1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "c1/c1_Compilation.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "ci/ciArray.hpp"
  35 #include "ci/ciObjArrayKlass.hpp"
  36 #include "ci/ciTypeArrayKlass.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "vmreg_aarch64.inline.hpp"
  40 
  41 #ifdef ASSERT
  42 #define __ gen()->lir(__FILE__, __LINE__)->
  43 #else
  44 #define __ gen()->lir()->
  45 #endif
  46 
  47 // Item will be loaded into a byte register; Intel only
  48 void LIRItem::load_byte_item() {
  49   load_item();
  50 }
  51 
  52 
  53 void LIRItem::load_nonconstant() {
  54   LIR_Opr r = value()->operand();
  55   if (r->is_constant()) {
  56     _result = r;
  57   } else {
  58     load_item();
  59   }
  60 }
  61 
  62 //--------------------------------------------------------------
  63 //               LIRGenerator
  64 //--------------------------------------------------------------
  65 
  66 
  67 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; }
  68 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::r3_opr; }
  69 LIR_Opr LIRGenerator::divInOpr()        { Unimplemented(); return LIR_OprFact::illegalOpr; }
  70 LIR_Opr LIRGenerator::divOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  71 LIR_Opr LIRGenerator::remOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  72 LIR_Opr LIRGenerator::shiftCountOpr()   { Unimplemented(); return LIR_OprFact::illegalOpr; }
  73 LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
  74 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::r0_opr; }
  75 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  76 
  77 
  78 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  79   LIR_Opr opr;
  80   switch (type->tag()) {
  81     case intTag:     opr = FrameMap::r0_opr;          break;
  82     case objectTag:  opr = FrameMap::r0_oop_opr;      break;
  83     case longTag:    opr = FrameMap::long0_opr;        break;
  84     case floatTag:   opr = FrameMap::fpu0_float_opr;  break;
  85     case doubleTag:  opr = FrameMap::fpu0_double_opr;  break;
  86 
  87     case addressTag:
  88     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  89   }
  90 
  91   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  92   return opr;
  93 }
  94 
  95 
  96 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
  97   LIR_Opr reg = new_register(T_INT);
  98   set_vreg_flag(reg, LIRGenerator::byte_reg);
  99   return reg;
 100 }
 101 
 102 
 103 //--------- loading items into registers --------------------------------
 104 
 105 
 106 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 107   if (v->type()->as_IntConstant() != NULL) {
 108     return v->type()->as_IntConstant()->value() == 0L;
 109   } else if (v->type()->as_LongConstant() != NULL) {
 110     return v->type()->as_LongConstant()->value() == 0L;
 111   } else if (v->type()->as_ObjectConstant() != NULL) {
 112     return v->type()->as_ObjectConstant()->value()->is_null_object();
 113   } else {
 114     return false;
 115   }
 116 }
 117 
 118 bool LIRGenerator::can_inline_as_constant(Value v) const {
 119   // FIXME: Just a guess
 120   if (v->type()->as_IntConstant() != NULL) {
 121     return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value());
 122   } else if (v->type()->as_LongConstant() != NULL) {
 123     return v->type()->as_LongConstant()->value() == 0L;
 124   } else if (v->type()->as_ObjectConstant() != NULL) {
 125     return v->type()->as_ObjectConstant()->value()->is_null_object();
 126   } else {
 127     return false;
 128   }
 129 }
 130 
 131 
 132 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; }
 133 
 134 
 135 LIR_Opr LIRGenerator::safepoint_poll_register() {
 136   return LIR_OprFact::illegalOpr;
 137 }
 138 
 139 
 140 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 141                                             int shift, int disp, BasicType type) {
 142   assert(base->is_register(), "must be");
 143   intx large_disp = disp;
 144 
 145   // accumulate fixed displacements
 146   if (index->is_constant()) {
 147     LIR_Const *constant = index->as_constant_ptr();
 148     if (constant->type() == T_INT) {
 149       large_disp += index->as_jint() << shift;
 150     } else {
 151       assert(constant->type() == T_LONG, "should be");
 152       jlong c = index->as_jlong() << shift;
 153       if ((jlong)((jint)c) == c) {
 154         large_disp += c;
 155         index = LIR_OprFact::illegalOpr;
 156       } else {
 157         LIR_Opr tmp = new_register(T_LONG);
 158         __ move(index, tmp);
 159         index = tmp;
 160         // apply shift and displacement below
 161       }
 162     }
 163   }
 164 
 165   if (index->is_register()) {
 166     // apply the shift and accumulate the displacement
 167     if (shift > 0) {
 168       LIR_Opr tmp = new_pointer_register();
 169       __ shift_left(index, shift, tmp);
 170       index = tmp;
 171     }
 172     if (large_disp != 0) {
 173       LIR_Opr tmp = new_pointer_register();
 174       if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) {
 175         __ add(tmp, tmp, LIR_OprFact::intptrConst(large_disp));
 176         index = tmp;
 177       } else {
 178         __ move(tmp, LIR_OprFact::intptrConst(large_disp));
 179         __ add(tmp, index, tmp);
 180         index = tmp;
 181       }
 182       large_disp = 0;
 183     }
 184   } else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) {
 185     // index is illegal so replace it with the displacement loaded into a register
 186     index = new_pointer_register();
 187     __ move(LIR_OprFact::intptrConst(large_disp), index);
 188     large_disp = 0;
 189   }
 190 
 191   // at this point we either have base + index or base + displacement
 192   if (large_disp == 0) {
 193     return new LIR_Address(base, index, type);
 194   } else {
 195     assert(Address::offset_ok_for_immed(large_disp, 0), "must be");
 196     return new LIR_Address(base, large_disp, type);
 197   }
 198 }
 199 
 200 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 201                                               BasicType type) {
 202   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 203   int elem_size = type2aelembytes(type);
 204   int shift = exact_log2(elem_size);
 205 
 206   LIR_Address* addr;
 207   if (index_opr->is_constant()) {
 208     addr = new LIR_Address(array_opr,
 209                            offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
 210   } else {
 211     if (offset_in_bytes) {
 212       LIR_Opr tmp = new_pointer_register();
 213       __ add(array_opr, LIR_OprFact::intConst(offset_in_bytes), tmp);
 214       array_opr = tmp;
 215       offset_in_bytes = 0;
 216     }
 217     addr =  new LIR_Address(array_opr,
 218                             index_opr,
 219                             LIR_Address::scale(type),
 220                             offset_in_bytes, type);
 221   }
 222   return addr;
 223 }
 224 
 225 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 226   LIR_Opr r;
 227   if (type == T_LONG) {
 228     r = LIR_OprFact::longConst(x);
 229     if (!Assembler::operand_valid_for_logical_immediate(false, x)) {
 230       LIR_Opr tmp = new_register(type);
 231       __ move(r, tmp);
 232       return tmp;
 233     }
 234   } else if (type == T_INT) {
 235     r = LIR_OprFact::intConst(x);
 236     if (!Assembler::operand_valid_for_logical_immediate(true, x)) {
 237       // This is all rather nasty.  We don't know whether our constant
 238       // is required for a logical or an arithmetic operation, wo we
 239       // don't know what the range of valid values is!!
 240       LIR_Opr tmp = new_register(type);
 241       __ move(r, tmp);
 242       return tmp;
 243     }
 244   } else {
 245     ShouldNotReachHere();
 246     r = NULL;  // unreachable
 247   }
 248   return r;
 249 }
 250 
 251 
 252 
 253 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 254   LIR_Opr pointer = new_pointer_register();
 255   __ move(LIR_OprFact::intptrConst(counter), pointer);
 256   LIR_Address* addr = new LIR_Address(pointer, type);
 257   increment_counter(addr, step);
 258 }
 259 
 260 
 261 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 262   LIR_Opr imm = NULL;
 263   switch(addr->type()) {
 264   case T_INT:
 265     imm = LIR_OprFact::intConst(step);
 266     break;
 267   case T_LONG:
 268     imm = LIR_OprFact::longConst(step);
 269     break;
 270   default:
 271     ShouldNotReachHere();
 272   }
 273   LIR_Opr reg = new_register(addr->type());
 274   __ load(addr, reg);
 275   __ add(reg, imm, reg);
 276   __ store(reg, addr);
 277 }
 278 
 279 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 280   LIR_Opr reg = new_register(T_INT);
 281   __ load(generate_address(base, disp, T_INT), reg, info);
 282   __ cmp(condition, reg, LIR_OprFact::intConst(c));
 283 }
 284 
 285 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 286   LIR_Opr reg1 = new_register(T_INT);
 287   __ load(generate_address(base, disp, type), reg1, info);
 288   __ cmp(condition, reg, reg1);
 289 }
 290 
 291 
 292 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 293 
 294   if (is_power_of_2(c - 1)) {
 295     __ shift_left(left, exact_log2(c - 1), tmp);
 296     __ add(tmp, left, result);
 297     return true;
 298   } else if (is_power_of_2(c + 1)) {
 299     __ shift_left(left, exact_log2(c + 1), tmp);
 300     __ sub(tmp, left, result);
 301     return true;
 302   } else {
 303     return false;
 304   }
 305 }
 306 
 307 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 308   BasicType type = item->type();
 309   __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
 310 }
 311 
 312 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
 313     LIR_Opr tmp1 = new_register(objectType);
 314     LIR_Opr tmp2 = new_register(objectType);
 315     LIR_Opr tmp3 = new_register(objectType);
 316     __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
 317 }
 318 
 319 //----------------------------------------------------------------------
 320 //             visitor functions
 321 //----------------------------------------------------------------------
 322 
 323 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 324   assert(x->is_pinned(),"");
 325   LIRItem obj(x->obj(), this);
 326   obj.load_item();
 327 
 328   set_no_result(x);
 329 
 330   // "lock" stores the address of the monitor stack slot, so this is not an oop
 331   LIR_Opr lock = new_register(T_INT);
 332   // Need a scratch register for biased locking
 333   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 334   if (UseBiasedLocking) {
 335     scratch = new_register(T_INT);
 336   }
 337 
 338   CodeEmitInfo* info_for_exception = NULL;
 339   if (x->needs_null_check()) {
 340     info_for_exception = state_for(x);
 341   }
 342   // this CodeEmitInfo must not have the xhandlers because here the
 343   // object is already locked (xhandlers expect object to be unlocked)
 344   CodeEmitInfo* info = state_for(x, x->state(), true);
 345   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 346                         x->monitor_no(), info_for_exception, info);
 347 }
 348 
 349 
 350 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 351   assert(x->is_pinned(),"");
 352 
 353   LIRItem obj(x->obj(), this);
 354   obj.dont_load_item();
 355 
 356   LIR_Opr lock = new_register(T_INT);
 357   LIR_Opr obj_temp = new_register(T_INT);
 358   set_no_result(x);
 359   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 360 }
 361 
 362 
 363 void LIRGenerator::do_NegateOp(NegateOp* x) {
 364 
 365   LIRItem from(x->x(), this);
 366   from.load_item();
 367   LIR_Opr result = rlock_result(x);
 368   __ negate (from.result(), result);
 369 
 370 }
 371 
 372 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 373 //      _dadd, _dmul, _dsub, _ddiv, _drem
 374 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 375 
 376   if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
 377     // float remainder is implemented as a direct call into the runtime
 378     LIRItem right(x->x(), this);
 379     LIRItem left(x->y(), this);
 380 
 381     BasicTypeList signature(2);
 382     if (x->op() == Bytecodes::_frem) {
 383       signature.append(T_FLOAT);
 384       signature.append(T_FLOAT);
 385     } else {
 386       signature.append(T_DOUBLE);
 387       signature.append(T_DOUBLE);
 388     }
 389     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 390 
 391     const LIR_Opr result_reg = result_register_for(x->type());
 392     left.load_item_force(cc->at(1));
 393     right.load_item();
 394 
 395     __ move(right.result(), cc->at(0));
 396 
 397     address entry;
 398     if (x->op() == Bytecodes::_frem) {
 399       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 400     } else {
 401       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 402     }
 403 
 404     LIR_Opr result = rlock_result(x);
 405     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 406     __ move(result_reg, result);
 407 
 408     return;
 409   }
 410 
 411   LIRItem left(x->x(),  this);
 412   LIRItem right(x->y(), this);
 413   LIRItem* left_arg  = &left;
 414   LIRItem* right_arg = &right;
 415 
 416   // Always load right hand side.
 417   right.load_item();
 418 
 419   if (!left.is_register())
 420     left.load_item();
 421 
 422   LIR_Opr reg = rlock(x);
 423   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 424   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
 425     tmp = new_register(T_DOUBLE);
 426   }
 427 
 428   arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), NULL);
 429 
 430   set_result(x, round_item(reg));
 431 }
 432 
 433 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 434 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 435 
 436   // missing test if instr is commutative and if we should swap
 437   LIRItem left(x->x(), this);
 438   LIRItem right(x->y(), this);
 439 
 440   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 441 
 442     // the check for division by zero destroys the right operand
 443     right.set_destroys_register();
 444 
 445     // check for division by zero (destroys registers of right operand!)
 446     CodeEmitInfo* info = state_for(x);
 447 
 448     left.load_item();
 449     right.load_item();
 450 
 451     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 452     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 453 
 454     rlock_result(x);
 455     switch (x->op()) {
 456     case Bytecodes::_lrem:
 457       __ rem (left.result(), right.result(), x->operand());
 458       break;
 459     case Bytecodes::_ldiv:
 460       __ div (left.result(), right.result(), x->operand());
 461       break;
 462     default:
 463       ShouldNotReachHere();
 464       break;
 465     }
 466 
 467 
 468   } else {
 469     assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
 470             "expect lmul, ladd or lsub");
 471     // add, sub, mul
 472     left.load_item();
 473     if (! right.is_register()) {
 474       if (x->op() == Bytecodes::_lmul
 475           || ! right.is_constant()
 476           || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) {
 477         right.load_item();
 478       } else { // add, sub
 479         assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub");
 480         // don't load constants to save register
 481         right.load_nonconstant();
 482       }
 483     }
 484     rlock_result(x);
 485     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 486   }
 487 }
 488 
 489 // for: _iadd, _imul, _isub, _idiv, _irem
 490 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 491 
 492   // Test if instr is commutative and if we should swap
 493   LIRItem left(x->x(),  this);
 494   LIRItem right(x->y(), this);
 495   LIRItem* left_arg = &left;
 496   LIRItem* right_arg = &right;
 497   if (x->is_commutative() && left.is_stack() && right.is_register()) {
 498     // swap them if left is real stack (or cached) and right is real register(not cached)
 499     left_arg = &right;
 500     right_arg = &left;
 501   }
 502 
 503   left_arg->load_item();
 504 
 505   // do not need to load right, as we can handle stack and constants
 506   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 507 
 508     right_arg->load_item();
 509     rlock_result(x);
 510 
 511     CodeEmitInfo* info = state_for(x);
 512     LIR_Opr tmp = new_register(T_INT);
 513     __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
 514     __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
 515     info = state_for(x);
 516 
 517     if (x->op() == Bytecodes::_irem) {
 518       __ irem(left_arg->result(), right_arg->result(), x->operand(), tmp, NULL);
 519     } else if (x->op() == Bytecodes::_idiv) {
 520       __ idiv(left_arg->result(), right_arg->result(), x->operand(), tmp, NULL);
 521     }
 522 
 523   } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
 524     if (right.is_constant()
 525         && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) {
 526       right.load_nonconstant();
 527     } else {
 528       right.load_item();
 529     }
 530     rlock_result(x);
 531     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
 532   } else {
 533     assert (x->op() == Bytecodes::_imul, "expect imul");
 534     if (right.is_constant()) {
 535       jint c = right.get_jint_constant();
 536       if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
 537         right_arg->dont_load_item();
 538       } else {
 539         // Cannot use constant op.
 540         right_arg->load_item();
 541       }
 542     } else {
 543       right.load_item();
 544     }
 545     rlock_result(x);
 546     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
 547   }
 548 }
 549 
 550 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 551   // when an operand with use count 1 is the left operand, then it is
 552   // likely that no move for 2-operand-LIR-form is necessary
 553   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 554     x->swap_operands();
 555   }
 556 
 557   ValueTag tag = x->type()->tag();
 558   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 559   switch (tag) {
 560     case floatTag:
 561     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 562     case longTag:    do_ArithmeticOp_Long(x); return;
 563     case intTag:     do_ArithmeticOp_Int(x);  return;
 564   }
 565   ShouldNotReachHere();
 566 }
 567 
 568 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 569 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 570 
 571   LIRItem left(x->x(),  this);
 572   LIRItem right(x->y(), this);
 573 
 574   left.load_item();
 575 
 576   rlock_result(x);
 577   if (right.is_constant()) {
 578     right.dont_load_item();
 579 
 580     switch (x->op()) {
 581     case Bytecodes::_ishl: {
 582       int c = right.get_jint_constant() & 0x1f;
 583       __ shift_left(left.result(), c, x->operand());
 584       break;
 585     }
 586     case Bytecodes::_ishr: {
 587       int c = right.get_jint_constant() & 0x1f;
 588       __ shift_right(left.result(), c, x->operand());
 589       break;
 590     }
 591     case Bytecodes::_iushr: {
 592       int c = right.get_jint_constant() & 0x1f;
 593       __ unsigned_shift_right(left.result(), c, x->operand());
 594       break;
 595     }
 596     case Bytecodes::_lshl: {
 597       int c = right.get_jint_constant() & 0x3f;
 598       __ shift_left(left.result(), c, x->operand());
 599       break;
 600     }
 601     case Bytecodes::_lshr: {
 602       int c = right.get_jint_constant() & 0x3f;
 603       __ shift_right(left.result(), c, x->operand());
 604       break;
 605     }
 606     case Bytecodes::_lushr: {
 607       int c = right.get_jint_constant() & 0x3f;
 608       __ unsigned_shift_right(left.result(), c, x->operand());
 609       break;
 610     }
 611     default:
 612       ShouldNotReachHere();
 613     }
 614   } else {
 615     right.load_item();
 616     LIR_Opr tmp = new_register(T_INT);
 617     switch (x->op()) {
 618     case Bytecodes::_ishl: {
 619       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 620       __ shift_left(left.result(), tmp, x->operand(), tmp);
 621       break;
 622     }
 623     case Bytecodes::_ishr: {
 624       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 625       __ shift_right(left.result(), tmp, x->operand(), tmp);
 626       break;
 627     }
 628     case Bytecodes::_iushr: {
 629       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 630       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 631       break;
 632     }
 633     case Bytecodes::_lshl: {
 634       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 635       __ shift_left(left.result(), tmp, x->operand(), tmp);
 636       break;
 637     }
 638     case Bytecodes::_lshr: {
 639       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 640       __ shift_right(left.result(), tmp, x->operand(), tmp);
 641       break;
 642     }
 643     case Bytecodes::_lushr: {
 644       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 645       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 646       break;
 647     }
 648     default:
 649       ShouldNotReachHere();
 650     }
 651   }
 652 }
 653 
 654 // _iand, _land, _ior, _lor, _ixor, _lxor
 655 void LIRGenerator::do_LogicOp(LogicOp* x) {
 656 
 657   LIRItem left(x->x(),  this);
 658   LIRItem right(x->y(), this);
 659 
 660   left.load_item();
 661 
 662   rlock_result(x);
 663   if (right.is_constant()
 664       && ((right.type()->tag() == intTag
 665            && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant()))
 666           || (right.type()->tag() == longTag
 667               && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant()))))  {
 668     right.dont_load_item();
 669   } else {
 670     right.load_item();
 671   }
 672   switch (x->op()) {
 673   case Bytecodes::_iand:
 674   case Bytecodes::_land:
 675     __ logical_and(left.result(), right.result(), x->operand()); break;
 676   case Bytecodes::_ior:
 677   case Bytecodes::_lor:
 678     __ logical_or (left.result(), right.result(), x->operand()); break;
 679   case Bytecodes::_ixor:
 680   case Bytecodes::_lxor:
 681     __ logical_xor(left.result(), right.result(), x->operand()); break;
 682   default: Unimplemented();
 683   }
 684 }
 685 
 686 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 687 void LIRGenerator::do_CompareOp(CompareOp* x) {
 688   LIRItem left(x->x(), this);
 689   LIRItem right(x->y(), this);
 690   ValueTag tag = x->x()->type()->tag();
 691   if (tag == longTag) {
 692     left.set_destroys_register();
 693   }
 694   left.load_item();
 695   right.load_item();
 696   LIR_Opr reg = rlock_result(x);
 697 
 698   if (x->x()->type()->is_float_kind()) {
 699     Bytecodes::Code code = x->op();
 700     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 701   } else if (x->x()->type()->tag() == longTag) {
 702     __ lcmp2int(left.result(), right.result(), reg);
 703   } else {
 704     Unimplemented();
 705   }
 706 }
 707 
 708 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
 709   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 710   new_value.load_item();
 711   cmp_value.load_item();
 712   LIR_Opr result = new_register(T_INT);
 713   if (type == T_OBJECT || type == T_ARRAY) {
 714     __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result);
 715   } else if (type == T_INT) {
 716     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 717   } else if (type == T_LONG) {
 718     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 719   } else {
 720     ShouldNotReachHere();
 721     Unimplemented();
 722   }
 723   __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result);
 724   return result;
 725 }
 726 
 727 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
 728   bool is_oop = type == T_OBJECT || type == T_ARRAY;
 729   LIR_Opr result = new_register(type);
 730   value.load_item();
 731   assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
 732   LIR_Opr tmp = new_register(T_INT);
 733   __ xchg(addr, value.result(), result, tmp);
 734   return result;
 735 }
 736 
 737 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
 738   LIR_Opr result = new_register(type);
 739   value.load_item();
 740   assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
 741   LIR_Opr tmp = new_register(T_INT);
 742   __ xadd(addr, value.result(), result, tmp);
 743   return result;
 744 }
 745 
 746 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 747   switch (x->id()) {
 748     case vmIntrinsics::_dabs:
 749     case vmIntrinsics::_dsqrt: {
 750       assert(x->number_of_arguments() == 1, "wrong type");
 751       LIRItem value(x->argument_at(0), this);
 752       value.load_item();
 753       LIR_Opr dst = rlock_result(x);
 754 
 755       switch (x->id()) {
 756       case vmIntrinsics::_dsqrt: {
 757         __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
 758         break;
 759       }
 760       case vmIntrinsics::_dabs: {
 761         __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
 762         break;
 763       }
 764       }
 765       break;
 766     }
 767     case vmIntrinsics::_dlog10: // fall through
 768     case vmIntrinsics::_dlog: // fall through
 769     case vmIntrinsics::_dsin: // fall through
 770     case vmIntrinsics::_dtan: // fall through
 771     case vmIntrinsics::_dcos: // fall through
 772     case vmIntrinsics::_dexp: {
 773       assert(x->number_of_arguments() == 1, "wrong type");
 774 
 775       address runtime_entry = NULL;
 776       switch (x->id()) {
 777       case vmIntrinsics::_dsin:
 778         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 779         break;
 780       case vmIntrinsics::_dcos:
 781         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 782         break;
 783       case vmIntrinsics::_dtan:
 784         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 785         break;
 786       case vmIntrinsics::_dlog:
 787         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 788         break;
 789       case vmIntrinsics::_dlog10:
 790         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 791         break;
 792       case vmIntrinsics::_dexp:
 793         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 794         break;
 795       default:
 796         ShouldNotReachHere();
 797       }
 798 
 799       LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
 800       set_result(x, result);
 801       break;
 802     }
 803     case vmIntrinsics::_dpow: {
 804       assert(x->number_of_arguments() == 2, "wrong type");
 805       address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 806       LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
 807       set_result(x, result);
 808       break;
 809     }
 810   }
 811 }
 812 
 813 
 814 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 815   assert(x->number_of_arguments() == 5, "wrong type");
 816 
 817   // Make all state_for calls early since they can emit code
 818   CodeEmitInfo* info = state_for(x, x->state());
 819 
 820   LIRItem src(x->argument_at(0), this);
 821   LIRItem src_pos(x->argument_at(1), this);
 822   LIRItem dst(x->argument_at(2), this);
 823   LIRItem dst_pos(x->argument_at(3), this);
 824   LIRItem length(x->argument_at(4), this);
 825 
 826   // operands for arraycopy must use fixed registers, otherwise
 827   // LinearScan will fail allocation (because arraycopy always needs a
 828   // call)
 829 
 830   // The java calling convention will give us enough registers
 831   // so that on the stub side the args will be perfect already.
 832   // On the other slow/special case side we call C and the arg
 833   // positions are not similar enough to pick one as the best.
 834   // Also because the java calling convention is a "shifted" version
 835   // of the C convention we can process the java args trivially into C
 836   // args without worry of overwriting during the xfer
 837 
 838   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 839   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 840   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 841   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 842   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 843 
 844   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 845 
 846   set_no_result(x);
 847 
 848   int flags;
 849   ciArrayKlass* expected_type;
 850   arraycopy_helper(x, &flags, &expected_type);
 851 
 852   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 853 }
 854 
 855 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
 856   assert(UseCRC32Intrinsics, "why are we here?");
 857   // Make all state_for calls early since they can emit code
 858   LIR_Opr result = rlock_result(x);
 859   int flags = 0;
 860   switch (x->id()) {
 861     case vmIntrinsics::_updateCRC32: {
 862       LIRItem crc(x->argument_at(0), this);
 863       LIRItem val(x->argument_at(1), this);
 864       // val is destroyed by update_crc32
 865       val.set_destroys_register();
 866       crc.load_item();
 867       val.load_item();
 868       __ update_crc32(crc.result(), val.result(), result);
 869       break;
 870     }
 871     case vmIntrinsics::_updateBytesCRC32:
 872     case vmIntrinsics::_updateByteBufferCRC32: {
 873       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
 874 
 875       LIRItem crc(x->argument_at(0), this);
 876       LIRItem buf(x->argument_at(1), this);
 877       LIRItem off(x->argument_at(2), this);
 878       LIRItem len(x->argument_at(3), this);
 879       buf.load_item();
 880       off.load_nonconstant();
 881 
 882       LIR_Opr index = off.result();
 883       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 884       if(off.result()->is_constant()) {
 885         index = LIR_OprFact::illegalOpr;
 886        offset += off.result()->as_jint();
 887       }
 888       LIR_Opr base_op = buf.result();
 889 
 890       if (index->is_valid()) {
 891         LIR_Opr tmp = new_register(T_LONG);
 892         __ convert(Bytecodes::_i2l, index, tmp);
 893         index = tmp;
 894       }
 895 
 896       if (offset) {
 897         LIR_Opr tmp = new_pointer_register();
 898         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
 899         base_op = tmp;
 900         offset = 0;
 901       }
 902 
 903       LIR_Address* a = new LIR_Address(base_op,
 904                                        index,
 905                                        offset,
 906                                        T_BYTE);
 907       BasicTypeList signature(3);
 908       signature.append(T_INT);
 909       signature.append(T_ADDRESS);
 910       signature.append(T_INT);
 911       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 912       const LIR_Opr result_reg = result_register_for(x->type());
 913 
 914       LIR_Opr addr = new_pointer_register();
 915       __ leal(LIR_OprFact::address(a), addr);
 916 
 917       crc.load_item_force(cc->at(0));
 918       __ move(addr, cc->at(1));
 919       len.load_item_force(cc->at(2));
 920 
 921       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
 922       __ move(result_reg, result);
 923 
 924       break;
 925     }
 926     default: {
 927       ShouldNotReachHere();
 928     }
 929   }
 930 }
 931 
 932 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
 933   assert(UseCRC32CIntrinsics, "why are we here?");
 934   // Make all state_for calls early since they can emit code
 935   LIR_Opr result = rlock_result(x);
 936   int flags = 0;
 937   switch (x->id()) {
 938     case vmIntrinsics::_updateBytesCRC32C:
 939     case vmIntrinsics::_updateDirectByteBufferCRC32C: {
 940       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
 941       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 942 
 943       LIRItem crc(x->argument_at(0), this);
 944       LIRItem buf(x->argument_at(1), this);
 945       LIRItem off(x->argument_at(2), this);
 946       LIRItem end(x->argument_at(3), this);
 947 
 948       buf.load_item();
 949       off.load_nonconstant();
 950       end.load_nonconstant();
 951 
 952       // len = end - off
 953       LIR_Opr len  = end.result();
 954       LIR_Opr tmpA = new_register(T_INT);
 955       LIR_Opr tmpB = new_register(T_INT);
 956       __ move(end.result(), tmpA);
 957       __ move(off.result(), tmpB);
 958       __ sub(tmpA, tmpB, tmpA);
 959       len = tmpA;
 960 
 961       LIR_Opr index = off.result();
 962       if(off.result()->is_constant()) {
 963         index = LIR_OprFact::illegalOpr;
 964         offset += off.result()->as_jint();
 965       }
 966       LIR_Opr base_op = buf.result();
 967 
 968       if (index->is_valid()) {
 969         LIR_Opr tmp = new_register(T_LONG);
 970         __ convert(Bytecodes::_i2l, index, tmp);
 971         index = tmp;
 972       }
 973 
 974       if (offset) {
 975         LIR_Opr tmp = new_pointer_register();
 976         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
 977         base_op = tmp;
 978         offset = 0;
 979       }
 980 
 981       LIR_Address* a = new LIR_Address(base_op,
 982                                        index,
 983                                        offset,
 984                                        T_BYTE);
 985       BasicTypeList signature(3);
 986       signature.append(T_INT);
 987       signature.append(T_ADDRESS);
 988       signature.append(T_INT);
 989       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 990       const LIR_Opr result_reg = result_register_for(x->type());
 991 
 992       LIR_Opr addr = new_pointer_register();
 993       __ leal(LIR_OprFact::address(a), addr);
 994 
 995       crc.load_item_force(cc->at(0));
 996       __ move(addr, cc->at(1));
 997       __ move(len, cc->at(2));
 998 
 999       __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
1000       __ move(result_reg, result);
1001 
1002       break;
1003     }
1004     default: {
1005       ShouldNotReachHere();
1006     }
1007   }
1008 }
1009 
1010 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
1011   assert(x->number_of_arguments() == 3, "wrong type");
1012   assert(UseFMA, "Needs FMA instructions support.");
1013   LIRItem value(x->argument_at(0), this);
1014   LIRItem value1(x->argument_at(1), this);
1015   LIRItem value2(x->argument_at(2), this);
1016 
1017   value.load_item();
1018   value1.load_item();
1019   value2.load_item();
1020 
1021   LIR_Opr calc_input = value.result();
1022   LIR_Opr calc_input1 = value1.result();
1023   LIR_Opr calc_input2 = value2.result();
1024   LIR_Opr calc_result = rlock_result(x);
1025 
1026   switch (x->id()) {
1027   case vmIntrinsics::_fmaD:   __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
1028   case vmIntrinsics::_fmaF:   __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
1029   default:                    ShouldNotReachHere();
1030   }
1031 }
1032 
1033 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1034   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
1035 }
1036 
1037 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1038 // _i2b, _i2c, _i2s
1039 void LIRGenerator::do_Convert(Convert* x) {
1040   LIRItem value(x->value(), this);
1041   value.load_item();
1042   LIR_Opr input = value.result();
1043   LIR_Opr result = rlock(x);
1044 
1045   // arguments of lir_convert
1046   LIR_Opr conv_input = input;
1047   LIR_Opr conv_result = result;
1048   ConversionStub* stub = NULL;
1049 
1050   __ convert(x->op(), conv_input, conv_result);
1051 
1052   assert(result->is_virtual(), "result must be virtual register");
1053   set_result(x, result);
1054 }
1055 
1056 void LIRGenerator::do_NewInstance(NewInstance* x) {
1057 #ifndef PRODUCT
1058   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1059     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1060   }
1061 #endif
1062   CodeEmitInfo* info = state_for(x, x->state());
1063   LIR_Opr reg = result_register_for(x->type());
1064   new_instance(reg, x->klass(), x->is_unresolved(),
1065                        FrameMap::r2_oop_opr,
1066                        FrameMap::r5_oop_opr,
1067                        FrameMap::r4_oop_opr,
1068                        LIR_OprFact::illegalOpr,
1069                        FrameMap::r3_metadata_opr, info);
1070   LIR_Opr result = rlock_result(x);
1071   __ move(reg, result);
1072 }
1073 
1074 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1075   CodeEmitInfo* info = state_for(x, x->state());
1076 
1077   LIRItem length(x->length(), this);
1078   length.load_item_force(FrameMap::r19_opr);
1079 
1080   LIR_Opr reg = result_register_for(x->type());
1081   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1082   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1083   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1084   LIR_Opr tmp4 = reg;
1085   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1086   LIR_Opr len = length.result();
1087   BasicType elem_type = x->elt_type();
1088 
1089   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1090 
1091   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1092   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1093 
1094   LIR_Opr result = rlock_result(x);
1095   __ move(reg, result);
1096 }
1097 
1098 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1099   LIRItem length(x->length(), this);
1100   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1101   // and therefore provide the state before the parameters have been consumed
1102   CodeEmitInfo* patching_info = NULL;
1103   if (!x->klass()->is_loaded() || PatchALot) {
1104     patching_info =  state_for(x, x->state_before());
1105   }
1106 
1107   CodeEmitInfo* info = state_for(x, x->state());
1108 
1109   LIR_Opr reg = result_register_for(x->type());
1110   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1111   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1112   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1113   LIR_Opr tmp4 = reg;
1114   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1115 
1116   length.load_item_force(FrameMap::r19_opr);
1117   LIR_Opr len = length.result();
1118 
1119   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1120   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1121   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1122     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1123   }
1124   klass2reg_with_patching(klass_reg, obj, patching_info);
1125   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1126 
1127   LIR_Opr result = rlock_result(x);
1128   __ move(reg, result);
1129 }
1130 
1131 
1132 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1133   Values* dims = x->dims();
1134   int i = dims->length();
1135   LIRItemList* items = new LIRItemList(i, i, NULL);
1136   while (i-- > 0) {
1137     LIRItem* size = new LIRItem(dims->at(i), this);
1138     items->at_put(i, size);
1139   }
1140 
1141   // Evaluate state_for early since it may emit code.
1142   CodeEmitInfo* patching_info = NULL;
1143   if (!x->klass()->is_loaded() || PatchALot) {
1144     patching_info = state_for(x, x->state_before());
1145 
1146     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1147     // clone all handlers (NOTE: Usually this is handled transparently
1148     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1149     // is done explicitly here because a stub isn't being used).
1150     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1151   }
1152   CodeEmitInfo* info = state_for(x, x->state());
1153 
1154   i = dims->length();
1155   while (i-- > 0) {
1156     LIRItem* size = items->at(i);
1157     size->load_item();
1158 
1159     store_stack_parameter(size->result(), in_ByteSize(i*4));
1160   }
1161 
1162   LIR_Opr klass_reg = FrameMap::r0_metadata_opr;
1163   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1164 
1165   LIR_Opr rank = FrameMap::r19_opr;
1166   __ move(LIR_OprFact::intConst(x->rank()), rank);
1167   LIR_Opr varargs = FrameMap::r2_opr;
1168   __ move(FrameMap::sp_opr, varargs);
1169   LIR_OprList* args = new LIR_OprList(3);
1170   args->append(klass_reg);
1171   args->append(rank);
1172   args->append(varargs);
1173   LIR_Opr reg = result_register_for(x->type());
1174   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1175                   LIR_OprFact::illegalOpr,
1176                   reg, args, info);
1177 
1178   LIR_Opr result = rlock_result(x);
1179   __ move(reg, result);
1180 }
1181 
1182 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1183   // nothing to do for now
1184 }
1185 
1186 void LIRGenerator::do_CheckCast(CheckCast* x) {
1187   LIRItem obj(x->obj(), this);
1188 
1189   CodeEmitInfo* patching_info = NULL;
1190   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1191     // must do this before locking the destination register as an oop register,
1192     // and before the obj is loaded (the latter is for deoptimization)
1193     patching_info = state_for(x, x->state_before());
1194   }
1195   obj.load_item();
1196 
1197   // info for exceptions
1198   CodeEmitInfo* info_for_exception =
1199       (x->needs_exception_state() ? state_for(x) :
1200                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
1201 
1202   CodeStub* stub;
1203   if (x->is_incompatible_class_change_check()) {
1204     assert(patching_info == NULL, "can't patch this");
1205     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1206   } else if (x->is_invokespecial_receiver_check()) {
1207     assert(patching_info == NULL, "can't patch this");
1208     stub = new DeoptimizeStub(info_for_exception,
1209                               Deoptimization::Reason_class_check,
1210                               Deoptimization::Action_none);
1211   } else {
1212     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1213   }
1214   LIR_Opr reg = rlock_result(x);
1215   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1216   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1217     tmp3 = new_register(objectType);
1218   }
1219   __ checkcast(reg, obj.result(), x->klass(),
1220                new_register(objectType), new_register(objectType), tmp3,
1221                x->direct_compare(), info_for_exception, patching_info, stub,
1222                x->profiled_method(), x->profiled_bci());
1223 }
1224 
1225 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1226   LIRItem obj(x->obj(), this);
1227 
1228   // result and test object may not be in same register
1229   LIR_Opr reg = rlock_result(x);
1230   CodeEmitInfo* patching_info = NULL;
1231   if ((!x->klass()->is_loaded() || PatchALot)) {
1232     // must do this before locking the destination register as an oop register
1233     patching_info = state_for(x, x->state_before());
1234   }
1235   obj.load_item();
1236   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1237   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1238     tmp3 = new_register(objectType);
1239   }
1240   __ instanceof(reg, obj.result(), x->klass(),
1241                 new_register(objectType), new_register(objectType), tmp3,
1242                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1243 }
1244 
1245 void LIRGenerator::do_If(If* x) {
1246   assert(x->number_of_sux() == 2, "inconsistency");
1247   ValueTag tag = x->x()->type()->tag();
1248   bool is_safepoint = x->is_safepoint();
1249 
1250   If::Condition cond = x->cond();
1251 
1252   LIRItem xitem(x->x(), this);
1253   LIRItem yitem(x->y(), this);
1254   LIRItem* xin = &xitem;
1255   LIRItem* yin = &yitem;
1256 
1257   if (tag == longTag) {
1258     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1259     // mirror for other conditions
1260     if (cond == If::gtr || cond == If::leq) {
1261       cond = Instruction::mirror(cond);
1262       xin = &yitem;
1263       yin = &xitem;
1264     }
1265     xin->set_destroys_register();
1266   }
1267   xin->load_item();
1268 
1269   if (tag == longTag) {
1270     if (yin->is_constant()
1271         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) {
1272       yin->dont_load_item();
1273     } else {
1274       yin->load_item();
1275     }
1276   } else if (tag == intTag) {
1277     if (yin->is_constant()
1278         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant()))  {
1279       yin->dont_load_item();
1280     } else {
1281       yin->load_item();
1282     }
1283   } else {
1284     yin->load_item();
1285   }
1286 
1287   // add safepoint before generating condition code so it can be recomputed
1288   if (x->is_safepoint()) {
1289     // increment backedge counter if needed
1290     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1291     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1292   }
1293   set_no_result(x);
1294 
1295   LIR_Opr left = xin->result();
1296   LIR_Opr right = yin->result();
1297 
1298   __ cmp(lir_cond(cond), left, right);
1299   // Generate branch profiling. Profiling code doesn't kill flags.
1300   profile_branch(x, cond);
1301   move_to_phi(x->state());
1302   if (x->x()->type()->is_float_kind()) {
1303     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1304   } else {
1305     __ branch(lir_cond(cond), right->type(), x->tsux());
1306   }
1307   assert(x->default_sux() == x->fsux(), "wrong destination above");
1308   __ jump(x->default_sux());
1309 }
1310 
1311 LIR_Opr LIRGenerator::getThreadPointer() {
1312    return FrameMap::as_pointer_opr(rthread);
1313 }
1314 
1315 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
1316 
1317 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1318                                         CodeEmitInfo* info) {
1319   __ volatile_store_mem_reg(value, address, info);
1320 }
1321 
1322 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1323                                        CodeEmitInfo* info) {
1324   // 8179954: We need to make sure that the code generated for
1325   // volatile accesses forms a sequentially-consistent set of
1326   // operations when combined with STLR and LDAR.  Without a leading
1327   // membar it's possible for a simple Dekker test to fail if loads
1328   // use LD;DMB but stores use STLR.  This can happen if C2 compiles
1329   // the stores in one method and C1 compiles the loads in another.
1330   if (! UseBarriersForVolatile) {
1331     __ membar();
1332   }
1333 
1334   __ volatile_load_mem_reg(address, result, info);
1335 }