegmentedCurve(io, Curves ->TheCurves[n]); cmsUNUSED_PARAMETER(SizeOfTag); cmsUNUSED_PARAMETER(self); } // Write a curve, checking first for validity static cmsBool Type_MPEcurve_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsUInt32Number BaseOffset; cmsStage* mpe = (cmsStage*) Ptr; _cmsStageToneCurvesData* Curves = (_cmsStageToneCurvesData*) mpe ->Data; BaseOffset = io ->Tell(io) - sizeof(_cmsTagBase); // Write the header. Since those are curves, input and output channels are same if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) mpe ->InputChannels)) return FALSE; if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) mpe ->InputChannels)) return FALSE; if (!WritePositionTable(self, io, 0, mpe ->InputChannels, BaseOffset, Curves, WriteMPECurve)) return FALSE; return TRUE; cmsUNUSED_PARAMETER(nItems); } // The matrix is organized as an array of PxQ+Q elements, where P is the number of input channels to the // matrix, and Q is the number of output channels. The matrix elements are each float32Numbers. The array // is organized as follows: // array = [e11, e12, …, e1P, e21, e22, …, e2P, …, eQ1, eQ2, …, eQP, e1, e2, …, eQ] static void *Type_MPEmatrix_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsStage* mpe; cmsUInt16Number InputChans, OutputChans; cmsUInt32Number nElems, i; cmsFloat64Number* Matrix; cmsFloat64Number* Offsets; if (!_cmsReadUInt16Number(io, &InputChans)) return NULL; if (!_cmsReadUInt16Number(io, &OutputChans)) return NULL; nElems = InputChans * OutputChans; // Input and output chans may be ANY (up to 0xffff) Matrix = (cmsFloat64Number*) _cmsCalloc(self ->ContextID, nElems, sizeof(cmsFloat64Number)); if (Matrix == NULL) return NULL; Offsets = (cmsFloat64Number*) _cmsCalloc(self ->ContextID, OutputChans, sizeof(cmsFloat64Number)); if (Offsets == NULL) { _cmsFree(self ->ContextID, Matrix); return NULL; } for (i=0; i < nElems; i++) { cmsFloat32Number v; if (!_cmsReadFloat32Number(io, &v)) return NULL; Matrix[i] = v; } for (i=0; i < OutputChans; i++) { cmsFloat32Number v; if (!_cmsReadFloat32Number(io, &v)) return NULL; Offsets[i] = v; } mpe = cmsStageAllocMatrix(self ->ContextID, OutputChans, InputChans, Matrix, Offsets); _cmsFree(self ->ContextID, Matrix); _cmsFree(self ->ContextID, Offsets); *nItems = 1; return mpe; cmsUNUSED_PARAMETER(SizeOfTag); } static cmsBool Type_MPEmatrix_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsUInt32Number i, nElems; cmsStage* mpe = (cmsStage*) Ptr; _cmsStageMatrixData* Matrix = (_cmsStageMatrixData*) mpe ->Data; if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) mpe ->InputChannels)) return FALSE; if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) mpe ->OutputChannels)) return FALSE; nElems = mpe ->InputChannels * mpe ->OutputChannels; for (i=0; i < nElems; i++) { if (!_cmsWriteFloat32Number(io, (cmsFloat32Number) Matrix->Double[i])) return FALSE; } for (i=0; i < mpe ->OutputChannels; i++) { if (Matrix ->Offset == NULL) { if (!_cmsWriteFloat32Number(io, 0)) return FALSE; } else { if (!_cmsWriteFloat32Number(io, (cmsFloat32Number) Matrix->Offset[i])) return FALSE; } } return TRUE; cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } static void *Type_MPEclut_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsStage* mpe = NULL; cmsUInt16Number InputChans, OutputChans; cmsUInt8Number Dimensions8[16]; cmsUInt32Number i, nMaxGrids, GridPoints[MAX_INPUT_DIMENSIONS]; _cmsStageCLutData* clut; if (!_cmsReadUInt16Number(io, &InputChans)) return NULL; if (!_cmsReadUInt16Number(io, &OutputChans)) return NULL; if (InputChans == 0) goto Error; if (OutputChans == 0) goto Error; if (io ->Read(io, Dimensions8, sizeof(cmsUInt8Number), 16) != 16) goto Error; // Copy MAX_INPUT_DIMENSIONS at most. Expand to cmsUInt32Number nMaxGrids = InputChans > MAX_INPUT_DIMENSIONS ? MAX_INPUT_DIMENSIONS : InputChans; for (i=0; i < nMaxGrids; i++) { if (Dimensions8[i] == 1) goto Error; // Impossible value, 0 for no CLUT and then 2 at least GridPoints[i] = (cmsUInt32Number)Dimensions8[i]; } // Allocate the true CLUT mpe = cmsStageAllocCLutFloatGranular(self ->ContextID, GridPoints, InputChans, OutputChans, NULL); if (mpe == NULL) goto Error; // Read the data clut = (_cmsStageCLutData*) mpe ->Data; for (i=0; i < clut ->nEntries; i++) { if (!_cmsReadFloat32Number(io, &clut ->Tab.TFloat[i])) goto Error; } *nItems = 1; return mpe; Error: *nItems = 0; if (mpe != NULL) cmsStageFree(mpe); return NULL; cmsUNUSED_PARAMETER(SizeOfTag); } // Write a CLUT in floating point static cmsBool Type_MPEclut_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsUInt8Number Dimensions8[16]; // 16 because the spec says 16 and not max number of channels cmsUInt32Number i; cmsStage* mpe = (cmsStage*) Ptr; _cmsStageCLutData* clut = (_cmsStageCLutData*) mpe ->Data; // Check for maximum number of channels supported by lcms if (mpe -> InputChannels > MAX_INPUT_DIMENSIONS) return FALSE; // Only floats are supported in MPE if (clut ->HasFloatValues == FALSE) return FALSE; if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) mpe ->InputChannels)) return FALSE; if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) mpe ->OutputChannels)) return FALSE; memset(Dimensions8, 0, sizeof(Dimensions8)); for (i=0; i < mpe ->InputChannels; i++) Dimensions8[i] = (cmsUInt8Number) clut ->Params ->nSamples[i]; if (!io ->Write(io, 16, Dimensions8)) return FALSE; for (i=0; i < clut ->nEntries; i++) { if (!_cmsWriteFloat32Number(io, clut ->Tab.TFloat[i])) return FALSE; } return TRUE; cmsUNUSED_PARAMETER(nItems); cmsUNUSED_PARAMETER(self); } // This is the list of built-in MPE types static _cmsTagTypeLinkedList SupportedMPEtypes[] = { {{ (cmsTagTypeSignature) cmsSigBAcsElemType, NULL, NULL, NULL, NULL, NULL, 0 }, &SupportedMPEtypes[1] }, // Ignore those elements for now {{ (cmsTagTypeSignature) cmsSigEAcsElemType, NULL, NULL, NULL, NULL, NULL, 0 }, &SupportedMPEtypes[2] }, // (That's what the spec says) {TYPE_MPE_HANDLER((cmsTagTypeSignature) cmsSigCurveSetElemType, MPEcurve), &SupportedMPEtypes[3] }, {TYPE_MPE_HANDLER((cmsTagTypeSignature) cmsSigMatrixElemType, MPEmatrix), &SupportedMPEtypes[4] }, {TYPE_MPE_HANDLER((cmsTagTypeSignature) cmsSigCLutElemType, MPEclut), NULL }, }; _cmsTagTypePluginChunkType _cmsMPETypePluginChunk = { NULL }; static cmsBool ReadMPEElem(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Cargo, cmsUInt32Number n, cmsUInt32Number SizeOfTag) { cmsStageSignature ElementSig; cmsTagTypeHandler* TypeHandler; cmsUInt32Number nItems; cmsPipeline *NewLUT = (cmsPipeline *) Cargo; _cmsTagTypePluginChunkType* MPETypePluginChunk = ( _cmsTagTypePluginChunkType*) _cmsContextGetClientChunk(self->ContextID, MPEPlugin); // Take signature and channels for each element. if (!_cmsReadUInt32Number(io, (cmsUInt32Number*) &ElementSig)) return FALSE; // The reserved placeholder if (!_cmsReadUInt32Number(io, NULL)) return FALSE; // Read diverse MPE types TypeHandler = GetHandler((cmsTagTypeSignature) ElementSig, MPETypePluginChunk ->TagTypes, SupportedMPEtypes); if (TypeHandler == NULL) { char String[5]; _cmsTagSignature2String(String, (cmsTagSignature) ElementSig); // An unknown element was found. cmsSignalError(self ->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unknown MPE type '%s' found.", String); return FALSE; } // If no read method, just ignore the element (valid for cmsSigBAcsElemType and cmsSigEAcsElemType) // Read the MPE. No size is given if (TypeHandler ->ReadPtr != NULL) { // This is a real element which should be read and processed if (!cmsPipelineInsertStage(NewLUT, cmsAT_END, (cmsStage*) TypeHandler ->ReadPtr(self, io, &nItems, SizeOfTag))) return FALSE; } return TRUE; cmsUNUSED_PARAMETER(SizeOfTag); cmsUNUSED_PARAMETER(n); } // This is the main dispatcher for MPE static void *Type_MPE_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsUInt16Number InputChans, OutputChans; cmsUInt32Number ElementCount; cmsPipeline *NewLUT = NULL; cmsUInt32Number BaseOffset; // Get actual position as a basis for element offsets BaseOffset = io ->Tell(io) - sizeof(_cmsTagBase); // Read channels and element count if (!_cmsReadUInt16Number(io, &InputChans)) return NULL; if (!_cmsReadUInt16Number(io, &OutputChans)) return NULL; // Allocates an empty LUT NewLUT = cmsPipelineAlloc(self ->ContextID, InputChans, OutputChans); if (NewLUT == NULL) return NULL; if (!_cmsReadUInt32Number(io, &ElementCount)) return NULL; if (!ReadPositionTable(self, io, ElementCount, BaseOffset, NewLUT, ReadMPEElem)) { if (NewLUT != NULL) cmsPipelineFree(NewLUT); *nItems = 0; return NULL; } // Success *nItems = 1; return NewLUT; cmsUNUSED_PARAMETER(SizeOfTag); } // This one is a liitle bit more complex, so we don't use position tables this time. static cmsBool Type_MPE_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsUInt32Number i, BaseOffset, DirectoryPos, CurrentPos; cmsInt32Number CurrentPos0; int inputChan, outputChan; cmsUInt32Number ElemCount; cmsUInt32Number *ElementOffsets = NULL, *ElementSizes = NULL, Before; cmsStageSignature ElementSig; cmsPipeline* Lut = (cmsPipeline*) Ptr; cmsStage* Elem = Lut ->Elements; cmsTagTypeHandler* TypeHandler; _cmsTagTypePluginChunkType* MPETypePluginChunk = ( _cmsTagTypePluginChunkType*) _cmsContextGetClientChunk(self->ContextID, MPEPlugin); BaseOffset = io ->Tell(io) - sizeof(_cmsTagBase); inputChan = cmsPipelineInputChannels(Lut); outputChan = cmsPipelineOutputChannels(Lut); ElemCount = cmsPipelineStageCount(Lut); ElementOffsets = (cmsUInt32Number *) _cmsCalloc(self ->ContextID, ElemCount, sizeof(cmsUInt32Number)); if (ElementOffsets == NULL) goto Error; ElementSizes = (cmsUInt32Number *) _cmsCalloc(self ->ContextID, ElemCount, sizeof(cmsUInt32Number)); if (ElementSizes == NULL) goto Error; // Write the head if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) inputChan)) goto Error; if (!_cmsWriteUInt16Number(io, (cmsUInt16Number) outputChan)) goto Error; if (!_cmsWriteUInt32Number(io, (cmsUInt16Number) ElemCount)) goto Error; DirectoryPos = io ->Tell(io); // Write a fake directory to be filled latter on for (i=0; i < ElemCount; i++) { if (!_cmsWriteUInt32Number(io, 0)) goto Error; // Offset if (!_cmsWriteUInt32Number(io, 0)) goto Error; // size } // Write each single tag. Keep track of the size as well. for (i=0; i < ElemCount; i++) { ElementOffsets[i] = io ->Tell(io) - BaseOffset; ElementSig = Elem ->Type; TypeHandler = GetHandler((cmsTagTypeSignature) ElementSig, MPETypePluginChunk->TagTypes, SupportedMPEtypes); if (TypeHandler == NULL) { char String[5]; _cmsTagSignature2String(String, (cmsTagSignature) ElementSig); // An unknow element was found. cmsSignalError(self->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Found unknown MPE type '%s'", String); goto Error; } if (!_cmsWriteUInt32Number(io, ElementSig)) goto Error; if (!_cmsWriteUInt32Number(io, 0)) goto Error; Before = io ->Tell(io); if (!TypeHandler ->WritePtr(self, io, Elem, 1)) goto Error; if (!_cmsWriteAlignment(io)) goto Error; ElementSizes[i] = io ->Tell(io) - Before; Elem = Elem ->Next; } // Write the directory CurrentPos0 = io ->Tell(io); if (CurrentPos0 < 0) { goto Error; } CurrentPos = (cmsUInt32Number)CurrentPos0; if (!io ->Seek(io, DirectoryPos)) goto Error; for (i=0; i < ElemCount; i++) { if (!_cmsWriteUInt32Number(io, ElementOffsets[i])) goto Error; if (!_cmsWriteUInt32Number(io, ElementSizes[i])) goto Error; } if (!io ->Seek(io, CurrentPos)) goto Error; if (ElementOffsets != NULL) _cmsFree(self ->ContextID, ElementOffsets); if (ElementSizes != NULL) _cmsFree(self ->ContextID, ElementSizes); return TRUE; Error: if (ElementOffsets != NULL) _cmsFree(self ->ContextID, ElementOffsets); if (ElementSizes != NULL) _cmsFree(self ->ContextID, ElementSizes); return FALSE; cmsUNUSED_PARAMETER(nItems); } static void* Type_MPE_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return (void*) cmsPipelineDup((cmsPipeline*) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_MPE_Free(struct _cms_typehandler_struct* self, void *Ptr) { cmsPipelineFree((cmsPipeline*) Ptr); return; cmsUNUSED_PARAMETER(self); } // ******************************************************************************** // Type cmsSigVcgtType // ******************************************************************************** #define cmsVideoCardGammaTableType 0 #define cmsVideoCardGammaFormulaType 1 // Used internally typedef struct { double Gamma; double Min; double Max; } _cmsVCGTGAMMA; static void *Type_vcgt_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsUInt32Number TagType, n, i; cmsToneCurve** Curves; *nItems = 0; // Read tag type if (!_cmsReadUInt32Number(io, &TagType)) return NULL; // Allocate space for the array Curves = ( cmsToneCurve**) _cmsCalloc(self ->ContextID, 3, sizeof(cmsToneCurve*)); if (Curves == NULL) return NULL; // There are two possible flavors switch (TagType) { // Gamma is stored as a table case cmsVideoCardGammaTableType: { cmsUInt16Number nChannels, nElems, nBytes; // Check channel count, which should be 3 (we don't support monochrome this time) if (!_cmsReadUInt16Number(io, &nChannels)) goto Error; if (nChannels != 3) { cmsSignalError(self->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unsupported number of channels for VCGT '%d'", nChannels); goto Error; } // Get Table element count and bytes per element if (!_cmsReadUInt16Number(io, &nElems)) goto Error; if (!_cmsReadUInt16Number(io, &nBytes)) goto Error; // Adobe's quirk fixup. Fixing broken profiles... if (nElems == 256 && nBytes == 1 && SizeOfTag == 1576) nBytes = 2; // Populate tone curves for (n=0; n < 3; n++) { Curves[n] = cmsBuildTabulatedToneCurve16(self ->ContextID, nElems, NULL); if (Curves[n] == NULL) goto Error; // On depending on byte depth switch (nBytes) { // One byte, 0..255 case 1: for (i=0; i < nElems; i++) { cmsUInt8Number v; if (!_cmsReadUInt8Number(io, &v)) goto Error; Curves[n] ->Table16[i] = FROM_8_TO_16(v); } break; // One word 0..65535 case 2: if (!_cmsReadUInt16Array(io, nElems, Curves[n]->Table16)) goto Error; break; // Unsupported default: cmsSignalError(self->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unsupported bit depth for VCGT '%d'", nBytes * 8); goto Error; } } // For all 3 channels } break; // In this case, gamma is stored as a formula case cmsVideoCardGammaFormulaType: { _cmsVCGTGAMMA Colorant[3]; // Populate tone curves for (n=0; n < 3; n++) { double Params[10]; if (!_cmsRead15Fixed16Number(io, &Colorant[n].Gamma)) goto Error; if (!_cmsRead15Fixed16Number(io, &Colorant[n].Min)) goto Error; if (!_cmsRead15Fixed16Number(io, &Colorant[n].Max)) goto Error; // Parametric curve type 5 is: // Y = (aX + b)^Gamma + e | X >= d // Y = cX + f | X < d // vcgt formula is: // Y = (Max – Min) * (X ^ Gamma) + Min // So, the translation is // a = (Max – Min) ^ ( 1 / Gamma) // e = Min // b=c=d=f=0 Params[0] = Colorant[n].Gamma; Params[1] = pow((Colorant[n].Max - Colorant[n].Min), (1.0 / Colorant[n].Gamma)); Params[2] = 0; Params[3] = 0; Params[4] = 0; Params[5] = Colorant[n].Min; Params[6] = 0; Curves[n] = cmsBuildParametricToneCurve(self ->ContextID, 5, Params); if (Curves[n] == NULL) goto Error; } } break; // Unsupported default: cmsSignalError(self->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unsupported tag type for VCGT '%d'", TagType); goto Error; } *nItems = 1; return (void*) Curves; // Regret, free all resources Error: cmsFreeToneCurveTriple(Curves); _cmsFree(self ->ContextID, Curves); return NULL; cmsUNUSED_PARAMETER(SizeOfTag); } // We don't support all flavors, only 16bits tables and formula static cmsBool Type_vcgt_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsToneCurve** Curves = (cmsToneCurve**) Ptr; cmsUInt32Number i, j; if (cmsGetToneCurveParametricType(Curves[0]) == 5 && cmsGetToneCurveParametricType(Curves[1]) == 5 && cmsGetToneCurveParametricType(Curves[2]) == 5) { if (!_cmsWriteUInt32Number(io, cmsVideoCardGammaFormulaType)) return FALSE; // Save parameters for (i=0; i < 3; i++) { _cmsVCGTGAMMA v; v.Gamma = Curves[i] ->Segments[0].Params[0]; v.Min = Curves[i] ->Segments[0].Params[5]; v.Max = pow(Curves[i] ->Segments[0].Params[1], v.Gamma) + v.Min; if (!_cmsWrite15Fixed16Number(io, v.Gamma)) return FALSE; if (!_cmsWrite15Fixed16Number(io, v.Min)) return FALSE; if (!_cmsWrite15Fixed16Number(io, v.Max)) return FALSE; } } else { // Always store as a table of 256 words if (!_cmsWriteUInt32Number(io, cmsVideoCardGammaTableType)) return FALSE; if (!_cmsWriteUInt16Number(io, 3)) return FALSE; if (!_cmsWriteUInt16Number(io, 256)) return FALSE; if (!_cmsWriteUInt16Number(io, 2)) return FALSE; for (i=0; i < 3; i++) { for (j=0; j < 256; j++) { cmsFloat32Number v = cmsEvalToneCurveFloat(Curves[i], (cmsFloat32Number) (j / 255.0)); cmsUInt16Number n = _cmsQuickSaturateWord(v * 65535.0); if (!_cmsWriteUInt16Number(io, n)) return FALSE; } } } return TRUE; cmsUNUSED_PARAMETER(self); cmsUNUSED_PARAMETER(nItems); } static void* Type_vcgt_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { cmsToneCurve** OldCurves = (cmsToneCurve**) Ptr; cmsToneCurve** NewCurves; NewCurves = ( cmsToneCurve**) _cmsCalloc(self ->ContextID, 3, sizeof(cmsToneCurve*)); if (NewCurves == NULL) return NULL; NewCurves[0] = cmsDupToneCurve(OldCurves[0]); NewCurves[1] = cmsDupToneCurve(OldCurves[1]); NewCurves[2] = cmsDupToneCurve(OldCurves[2]); return (void*) NewCurves; cmsUNUSED_PARAMETER(n); } static void Type_vcgt_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsFreeToneCurveTriple((cmsToneCurve**) Ptr); _cmsFree(self ->ContextID, Ptr); } // ******************************************************************************** // Type cmsSigDictType // ******************************************************************************** // Single column of the table can point to wchar or MLUC elements. Holds arrays of data typedef struct { cmsContext ContextID; cmsUInt32Number *Offsets; cmsUInt32Number *Sizes; } _cmsDICelem; typedef struct { _cmsDICelem Name, Value, DisplayName, DisplayValue; } _cmsDICarray; // Allocate an empty array element static cmsBool AllocElem(cmsContext ContextID, _cmsDICelem* e, cmsUInt32Number Count) { e->Offsets = (cmsUInt32Number *) _cmsCalloc(ContextID, Count, sizeof(cmsUInt32Number)); if (e->Offsets == NULL) return FALSE; e->Sizes = (cmsUInt32Number *) _cmsCalloc(ContextID, Count, sizeof(cmsUInt32Number)); if (e->Sizes == NULL) { _cmsFree(ContextID, e -> Offsets); return FALSE; } e ->ContextID = ContextID; return TRUE; } // Free an array element static void FreeElem(_cmsDICelem* e) { if (e ->Offsets != NULL) _cmsFree(e -> ContextID, e -> Offsets); if (e ->Sizes != NULL) _cmsFree(e -> ContextID, e -> Sizes); e->Offsets = e ->Sizes = NULL; } // Get rid of whole array static void FreeArray( _cmsDICarray* a) { if (a ->Name.Offsets != NULL) FreeElem(&a->Name); if (a ->Value.Offsets != NULL) FreeElem(&a ->Value); if (a ->DisplayName.Offsets != NULL) FreeElem(&a->DisplayName); if (a ->DisplayValue.Offsets != NULL) FreeElem(&a ->DisplayValue); } // Allocate whole array static cmsBool AllocArray(cmsContext ContextID, _cmsDICarray* a, cmsUInt32Number Count, cmsUInt32Number Length) { // Empty values memset(a, 0, sizeof(_cmsDICarray)); // On depending on record size, create column arrays if (!AllocElem(ContextID, &a ->Name, Count)) goto Error; if (!AllocElem(ContextID, &a ->Value, Count)) goto Error; if (Length > 16) { if (!AllocElem(ContextID, &a -> DisplayName, Count)) goto Error; } if (Length > 24) { if (!AllocElem(ContextID, &a ->DisplayValue, Count)) goto Error; } return TRUE; Error: FreeArray(a); return FALSE; } // Read one element static cmsBool ReadOneElem(cmsIOHANDLER* io, _cmsDICelem* e, cmsUInt32Number i, cmsUInt32Number BaseOffset) { if (!_cmsReadUInt32Number(io, &e->Offsets[i])) return FALSE; if (!_cmsReadUInt32Number(io, &e ->Sizes[i])) return FALSE; // An offset of zero has special meaning and shal be preserved if (e ->Offsets[i] > 0) e ->Offsets[i] += BaseOffset; return TRUE; } static cmsBool ReadOffsetArray(cmsIOHANDLER* io, _cmsDICarray* a, cmsUInt32Number Count, cmsUInt32Number Length, cmsUInt32Number BaseOffset) { cmsUInt32Number i; // Read column arrays for (i=0; i < Count; i++) { if (!ReadOneElem(io, &a -> Name, i, BaseOffset)) return FALSE; if (!ReadOneElem(io, &a -> Value, i, BaseOffset)) return FALSE; if (Length > 16) { if (!ReadOneElem(io, &a ->DisplayName, i, BaseOffset)) return FALSE; } if (Length > 24) { if (!ReadOneElem(io, & a -> DisplayValue, i, BaseOffset)) return FALSE; } } return TRUE; } // Write one element static cmsBool WriteOneElem(cmsIOHANDLER* io, _cmsDICelem* e, cmsUInt32Number i) { if (!_cmsWriteUInt32Number(io, e->Offsets[i])) return FALSE; if (!_cmsWriteUInt32Number(io, e ->Sizes[i])) return FALSE; return TRUE; } static cmsBool WriteOffsetArray(cmsIOHANDLER* io, _cmsDICarray* a, cmsUInt32Number Count, cmsUInt32Number Length) { cmsUInt32Number i; for (i=0; i < Count; i++) { if (!WriteOneElem(io, &a -> Name, i)) return FALSE; if (!WriteOneElem(io, &a -> Value, i)) return FALSE; if (Length > 16) { if (!WriteOneElem(io, &a -> DisplayName, i)) return FALSE; } if (Length > 24) { if (!WriteOneElem(io, &a -> DisplayValue, i)) return FALSE; } } return TRUE; } static cmsBool ReadOneWChar(cmsIOHANDLER* io, _cmsDICelem* e, cmsUInt32Number i, wchar_t ** wcstr) { cmsUInt32Number nChars; // Special case for undefined strings (see ICC Votable // Proposal Submission, Dictionary Type and Metadata TAG Definition) if (e -> Offsets[i] == 0) { *wcstr = NULL; return TRUE; } if (!io -> Seek(io, e -> Offsets[i])) return FALSE; nChars = e ->Sizes[i] / sizeof(cmsUInt16Number); *wcstr = (wchar_t*) _cmsMallocZero(e ->ContextID, (nChars + 1) * sizeof(wchar_t)); if (*wcstr == NULL) return FALSE; if (!_cmsReadWCharArray(io, nChars, *wcstr)) { _cmsFree(e ->ContextID, *wcstr); return FALSE; } // End of string marker (*wcstr)[nChars] = 0; return TRUE; } static cmsUInt32Number mywcslen(const wchar_t *s) { const wchar_t *p; p = s; while (*p) p++; return (cmsUInt32Number)(p - s); } static cmsBool WriteOneWChar(cmsIOHANDLER* io, _cmsDICelem* e, cmsUInt32Number i, const wchar_t * wcstr, cmsUInt32Number BaseOffset) { cmsUInt32Number Before = io ->Tell(io); cmsUInt32Number n; e ->Offsets[i] = Before - BaseOffset; if (wcstr == NULL) { e ->Sizes[i] = 0; e ->Offsets[i] = 0; return TRUE; } n = mywcslen(wcstr); if (!_cmsWriteWCharArray(io, n, wcstr)) return FALSE; e ->Sizes[i] = io ->Tell(io) - Before; return TRUE; } static cmsBool ReadOneMLUC(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, _cmsDICelem* e, cmsUInt32Number i, cmsMLU** mlu) { cmsUInt32Number nItems = 0; // A way to get null MLUCs if (e -> Offsets[i] == 0 || e ->Sizes[i] == 0) { *mlu = NULL; return TRUE; } if (!io -> Seek(io, e -> Offsets[i])) return FALSE; *mlu = (cmsMLU*) Type_MLU_Read(self, io, &nItems, e ->Sizes[i]); return *mlu != NULL; } static cmsBool WriteOneMLUC(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, _cmsDICelem* e, cmsUInt32Number i, const cmsMLU* mlu, cmsUInt32Number BaseOffset) { cmsUInt32Number Before; // Special case for undefined strings (see ICC Votable // Proposal Submission, Dictionary Type and Metadata TAG Definition) if (mlu == NULL) { e ->Sizes[i] = 0; e ->Offsets[i] = 0; return TRUE; } Before = io ->Tell(io); e ->Offsets[i] = Before - BaseOffset; if (!Type_MLU_Write(self, io, (void*) mlu, 1)) return FALSE; e ->Sizes[i] = io ->Tell(io) - Before; return TRUE; } static void *Type_Dictionary_Read(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, cmsUInt32Number* nItems, cmsUInt32Number SizeOfTag) { cmsHANDLE hDict; cmsUInt32Number i, Count, Length; cmsUInt32Number BaseOffset; _cmsDICarray a; wchar_t *NameWCS = NULL, *ValueWCS = NULL; cmsMLU *DisplayNameMLU = NULL, *DisplayValueMLU=NULL; cmsBool rc; *nItems = 0; // Get actual position as a basis for element offsets BaseOffset = io ->Tell(io) - sizeof(_cmsTagBase); // Get name-value record count if (!_cmsReadUInt32Number(io, &Count)) return NULL; SizeOfTag -= sizeof(cmsUInt32Number); // Get rec length if (!_cmsReadUInt32Number(io, &Length)) return NULL; SizeOfTag -= sizeof(cmsUInt32Number); // Check for valid lengths if (Length != 16 && Length != 24 && Length != 32) { cmsSignalError(self->ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unknown record length in dictionary '%d'", Length); return NULL; } // Creates an empty dictionary hDict = cmsDictAlloc(self -> ContextID); if (hDict == NULL) return NULL; // On depending on record size, create column arrays if (!AllocArray(self -> ContextID, &a, Count, Length)) goto Error; // Read column arrays if (!ReadOffsetArray(io, &a, Count, Length, BaseOffset)) goto Error; // Seek to each element and read it for (i=0; i < Count; i++) { if (!ReadOneWChar(io, &a.Name, i, &NameWCS)) goto Error; if (!ReadOneWChar(io, &a.Value, i, &ValueWCS)) goto Error; if (Length > 16) { if (!ReadOneMLUC(self, io, &a.DisplayName, i, &DisplayNameMLU)) goto Error; } if (Length > 24) { if (!ReadOneMLUC(self, io, &a.DisplayValue, i, &DisplayValueMLU)) goto Error; } if (NameWCS == NULL || ValueWCS == NULL) { cmsSignalError(self->ContextID, cmsERROR_CORRUPTION_DETECTED, "Bad dictionary Name/Value"); rc = FALSE; } else { rc = cmsDictAddEntry(hDict, NameWCS, ValueWCS, DisplayNameMLU, DisplayValueMLU); } if (NameWCS != NULL) _cmsFree(self ->ContextID, NameWCS); if (ValueWCS != NULL) _cmsFree(self ->ContextID, ValueWCS); if (DisplayNameMLU != NULL) cmsMLUfree(DisplayNameMLU); if (DisplayValueMLU != NULL) cmsMLUfree(DisplayValueMLU); if (!rc) goto Error; } FreeArray(&a); *nItems = 1; return (void*) hDict; Error: FreeArray(&a); cmsDictFree(hDict); return NULL; } static cmsBool Type_Dictionary_Write(struct _cms_typehandler_struct* self, cmsIOHANDLER* io, void* Ptr, cmsUInt32Number nItems) { cmsHANDLE hDict = (cmsHANDLE) Ptr; const cmsDICTentry* p; cmsBool AnyName, AnyValue; cmsUInt32Number i, Count, Length; cmsUInt32Number DirectoryPos, CurrentPos, BaseOffset; cmsInt32Number CurrentPos0; _cmsDICarray a; if (hDict == NULL) return FALSE; BaseOffset = io ->Tell(io) - sizeof(_cmsTagBase); // Let's inspect the dictionary Count = 0; AnyName = FALSE; AnyValue = FALSE; for (p = cmsDictGetEntryList(hDict); p != NULL; p = cmsDictNextEntry(p)) { if (p ->DisplayName != NULL) AnyName = TRUE; if (p ->DisplayValue != NULL) AnyValue = TRUE; Count++; } Length = 16; if (AnyName) Length += 8; if (AnyValue) Length += 8; if (!_cmsWriteUInt32Number(io, Count)) return FALSE; if (!_cmsWriteUInt32Number(io, Length)) return FALSE; // Keep starting position of offsets table DirectoryPos = io ->Tell(io); // Allocate offsets array if (!AllocArray(self ->ContextID, &a, Count, Length)) goto Error; // Write a fake directory to be filled latter on if (!WriteOffsetArray(io, &a, Count, Length)) goto Error; // Write each element. Keep track of the size as well. p = cmsDictGetEntryList(hDict); for (i=0; i < Count; i++) { if (!WriteOneWChar(io, &a.Name, i, p ->Name, BaseOffset)) goto Error; if (!WriteOneWChar(io, &a.Value, i, p ->Value, BaseOffset)) goto Error; if (p ->DisplayName != NULL) { if (!WriteOneMLUC(self, io, &a.DisplayName, i, p ->DisplayName, BaseOffset)) goto Error; } if (p ->DisplayValue != NULL) { if (!WriteOneMLUC(self, io, &a.DisplayValue, i, p ->DisplayValue, BaseOffset)) goto Error; } p = cmsDictNextEntry(p); } // Write the directory CurrentPos0 = io ->Tell(io); if (CurrentPos0 < 0) { goto Error; } CurrentPos = (cmsUInt32Number)CurrentPos0; if (!io ->Seek(io, DirectoryPos)) goto Error; if (!WriteOffsetArray(io, &a, Count, Length)) goto Error; if (!io ->Seek(io, CurrentPos)) goto Error; FreeArray(&a); return TRUE; Error: FreeArray(&a); return FALSE; cmsUNUSED_PARAMETER(nItems); } static void* Type_Dictionary_Dup(struct _cms_typehandler_struct* self, const void *Ptr, cmsUInt32Number n) { return (void*) cmsDictDup((cmsHANDLE) Ptr); cmsUNUSED_PARAMETER(n); cmsUNUSED_PARAMETER(self); } static void Type_Dictionary_Free(struct _cms_typehandler_struct* self, void* Ptr) { cmsDictFree((cmsHANDLE) Ptr); cmsUNUSED_PARAMETER(self); } // ******************************************************************************** // Type support main routines // ******************************************************************************** // This is the list of built-in types static _cmsTagTypeLinkedList SupportedTagTypes[] = { {TYPE_HANDLER(cmsSigChromaticityType, Chromaticity), &SupportedTagTypes[1] }, {TYPE_HANDLER(cmsSigColorantOrderType, ColorantOrderType), &SupportedTagTypes[2] }, {TYPE_HANDLER(cmsSigS15Fixed16ArrayType, S15Fixed16), &SupportedTagTypes[3] }, {TYPE_HANDLER(cmsSigU16Fixed16ArrayType, U16Fixed16), &SupportedTagTypes[4] }, {TYPE_HANDLER(cmsSigTextType, Text), &SupportedTagTypes[5] }, {TYPE_HANDLER(cmsSigTextDescriptionType, Text_Description), &SupportedTagTypes[6] }, {TYPE_HANDLER(cmsSigCurveType, Curve), &SupportedTagTypes[7] }, {TYPE_HANDLER(cmsSigParametricCurveType, ParametricCurve), &SupportedTagTypes[8] }, {TYPE_HANDLER(cmsSigDateTimeType, DateTime), &SupportedTagTypes[9] }, {TYPE_HANDLER(cmsSigLut8Type, LUT8), &SupportedTagTypes[10] }, {TYPE_HANDLER(cmsSigLut16Type, LUT16), &SupportedTagTypes[11] }, {TYPE_HANDLER(cmsSigColorantTableType, ColorantTable), &SupportedTagTypes[12] }, {TYPE_HANDLER(cmsSigNamedColor2Type, NamedColor), &SupportedTagTypes[13] }, {TYPE_HANDLER(cmsSigMultiLocalizedUnicodeType, MLU), &SupportedTagTypes[14] }, {TYPE_HANDLER(cmsSigProfileSequenceDescType, ProfileSequenceDesc), &SupportedTagTypes[15] }, {TYPE_HANDLER(cmsSigSignatureType, Signature), &SupportedTagTypes[16] }, {TYPE_HANDLER(cmsSigMeasurementType, Measurement), &SupportedTagTypes[17] }, {TYPE_HANDLER(cmsSigDataType, Data), &SupportedTagTypes[18] }, {TYPE_HANDLER(cmsSigLutAtoBType, LUTA2B), &SupportedTagTypes[19] }, {TYPE_HANDLER(cmsSigLutBtoAType, LUTB2A), &SupportedTagTypes[20] }, {TYPE_HANDLER(cmsSigUcrBgType, UcrBg), &SupportedTagTypes[21] }, {TYPE_HANDLER(cmsSigCrdInfoType, CrdInfo), &SupportedTagTypes[22] }, {TYPE_HANDLER(cmsSigMultiProcessElementType, MPE), &SupportedTagTypes[23] }, {TYPE_HANDLER(cmsSigScreeningType, Screening), &SupportedTagTypes[24] }, {TYPE_HANDLER(cmsSigViewingConditionsType, ViewingConditions), &SupportedTagTypes[25] }, {TYPE_HANDLER(cmsSigXYZType, XYZ), &SupportedTagTypes[26] }, {TYPE_HANDLER(cmsCorbisBrokenXYZtype, XYZ), &SupportedTagTypes[27] }, {TYPE_HANDLER(cmsMonacoBrokenCurveType, Curve), &SupportedTagTypes[28] }, {TYPE_HANDLER(cmsSigProfileSequenceIdType, ProfileSequenceId), &SupportedTagTypes[29] }, {TYPE_HANDLER(cmsSigDictType, Dictionary), &SupportedTagTypes[30] }, {TYPE_HANDLER(cmsSigVcgtType, vcgt), NULL } }; _cmsTagTypePluginChunkType _cmsTagTypePluginChunk = { NULL }; // Duplicates the zone of memory used by the plug-in in the new context static void DupTagTypeList(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src, int loc) { _cmsTagTypePluginChunkType newHead = { NULL }; _cmsTagTypeLinkedList* entry; _cmsTagTypeLinkedList* Anterior = NULL; _cmsTagTypePluginChunkType* head = (_cmsTagTypePluginChunkType*) src->chunks[loc]; // Walk the list copying all nodes for (entry = head->TagTypes; entry != NULL; entry = entry ->Next) { _cmsTagTypeLinkedList *newEntry = ( _cmsTagTypeLinkedList *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsTagTypeLinkedList)); if (newEntry == NULL) return; // We want to keep the linked list order, so this is a little bit tricky newEntry -> Next = NULL; if (Anterior) Anterior -> Next = newEntry; Anterior = newEntry; if (newHead.TagTypes == NULL) newHead.TagTypes = newEntry; } ctx ->chunks[loc] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsTagTypePluginChunkType)); } void _cmsAllocTagTypePluginChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) { if (src != NULL) { // Duplicate the LIST DupTagTypeList(ctx, src, TagTypePlugin); } else { static _cmsTagTypePluginChunkType TagTypePluginChunk = { NULL }; ctx ->chunks[TagTypePlugin] = _cmsSubAllocDup(ctx ->MemPool, &TagTypePluginChunk, sizeof(_cmsTagTypePluginChunkType)); } } void _cmsAllocMPETypePluginChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) { if (src != NULL) { // Duplicate the LIST DupTagTypeList(ctx, src, MPEPlugin); } else { static _cmsTagTypePluginChunkType TagTypePluginChunk = { NULL }; ctx ->chunks[MPEPlugin] = _cmsSubAllocDup(ctx ->MemPool, &TagTypePluginChunk, sizeof(_cmsTagTypePluginChunkType)); } } // Both kind of plug-ins share same structure cmsBool _cmsRegisterTagTypePlugin(cmsContext id, cmsPluginBase* Data) { return RegisterTypesPlugin(id, Data, TagTypePlugin); } cmsBool _cmsRegisterMultiProcessElementPlugin(cmsContext id, cmsPluginBase* Data) { return RegisterTypesPlugin(id, Data,MPEPlugin); } // Wrapper for tag types cmsTagTypeHandler* _cmsGetTagTypeHandler(cmsContext ContextID, cmsTagTypeSignature sig) { _cmsTagTypePluginChunkType* ctx = ( _cmsTagTypePluginChunkType*) _cmsContextGetClientChunk(ContextID, TagTypePlugin); return GetHandler(sig, ctx->TagTypes, SupportedTagTypes); } // ******************************************************************************** // Tag support main routines // ******************************************************************************** typedef struct _cmsTagLinkedList_st { cmsTagSignature Signature; cmsTagDescriptor Descriptor; struct _cmsTagLinkedList_st* Next; } _cmsTagLinkedList; // This is the list of built-in tags static _cmsTagLinkedList SupportedTags[] = { { cmsSigAToB0Tag, { 1, 3, { cmsSigLut16Type, cmsSigLutAtoBType, cmsSigLut8Type}, DecideLUTtypeA2B}, &SupportedTags[1]}, { cmsSigAToB1Tag, { 1, 3, { cmsSigLut16Type, cmsSigLutAtoBType, cmsSigLut8Type}, DecideLUTtypeA2B}, &SupportedTags[2]}, { cmsSigAToB2Tag, { 1, 3, { cmsSigLut16Type, cmsSigLutAtoBType, cmsSigLut8Type}, DecideLUTtypeA2B}, &SupportedTags[3]}, { cmsSigBToA0Tag, { 1, 3, { cmsSigLut16Type, cmsSigLutBtoAType, cmsSigLut8Type}, DecideLUTtypeB2A}, &SupportedTags[4]}, { cmsSigBToA1Tag, { 1, 3, { cmsSigLut16Type, cmsSigLutBtoAType, cmsSigLut8Type}, DecideLUTtypeB2A}, &SupportedTags[5]}, { cmsSigBToA2Tag, { 1, 3, { cmsSigLut16Type, cmsSigLutBtoAType, cmsSigLut8Type}, DecideLUTtypeB2A}, &SupportedTags[6]}, // Allow corbis and its broken XYZ type { cmsSigRedColorantTag, { 1, 2, { cmsSigXYZType, cmsCorbisBrokenXYZtype }, DecideXYZtype}, &SupportedTags[7]}, { cmsSigGreenColorantTag, { 1, 2, { cmsSigXYZType, cmsCorbisBrokenXYZtype }, DecideXYZtype}, &SupportedTags[8]}, { cmsSigBlueColorantTag, { 1, 2, { cmsSigXYZType, cmsCorbisBrokenXYZtype }, DecideXYZtype}, &SupportedTags[9]}, { cmsSigRedTRCTag, { 1, 3, { cmsSigCurveType, cmsSigParametricCurveType, cmsMonacoBrokenCurveType }, DecideCurveType}, &SupportedTags[10]}, { cmsSigGreenTRCTag, { 1, 3, { cmsSigCurveType, cmsSigParametricCurveType, cmsMonacoBrokenCurveType }, DecideCurveType}, &SupportedTags[11]}, { cmsSigBlueTRCTag, { 1, 3, { cmsSigCurveType, cmsSigParametricCurveType, cmsMonacoBrokenCurveType }, DecideCurveType}, &SupportedTags[12]}, { cmsSigCalibrationDateTimeTag, { 1, 1, { cmsSigDateTimeType }, NULL}, &SupportedTags[13]}, { cmsSigCharTargetTag, { 1, 1, { cmsSigTextType }, NULL}, &SupportedTags[14]}, { cmsSigChromaticAdaptationTag, { 9, 1, { cmsSigS15Fixed16ArrayType }, NULL}, &SupportedTags[15]}, { cmsSigChromaticityTag, { 1, 1, { cmsSigChromaticityType }, NULL}, &SupportedTags[16]}, { cmsSigColorantOrderTag, { 1, 1, { cmsSigColorantOrderType }, NULL}, &SupportedTags[17]}, { cmsSigColorantTableTag, { 1, 1, { cmsSigColorantTableType }, NULL}, &SupportedTags[18]}, { cmsSigColorantTableOutTag, { 1, 1, { cmsSigColorantTableType }, NULL}, &SupportedTags[19]}, { cmsSigCopyrightTag, { 1, 3, { cmsSigTextType, cmsSigMultiLocalizedUnicodeType, cmsSigTextDescriptionType}, DecideTextType}, &SupportedTags[20]}, { cmsSigDateTimeTag, { 1, 1, { cmsSigDateTimeType }, NULL}, &SupportedTags[21]}, { cmsSigDeviceMfgDescTag, { 1, 3, { cmsSigTextDescriptionType, cmsSigMultiLocalizedUnicodeType, cmsSigTextType}, DecideTextDescType}, &SupportedTags[22]}, { cmsSigDeviceModelDescTag, { 1, 3, { cmsSigTextDescriptionType, cmsSigMultiLocalizedUnicodeType, cmsSigTextType}, DecideTextDescType}, &SupportedTags[23]}, { cmsSigGamutTag, { 1, 3, { cmsSigLut16Type, cmsSigLutBtoAType, cmsSigLut8Type }, DecideLUTtypeB2A}, &SupportedTags[24]}, { cmsSigGrayTRCTag, { 1, 2, { cmsSigCurveType, cmsSigParametricCurveType }, DecideCurveType}, &SupportedTags[25]}, { cmsSigLuminanceTag, { 1, 1, { cmsSigXYZType }, NULL}, &SupportedTags[26]}, { cmsSigMediaBlackPointTag, { 1, 2, { cmsSigXYZType, cmsCorbisBrokenXYZtype }, NULL}, &SupportedTags[27]}, { cmsSigMediaWhitePointTag, { 1, 2, { cmsSigXYZType, cmsCorbisBrokenXYZtype }, NULL}, &SupportedTags[28]}, { cmsSigNamedColor2Tag, { 1, 1, { cmsSigNamedColor2Type }, NULL}, &SupportedTags[29]}, { cmsSigPreview0Tag, { 1, 3, { cmsSigLut16Type, cmsSigLutBtoAType, cmsSigLut8Type }, DecideLUTtypeB2A}, &SupportedTags[30]}, { cmsSigPreview1Tag, { 1, 3, { cmsSigLut16Type, cmsSigLutBtoAType, cmsSigLut8Type }, DecideLUTtypeB2A}, &SupportedTags[31]}, { cmsSigPreview2Tag, { 1, 3, { cmsSigLut16Type, cmsSigLutBtoAType, cmsSigLut8Type }, DecideLUTtypeB2A}, &SupportedTags[32]}, { cmsSigProfileDescriptionTag, { 1, 3, { cmsSigTextDescriptionType, cmsSigMultiLocalizedUnicodeType, cmsSigTextType}, DecideTextDescType}, &SupportedTags[33]}, { cmsSigProfileSequenceDescTag, { 1, 1, { cmsSigProfileSequenceDescType }, NULL}, &SupportedTags[34]}, { cmsSigTechnologyTag, { 1, 1, { cmsSigSignatureType }, NULL}, &SupportedTags[35]}, { cmsSigColorimetricIntentImageStateTag, { 1, 1, { cmsSigSignatureType }, NULL}, &SupportedTags[36]}, { cmsSigPerceptualRenderingIntentGamutTag, { 1, 1, { cmsSigSignatureType }, NULL}, &SupportedTags[37]}, { cmsSigSaturationRenderingIntentGamutTag, { 1, 1, { cmsSigSignatureType }, NULL}, &SupportedTags[38]}, { cmsSigMeasurementTag, { 1, 1, { cmsSigMeasurementType }, NULL}, &SupportedTags[39]}, { cmsSigPs2CRD0Tag, { 1, 1, { cmsSigDataType }, NULL}, &SupportedTags[40]}, { cmsSigPs2CRD1Tag, { 1, 1, { cmsSigDataType }, NULL}, &SupportedTags[41]}, { cmsSigPs2CRD2Tag, { 1, 1, { cmsSigDataType }, NULL}, &SupportedTags[42]}, { cmsSigPs2CRD3Tag, { 1, 1, { cmsSigDataType }, NULL}, &SupportedTags[43]}, { cmsSigPs2CSATag, { 1, 1, { cmsSigDataType }, NULL}, &SupportedTags[44]}, { cmsSigPs2RenderingIntentTag, { 1, 1, { cmsSigDataType }, NULL}, &SupportedTags[45]}, { cmsSigViewingCondDescTag, { 1, 3, { cmsSigTextDescriptionType, cmsSigMultiLocalizedUnicodeType, cmsSigTextType}, DecideTextDescType}, &SupportedTags[46]}, { cmsSigUcrBgTag, { 1, 1, { cmsSigUcrBgType}, NULL}, &SupportedTags[47]}, { cmsSigCrdInfoTag, { 1, 1, { cmsSigCrdInfoType}, NULL}, &SupportedTags[48]}, { cmsSigDToB0Tag, { 1, 1, { cmsSigMultiProcessElementType}, NULL}, &SupportedTags[49]}, { cmsSigDToB1Tag, { 1, 1, { cmsSigMultiProcessElementType}, NULL}, &SupportedTags[50]}, { cmsSigDToB2Tag, { 1, 1, { cmsSigMultiProcessElementType}, NULL}, &SupportedTags[51]}, { cmsSigDToB3Tag, { 1, 1, { cmsSigMultiProcessElementType}, NULL}, &SupportedTags[52]}, { cmsSigBToD0Tag, { 1, 1, { cmsSigMultiProcessElementType}, NULL}, &SupportedTags[53]}, { cmsSigBToD1Tag, { 1, 1, { cmsSigMultiProcessElementType}, NULL}, &SupportedTags[54]}, { cmsSigBToD2Tag, { 1, 1, { cmsSigMultiProcessElementType}, NULL}, &SupportedTags[55]}, { cmsSigBToD3Tag, { 1, 1, { cmsSigMultiProcessElementType}, NULL}, &SupportedTags[56]}, { cmsSigScreeningDescTag, { 1, 1, { cmsSigTextDescriptionType }, NULL}, &SupportedTags[57]}, { cmsSigViewingConditionsTag, { 1, 1, { cmsSigViewingConditionsType }, NULL}, &SupportedTags[58]}, { cmsSigScreeningTag, { 1, 1, { cmsSigScreeningType}, NULL }, &SupportedTags[59]}, { cmsSigVcgtTag, { 1, 1, { cmsSigVcgtType}, NULL }, &SupportedTags[60]}, { cmsSigMetaTag, { 1, 1, { cmsSigDictType}, NULL }, &SupportedTags[61]}, { cmsSigProfileSequenceIdTag, { 1, 1, { cmsSigProfileSequenceIdType}, NULL }, &SupportedTags[62]}, { cmsSigProfileDescriptionMLTag,{ 1, 1, { cmsSigMultiLocalizedUnicodeType}, NULL}, &SupportedTags[63]}, { cmsSigArgyllArtsTag, { 9, 1, { cmsSigS15Fixed16ArrayType}, NULL}, NULL} }; /* Not supported Why ======================= ========================================= cmsSigOutputResponseTag ==> WARNING, POSSIBLE PATENT ON THIS SUBJECT! cmsSigNamedColorTag ==> Deprecated cmsSigDataTag ==> Ancient, unused cmsSigDeviceSettingsTag ==> Deprecated, useless */ _cmsTagPluginChunkType _cmsTagPluginChunk = { NULL }; // Duplicates the zone of memory used by the plug-in in the new context static void DupTagList(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) { _cmsTagPluginChunkType newHead = { NULL }; _cmsTagLinkedList* entry; _cmsTagLinkedList* Anterior = NULL; _cmsTagPluginChunkType* head = (_cmsTagPluginChunkType*) src->chunks[TagPlugin]; // Walk the list copying all nodes for (entry = head->Tag; entry != NULL; entry = entry ->Next) { _cmsTagLinkedList *newEntry = ( _cmsTagLinkedList *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsTagLinkedList)); if (newEntry == NULL) return; // We want to keep the linked list order, so this is a little bit tricky newEntry -> Next = NULL; if (Anterior) Anterior -> Next = newEntry; Anterior = newEntry; if (newHead.Tag == NULL) newHead.Tag = newEntry; } ctx ->chunks[TagPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsTagPluginChunkType)); } void _cmsAllocTagPluginChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) { if (src != NULL) { DupTagList(ctx, src); } else { static _cmsTagPluginChunkType TagPluginChunk = { NULL }; ctx ->chunks[TagPlugin] = _cmsSubAllocDup(ctx ->MemPool, &TagPluginChunk, sizeof(_cmsTagPluginChunkType)); } } cmsBool _cmsRegisterTagPlugin(cmsContext id, cmsPluginBase* Data) { cmsPluginTag* Plugin = (cmsPluginTag*) Data; _cmsTagLinkedList *pt; _cmsTagPluginChunkType* TagPluginChunk = ( _cmsTagPluginChunkType*) _cmsContextGetClientChunk(id, TagPlugin); if (Data == NULL) { TagPluginChunk->Tag = NULL; return TRUE; } pt = (_cmsTagLinkedList*) _cmsPluginMalloc(id, sizeof(_cmsTagLinkedList)); if (pt == NULL) return FALSE; pt ->Signature = Plugin ->Signature; pt ->Descriptor = Plugin ->Descriptor; pt ->Next = TagPluginChunk ->Tag; TagPluginChunk ->Tag = pt; return TRUE; } // Return a descriptor for a given tag or NULL cmsTagDescriptor* _cmsGetTagDescriptor(cmsContext ContextID, cmsTagSignature sig) { _cmsTagLinkedList* pt; _cmsTagPluginChunkType* TagPluginChunk = ( _cmsTagPluginChunkType*) _cmsContextGetClientChunk(ContextID, TagPlugin); for (pt = TagPluginChunk->Tag; pt != NULL; pt = pt ->Next) { if (sig == pt -> Signature) return &pt ->Descriptor; } for (pt = SupportedTags; pt != NULL; pt = pt ->Next) { if (sig == pt -> Signature) return &pt ->Descriptor; } return NULL; }