1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CodeStubs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_MacroAssembler.hpp"
  30 #include "c1/c1_Runtime1.hpp"
  31 #include "nativeInst_x86.hpp"
  32 #include "runtime/sharedRuntime.hpp"
  33 #include "utilities/align.hpp"
  34 #include "utilities/macros.hpp"
  35 #include "vmreg_x86.inline.hpp"
  36 #if INCLUDE_ALL_GCS
  37 #include "gc/g1/g1BarrierSet.hpp"
  38 #endif // INCLUDE_ALL_GCS
  39 
  40 
  41 #define __ ce->masm()->
  42 
  43 float ConversionStub::float_zero = 0.0;
  44 double ConversionStub::double_zero = 0.0;
  45 
  46 void ConversionStub::emit_code(LIR_Assembler* ce) {
  47   __ bind(_entry);
  48   assert(bytecode() == Bytecodes::_f2i || bytecode() == Bytecodes::_d2i, "other conversions do not require stub");
  49 
  50 
  51   if (input()->is_single_xmm()) {
  52     __ comiss(input()->as_xmm_float_reg(),
  53               ExternalAddress((address)&float_zero));
  54   } else if (input()->is_double_xmm()) {
  55     __ comisd(input()->as_xmm_double_reg(),
  56               ExternalAddress((address)&double_zero));
  57   } else {
  58     LP64_ONLY(ShouldNotReachHere());
  59     __ push(rax);
  60     __ ftst();
  61     __ fnstsw_ax();
  62     __ sahf();
  63     __ pop(rax);
  64   }
  65 
  66   Label NaN, do_return;
  67   __ jccb(Assembler::parity, NaN);
  68   __ jccb(Assembler::below, do_return);
  69 
  70   // input is > 0 -> return maxInt
  71   // result register already contains 0x80000000, so subtracting 1 gives 0x7fffffff
  72   __ decrement(result()->as_register());
  73   __ jmpb(do_return);
  74 
  75   // input is NaN -> return 0
  76   __ bind(NaN);
  77   __ xorptr(result()->as_register(), result()->as_register());
  78 
  79   __ bind(do_return);
  80   __ jmp(_continuation);
  81 }
  82 
  83 void CounterOverflowStub::emit_code(LIR_Assembler* ce) {
  84   __ bind(_entry);
  85   Metadata *m = _method->as_constant_ptr()->as_metadata();
  86   ce->store_parameter(m, 1);
  87   ce->store_parameter(_bci, 0);
  88   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::counter_overflow_id)));
  89   ce->add_call_info_here(_info);
  90   ce->verify_oop_map(_info);
  91   __ jmp(_continuation);
  92 }
  93 
  94 RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index,
  95                                bool throw_index_out_of_bounds_exception)
  96   : _throw_index_out_of_bounds_exception(throw_index_out_of_bounds_exception)
  97   , _index(index)
  98 {
  99   assert(info != NULL, "must have info");
 100   _info = new CodeEmitInfo(info);
 101 }
 102 
 103 
 104 void RangeCheckStub::emit_code(LIR_Assembler* ce) {
 105   __ bind(_entry);
 106   if (_info->deoptimize_on_exception()) {
 107     address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
 108     __ call(RuntimeAddress(a));
 109     ce->add_call_info_here(_info);
 110     ce->verify_oop_map(_info);
 111     debug_only(__ should_not_reach_here());
 112     return;
 113   }
 114 
 115   // pass the array index on stack because all registers must be preserved
 116   if (_index->is_cpu_register()) {
 117     ce->store_parameter(_index->as_register(), 0);
 118   } else {
 119     ce->store_parameter(_index->as_jint(), 0);
 120   }
 121   Runtime1::StubID stub_id;
 122   if (_throw_index_out_of_bounds_exception) {
 123     stub_id = Runtime1::throw_index_exception_id;
 124   } else {
 125     stub_id = Runtime1::throw_range_check_failed_id;
 126   }
 127   __ call(RuntimeAddress(Runtime1::entry_for(stub_id)));
 128   ce->add_call_info_here(_info);
 129   ce->verify_oop_map(_info);
 130   debug_only(__ should_not_reach_here());
 131 }
 132 
 133 PredicateFailedStub::PredicateFailedStub(CodeEmitInfo* info) {
 134   _info = new CodeEmitInfo(info);
 135 }
 136 
 137 void PredicateFailedStub::emit_code(LIR_Assembler* ce) {
 138   __ bind(_entry);
 139   address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
 140   __ call(RuntimeAddress(a));
 141   ce->add_call_info_here(_info);
 142   ce->verify_oop_map(_info);
 143   debug_only(__ should_not_reach_here());
 144 }
 145 
 146 void DivByZeroStub::emit_code(LIR_Assembler* ce) {
 147   if (_offset != -1) {
 148     ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
 149   }
 150   __ bind(_entry);
 151   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_div0_exception_id)));
 152   ce->add_call_info_here(_info);
 153   debug_only(__ should_not_reach_here());
 154 }
 155 
 156 
 157 // Implementation of NewInstanceStub
 158 
 159 NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) {
 160   _result = result;
 161   _klass = klass;
 162   _klass_reg = klass_reg;
 163   _info = new CodeEmitInfo(info);
 164   assert(stub_id == Runtime1::new_instance_id                 ||
 165          stub_id == Runtime1::fast_new_instance_id            ||
 166          stub_id == Runtime1::fast_new_instance_init_check_id,
 167          "need new_instance id");
 168   _stub_id   = stub_id;
 169 }
 170 
 171 
 172 void NewInstanceStub::emit_code(LIR_Assembler* ce) {
 173   assert(__ rsp_offset() == 0, "frame size should be fixed");
 174   __ bind(_entry);
 175   __ movptr(rdx, _klass_reg->as_register());
 176   __ call(RuntimeAddress(Runtime1::entry_for(_stub_id)));
 177   ce->add_call_info_here(_info);
 178   ce->verify_oop_map(_info);
 179   assert(_result->as_register() == rax, "result must in rax,");
 180   __ jmp(_continuation);
 181 }
 182 
 183 
 184 // Implementation of NewTypeArrayStub
 185 
 186 NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
 187   _klass_reg = klass_reg;
 188   _length = length;
 189   _result = result;
 190   _info = new CodeEmitInfo(info);
 191 }
 192 
 193 
 194 void NewTypeArrayStub::emit_code(LIR_Assembler* ce) {
 195   assert(__ rsp_offset() == 0, "frame size should be fixed");
 196   __ bind(_entry);
 197   assert(_length->as_register() == rbx, "length must in rbx,");
 198   assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx");
 199   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_type_array_id)));
 200   ce->add_call_info_here(_info);
 201   ce->verify_oop_map(_info);
 202   assert(_result->as_register() == rax, "result must in rax,");
 203   __ jmp(_continuation);
 204 }
 205 
 206 
 207 // Implementation of NewObjectArrayStub
 208 
 209 NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
 210   _klass_reg = klass_reg;
 211   _result = result;
 212   _length = length;
 213   _info = new CodeEmitInfo(info);
 214 }
 215 
 216 
 217 void NewObjectArrayStub::emit_code(LIR_Assembler* ce) {
 218   assert(__ rsp_offset() == 0, "frame size should be fixed");
 219   __ bind(_entry);
 220   assert(_length->as_register() == rbx, "length must in rbx,");
 221   assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx");
 222   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_object_array_id)));
 223   ce->add_call_info_here(_info);
 224   ce->verify_oop_map(_info);
 225   assert(_result->as_register() == rax, "result must in rax,");
 226   __ jmp(_continuation);
 227 }
 228 
 229 
 230 // Implementation of MonitorAccessStubs
 231 
 232 MonitorEnterStub::MonitorEnterStub(LIR_Opr obj_reg, LIR_Opr lock_reg, CodeEmitInfo* info)
 233 : MonitorAccessStub(obj_reg, lock_reg)
 234 {
 235   _info = new CodeEmitInfo(info);
 236 }
 237 
 238 
 239 void MonitorEnterStub::emit_code(LIR_Assembler* ce) {
 240   assert(__ rsp_offset() == 0, "frame size should be fixed");
 241   __ bind(_entry);
 242   ce->store_parameter(_obj_reg->as_register(),  1);
 243   ce->store_parameter(_lock_reg->as_register(), 0);
 244   Runtime1::StubID enter_id;
 245   if (ce->compilation()->has_fpu_code()) {
 246     enter_id = Runtime1::monitorenter_id;
 247   } else {
 248     enter_id = Runtime1::monitorenter_nofpu_id;
 249   }
 250   __ call(RuntimeAddress(Runtime1::entry_for(enter_id)));
 251   ce->add_call_info_here(_info);
 252   ce->verify_oop_map(_info);
 253   __ jmp(_continuation);
 254 }
 255 
 256 
 257 void MonitorExitStub::emit_code(LIR_Assembler* ce) {
 258   __ bind(_entry);
 259   if (_compute_lock) {
 260     // lock_reg was destroyed by fast unlocking attempt => recompute it
 261     ce->monitor_address(_monitor_ix, _lock_reg);
 262   }
 263   ce->store_parameter(_lock_reg->as_register(), 0);
 264   // note: non-blocking leaf routine => no call info needed
 265   Runtime1::StubID exit_id;
 266   if (ce->compilation()->has_fpu_code()) {
 267     exit_id = Runtime1::monitorexit_id;
 268   } else {
 269     exit_id = Runtime1::monitorexit_nofpu_id;
 270   }
 271   __ call(RuntimeAddress(Runtime1::entry_for(exit_id)));
 272   __ jmp(_continuation);
 273 }
 274 
 275 
 276 // Implementation of patching:
 277 // - Copy the code at given offset to an inlined buffer (first the bytes, then the number of bytes)
 278 // - Replace original code with a call to the stub
 279 // At Runtime:
 280 // - call to stub, jump to runtime
 281 // - in runtime: preserve all registers (rspecially objects, i.e., source and destination object)
 282 // - in runtime: after initializing class, restore original code, reexecute instruction
 283 
 284 int PatchingStub::_patch_info_offset = -NativeGeneralJump::instruction_size;
 285 
 286 void PatchingStub::align_patch_site(MacroAssembler* masm) {
 287   // We're patching a 5-7 byte instruction on intel and we need to
 288   // make sure that we don't see a piece of the instruction.  It
 289   // appears mostly impossible on Intel to simply invalidate other
 290   // processors caches and since they may do aggressive prefetch it's
 291   // very hard to make a guess about what code might be in the icache.
 292   // Force the instruction to be double word aligned so that it
 293   // doesn't span a cache line.
 294   masm->align(align_up((int)NativeGeneralJump::instruction_size, wordSize));
 295 }
 296 
 297 void PatchingStub::emit_code(LIR_Assembler* ce) {
 298   assert(NativeCall::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF, "not enough room for call");
 299 
 300   Label call_patch;
 301 
 302   // static field accesses have special semantics while the class
 303   // initializer is being run so we emit a test which can be used to
 304   // check that this code is being executed by the initializing
 305   // thread.
 306   address being_initialized_entry = __ pc();
 307   if (CommentedAssembly) {
 308     __ block_comment(" patch template");
 309   }
 310   if (_id == load_klass_id) {
 311     // produce a copy of the load klass instruction for use by the being initialized case
 312 #ifdef ASSERT
 313     address start = __ pc();
 314 #endif
 315     Metadata* o = NULL;
 316     __ mov_metadata(_obj, o);
 317 #ifdef ASSERT
 318     for (int i = 0; i < _bytes_to_copy; i++) {
 319       address ptr = (address)(_pc_start + i);
 320       int a_byte = (*ptr) & 0xFF;
 321       assert(a_byte == *start++, "should be the same code");
 322     }
 323 #endif
 324   } else if (_id == load_mirror_id) {
 325     // produce a copy of the load mirror instruction for use by the being
 326     // initialized case
 327 #ifdef ASSERT
 328     address start = __ pc();
 329 #endif
 330     jobject o = NULL;
 331     __ movoop(_obj, o);
 332 #ifdef ASSERT
 333     for (int i = 0; i < _bytes_to_copy; i++) {
 334       address ptr = (address)(_pc_start + i);
 335       int a_byte = (*ptr) & 0xFF;
 336       assert(a_byte == *start++, "should be the same code");
 337     }
 338 #endif
 339   } else {
 340     // make a copy the code which is going to be patched.
 341     for (int i = 0; i < _bytes_to_copy; i++) {
 342       address ptr = (address)(_pc_start + i);
 343       int a_byte = (*ptr) & 0xFF;
 344       __ emit_int8(a_byte);
 345       *ptr = 0x90; // make the site look like a nop
 346     }
 347   }
 348 
 349   address end_of_patch = __ pc();
 350   int bytes_to_skip = 0;
 351   if (_id == load_mirror_id) {
 352     int offset = __ offset();
 353     if (CommentedAssembly) {
 354       __ block_comment(" being_initialized check");
 355     }
 356     assert(_obj != noreg, "must be a valid register");
 357     Register tmp = rax;
 358     Register tmp2 = rbx;
 359     __ push(tmp);
 360     __ push(tmp2);
 361     // Load without verification to keep code size small. We need it because
 362     // begin_initialized_entry_offset has to fit in a byte. Also, we know it's not null.
 363     __ movptr(tmp2, Address(_obj, java_lang_Class::klass_offset_in_bytes()));
 364     __ get_thread(tmp);
 365     __ cmpptr(tmp, Address(tmp2, InstanceKlass::init_thread_offset()));
 366     __ pop(tmp2);
 367     __ pop(tmp);
 368     __ jcc(Assembler::notEqual, call_patch);
 369 
 370     // access_field patches may execute the patched code before it's
 371     // copied back into place so we need to jump back into the main
 372     // code of the nmethod to continue execution.
 373     __ jmp(_patch_site_continuation);
 374 
 375     // make sure this extra code gets skipped
 376     bytes_to_skip += __ offset() - offset;
 377   }
 378   if (CommentedAssembly) {
 379     __ block_comment("patch data encoded as movl");
 380   }
 381   // Now emit the patch record telling the runtime how to find the
 382   // pieces of the patch.  We only need 3 bytes but for readability of
 383   // the disassembly we make the data look like a movl reg, imm32,
 384   // which requires 5 bytes
 385   int sizeof_patch_record = 5;
 386   bytes_to_skip += sizeof_patch_record;
 387 
 388   // emit the offsets needed to find the code to patch
 389   int being_initialized_entry_offset = __ pc() - being_initialized_entry + sizeof_patch_record;
 390 
 391   __ emit_int8((unsigned char)0xB8);
 392   __ emit_int8(0);
 393   __ emit_int8(being_initialized_entry_offset);
 394   __ emit_int8(bytes_to_skip);
 395   __ emit_int8(_bytes_to_copy);
 396   address patch_info_pc = __ pc();
 397   assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info");
 398 
 399   address entry = __ pc();
 400   NativeGeneralJump::insert_unconditional((address)_pc_start, entry);
 401   address target = NULL;
 402   relocInfo::relocType reloc_type = relocInfo::none;
 403   switch (_id) {
 404     case access_field_id:  target = Runtime1::entry_for(Runtime1::access_field_patching_id); break;
 405     case load_klass_id:    target = Runtime1::entry_for(Runtime1::load_klass_patching_id); reloc_type = relocInfo::metadata_type; break;
 406     case load_mirror_id:   target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); reloc_type = relocInfo::oop_type; break;
 407     case load_appendix_id:      target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); reloc_type = relocInfo::oop_type; break;
 408     default: ShouldNotReachHere();
 409   }
 410   __ bind(call_patch);
 411 
 412   if (CommentedAssembly) {
 413     __ block_comment("patch entry point");
 414   }
 415   __ call(RuntimeAddress(target));
 416   assert(_patch_info_offset == (patch_info_pc - __ pc()), "must not change");
 417   ce->add_call_info_here(_info);
 418   int jmp_off = __ offset();
 419   __ jmp(_patch_site_entry);
 420   // Add enough nops so deoptimization can overwrite the jmp above with a call
 421   // and not destroy the world. We cannot use fat nops here, since the concurrent
 422   // code rewrite may transiently create the illegal instruction sequence.
 423   for (int j = __ offset() ; j < jmp_off + 5 ; j++ ) {
 424     __ nop();
 425   }
 426   if (_id == load_klass_id || _id == load_mirror_id || _id == load_appendix_id) {
 427     CodeSection* cs = __ code_section();
 428     RelocIterator iter(cs, (address)_pc_start, (address)(_pc_start + 1));
 429     relocInfo::change_reloc_info_for_address(&iter, (address) _pc_start, reloc_type, relocInfo::none);
 430   }
 431 }
 432 
 433 
 434 void DeoptimizeStub::emit_code(LIR_Assembler* ce) {
 435   __ bind(_entry);
 436   ce->store_parameter(_trap_request, 0);
 437   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::deoptimize_id)));
 438   ce->add_call_info_here(_info);
 439   DEBUG_ONLY(__ should_not_reach_here());
 440 }
 441 
 442 
 443 void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) {
 444   address a;
 445   if (_info->deoptimize_on_exception()) {
 446     // Deoptimize, do not throw the exception, because it is probably wrong to do it here.
 447     a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
 448   } else {
 449     a = Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id);
 450   }
 451 
 452   ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
 453   __ bind(_entry);
 454   __ call(RuntimeAddress(a));
 455   ce->add_call_info_here(_info);
 456   ce->verify_oop_map(_info);
 457   debug_only(__ should_not_reach_here());
 458 }
 459 
 460 
 461 void SimpleExceptionStub::emit_code(LIR_Assembler* ce) {
 462   assert(__ rsp_offset() == 0, "frame size should be fixed");
 463 
 464   __ bind(_entry);
 465   // pass the object on stack because all registers must be preserved
 466   if (_obj->is_cpu_register()) {
 467     ce->store_parameter(_obj->as_register(), 0);
 468   }
 469   __ call(RuntimeAddress(Runtime1::entry_for(_stub)));
 470   ce->add_call_info_here(_info);
 471   debug_only(__ should_not_reach_here());
 472 }
 473 
 474 
 475 void ArrayCopyStub::emit_code(LIR_Assembler* ce) {
 476   //---------------slow case: call to native-----------------
 477   __ bind(_entry);
 478   // Figure out where the args should go
 479   // This should really convert the IntrinsicID to the Method* and signature
 480   // but I don't know how to do that.
 481   //
 482   VMRegPair args[5];
 483   BasicType signature[5] = { T_OBJECT, T_INT, T_OBJECT, T_INT, T_INT};
 484   SharedRuntime::java_calling_convention(signature, args, 5, true);
 485 
 486   // push parameters
 487   // (src, src_pos, dest, destPos, length)
 488   Register r[5];
 489   r[0] = src()->as_register();
 490   r[1] = src_pos()->as_register();
 491   r[2] = dst()->as_register();
 492   r[3] = dst_pos()->as_register();
 493   r[4] = length()->as_register();
 494 
 495   // next registers will get stored on the stack
 496   for (int i = 0; i < 5 ; i++ ) {
 497     VMReg r_1 = args[i].first();
 498     if (r_1->is_stack()) {
 499       int st_off = r_1->reg2stack() * wordSize;
 500       __ movptr (Address(rsp, st_off), r[i]);
 501     } else {
 502       assert(r[i] == args[i].first()->as_Register(), "Wrong register for arg ");
 503     }
 504   }
 505 
 506   ce->align_call(lir_static_call);
 507 
 508   ce->emit_static_call_stub();
 509   if (ce->compilation()->bailed_out()) {
 510     return; // CodeCache is full
 511   }
 512   AddressLiteral resolve(SharedRuntime::get_resolve_static_call_stub(),
 513                          relocInfo::static_call_type);
 514   __ call(resolve);
 515   ce->add_call_info_here(info());
 516 
 517 #ifndef PRODUCT
 518   __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_slowcase_cnt));
 519 #endif
 520 
 521   __ jmp(_continuation);
 522 }
 523 
 524 /////////////////////////////////////////////////////////////////////////////
 525 #if INCLUDE_ALL_GCS
 526 
 527 void G1PreBarrierStub::emit_code(LIR_Assembler* ce) {
 528   // At this point we know that marking is in progress.
 529   // If do_load() is true then we have to emit the
 530   // load of the previous value; otherwise it has already
 531   // been loaded into _pre_val.
 532 
 533   __ bind(_entry);
 534   assert(pre_val()->is_register(), "Precondition.");
 535 
 536   Register pre_val_reg = pre_val()->as_register();
 537 
 538   if (do_load()) {
 539     ce->mem2reg(addr(), pre_val(), T_OBJECT, patch_code(), info(), false /*wide*/, false /*unaligned*/);
 540   }
 541 
 542   __ cmpptr(pre_val_reg, (int32_t) NULL_WORD);
 543   __ jcc(Assembler::equal, _continuation);
 544   ce->store_parameter(pre_val()->as_register(), 0);
 545   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::g1_pre_barrier_slow_id)));
 546   __ jmp(_continuation);
 547 
 548 }
 549 
 550 void G1PostBarrierStub::emit_code(LIR_Assembler* ce) {
 551   __ bind(_entry);
 552   assert(addr()->is_register(), "Precondition.");
 553   assert(new_val()->is_register(), "Precondition.");
 554   Register new_val_reg = new_val()->as_register();
 555   __ cmpptr(new_val_reg, (int32_t) NULL_WORD);
 556   __ jcc(Assembler::equal, _continuation);
 557   ce->store_parameter(addr()->as_pointer_register(), 0);
 558   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::g1_post_barrier_slow_id)));
 559   __ jmp(_continuation);
 560 }
 561 
 562 #endif // INCLUDE_ALL_GCS
 563 /////////////////////////////////////////////////////////////////////////////
 564 
 565 #undef __