1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CodeStubs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_MacroAssembler.hpp"
  30 #include "c1/c1_Runtime1.hpp"
  31 #include "nativeInst_x86.hpp"
  32 #include "runtime/sharedRuntime.hpp"
  33 #include "utilities/align.hpp"
  34 #include "utilities/macros.hpp"
  35 #include "vmreg_x86.inline.hpp"
  36 #if INCLUDE_ALL_GCS
  37 #include "gc/g1/g1BarrierSet.hpp"
  38 #endif // INCLUDE_ALL_GCS
  39 
  40 
  41 #define __ ce->masm()->
  42 
  43 float ConversionStub::float_zero = 0.0;
  44 double ConversionStub::double_zero = 0.0;
  45 
  46 void ConversionStub::emit_code(LIR_Assembler* ce) {
  47   __ bind(_entry);
  48   assert(bytecode() == Bytecodes::_f2i || bytecode() == Bytecodes::_d2i, "other conversions do not require stub");
  49 
  50 
  51   if (input()->is_single_xmm()) {
  52     __ comiss(input()->as_xmm_float_reg(),
  53               ExternalAddress((address)&float_zero));
  54   } else if (input()->is_double_xmm()) {
  55     __ comisd(input()->as_xmm_double_reg(),
  56               ExternalAddress((address)&double_zero));
  57   } else {
  58     LP64_ONLY(ShouldNotReachHere());
  59     __ push(rax);
  60     __ ftst();
  61     __ fnstsw_ax();
  62     __ sahf();
  63     __ pop(rax);
  64   }
  65 
  66   Label NaN, do_return;
  67   __ jccb(Assembler::parity, NaN);
  68   __ jccb(Assembler::below, do_return);
  69 
  70   // input is > 0 -> return maxInt
  71   // result register already contains 0x80000000, so subtracting 1 gives 0x7fffffff
  72   __ decrement(result()->as_register());
  73   __ jmpb(do_return);
  74 
  75   // input is NaN -> return 0
  76   __ bind(NaN);
  77   __ xorptr(result()->as_register(), result()->as_register());
  78 
  79   __ bind(do_return);
  80   __ jmp(_continuation);
  81 }
  82 
  83 void CounterOverflowStub::emit_code(LIR_Assembler* ce) {
  84   __ bind(_entry);
  85   Metadata *m = _method->as_constant_ptr()->as_metadata();
  86   ce->store_parameter(m, 1);
  87   ce->store_parameter(_bci, 0);
  88   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::counter_overflow_id)));
  89   ce->add_call_info_here(_info);
  90   ce->verify_oop_map(_info);
  91   __ jmp(_continuation);
  92 }
  93 
  94 RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index, LIR_Opr array)
  95   : _throw_index_out_of_bounds_exception(false), _index(index), _array(array) {
  96   assert(info != NULL, "must have info");
  97   _info = new CodeEmitInfo(info);
  98 }
  99 
 100 RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index)
 101   : _throw_index_out_of_bounds_exception(true), _index(index), _array(NULL) {
 102   assert(info != NULL, "must have info");
 103   _info = new CodeEmitInfo(info);
 104 }
 105 
 106 void RangeCheckStub::emit_code(LIR_Assembler* ce) {
 107   __ bind(_entry);
 108   if (_info->deoptimize_on_exception()) {
 109     address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
 110     __ call(RuntimeAddress(a));
 111     ce->add_call_info_here(_info);
 112     ce->verify_oop_map(_info);
 113     debug_only(__ should_not_reach_here());
 114     return;
 115   }
 116 
 117   // pass the array index on stack because all registers must be preserved
 118   if (_index->is_cpu_register()) {
 119     ce->store_parameter(_index->as_register(), 0);
 120   } else {
 121     ce->store_parameter(_index->as_jint(), 0);
 122   }
 123   Runtime1::StubID stub_id;
 124   if (_throw_index_out_of_bounds_exception) {
 125     stub_id = Runtime1::throw_index_exception_id;
 126   } else {
 127     stub_id = Runtime1::throw_range_check_failed_id;
 128     ce->store_parameter(_array->as_pointer_register(), 1);
 129   }
 130   __ call(RuntimeAddress(Runtime1::entry_for(stub_id)));
 131   ce->add_call_info_here(_info);
 132   ce->verify_oop_map(_info);
 133   debug_only(__ should_not_reach_here());
 134 }
 135 
 136 PredicateFailedStub::PredicateFailedStub(CodeEmitInfo* info) {
 137   _info = new CodeEmitInfo(info);
 138 }
 139 
 140 void PredicateFailedStub::emit_code(LIR_Assembler* ce) {
 141   __ bind(_entry);
 142   address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
 143   __ call(RuntimeAddress(a));
 144   ce->add_call_info_here(_info);
 145   ce->verify_oop_map(_info);
 146   debug_only(__ should_not_reach_here());
 147 }
 148 
 149 void DivByZeroStub::emit_code(LIR_Assembler* ce) {
 150   if (_offset != -1) {
 151     ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
 152   }
 153   __ bind(_entry);
 154   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_div0_exception_id)));
 155   ce->add_call_info_here(_info);
 156   debug_only(__ should_not_reach_here());
 157 }
 158 
 159 
 160 // Implementation of NewInstanceStub
 161 
 162 NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) {
 163   _result = result;
 164   _klass = klass;
 165   _klass_reg = klass_reg;
 166   _info = new CodeEmitInfo(info);
 167   assert(stub_id == Runtime1::new_instance_id                 ||
 168          stub_id == Runtime1::fast_new_instance_id            ||
 169          stub_id == Runtime1::fast_new_instance_init_check_id,
 170          "need new_instance id");
 171   _stub_id   = stub_id;
 172 }
 173 
 174 
 175 void NewInstanceStub::emit_code(LIR_Assembler* ce) {
 176   assert(__ rsp_offset() == 0, "frame size should be fixed");
 177   __ bind(_entry);
 178   __ movptr(rdx, _klass_reg->as_register());
 179   __ call(RuntimeAddress(Runtime1::entry_for(_stub_id)));
 180   ce->add_call_info_here(_info);
 181   ce->verify_oop_map(_info);
 182   assert(_result->as_register() == rax, "result must in rax,");
 183   __ jmp(_continuation);
 184 }
 185 
 186 
 187 // Implementation of NewTypeArrayStub
 188 
 189 NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
 190   _klass_reg = klass_reg;
 191   _length = length;
 192   _result = result;
 193   _info = new CodeEmitInfo(info);
 194 }
 195 
 196 
 197 void NewTypeArrayStub::emit_code(LIR_Assembler* ce) {
 198   assert(__ rsp_offset() == 0, "frame size should be fixed");
 199   __ bind(_entry);
 200   assert(_length->as_register() == rbx, "length must in rbx,");
 201   assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx");
 202   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_type_array_id)));
 203   ce->add_call_info_here(_info);
 204   ce->verify_oop_map(_info);
 205   assert(_result->as_register() == rax, "result must in rax,");
 206   __ jmp(_continuation);
 207 }
 208 
 209 
 210 // Implementation of NewObjectArrayStub
 211 
 212 NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
 213   _klass_reg = klass_reg;
 214   _result = result;
 215   _length = length;
 216   _info = new CodeEmitInfo(info);
 217 }
 218 
 219 
 220 void NewObjectArrayStub::emit_code(LIR_Assembler* ce) {
 221   assert(__ rsp_offset() == 0, "frame size should be fixed");
 222   __ bind(_entry);
 223   assert(_length->as_register() == rbx, "length must in rbx,");
 224   assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx");
 225   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_object_array_id)));
 226   ce->add_call_info_here(_info);
 227   ce->verify_oop_map(_info);
 228   assert(_result->as_register() == rax, "result must in rax,");
 229   __ jmp(_continuation);
 230 }
 231 
 232 
 233 // Implementation of MonitorAccessStubs
 234 
 235 MonitorEnterStub::MonitorEnterStub(LIR_Opr obj_reg, LIR_Opr lock_reg, CodeEmitInfo* info)
 236 : MonitorAccessStub(obj_reg, lock_reg)
 237 {
 238   _info = new CodeEmitInfo(info);
 239 }
 240 
 241 
 242 void MonitorEnterStub::emit_code(LIR_Assembler* ce) {
 243   assert(__ rsp_offset() == 0, "frame size should be fixed");
 244   __ bind(_entry);
 245   ce->store_parameter(_obj_reg->as_register(),  1);
 246   ce->store_parameter(_lock_reg->as_register(), 0);
 247   Runtime1::StubID enter_id;
 248   if (ce->compilation()->has_fpu_code()) {
 249     enter_id = Runtime1::monitorenter_id;
 250   } else {
 251     enter_id = Runtime1::monitorenter_nofpu_id;
 252   }
 253   __ call(RuntimeAddress(Runtime1::entry_for(enter_id)));
 254   ce->add_call_info_here(_info);
 255   ce->verify_oop_map(_info);
 256   __ jmp(_continuation);
 257 }
 258 
 259 
 260 void MonitorExitStub::emit_code(LIR_Assembler* ce) {
 261   __ bind(_entry);
 262   if (_compute_lock) {
 263     // lock_reg was destroyed by fast unlocking attempt => recompute it
 264     ce->monitor_address(_monitor_ix, _lock_reg);
 265   }
 266   ce->store_parameter(_lock_reg->as_register(), 0);
 267   // note: non-blocking leaf routine => no call info needed
 268   Runtime1::StubID exit_id;
 269   if (ce->compilation()->has_fpu_code()) {
 270     exit_id = Runtime1::monitorexit_id;
 271   } else {
 272     exit_id = Runtime1::monitorexit_nofpu_id;
 273   }
 274   __ call(RuntimeAddress(Runtime1::entry_for(exit_id)));
 275   __ jmp(_continuation);
 276 }
 277 
 278 
 279 // Implementation of patching:
 280 // - Copy the code at given offset to an inlined buffer (first the bytes, then the number of bytes)
 281 // - Replace original code with a call to the stub
 282 // At Runtime:
 283 // - call to stub, jump to runtime
 284 // - in runtime: preserve all registers (rspecially objects, i.e., source and destination object)
 285 // - in runtime: after initializing class, restore original code, reexecute instruction
 286 
 287 int PatchingStub::_patch_info_offset = -NativeGeneralJump::instruction_size;
 288 
 289 void PatchingStub::align_patch_site(MacroAssembler* masm) {
 290   // We're patching a 5-7 byte instruction on intel and we need to
 291   // make sure that we don't see a piece of the instruction.  It
 292   // appears mostly impossible on Intel to simply invalidate other
 293   // processors caches and since they may do aggressive prefetch it's
 294   // very hard to make a guess about what code might be in the icache.
 295   // Force the instruction to be double word aligned so that it
 296   // doesn't span a cache line.
 297   masm->align(align_up((int)NativeGeneralJump::instruction_size, wordSize));
 298 }
 299 
 300 void PatchingStub::emit_code(LIR_Assembler* ce) {
 301   assert(NativeCall::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF, "not enough room for call");
 302 
 303   Label call_patch;
 304 
 305   // static field accesses have special semantics while the class
 306   // initializer is being run so we emit a test which can be used to
 307   // check that this code is being executed by the initializing
 308   // thread.
 309   address being_initialized_entry = __ pc();
 310   if (CommentedAssembly) {
 311     __ block_comment(" patch template");
 312   }
 313   if (_id == load_klass_id) {
 314     // produce a copy of the load klass instruction for use by the being initialized case
 315 #ifdef ASSERT
 316     address start = __ pc();
 317 #endif
 318     Metadata* o = NULL;
 319     __ mov_metadata(_obj, o);
 320 #ifdef ASSERT
 321     for (int i = 0; i < _bytes_to_copy; i++) {
 322       address ptr = (address)(_pc_start + i);
 323       int a_byte = (*ptr) & 0xFF;
 324       assert(a_byte == *start++, "should be the same code");
 325     }
 326 #endif
 327   } else if (_id == load_mirror_id) {
 328     // produce a copy of the load mirror instruction for use by the being
 329     // initialized case
 330 #ifdef ASSERT
 331     address start = __ pc();
 332 #endif
 333     jobject o = NULL;
 334     __ movoop(_obj, o);
 335 #ifdef ASSERT
 336     for (int i = 0; i < _bytes_to_copy; i++) {
 337       address ptr = (address)(_pc_start + i);
 338       int a_byte = (*ptr) & 0xFF;
 339       assert(a_byte == *start++, "should be the same code");
 340     }
 341 #endif
 342   } else {
 343     // make a copy the code which is going to be patched.
 344     for (int i = 0; i < _bytes_to_copy; i++) {
 345       address ptr = (address)(_pc_start + i);
 346       int a_byte = (*ptr) & 0xFF;
 347       __ emit_int8(a_byte);
 348       *ptr = 0x90; // make the site look like a nop
 349     }
 350   }
 351 
 352   address end_of_patch = __ pc();
 353   int bytes_to_skip = 0;
 354   if (_id == load_mirror_id) {
 355     int offset = __ offset();
 356     if (CommentedAssembly) {
 357       __ block_comment(" being_initialized check");
 358     }
 359     assert(_obj != noreg, "must be a valid register");
 360     Register tmp = rax;
 361     Register tmp2 = rbx;
 362     __ push(tmp);
 363     __ push(tmp2);
 364     // Load without verification to keep code size small. We need it because
 365     // begin_initialized_entry_offset has to fit in a byte. Also, we know it's not null.
 366     __ movptr(tmp2, Address(_obj, java_lang_Class::klass_offset_in_bytes()));
 367     __ get_thread(tmp);
 368     __ cmpptr(tmp, Address(tmp2, InstanceKlass::init_thread_offset()));
 369     __ pop(tmp2);
 370     __ pop(tmp);
 371     __ jcc(Assembler::notEqual, call_patch);
 372 
 373     // access_field patches may execute the patched code before it's
 374     // copied back into place so we need to jump back into the main
 375     // code of the nmethod to continue execution.
 376     __ jmp(_patch_site_continuation);
 377 
 378     // make sure this extra code gets skipped
 379     bytes_to_skip += __ offset() - offset;
 380   }
 381   if (CommentedAssembly) {
 382     __ block_comment("patch data encoded as movl");
 383   }
 384   // Now emit the patch record telling the runtime how to find the
 385   // pieces of the patch.  We only need 3 bytes but for readability of
 386   // the disassembly we make the data look like a movl reg, imm32,
 387   // which requires 5 bytes
 388   int sizeof_patch_record = 5;
 389   bytes_to_skip += sizeof_patch_record;
 390 
 391   // emit the offsets needed to find the code to patch
 392   int being_initialized_entry_offset = __ pc() - being_initialized_entry + sizeof_patch_record;
 393 
 394   __ emit_int8((unsigned char)0xB8);
 395   __ emit_int8(0);
 396   __ emit_int8(being_initialized_entry_offset);
 397   __ emit_int8(bytes_to_skip);
 398   __ emit_int8(_bytes_to_copy);
 399   address patch_info_pc = __ pc();
 400   assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info");
 401 
 402   address entry = __ pc();
 403   NativeGeneralJump::insert_unconditional((address)_pc_start, entry);
 404   address target = NULL;
 405   relocInfo::relocType reloc_type = relocInfo::none;
 406   switch (_id) {
 407     case access_field_id:  target = Runtime1::entry_for(Runtime1::access_field_patching_id); break;
 408     case load_klass_id:    target = Runtime1::entry_for(Runtime1::load_klass_patching_id); reloc_type = relocInfo::metadata_type; break;
 409     case load_mirror_id:   target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); reloc_type = relocInfo::oop_type; break;
 410     case load_appendix_id:      target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); reloc_type = relocInfo::oop_type; break;
 411     default: ShouldNotReachHere();
 412   }
 413   __ bind(call_patch);
 414 
 415   if (CommentedAssembly) {
 416     __ block_comment("patch entry point");
 417   }
 418   __ call(RuntimeAddress(target));
 419   assert(_patch_info_offset == (patch_info_pc - __ pc()), "must not change");
 420   ce->add_call_info_here(_info);
 421   int jmp_off = __ offset();
 422   __ jmp(_patch_site_entry);
 423   // Add enough nops so deoptimization can overwrite the jmp above with a call
 424   // and not destroy the world. We cannot use fat nops here, since the concurrent
 425   // code rewrite may transiently create the illegal instruction sequence.
 426   for (int j = __ offset() ; j < jmp_off + 5 ; j++ ) {
 427     __ nop();
 428   }
 429   if (_id == load_klass_id || _id == load_mirror_id || _id == load_appendix_id) {
 430     CodeSection* cs = __ code_section();
 431     RelocIterator iter(cs, (address)_pc_start, (address)(_pc_start + 1));
 432     relocInfo::change_reloc_info_for_address(&iter, (address) _pc_start, reloc_type, relocInfo::none);
 433   }
 434 }
 435 
 436 
 437 void DeoptimizeStub::emit_code(LIR_Assembler* ce) {
 438   __ bind(_entry);
 439   ce->store_parameter(_trap_request, 0);
 440   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::deoptimize_id)));
 441   ce->add_call_info_here(_info);
 442   DEBUG_ONLY(__ should_not_reach_here());
 443 }
 444 
 445 
 446 void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) {
 447   address a;
 448   if (_info->deoptimize_on_exception()) {
 449     // Deoptimize, do not throw the exception, because it is probably wrong to do it here.
 450     a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
 451   } else {
 452     a = Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id);
 453   }
 454 
 455   ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
 456   __ bind(_entry);
 457   __ call(RuntimeAddress(a));
 458   ce->add_call_info_here(_info);
 459   ce->verify_oop_map(_info);
 460   debug_only(__ should_not_reach_here());
 461 }
 462 
 463 
 464 void SimpleExceptionStub::emit_code(LIR_Assembler* ce) {
 465   assert(__ rsp_offset() == 0, "frame size should be fixed");
 466 
 467   __ bind(_entry);
 468   // pass the object on stack because all registers must be preserved
 469   if (_obj->is_cpu_register()) {
 470     ce->store_parameter(_obj->as_register(), 0);
 471   }
 472   __ call(RuntimeAddress(Runtime1::entry_for(_stub)));
 473   ce->add_call_info_here(_info);
 474   debug_only(__ should_not_reach_here());
 475 }
 476 
 477 
 478 void ArrayCopyStub::emit_code(LIR_Assembler* ce) {
 479   //---------------slow case: call to native-----------------
 480   __ bind(_entry);
 481   // Figure out where the args should go
 482   // This should really convert the IntrinsicID to the Method* and signature
 483   // but I don't know how to do that.
 484   //
 485   VMRegPair args[5];
 486   BasicType signature[5] = { T_OBJECT, T_INT, T_OBJECT, T_INT, T_INT};
 487   SharedRuntime::java_calling_convention(signature, args, 5, true);
 488 
 489   // push parameters
 490   // (src, src_pos, dest, destPos, length)
 491   Register r[5];
 492   r[0] = src()->as_register();
 493   r[1] = src_pos()->as_register();
 494   r[2] = dst()->as_register();
 495   r[3] = dst_pos()->as_register();
 496   r[4] = length()->as_register();
 497 
 498   // next registers will get stored on the stack
 499   for (int i = 0; i < 5 ; i++ ) {
 500     VMReg r_1 = args[i].first();
 501     if (r_1->is_stack()) {
 502       int st_off = r_1->reg2stack() * wordSize;
 503       __ movptr (Address(rsp, st_off), r[i]);
 504     } else {
 505       assert(r[i] == args[i].first()->as_Register(), "Wrong register for arg ");
 506     }
 507   }
 508 
 509   ce->align_call(lir_static_call);
 510 
 511   ce->emit_static_call_stub();
 512   if (ce->compilation()->bailed_out()) {
 513     return; // CodeCache is full
 514   }
 515   AddressLiteral resolve(SharedRuntime::get_resolve_static_call_stub(),
 516                          relocInfo::static_call_type);
 517   __ call(resolve);
 518   ce->add_call_info_here(info());
 519 
 520 #ifndef PRODUCT
 521   __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_slowcase_cnt));
 522 #endif
 523 
 524   __ jmp(_continuation);
 525 }
 526 
 527 /////////////////////////////////////////////////////////////////////////////
 528 #if INCLUDE_ALL_GCS
 529 
 530 void G1PreBarrierStub::emit_code(LIR_Assembler* ce) {
 531   // At this point we know that marking is in progress.
 532   // If do_load() is true then we have to emit the
 533   // load of the previous value; otherwise it has already
 534   // been loaded into _pre_val.
 535 
 536   __ bind(_entry);
 537   assert(pre_val()->is_register(), "Precondition.");
 538 
 539   Register pre_val_reg = pre_val()->as_register();
 540 
 541   if (do_load()) {
 542     ce->mem2reg(addr(), pre_val(), T_OBJECT, patch_code(), info(), false /*wide*/, false /*unaligned*/);
 543   }
 544 
 545   __ cmpptr(pre_val_reg, (int32_t) NULL_WORD);
 546   __ jcc(Assembler::equal, _continuation);
 547   ce->store_parameter(pre_val()->as_register(), 0);
 548   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::g1_pre_barrier_slow_id)));
 549   __ jmp(_continuation);
 550 
 551 }
 552 
 553 void G1PostBarrierStub::emit_code(LIR_Assembler* ce) {
 554   __ bind(_entry);
 555   assert(addr()->is_register(), "Precondition.");
 556   assert(new_val()->is_register(), "Precondition.");
 557   Register new_val_reg = new_val()->as_register();
 558   __ cmpptr(new_val_reg, (int32_t) NULL_WORD);
 559   __ jcc(Assembler::equal, _continuation);
 560   ce->store_parameter(addr()->as_pointer_register(), 0);
 561   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::g1_post_barrier_slow_id)));
 562   __ jmp(_continuation);
 563 }
 564 
 565 #endif // INCLUDE_ALL_GCS
 566 /////////////////////////////////////////////////////////////////////////////
 567 
 568 #undef __