1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "ci/ciUtilities.hpp"
  31 #include "gc/shared/cardTable.hpp"
  32 #include "gc/shared/cardTableBarrierSet.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "nativeInst_x86.hpp"
  35 #include "oops/compiledICHolder.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "register_x86.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/signature.hpp"
  41 #include "runtime/vframeArray.hpp"
  42 #include "utilities/macros.hpp"
  43 #include "vmreg_x86.inline.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1BarrierSet.hpp"
  46 #include "gc/g1/g1CardTable.hpp"
  47 #include "gc/g1/g1ThreadLocalData.hpp"
  48 #endif
  49 
  50 
  51 // Implementation of StubAssembler
  52 
  53 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
  54   // setup registers
  55   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
  56   assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
  57   assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
  58   assert(args_size >= 0, "illegal args_size");
  59   bool align_stack = false;
  60 #ifdef _LP64
  61   // At a method handle call, the stack may not be properly aligned
  62   // when returning with an exception.
  63   align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
  64 #endif
  65 
  66 #ifdef _LP64
  67   mov(c_rarg0, thread);
  68   set_num_rt_args(0); // Nothing on stack
  69 #else
  70   set_num_rt_args(1 + args_size);
  71 
  72   // push java thread (becomes first argument of C function)
  73   get_thread(thread);
  74   push(thread);
  75 #endif // _LP64
  76 
  77   int call_offset;
  78   if (!align_stack) {
  79     set_last_Java_frame(thread, noreg, rbp, NULL);
  80   } else {
  81     address the_pc = pc();
  82     call_offset = offset();
  83     set_last_Java_frame(thread, noreg, rbp, the_pc);
  84     andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  85   }
  86 
  87   // do the call
  88   call(RuntimeAddress(entry));
  89   if (!align_stack) {
  90     call_offset = offset();
  91   }
  92   // verify callee-saved register
  93 #ifdef ASSERT
  94   guarantee(thread != rax, "change this code");
  95   push(rax);
  96   { Label L;
  97     get_thread(rax);
  98     cmpptr(thread, rax);
  99     jcc(Assembler::equal, L);
 100     int3();
 101     stop("StubAssembler::call_RT: rdi not callee saved?");
 102     bind(L);
 103   }
 104   pop(rax);
 105 #endif
 106   reset_last_Java_frame(thread, true);
 107 
 108   // discard thread and arguments
 109   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
 110 
 111   // check for pending exceptions
 112   { Label L;
 113     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 114     jcc(Assembler::equal, L);
 115     // exception pending => remove activation and forward to exception handler
 116     movptr(rax, Address(thread, Thread::pending_exception_offset()));
 117     // make sure that the vm_results are cleared
 118     if (oop_result1->is_valid()) {
 119       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
 120     }
 121     if (metadata_result->is_valid()) {
 122       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 123     }
 124     if (frame_size() == no_frame_size) {
 125       leave();
 126       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 127     } else if (_stub_id == Runtime1::forward_exception_id) {
 128       should_not_reach_here();
 129     } else {
 130       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 131     }
 132     bind(L);
 133   }
 134   // get oop results if there are any and reset the values in the thread
 135   if (oop_result1->is_valid()) {
 136     get_vm_result(oop_result1, thread);
 137   }
 138   if (metadata_result->is_valid()) {
 139     get_vm_result_2(metadata_result, thread);
 140   }
 141   return call_offset;
 142 }
 143 
 144 
 145 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
 146 #ifdef _LP64
 147   mov(c_rarg1, arg1);
 148 #else
 149   push(arg1);
 150 #endif // _LP64
 151   return call_RT(oop_result1, metadata_result, entry, 1);
 152 }
 153 
 154 
 155 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
 156 #ifdef _LP64
 157   if (c_rarg1 == arg2) {
 158     if (c_rarg2 == arg1) {
 159       xchgq(arg1, arg2);
 160     } else {
 161       mov(c_rarg2, arg2);
 162       mov(c_rarg1, arg1);
 163     }
 164   } else {
 165     mov(c_rarg1, arg1);
 166     mov(c_rarg2, arg2);
 167   }
 168 #else
 169   push(arg2);
 170   push(arg1);
 171 #endif // _LP64
 172   return call_RT(oop_result1, metadata_result, entry, 2);
 173 }
 174 
 175 
 176 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
 177 #ifdef _LP64
 178   // if there is any conflict use the stack
 179   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
 180       arg2 == c_rarg1 || arg1 == c_rarg3 ||
 181       arg3 == c_rarg1 || arg1 == c_rarg2) {
 182     push(arg3);
 183     push(arg2);
 184     push(arg1);
 185     pop(c_rarg1);
 186     pop(c_rarg2);
 187     pop(c_rarg3);
 188   } else {
 189     mov(c_rarg1, arg1);
 190     mov(c_rarg2, arg2);
 191     mov(c_rarg3, arg3);
 192   }
 193 #else
 194   push(arg3);
 195   push(arg2);
 196   push(arg1);
 197 #endif // _LP64
 198   return call_RT(oop_result1, metadata_result, entry, 3);
 199 }
 200 
 201 
 202 // Implementation of StubFrame
 203 
 204 class StubFrame: public StackObj {
 205  private:
 206   StubAssembler* _sasm;
 207 
 208  public:
 209   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
 210   void load_argument(int offset_in_words, Register reg);
 211 
 212   ~StubFrame();
 213 };
 214 
 215 
 216 #define __ _sasm->
 217 
 218 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
 219   _sasm = sasm;
 220   __ set_info(name, must_gc_arguments);
 221   __ enter();
 222 }
 223 
 224 // load parameters that were stored with LIR_Assembler::store_parameter
 225 // Note: offsets for store_parameter and load_argument must match
 226 void StubFrame::load_argument(int offset_in_words, Register reg) {
 227   // rbp, + 0: link
 228   //     + 1: return address
 229   //     + 2: argument with offset 0
 230   //     + 3: argument with offset 1
 231   //     + 4: ...
 232 
 233   __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
 234 }
 235 
 236 
 237 StubFrame::~StubFrame() {
 238   __ leave();
 239   __ ret(0);
 240 }
 241 
 242 #undef __
 243 
 244 
 245 // Implementation of Runtime1
 246 
 247 #define __ sasm->
 248 
 249 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
 250 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
 251 
 252 // Stack layout for saving/restoring  all the registers needed during a runtime
 253 // call (this includes deoptimization)
 254 // Note: note that users of this frame may well have arguments to some runtime
 255 // while these values are on the stack. These positions neglect those arguments
 256 // but the code in save_live_registers will take the argument count into
 257 // account.
 258 //
 259 #ifdef _LP64
 260   #define SLOT2(x) x,
 261   #define SLOT_PER_WORD 2
 262 #else
 263   #define SLOT2(x)
 264   #define SLOT_PER_WORD 1
 265 #endif // _LP64
 266 
 267 enum reg_save_layout {
 268   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
 269   // happen and will assert if the stack size we create is misaligned
 270 #ifdef _LP64
 271   align_dummy_0, align_dummy_1,
 272 #endif // _LP64
 273 #ifdef _WIN64
 274   // Windows always allocates space for it's argument registers (see
 275   // frame::arg_reg_save_area_bytes).
 276   arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
 277   arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
 278   arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
 279   arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
 280 #endif // _WIN64
 281   xmm_regs_as_doubles_off,                                                                  // 32
 282   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
 283   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
 284   // fpu_state_end_off is exclusive
 285   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
 286   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
 287   extra_space_offset,                                                                       // 360
 288 #ifdef _LP64
 289   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
 290   r14_off, r14H_off,                                                                        // 368, 372
 291   r13_off, r13H_off,                                                                        // 376, 380
 292   r12_off, r12H_off,                                                                        // 384, 388
 293   r11_off, r11H_off,                                                                        // 392, 396
 294   r10_off, r10H_off,                                                                        // 400, 404
 295   r9_off, r9H_off,                                                                          // 408, 412
 296   r8_off, r8H_off,                                                                          // 416, 420
 297   rdi_off, rdiH_off,                                                                        // 424, 428
 298 #else
 299   rdi_off = extra_space_offset,
 300 #endif // _LP64
 301   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
 302   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
 303   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
 304   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
 305   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
 306   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
 307   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
 308   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
 309   return_off, SLOT2(returnH_off)                                                            // 496, 500
 310   reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
 311 };
 312 
 313 
 314 
 315 // Save off registers which might be killed by calls into the runtime.
 316 // Tries to smart of about FP registers.  In particular we separate
 317 // saving and describing the FPU registers for deoptimization since we
 318 // have to save the FPU registers twice if we describe them and on P4
 319 // saving FPU registers which don't contain anything appears
 320 // expensive.  The deopt blob is the only thing which needs to
 321 // describe FPU registers.  In all other cases it should be sufficient
 322 // to simply save their current value.
 323 
 324 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
 325                                 bool save_fpu_registers = true) {
 326 
 327   // In 64bit all the args are in regs so there are no additional stack slots
 328   LP64_ONLY(num_rt_args = 0);
 329   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
 330   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
 331   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word);
 332 
 333   // record saved value locations in an OopMap
 334   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
 335   OopMap* map = new OopMap(frame_size_in_slots, 0);
 336   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
 337   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
 338   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
 339   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
 340   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
 341   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
 342 #ifdef _LP64
 343   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
 344   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
 345   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
 346   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
 347   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
 348   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
 349   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
 350   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
 351 
 352   // This is stupid but needed.
 353   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
 354   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
 355   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
 356   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
 357   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
 358   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
 359 
 360   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
 361   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
 362   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
 363   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
 364   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
 365   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
 366   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
 367   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
 368 #endif // _LP64
 369 
 370   int xmm_bypass_limit = FrameMap::nof_xmm_regs;
 371 #ifdef _LP64
 372   if (UseAVX < 3) {
 373     xmm_bypass_limit = xmm_bypass_limit / 2;
 374   }
 375 #endif
 376 
 377   if (save_fpu_registers) {
 378     if (UseSSE < 2) {
 379       int fpu_off = float_regs_as_doubles_off;
 380       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 381         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
 382         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
 383         // %%% This is really a waste but we'll keep things as they were for now
 384         if (true) {
 385           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
 386         }
 387         fpu_off += 2;
 388       }
 389       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
 390     }
 391 
 392     if (UseSSE >= 2) {
 393       int xmm_off = xmm_regs_as_doubles_off;
 394       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
 395         if (n < xmm_bypass_limit) {
 396           VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 397           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
 398           // %%% This is really a waste but we'll keep things as they were for now
 399           if (true) {
 400             map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
 401           }
 402         }
 403         xmm_off += 2;
 404       }
 405       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 406 
 407     } else if (UseSSE == 1) {
 408       int xmm_off = xmm_regs_as_doubles_off;
 409       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 410         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 411         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
 412         xmm_off += 2;
 413       }
 414       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 415     }
 416   }
 417 
 418   return map;
 419 }
 420 
 421 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
 422                                    bool save_fpu_registers = true) {
 423   __ block_comment("save_live_registers");
 424 
 425   __ pusha();         // integer registers
 426 
 427   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
 428   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
 429 
 430   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 431 
 432 #ifdef ASSERT
 433   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 434 #endif
 435 
 436   if (save_fpu_registers) {
 437     if (UseSSE < 2) {
 438       // save FPU stack
 439       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 440       __ fwait();
 441 
 442 #ifdef ASSERT
 443       Label ok;
 444       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 445       __ jccb(Assembler::equal, ok);
 446       __ stop("corrupted control word detected");
 447       __ bind(ok);
 448 #endif
 449 
 450       // Reset the control word to guard against exceptions being unmasked
 451       // since fstp_d can cause FPU stack underflow exceptions.  Write it
 452       // into the on stack copy and then reload that to make sure that the
 453       // current and future values are correct.
 454       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 455       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 456 
 457       // Save the FPU registers in de-opt-able form
 458       int offset = 0;
 459       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 460         __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
 461         offset += 8;
 462       }
 463     }
 464 
 465     if (UseSSE >= 2) {
 466       // save XMM registers
 467       // XMM registers can contain float or double values, but this is not known here,
 468       // so always save them as doubles.
 469       // note that float values are _not_ converted automatically, so for float values
 470       // the second word contains only garbage data.
 471       int xmm_bypass_limit = FrameMap::nof_xmm_regs;
 472       int offset = 0;
 473 #ifdef _LP64
 474       if (UseAVX < 3) {
 475         xmm_bypass_limit = xmm_bypass_limit / 2;
 476       }
 477 #endif
 478       for (int n = 0; n < xmm_bypass_limit; n++) {
 479         XMMRegister xmm_name = as_XMMRegister(n);
 480         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
 481         offset += 8;
 482       }
 483     } else if (UseSSE == 1) {
 484       // save XMM registers as float because double not supported without SSE2(num MMX == num fpu)
 485       int offset = 0;
 486       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 487         XMMRegister xmm_name = as_XMMRegister(n);
 488         __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
 489         offset += 8;
 490       }
 491     }
 492   }
 493 
 494   // FPU stack must be empty now
 495   __ verify_FPU(0, "save_live_registers");
 496 
 497   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
 498 }
 499 
 500 
 501 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
 502   if (restore_fpu_registers) {
 503     if (UseSSE >= 2) {
 504       // restore XMM registers
 505       int xmm_bypass_limit = FrameMap::nof_xmm_regs;
 506 #ifdef _LP64
 507       if (UseAVX < 3) {
 508         xmm_bypass_limit = xmm_bypass_limit / 2;
 509       }
 510 #endif
 511       int offset = 0;
 512       for (int n = 0; n < xmm_bypass_limit; n++) {
 513         XMMRegister xmm_name = as_XMMRegister(n);
 514         __ movdbl(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
 515         offset += 8;
 516       }
 517     } else if (UseSSE == 1) {
 518       // restore XMM registers(num MMX == num fpu)
 519       int offset = 0;
 520       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 521         XMMRegister xmm_name = as_XMMRegister(n);
 522         __ movflt(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
 523         offset += 8;
 524       }
 525     }
 526 
 527     if (UseSSE < 2) {
 528       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 529     } else {
 530       // check that FPU stack is really empty
 531       __ verify_FPU(0, "restore_live_registers");
 532     }
 533 
 534   } else {
 535     // check that FPU stack is really empty
 536     __ verify_FPU(0, "restore_live_registers");
 537   }
 538 
 539 #ifdef ASSERT
 540   {
 541     Label ok;
 542     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 543     __ jcc(Assembler::equal, ok);
 544     __ stop("bad offsets in frame");
 545     __ bind(ok);
 546   }
 547 #endif // ASSERT
 548 
 549   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 550 }
 551 
 552 
 553 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
 554   __ block_comment("restore_live_registers");
 555 
 556   restore_fpu(sasm, restore_fpu_registers);
 557   __ popa();
 558 }
 559 
 560 
 561 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
 562   __ block_comment("restore_live_registers_except_rax");
 563 
 564   restore_fpu(sasm, restore_fpu_registers);
 565 
 566 #ifdef _LP64
 567   __ movptr(r15, Address(rsp, 0));
 568   __ movptr(r14, Address(rsp, wordSize));
 569   __ movptr(r13, Address(rsp, 2 * wordSize));
 570   __ movptr(r12, Address(rsp, 3 * wordSize));
 571   __ movptr(r11, Address(rsp, 4 * wordSize));
 572   __ movptr(r10, Address(rsp, 5 * wordSize));
 573   __ movptr(r9,  Address(rsp, 6 * wordSize));
 574   __ movptr(r8,  Address(rsp, 7 * wordSize));
 575   __ movptr(rdi, Address(rsp, 8 * wordSize));
 576   __ movptr(rsi, Address(rsp, 9 * wordSize));
 577   __ movptr(rbp, Address(rsp, 10 * wordSize));
 578   // skip rsp
 579   __ movptr(rbx, Address(rsp, 12 * wordSize));
 580   __ movptr(rdx, Address(rsp, 13 * wordSize));
 581   __ movptr(rcx, Address(rsp, 14 * wordSize));
 582 
 583   __ addptr(rsp, 16 * wordSize);
 584 #else
 585 
 586   __ pop(rdi);
 587   __ pop(rsi);
 588   __ pop(rbp);
 589   __ pop(rbx); // skip this value
 590   __ pop(rbx);
 591   __ pop(rdx);
 592   __ pop(rcx);
 593   __ addptr(rsp, BytesPerWord);
 594 #endif // _LP64
 595 }
 596 
 597 
 598 void Runtime1::initialize_pd() {
 599   // nothing to do
 600 }
 601 
 602 
 603 // Target: the entry point of the method that creates and posts the exception oop.
 604 // has_argument: true if the exception needs arguments (passed on the stack because
 605 //               registers must be preserved).
 606 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
 607   // Preserve all registers.
 608   int num_rt_args = has_argument ? (2 + 1) : 1;
 609   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 610 
 611   // Now all registers are saved and can be used freely.
 612   // Verify that no old value is used accidentally.
 613   __ invalidate_registers(true, true, true, true, true, true);
 614 
 615   // Registers used by this stub.
 616   const Register temp_reg = rbx;
 617 
 618   // Load arguments for exception that are passed as arguments into the stub.
 619   if (has_argument) {
 620 #ifdef _LP64
 621     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
 622     __ movptr(c_rarg2, Address(rbp, 3*BytesPerWord));
 623 #else
 624     __ movptr(temp_reg, Address(rbp, 3*BytesPerWord));
 625     __ push(temp_reg);
 626     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
 627     __ push(temp_reg);
 628 #endif // _LP64
 629   }
 630   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
 631 
 632   OopMapSet* oop_maps = new OopMapSet();
 633   oop_maps->add_gc_map(call_offset, oop_map);
 634 
 635   __ stop("should not reach here");
 636 
 637   return oop_maps;
 638 }
 639 
 640 
 641 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
 642   __ block_comment("generate_handle_exception");
 643 
 644   // incoming parameters
 645   const Register exception_oop = rax;
 646   const Register exception_pc  = rdx;
 647   // other registers used in this stub
 648   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 649 
 650   // Save registers, if required.
 651   OopMapSet* oop_maps = new OopMapSet();
 652   OopMap* oop_map = NULL;
 653   switch (id) {
 654   case forward_exception_id:
 655     // We're handling an exception in the context of a compiled frame.
 656     // The registers have been saved in the standard places.  Perform
 657     // an exception lookup in the caller and dispatch to the handler
 658     // if found.  Otherwise unwind and dispatch to the callers
 659     // exception handler.
 660     oop_map = generate_oop_map(sasm, 1 /*thread*/);
 661 
 662     // load and clear pending exception oop into RAX
 663     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
 664     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 665 
 666     // load issuing PC (the return address for this stub) into rdx
 667     __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
 668 
 669     // make sure that the vm_results are cleared (may be unnecessary)
 670     __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
 671     __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 672     break;
 673   case handle_exception_nofpu_id:
 674   case handle_exception_id:
 675     // At this point all registers MAY be live.
 676     oop_map = save_live_registers(sasm, 1 /*thread*/, id != handle_exception_nofpu_id);
 677     break;
 678   case handle_exception_from_callee_id: {
 679     // At this point all registers except exception oop (RAX) and
 680     // exception pc (RDX) are dead.
 681     const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
 682     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
 683     sasm->set_frame_size(frame_size);
 684     WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
 685     break;
 686   }
 687   default:  ShouldNotReachHere();
 688   }
 689 
 690 #ifdef TIERED
 691   // C2 can leave the fpu stack dirty
 692   if (UseSSE < 2) {
 693     __ empty_FPU_stack();
 694   }
 695 #endif // TIERED
 696 
 697   // verify that only rax, and rdx is valid at this time
 698   __ invalidate_registers(false, true, true, false, true, true);
 699   // verify that rax, contains a valid exception
 700   __ verify_not_null_oop(exception_oop);
 701 
 702   // load address of JavaThread object for thread-local data
 703   NOT_LP64(__ get_thread(thread);)
 704 
 705 #ifdef ASSERT
 706   // check that fields in JavaThread for exception oop and issuing pc are
 707   // empty before writing to them
 708   Label oop_empty;
 709   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
 710   __ jcc(Assembler::equal, oop_empty);
 711   __ stop("exception oop already set");
 712   __ bind(oop_empty);
 713 
 714   Label pc_empty;
 715   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 716   __ jcc(Assembler::equal, pc_empty);
 717   __ stop("exception pc already set");
 718   __ bind(pc_empty);
 719 #endif
 720 
 721   // save exception oop and issuing pc into JavaThread
 722   // (exception handler will load it from here)
 723   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
 724   __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
 725 
 726   // patch throwing pc into return address (has bci & oop map)
 727   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
 728 
 729   // compute the exception handler.
 730   // the exception oop and the throwing pc are read from the fields in JavaThread
 731   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
 732   oop_maps->add_gc_map(call_offset, oop_map);
 733 
 734   // rax: handler address
 735   //      will be the deopt blob if nmethod was deoptimized while we looked up
 736   //      handler regardless of whether handler existed in the nmethod.
 737 
 738   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
 739   __ invalidate_registers(false, true, true, true, true, true);
 740 
 741   // patch the return address, this stub will directly return to the exception handler
 742   __ movptr(Address(rbp, 1*BytesPerWord), rax);
 743 
 744   switch (id) {
 745   case forward_exception_id:
 746   case handle_exception_nofpu_id:
 747   case handle_exception_id:
 748     // Restore the registers that were saved at the beginning.
 749     restore_live_registers(sasm, id != handle_exception_nofpu_id);
 750     break;
 751   case handle_exception_from_callee_id:
 752     // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
 753     // since we do a leave anyway.
 754 
 755     // Pop the return address.
 756     __ leave();
 757     __ pop(rcx);
 758     __ jmp(rcx);  // jump to exception handler
 759     break;
 760   default:  ShouldNotReachHere();
 761   }
 762 
 763   return oop_maps;
 764 }
 765 
 766 
 767 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
 768   // incoming parameters
 769   const Register exception_oop = rax;
 770   // callee-saved copy of exception_oop during runtime call
 771   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
 772   // other registers used in this stub
 773   const Register exception_pc = rdx;
 774   const Register handler_addr = rbx;
 775   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 776 
 777   // verify that only rax, is valid at this time
 778   __ invalidate_registers(false, true, true, true, true, true);
 779 
 780 #ifdef ASSERT
 781   // check that fields in JavaThread for exception oop and issuing pc are empty
 782   NOT_LP64(__ get_thread(thread);)
 783   Label oop_empty;
 784   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
 785   __ jcc(Assembler::equal, oop_empty);
 786   __ stop("exception oop must be empty");
 787   __ bind(oop_empty);
 788 
 789   Label pc_empty;
 790   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 791   __ jcc(Assembler::equal, pc_empty);
 792   __ stop("exception pc must be empty");
 793   __ bind(pc_empty);
 794 #endif
 795 
 796   // clear the FPU stack in case any FPU results are left behind
 797   __ empty_FPU_stack();
 798 
 799   // save exception_oop in callee-saved register to preserve it during runtime calls
 800   __ verify_not_null_oop(exception_oop);
 801   __ movptr(exception_oop_callee_saved, exception_oop);
 802 
 803   NOT_LP64(__ get_thread(thread);)
 804   // Get return address (is on top of stack after leave).
 805   __ movptr(exception_pc, Address(rsp, 0));
 806 
 807   // search the exception handler address of the caller (using the return address)
 808   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
 809   // rax: exception handler address of the caller
 810 
 811   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
 812   __ invalidate_registers(false, true, true, true, false, true);
 813 
 814   // move result of call into correct register
 815   __ movptr(handler_addr, rax);
 816 
 817   // Restore exception oop to RAX (required convention of exception handler).
 818   __ movptr(exception_oop, exception_oop_callee_saved);
 819 
 820   // verify that there is really a valid exception in rax
 821   __ verify_not_null_oop(exception_oop);
 822 
 823   // get throwing pc (= return address).
 824   // rdx has been destroyed by the call, so it must be set again
 825   // the pop is also necessary to simulate the effect of a ret(0)
 826   __ pop(exception_pc);
 827 
 828   // continue at exception handler (return address removed)
 829   // note: do *not* remove arguments when unwinding the
 830   //       activation since the caller assumes having
 831   //       all arguments on the stack when entering the
 832   //       runtime to determine the exception handler
 833   //       (GC happens at call site with arguments!)
 834   // rax: exception oop
 835   // rdx: throwing pc
 836   // rbx: exception handler
 837   __ jmp(handler_addr);
 838 }
 839 
 840 
 841 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
 842   // use the maximum number of runtime-arguments here because it is difficult to
 843   // distinguish each RT-Call.
 844   // Note: This number affects also the RT-Call in generate_handle_exception because
 845   //       the oop-map is shared for all calls.
 846   const int num_rt_args = 2;  // thread + dummy
 847 
 848   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
 849   assert(deopt_blob != NULL, "deoptimization blob must have been created");
 850 
 851   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 852 
 853 #ifdef _LP64
 854   const Register thread = r15_thread;
 855   // No need to worry about dummy
 856   __ mov(c_rarg0, thread);
 857 #else
 858   __ push(rax); // push dummy
 859 
 860   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
 861   // push java thread (becomes first argument of C function)
 862   __ get_thread(thread);
 863   __ push(thread);
 864 #endif // _LP64
 865   __ set_last_Java_frame(thread, noreg, rbp, NULL);
 866   // do the call
 867   __ call(RuntimeAddress(target));
 868   OopMapSet* oop_maps = new OopMapSet();
 869   oop_maps->add_gc_map(__ offset(), oop_map);
 870   // verify callee-saved register
 871 #ifdef ASSERT
 872   guarantee(thread != rax, "change this code");
 873   __ push(rax);
 874   { Label L;
 875     __ get_thread(rax);
 876     __ cmpptr(thread, rax);
 877     __ jcc(Assembler::equal, L);
 878     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
 879     __ bind(L);
 880   }
 881   __ pop(rax);
 882 #endif
 883   __ reset_last_Java_frame(thread, true);
 884 #ifndef _LP64
 885   __ pop(rcx); // discard thread arg
 886   __ pop(rcx); // discard dummy
 887 #endif // _LP64
 888 
 889   // check for pending exceptions
 890   { Label L;
 891     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 892     __ jcc(Assembler::equal, L);
 893     // exception pending => remove activation and forward to exception handler
 894 
 895     __ testptr(rax, rax);                                   // have we deoptimized?
 896     __ jump_cc(Assembler::equal,
 897                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 898 
 899     // the deopt blob expects exceptions in the special fields of
 900     // JavaThread, so copy and clear pending exception.
 901 
 902     // load and clear pending exception
 903     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
 904     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 905 
 906     // check that there is really a valid exception
 907     __ verify_not_null_oop(rax);
 908 
 909     // load throwing pc: this is the return address of the stub
 910     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
 911 
 912 #ifdef ASSERT
 913     // check that fields in JavaThread for exception oop and issuing pc are empty
 914     Label oop_empty;
 915     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
 916     __ jcc(Assembler::equal, oop_empty);
 917     __ stop("exception oop must be empty");
 918     __ bind(oop_empty);
 919 
 920     Label pc_empty;
 921     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
 922     __ jcc(Assembler::equal, pc_empty);
 923     __ stop("exception pc must be empty");
 924     __ bind(pc_empty);
 925 #endif
 926 
 927     // store exception oop and throwing pc to JavaThread
 928     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
 929     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
 930 
 931     restore_live_registers(sasm);
 932 
 933     __ leave();
 934     __ addptr(rsp, BytesPerWord);  // remove return address from stack
 935 
 936     // Forward the exception directly to deopt blob. We can blow no
 937     // registers and must leave throwing pc on the stack.  A patch may
 938     // have values live in registers so the entry point with the
 939     // exception in tls.
 940     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
 941 
 942     __ bind(L);
 943   }
 944 
 945 
 946   // Runtime will return true if the nmethod has been deoptimized during
 947   // the patching process. In that case we must do a deopt reexecute instead.
 948 
 949   Label reexecuteEntry, cont;
 950 
 951   __ testptr(rax, rax);                                 // have we deoptimized?
 952   __ jcc(Assembler::equal, cont);                       // no
 953 
 954   // Will reexecute. Proper return address is already on the stack we just restore
 955   // registers, pop all of our frame but the return address and jump to the deopt blob
 956   restore_live_registers(sasm);
 957   __ leave();
 958   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
 959 
 960   __ bind(cont);
 961   restore_live_registers(sasm);
 962   __ leave();
 963   __ ret(0);
 964 
 965   return oop_maps;
 966 }
 967 
 968 
 969 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
 970 
 971   // for better readability
 972   const bool must_gc_arguments = true;
 973   const bool dont_gc_arguments = false;
 974 
 975   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
 976   bool save_fpu_registers = true;
 977 
 978   // stub code & info for the different stubs
 979   OopMapSet* oop_maps = NULL;
 980   switch (id) {
 981     case forward_exception_id:
 982       {
 983         oop_maps = generate_handle_exception(id, sasm);
 984         __ leave();
 985         __ ret(0);
 986       }
 987       break;
 988 
 989     case new_instance_id:
 990     case fast_new_instance_id:
 991     case fast_new_instance_init_check_id:
 992       {
 993         Register klass = rdx; // Incoming
 994         Register obj   = rax; // Result
 995 
 996         if (id == new_instance_id) {
 997           __ set_info("new_instance", dont_gc_arguments);
 998         } else if (id == fast_new_instance_id) {
 999           __ set_info("fast new_instance", dont_gc_arguments);
1000         } else {
1001           assert(id == fast_new_instance_init_check_id, "bad StubID");
1002           __ set_info("fast new_instance init check", dont_gc_arguments);
1003         }
1004 
1005         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) && UseTLAB
1006             && Universe::heap()->supports_inline_contig_alloc()) {
1007           Label slow_path;
1008           Register obj_size = rcx;
1009           Register t1       = rbx;
1010           Register t2       = rsi;
1011           assert_different_registers(klass, obj, obj_size, t1, t2);
1012 
1013           __ push(rdi);
1014           __ push(rbx);
1015 
1016           if (id == fast_new_instance_init_check_id) {
1017             // make sure the klass is initialized
1018             __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
1019             __ jcc(Assembler::notEqual, slow_path);
1020           }
1021 
1022 #ifdef ASSERT
1023           // assert object can be fast path allocated
1024           {
1025             Label ok, not_ok;
1026             __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1027             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
1028             __ jcc(Assembler::lessEqual, not_ok);
1029             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
1030             __ jcc(Assembler::zero, ok);
1031             __ bind(not_ok);
1032             __ stop("assert(can be fast path allocated)");
1033             __ should_not_reach_here();
1034             __ bind(ok);
1035           }
1036 #endif // ASSERT
1037 
1038           // if we got here then the TLAB allocation failed, so try
1039           // refilling the TLAB or allocating directly from eden.
1040           Label retry_tlab, try_eden;
1041           const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
1042           NOT_LP64(__ get_thread(thread));
1043 
1044           __ bind(try_eden);
1045           // get the instance size (size is postive so movl is fine for 64bit)
1046           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1047 
1048           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
1049           __ incr_allocated_bytes(thread, obj_size, 0);
1050 
1051           __ initialize_object(obj, klass, obj_size, 0, t1, t2, /* is_tlab_allocated */ false);
1052           __ verify_oop(obj);
1053           __ pop(rbx);
1054           __ pop(rdi);
1055           __ ret(0);
1056 
1057           __ bind(slow_path);
1058           __ pop(rbx);
1059           __ pop(rdi);
1060         }
1061 
1062         __ enter();
1063         OopMap* map = save_live_registers(sasm, 2);
1064         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
1065         oop_maps = new OopMapSet();
1066         oop_maps->add_gc_map(call_offset, map);
1067         restore_live_registers_except_rax(sasm);
1068         __ verify_oop(obj);
1069         __ leave();
1070         __ ret(0);
1071 
1072         // rax,: new instance
1073       }
1074 
1075       break;
1076 
1077     case counter_overflow_id:
1078       {
1079         Register bci = rax, method = rbx;
1080         __ enter();
1081         OopMap* map = save_live_registers(sasm, 3);
1082         // Retrieve bci
1083         __ movl(bci, Address(rbp, 2*BytesPerWord));
1084         // And a pointer to the Method*
1085         __ movptr(method, Address(rbp, 3*BytesPerWord));
1086         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
1087         oop_maps = new OopMapSet();
1088         oop_maps->add_gc_map(call_offset, map);
1089         restore_live_registers(sasm);
1090         __ leave();
1091         __ ret(0);
1092       }
1093       break;
1094 
1095     case new_type_array_id:
1096     case new_object_array_id:
1097       {
1098         Register length   = rbx; // Incoming
1099         Register klass    = rdx; // Incoming
1100         Register obj      = rax; // Result
1101 
1102         if (id == new_type_array_id) {
1103           __ set_info("new_type_array", dont_gc_arguments);
1104         } else {
1105           __ set_info("new_object_array", dont_gc_arguments);
1106         }
1107 
1108 #ifdef ASSERT
1109         // assert object type is really an array of the proper kind
1110         {
1111           Label ok;
1112           Register t0 = obj;
1113           __ movl(t0, Address(klass, Klass::layout_helper_offset()));
1114           __ sarl(t0, Klass::_lh_array_tag_shift);
1115           int tag = ((id == new_type_array_id)
1116                      ? Klass::_lh_array_tag_type_value
1117                      : Klass::_lh_array_tag_obj_value);
1118           __ cmpl(t0, tag);
1119           __ jcc(Assembler::equal, ok);
1120           __ stop("assert(is an array klass)");
1121           __ should_not_reach_here();
1122           __ bind(ok);
1123         }
1124 #endif // ASSERT
1125 
1126         // If we got here, the TLAB allocation failed, so try allocating from
1127         // eden if inline contiguous allocations are supported.
1128         if (UseTLAB && Universe::heap()->supports_inline_contig_alloc()) {
1129           Register arr_size = rsi;
1130           Register t1       = rcx;  // must be rcx for use as shift count
1131           Register t2       = rdi;
1132           Label slow_path;
1133 
1134           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1135           // since size is positive movl does right thing on 64bit
1136           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1137           // since size is postive movl does right thing on 64bit
1138           __ movl(arr_size, length);
1139           assert(t1 == rcx, "fixed register usage");
1140           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1141           __ shrptr(t1, Klass::_lh_header_size_shift);
1142           __ andptr(t1, Klass::_lh_header_size_mask);
1143           __ addptr(arr_size, t1);
1144           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1145           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1146 
1147           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
1148 
1149           // Using t2 for non 64-bit.
1150           const Register thread = NOT_LP64(t2) LP64_ONLY(r15_thread);
1151           NOT_LP64(__ get_thread(thread));
1152           __ incr_allocated_bytes(thread, arr_size, 0);
1153 
1154           __ initialize_header(obj, klass, length, t1, t2);
1155           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1156           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1157           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1158           __ andptr(t1, Klass::_lh_header_size_mask);
1159           __ subptr(arr_size, t1);  // body length
1160           __ addptr(t1, obj);       // body start
1161           __ initialize_body(t1, arr_size, 0, t2);
1162           __ verify_oop(obj);
1163           __ ret(0);
1164 
1165           __ bind(slow_path);
1166         }
1167 
1168         __ enter();
1169         OopMap* map = save_live_registers(sasm, 3);
1170         int call_offset;
1171         if (id == new_type_array_id) {
1172           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
1173         } else {
1174           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
1175         }
1176 
1177         oop_maps = new OopMapSet();
1178         oop_maps->add_gc_map(call_offset, map);
1179         restore_live_registers_except_rax(sasm);
1180 
1181         __ verify_oop(obj);
1182         __ leave();
1183         __ ret(0);
1184 
1185         // rax,: new array
1186       }
1187       break;
1188 
1189     case new_multi_array_id:
1190       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
1191         // rax,: klass
1192         // rbx,: rank
1193         // rcx: address of 1st dimension
1194         OopMap* map = save_live_registers(sasm, 4);
1195         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
1196 
1197         oop_maps = new OopMapSet();
1198         oop_maps->add_gc_map(call_offset, map);
1199         restore_live_registers_except_rax(sasm);
1200 
1201         // rax,: new multi array
1202         __ verify_oop(rax);
1203       }
1204       break;
1205 
1206     case register_finalizer_id:
1207       {
1208         __ set_info("register_finalizer", dont_gc_arguments);
1209 
1210         // This is called via call_runtime so the arguments
1211         // will be place in C abi locations
1212 
1213 #ifdef _LP64
1214         __ verify_oop(c_rarg0);
1215         __ mov(rax, c_rarg0);
1216 #else
1217         // The object is passed on the stack and we haven't pushed a
1218         // frame yet so it's one work away from top of stack.
1219         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
1220         __ verify_oop(rax);
1221 #endif // _LP64
1222 
1223         // load the klass and check the has finalizer flag
1224         Label register_finalizer;
1225         Register t = rsi;
1226         __ load_klass(t, rax);
1227         __ movl(t, Address(t, Klass::access_flags_offset()));
1228         __ testl(t, JVM_ACC_HAS_FINALIZER);
1229         __ jcc(Assembler::notZero, register_finalizer);
1230         __ ret(0);
1231 
1232         __ bind(register_finalizer);
1233         __ enter();
1234         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
1235         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
1236         oop_maps = new OopMapSet();
1237         oop_maps->add_gc_map(call_offset, oop_map);
1238 
1239         // Now restore all the live registers
1240         restore_live_registers(sasm);
1241 
1242         __ leave();
1243         __ ret(0);
1244       }
1245       break;
1246 
1247     case throw_range_check_failed_id:
1248       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1249         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1250       }
1251       break;
1252 
1253     case throw_index_exception_id:
1254       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1255         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1256       }
1257       break;
1258 
1259     case throw_div0_exception_id:
1260       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
1261         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
1262       }
1263       break;
1264 
1265     case throw_null_pointer_exception_id:
1266       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
1267         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
1268       }
1269       break;
1270 
1271     case handle_exception_nofpu_id:
1272     case handle_exception_id:
1273       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1274         oop_maps = generate_handle_exception(id, sasm);
1275       }
1276       break;
1277 
1278     case handle_exception_from_callee_id:
1279       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
1280         oop_maps = generate_handle_exception(id, sasm);
1281       }
1282       break;
1283 
1284     case unwind_exception_id:
1285       { __ set_info("unwind_exception", dont_gc_arguments);
1286         // note: no stubframe since we are about to leave the current
1287         //       activation and we are calling a leaf VM function only.
1288         generate_unwind_exception(sasm);
1289       }
1290       break;
1291 
1292     case throw_array_store_exception_id:
1293       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1294         // tos + 0: link
1295         //     + 1: return address
1296         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
1297       }
1298       break;
1299 
1300     case throw_class_cast_exception_id:
1301       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
1302         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
1303       }
1304       break;
1305 
1306     case throw_incompatible_class_change_error_id:
1307       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
1308         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
1309       }
1310       break;
1311 
1312     case slow_subtype_check_id:
1313       {
1314         // Typical calling sequence:
1315         // __ push(klass_RInfo);  // object klass or other subclass
1316         // __ push(sup_k_RInfo);  // array element klass or other superclass
1317         // __ call(slow_subtype_check);
1318         // Note that the subclass is pushed first, and is therefore deepest.
1319         // Previous versions of this code reversed the names 'sub' and 'super'.
1320         // This was operationally harmless but made the code unreadable.
1321         enum layout {
1322           rax_off, SLOT2(raxH_off)
1323           rcx_off, SLOT2(rcxH_off)
1324           rsi_off, SLOT2(rsiH_off)
1325           rdi_off, SLOT2(rdiH_off)
1326           // saved_rbp_off, SLOT2(saved_rbpH_off)
1327           return_off, SLOT2(returnH_off)
1328           sup_k_off, SLOT2(sup_kH_off)
1329           klass_off, SLOT2(superH_off)
1330           framesize,
1331           result_off = klass_off  // deepest argument is also the return value
1332         };
1333 
1334         __ set_info("slow_subtype_check", dont_gc_arguments);
1335         __ push(rdi);
1336         __ push(rsi);
1337         __ push(rcx);
1338         __ push(rax);
1339 
1340         // This is called by pushing args and not with C abi
1341         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1342         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1343 
1344         Label miss;
1345         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
1346 
1347         // fallthrough on success:
1348         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
1349         __ pop(rax);
1350         __ pop(rcx);
1351         __ pop(rsi);
1352         __ pop(rdi);
1353         __ ret(0);
1354 
1355         __ bind(miss);
1356         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
1357         __ pop(rax);
1358         __ pop(rcx);
1359         __ pop(rsi);
1360         __ pop(rdi);
1361         __ ret(0);
1362       }
1363       break;
1364 
1365     case monitorenter_nofpu_id:
1366       save_fpu_registers = false;
1367       // fall through
1368     case monitorenter_id:
1369       {
1370         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1371         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
1372 
1373         // Called with store_parameter and not C abi
1374 
1375         f.load_argument(1, rax); // rax,: object
1376         f.load_argument(0, rbx); // rbx,: lock address
1377 
1378         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
1379 
1380         oop_maps = new OopMapSet();
1381         oop_maps->add_gc_map(call_offset, map);
1382         restore_live_registers(sasm, save_fpu_registers);
1383       }
1384       break;
1385 
1386     case monitorexit_nofpu_id:
1387       save_fpu_registers = false;
1388       // fall through
1389     case monitorexit_id:
1390       {
1391         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1392         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
1393 
1394         // Called with store_parameter and not C abi
1395 
1396         f.load_argument(0, rax); // rax,: lock address
1397 
1398         // note: really a leaf routine but must setup last java sp
1399         //       => use call_RT for now (speed can be improved by
1400         //       doing last java sp setup manually)
1401         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
1402 
1403         oop_maps = new OopMapSet();
1404         oop_maps->add_gc_map(call_offset, map);
1405         restore_live_registers(sasm, save_fpu_registers);
1406       }
1407       break;
1408 
1409     case deoptimize_id:
1410       {
1411         StubFrame f(sasm, "deoptimize", dont_gc_arguments);
1412         const int num_rt_args = 2;  // thread, trap_request
1413         OopMap* oop_map = save_live_registers(sasm, num_rt_args);
1414         f.load_argument(0, rax);
1415         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), rax);
1416         oop_maps = new OopMapSet();
1417         oop_maps->add_gc_map(call_offset, oop_map);
1418         restore_live_registers(sasm);
1419         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1420         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1421         __ leave();
1422         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1423       }
1424       break;
1425 
1426     case access_field_patching_id:
1427       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1428         // we should set up register map
1429         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1430       }
1431       break;
1432 
1433     case load_klass_patching_id:
1434       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1435         // we should set up register map
1436         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1437       }
1438       break;
1439 
1440     case load_mirror_patching_id:
1441       { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
1442         // we should set up register map
1443         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
1444       }
1445       break;
1446 
1447     case load_appendix_patching_id:
1448       { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
1449         // we should set up register map
1450         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
1451       }
1452       break;
1453 
1454     case dtrace_object_alloc_id:
1455       { // rax,: object
1456         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
1457         // we can't gc here so skip the oopmap but make sure that all
1458         // the live registers get saved.
1459         save_live_registers(sasm, 1);
1460 
1461         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
1462         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
1463         NOT_LP64(__ pop(rax));
1464 
1465         restore_live_registers(sasm);
1466       }
1467       break;
1468 
1469     case fpu2long_stub_id:
1470       {
1471         // rax, and rdx are destroyed, but should be free since the result is returned there
1472         // preserve rsi,ecx
1473         __ push(rsi);
1474         __ push(rcx);
1475         LP64_ONLY(__ push(rdx);)
1476 
1477         // check for NaN
1478         Label return0, do_return, return_min_jlong, do_convert;
1479 
1480         Address value_high_word(rsp, wordSize + 4);
1481         Address value_low_word(rsp, wordSize);
1482         Address result_high_word(rsp, 3*wordSize + 4);
1483         Address result_low_word(rsp, 3*wordSize);
1484 
1485         __ subptr(rsp, 32);                    // more than enough on 32bit
1486         __ fst_d(value_low_word);
1487         __ movl(rax, value_high_word);
1488         __ andl(rax, 0x7ff00000);
1489         __ cmpl(rax, 0x7ff00000);
1490         __ jcc(Assembler::notEqual, do_convert);
1491         __ movl(rax, value_high_word);
1492         __ andl(rax, 0xfffff);
1493         __ orl(rax, value_low_word);
1494         __ jcc(Assembler::notZero, return0);
1495 
1496         __ bind(do_convert);
1497         __ fnstcw(Address(rsp, 0));
1498         __ movzwl(rax, Address(rsp, 0));
1499         __ orl(rax, 0xc00);
1500         __ movw(Address(rsp, 2), rax);
1501         __ fldcw(Address(rsp, 2));
1502         __ fwait();
1503         __ fistp_d(result_low_word);
1504         __ fldcw(Address(rsp, 0));
1505         __ fwait();
1506         // This gets the entire long in rax on 64bit
1507         __ movptr(rax, result_low_word);
1508         // testing of high bits
1509         __ movl(rdx, result_high_word);
1510         __ mov(rcx, rax);
1511         // What the heck is the point of the next instruction???
1512         __ xorl(rcx, 0x0);
1513         __ movl(rsi, 0x80000000);
1514         __ xorl(rsi, rdx);
1515         __ orl(rcx, rsi);
1516         __ jcc(Assembler::notEqual, do_return);
1517         __ fldz();
1518         __ fcomp_d(value_low_word);
1519         __ fnstsw_ax();
1520 #ifdef _LP64
1521         __ testl(rax, 0x4100);  // ZF & CF == 0
1522         __ jcc(Assembler::equal, return_min_jlong);
1523 #else
1524         __ sahf();
1525         __ jcc(Assembler::above, return_min_jlong);
1526 #endif // _LP64
1527         // return max_jlong
1528 #ifndef _LP64
1529         __ movl(rdx, 0x7fffffff);
1530         __ movl(rax, 0xffffffff);
1531 #else
1532         __ mov64(rax, CONST64(0x7fffffffffffffff));
1533 #endif // _LP64
1534         __ jmp(do_return);
1535 
1536         __ bind(return_min_jlong);
1537 #ifndef _LP64
1538         __ movl(rdx, 0x80000000);
1539         __ xorl(rax, rax);
1540 #else
1541         __ mov64(rax, UCONST64(0x8000000000000000));
1542 #endif // _LP64
1543         __ jmp(do_return);
1544 
1545         __ bind(return0);
1546         __ fpop();
1547 #ifndef _LP64
1548         __ xorptr(rdx,rdx);
1549         __ xorptr(rax,rax);
1550 #else
1551         __ xorptr(rax, rax);
1552 #endif // _LP64
1553 
1554         __ bind(do_return);
1555         __ addptr(rsp, 32);
1556         LP64_ONLY(__ pop(rdx);)
1557         __ pop(rcx);
1558         __ pop(rsi);
1559         __ ret(0);
1560       }
1561       break;
1562 
1563 #if INCLUDE_ALL_GCS
1564     case g1_pre_barrier_slow_id:
1565       {
1566         StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
1567         // arg0 : previous value of memory
1568 
1569         BarrierSet* bs = BarrierSet::barrier_set();
1570         if (bs->kind() != BarrierSet::G1BarrierSet) {
1571           __ movptr(rax, (int)id);
1572           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1573           __ should_not_reach_here();
1574           break;
1575         }
1576         __ push(rax);
1577         __ push(rdx);
1578 
1579         const Register pre_val = rax;
1580         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1581         const Register tmp = rdx;
1582 
1583         NOT_LP64(__ get_thread(thread);)
1584 
1585         Address queue_active(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
1586         Address queue_index(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
1587         Address buffer(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
1588 
1589         Label done;
1590         Label runtime;
1591 
1592         // Is marking still active?
1593         if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1594           __ cmpl(queue_active, 0);
1595         } else {
1596           assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
1597           __ cmpb(queue_active, 0);
1598         }
1599         __ jcc(Assembler::equal, done);
1600 
1601         // Can we store original value in the thread's buffer?
1602 
1603         __ movptr(tmp, queue_index);
1604         __ testptr(tmp, tmp);
1605         __ jcc(Assembler::zero, runtime);
1606         __ subptr(tmp, wordSize);
1607         __ movptr(queue_index, tmp);
1608         __ addptr(tmp, buffer);
1609 
1610         // prev_val (rax)
1611         f.load_argument(0, pre_val);
1612         __ movptr(Address(tmp, 0), pre_val);
1613         __ jmp(done);
1614 
1615         __ bind(runtime);
1616 
1617         save_live_registers(sasm, 3);
1618 
1619         // load the pre-value
1620         f.load_argument(0, rcx);
1621         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
1622 
1623         restore_live_registers(sasm);
1624 
1625         __ bind(done);
1626 
1627         __ pop(rdx);
1628         __ pop(rax);
1629       }
1630       break;
1631 
1632     case g1_post_barrier_slow_id:
1633       {
1634         StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
1635 
1636         BarrierSet* bs = BarrierSet::barrier_set();
1637         if (bs->kind() != BarrierSet::G1BarrierSet) {
1638           __ movptr(rax, (int)id);
1639           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1640           __ should_not_reach_here();
1641           break;
1642         }
1643 
1644         // arg0: store_address
1645         Address store_addr(rbp, 2*BytesPerWord);
1646 
1647         Label done;
1648         Label enqueued;
1649         Label runtime;
1650 
1651         // At this point we know new_value is non-NULL and the new_value crosses regions.
1652         // Must check to see if card is already dirty
1653 
1654         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1655 
1656         Address queue_index(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
1657         Address buffer(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
1658 
1659         __ push(rax);
1660         __ push(rcx);
1661 
1662         const Register cardtable = rax;
1663         const Register card_addr = rcx;
1664 
1665         f.load_argument(0, card_addr);
1666         __ shrptr(card_addr, CardTable::card_shift);
1667         // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
1668         // a valid address and therefore is not properly handled by the relocation code.
1669         __ movptr(cardtable, ci_card_table_address_as<intptr_t>());
1670         __ addptr(card_addr, cardtable);
1671 
1672         NOT_LP64(__ get_thread(thread);)
1673 
1674         __ cmpb(Address(card_addr, 0), (int)G1CardTable::g1_young_card_val());
1675         __ jcc(Assembler::equal, done);
1676 
1677         __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
1678         __ cmpb(Address(card_addr, 0), (int)CardTable::dirty_card_val());
1679         __ jcc(Assembler::equal, done);
1680 
1681         // storing region crossing non-NULL, card is clean.
1682         // dirty card and log.
1683 
1684         __ movb(Address(card_addr, 0), (int)CardTable::dirty_card_val());
1685 
1686         const Register tmp = rdx;
1687         __ push(rdx);
1688 
1689         __ movptr(tmp, queue_index);
1690         __ testptr(tmp, tmp);
1691         __ jcc(Assembler::zero, runtime);
1692         __ subptr(tmp, wordSize);
1693         __ movptr(queue_index, tmp);
1694         __ addptr(tmp, buffer);
1695         __ movptr(Address(tmp, 0), card_addr);
1696         __ jmp(enqueued);
1697 
1698         __ bind(runtime);
1699 
1700         save_live_registers(sasm, 3);
1701 
1702         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
1703 
1704         restore_live_registers(sasm);
1705 
1706         __ bind(enqueued);
1707         __ pop(rdx);
1708 
1709         __ bind(done);
1710         __ pop(rcx);
1711         __ pop(rax);
1712       }
1713       break;
1714 #endif // INCLUDE_ALL_GCS
1715 
1716     case predicate_failed_trap_id:
1717       {
1718         StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
1719 
1720         OopMap* map = save_live_registers(sasm, 1);
1721 
1722         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
1723         oop_maps = new OopMapSet();
1724         oop_maps->add_gc_map(call_offset, map);
1725         restore_live_registers(sasm);
1726         __ leave();
1727         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1728         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1729 
1730         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1731       }
1732       break;
1733 
1734     default:
1735       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1736         __ movptr(rax, (int)id);
1737         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1738         __ should_not_reach_here();
1739       }
1740       break;
1741   }
1742   return oop_maps;
1743 }
1744 
1745 #undef __
1746 
1747 const char *Runtime1::pd_name_for_address(address entry) {
1748   return "<unknown function>";
1749 }