1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "ci/ciUtilities.hpp"
  31 #include "gc/shared/cardTable.hpp"
  32 #include "gc/shared/cardTableBarrierSet.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "nativeInst_x86.hpp"
  35 #include "oops/compiledICHolder.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "register_x86.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/signature.hpp"
  41 #include "runtime/vframeArray.hpp"
  42 #include "utilities/macros.hpp"
  43 #include "vmreg_x86.inline.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1BarrierSet.hpp"
  46 #include "gc/g1/g1CardTable.hpp"
  47 #include "gc/g1/g1ThreadLocalData.hpp"
  48 #endif
  49 
  50 
  51 // Implementation of StubAssembler
  52 
  53 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
  54   // setup registers
  55   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
  56   assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
  57   assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
  58   assert(args_size >= 0, "illegal args_size");
  59   bool align_stack = false;
  60 #ifdef _LP64
  61   // At a method handle call, the stack may not be properly aligned
  62   // when returning with an exception.
  63   align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
  64 #endif
  65 
  66 #ifdef _LP64
  67   mov(c_rarg0, thread);
  68   set_num_rt_args(0); // Nothing on stack
  69 #else
  70   set_num_rt_args(1 + args_size);
  71 
  72   // push java thread (becomes first argument of C function)
  73   get_thread(thread);
  74   push(thread);
  75 #endif // _LP64
  76 
  77   int call_offset;
  78   if (!align_stack) {
  79     set_last_Java_frame(thread, noreg, rbp, NULL);
  80   } else {
  81     address the_pc = pc();
  82     call_offset = offset();
  83     set_last_Java_frame(thread, noreg, rbp, the_pc);
  84     andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  85   }
  86 
  87   // do the call
  88   call(RuntimeAddress(entry));
  89   if (!align_stack) {
  90     call_offset = offset();
  91   }
  92   // verify callee-saved register
  93 #ifdef ASSERT
  94   guarantee(thread != rax, "change this code");
  95   push(rax);
  96   { Label L;
  97     get_thread(rax);
  98     cmpptr(thread, rax);
  99     jcc(Assembler::equal, L);
 100     int3();
 101     stop("StubAssembler::call_RT: rdi not callee saved?");
 102     bind(L);
 103   }
 104   pop(rax);
 105 #endif
 106   reset_last_Java_frame(thread, true);
 107 
 108   // discard thread and arguments
 109   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
 110 
 111   // check for pending exceptions
 112   { Label L;
 113     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 114     jcc(Assembler::equal, L);
 115     // exception pending => remove activation and forward to exception handler
 116     movptr(rax, Address(thread, Thread::pending_exception_offset()));
 117     // make sure that the vm_results are cleared
 118     if (oop_result1->is_valid()) {
 119       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
 120     }
 121     if (metadata_result->is_valid()) {
 122       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 123     }
 124     if (frame_size() == no_frame_size) {
 125       leave();
 126       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 127     } else if (_stub_id == Runtime1::forward_exception_id) {
 128       should_not_reach_here();
 129     } else {
 130       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 131     }
 132     bind(L);
 133   }
 134   // get oop results if there are any and reset the values in the thread
 135   if (oop_result1->is_valid()) {
 136     get_vm_result(oop_result1, thread);
 137   }
 138   if (metadata_result->is_valid()) {
 139     get_vm_result_2(metadata_result, thread);
 140   }
 141   return call_offset;
 142 }
 143 
 144 
 145 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
 146 #ifdef _LP64
 147   mov(c_rarg1, arg1);
 148 #else
 149   push(arg1);
 150 #endif // _LP64
 151   return call_RT(oop_result1, metadata_result, entry, 1);
 152 }
 153 
 154 
 155 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
 156 #ifdef _LP64
 157   if (c_rarg1 == arg2) {
 158     if (c_rarg2 == arg1) {
 159       xchgq(arg1, arg2);
 160     } else {
 161       mov(c_rarg2, arg2);
 162       mov(c_rarg1, arg1);
 163     }
 164   } else {
 165     mov(c_rarg1, arg1);
 166     mov(c_rarg2, arg2);
 167   }
 168 #else
 169   push(arg2);
 170   push(arg1);
 171 #endif // _LP64
 172   return call_RT(oop_result1, metadata_result, entry, 2);
 173 }
 174 
 175 
 176 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
 177 #ifdef _LP64
 178   // if there is any conflict use the stack
 179   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
 180       arg2 == c_rarg1 || arg1 == c_rarg3 ||
 181       arg3 == c_rarg1 || arg1 == c_rarg2) {
 182     push(arg3);
 183     push(arg2);
 184     push(arg1);
 185     pop(c_rarg1);
 186     pop(c_rarg2);
 187     pop(c_rarg3);
 188   } else {
 189     mov(c_rarg1, arg1);
 190     mov(c_rarg2, arg2);
 191     mov(c_rarg3, arg3);
 192   }
 193 #else
 194   push(arg3);
 195   push(arg2);
 196   push(arg1);
 197 #endif // _LP64
 198   return call_RT(oop_result1, metadata_result, entry, 3);
 199 }
 200 
 201 
 202 // Implementation of StubFrame
 203 
 204 class StubFrame: public StackObj {
 205  private:
 206   StubAssembler* _sasm;
 207 
 208  public:
 209   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
 210   void load_argument(int offset_in_words, Register reg);
 211 
 212   ~StubFrame();
 213 };
 214 
 215 
 216 #define __ _sasm->
 217 
 218 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
 219   _sasm = sasm;
 220   __ set_info(name, must_gc_arguments);
 221   __ enter();
 222 }
 223 
 224 // load parameters that were stored with LIR_Assembler::store_parameter
 225 // Note: offsets for store_parameter and load_argument must match
 226 void StubFrame::load_argument(int offset_in_words, Register reg) {
 227   // rbp, + 0: link
 228   //     + 1: return address
 229   //     + 2: argument with offset 0
 230   //     + 3: argument with offset 1
 231   //     + 4: ...
 232 
 233   __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
 234 }
 235 
 236 
 237 StubFrame::~StubFrame() {
 238   __ leave();
 239   __ ret(0);
 240 }
 241 
 242 #undef __
 243 
 244 
 245 // Implementation of Runtime1
 246 
 247 #define __ sasm->
 248 
 249 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
 250 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
 251 
 252 // Stack layout for saving/restoring  all the registers needed during a runtime
 253 // call (this includes deoptimization)
 254 // Note: note that users of this frame may well have arguments to some runtime
 255 // while these values are on the stack. These positions neglect those arguments
 256 // but the code in save_live_registers will take the argument count into
 257 // account.
 258 //
 259 #ifdef _LP64
 260   #define SLOT2(x) x,
 261   #define SLOT_PER_WORD 2
 262 #else
 263   #define SLOT2(x)
 264   #define SLOT_PER_WORD 1
 265 #endif // _LP64
 266 
 267 enum reg_save_layout {
 268   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
 269   // happen and will assert if the stack size we create is misaligned
 270 #ifdef _LP64
 271   align_dummy_0, align_dummy_1,
 272 #endif // _LP64
 273 #ifdef _WIN64
 274   // Windows always allocates space for it's argument registers (see
 275   // frame::arg_reg_save_area_bytes).
 276   arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
 277   arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
 278   arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
 279   arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
 280 #endif // _WIN64
 281   xmm_regs_as_doubles_off,                                                                  // 32
 282   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
 283   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
 284   // fpu_state_end_off is exclusive
 285   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
 286   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
 287   extra_space_offset,                                                                       // 360
 288 #ifdef _LP64
 289   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
 290   r14_off, r14H_off,                                                                        // 368, 372
 291   r13_off, r13H_off,                                                                        // 376, 380
 292   r12_off, r12H_off,                                                                        // 384, 388
 293   r11_off, r11H_off,                                                                        // 392, 396
 294   r10_off, r10H_off,                                                                        // 400, 404
 295   r9_off, r9H_off,                                                                          // 408, 412
 296   r8_off, r8H_off,                                                                          // 416, 420
 297   rdi_off, rdiH_off,                                                                        // 424, 428
 298 #else
 299   rdi_off = extra_space_offset,
 300 #endif // _LP64
 301   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
 302   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
 303   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
 304   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
 305   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
 306   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
 307   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
 308   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
 309   return_off, SLOT2(returnH_off)                                                            // 496, 500
 310   reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
 311 };
 312 
 313 
 314 
 315 // Save off registers which might be killed by calls into the runtime.
 316 // Tries to smart of about FP registers.  In particular we separate
 317 // saving and describing the FPU registers for deoptimization since we
 318 // have to save the FPU registers twice if we describe them and on P4
 319 // saving FPU registers which don't contain anything appears
 320 // expensive.  The deopt blob is the only thing which needs to
 321 // describe FPU registers.  In all other cases it should be sufficient
 322 // to simply save their current value.
 323 
 324 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
 325                                 bool save_fpu_registers = true) {
 326 
 327   // In 64bit all the args are in regs so there are no additional stack slots
 328   LP64_ONLY(num_rt_args = 0);
 329   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
 330   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
 331   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word);
 332 
 333   // record saved value locations in an OopMap
 334   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
 335   OopMap* map = new OopMap(frame_size_in_slots, 0);
 336   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
 337   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
 338   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
 339   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
 340   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
 341   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
 342 #ifdef _LP64
 343   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
 344   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
 345   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
 346   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
 347   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
 348   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
 349   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
 350   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
 351 
 352   // This is stupid but needed.
 353   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
 354   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
 355   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
 356   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
 357   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
 358   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
 359 
 360   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
 361   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
 362   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
 363   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
 364   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
 365   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
 366   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
 367   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
 368 #endif // _LP64
 369 
 370   int xmm_bypass_limit = FrameMap::nof_xmm_regs;
 371 #ifdef _LP64
 372   if (UseAVX < 3) {
 373     xmm_bypass_limit = xmm_bypass_limit / 2;
 374   }
 375 #endif
 376 
 377   if (save_fpu_registers) {
 378     if (UseSSE < 2) {
 379       int fpu_off = float_regs_as_doubles_off;
 380       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 381         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
 382         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
 383         // %%% This is really a waste but we'll keep things as they were for now
 384         if (true) {
 385           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
 386         }
 387         fpu_off += 2;
 388       }
 389       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
 390     }
 391 
 392     if (UseSSE >= 2) {
 393       int xmm_off = xmm_regs_as_doubles_off;
 394       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
 395         if (n < xmm_bypass_limit) {
 396           VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 397           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
 398           // %%% This is really a waste but we'll keep things as they were for now
 399           if (true) {
 400             map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
 401           }
 402         }
 403         xmm_off += 2;
 404       }
 405       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 406 
 407     } else if (UseSSE == 1) {
 408       int xmm_off = xmm_regs_as_doubles_off;
 409       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 410         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 411         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
 412         xmm_off += 2;
 413       }
 414       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 415     }
 416   }
 417 
 418   return map;
 419 }
 420 
 421 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
 422                                    bool save_fpu_registers = true) {
 423   __ block_comment("save_live_registers");
 424 
 425   __ pusha();         // integer registers
 426 
 427   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
 428   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
 429 
 430   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 431 
 432 #ifdef ASSERT
 433   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 434 #endif
 435 
 436   if (save_fpu_registers) {
 437     if (UseSSE < 2) {
 438       // save FPU stack
 439       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 440       __ fwait();
 441 
 442 #ifdef ASSERT
 443       Label ok;
 444       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 445       __ jccb(Assembler::equal, ok);
 446       __ stop("corrupted control word detected");
 447       __ bind(ok);
 448 #endif
 449 
 450       // Reset the control word to guard against exceptions being unmasked
 451       // since fstp_d can cause FPU stack underflow exceptions.  Write it
 452       // into the on stack copy and then reload that to make sure that the
 453       // current and future values are correct.
 454       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 455       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 456 
 457       // Save the FPU registers in de-opt-able form
 458       int offset = 0;
 459       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 460         __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
 461         offset += 8;
 462       }
 463     }
 464 
 465     if (UseSSE >= 2) {
 466       // save XMM registers
 467       // XMM registers can contain float or double values, but this is not known here,
 468       // so always save them as doubles.
 469       // note that float values are _not_ converted automatically, so for float values
 470       // the second word contains only garbage data.
 471       int xmm_bypass_limit = FrameMap::nof_xmm_regs;
 472       int offset = 0;
 473 #ifdef _LP64
 474       if (UseAVX < 3) {
 475         xmm_bypass_limit = xmm_bypass_limit / 2;
 476       }
 477 #endif
 478       for (int n = 0; n < xmm_bypass_limit; n++) {
 479         XMMRegister xmm_name = as_XMMRegister(n);
 480         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
 481         offset += 8;
 482       }
 483     } else if (UseSSE == 1) {
 484       // save XMM registers as float because double not supported without SSE2(num MMX == num fpu)
 485       int offset = 0;
 486       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 487         XMMRegister xmm_name = as_XMMRegister(n);
 488         __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
 489         offset += 8;
 490       }
 491     }
 492   }
 493 
 494   // FPU stack must be empty now
 495   __ verify_FPU(0, "save_live_registers");
 496 
 497   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
 498 }
 499 
 500 
 501 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
 502   if (restore_fpu_registers) {
 503     if (UseSSE >= 2) {
 504       // restore XMM registers
 505       int xmm_bypass_limit = FrameMap::nof_xmm_regs;
 506 #ifdef _LP64
 507       if (UseAVX < 3) {
 508         xmm_bypass_limit = xmm_bypass_limit / 2;
 509       }
 510 #endif
 511       int offset = 0;
 512       for (int n = 0; n < xmm_bypass_limit; n++) {
 513         XMMRegister xmm_name = as_XMMRegister(n);
 514         __ movdbl(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
 515         offset += 8;
 516       }
 517     } else if (UseSSE == 1) {
 518       // restore XMM registers(num MMX == num fpu)
 519       int offset = 0;
 520       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 521         XMMRegister xmm_name = as_XMMRegister(n);
 522         __ movflt(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
 523         offset += 8;
 524       }
 525     }
 526 
 527     if (UseSSE < 2) {
 528       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 529     } else {
 530       // check that FPU stack is really empty
 531       __ verify_FPU(0, "restore_live_registers");
 532     }
 533 
 534   } else {
 535     // check that FPU stack is really empty
 536     __ verify_FPU(0, "restore_live_registers");
 537   }
 538 
 539 #ifdef ASSERT
 540   {
 541     Label ok;
 542     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 543     __ jcc(Assembler::equal, ok);
 544     __ stop("bad offsets in frame");
 545     __ bind(ok);
 546   }
 547 #endif // ASSERT
 548 
 549   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 550 }
 551 
 552 
 553 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
 554   __ block_comment("restore_live_registers");
 555 
 556   restore_fpu(sasm, restore_fpu_registers);
 557   __ popa();
 558 }
 559 
 560 
 561 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
 562   __ block_comment("restore_live_registers_except_rax");
 563 
 564   restore_fpu(sasm, restore_fpu_registers);
 565 
 566 #ifdef _LP64
 567   __ movptr(r15, Address(rsp, 0));
 568   __ movptr(r14, Address(rsp, wordSize));
 569   __ movptr(r13, Address(rsp, 2 * wordSize));
 570   __ movptr(r12, Address(rsp, 3 * wordSize));
 571   __ movptr(r11, Address(rsp, 4 * wordSize));
 572   __ movptr(r10, Address(rsp, 5 * wordSize));
 573   __ movptr(r9,  Address(rsp, 6 * wordSize));
 574   __ movptr(r8,  Address(rsp, 7 * wordSize));
 575   __ movptr(rdi, Address(rsp, 8 * wordSize));
 576   __ movptr(rsi, Address(rsp, 9 * wordSize));
 577   __ movptr(rbp, Address(rsp, 10 * wordSize));
 578   // skip rsp
 579   __ movptr(rbx, Address(rsp, 12 * wordSize));
 580   __ movptr(rdx, Address(rsp, 13 * wordSize));
 581   __ movptr(rcx, Address(rsp, 14 * wordSize));
 582 
 583   __ addptr(rsp, 16 * wordSize);
 584 #else
 585 
 586   __ pop(rdi);
 587   __ pop(rsi);
 588   __ pop(rbp);
 589   __ pop(rbx); // skip this value
 590   __ pop(rbx);
 591   __ pop(rdx);
 592   __ pop(rcx);
 593   __ addptr(rsp, BytesPerWord);
 594 #endif // _LP64
 595 }
 596 
 597 
 598 void Runtime1::initialize_pd() {
 599   // nothing to do
 600 }
 601 
 602 
 603 // target: the entry point of the method that creates and posts the exception oop
 604 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
 605 
 606 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
 607   // preserve all registers
 608   int num_rt_args = has_argument ? 2 : 1;
 609   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 610 
 611   // now all registers are saved and can be used freely
 612   // verify that no old value is used accidentally
 613   __ invalidate_registers(true, true, true, true, true, true);
 614 
 615   // registers used by this stub
 616   const Register temp_reg = rbx;
 617 
 618   // load argument for exception that is passed as an argument into the stub
 619   if (has_argument) {
 620 #ifdef _LP64
 621     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
 622 #else
 623     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
 624     __ push(temp_reg);
 625 #endif // _LP64
 626   }
 627   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
 628 
 629   OopMapSet* oop_maps = new OopMapSet();
 630   oop_maps->add_gc_map(call_offset, oop_map);
 631 
 632   __ stop("should not reach here");
 633 
 634   return oop_maps;
 635 }
 636 
 637 
 638 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
 639   __ block_comment("generate_handle_exception");
 640 
 641   // incoming parameters
 642   const Register exception_oop = rax;
 643   const Register exception_pc  = rdx;
 644   // other registers used in this stub
 645   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 646 
 647   // Save registers, if required.
 648   OopMapSet* oop_maps = new OopMapSet();
 649   OopMap* oop_map = NULL;
 650   switch (id) {
 651   case forward_exception_id:
 652     // We're handling an exception in the context of a compiled frame.
 653     // The registers have been saved in the standard places.  Perform
 654     // an exception lookup in the caller and dispatch to the handler
 655     // if found.  Otherwise unwind and dispatch to the callers
 656     // exception handler.
 657     oop_map = generate_oop_map(sasm, 1 /*thread*/);
 658 
 659     // load and clear pending exception oop into RAX
 660     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
 661     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 662 
 663     // load issuing PC (the return address for this stub) into rdx
 664     __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
 665 
 666     // make sure that the vm_results are cleared (may be unnecessary)
 667     __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
 668     __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 669     break;
 670   case handle_exception_nofpu_id:
 671   case handle_exception_id:
 672     // At this point all registers MAY be live.
 673     oop_map = save_live_registers(sasm, 1 /*thread*/, id != handle_exception_nofpu_id);
 674     break;
 675   case handle_exception_from_callee_id: {
 676     // At this point all registers except exception oop (RAX) and
 677     // exception pc (RDX) are dead.
 678     const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
 679     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
 680     sasm->set_frame_size(frame_size);
 681     WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
 682     break;
 683   }
 684   default:  ShouldNotReachHere();
 685   }
 686 
 687 #ifdef TIERED
 688   // C2 can leave the fpu stack dirty
 689   if (UseSSE < 2) {
 690     __ empty_FPU_stack();
 691   }
 692 #endif // TIERED
 693 
 694   // verify that only rax, and rdx is valid at this time
 695   __ invalidate_registers(false, true, true, false, true, true);
 696   // verify that rax, contains a valid exception
 697   __ verify_not_null_oop(exception_oop);
 698 
 699   // load address of JavaThread object for thread-local data
 700   NOT_LP64(__ get_thread(thread);)
 701 
 702 #ifdef ASSERT
 703   // check that fields in JavaThread for exception oop and issuing pc are
 704   // empty before writing to them
 705   Label oop_empty;
 706   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
 707   __ jcc(Assembler::equal, oop_empty);
 708   __ stop("exception oop already set");
 709   __ bind(oop_empty);
 710 
 711   Label pc_empty;
 712   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 713   __ jcc(Assembler::equal, pc_empty);
 714   __ stop("exception pc already set");
 715   __ bind(pc_empty);
 716 #endif
 717 
 718   // save exception oop and issuing pc into JavaThread
 719   // (exception handler will load it from here)
 720   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
 721   __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
 722 
 723   // patch throwing pc into return address (has bci & oop map)
 724   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
 725 
 726   // compute the exception handler.
 727   // the exception oop and the throwing pc are read from the fields in JavaThread
 728   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
 729   oop_maps->add_gc_map(call_offset, oop_map);
 730 
 731   // rax: handler address
 732   //      will be the deopt blob if nmethod was deoptimized while we looked up
 733   //      handler regardless of whether handler existed in the nmethod.
 734 
 735   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
 736   __ invalidate_registers(false, true, true, true, true, true);
 737 
 738   // patch the return address, this stub will directly return to the exception handler
 739   __ movptr(Address(rbp, 1*BytesPerWord), rax);
 740 
 741   switch (id) {
 742   case forward_exception_id:
 743   case handle_exception_nofpu_id:
 744   case handle_exception_id:
 745     // Restore the registers that were saved at the beginning.
 746     restore_live_registers(sasm, id != handle_exception_nofpu_id);
 747     break;
 748   case handle_exception_from_callee_id:
 749     // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
 750     // since we do a leave anyway.
 751 
 752     // Pop the return address.
 753     __ leave();
 754     __ pop(rcx);
 755     __ jmp(rcx);  // jump to exception handler
 756     break;
 757   default:  ShouldNotReachHere();
 758   }
 759 
 760   return oop_maps;
 761 }
 762 
 763 
 764 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
 765   // incoming parameters
 766   const Register exception_oop = rax;
 767   // callee-saved copy of exception_oop during runtime call
 768   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
 769   // other registers used in this stub
 770   const Register exception_pc = rdx;
 771   const Register handler_addr = rbx;
 772   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 773 
 774   // verify that only rax, is valid at this time
 775   __ invalidate_registers(false, true, true, true, true, true);
 776 
 777 #ifdef ASSERT
 778   // check that fields in JavaThread for exception oop and issuing pc are empty
 779   NOT_LP64(__ get_thread(thread);)
 780   Label oop_empty;
 781   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
 782   __ jcc(Assembler::equal, oop_empty);
 783   __ stop("exception oop must be empty");
 784   __ bind(oop_empty);
 785 
 786   Label pc_empty;
 787   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 788   __ jcc(Assembler::equal, pc_empty);
 789   __ stop("exception pc must be empty");
 790   __ bind(pc_empty);
 791 #endif
 792 
 793   // clear the FPU stack in case any FPU results are left behind
 794   __ empty_FPU_stack();
 795 
 796   // save exception_oop in callee-saved register to preserve it during runtime calls
 797   __ verify_not_null_oop(exception_oop);
 798   __ movptr(exception_oop_callee_saved, exception_oop);
 799 
 800   NOT_LP64(__ get_thread(thread);)
 801   // Get return address (is on top of stack after leave).
 802   __ movptr(exception_pc, Address(rsp, 0));
 803 
 804   // search the exception handler address of the caller (using the return address)
 805   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
 806   // rax: exception handler address of the caller
 807 
 808   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
 809   __ invalidate_registers(false, true, true, true, false, true);
 810 
 811   // move result of call into correct register
 812   __ movptr(handler_addr, rax);
 813 
 814   // Restore exception oop to RAX (required convention of exception handler).
 815   __ movptr(exception_oop, exception_oop_callee_saved);
 816 
 817   // verify that there is really a valid exception in rax
 818   __ verify_not_null_oop(exception_oop);
 819 
 820   // get throwing pc (= return address).
 821   // rdx has been destroyed by the call, so it must be set again
 822   // the pop is also necessary to simulate the effect of a ret(0)
 823   __ pop(exception_pc);
 824 
 825   // continue at exception handler (return address removed)
 826   // note: do *not* remove arguments when unwinding the
 827   //       activation since the caller assumes having
 828   //       all arguments on the stack when entering the
 829   //       runtime to determine the exception handler
 830   //       (GC happens at call site with arguments!)
 831   // rax: exception oop
 832   // rdx: throwing pc
 833   // rbx: exception handler
 834   __ jmp(handler_addr);
 835 }
 836 
 837 
 838 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
 839   // use the maximum number of runtime-arguments here because it is difficult to
 840   // distinguish each RT-Call.
 841   // Note: This number affects also the RT-Call in generate_handle_exception because
 842   //       the oop-map is shared for all calls.
 843   const int num_rt_args = 2;  // thread + dummy
 844 
 845   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
 846   assert(deopt_blob != NULL, "deoptimization blob must have been created");
 847 
 848   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 849 
 850 #ifdef _LP64
 851   const Register thread = r15_thread;
 852   // No need to worry about dummy
 853   __ mov(c_rarg0, thread);
 854 #else
 855   __ push(rax); // push dummy
 856 
 857   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
 858   // push java thread (becomes first argument of C function)
 859   __ get_thread(thread);
 860   __ push(thread);
 861 #endif // _LP64
 862   __ set_last_Java_frame(thread, noreg, rbp, NULL);
 863   // do the call
 864   __ call(RuntimeAddress(target));
 865   OopMapSet* oop_maps = new OopMapSet();
 866   oop_maps->add_gc_map(__ offset(), oop_map);
 867   // verify callee-saved register
 868 #ifdef ASSERT
 869   guarantee(thread != rax, "change this code");
 870   __ push(rax);
 871   { Label L;
 872     __ get_thread(rax);
 873     __ cmpptr(thread, rax);
 874     __ jcc(Assembler::equal, L);
 875     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
 876     __ bind(L);
 877   }
 878   __ pop(rax);
 879 #endif
 880   __ reset_last_Java_frame(thread, true);
 881 #ifndef _LP64
 882   __ pop(rcx); // discard thread arg
 883   __ pop(rcx); // discard dummy
 884 #endif // _LP64
 885 
 886   // check for pending exceptions
 887   { Label L;
 888     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 889     __ jcc(Assembler::equal, L);
 890     // exception pending => remove activation and forward to exception handler
 891 
 892     __ testptr(rax, rax);                                   // have we deoptimized?
 893     __ jump_cc(Assembler::equal,
 894                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 895 
 896     // the deopt blob expects exceptions in the special fields of
 897     // JavaThread, so copy and clear pending exception.
 898 
 899     // load and clear pending exception
 900     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
 901     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 902 
 903     // check that there is really a valid exception
 904     __ verify_not_null_oop(rax);
 905 
 906     // load throwing pc: this is the return address of the stub
 907     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
 908 
 909 #ifdef ASSERT
 910     // check that fields in JavaThread for exception oop and issuing pc are empty
 911     Label oop_empty;
 912     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
 913     __ jcc(Assembler::equal, oop_empty);
 914     __ stop("exception oop must be empty");
 915     __ bind(oop_empty);
 916 
 917     Label pc_empty;
 918     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
 919     __ jcc(Assembler::equal, pc_empty);
 920     __ stop("exception pc must be empty");
 921     __ bind(pc_empty);
 922 #endif
 923 
 924     // store exception oop and throwing pc to JavaThread
 925     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
 926     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
 927 
 928     restore_live_registers(sasm);
 929 
 930     __ leave();
 931     __ addptr(rsp, BytesPerWord);  // remove return address from stack
 932 
 933     // Forward the exception directly to deopt blob. We can blow no
 934     // registers and must leave throwing pc on the stack.  A patch may
 935     // have values live in registers so the entry point with the
 936     // exception in tls.
 937     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
 938 
 939     __ bind(L);
 940   }
 941 
 942 
 943   // Runtime will return true if the nmethod has been deoptimized during
 944   // the patching process. In that case we must do a deopt reexecute instead.
 945 
 946   Label reexecuteEntry, cont;
 947 
 948   __ testptr(rax, rax);                                 // have we deoptimized?
 949   __ jcc(Assembler::equal, cont);                       // no
 950 
 951   // Will reexecute. Proper return address is already on the stack we just restore
 952   // registers, pop all of our frame but the return address and jump to the deopt blob
 953   restore_live_registers(sasm);
 954   __ leave();
 955   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
 956 
 957   __ bind(cont);
 958   restore_live_registers(sasm);
 959   __ leave();
 960   __ ret(0);
 961 
 962   return oop_maps;
 963 }
 964 
 965 
 966 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
 967 
 968   // for better readability
 969   const bool must_gc_arguments = true;
 970   const bool dont_gc_arguments = false;
 971 
 972   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
 973   bool save_fpu_registers = true;
 974 
 975   // stub code & info for the different stubs
 976   OopMapSet* oop_maps = NULL;
 977   switch (id) {
 978     case forward_exception_id:
 979       {
 980         oop_maps = generate_handle_exception(id, sasm);
 981         __ leave();
 982         __ ret(0);
 983       }
 984       break;
 985 
 986     case new_instance_id:
 987     case fast_new_instance_id:
 988     case fast_new_instance_init_check_id:
 989       {
 990         Register klass = rdx; // Incoming
 991         Register obj   = rax; // Result
 992 
 993         if (id == new_instance_id) {
 994           __ set_info("new_instance", dont_gc_arguments);
 995         } else if (id == fast_new_instance_id) {
 996           __ set_info("fast new_instance", dont_gc_arguments);
 997         } else {
 998           assert(id == fast_new_instance_init_check_id, "bad StubID");
 999           __ set_info("fast new_instance init check", dont_gc_arguments);
1000         }
1001 
1002         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) && UseTLAB
1003             && Universe::heap()->supports_inline_contig_alloc()) {
1004           Label slow_path;
1005           Register obj_size = rcx;
1006           Register t1       = rbx;
1007           Register t2       = rsi;
1008           assert_different_registers(klass, obj, obj_size, t1, t2);
1009 
1010           __ push(rdi);
1011           __ push(rbx);
1012 
1013           if (id == fast_new_instance_init_check_id) {
1014             // make sure the klass is initialized
1015             __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
1016             __ jcc(Assembler::notEqual, slow_path);
1017           }
1018 
1019 #ifdef ASSERT
1020           // assert object can be fast path allocated
1021           {
1022             Label ok, not_ok;
1023             __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1024             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
1025             __ jcc(Assembler::lessEqual, not_ok);
1026             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
1027             __ jcc(Assembler::zero, ok);
1028             __ bind(not_ok);
1029             __ stop("assert(can be fast path allocated)");
1030             __ should_not_reach_here();
1031             __ bind(ok);
1032           }
1033 #endif // ASSERT
1034 
1035           // if we got here then the TLAB allocation failed, so try
1036           // refilling the TLAB or allocating directly from eden.
1037           Label retry_tlab, try_eden;
1038           const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
1039           NOT_LP64(__ get_thread(thread));
1040 
1041           __ bind(try_eden);
1042           // get the instance size (size is postive so movl is fine for 64bit)
1043           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1044 
1045           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
1046           __ incr_allocated_bytes(thread, obj_size, 0);
1047 
1048           __ initialize_object(obj, klass, obj_size, 0, t1, t2, /* is_tlab_allocated */ false);
1049           __ verify_oop(obj);
1050           __ pop(rbx);
1051           __ pop(rdi);
1052           __ ret(0);
1053 
1054           __ bind(slow_path);
1055           __ pop(rbx);
1056           __ pop(rdi);
1057         }
1058 
1059         __ enter();
1060         OopMap* map = save_live_registers(sasm, 2);
1061         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
1062         oop_maps = new OopMapSet();
1063         oop_maps->add_gc_map(call_offset, map);
1064         restore_live_registers_except_rax(sasm);
1065         __ verify_oop(obj);
1066         __ leave();
1067         __ ret(0);
1068 
1069         // rax,: new instance
1070       }
1071 
1072       break;
1073 
1074     case counter_overflow_id:
1075       {
1076         Register bci = rax, method = rbx;
1077         __ enter();
1078         OopMap* map = save_live_registers(sasm, 3);
1079         // Retrieve bci
1080         __ movl(bci, Address(rbp, 2*BytesPerWord));
1081         // And a pointer to the Method*
1082         __ movptr(method, Address(rbp, 3*BytesPerWord));
1083         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
1084         oop_maps = new OopMapSet();
1085         oop_maps->add_gc_map(call_offset, map);
1086         restore_live_registers(sasm);
1087         __ leave();
1088         __ ret(0);
1089       }
1090       break;
1091 
1092     case new_type_array_id:
1093     case new_object_array_id:
1094       {
1095         Register length   = rbx; // Incoming
1096         Register klass    = rdx; // Incoming
1097         Register obj      = rax; // Result
1098 
1099         if (id == new_type_array_id) {
1100           __ set_info("new_type_array", dont_gc_arguments);
1101         } else {
1102           __ set_info("new_object_array", dont_gc_arguments);
1103         }
1104 
1105 #ifdef ASSERT
1106         // assert object type is really an array of the proper kind
1107         {
1108           Label ok;
1109           Register t0 = obj;
1110           __ movl(t0, Address(klass, Klass::layout_helper_offset()));
1111           __ sarl(t0, Klass::_lh_array_tag_shift);
1112           int tag = ((id == new_type_array_id)
1113                      ? Klass::_lh_array_tag_type_value
1114                      : Klass::_lh_array_tag_obj_value);
1115           __ cmpl(t0, tag);
1116           __ jcc(Assembler::equal, ok);
1117           __ stop("assert(is an array klass)");
1118           __ should_not_reach_here();
1119           __ bind(ok);
1120         }
1121 #endif // ASSERT
1122 
1123         // If we got here, the TLAB allocation failed, so try allocating from
1124         // eden if inline contiguous allocations are supported.
1125         if (UseTLAB && Universe::heap()->supports_inline_contig_alloc()) {
1126           Register arr_size = rsi;
1127           Register t1       = rcx;  // must be rcx for use as shift count
1128           Register t2       = rdi;
1129           Label slow_path;
1130 
1131           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1132           // since size is positive movl does right thing on 64bit
1133           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1134           // since size is postive movl does right thing on 64bit
1135           __ movl(arr_size, length);
1136           assert(t1 == rcx, "fixed register usage");
1137           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1138           __ shrptr(t1, Klass::_lh_header_size_shift);
1139           __ andptr(t1, Klass::_lh_header_size_mask);
1140           __ addptr(arr_size, t1);
1141           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1142           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1143 
1144           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
1145 
1146           // Using t2 for non 64-bit.
1147           const Register thread = NOT_LP64(t2) LP64_ONLY(r15_thread);
1148           NOT_LP64(__ get_thread(thread));
1149           __ incr_allocated_bytes(thread, arr_size, 0);
1150 
1151           __ initialize_header(obj, klass, length, t1, t2);
1152           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1153           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1154           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1155           __ andptr(t1, Klass::_lh_header_size_mask);
1156           __ subptr(arr_size, t1);  // body length
1157           __ addptr(t1, obj);       // body start
1158           __ initialize_body(t1, arr_size, 0, t2);
1159           __ verify_oop(obj);
1160           __ ret(0);
1161 
1162           __ bind(slow_path);
1163         }
1164 
1165         __ enter();
1166         OopMap* map = save_live_registers(sasm, 3);
1167         int call_offset;
1168         if (id == new_type_array_id) {
1169           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
1170         } else {
1171           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
1172         }
1173 
1174         oop_maps = new OopMapSet();
1175         oop_maps->add_gc_map(call_offset, map);
1176         restore_live_registers_except_rax(sasm);
1177 
1178         __ verify_oop(obj);
1179         __ leave();
1180         __ ret(0);
1181 
1182         // rax,: new array
1183       }
1184       break;
1185 
1186     case new_multi_array_id:
1187       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
1188         // rax,: klass
1189         // rbx,: rank
1190         // rcx: address of 1st dimension
1191         OopMap* map = save_live_registers(sasm, 4);
1192         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
1193 
1194         oop_maps = new OopMapSet();
1195         oop_maps->add_gc_map(call_offset, map);
1196         restore_live_registers_except_rax(sasm);
1197 
1198         // rax,: new multi array
1199         __ verify_oop(rax);
1200       }
1201       break;
1202 
1203     case register_finalizer_id:
1204       {
1205         __ set_info("register_finalizer", dont_gc_arguments);
1206 
1207         // This is called via call_runtime so the arguments
1208         // will be place in C abi locations
1209 
1210 #ifdef _LP64
1211         __ verify_oop(c_rarg0);
1212         __ mov(rax, c_rarg0);
1213 #else
1214         // The object is passed on the stack and we haven't pushed a
1215         // frame yet so it's one work away from top of stack.
1216         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
1217         __ verify_oop(rax);
1218 #endif // _LP64
1219 
1220         // load the klass and check the has finalizer flag
1221         Label register_finalizer;
1222         Register t = rsi;
1223         __ load_klass(t, rax);
1224         __ movl(t, Address(t, Klass::access_flags_offset()));
1225         __ testl(t, JVM_ACC_HAS_FINALIZER);
1226         __ jcc(Assembler::notZero, register_finalizer);
1227         __ ret(0);
1228 
1229         __ bind(register_finalizer);
1230         __ enter();
1231         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
1232         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
1233         oop_maps = new OopMapSet();
1234         oop_maps->add_gc_map(call_offset, oop_map);
1235 
1236         // Now restore all the live registers
1237         restore_live_registers(sasm);
1238 
1239         __ leave();
1240         __ ret(0);
1241       }
1242       break;
1243 
1244     case throw_range_check_failed_id:
1245       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1246         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1247       }
1248       break;
1249 
1250     case throw_index_exception_id:
1251       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1252         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1253       }
1254       break;
1255 
1256     case throw_div0_exception_id:
1257       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
1258         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
1259       }
1260       break;
1261 
1262     case throw_null_pointer_exception_id:
1263       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
1264         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
1265       }
1266       break;
1267 
1268     case handle_exception_nofpu_id:
1269     case handle_exception_id:
1270       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1271         oop_maps = generate_handle_exception(id, sasm);
1272       }
1273       break;
1274 
1275     case handle_exception_from_callee_id:
1276       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
1277         oop_maps = generate_handle_exception(id, sasm);
1278       }
1279       break;
1280 
1281     case unwind_exception_id:
1282       { __ set_info("unwind_exception", dont_gc_arguments);
1283         // note: no stubframe since we are about to leave the current
1284         //       activation and we are calling a leaf VM function only.
1285         generate_unwind_exception(sasm);
1286       }
1287       break;
1288 
1289     case throw_array_store_exception_id:
1290       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1291         // tos + 0: link
1292         //     + 1: return address
1293         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
1294       }
1295       break;
1296 
1297     case throw_class_cast_exception_id:
1298       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
1299         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
1300       }
1301       break;
1302 
1303     case throw_incompatible_class_change_error_id:
1304       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
1305         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
1306       }
1307       break;
1308 
1309     case slow_subtype_check_id:
1310       {
1311         // Typical calling sequence:
1312         // __ push(klass_RInfo);  // object klass or other subclass
1313         // __ push(sup_k_RInfo);  // array element klass or other superclass
1314         // __ call(slow_subtype_check);
1315         // Note that the subclass is pushed first, and is therefore deepest.
1316         // Previous versions of this code reversed the names 'sub' and 'super'.
1317         // This was operationally harmless but made the code unreadable.
1318         enum layout {
1319           rax_off, SLOT2(raxH_off)
1320           rcx_off, SLOT2(rcxH_off)
1321           rsi_off, SLOT2(rsiH_off)
1322           rdi_off, SLOT2(rdiH_off)
1323           // saved_rbp_off, SLOT2(saved_rbpH_off)
1324           return_off, SLOT2(returnH_off)
1325           sup_k_off, SLOT2(sup_kH_off)
1326           klass_off, SLOT2(superH_off)
1327           framesize,
1328           result_off = klass_off  // deepest argument is also the return value
1329         };
1330 
1331         __ set_info("slow_subtype_check", dont_gc_arguments);
1332         __ push(rdi);
1333         __ push(rsi);
1334         __ push(rcx);
1335         __ push(rax);
1336 
1337         // This is called by pushing args and not with C abi
1338         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1339         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1340 
1341         Label miss;
1342         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
1343 
1344         // fallthrough on success:
1345         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
1346         __ pop(rax);
1347         __ pop(rcx);
1348         __ pop(rsi);
1349         __ pop(rdi);
1350         __ ret(0);
1351 
1352         __ bind(miss);
1353         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
1354         __ pop(rax);
1355         __ pop(rcx);
1356         __ pop(rsi);
1357         __ pop(rdi);
1358         __ ret(0);
1359       }
1360       break;
1361 
1362     case monitorenter_nofpu_id:
1363       save_fpu_registers = false;
1364       // fall through
1365     case monitorenter_id:
1366       {
1367         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1368         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
1369 
1370         // Called with store_parameter and not C abi
1371 
1372         f.load_argument(1, rax); // rax,: object
1373         f.load_argument(0, rbx); // rbx,: lock address
1374 
1375         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
1376 
1377         oop_maps = new OopMapSet();
1378         oop_maps->add_gc_map(call_offset, map);
1379         restore_live_registers(sasm, save_fpu_registers);
1380       }
1381       break;
1382 
1383     case monitorexit_nofpu_id:
1384       save_fpu_registers = false;
1385       // fall through
1386     case monitorexit_id:
1387       {
1388         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1389         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
1390 
1391         // Called with store_parameter and not C abi
1392 
1393         f.load_argument(0, rax); // rax,: lock address
1394 
1395         // note: really a leaf routine but must setup last java sp
1396         //       => use call_RT for now (speed can be improved by
1397         //       doing last java sp setup manually)
1398         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
1399 
1400         oop_maps = new OopMapSet();
1401         oop_maps->add_gc_map(call_offset, map);
1402         restore_live_registers(sasm, save_fpu_registers);
1403       }
1404       break;
1405 
1406     case deoptimize_id:
1407       {
1408         StubFrame f(sasm, "deoptimize", dont_gc_arguments);
1409         const int num_rt_args = 2;  // thread, trap_request
1410         OopMap* oop_map = save_live_registers(sasm, num_rt_args);
1411         f.load_argument(0, rax);
1412         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), rax);
1413         oop_maps = new OopMapSet();
1414         oop_maps->add_gc_map(call_offset, oop_map);
1415         restore_live_registers(sasm);
1416         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1417         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1418         __ leave();
1419         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1420       }
1421       break;
1422 
1423     case access_field_patching_id:
1424       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1425         // we should set up register map
1426         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1427       }
1428       break;
1429 
1430     case load_klass_patching_id:
1431       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1432         // we should set up register map
1433         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1434       }
1435       break;
1436 
1437     case load_mirror_patching_id:
1438       { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
1439         // we should set up register map
1440         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
1441       }
1442       break;
1443 
1444     case load_appendix_patching_id:
1445       { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
1446         // we should set up register map
1447         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
1448       }
1449       break;
1450 
1451     case dtrace_object_alloc_id:
1452       { // rax,: object
1453         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
1454         // we can't gc here so skip the oopmap but make sure that all
1455         // the live registers get saved.
1456         save_live_registers(sasm, 1);
1457 
1458         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
1459         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
1460         NOT_LP64(__ pop(rax));
1461 
1462         restore_live_registers(sasm);
1463       }
1464       break;
1465 
1466     case fpu2long_stub_id:
1467       {
1468         // rax, and rdx are destroyed, but should be free since the result is returned there
1469         // preserve rsi,ecx
1470         __ push(rsi);
1471         __ push(rcx);
1472         LP64_ONLY(__ push(rdx);)
1473 
1474         // check for NaN
1475         Label return0, do_return, return_min_jlong, do_convert;
1476 
1477         Address value_high_word(rsp, wordSize + 4);
1478         Address value_low_word(rsp, wordSize);
1479         Address result_high_word(rsp, 3*wordSize + 4);
1480         Address result_low_word(rsp, 3*wordSize);
1481 
1482         __ subptr(rsp, 32);                    // more than enough on 32bit
1483         __ fst_d(value_low_word);
1484         __ movl(rax, value_high_word);
1485         __ andl(rax, 0x7ff00000);
1486         __ cmpl(rax, 0x7ff00000);
1487         __ jcc(Assembler::notEqual, do_convert);
1488         __ movl(rax, value_high_word);
1489         __ andl(rax, 0xfffff);
1490         __ orl(rax, value_low_word);
1491         __ jcc(Assembler::notZero, return0);
1492 
1493         __ bind(do_convert);
1494         __ fnstcw(Address(rsp, 0));
1495         __ movzwl(rax, Address(rsp, 0));
1496         __ orl(rax, 0xc00);
1497         __ movw(Address(rsp, 2), rax);
1498         __ fldcw(Address(rsp, 2));
1499         __ fwait();
1500         __ fistp_d(result_low_word);
1501         __ fldcw(Address(rsp, 0));
1502         __ fwait();
1503         // This gets the entire long in rax on 64bit
1504         __ movptr(rax, result_low_word);
1505         // testing of high bits
1506         __ movl(rdx, result_high_word);
1507         __ mov(rcx, rax);
1508         // What the heck is the point of the next instruction???
1509         __ xorl(rcx, 0x0);
1510         __ movl(rsi, 0x80000000);
1511         __ xorl(rsi, rdx);
1512         __ orl(rcx, rsi);
1513         __ jcc(Assembler::notEqual, do_return);
1514         __ fldz();
1515         __ fcomp_d(value_low_word);
1516         __ fnstsw_ax();
1517 #ifdef _LP64
1518         __ testl(rax, 0x4100);  // ZF & CF == 0
1519         __ jcc(Assembler::equal, return_min_jlong);
1520 #else
1521         __ sahf();
1522         __ jcc(Assembler::above, return_min_jlong);
1523 #endif // _LP64
1524         // return max_jlong
1525 #ifndef _LP64
1526         __ movl(rdx, 0x7fffffff);
1527         __ movl(rax, 0xffffffff);
1528 #else
1529         __ mov64(rax, CONST64(0x7fffffffffffffff));
1530 #endif // _LP64
1531         __ jmp(do_return);
1532 
1533         __ bind(return_min_jlong);
1534 #ifndef _LP64
1535         __ movl(rdx, 0x80000000);
1536         __ xorl(rax, rax);
1537 #else
1538         __ mov64(rax, UCONST64(0x8000000000000000));
1539 #endif // _LP64
1540         __ jmp(do_return);
1541 
1542         __ bind(return0);
1543         __ fpop();
1544 #ifndef _LP64
1545         __ xorptr(rdx,rdx);
1546         __ xorptr(rax,rax);
1547 #else
1548         __ xorptr(rax, rax);
1549 #endif // _LP64
1550 
1551         __ bind(do_return);
1552         __ addptr(rsp, 32);
1553         LP64_ONLY(__ pop(rdx);)
1554         __ pop(rcx);
1555         __ pop(rsi);
1556         __ ret(0);
1557       }
1558       break;
1559 
1560 #if INCLUDE_ALL_GCS
1561     case g1_pre_barrier_slow_id:
1562       {
1563         StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
1564         // arg0 : previous value of memory
1565 
1566         BarrierSet* bs = BarrierSet::barrier_set();
1567         if (bs->kind() != BarrierSet::G1BarrierSet) {
1568           __ movptr(rax, (int)id);
1569           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1570           __ should_not_reach_here();
1571           break;
1572         }
1573         __ push(rax);
1574         __ push(rdx);
1575 
1576         const Register pre_val = rax;
1577         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1578         const Register tmp = rdx;
1579 
1580         NOT_LP64(__ get_thread(thread);)
1581 
1582         Address queue_active(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
1583         Address queue_index(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
1584         Address buffer(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
1585 
1586         Label done;
1587         Label runtime;
1588 
1589         // Is marking still active?
1590         if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1591           __ cmpl(queue_active, 0);
1592         } else {
1593           assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
1594           __ cmpb(queue_active, 0);
1595         }
1596         __ jcc(Assembler::equal, done);
1597 
1598         // Can we store original value in the thread's buffer?
1599 
1600         __ movptr(tmp, queue_index);
1601         __ testptr(tmp, tmp);
1602         __ jcc(Assembler::zero, runtime);
1603         __ subptr(tmp, wordSize);
1604         __ movptr(queue_index, tmp);
1605         __ addptr(tmp, buffer);
1606 
1607         // prev_val (rax)
1608         f.load_argument(0, pre_val);
1609         __ movptr(Address(tmp, 0), pre_val);
1610         __ jmp(done);
1611 
1612         __ bind(runtime);
1613 
1614         save_live_registers(sasm, 3);
1615 
1616         // load the pre-value
1617         f.load_argument(0, rcx);
1618         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
1619 
1620         restore_live_registers(sasm);
1621 
1622         __ bind(done);
1623 
1624         __ pop(rdx);
1625         __ pop(rax);
1626       }
1627       break;
1628 
1629     case g1_post_barrier_slow_id:
1630       {
1631         StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
1632 
1633         BarrierSet* bs = BarrierSet::barrier_set();
1634         if (bs->kind() != BarrierSet::G1BarrierSet) {
1635           __ movptr(rax, (int)id);
1636           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1637           __ should_not_reach_here();
1638           break;
1639         }
1640 
1641         // arg0: store_address
1642         Address store_addr(rbp, 2*BytesPerWord);
1643 
1644         Label done;
1645         Label enqueued;
1646         Label runtime;
1647 
1648         // At this point we know new_value is non-NULL and the new_value crosses regions.
1649         // Must check to see if card is already dirty
1650 
1651         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1652 
1653         Address queue_index(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
1654         Address buffer(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
1655 
1656         __ push(rax);
1657         __ push(rcx);
1658 
1659         const Register cardtable = rax;
1660         const Register card_addr = rcx;
1661 
1662         f.load_argument(0, card_addr);
1663         __ shrptr(card_addr, CardTable::card_shift);
1664         // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
1665         // a valid address and therefore is not properly handled by the relocation code.
1666         __ movptr(cardtable, ci_card_table_address_as<intptr_t>());
1667         __ addptr(card_addr, cardtable);
1668 
1669         NOT_LP64(__ get_thread(thread);)
1670 
1671         __ cmpb(Address(card_addr, 0), (int)G1CardTable::g1_young_card_val());
1672         __ jcc(Assembler::equal, done);
1673 
1674         __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
1675         __ cmpb(Address(card_addr, 0), (int)CardTable::dirty_card_val());
1676         __ jcc(Assembler::equal, done);
1677 
1678         // storing region crossing non-NULL, card is clean.
1679         // dirty card and log.
1680 
1681         __ movb(Address(card_addr, 0), (int)CardTable::dirty_card_val());
1682 
1683         const Register tmp = rdx;
1684         __ push(rdx);
1685 
1686         __ movptr(tmp, queue_index);
1687         __ testptr(tmp, tmp);
1688         __ jcc(Assembler::zero, runtime);
1689         __ subptr(tmp, wordSize);
1690         __ movptr(queue_index, tmp);
1691         __ addptr(tmp, buffer);
1692         __ movptr(Address(tmp, 0), card_addr);
1693         __ jmp(enqueued);
1694 
1695         __ bind(runtime);
1696 
1697         save_live_registers(sasm, 3);
1698 
1699         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
1700 
1701         restore_live_registers(sasm);
1702 
1703         __ bind(enqueued);
1704         __ pop(rdx);
1705 
1706         __ bind(done);
1707         __ pop(rcx);
1708         __ pop(rax);
1709       }
1710       break;
1711 #endif // INCLUDE_ALL_GCS
1712 
1713     case predicate_failed_trap_id:
1714       {
1715         StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
1716 
1717         OopMap* map = save_live_registers(sasm, 1);
1718 
1719         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
1720         oop_maps = new OopMapSet();
1721         oop_maps->add_gc_map(call_offset, map);
1722         restore_live_registers(sasm);
1723         __ leave();
1724         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1725         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1726 
1727         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1728       }
1729       break;
1730 
1731     default:
1732       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1733         __ movptr(rax, (int)id);
1734         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1735         __ should_not_reach_here();
1736       }
1737       break;
1738   }
1739   return oop_maps;
1740 }
1741 
1742 #undef __
1743 
1744 const char *Runtime1::pd_name_for_address(address entry) {
1745   return "<unknown function>";
1746 }