1 /*
   2  * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.hpp"
  28 #include "gc/shared/barrierSetAssembler.hpp"
  29 #include "interpreter/bytecodeHistogram.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "interpreter/interp_masm.hpp"
  33 #include "interpreter/templateInterpreterGenerator.hpp"
  34 #include "interpreter/templateTable.hpp"
  35 #include "interpreter/bytecodeTracer.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/arrayOop.hpp"
  38 #include "oops/methodData.hpp"
  39 #include "oops/method.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiThreadState.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/synchronizer.hpp"
  49 #include "runtime/timer.hpp"
  50 #include "runtime/vframeArray.hpp"
  51 #include "utilities/debug.hpp"
  52 #include <sys/types.h>
  53 
  54 #ifndef PRODUCT
  55 #include "oops/method.hpp"
  56 #endif // !PRODUCT
  57 
  58 #ifdef BUILTIN_SIM
  59 #include "../../../../../../simulator/simulator.hpp"
  60 #endif
  61 
  62 // Size of interpreter code.  Increase if too small.  Interpreter will
  63 // fail with a guarantee ("not enough space for interpreter generation");
  64 // if too small.
  65 // Run with +PrintInterpreter to get the VM to print out the size.
  66 // Max size with JVMTI
  67 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024;
  68 
  69 #define __ _masm->
  70 
  71 //-----------------------------------------------------------------------------
  72 
  73 extern "C" void entry(CodeBuffer*);
  74 
  75 //-----------------------------------------------------------------------------
  76 
  77 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  78   address entry = __ pc();
  79 
  80   __ andr(esp, esp, -16);
  81   __ mov(c_rarg3, esp);
  82   // rmethod
  83   // rlocals
  84   // c_rarg3: first stack arg - wordSize
  85 
  86   // adjust sp
  87   __ sub(sp, c_rarg3, 18 * wordSize);
  88   __ str(lr, Address(__ pre(sp, -2 * wordSize)));
  89   __ call_VM(noreg,
  90              CAST_FROM_FN_PTR(address,
  91                               InterpreterRuntime::slow_signature_handler),
  92              rmethod, rlocals, c_rarg3);
  93 
  94   // r0: result handler
  95 
  96   // Stack layout:
  97   // rsp: return address           <- sp
  98   //      1 garbage
  99   //      8 integer args (if static first is unused)
 100   //      1 float/double identifiers
 101   //      8 double args
 102   //        stack args              <- esp
 103   //        garbage
 104   //        expression stack bottom
 105   //        bcp (NULL)
 106   //        ...
 107 
 108   // Restore LR
 109   __ ldr(lr, Address(__ post(sp, 2 * wordSize)));
 110 
 111   // Do FP first so we can use c_rarg3 as temp
 112   __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
 113 
 114   for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
 115     const FloatRegister r = as_FloatRegister(i);
 116 
 117     Label d, done;
 118 
 119     __ tbnz(c_rarg3, i, d);
 120     __ ldrs(r, Address(sp, (10 + i) * wordSize));
 121     __ b(done);
 122     __ bind(d);
 123     __ ldrd(r, Address(sp, (10 + i) * wordSize));
 124     __ bind(done);
 125   }
 126 
 127   // c_rarg0 contains the result from the call of
 128   // InterpreterRuntime::slow_signature_handler so we don't touch it
 129   // here.  It will be loaded with the JNIEnv* later.
 130   __ ldr(c_rarg1, Address(sp, 1 * wordSize));
 131   for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) {
 132     Register rm = as_Register(i), rn = as_Register(i+1);
 133     __ ldp(rm, rn, Address(sp, i * wordSize));
 134   }
 135 
 136   __ add(sp, sp, 18 * wordSize);
 137   __ ret(lr);
 138 
 139   return entry;
 140 }
 141 
 142 
 143 //
 144 // Various method entries
 145 //
 146 
 147 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 148   // rmethod: Method*
 149   // r13: sender sp
 150   // esp: args
 151 
 152   if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
 153 
 154   // These don't need a safepoint check because they aren't virtually
 155   // callable. We won't enter these intrinsics from compiled code.
 156   // If in the future we added an intrinsic which was virtually callable
 157   // we'd have to worry about how to safepoint so that this code is used.
 158 
 159   // mathematical functions inlined by compiler
 160   // (interpreter must provide identical implementation
 161   // in order to avoid monotonicity bugs when switching
 162   // from interpreter to compiler in the middle of some
 163   // computation)
 164   //
 165   // stack:
 166   //        [ arg ] <-- esp
 167   //        [ arg ]
 168   // retaddr in lr
 169 
 170   address entry_point = NULL;
 171   Register continuation = lr;
 172   switch (kind) {
 173   case Interpreter::java_lang_math_abs:
 174     entry_point = __ pc();
 175     __ ldrd(v0, Address(esp));
 176     __ fabsd(v0, v0);
 177     __ mov(sp, r13); // Restore caller's SP
 178     break;
 179   case Interpreter::java_lang_math_sqrt:
 180     entry_point = __ pc();
 181     __ ldrd(v0, Address(esp));
 182     __ fsqrtd(v0, v0);
 183     __ mov(sp, r13);
 184     break;
 185   case Interpreter::java_lang_math_sin :
 186   case Interpreter::java_lang_math_cos :
 187   case Interpreter::java_lang_math_tan :
 188   case Interpreter::java_lang_math_log :
 189   case Interpreter::java_lang_math_log10 :
 190   case Interpreter::java_lang_math_exp :
 191     entry_point = __ pc();
 192     __ ldrd(v0, Address(esp));
 193     __ mov(sp, r13);
 194     __ mov(r19, lr);
 195     continuation = r19;  // The first callee-saved register
 196     generate_transcendental_entry(kind, 1);
 197     break;
 198   case Interpreter::java_lang_math_pow :
 199     entry_point = __ pc();
 200     __ mov(r19, lr);
 201     continuation = r19;
 202     __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize));
 203     __ ldrd(v1, Address(esp));
 204     __ mov(sp, r13);
 205     generate_transcendental_entry(kind, 2);
 206     break;
 207   case Interpreter::java_lang_math_fmaD :
 208     if (UseFMA) {
 209       entry_point = __ pc();
 210       __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize));
 211       __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize));
 212       __ ldrd(v2, Address(esp));
 213       __ fmaddd(v0, v0, v1, v2);
 214       __ mov(sp, r13); // Restore caller's SP
 215     }
 216     break;
 217   case Interpreter::java_lang_math_fmaF :
 218     if (UseFMA) {
 219       entry_point = __ pc();
 220       __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize));
 221       __ ldrs(v1, Address(esp, Interpreter::stackElementSize));
 222       __ ldrs(v2, Address(esp));
 223       __ fmadds(v0, v0, v1, v2);
 224       __ mov(sp, r13); // Restore caller's SP
 225     }
 226     break;
 227   default:
 228     ;
 229   }
 230   if (entry_point) {
 231     __ br(continuation);
 232   }
 233 
 234   return entry_point;
 235 }
 236 
 237   // double trigonometrics and transcendentals
 238   // static jdouble dsin(jdouble x);
 239   // static jdouble dcos(jdouble x);
 240   // static jdouble dtan(jdouble x);
 241   // static jdouble dlog(jdouble x);
 242   // static jdouble dlog10(jdouble x);
 243   // static jdouble dexp(jdouble x);
 244   // static jdouble dpow(jdouble x, jdouble y);
 245 
 246 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) {
 247   address fn;
 248   switch (kind) {
 249   case Interpreter::java_lang_math_sin :
 250     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 251     break;
 252   case Interpreter::java_lang_math_cos :
 253     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 254     break;
 255   case Interpreter::java_lang_math_tan :
 256     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 257     break;
 258   case Interpreter::java_lang_math_log :
 259     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 260     break;
 261   case Interpreter::java_lang_math_log10 :
 262     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 263     break;
 264   case Interpreter::java_lang_math_exp :
 265     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 266     break;
 267   case Interpreter::java_lang_math_pow :
 268     fpargs = 2;
 269     fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 270     break;
 271   default:
 272     ShouldNotReachHere();
 273     fn = NULL;  // unreachable
 274   }
 275   const int gpargs = 0, rtype = 3;
 276   __ mov(rscratch1, fn);
 277   __ blrt(rscratch1, gpargs, fpargs, rtype);
 278 }
 279 
 280 // Abstract method entry
 281 // Attempt to execute abstract method. Throw exception
 282 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 283   // rmethod: Method*
 284   // r13: sender SP
 285 
 286   address entry_point = __ pc();
 287 
 288   // abstract method entry
 289 
 290   //  pop return address, reset last_sp to NULL
 291   __ empty_expression_stack();
 292   __ restore_bcp();      // bcp must be correct for exception handler   (was destroyed)
 293   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
 294 
 295   // throw exception
 296   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 297                                      InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
 298                                      rmethod);
 299   // the call_VM checks for exception, so we should never return here.
 300   __ should_not_reach_here();
 301 
 302   return entry_point;
 303 }
 304 
 305 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 306   address entry = __ pc();
 307 
 308 #ifdef ASSERT
 309   {
 310     Label L;
 311     __ ldr(rscratch1, Address(rfp,
 312                        frame::interpreter_frame_monitor_block_top_offset *
 313                        wordSize));
 314     __ mov(rscratch2, sp);
 315     __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack
 316                            // grows negative)
 317     __ br(Assembler::HS, L); // check if frame is complete
 318     __ stop ("interpreter frame not set up");
 319     __ bind(L);
 320   }
 321 #endif // ASSERT
 322   // Restore bcp under the assumption that the current frame is still
 323   // interpreted
 324   __ restore_bcp();
 325 
 326   // expression stack must be empty before entering the VM if an
 327   // exception happened
 328   __ empty_expression_stack();
 329   // throw exception
 330   __ call_VM(noreg,
 331              CAST_FROM_FN_PTR(address,
 332                               InterpreterRuntime::throw_StackOverflowError));
 333   return entry;
 334 }
 335 
 336 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
 337         const char* name) {
 338   address entry = __ pc();
 339   // expression stack must be empty before entering the VM if an
 340   // exception happened
 341   __ empty_expression_stack();
 342   // setup parameters
 343   // ??? convention: expect aberrant index in register r1
 344   __ movw(c_rarg2, r1);
 345   __ mov(c_rarg1, (address)name);
 346   __ call_VM(noreg,
 347              CAST_FROM_FN_PTR(address,
 348                               InterpreterRuntime::
 349                               throw_ArrayIndexOutOfBoundsException),
 350              c_rarg1, c_rarg2);
 351   return entry;
 352 }
 353 
 354 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 355   address entry = __ pc();
 356 
 357   // object is at TOS
 358   __ pop(c_rarg1);
 359 
 360   // expression stack must be empty before entering the VM if an
 361   // exception happened
 362   __ empty_expression_stack();
 363 
 364   __ call_VM(noreg,
 365              CAST_FROM_FN_PTR(address,
 366                               InterpreterRuntime::
 367                               throw_ClassCastException),
 368              c_rarg1);
 369   return entry;
 370 }
 371 
 372 address TemplateInterpreterGenerator::generate_exception_handler_common(
 373         const char* name, const char* message, bool pass_oop) {
 374   assert(!pass_oop || message == NULL, "either oop or message but not both");
 375   address entry = __ pc();
 376   if (pass_oop) {
 377     // object is at TOS
 378     __ pop(c_rarg2);
 379   }
 380   // expression stack must be empty before entering the VM if an
 381   // exception happened
 382   __ empty_expression_stack();
 383   // setup parameters
 384   __ lea(c_rarg1, Address((address)name));
 385   if (pass_oop) {
 386     __ call_VM(r0, CAST_FROM_FN_PTR(address,
 387                                     InterpreterRuntime::
 388                                     create_klass_exception),
 389                c_rarg1, c_rarg2);
 390   } else {
 391     // kind of lame ExternalAddress can't take NULL because
 392     // external_word_Relocation will assert.
 393     if (message != NULL) {
 394       __ lea(c_rarg2, Address((address)message));
 395     } else {
 396       __ mov(c_rarg2, NULL_WORD);
 397     }
 398     __ call_VM(r0,
 399                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
 400                c_rarg1, c_rarg2);
 401   }
 402   // throw exception
 403   __ b(address(Interpreter::throw_exception_entry()));
 404   return entry;
 405 }
 406 
 407 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 408   address entry = __ pc();
 409 
 410   // Restore stack bottom in case i2c adjusted stack
 411   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 412   // and NULL it as marker that esp is now tos until next java call
 413   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 414   __ restore_bcp();
 415   __ restore_locals();
 416   __ restore_constant_pool_cache();
 417   __ get_method(rmethod);
 418 
 419   if (state == atos) {
 420     Register obj = r0;
 421     Register mdp = r1;
 422     Register tmp = r2;
 423     __ ldr(mdp, Address(rmethod, Method::method_data_offset()));
 424     __ profile_return_type(mdp, obj, tmp);
 425   }
 426 
 427   // Pop N words from the stack
 428   __ get_cache_and_index_at_bcp(r1, r2, 1, index_size);
 429   __ ldr(r1, Address(r1, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 430   __ andr(r1, r1, ConstantPoolCacheEntry::parameter_size_mask);
 431 
 432   __ add(esp, esp, r1, Assembler::LSL, 3);
 433 
 434   // Restore machine SP
 435   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 436   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 437   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 438   __ ldr(rscratch2,
 439          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
 440   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
 441   __ andr(sp, rscratch1, -16);
 442 
 443 #ifndef PRODUCT
 444   // tell the simulator that the method has been reentered
 445   if (NotifySimulator) {
 446     __ notify(Assembler::method_reentry);
 447   }
 448 #endif
 449 
 450  __ check_and_handle_popframe(rthread);
 451  __ check_and_handle_earlyret(rthread);
 452 
 453   __ get_dispatch();
 454   __ dispatch_next(state, step);
 455 
 456   return entry;
 457 }
 458 
 459 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
 460                                                                int step,
 461                                                                address continuation) {
 462   address entry = __ pc();
 463   __ restore_bcp();
 464   __ restore_locals();
 465   __ restore_constant_pool_cache();
 466   __ get_method(rmethod);
 467   __ get_dispatch();
 468 
 469   // Calculate stack limit
 470   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 471   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 472   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 473   __ ldr(rscratch2,
 474          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
 475   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
 476   __ andr(sp, rscratch1, -16);
 477 
 478   // Restore expression stack pointer
 479   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 480   // NULL last_sp until next java call
 481   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 482 
 483 #if INCLUDE_JVMCI
 484   // Check if we need to take lock at entry of synchronized method.  This can
 485   // only occur on method entry so emit it only for vtos with step 0.
 486   if (EnableJVMCI && state == vtos && step == 0) {
 487     Label L;
 488     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 489     __ cbz(rscratch1, L);
 490     // Clear flag.
 491     __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset()));
 492     // Take lock.
 493     lock_method();
 494     __ bind(L);
 495   } else {
 496 #ifdef ASSERT
 497     if (EnableJVMCI) {
 498       Label L;
 499       __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 500       __ cbz(rscratch1, L);
 501       __ stop("unexpected pending monitor in deopt entry");
 502       __ bind(L);
 503     }
 504 #endif
 505   }
 506 #endif
 507   // handle exceptions
 508   {
 509     Label L;
 510     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
 511     __ cbz(rscratch1, L);
 512     __ call_VM(noreg,
 513                CAST_FROM_FN_PTR(address,
 514                                 InterpreterRuntime::throw_pending_exception));
 515     __ should_not_reach_here();
 516     __ bind(L);
 517   }
 518 
 519   if (continuation == NULL) {
 520     __ dispatch_next(state, step);
 521   } else {
 522     __ jump_to_entry(continuation);
 523   }
 524   return entry;
 525 }
 526 
 527 address TemplateInterpreterGenerator::generate_result_handler_for(
 528         BasicType type) {
 529     address entry = __ pc();
 530   switch (type) {
 531   case T_BOOLEAN: __ uxtb(r0, r0);        break;
 532   case T_CHAR   : __ uxth(r0, r0);       break;
 533   case T_BYTE   : __ sxtb(r0, r0);        break;
 534   case T_SHORT  : __ sxth(r0, r0);        break;
 535   case T_INT    : __ uxtw(r0, r0);        break;  // FIXME: We almost certainly don't need this
 536   case T_LONG   : /* nothing to do */        break;
 537   case T_VOID   : /* nothing to do */        break;
 538   case T_FLOAT  : /* nothing to do */        break;
 539   case T_DOUBLE : /* nothing to do */        break;
 540   case T_OBJECT :
 541     // retrieve result from frame
 542     __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
 543     // and verify it
 544     __ verify_oop(r0);
 545     break;
 546   default       : ShouldNotReachHere();
 547   }
 548   __ ret(lr);                                  // return from result handler
 549   return entry;
 550 }
 551 
 552 address TemplateInterpreterGenerator::generate_safept_entry_for(
 553         TosState state,
 554         address runtime_entry) {
 555   address entry = __ pc();
 556   __ push(state);
 557   __ call_VM(noreg, runtime_entry);
 558   __ membar(Assembler::AnyAny);
 559   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 560   return entry;
 561 }
 562 
 563 // Helpers for commoning out cases in the various type of method entries.
 564 //
 565 
 566 
 567 // increment invocation count & check for overflow
 568 //
 569 // Note: checking for negative value instead of overflow
 570 //       so we have a 'sticky' overflow test
 571 //
 572 // rmethod: method
 573 //
 574 void TemplateInterpreterGenerator::generate_counter_incr(
 575         Label* overflow,
 576         Label* profile_method,
 577         Label* profile_method_continue) {
 578   Label done;
 579   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
 580   if (TieredCompilation) {
 581     int increment = InvocationCounter::count_increment;
 582     Label no_mdo;
 583     if (ProfileInterpreter) {
 584       // Are we profiling?
 585       __ ldr(r0, Address(rmethod, Method::method_data_offset()));
 586       __ cbz(r0, no_mdo);
 587       // Increment counter in the MDO
 588       const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) +
 589                                                 in_bytes(InvocationCounter::counter_offset()));
 590       const Address mask(r0, in_bytes(MethodData::invoke_mask_offset()));
 591       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow);
 592       __ b(done);
 593     }
 594     __ bind(no_mdo);
 595     // Increment counter in MethodCounters
 596     const Address invocation_counter(rscratch2,
 597                   MethodCounters::invocation_counter_offset() +
 598                   InvocationCounter::counter_offset());
 599     __ get_method_counters(rmethod, rscratch2, done);
 600     const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset()));
 601     __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow);
 602     __ bind(done);
 603   } else { // not TieredCompilation
 604     const Address backedge_counter(rscratch2,
 605                   MethodCounters::backedge_counter_offset() +
 606                   InvocationCounter::counter_offset());
 607     const Address invocation_counter(rscratch2,
 608                   MethodCounters::invocation_counter_offset() +
 609                   InvocationCounter::counter_offset());
 610 
 611     __ get_method_counters(rmethod, rscratch2, done);
 612 
 613     if (ProfileInterpreter) { // %%% Merge this into MethodData*
 614       __ ldrw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
 615       __ addw(r1, r1, 1);
 616       __ strw(r1, Address(rscratch2, MethodCounters::interpreter_invocation_counter_offset()));
 617     }
 618     // Update standard invocation counters
 619     __ ldrw(r1, invocation_counter);
 620     __ ldrw(r0, backedge_counter);
 621 
 622     __ addw(r1, r1, InvocationCounter::count_increment);
 623     __ andw(r0, r0, InvocationCounter::count_mask_value);
 624 
 625     __ strw(r1, invocation_counter);
 626     __ addw(r0, r0, r1);                // add both counters
 627 
 628     // profile_method is non-null only for interpreted method so
 629     // profile_method != NULL == !native_call
 630 
 631     if (ProfileInterpreter && profile_method != NULL) {
 632       // Test to see if we should create a method data oop
 633       __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
 634       __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
 635       __ cmpw(r0, rscratch2);
 636       __ br(Assembler::LT, *profile_method_continue);
 637 
 638       // if no method data exists, go to profile_method
 639       __ test_method_data_pointer(rscratch2, *profile_method);
 640     }
 641 
 642     {
 643       __ ldr(rscratch2, Address(rmethod, Method::method_counters_offset()));
 644       __ ldrw(rscratch2, Address(rscratch2, in_bytes(MethodCounters::interpreter_invocation_limit_offset())));
 645       __ cmpw(r0, rscratch2);
 646       __ br(Assembler::HS, *overflow);
 647     }
 648     __ bind(done);
 649   }
 650 }
 651 
 652 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 653 
 654   // Asm interpreter on entry
 655   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 656   // Everything as it was on entry
 657 
 658   // InterpreterRuntime::frequency_counter_overflow takes two
 659   // arguments, the first (thread) is passed by call_VM, the second
 660   // indicates if the counter overflow occurs at a backwards branch
 661   // (NULL bcp).  We pass zero for it.  The call returns the address
 662   // of the verified entry point for the method or NULL if the
 663   // compilation did not complete (either went background or bailed
 664   // out).
 665   __ mov(c_rarg1, 0);
 666   __ call_VM(noreg,
 667              CAST_FROM_FN_PTR(address,
 668                               InterpreterRuntime::frequency_counter_overflow),
 669              c_rarg1);
 670 
 671   __ b(do_continue);
 672 }
 673 
 674 // See if we've got enough room on the stack for locals plus overhead
 675 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 676 // without going through the signal handler, i.e., reserved and yellow zones
 677 // will not be made usable. The shadow zone must suffice to handle the
 678 // overflow.
 679 // The expression stack grows down incrementally, so the normal guard
 680 // page mechanism will work for that.
 681 //
 682 // NOTE: Since the additional locals are also always pushed (wasn't
 683 // obvious in generate_method_entry) so the guard should work for them
 684 // too.
 685 //
 686 // Args:
 687 //      r3: number of additional locals this frame needs (what we must check)
 688 //      rmethod: Method*
 689 //
 690 // Kills:
 691 //      r0
 692 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
 693 
 694   // monitor entry size: see picture of stack set
 695   // (generate_method_entry) and frame_amd64.hpp
 696   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 697 
 698   // total overhead size: entry_size + (saved rbp through expr stack
 699   // bottom).  be sure to change this if you add/subtract anything
 700   // to/from the overhead area
 701   const int overhead_size =
 702     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
 703 
 704   const int page_size = os::vm_page_size();
 705 
 706   Label after_frame_check;
 707 
 708   // see if the frame is greater than one page in size. If so,
 709   // then we need to verify there is enough stack space remaining
 710   // for the additional locals.
 711   //
 712   // Note that we use SUBS rather than CMP here because the immediate
 713   // field of this instruction may overflow.  SUBS can cope with this
 714   // because it is a macro that will expand to some number of MOV
 715   // instructions and a register operation.
 716   __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize);
 717   __ br(Assembler::LS, after_frame_check);
 718 
 719   // compute rsp as if this were going to be the last frame on
 720   // the stack before the red zone
 721 
 722   // locals + overhead, in bytes
 723   __ mov(r0, overhead_size);
 724   __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize);  // 2 slots per parameter.
 725 
 726   const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset());
 727   __ ldr(rscratch1, stack_limit);
 728 
 729 #ifdef ASSERT
 730   Label limit_okay;
 731   // Verify that thread stack limit is non-zero.
 732   __ cbnz(rscratch1, limit_okay);
 733   __ stop("stack overflow limit is zero");
 734   __ bind(limit_okay);
 735 #endif
 736 
 737   // Add stack limit to locals.
 738   __ add(r0, r0, rscratch1);
 739 
 740   // Check against the current stack bottom.
 741   __ cmp(sp, r0);
 742   __ br(Assembler::HI, after_frame_check);
 743 
 744   // Remove the incoming args, peeling the machine SP back to where it
 745   // was in the caller.  This is not strictly necessary, but unless we
 746   // do so the stack frame may have a garbage FP; this ensures a
 747   // correct call stack that we can always unwind.  The ANDR should be
 748   // unnecessary because the sender SP in r13 is always aligned, but
 749   // it doesn't hurt.
 750   __ andr(sp, r13, -16);
 751 
 752   // Note: the restored frame is not necessarily interpreted.
 753   // Use the shared runtime version of the StackOverflowError.
 754   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 755   __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry()));
 756 
 757   // all done with frame size check
 758   __ bind(after_frame_check);
 759 }
 760 
 761 // Allocate monitor and lock method (asm interpreter)
 762 //
 763 // Args:
 764 //      rmethod: Method*
 765 //      rlocals: locals
 766 //
 767 // Kills:
 768 //      r0
 769 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
 770 //      rscratch1, rscratch2 (scratch regs)
 771 void TemplateInterpreterGenerator::lock_method() {
 772   // synchronize method
 773   const Address access_flags(rmethod, Method::access_flags_offset());
 774   const Address monitor_block_top(
 775         rfp,
 776         frame::interpreter_frame_monitor_block_top_offset * wordSize);
 777   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 778 
 779 #ifdef ASSERT
 780   {
 781     Label L;
 782     __ ldrw(r0, access_flags);
 783     __ tst(r0, JVM_ACC_SYNCHRONIZED);
 784     __ br(Assembler::NE, L);
 785     __ stop("method doesn't need synchronization");
 786     __ bind(L);
 787   }
 788 #endif // ASSERT
 789 
 790   // get synchronization object
 791   {
 792     Label done;
 793     __ ldrw(r0, access_flags);
 794     __ tst(r0, JVM_ACC_STATIC);
 795     // get receiver (assume this is frequent case)
 796     __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0)));
 797     __ br(Assembler::EQ, done);
 798     __ load_mirror(r0, rmethod);
 799 
 800 #ifdef ASSERT
 801     {
 802       Label L;
 803       __ cbnz(r0, L);
 804       __ stop("synchronization object is NULL");
 805       __ bind(L);
 806     }
 807 #endif // ASSERT
 808 
 809     __ bind(done);
 810   }
 811 
 812   // add space for monitor & lock
 813   __ sub(sp, sp, entry_size); // add space for a monitor entry
 814   __ sub(esp, esp, entry_size);
 815   __ mov(rscratch1, esp);
 816   __ str(rscratch1, monitor_block_top);  // set new monitor block top
 817   // store object
 818   __ str(r0, Address(esp, BasicObjectLock::obj_offset_in_bytes()));
 819   __ mov(c_rarg1, esp); // object address
 820   __ lock_object(c_rarg1);
 821 }
 822 
 823 // Generate a fixed interpreter frame. This is identical setup for
 824 // interpreted methods and for native methods hence the shared code.
 825 //
 826 // Args:
 827 //      lr: return address
 828 //      rmethod: Method*
 829 //      rlocals: pointer to locals
 830 //      rcpool: cp cache
 831 //      stack_pointer: previous sp
 832 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 833   // initialize fixed part of activation frame
 834   if (native_call) {
 835     __ sub(esp, sp, 14 *  wordSize);
 836     __ mov(rbcp, zr);
 837     __ stp(esp, zr, Address(__ pre(sp, -14 * wordSize)));
 838     // add 2 zero-initialized slots for native calls
 839     __ stp(zr, zr, Address(sp, 12 * wordSize));
 840   } else {
 841     __ sub(esp, sp, 12 *  wordSize);
 842     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));      // get ConstMethod
 843     __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase
 844     __ stp(esp, rbcp, Address(__ pre(sp, -12 * wordSize)));
 845   }
 846 
 847   if (ProfileInterpreter) {
 848     Label method_data_continue;
 849     __ ldr(rscratch1, Address(rmethod, Method::method_data_offset()));
 850     __ cbz(rscratch1, method_data_continue);
 851     __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset())));
 852     __ bind(method_data_continue);
 853     __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize));  // save Method* and mdp (method data pointer)
 854   } else {
 855     __ stp(zr, rmethod, Address(sp, 6 * wordSize));        // save Method* (no mdp)
 856   }
 857 
 858   // Get mirror and store it in the frame as GC root for this Method*
 859   __ load_mirror(rscratch1, rmethod);
 860   __ stp(rscratch1, zr, Address(sp, 4 * wordSize));
 861 
 862   __ ldr(rcpool, Address(rmethod, Method::const_offset()));
 863   __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset()));
 864   __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset_in_bytes()));
 865   __ stp(rlocals, rcpool, Address(sp, 2 * wordSize));
 866 
 867   __ stp(rfp, lr, Address(sp, 10 * wordSize));
 868   __ lea(rfp, Address(sp, 10 * wordSize));
 869 
 870   // set sender sp
 871   // leave last_sp as null
 872   __ stp(zr, r13, Address(sp, 8 * wordSize));
 873 
 874   // Move SP out of the way
 875   if (! native_call) {
 876     __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
 877     __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
 878     __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 2);
 879     __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3);
 880     __ andr(sp, rscratch1, -16);
 881   }
 882 }
 883 
 884 // End of helpers
 885 
 886 // Various method entries
 887 //------------------------------------------------------------------------------------------------------------------------
 888 //
 889 //
 890 
 891 // Method entry for java.lang.ref.Reference.get.
 892 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 893   // Code: _aload_0, _getfield, _areturn
 894   // parameter size = 1
 895   //
 896   // The code that gets generated by this routine is split into 2 parts:
 897   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 898   //    2. The slow path - which is an expansion of the regular method entry.
 899   //
 900   // Notes:-
 901   // * In the G1 code we do not check whether we need to block for
 902   //   a safepoint. If G1 is enabled then we must execute the specialized
 903   //   code for Reference.get (except when the Reference object is null)
 904   //   so that we can log the value in the referent field with an SATB
 905   //   update buffer.
 906   //   If the code for the getfield template is modified so that the
 907   //   G1 pre-barrier code is executed when the current method is
 908   //   Reference.get() then going through the normal method entry
 909   //   will be fine.
 910   // * The G1 code can, however, check the receiver object (the instance
 911   //   of java.lang.Reference) and jump to the slow path if null. If the
 912   //   Reference object is null then we obviously cannot fetch the referent
 913   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 914   //   regular method entry code to generate the NPE.
 915   //
 916   // This code is based on generate_accessor_entry.
 917   //
 918   // rmethod: Method*
 919   // r13: senderSP must preserve for slow path, set SP to it on fast path
 920 
 921   address entry = __ pc();
 922 
 923   const int referent_offset = java_lang_ref_Reference::referent_offset;
 924   guarantee(referent_offset > 0, "referent offset not initialized");
 925 
 926   Label slow_path;
 927   const Register local_0 = c_rarg0;
 928   // Check if local 0 != NULL
 929   // If the receiver is null then it is OK to jump to the slow path.
 930   __ ldr(local_0, Address(esp, 0));
 931   __ cbz(local_0, slow_path);
 932 
 933   __ mov(r19, r13);   // Move senderSP to a callee-saved register
 934 
 935   // Load the value of the referent field.
 936   const Address field_address(local_0, referent_offset);
 937   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
 938   bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch2, /*tmp2*/ rscratch1);
 939 
 940   // areturn
 941   __ andr(sp, r19, -16);  // done with stack
 942   __ ret(lr);
 943 
 944   // generate a vanilla interpreter entry as the slow path
 945   __ bind(slow_path);
 946   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 947   return entry;
 948 
 949 }
 950 
 951 /**
 952  * Method entry for static native methods:
 953  *   int java.util.zip.CRC32.update(int crc, int b)
 954  */
 955 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 956   if (UseCRC32Intrinsics) {
 957     address entry = __ pc();
 958 
 959     // rmethod: Method*
 960     // r13: senderSP must preserved for slow path
 961     // esp: args
 962 
 963     Label slow_path;
 964     // If we need a safepoint check, generate full interpreter entry.
 965     __ safepoint_poll(slow_path);
 966 
 967     // We don't generate local frame and don't align stack because
 968     // we call stub code and there is no safepoint on this path.
 969 
 970     // Load parameters
 971     const Register crc = c_rarg0;  // crc
 972     const Register val = c_rarg1;  // source java byte value
 973     const Register tbl = c_rarg2;  // scratch
 974 
 975     // Arguments are reversed on java expression stack
 976     __ ldrw(val, Address(esp, 0));              // byte value
 977     __ ldrw(crc, Address(esp, wordSize));       // Initial CRC
 978 
 979     unsigned long offset;
 980     __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset);
 981     __ add(tbl, tbl, offset);
 982 
 983     __ mvnw(crc, crc); // ~crc
 984     __ update_byte_crc32(crc, val, tbl);
 985     __ mvnw(crc, crc); // ~crc
 986 
 987     // result in c_rarg0
 988 
 989     __ andr(sp, r13, -16);
 990     __ ret(lr);
 991 
 992     // generate a vanilla native entry as the slow path
 993     __ bind(slow_path);
 994     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
 995     return entry;
 996   }
 997   return NULL;
 998 }
 999 
1000 /**
1001  * Method entry for static native methods:
1002  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
1003  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
1004  */
1005 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1006   if (UseCRC32Intrinsics) {
1007     address entry = __ pc();
1008 
1009     // rmethod,: Method*
1010     // r13: senderSP must preserved for slow path
1011 
1012     Label slow_path;
1013     // If we need a safepoint check, generate full interpreter entry.
1014     __ safepoint_poll(slow_path);
1015 
1016     // We don't generate local frame and don't align stack because
1017     // we call stub code and there is no safepoint on this path.
1018 
1019     // Load parameters
1020     const Register crc = c_rarg0;  // crc
1021     const Register buf = c_rarg1;  // source java byte array address
1022     const Register len = c_rarg2;  // length
1023     const Register off = len;      // offset (never overlaps with 'len')
1024 
1025     // Arguments are reversed on java expression stack
1026     // Calculate address of start element
1027     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
1028       __ ldr(buf, Address(esp, 2*wordSize)); // long buf
1029       __ ldrw(off, Address(esp, wordSize)); // offset
1030       __ add(buf, buf, off); // + offset
1031       __ ldrw(crc,   Address(esp, 4*wordSize)); // Initial CRC
1032     } else {
1033       __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array
1034       __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1035       __ ldrw(off, Address(esp, wordSize)); // offset
1036       __ add(buf, buf, off); // + offset
1037       __ ldrw(crc,   Address(esp, 3*wordSize)); // Initial CRC
1038     }
1039     // Can now load 'len' since we're finished with 'off'
1040     __ ldrw(len, Address(esp, 0x0)); // Length
1041 
1042     __ andr(sp, r13, -16); // Restore the caller's SP
1043 
1044     // We are frameless so we can just jump to the stub.
1045     __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()));
1046 
1047     // generate a vanilla native entry as the slow path
1048     __ bind(slow_path);
1049     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
1050     return entry;
1051   }
1052   return NULL;
1053 }
1054 
1055 /**
1056  * Method entry for intrinsic-candidate (non-native) methods:
1057  *   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1058  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1059  * Unlike CRC32, CRC32C does not have any methods marked as native
1060  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1061  */
1062 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1063   if (UseCRC32CIntrinsics) {
1064     address entry = __ pc();
1065 
1066     // Prepare jump to stub using parameters from the stack
1067     const Register crc = c_rarg0; // initial crc
1068     const Register buf = c_rarg1; // source java byte array address
1069     const Register len = c_rarg2; // len argument to the kernel
1070 
1071     const Register end = len; // index of last element to process
1072     const Register off = crc; // offset
1073 
1074     __ ldrw(end, Address(esp)); // int end
1075     __ ldrw(off, Address(esp, wordSize)); // int offset
1076     __ sub(len, end, off);
1077     __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf
1078     __ add(buf, buf, off); // + offset
1079     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1080       __ ldrw(crc, Address(esp, 4*wordSize)); // long crc
1081     } else {
1082       __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
1083       __ ldrw(crc, Address(esp, 3*wordSize)); // long crc
1084     }
1085 
1086     __ andr(sp, r13, -16); // Restore the caller's SP
1087 
1088     // Jump to the stub.
1089     __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C()));
1090 
1091     return entry;
1092   }
1093   return NULL;
1094 }
1095 
1096 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1097   // Bang each page in the shadow zone. We can't assume it's been done for
1098   // an interpreter frame with greater than a page of locals, so each page
1099   // needs to be checked.  Only true for non-native.
1100   if (UseStackBanging) {
1101     const int n_shadow_pages = JavaThread::stack_shadow_zone_size() / os::vm_page_size();
1102     const int start_page = native_call ? n_shadow_pages : 1;
1103     const int page_size = os::vm_page_size();
1104     for (int pages = start_page; pages <= n_shadow_pages ; pages++) {
1105       __ sub(rscratch2, sp, pages*page_size);
1106       __ str(zr, Address(rscratch2));
1107     }
1108   }
1109 }
1110 
1111 
1112 // Interpreter stub for calling a native method. (asm interpreter)
1113 // This sets up a somewhat different looking stack for calling the
1114 // native method than the typical interpreter frame setup.
1115 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1116   // determine code generation flags
1117   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1118 
1119   // r1: Method*
1120   // rscratch1: sender sp
1121 
1122   address entry_point = __ pc();
1123 
1124   const Address constMethod       (rmethod, Method::const_offset());
1125   const Address access_flags      (rmethod, Method::access_flags_offset());
1126   const Address size_of_parameters(r2, ConstMethod::
1127                                        size_of_parameters_offset());
1128 
1129   // get parameter size (always needed)
1130   __ ldr(r2, constMethod);
1131   __ load_unsigned_short(r2, size_of_parameters);
1132 
1133   // Native calls don't need the stack size check since they have no
1134   // expression stack and the arguments are already on the stack and
1135   // we only add a handful of words to the stack.
1136 
1137   // rmethod: Method*
1138   // r2: size of parameters
1139   // rscratch1: sender sp
1140 
1141   // for natives the size of locals is zero
1142 
1143   // compute beginning of parameters (rlocals)
1144   __ add(rlocals, esp, r2, ext::uxtx, 3);
1145   __ add(rlocals, rlocals, -wordSize);
1146 
1147   // Pull SP back to minimum size: this avoids holes in the stack
1148   __ andr(sp, esp, -16);
1149 
1150   // initialize fixed part of activation frame
1151   generate_fixed_frame(true);
1152 #ifndef PRODUCT
1153   // tell the simulator that a method has been entered
1154   if (NotifySimulator) {
1155     __ notify(Assembler::method_entry);
1156   }
1157 #endif
1158 
1159   // make sure method is native & not abstract
1160 #ifdef ASSERT
1161   __ ldrw(r0, access_flags);
1162   {
1163     Label L;
1164     __ tst(r0, JVM_ACC_NATIVE);
1165     __ br(Assembler::NE, L);
1166     __ stop("tried to execute non-native method as native");
1167     __ bind(L);
1168   }
1169   {
1170     Label L;
1171     __ tst(r0, JVM_ACC_ABSTRACT);
1172     __ br(Assembler::EQ, L);
1173     __ stop("tried to execute abstract method in interpreter");
1174     __ bind(L);
1175   }
1176 #endif
1177 
1178   // Since at this point in the method invocation the exception
1179   // handler would try to exit the monitor of synchronized methods
1180   // which hasn't been entered yet, we set the thread local variable
1181   // _do_not_unlock_if_synchronized to true. The remove_activation
1182   // will check this flag.
1183 
1184    const Address do_not_unlock_if_synchronized(rthread,
1185         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1186   __ mov(rscratch2, true);
1187   __ strb(rscratch2, do_not_unlock_if_synchronized);
1188 
1189   // increment invocation count & check for overflow
1190   Label invocation_counter_overflow;
1191   if (inc_counter) {
1192     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1193   }
1194 
1195   Label continue_after_compile;
1196   __ bind(continue_after_compile);
1197 
1198   bang_stack_shadow_pages(true);
1199 
1200   // reset the _do_not_unlock_if_synchronized flag
1201   __ strb(zr, do_not_unlock_if_synchronized);
1202 
1203   // check for synchronized methods
1204   // Must happen AFTER invocation_counter check and stack overflow check,
1205   // so method is not locked if overflows.
1206   if (synchronized) {
1207     lock_method();
1208   } else {
1209     // no synchronization necessary
1210 #ifdef ASSERT
1211     {
1212       Label L;
1213       __ ldrw(r0, access_flags);
1214       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1215       __ br(Assembler::EQ, L);
1216       __ stop("method needs synchronization");
1217       __ bind(L);
1218     }
1219 #endif
1220   }
1221 
1222   // start execution
1223 #ifdef ASSERT
1224   {
1225     Label L;
1226     const Address monitor_block_top(rfp,
1227                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1228     __ ldr(rscratch1, monitor_block_top);
1229     __ cmp(esp, rscratch1);
1230     __ br(Assembler::EQ, L);
1231     __ stop("broken stack frame setup in interpreter");
1232     __ bind(L);
1233   }
1234 #endif
1235 
1236   // jvmti support
1237   __ notify_method_entry();
1238 
1239   // work registers
1240   const Register t = r17;
1241   const Register result_handler = r19;
1242 
1243   // allocate space for parameters
1244   __ ldr(t, Address(rmethod, Method::const_offset()));
1245   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
1246 
1247   __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize);
1248   __ andr(sp, rscratch1, -16);
1249   __ mov(esp, rscratch1);
1250 
1251   // get signature handler
1252   {
1253     Label L;
1254     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1255     __ cbnz(t, L);
1256     __ call_VM(noreg,
1257                CAST_FROM_FN_PTR(address,
1258                                 InterpreterRuntime::prepare_native_call),
1259                rmethod);
1260     __ ldr(t, Address(rmethod, Method::signature_handler_offset()));
1261     __ bind(L);
1262   }
1263 
1264   // call signature handler
1265   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals,
1266          "adjust this code");
1267   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp,
1268          "adjust this code");
1269   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
1270           "adjust this code");
1271 
1272   // The generated handlers do not touch rmethod (the method).
1273   // However, large signatures cannot be cached and are generated
1274   // each time here.  The slow-path generator can do a GC on return,
1275   // so we must reload it after the call.
1276   __ blr(t);
1277   __ get_method(rmethod);        // slow path can do a GC, reload rmethod
1278 
1279 
1280   // result handler is in r0
1281   // set result handler
1282   __ mov(result_handler, r0);
1283   // pass mirror handle if static call
1284   {
1285     Label L;
1286     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1287     __ tbz(t, exact_log2(JVM_ACC_STATIC), L);
1288     // get mirror
1289     __ load_mirror(t, rmethod);
1290     // copy mirror into activation frame
1291     __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize));
1292     // pass handle to mirror
1293     __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize);
1294     __ bind(L);
1295   }
1296 
1297   // get native function entry point in r10
1298   {
1299     Label L;
1300     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1301     address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
1302     __ mov(rscratch2, unsatisfied);
1303     __ ldr(rscratch2, rscratch2);
1304     __ cmp(r10, rscratch2);
1305     __ br(Assembler::NE, L);
1306     __ call_VM(noreg,
1307                CAST_FROM_FN_PTR(address,
1308                                 InterpreterRuntime::prepare_native_call),
1309                rmethod);
1310     __ get_method(rmethod);
1311     __ ldr(r10, Address(rmethod, Method::native_function_offset()));
1312     __ bind(L);
1313   }
1314 
1315   // pass JNIEnv
1316   __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset()));
1317 
1318   // It is enough that the pc() points into the right code
1319   // segment. It does not have to be the correct return pc.
1320   __ set_last_Java_frame(esp, rfp, (address)NULL, rscratch1);
1321 
1322   // change thread state
1323 #ifdef ASSERT
1324   {
1325     Label L;
1326     __ ldrw(t, Address(rthread, JavaThread::thread_state_offset()));
1327     __ cmp(t, _thread_in_Java);
1328     __ br(Assembler::EQ, L);
1329     __ stop("Wrong thread state in native stub");
1330     __ bind(L);
1331   }
1332 #endif
1333 
1334   // Change state to native
1335   __ mov(rscratch1, _thread_in_native);
1336   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1337   __ stlrw(rscratch1, rscratch2);
1338 
1339   // Call the native method.
1340   __ blrt(r10, rscratch1);
1341   __ maybe_isb();
1342   __ get_method(rmethod);
1343   // result potentially in r0 or v0
1344 
1345   // make room for the pushes we're about to do
1346   __ sub(rscratch1, esp, 4 * wordSize);
1347   __ andr(sp, rscratch1, -16);
1348 
1349   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
1350   // in order to extract the result of a method call. If the order of these
1351   // pushes change or anything else is added to the stack then the code in
1352   // interpreter_frame_result must also change.
1353   __ push(dtos);
1354   __ push(ltos);
1355 
1356   // change thread state
1357   __ mov(rscratch1, _thread_in_native_trans);
1358   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1359   __ stlrw(rscratch1, rscratch2);
1360 
1361   if (os::is_MP()) {
1362     if (UseMembar) {
1363       // Force this write out before the read below
1364       __ dmb(Assembler::ISH);
1365     } else {
1366       // Write serialization page so VM thread can do a pseudo remote membar.
1367       // We use the current thread pointer to calculate a thread specific
1368       // offset to write to within the page. This minimizes bus traffic
1369       // due to cache line collision.
1370       __ serialize_memory(rthread, rscratch2);
1371     }
1372   }
1373 
1374   // check for safepoint operation in progress and/or pending suspend requests
1375   {
1376     Label L, Continue;
1377     __ safepoint_poll_acquire(L);
1378     __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset()));
1379     __ cbz(rscratch2, Continue);
1380     __ bind(L);
1381 
1382     // Don't use call_VM as it will see a possible pending exception
1383     // and forward it and never return here preventing us from
1384     // clearing _last_native_pc down below. So we do a runtime call by
1385     // hand.
1386     //
1387     __ mov(c_rarg0, rthread);
1388     __ mov(rscratch2, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
1389     __ blrt(rscratch2, 1, 0, 0);
1390     __ maybe_isb();
1391     __ get_method(rmethod);
1392     __ reinit_heapbase();
1393     __ bind(Continue);
1394   }
1395 
1396   // change thread state
1397   __ mov(rscratch1, _thread_in_Java);
1398   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1399   __ stlrw(rscratch1, rscratch2);
1400 
1401   // reset_last_Java_frame
1402   __ reset_last_Java_frame(true);
1403 
1404   if (CheckJNICalls) {
1405     // clear_pending_jni_exception_check
1406     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1407   }
1408 
1409   // reset handle block
1410   __ ldr(t, Address(rthread, JavaThread::active_handles_offset()));
1411   __ str(zr, Address(t, JNIHandleBlock::top_offset_in_bytes()));
1412 
1413   // If result is an oop unbox and store it in frame where gc will see it
1414   // and result handler will pick it up
1415 
1416   {
1417     Label no_oop, not_weak, store_result;
1418     __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
1419     __ cmp(t, result_handler);
1420     __ br(Assembler::NE, no_oop);
1421     // Unbox oop result, e.g. JNIHandles::resolve result.
1422     __ pop(ltos);
1423     __ resolve_jobject(r0, rthread, t);
1424     __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
1425     // keep stack depth as expected by pushing oop which will eventually be discarded
1426     __ push(ltos);
1427     __ bind(no_oop);
1428   }
1429 
1430   {
1431     Label no_reguard;
1432     __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset())));
1433     __ ldrw(rscratch1, Address(rscratch1));
1434     __ cmp(rscratch1, JavaThread::stack_guard_yellow_reserved_disabled);
1435     __ br(Assembler::NE, no_reguard);
1436 
1437     __ pusha(); // XXX only save smashed registers
1438     __ mov(c_rarg0, rthread);
1439     __ mov(rscratch2, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
1440     __ blrt(rscratch2, 0, 0, 0);
1441     __ popa(); // XXX only restore smashed registers
1442     __ bind(no_reguard);
1443   }
1444 
1445   // The method register is junk from after the thread_in_native transition
1446   // until here.  Also can't call_VM until the bcp has been
1447   // restored.  Need bcp for throwing exception below so get it now.
1448   __ get_method(rmethod);
1449 
1450   // restore bcp to have legal interpreter frame, i.e., bci == 0 <=>
1451   // rbcp == code_base()
1452   __ ldr(rbcp, Address(rmethod, Method::const_offset()));   // get ConstMethod*
1453   __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));          // get codebase
1454   // handle exceptions (exception handling will handle unlocking!)
1455   {
1456     Label L;
1457     __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
1458     __ cbz(rscratch1, L);
1459     // Note: At some point we may want to unify this with the code
1460     // used in call_VM_base(); i.e., we should use the
1461     // StubRoutines::forward_exception code. For now this doesn't work
1462     // here because the rsp is not correctly set at this point.
1463     __ MacroAssembler::call_VM(noreg,
1464                                CAST_FROM_FN_PTR(address,
1465                                InterpreterRuntime::throw_pending_exception));
1466     __ should_not_reach_here();
1467     __ bind(L);
1468   }
1469 
1470   // do unlocking if necessary
1471   {
1472     Label L;
1473     __ ldrw(t, Address(rmethod, Method::access_flags_offset()));
1474     __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L);
1475     // the code below should be shared with interpreter macro
1476     // assembler implementation
1477     {
1478       Label unlock;
1479       // BasicObjectLock will be first in list, since this is a
1480       // synchronized method. However, need to check that the object
1481       // has not been unlocked by an explicit monitorexit bytecode.
1482 
1483       // monitor expect in c_rarg1 for slow unlock path
1484       __ lea (c_rarg1, Address(rfp,   // address of first monitor
1485                                (intptr_t)(frame::interpreter_frame_initial_sp_offset *
1486                                           wordSize - sizeof(BasicObjectLock))));
1487 
1488       __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
1489       __ cbnz(t, unlock);
1490 
1491       // Entry already unlocked, need to throw exception
1492       __ MacroAssembler::call_VM(noreg,
1493                                  CAST_FROM_FN_PTR(address,
1494                    InterpreterRuntime::throw_illegal_monitor_state_exception));
1495       __ should_not_reach_here();
1496 
1497       __ bind(unlock);
1498       __ unlock_object(c_rarg1);
1499     }
1500     __ bind(L);
1501   }
1502 
1503   // jvmti support
1504   // Note: This must happen _after_ handling/throwing any exceptions since
1505   //       the exception handler code notifies the runtime of method exits
1506   //       too. If this happens before, method entry/exit notifications are
1507   //       not properly paired (was bug - gri 11/22/99).
1508   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1509 
1510   // restore potential result in r0:d0, call result handler to
1511   // restore potential result in ST0 & handle result
1512 
1513   __ pop(ltos);
1514   __ pop(dtos);
1515 
1516   __ blr(result_handler);
1517 
1518   // remove activation
1519   __ ldr(esp, Address(rfp,
1520                     frame::interpreter_frame_sender_sp_offset *
1521                     wordSize)); // get sender sp
1522   // remove frame anchor
1523   __ leave();
1524 
1525   // resture sender sp
1526   __ mov(sp, esp);
1527 
1528   __ ret(lr);
1529 
1530   if (inc_counter) {
1531     // Handle overflow of counter and compile method
1532     __ bind(invocation_counter_overflow);
1533     generate_counter_overflow(continue_after_compile);
1534   }
1535 
1536   return entry_point;
1537 }
1538 
1539 //
1540 // Generic interpreted method entry to (asm) interpreter
1541 //
1542 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1543   // determine code generation flags
1544   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1545 
1546   // rscratch1: sender sp
1547   address entry_point = __ pc();
1548 
1549   const Address constMethod(rmethod, Method::const_offset());
1550   const Address access_flags(rmethod, Method::access_flags_offset());
1551   const Address size_of_parameters(r3,
1552                                    ConstMethod::size_of_parameters_offset());
1553   const Address size_of_locals(r3, ConstMethod::size_of_locals_offset());
1554 
1555   // get parameter size (always needed)
1556   // need to load the const method first
1557   __ ldr(r3, constMethod);
1558   __ load_unsigned_short(r2, size_of_parameters);
1559 
1560   // r2: size of parameters
1561 
1562   __ load_unsigned_short(r3, size_of_locals); // get size of locals in words
1563   __ sub(r3, r3, r2); // r3 = no. of additional locals
1564 
1565   // see if we've got enough room on the stack for locals plus overhead.
1566   generate_stack_overflow_check();
1567 
1568   // compute beginning of parameters (rlocals)
1569   __ add(rlocals, esp, r2, ext::uxtx, 3);
1570   __ sub(rlocals, rlocals, wordSize);
1571 
1572   // Make room for locals
1573   __ sub(rscratch1, esp, r3, ext::uxtx, 3);
1574   __ andr(sp, rscratch1, -16);
1575 
1576   // r3 - # of additional locals
1577   // allocate space for locals
1578   // explicitly initialize locals
1579   {
1580     Label exit, loop;
1581     __ ands(zr, r3, r3);
1582     __ br(Assembler::LE, exit); // do nothing if r3 <= 0
1583     __ bind(loop);
1584     __ str(zr, Address(__ post(rscratch1, wordSize)));
1585     __ sub(r3, r3, 1); // until everything initialized
1586     __ cbnz(r3, loop);
1587     __ bind(exit);
1588   }
1589 
1590   // And the base dispatch table
1591   __ get_dispatch();
1592 
1593   // initialize fixed part of activation frame
1594   generate_fixed_frame(false);
1595 #ifndef PRODUCT
1596   // tell the simulator that a method has been entered
1597   if (NotifySimulator) {
1598     __ notify(Assembler::method_entry);
1599   }
1600 #endif
1601   // make sure method is not native & not abstract
1602 #ifdef ASSERT
1603   __ ldrw(r0, access_flags);
1604   {
1605     Label L;
1606     __ tst(r0, JVM_ACC_NATIVE);
1607     __ br(Assembler::EQ, L);
1608     __ stop("tried to execute native method as non-native");
1609     __ bind(L);
1610   }
1611  {
1612     Label L;
1613     __ tst(r0, JVM_ACC_ABSTRACT);
1614     __ br(Assembler::EQ, L);
1615     __ stop("tried to execute abstract method in interpreter");
1616     __ bind(L);
1617   }
1618 #endif
1619 
1620   // Since at this point in the method invocation the exception
1621   // handler would try to exit the monitor of synchronized methods
1622   // which hasn't been entered yet, we set the thread local variable
1623   // _do_not_unlock_if_synchronized to true. The remove_activation
1624   // will check this flag.
1625 
1626    const Address do_not_unlock_if_synchronized(rthread,
1627         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1628   __ mov(rscratch2, true);
1629   __ strb(rscratch2, do_not_unlock_if_synchronized);
1630 
1631   Label no_mdp;
1632   Register mdp = r3;
1633   __ ldr(mdp, Address(rmethod, Method::method_data_offset()));
1634   __ cbz(mdp, no_mdp);
1635   __ add(mdp, mdp, in_bytes(MethodData::data_offset()));
1636   __ profile_parameters_type(mdp, r1, r2);
1637   __ bind(no_mdp);
1638 
1639   // increment invocation count & check for overflow
1640   Label invocation_counter_overflow;
1641   Label profile_method;
1642   Label profile_method_continue;
1643   if (inc_counter) {
1644     generate_counter_incr(&invocation_counter_overflow,
1645                           &profile_method,
1646                           &profile_method_continue);
1647     if (ProfileInterpreter) {
1648       __ bind(profile_method_continue);
1649     }
1650   }
1651 
1652   Label continue_after_compile;
1653   __ bind(continue_after_compile);
1654 
1655   bang_stack_shadow_pages(false);
1656 
1657   // reset the _do_not_unlock_if_synchronized flag
1658   __ strb(zr, do_not_unlock_if_synchronized);
1659 
1660   // check for synchronized methods
1661   // Must happen AFTER invocation_counter check and stack overflow check,
1662   // so method is not locked if overflows.
1663   if (synchronized) {
1664     // Allocate monitor and lock method
1665     lock_method();
1666   } else {
1667     // no synchronization necessary
1668 #ifdef ASSERT
1669     {
1670       Label L;
1671       __ ldrw(r0, access_flags);
1672       __ tst(r0, JVM_ACC_SYNCHRONIZED);
1673       __ br(Assembler::EQ, L);
1674       __ stop("method needs synchronization");
1675       __ bind(L);
1676     }
1677 #endif
1678   }
1679 
1680   // start execution
1681 #ifdef ASSERT
1682   {
1683     Label L;
1684      const Address monitor_block_top (rfp,
1685                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
1686     __ ldr(rscratch1, monitor_block_top);
1687     __ cmp(esp, rscratch1);
1688     __ br(Assembler::EQ, L);
1689     __ stop("broken stack frame setup in interpreter");
1690     __ bind(L);
1691   }
1692 #endif
1693 
1694   // jvmti support
1695   __ notify_method_entry();
1696 
1697   __ dispatch_next(vtos);
1698 
1699   // invocation counter overflow
1700   if (inc_counter) {
1701     if (ProfileInterpreter) {
1702       // We have decided to profile this method in the interpreter
1703       __ bind(profile_method);
1704       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1705       __ set_method_data_pointer_for_bcp();
1706       // don't think we need this
1707       __ get_method(r1);
1708       __ b(profile_method_continue);
1709     }
1710     // Handle overflow of counter and compile method
1711     __ bind(invocation_counter_overflow);
1712     generate_counter_overflow(continue_after_compile);
1713   }
1714 
1715   return entry_point;
1716 }
1717 
1718 //-----------------------------------------------------------------------------
1719 // Exceptions
1720 
1721 void TemplateInterpreterGenerator::generate_throw_exception() {
1722   // Entry point in previous activation (i.e., if the caller was
1723   // interpreted)
1724   Interpreter::_rethrow_exception_entry = __ pc();
1725   // Restore sp to interpreter_frame_last_sp even though we are going
1726   // to empty the expression stack for the exception processing.
1727   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1728   // r0: exception
1729   // r3: return address/pc that threw exception
1730   __ restore_bcp();    // rbcp points to call/send
1731   __ restore_locals();
1732   __ restore_constant_pool_cache();
1733   __ reinit_heapbase();  // restore rheapbase as heapbase.
1734   __ get_dispatch();
1735 
1736 #ifndef PRODUCT
1737   // tell the simulator that the caller method has been reentered
1738   if (NotifySimulator) {
1739     __ get_method(rmethod);
1740     __ notify(Assembler::method_reentry);
1741   }
1742 #endif
1743   // Entry point for exceptions thrown within interpreter code
1744   Interpreter::_throw_exception_entry = __ pc();
1745   // If we came here via a NullPointerException on the receiver of a
1746   // method, rmethod may be corrupt.
1747   __ get_method(rmethod);
1748   // expression stack is undefined here
1749   // r0: exception
1750   // rbcp: exception bcp
1751   __ verify_oop(r0);
1752   __ mov(c_rarg1, r0);
1753 
1754   // expression stack must be empty before entering the VM in case of
1755   // an exception
1756   __ empty_expression_stack();
1757   // find exception handler address and preserve exception oop
1758   __ call_VM(r3,
1759              CAST_FROM_FN_PTR(address,
1760                           InterpreterRuntime::exception_handler_for_exception),
1761              c_rarg1);
1762 
1763   // Calculate stack limit
1764   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1765   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1766   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1767   __ ldr(rscratch2,
1768          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1769   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtx, 3);
1770   __ andr(sp, rscratch1, -16);
1771 
1772   // r0: exception handler entry point
1773   // r3: preserved exception oop
1774   // rbcp: bcp for exception handler
1775   __ push_ptr(r3); // push exception which is now the only value on the stack
1776   __ br(r0); // jump to exception handler (may be _remove_activation_entry!)
1777 
1778   // If the exception is not handled in the current frame the frame is
1779   // removed and the exception is rethrown (i.e. exception
1780   // continuation is _rethrow_exception).
1781   //
1782   // Note: At this point the bci is still the bxi for the instruction
1783   // which caused the exception and the expression stack is
1784   // empty. Thus, for any VM calls at this point, GC will find a legal
1785   // oop map (with empty expression stack).
1786 
1787   //
1788   // JVMTI PopFrame support
1789   //
1790 
1791   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1792   __ empty_expression_stack();
1793   // Set the popframe_processing bit in pending_popframe_condition
1794   // indicating that we are currently handling popframe, so that
1795   // call_VMs that may happen later do not trigger new popframe
1796   // handling cycles.
1797   __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1798   __ orr(r3, r3, JavaThread::popframe_processing_bit);
1799   __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset()));
1800 
1801   {
1802     // Check to see whether we are returning to a deoptimized frame.
1803     // (The PopFrame call ensures that the caller of the popped frame is
1804     // either interpreted or compiled and deoptimizes it if compiled.)
1805     // In this case, we can't call dispatch_next() after the frame is
1806     // popped, but instead must save the incoming arguments and restore
1807     // them after deoptimization has occurred.
1808     //
1809     // Note that we don't compare the return PC against the
1810     // deoptimization blob's unpack entry because of the presence of
1811     // adapter frames in C2.
1812     Label caller_not_deoptimized;
1813     __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize));
1814     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1815                                InterpreterRuntime::interpreter_contains), c_rarg1);
1816     __ cbnz(r0, caller_not_deoptimized);
1817 
1818     // Compute size of arguments for saving when returning to
1819     // deoptimized caller
1820     __ get_method(r0);
1821     __ ldr(r0, Address(r0, Method::const_offset()));
1822     __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod::
1823                                                     size_of_parameters_offset())));
1824     __ lsl(r0, r0, Interpreter::logStackElementSize);
1825     __ restore_locals(); // XXX do we need this?
1826     __ sub(rlocals, rlocals, r0);
1827     __ add(rlocals, rlocals, wordSize);
1828     // Save these arguments
1829     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1830                                            Deoptimization::
1831                                            popframe_preserve_args),
1832                           rthread, r0, rlocals);
1833 
1834     __ remove_activation(vtos,
1835                          /* throw_monitor_exception */ false,
1836                          /* install_monitor_exception */ false,
1837                          /* notify_jvmdi */ false);
1838 
1839     // Inform deoptimization that it is responsible for restoring
1840     // these arguments
1841     __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit);
1842     __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
1843 
1844     // Continue in deoptimization handler
1845     __ ret(lr);
1846 
1847     __ bind(caller_not_deoptimized);
1848   }
1849 
1850   __ remove_activation(vtos,
1851                        /* throw_monitor_exception */ false,
1852                        /* install_monitor_exception */ false,
1853                        /* notify_jvmdi */ false);
1854 
1855   // Restore the last_sp and null it out
1856   __ ldr(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1857   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1858 
1859   __ restore_bcp();
1860   __ restore_locals();
1861   __ restore_constant_pool_cache();
1862   __ get_method(rmethod);
1863 
1864   // The method data pointer was incremented already during
1865   // call profiling. We have to restore the mdp for the current bcp.
1866   if (ProfileInterpreter) {
1867     __ set_method_data_pointer_for_bcp();
1868   }
1869 
1870   // Clear the popframe condition flag
1871   __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset()));
1872   assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive");
1873 
1874 #if INCLUDE_JVMTI
1875   {
1876     Label L_done;
1877 
1878     __ ldrb(rscratch1, Address(rbcp, 0));
1879     __ cmpw(r1, Bytecodes::_invokestatic);
1880     __ br(Assembler::EQ, L_done);
1881 
1882     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1883     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1884 
1885     __ ldr(c_rarg0, Address(rlocals, 0));
1886     __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp);
1887 
1888     __ cbz(r0, L_done);
1889 
1890     __ str(r0, Address(esp, 0));
1891     __ bind(L_done);
1892   }
1893 #endif // INCLUDE_JVMTI
1894 
1895   // Restore machine SP
1896   __ ldr(rscratch1, Address(rmethod, Method::const_offset()));
1897   __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset()));
1898   __ add(rscratch1, rscratch1, frame::interpreter_frame_monitor_size() + 4);
1899   __ ldr(rscratch2,
1900          Address(rfp, frame::interpreter_frame_initial_sp_offset * wordSize));
1901   __ sub(rscratch1, rscratch2, rscratch1, ext::uxtw, 3);
1902   __ andr(sp, rscratch1, -16);
1903 
1904   __ dispatch_next(vtos);
1905   // end of PopFrame support
1906 
1907   Interpreter::_remove_activation_entry = __ pc();
1908 
1909   // preserve exception over this code sequence
1910   __ pop_ptr(r0);
1911   __ str(r0, Address(rthread, JavaThread::vm_result_offset()));
1912   // remove the activation (without doing throws on illegalMonitorExceptions)
1913   __ remove_activation(vtos, false, true, false);
1914   // restore exception
1915   // restore exception
1916   __ get_vm_result(r0, rthread);
1917 
1918   // In between activations - previous activation type unknown yet
1919   // compute continuation point - the continuation point expects the
1920   // following registers set up:
1921   //
1922   // r0: exception
1923   // lr: return address/pc that threw exception
1924   // rsp: expression stack of caller
1925   // rfp: fp of caller
1926   // FIXME: There's no point saving LR here because VM calls don't trash it
1927   __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize)));  // save exception & return address
1928   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
1929                           SharedRuntime::exception_handler_for_return_address),
1930                         rthread, lr);
1931   __ mov(r1, r0);                               // save exception handler
1932   __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize)));  // restore exception & return address
1933   // We might be returning to a deopt handler that expects r3 to
1934   // contain the exception pc
1935   __ mov(r3, lr);
1936   // Note that an "issuing PC" is actually the next PC after the call
1937   __ br(r1);                                    // jump to exception
1938                                                 // handler of caller
1939 }
1940 
1941 
1942 //
1943 // JVMTI ForceEarlyReturn support
1944 //
1945 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1946   address entry = __ pc();
1947 
1948   __ restore_bcp();
1949   __ restore_locals();
1950   __ empty_expression_stack();
1951   __ load_earlyret_value(state);
1952 
1953   __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
1954   Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset());
1955 
1956   // Clear the earlyret state
1957   assert(JvmtiThreadState::earlyret_inactive == 0, "should be");
1958   __ str(zr, cond_addr);
1959 
1960   __ remove_activation(state,
1961                        false, /* throw_monitor_exception */
1962                        false, /* install_monitor_exception */
1963                        true); /* notify_jvmdi */
1964   __ ret(lr);
1965 
1966   return entry;
1967 } // end of ForceEarlyReturn support
1968 
1969 
1970 
1971 //-----------------------------------------------------------------------------
1972 // Helper for vtos entry point generation
1973 
1974 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
1975                                                          address& bep,
1976                                                          address& cep,
1977                                                          address& sep,
1978                                                          address& aep,
1979                                                          address& iep,
1980                                                          address& lep,
1981                                                          address& fep,
1982                                                          address& dep,
1983                                                          address& vep) {
1984   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1985   Label L;
1986   aep = __ pc();  __ push_ptr();  __ b(L);
1987   fep = __ pc();  __ push_f();    __ b(L);
1988   dep = __ pc();  __ push_d();    __ b(L);
1989   lep = __ pc();  __ push_l();    __ b(L);
1990   bep = cep = sep =
1991   iep = __ pc();  __ push_i();
1992   vep = __ pc();
1993   __ bind(L);
1994   generate_and_dispatch(t);
1995 }
1996 
1997 //-----------------------------------------------------------------------------
1998 
1999 // Non-product code
2000 #ifndef PRODUCT
2001 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2002   address entry = __ pc();
2003 
2004   __ push(lr);
2005   __ push(state);
2006   __ push(RegSet::range(r0, r15), sp);
2007   __ mov(c_rarg2, r0);  // Pass itos
2008   __ call_VM(noreg,
2009              CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode),
2010              c_rarg1, c_rarg2, c_rarg3);
2011   __ pop(RegSet::range(r0, r15), sp);
2012   __ pop(state);
2013   __ pop(lr);
2014   __ ret(lr);                                   // return from result handler
2015 
2016   return entry;
2017 }
2018 
2019 void TemplateInterpreterGenerator::count_bytecode() {
2020   Register rscratch3 = r0;
2021   __ push(rscratch1);
2022   __ push(rscratch2);
2023   __ push(rscratch3);
2024   __ mov(rscratch3, (address) &BytecodeCounter::_counter_value);
2025   __ atomic_add(noreg, 1, rscratch3);
2026   __ pop(rscratch3);
2027   __ pop(rscratch2);
2028   __ pop(rscratch1);
2029 }
2030 
2031 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { ; }
2032 
2033 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { ; }
2034 
2035 
2036 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2037   // Call a little run-time stub to avoid blow-up for each bytecode.
2038   // The run-time runtime saves the right registers, depending on
2039   // the tosca in-state for the given template.
2040 
2041   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2042          "entry must have been generated");
2043   __ bl(Interpreter::trace_code(t->tos_in()));
2044   __ reinit_heapbase();
2045 }
2046 
2047 
2048 void TemplateInterpreterGenerator::stop_interpreter_at() {
2049   Label L;
2050   __ push(rscratch1);
2051   __ mov(rscratch1, (address) &BytecodeCounter::_counter_value);
2052   __ ldr(rscratch1, Address(rscratch1));
2053   __ mov(rscratch2, StopInterpreterAt);
2054   __ cmpw(rscratch1, rscratch2);
2055   __ br(Assembler::NE, L);
2056   __ brk(0);
2057   __ bind(L);
2058   __ pop(rscratch1);
2059 }
2060 
2061 #ifdef BUILTIN_SIM
2062 
2063 #include <sys/mman.h>
2064 #include <unistd.h>
2065 
2066 extern "C" {
2067   static int PAGESIZE = getpagesize();
2068   int is_mapped_address(u_int64_t address)
2069   {
2070     address = (address & ~((u_int64_t)PAGESIZE - 1));
2071     if (msync((void *)address, PAGESIZE, MS_ASYNC) == 0) {
2072       return true;
2073     }
2074     if (errno != ENOMEM) {
2075       return true;
2076     }
2077     return false;
2078   }
2079 
2080   void bccheck1(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode)
2081   {
2082     if (method != 0) {
2083       method[0] = '\0';
2084     }
2085     if (bcidx != 0) {
2086       *bcidx = -2;
2087     }
2088     if (decode != 0) {
2089       decode[0] = 0;
2090     }
2091 
2092     if (framesize != 0) {
2093       *framesize = -1;
2094     }
2095 
2096     if (Interpreter::contains((address)pc)) {
2097       AArch64Simulator *sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
2098       Method* meth;
2099       address bcp;
2100       if (fp) {
2101 #define FRAME_SLOT_METHOD 3
2102 #define FRAME_SLOT_BCP 7
2103         meth = (Method*)sim->getMemory()->loadU64(fp - (FRAME_SLOT_METHOD << 3));
2104         bcp = (address)sim->getMemory()->loadU64(fp - (FRAME_SLOT_BCP << 3));
2105 #undef FRAME_SLOT_METHOD
2106 #undef FRAME_SLOT_BCP
2107       } else {
2108         meth = (Method*)sim->getCPUState().xreg(RMETHOD, 0);
2109         bcp = (address)sim->getCPUState().xreg(RBCP, 0);
2110       }
2111       if (meth->is_native()) {
2112         return;
2113       }
2114       if(method && meth->is_method()) {
2115         ResourceMark rm;
2116         method[0] = 'I';
2117         method[1] = ' ';
2118         meth->name_and_sig_as_C_string(method + 2, 398);
2119       }
2120       if (bcidx) {
2121         if (meth->contains(bcp)) {
2122           *bcidx = meth->bci_from(bcp);
2123         } else {
2124           *bcidx = -2;
2125         }
2126       }
2127       if (decode) {
2128         if (!BytecodeTracer::closure()) {
2129           BytecodeTracer::set_closure(BytecodeTracer::std_closure());
2130         }
2131         stringStream str(decode, 400);
2132         BytecodeTracer::trace(meth, bcp, &str);
2133       }
2134     } else {
2135       if (method) {
2136         CodeBlob *cb = CodeCache::find_blob((address)pc);
2137         if (cb != NULL) {
2138           if (cb->is_nmethod()) {
2139             ResourceMark rm;
2140             nmethod* nm = (nmethod*)cb;
2141             method[0] = 'C';
2142             method[1] = ' ';
2143             nm->method()->name_and_sig_as_C_string(method + 2, 398);
2144           } else if (cb->is_adapter_blob()) {
2145             strcpy(method, "B adapter blob");
2146           } else if (cb->is_runtime_stub()) {
2147             strcpy(method, "B runtime stub");
2148           } else if (cb->is_exception_stub()) {
2149             strcpy(method, "B exception stub");
2150           } else if (cb->is_deoptimization_stub()) {
2151             strcpy(method, "B deoptimization stub");
2152           } else if (cb->is_safepoint_stub()) {
2153             strcpy(method, "B safepoint stub");
2154           } else if (cb->is_uncommon_trap_stub()) {
2155             strcpy(method, "B uncommon trap stub");
2156           } else if (cb->contains((address)StubRoutines::call_stub())) {
2157             strcpy(method, "B call stub");
2158           } else {
2159             strcpy(method, "B unknown blob : ");
2160             strcat(method, cb->name());
2161           }
2162           if (framesize != NULL) {
2163             *framesize = cb->frame_size();
2164           }
2165         }
2166       }
2167     }
2168   }
2169 
2170 
2171   JNIEXPORT void bccheck(u_int64_t pc, u_int64_t fp, char *method, int *bcidx, int *framesize, char *decode)
2172   {
2173     bccheck1(pc, fp, method, bcidx, framesize, decode);
2174   }
2175 }
2176 
2177 #endif // BUILTIN_SIM
2178 #endif // !PRODUCT