1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_sparc.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "logging/log.hpp"
  30 #include "oops/arrayOop.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/method.hpp"
  34 #include "oops/methodCounters.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/frame.inline.hpp"
  40 #include "runtime/safepointMechanism.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/thread.inline.hpp"
  43 #include "utilities/align.hpp"
  44 
  45 // Implementation of InterpreterMacroAssembler
  46 
  47 // This file specializes the assember with interpreter-specific macros
  48 
  49 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
  50 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
  51 
  52 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  53   assert(entry, "Entry must have been generated by now");
  54   AddressLiteral al(entry);
  55   jump_to(al, G3_scratch);
  56   delayed()->nop();
  57 }
  58 
  59 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
  60   // Note: this algorithm is also used by C1's OSR entry sequence.
  61   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
  62   assert_different_registers(args_size, locals_size);
  63   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
  64   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
  65   // Use br/mov combination because it works on both V8 and V9 and is
  66   // faster.
  67   Label skip_move;
  68   br(Assembler::negative, true, Assembler::pt, skip_move);
  69   delayed()->mov(G0, delta);
  70   bind(skip_move);
  71   align_up(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
  72   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
  73 }
  74 
  75 // Dispatch code executed in the prolog of a bytecode which does not do it's
  76 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
  77 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  78   assert_not_delayed();
  79   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
  80   // dispatch table to use
  81   AddressLiteral tbl(Interpreter::dispatch_table(state));
  82   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  83   set(tbl, G3_scratch);                                 // compute addr of table
  84   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
  85 }
  86 
  87 
  88 // Dispatch code executed in the epilog of a bytecode which does not do it's
  89 // own dispatch. The dispatch address in IdispatchAddress is used for the
  90 // dispatch.
  91 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
  92   assert_not_delayed();
  93   verify_FPU(1, state);
  94   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  95   jmp( IdispatchAddress, 0 );
  96   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
  97   else                delayed()->nop();
  98 }
  99 
 100 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) {
 101   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 102   assert_not_delayed();
 103   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 104   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, true, generate_poll);
 105 }
 106 
 107 
 108 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
 109   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 110   assert_not_delayed();
 111   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 112   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
 113 }
 114 
 115 
 116 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 117   // load current bytecode
 118   assert_not_delayed();
 119   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
 120   dispatch_base(state, table);
 121 }
 122 
 123 
 124 void InterpreterMacroAssembler::call_VM_leaf_base(
 125   Register java_thread,
 126   address  entry_point,
 127   int      number_of_arguments
 128 ) {
 129   if (!java_thread->is_valid())
 130     java_thread = L7_thread_cache;
 131   // super call
 132   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
 133 }
 134 
 135 
 136 void InterpreterMacroAssembler::call_VM_base(
 137   Register        oop_result,
 138   Register        java_thread,
 139   Register        last_java_sp,
 140   address         entry_point,
 141   int             number_of_arguments,
 142   bool            check_exception
 143 ) {
 144   if (!java_thread->is_valid())
 145     java_thread = L7_thread_cache;
 146   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
 147   // takes responsibility for setting its own thread-state on call-out.
 148   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
 149 
 150   //save_bcp();                                  // save bcp
 151   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
 152   //restore_bcp();                               // restore bcp
 153   //restore_locals();                            // restore locals pointer
 154 }
 155 
 156 
 157 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 158   if (JvmtiExport::can_pop_frame()) {
 159     Label L;
 160 
 161     // Check the "pending popframe condition" flag in the current thread
 162     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
 163 
 164     // Initiate popframe handling only if it is not already being processed.  If the flag
 165     // has the popframe_processing bit set, it means that this code is called *during* popframe
 166     // handling - we don't want to reenter.
 167     btst(JavaThread::popframe_pending_bit, scratch_reg);
 168     br(zero, false, pt, L);
 169     delayed()->nop();
 170     btst(JavaThread::popframe_processing_bit, scratch_reg);
 171     br(notZero, false, pt, L);
 172     delayed()->nop();
 173 
 174     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 175     // address of the same-named entrypoint in the generated interpreter code.
 176     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 177 
 178     // Jump to Interpreter::_remove_activation_preserving_args_entry
 179     jmpl(O0, G0, G0);
 180     delayed()->nop();
 181     bind(L);
 182   }
 183 }
 184 
 185 
 186 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 187   Register thr_state = G4_scratch;
 188   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 189   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
 190   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
 191   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
 192   switch (state) {
 193   case ltos: ld_long(val_addr, Otos_l);                   break;
 194   case atos: ld_ptr(oop_addr, Otos_l);
 195              st_ptr(G0, oop_addr);                        break;
 196   case btos:                                           // fall through
 197   case ztos:                                           // fall through
 198   case ctos:                                           // fall through
 199   case stos:                                           // fall through
 200   case itos: ld(val_addr, Otos_l1);                       break;
 201   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
 202   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
 203   case vtos: /* nothing to do */                          break;
 204   default  : ShouldNotReachHere();
 205   }
 206   // Clean up tos value in the jvmti thread state
 207   or3(G0, ilgl, G3_scratch);
 208   stw(G3_scratch, tos_addr);
 209   st_long(G0, val_addr);
 210   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 211 }
 212 
 213 
 214 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 215   if (JvmtiExport::can_force_early_return()) {
 216     Label L;
 217     Register thr_state = G3_scratch;
 218     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 219     br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
 220 
 221     // Initiate earlyret handling only if it is not already being processed.
 222     // If the flag has the earlyret_processing bit set, it means that this code
 223     // is called *during* earlyret handling - we don't want to reenter.
 224     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
 225     cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
 226 
 227     // Call Interpreter::remove_activation_early_entry() to get the address of the
 228     // same-named entrypoint in the generated interpreter code
 229     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
 230     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
 231 
 232     // Jump to Interpreter::_remove_activation_early_entry
 233     jmpl(O0, G0, G0);
 234     delayed()->nop();
 235     bind(L);
 236   }
 237 }
 238 
 239 
 240 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
 241   mov(arg_1, O0);
 242   mov(arg_2, O1);
 243   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
 244 }
 245 
 246 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
 247   assert_not_delayed();
 248   dispatch_Lbyte_code(state, table);
 249 }
 250 
 251 
 252 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
 253   dispatch_base(state, Interpreter::normal_table(state));
 254 }
 255 
 256 
 257 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 258   dispatch_base(state, Interpreter::dispatch_table(state));
 259 }
 260 
 261 
 262 // common code to dispatch and dispatch_only
 263 // dispatch value in Lbyte_code and increment Lbcp
 264 
 265 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify, bool generate_poll) {
 266   verify_FPU(1, state);
 267   // %%%%% maybe implement +VerifyActivationFrameSize here
 268   //verify_thread(); //too slow; we will just verify on method entry & exit
 269   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 270   // dispatch table to use
 271   AddressLiteral tbl(table);
 272   Label dispatch;
 273 
 274   if (SafepointMechanism::uses_thread_local_poll() && generate_poll) {
 275     AddressLiteral sfpt_tbl(Interpreter::safept_table(state));
 276     Label no_safepoint;
 277 
 278     if (tbl.value() != sfpt_tbl.value()) {
 279       ldx(Address(G2_thread, Thread::polling_page_offset()), G3_scratch, 0);
 280       // Armed page has poll_bit set, if poll bit is cleared just continue.
 281       and3(G3_scratch, SafepointMechanism::poll_bit(), G3_scratch);
 282 
 283       br_null_short(G3_scratch, Assembler::pt, no_safepoint);
 284       set(sfpt_tbl, G3_scratch);
 285       ba_short(dispatch);
 286     }
 287     bind(no_safepoint);
 288   }
 289 
 290   set(tbl, G3_scratch);                               // compute addr of table
 291   bind(dispatch);
 292   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 293   ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
 294   jmp( G3_scratch, 0 );
 295   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 296   else                delayed()->nop();
 297 }
 298 
 299 
 300 // Helpers for expression stack
 301 
 302 // Longs and doubles are Category 2 computational types in the
 303 // JVM specification (section 3.11.1) and take 2 expression stack or
 304 // local slots.
 305 // Aligning them on 32 bit with tagged stacks is hard because the code generated
 306 // for the dup* bytecodes depends on what types are already on the stack.
 307 // If the types are split into the two stack/local slots, that is much easier
 308 // (and we can use 0 for non-reference tags).
 309 
 310 // Known good alignment in _LP64 but unknown otherwise
 311 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
 312   assert_not_delayed();
 313 
 314   ldf(FloatRegisterImpl::D, r1, offset, d);
 315 }
 316 
 317 // Known good alignment in _LP64 but unknown otherwise
 318 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
 319   assert_not_delayed();
 320 
 321   stf(FloatRegisterImpl::D, d, r1, offset);
 322   // store something more useful here
 323   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 324 }
 325 
 326 
 327 // Known good alignment in _LP64 but unknown otherwise
 328 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
 329   assert_not_delayed();
 330   ldx(r1, offset, rd);
 331 }
 332 
 333 // Known good alignment in _LP64 but unknown otherwise
 334 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
 335   assert_not_delayed();
 336 
 337   stx(l, r1, offset);
 338   // store something more useful here
 339   stx(G0, r1, offset+Interpreter::stackElementSize);
 340 }
 341 
 342 void InterpreterMacroAssembler::pop_i(Register r) {
 343   assert_not_delayed();
 344   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 345   inc(Lesp, Interpreter::stackElementSize);
 346   debug_only(verify_esp(Lesp));
 347 }
 348 
 349 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
 350   assert_not_delayed();
 351   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 352   inc(Lesp, Interpreter::stackElementSize);
 353   debug_only(verify_esp(Lesp));
 354 }
 355 
 356 void InterpreterMacroAssembler::pop_l(Register r) {
 357   assert_not_delayed();
 358   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 359   inc(Lesp, 2*Interpreter::stackElementSize);
 360   debug_only(verify_esp(Lesp));
 361 }
 362 
 363 
 364 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
 365   assert_not_delayed();
 366   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
 367   inc(Lesp, Interpreter::stackElementSize);
 368   debug_only(verify_esp(Lesp));
 369 }
 370 
 371 
 372 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
 373   assert_not_delayed();
 374   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
 375   inc(Lesp, 2*Interpreter::stackElementSize);
 376   debug_only(verify_esp(Lesp));
 377 }
 378 
 379 
 380 void InterpreterMacroAssembler::push_i(Register r) {
 381   assert_not_delayed();
 382   debug_only(verify_esp(Lesp));
 383   st(r, Lesp, 0);
 384   dec(Lesp, Interpreter::stackElementSize);
 385 }
 386 
 387 void InterpreterMacroAssembler::push_ptr(Register r) {
 388   assert_not_delayed();
 389   st_ptr(r, Lesp, 0);
 390   dec(Lesp, Interpreter::stackElementSize);
 391 }
 392 
 393 // remember: our convention for longs in SPARC is:
 394 // O0 (Otos_l1) has high-order part in first word,
 395 // O1 (Otos_l2) has low-order part in second word
 396 
 397 void InterpreterMacroAssembler::push_l(Register r) {
 398   assert_not_delayed();
 399   debug_only(verify_esp(Lesp));
 400   // Longs are stored in memory-correct order, even if unaligned.
 401   int offset = -Interpreter::stackElementSize;
 402   store_unaligned_long(r, Lesp, offset);
 403   dec(Lesp, 2 * Interpreter::stackElementSize);
 404 }
 405 
 406 
 407 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 408   assert_not_delayed();
 409   debug_only(verify_esp(Lesp));
 410   stf(FloatRegisterImpl::S, f, Lesp, 0);
 411   dec(Lesp, Interpreter::stackElementSize);
 412 }
 413 
 414 
 415 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
 416   assert_not_delayed();
 417   debug_only(verify_esp(Lesp));
 418   // Longs are stored in memory-correct order, even if unaligned.
 419   int offset = -Interpreter::stackElementSize;
 420   store_unaligned_double(d, Lesp, offset);
 421   dec(Lesp, 2 * Interpreter::stackElementSize);
 422 }
 423 
 424 
 425 void InterpreterMacroAssembler::push(TosState state) {
 426   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 427   switch (state) {
 428     case atos: push_ptr();            break;
 429     case btos:                        // fall through
 430     case ztos:                        // fall through
 431     case ctos:                        // fall through
 432     case stos:                        // fall through
 433     case itos: push_i();              break;
 434     case ltos: push_l();              break;
 435     case ftos: push_f();              break;
 436     case dtos: push_d();              break;
 437     case vtos: /* nothing to do */    break;
 438     default  : ShouldNotReachHere();
 439   }
 440 }
 441 
 442 
 443 void InterpreterMacroAssembler::pop(TosState state) {
 444   switch (state) {
 445     case atos: pop_ptr();            break;
 446     case btos:                       // fall through
 447     case ztos:                       // fall through
 448     case ctos:                       // fall through
 449     case stos:                       // fall through
 450     case itos: pop_i();              break;
 451     case ltos: pop_l();              break;
 452     case ftos: pop_f();              break;
 453     case dtos: pop_d();              break;
 454     case vtos: /* nothing to do */   break;
 455     default  : ShouldNotReachHere();
 456   }
 457   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 458 }
 459 
 460 
 461 // Helpers for swap and dup
 462 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 463   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
 464 }
 465 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 466   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
 467 }
 468 
 469 
 470 void InterpreterMacroAssembler::load_receiver(Register param_count,
 471                                               Register recv) {
 472   sll(param_count, Interpreter::logStackElementSize, param_count);
 473   ld_ptr(Lesp, param_count, recv);  // gets receiver oop
 474 }
 475 
 476 void InterpreterMacroAssembler::empty_expression_stack() {
 477   // Reset Lesp.
 478   sub( Lmonitors, wordSize, Lesp );
 479 
 480   // Reset SP by subtracting more space from Lesp.
 481   Label done;
 482   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
 483 
 484   // A native does not need to do this, since its callee does not change SP.
 485   ld(Lmethod, Method::access_flags_offset(), Gframe_size);  // Load access flags.
 486   btst(JVM_ACC_NATIVE, Gframe_size);
 487   br(Assembler::notZero, false, Assembler::pt, done);
 488   delayed()->nop();
 489 
 490   // Compute max expression stack+register save area
 491   ld_ptr(Lmethod, in_bytes(Method::const_offset()), Gframe_size);
 492   lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size);  // Load max stack.
 493   add(Gframe_size, frame::memory_parameter_word_sp_offset+Method::extra_stack_entries(), Gframe_size );
 494 
 495   //
 496   // now set up a stack frame with the size computed above
 497   //
 498   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
 499   sll( Gframe_size, LogBytesPerWord, Gframe_size );
 500   sub( Lesp, Gframe_size, Gframe_size );
 501   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
 502   debug_only(verify_sp(Gframe_size, G4_scratch));
 503   sub(Gframe_size, STACK_BIAS, Gframe_size );
 504   mov(Gframe_size, SP);
 505 
 506   bind(done);
 507 }
 508 
 509 
 510 #ifdef ASSERT
 511 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
 512   Label Bad, OK;
 513 
 514   // Saved SP must be aligned.
 515   btst(2*BytesPerWord-1, Rsp);
 516   br(Assembler::notZero, false, Assembler::pn, Bad);
 517   delayed()->nop();
 518 
 519   // Saved SP, plus register window size, must not be above FP.
 520   add(Rsp, frame::register_save_words * wordSize, Rtemp);
 521   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
 522   cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
 523 
 524   // Saved SP must not be ridiculously below current SP.
 525   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
 526   set(maxstack, Rtemp);
 527   sub(SP, Rtemp, Rtemp);
 528   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
 529   cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
 530 
 531   ba_short(OK);
 532 
 533   bind(Bad);
 534   stop("on return to interpreted call, restored SP is corrupted");
 535 
 536   bind(OK);
 537 }
 538 
 539 
 540 void InterpreterMacroAssembler::verify_esp(Register Resp) {
 541   // about to read or write Resp[0]
 542   // make sure it is not in the monitors or the register save area
 543   Label OK1, OK2;
 544 
 545   cmp(Resp, Lmonitors);
 546   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
 547   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
 548   stop("too many pops:  Lesp points into monitor area");
 549   bind(OK1);
 550   sub(Resp, STACK_BIAS, Resp);
 551   cmp(Resp, SP);
 552   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
 553   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
 554   stop("too many pushes:  Lesp points into register window");
 555   bind(OK2);
 556 }
 557 #endif // ASSERT
 558 
 559 // Load compiled (i2c) or interpreter entry when calling from interpreted and
 560 // do the call. Centralized so that all interpreter calls will do the same actions.
 561 // If jvmti single stepping is on for a thread we must not call compiled code.
 562 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
 563 
 564   // Assume we want to go compiled if available
 565 
 566   ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
 567 
 568   if (JvmtiExport::can_post_interpreter_events()) {
 569     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 570     // compiled code in threads for which the event is enabled.  Check here for
 571     // interp_only_mode if these events CAN be enabled.
 572     verify_thread();
 573     Label skip_compiled_code;
 574 
 575     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
 576     ld(interp_only, scratch);
 577     cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
 578     delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
 579     bind(skip_compiled_code);
 580   }
 581 
 582   // the i2c_adapters need Method* in G5_method (right? %%%)
 583   // do the call
 584 #ifdef ASSERT
 585   {
 586     Label ok;
 587     br_notnull_short(target, Assembler::pt, ok);
 588     stop("null entry point");
 589     bind(ok);
 590   }
 591 #endif // ASSERT
 592 
 593   // Adjust Rret first so Llast_SP can be same as Rret
 594   add(Rret, -frame::pc_return_offset, O7);
 595   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
 596   // Record SP so we can remove any stack space allocated by adapter transition
 597   jmp(target, 0);
 598   delayed()->mov(SP, Llast_SP);
 599 }
 600 
 601 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
 602   assert_not_delayed();
 603 
 604   Label not_taken;
 605   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
 606   else             br (cc, false, Assembler::pn, not_taken);
 607   delayed()->nop();
 608 
 609   TemplateTable::branch(false,false);
 610 
 611   bind(not_taken);
 612 
 613   profile_not_taken_branch(G3_scratch);
 614 }
 615 
 616 
 617 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
 618                                   int         bcp_offset,
 619                                   Register    Rtmp,
 620                                   Register    Rdst,
 621                                   signedOrNot is_signed,
 622                                   setCCOrNot  should_set_CC ) {
 623   assert(Rtmp != Rdst, "need separate temp register");
 624   assert_not_delayed();
 625   switch (is_signed) {
 626    default: ShouldNotReachHere();
 627 
 628    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
 629    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
 630   }
 631   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
 632   sll( Rdst, BitsPerByte, Rdst);
 633   switch (should_set_CC ) {
 634    default: ShouldNotReachHere();
 635 
 636    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
 637    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
 638   }
 639 }
 640 
 641 
 642 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
 643                                   int        bcp_offset,
 644                                   Register   Rtmp,
 645                                   Register   Rdst,
 646                                   setCCOrNot should_set_CC ) {
 647   assert(Rtmp != Rdst, "need separate temp register");
 648   assert_not_delayed();
 649   add( Lbcp, bcp_offset, Rtmp);
 650   andcc( Rtmp, 3, G0);
 651   Label aligned;
 652   switch (should_set_CC ) {
 653    default: ShouldNotReachHere();
 654 
 655    case      set_CC: break;
 656    case dont_set_CC: break;
 657   }
 658 
 659   br(Assembler::zero, true, Assembler::pn, aligned);
 660   delayed()->ldsw(Rtmp, 0, Rdst);
 661 
 662   ldub(Lbcp, bcp_offset + 3, Rdst);
 663   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
 664   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
 665   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 666   or3(Rtmp, Rdst, Rdst );
 667 
 668   bind(aligned);
 669   if (should_set_CC == set_CC) tst(Rdst);
 670 }
 671 
 672 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
 673                                                        int bcp_offset, size_t index_size) {
 674   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 675   if (index_size == sizeof(u2)) {
 676     get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
 677   } else if (index_size == sizeof(u4)) {
 678     get_4_byte_integer_at_bcp(bcp_offset, temp, index);
 679     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 680     xor3(index, -1, index);  // convert to plain index
 681   } else if (index_size == sizeof(u1)) {
 682     ldub(Lbcp, bcp_offset, index);
 683   } else {
 684     ShouldNotReachHere();
 685   }
 686 }
 687 
 688 
 689 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
 690                                                            int bcp_offset, size_t index_size) {
 691   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 692   assert_different_registers(cache, tmp);
 693   assert_not_delayed();
 694   get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
 695   // convert from field index to ConstantPoolCacheEntry index and from
 696   // word index to byte offset
 697   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 698   add(LcpoolCache, tmp, cache);
 699 }
 700 
 701 
 702 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 703                                                                         Register temp,
 704                                                                         Register bytecode,
 705                                                                         int byte_no,
 706                                                                         int bcp_offset,
 707                                                                         size_t index_size) {
 708   get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
 709   ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
 710   const int shift_count = (1 + byte_no) * BitsPerByte;
 711   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 712          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 713          "correct shift count");
 714   srl(bytecode, shift_count, bytecode);
 715   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 716   and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
 717 }
 718 
 719 
 720 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 721                                                                int bcp_offset, size_t index_size) {
 722   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 723   assert_different_registers(cache, tmp);
 724   assert_not_delayed();
 725   if (index_size == sizeof(u2)) {
 726     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 727   } else {
 728     ShouldNotReachHere();  // other sizes not supported here
 729   }
 730               // convert from field index to ConstantPoolCacheEntry index
 731               // and from word index to byte offset
 732   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 733               // skip past the header
 734   add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
 735               // construct pointer to cache entry
 736   add(LcpoolCache, tmp, cache);
 737 }
 738 
 739 
 740 // Load object from cpool->resolved_references(index)
 741 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 742                                            Register result, Register index, Register tmp) {
 743   assert_different_registers(result, index, tmp);
 744   assert_not_delayed();
 745   // convert from field index to resolved_references() index and from
 746   // word index to byte offset. Since this is a java object, it can be compressed
 747   sll(index, LogBytesPerHeapOop, index);
 748   get_constant_pool(result);
 749   // load pointer for resolved_references[] objArray
 750   ld_ptr(result, ConstantPool::cache_offset_in_bytes(), result);
 751   ld_ptr(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result);
 752   resolve_oop_handle(result, tmp);
 753   // Add in the index
 754   add(result, index, result);
 755   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, tmp);
 756 }
 757 
 758 
 759 // load cpool->resolved_klass_at(index)
 760 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool,
 761                                            Register Roffset, Register Rklass) {
 762   // int value = *this_cp->int_at_addr(which);
 763   // int resolved_klass_index = extract_low_short_from_int(value);
 764   //
 765   // Because SPARC is big-endian, the low_short is at (cpool->int_at_addr(which) + 2 bytes)
 766   add(Roffset, Rcpool, Roffset);
 767   lduh(Roffset, sizeof(ConstantPool) + 2, Roffset);  // Roffset = resolved_klass_index
 768 
 769   Register Rresolved_klasses = Rklass;
 770   ld_ptr(Rcpool, ConstantPool::resolved_klasses_offset_in_bytes(), Rresolved_klasses);
 771   sll(Roffset, LogBytesPerWord, Roffset);
 772   add(Roffset, Array<Klass*>::base_offset_in_bytes(), Roffset);
 773   ld_ptr(Rresolved_klasses, Roffset, Rklass);
 774 }
 775 
 776 
 777 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 778 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 779 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 780                                                   Register Rsuper_klass,
 781                                                   Register Rtmp1,
 782                                                   Register Rtmp2,
 783                                                   Register Rtmp3,
 784                                                   Label &ok_is_subtype ) {
 785   Label not_subtype;
 786 
 787   // Profile the not-null value's klass.
 788   profile_typecheck(Rsub_klass, Rtmp1);
 789 
 790   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
 791                                 Rtmp1, Rtmp2,
 792                                 &ok_is_subtype, &not_subtype, NULL);
 793 
 794   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
 795                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
 796                                 &ok_is_subtype, NULL);
 797 
 798   bind(not_subtype);
 799   profile_typecheck_failed(Rtmp1);
 800 }
 801 
 802 // Separate these two to allow for delay slot in middle
 803 // These are used to do a test and full jump to exception-throwing code.
 804 
 805 // %%%%% Could possibly reoptimize this by testing to see if could use
 806 // a single conditional branch (i.e. if span is small enough.
 807 // If you go that route, than get rid of the split and give up
 808 // on the delay-slot hack.
 809 
 810 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
 811                                                     Label&    ok ) {
 812   assert_not_delayed();
 813   br(ok_condition, true, pt, ok);
 814   // DELAY SLOT
 815 }
 816 
 817 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
 818                                                     Label&    ok ) {
 819   assert_not_delayed();
 820   bp( ok_condition, true, Assembler::xcc, pt, ok);
 821   // DELAY SLOT
 822 }
 823 
 824 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
 825                                                   Label&    ok ) {
 826   assert_not_delayed();
 827   brx(ok_condition, true, pt, ok);
 828   // DELAY SLOT
 829 }
 830 
 831 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
 832                                                 Register Rscratch,
 833                                                 Label&   ok ) {
 834   assert(throw_entry_point != NULL, "entry point must be generated by now");
 835   AddressLiteral dest(throw_entry_point);
 836   jump_to(dest, Rscratch);
 837   delayed()->nop();
 838   bind(ok);
 839 }
 840 
 841 
 842 // And if you cannot use the delay slot, here is a shorthand:
 843 
 844 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
 845                                                   address   throw_entry_point,
 846                                                   Register  Rscratch ) {
 847   Label ok;
 848   if (ok_condition != never) {
 849     throw_if_not_1_icc( ok_condition, ok);
 850     delayed()->nop();
 851   }
 852   throw_if_not_2( throw_entry_point, Rscratch, ok);
 853 }
 854 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
 855                                                   address   throw_entry_point,
 856                                                   Register  Rscratch ) {
 857   Label ok;
 858   if (ok_condition != never) {
 859     throw_if_not_1_xcc( ok_condition, ok);
 860     delayed()->nop();
 861   }
 862   throw_if_not_2( throw_entry_point, Rscratch, ok);
 863 }
 864 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
 865                                                 address   throw_entry_point,
 866                                                 Register  Rscratch ) {
 867   Label ok;
 868   if (ok_condition != never) {
 869     throw_if_not_1_x( ok_condition, ok);
 870     delayed()->nop();
 871   }
 872   throw_if_not_2( throw_entry_point, Rscratch, ok);
 873 }
 874 
 875 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
 876 // Note: res is still shy of address by array offset into object.
 877 
 878 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
 879   assert_not_delayed();
 880 
 881   verify_oop(array);
 882   // Sign extend since tos (index) can be a 32bit value.
 883   sra(index, G0, index);
 884 
 885   // Check array.
 886   Label ptr_ok;
 887   tst(array);
 888   throw_if_not_1_x(notZero, ptr_ok);
 889   delayed()->ld(array, arrayOopDesc::length_offset_in_bytes(), tmp); // Check index.
 890   throw_if_not_2(Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
 891 
 892   Label index_ok;
 893   cmp(index, tmp);
 894   throw_if_not_1_icc(lessUnsigned, index_ok);
 895   if (index_shift > 0) {
 896     delayed()->sll(index, index_shift, index);
 897   } else {
 898     delayed()->add(array, index, res); // addr - const offset in index
 899   }
 900   // Pass the array to create more detailed exceptions.
 901   // Convention: move aberrant index into Otos_i for exception message.
 902   mov(index, Otos_i);
 903   mov(array, G3_scratch);
 904   throw_if_not_2(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
 905 
 906   // add offset if didn't do it in delay slot
 907   if (index_shift > 0) { add(array, index, res); } // addr - const offset in index
 908 }
 909 
 910 
 911 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
 912   assert_not_delayed();
 913 
 914   // pop array
 915   pop_ptr(array);
 916 
 917   // check array
 918   index_check_without_pop(array, index, index_shift, tmp, res);
 919 }
 920 
 921 
 922 void InterpreterMacroAssembler::get_const(Register Rdst) {
 923   ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
 924 }
 925 
 926 
 927 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 928   get_const(Rdst);
 929   ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
 930 }
 931 
 932 
 933 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 934   get_constant_pool(Rdst);
 935   ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
 936 }
 937 
 938 
 939 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 940   get_constant_pool(Rcpool);
 941   ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
 942 }
 943 
 944 
 945 // unlock if synchronized method
 946 //
 947 // Unlock the receiver if this is a synchronized method.
 948 // Unlock any Java monitors from syncronized blocks.
 949 //
 950 // If there are locked Java monitors
 951 //    If throw_monitor_exception
 952 //       throws IllegalMonitorStateException
 953 //    Else if install_monitor_exception
 954 //       installs IllegalMonitorStateException
 955 //    Else
 956 //       no error processing
 957 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 958                                                               bool throw_monitor_exception,
 959                                                               bool install_monitor_exception) {
 960   Label unlocked, unlock, no_unlock;
 961 
 962   // get the value of _do_not_unlock_if_synchronized into G1_scratch
 963   const Address do_not_unlock_if_synchronized(G2_thread,
 964     JavaThread::do_not_unlock_if_synchronized_offset());
 965   ldbool(do_not_unlock_if_synchronized, G1_scratch);
 966   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
 967 
 968   // check if synchronized method
 969   const Address access_flags(Lmethod, Method::access_flags_offset());
 970   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 971   push(state); // save tos
 972   ld(access_flags, G3_scratch); // Load access flags.
 973   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
 974   br(zero, false, pt, unlocked);
 975   delayed()->nop();
 976 
 977   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 978   // is set.
 979   cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
 980   delayed()->nop();
 981 
 982   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
 983   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
 984 
 985   //Intel: if (throw_monitor_exception) ... else ...
 986   // Entry already unlocked, need to throw exception
 987   //...
 988 
 989   // pass top-most monitor elem
 990   add( top_most_monitor(), O1 );
 991 
 992   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
 993   br_notnull_short(G3_scratch, pt, unlock);
 994 
 995   if (throw_monitor_exception) {
 996     // Entry already unlocked need to throw an exception
 997     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 998     should_not_reach_here();
 999   } else {
1000     // Monitor already unlocked during a stack unroll.
1001     // If requested, install an illegal_monitor_state_exception.
1002     // Continue with stack unrolling.
1003     if (install_monitor_exception) {
1004       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1005     }
1006     ba_short(unlocked);
1007   }
1008 
1009   bind(unlock);
1010 
1011   unlock_object(O1);
1012 
1013   bind(unlocked);
1014 
1015   // I0, I1: Might contain return value
1016 
1017   // Check that all monitors are unlocked
1018   { Label loop, exception, entry, restart;
1019 
1020     Register Rmptr   = O0;
1021     Register Rtemp   = O1;
1022     Register Rlimit  = Lmonitors;
1023     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1024     assert( (delta & LongAlignmentMask) == 0,
1025             "sizeof BasicObjectLock must be even number of doublewords");
1026 
1027     #ifdef ASSERT
1028     add(top_most_monitor(), Rmptr, delta);
1029     { Label L;
1030       // ensure that Rmptr starts out above (or at) Rlimit
1031       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1032       stop("monitor stack has negative size");
1033       bind(L);
1034     }
1035     #endif
1036     bind(restart);
1037     ba(entry);
1038     delayed()->
1039     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1040 
1041     // Entry is still locked, need to throw exception
1042     bind(exception);
1043     if (throw_monitor_exception) {
1044       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1045       should_not_reach_here();
1046     } else {
1047       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1048       // Unlock does not block, so don't have to worry about the frame
1049       unlock_object(Rmptr);
1050       if (install_monitor_exception) {
1051         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1052       }
1053       ba_short(restart);
1054     }
1055 
1056     bind(loop);
1057     cmp(Rtemp, G0);                             // check if current entry is used
1058     brx(Assembler::notEqual, false, pn, exception);
1059     delayed()->
1060     dec(Rmptr, delta);                          // otherwise advance to next entry
1061     #ifdef ASSERT
1062     { Label L;
1063       // ensure that Rmptr has not somehow stepped below Rlimit
1064       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1065       stop("ran off the end of the monitor stack");
1066       bind(L);
1067     }
1068     #endif
1069     bind(entry);
1070     cmp(Rmptr, Rlimit);                         // check if bottom reached
1071     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1072     delayed()->
1073     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1074   }
1075 
1076   bind(no_unlock);
1077   pop(state);
1078   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1079 }
1080 
1081 void InterpreterMacroAssembler::narrow(Register result) {
1082 
1083   ld_ptr(Address(Lmethod, Method::const_offset()), G3_scratch);
1084   ldub(G3_scratch, in_bytes(ConstMethod::result_type_offset()), G3_scratch);
1085 
1086   Label notBool, notByte, notChar, done;
1087 
1088   // common case first
1089   cmp(G3_scratch, T_INT);
1090   br(Assembler::equal, true, pn, done);
1091   delayed()->nop();
1092 
1093   cmp(G3_scratch, T_BOOLEAN);
1094   br(Assembler::notEqual, true, pn, notBool);
1095   delayed()->cmp(G3_scratch, T_BYTE);
1096   and3(result, 1, result);
1097   ba(done);
1098   delayed()->nop();
1099 
1100   bind(notBool);
1101   // cmp(G3_scratch, T_BYTE);
1102   br(Assembler::notEqual, true, pn, notByte);
1103   delayed()->cmp(G3_scratch, T_CHAR);
1104   sll(result, 24, result);
1105   sra(result, 24, result);
1106   ba(done);
1107   delayed()->nop();
1108 
1109   bind(notByte);
1110   // cmp(G3_scratch, T_CHAR);
1111   sll(result, 16, result);
1112   br(Assembler::notEqual, true, pn, done);
1113   delayed()->sra(result, 16, result);
1114   // sll(result, 16, result);
1115   srl(result, 16, result);
1116 
1117   // bind(notChar);
1118   // must be short, instructions already executed in delay slot
1119   // sll(result, 16, result);
1120   // sra(result, 16, result);
1121 
1122   bind(done);
1123 }
1124 
1125 // remove activation
1126 //
1127 // Unlock the receiver if this is a synchronized method.
1128 // Unlock any Java monitors from syncronized blocks.
1129 // Remove the activation from the stack.
1130 //
1131 // If there are locked Java monitors
1132 //    If throw_monitor_exception
1133 //       throws IllegalMonitorStateException
1134 //    Else if install_monitor_exception
1135 //       installs IllegalMonitorStateException
1136 //    Else
1137 //       no error processing
1138 void InterpreterMacroAssembler::remove_activation(TosState state,
1139                                                   bool throw_monitor_exception,
1140                                                   bool install_monitor_exception) {
1141 
1142   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1143 
1144   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1145   notify_method_exit(false, state, NotifyJVMTI);
1146 
1147   if (StackReservedPages > 0) {
1148     // testing if Stack Reserved Area needs to be re-enabled
1149     Label no_reserved_zone_enabling;
1150     ld_ptr(G2_thread, JavaThread::reserved_stack_activation_offset(), G3_scratch);
1151     cmp_and_brx_short(SP, G3_scratch, Assembler::lessUnsigned, Assembler::pt, no_reserved_zone_enabling);
1152 
1153     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), G2_thread);
1154     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError), G2_thread);
1155     should_not_reach_here();
1156 
1157     bind(no_reserved_zone_enabling);
1158   }
1159 
1160   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1161   verify_thread();
1162 
1163   // return tos
1164   assert(Otos_l1 == Otos_i, "adjust code below");
1165   switch (state) {
1166   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1167   case btos:                                      // fall through
1168   case ztos:                                      // fall through
1169   case ctos:
1170   case stos:                                      // fall through
1171   case atos:                                      // fall through
1172   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1173   case ftos:                                      // fall through
1174   case dtos:                                      // fall through
1175   case vtos: /* nothing to do */                     break;
1176   default  : ShouldNotReachHere();
1177   }
1178 }
1179 
1180 // Lock object
1181 //
1182 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
1183 //            it must be initialized with the object to lock
1184 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1185   if (UseHeavyMonitors) {
1186     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1187   }
1188   else {
1189     Register obj_reg = Object;
1190     Register mark_reg = G4_scratch;
1191     Register temp_reg = G1_scratch;
1192     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1193     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1194     Label    done;
1195 
1196     Label slow_case;
1197 
1198     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1199 
1200     // load markOop from object into mark_reg
1201     ld_ptr(mark_addr, mark_reg);
1202 
1203     if (UseBiasedLocking) {
1204       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1205     }
1206 
1207     // get the address of basicLock on stack that will be stored in the object
1208     // we need a temporary register here as we do not want to clobber lock_reg
1209     // (cas clobbers the destination register)
1210     mov(lock_reg, temp_reg);
1211     // set mark reg to be (markOop of object | UNLOCK_VALUE)
1212     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1213     // initialize the box  (Must happen before we update the object mark!)
1214     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1215     // compare and exchange object_addr, markOop | 1, stack address of basicLock
1216     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1217     cas_ptr(mark_addr.base(), mark_reg, temp_reg);
1218 
1219     // if the compare and exchange succeeded we are done (we saw an unlocked object)
1220     cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
1221 
1222     // We did not see an unlocked object so try the fast recursive case
1223 
1224     // Check if owner is self by comparing the value in the markOop of object
1225     // with the stack pointer
1226     sub(temp_reg, SP, temp_reg);
1227     sub(temp_reg, STACK_BIAS, temp_reg);
1228     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1229 
1230     // Composite "andcc" test:
1231     // (a) %sp -vs- markword proximity check, and,
1232     // (b) verify mark word LSBs == 0 (Stack-locked).
1233     //
1234     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1235     // Note that the page size used for %sp proximity testing is arbitrary and is
1236     // unrelated to the actual MMU page size.  We use a 'logical' page size of
1237     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1238     // field of the andcc instruction.
1239     andcc (temp_reg, 0xFFFFF003, G0) ;
1240 
1241     // if condition is true we are done and hence we can store 0 in the displaced
1242     // header indicating it is a recursive lock and be done
1243     brx(Assembler::zero, true, Assembler::pt, done);
1244     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1245 
1246     // none of the above fast optimizations worked so we have to get into the
1247     // slow case of monitor enter
1248     bind(slow_case);
1249     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1250 
1251     bind(done);
1252   }
1253 }
1254 
1255 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1256 //
1257 // Argument - lock_reg points to the BasicObjectLock for lock
1258 // Throw IllegalMonitorException if object is not locked by current thread
1259 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1260   if (UseHeavyMonitors) {
1261     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1262   } else {
1263     Register obj_reg = G3_scratch;
1264     Register mark_reg = G4_scratch;
1265     Register displaced_header_reg = G1_scratch;
1266     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1267     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1268     Label    done;
1269 
1270     if (UseBiasedLocking) {
1271       // load the object out of the BasicObjectLock
1272       ld_ptr(lockobj_addr, obj_reg);
1273       biased_locking_exit(mark_addr, mark_reg, done, true);
1274       st_ptr(G0, lockobj_addr);  // free entry
1275     }
1276 
1277     // Test first if we are in the fast recursive case
1278     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1279     ld_ptr(lock_addr, displaced_header_reg);
1280     br_null(displaced_header_reg, true, Assembler::pn, done);
1281     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1282 
1283     // See if it is still a light weight lock, if so we just unlock
1284     // the object and we are done
1285 
1286     if (!UseBiasedLocking) {
1287       // load the object out of the BasicObjectLock
1288       ld_ptr(lockobj_addr, obj_reg);
1289     }
1290 
1291     // we have the displaced header in displaced_header_reg
1292     // we expect to see the stack address of the basicLock in case the
1293     // lock is still a light weight lock (lock_reg)
1294     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1295     cas_ptr(mark_addr.base(), lock_reg, displaced_header_reg);
1296     cmp(lock_reg, displaced_header_reg);
1297     brx(Assembler::equal, true, Assembler::pn, done);
1298     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1299 
1300     // The lock has been converted into a heavy lock and hence
1301     // we need to get into the slow case
1302 
1303     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1304 
1305     bind(done);
1306   }
1307 }
1308 
1309 // Get the method data pointer from the Method* and set the
1310 // specified register to its value.
1311 
1312 void InterpreterMacroAssembler::set_method_data_pointer() {
1313   assert(ProfileInterpreter, "must be profiling interpreter");
1314   Label get_continue;
1315 
1316   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1317   test_method_data_pointer(get_continue);
1318   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1319   bind(get_continue);
1320 }
1321 
1322 // Set the method data pointer for the current bcp.
1323 
1324 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1325   assert(ProfileInterpreter, "must be profiling interpreter");
1326   Label zero_continue;
1327 
1328   // Test MDO to avoid the call if it is NULL.
1329   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1330   test_method_data_pointer(zero_continue);
1331   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1332   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1333   add(ImethodDataPtr, O0, ImethodDataPtr);
1334   bind(zero_continue);
1335 }
1336 
1337 // Test ImethodDataPtr.  If it is null, continue at the specified label
1338 
1339 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1340   assert(ProfileInterpreter, "must be profiling interpreter");
1341   br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
1342 }
1343 
1344 void InterpreterMacroAssembler::verify_method_data_pointer() {
1345   assert(ProfileInterpreter, "must be profiling interpreter");
1346 #ifdef ASSERT
1347   Label verify_continue;
1348   test_method_data_pointer(verify_continue);
1349 
1350   // If the mdp is valid, it will point to a DataLayout header which is
1351   // consistent with the bcp.  The converse is highly probable also.
1352   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1353   ld_ptr(Lmethod, Method::const_offset(), O5);
1354   add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
1355   add(G3_scratch, O5, G3_scratch);
1356   cmp(Lbcp, G3_scratch);
1357   brx(Assembler::equal, false, Assembler::pt, verify_continue);
1358 
1359   Register temp_reg = O5;
1360   delayed()->mov(ImethodDataPtr, temp_reg);
1361   // %%% should use call_VM_leaf here?
1362   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1363   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1364   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1365   stf(FloatRegisterImpl::D, Ftos_d, d_save);
1366   mov(temp_reg->after_save(), O2);
1367   save_thread(L7_thread_cache);
1368   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1369   delayed()->nop();
1370   restore_thread(L7_thread_cache);
1371   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1372   restore();
1373   bind(verify_continue);
1374 #endif // ASSERT
1375 }
1376 
1377 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1378                                                                 Register method_counters,
1379                                                                 Register Rtmp,
1380                                                                 Label &profile_continue) {
1381   assert(ProfileInterpreter, "must be profiling interpreter");
1382   // Control will flow to "profile_continue" if the counter is less than the
1383   // limit or if we call profile_method()
1384 
1385   Label done;
1386 
1387   // if no method data exists, and the counter is high enough, make one
1388   br_notnull_short(ImethodDataPtr, Assembler::pn, done);
1389 
1390   // Test to see if we should create a method data oop
1391   Address profile_limit(method_counters, MethodCounters::interpreter_profile_limit_offset());
1392   ld(profile_limit, Rtmp);
1393   cmp(invocation_count, Rtmp);
1394   // Use long branches because call_VM() code and following code generated by
1395   // test_backedge_count_for_osr() is large in debug VM.
1396   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1397   delayed()->nop();
1398 
1399   // Build it now.
1400   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1401   set_method_data_pointer_for_bcp();
1402   ba(profile_continue);
1403   delayed()->nop();
1404   bind(done);
1405 }
1406 
1407 // Store a value at some constant offset from the method data pointer.
1408 
1409 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1410   assert(ProfileInterpreter, "must be profiling interpreter");
1411   st_ptr(value, ImethodDataPtr, constant);
1412 }
1413 
1414 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1415                                                       Register bumped_count,
1416                                                       bool decrement) {
1417   assert(ProfileInterpreter, "must be profiling interpreter");
1418 
1419   // Load the counter.
1420   ld_ptr(counter, bumped_count);
1421 
1422   if (decrement) {
1423     // Decrement the register.  Set condition codes.
1424     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1425 
1426     // If the decrement causes the counter to overflow, stay negative
1427     Label L;
1428     brx(Assembler::negative, true, Assembler::pn, L);
1429 
1430     // Store the decremented counter, if it is still negative.
1431     delayed()->st_ptr(bumped_count, counter);
1432     bind(L);
1433   } else {
1434     // Increment the register.  Set carry flag.
1435     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1436 
1437     // If the increment causes the counter to overflow, pull back by 1.
1438     assert(DataLayout::counter_increment == 1, "subc works");
1439     subc(bumped_count, G0, bumped_count);
1440 
1441     // Store the incremented counter.
1442     st_ptr(bumped_count, counter);
1443   }
1444 }
1445 
1446 // Increment the value at some constant offset from the method data pointer.
1447 
1448 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1449                                                       Register bumped_count,
1450                                                       bool decrement) {
1451   // Locate the counter at a fixed offset from the mdp:
1452   Address counter(ImethodDataPtr, constant);
1453   increment_mdp_data_at(counter, bumped_count, decrement);
1454 }
1455 
1456 // Increment the value at some non-fixed (reg + constant) offset from
1457 // the method data pointer.
1458 
1459 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1460                                                       int constant,
1461                                                       Register bumped_count,
1462                                                       Register scratch2,
1463                                                       bool decrement) {
1464   // Add the constant to reg to get the offset.
1465   add(ImethodDataPtr, reg, scratch2);
1466   Address counter(scratch2, constant);
1467   increment_mdp_data_at(counter, bumped_count, decrement);
1468 }
1469 
1470 // Set a flag value at the current method data pointer position.
1471 // Updates a single byte of the header, to avoid races with other header bits.
1472 
1473 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1474                                                 Register scratch) {
1475   assert(ProfileInterpreter, "must be profiling interpreter");
1476   // Load the data header
1477   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1478 
1479   // Set the flag
1480   or3(scratch, flag_constant, scratch);
1481 
1482   // Store the modified header.
1483   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1484 }
1485 
1486 // Test the location at some offset from the method data pointer.
1487 // If it is not equal to value, branch to the not_equal_continue Label.
1488 // Set condition codes to match the nullness of the loaded value.
1489 
1490 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1491                                                  Register value,
1492                                                  Label& not_equal_continue,
1493                                                  Register scratch) {
1494   assert(ProfileInterpreter, "must be profiling interpreter");
1495   ld_ptr(ImethodDataPtr, offset, scratch);
1496   cmp(value, scratch);
1497   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1498   delayed()->tst(scratch);
1499 }
1500 
1501 // Update the method data pointer by the displacement located at some fixed
1502 // offset from the method data pointer.
1503 
1504 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1505                                                      Register scratch) {
1506   assert(ProfileInterpreter, "must be profiling interpreter");
1507   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1508   add(ImethodDataPtr, scratch, ImethodDataPtr);
1509 }
1510 
1511 // Update the method data pointer by the displacement located at the
1512 // offset (reg + offset_of_disp).
1513 
1514 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1515                                                      int offset_of_disp,
1516                                                      Register scratch) {
1517   assert(ProfileInterpreter, "must be profiling interpreter");
1518   add(reg, offset_of_disp, scratch);
1519   ld_ptr(ImethodDataPtr, scratch, scratch);
1520   add(ImethodDataPtr, scratch, ImethodDataPtr);
1521 }
1522 
1523 // Update the method data pointer by a simple constant displacement.
1524 
1525 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1526   assert(ProfileInterpreter, "must be profiling interpreter");
1527   add(ImethodDataPtr, constant, ImethodDataPtr);
1528 }
1529 
1530 // Update the method data pointer for a _ret bytecode whose target
1531 // was not among our cached targets.
1532 
1533 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1534                                                    Register return_bci) {
1535   assert(ProfileInterpreter, "must be profiling interpreter");
1536   push(state);
1537   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1538   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1539   ld_ptr(l_tmp, return_bci);
1540   pop(state);
1541 }
1542 
1543 // Count a taken branch in the bytecodes.
1544 
1545 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1546   if (ProfileInterpreter) {
1547     Label profile_continue;
1548 
1549     // If no method data exists, go to profile_continue.
1550     test_method_data_pointer(profile_continue);
1551 
1552     // We are taking a branch.  Increment the taken count.
1553     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1554 
1555     // The method data pointer needs to be updated to reflect the new target.
1556     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1557     bind (profile_continue);
1558   }
1559 }
1560 
1561 
1562 // Count a not-taken branch in the bytecodes.
1563 
1564 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1565   if (ProfileInterpreter) {
1566     Label profile_continue;
1567 
1568     // If no method data exists, go to profile_continue.
1569     test_method_data_pointer(profile_continue);
1570 
1571     // We are taking a branch.  Increment the not taken count.
1572     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1573 
1574     // The method data pointer needs to be updated to correspond to the
1575     // next bytecode.
1576     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1577     bind (profile_continue);
1578   }
1579 }
1580 
1581 
1582 // Count a non-virtual call in the bytecodes.
1583 
1584 void InterpreterMacroAssembler::profile_call(Register scratch) {
1585   if (ProfileInterpreter) {
1586     Label profile_continue;
1587 
1588     // If no method data exists, go to profile_continue.
1589     test_method_data_pointer(profile_continue);
1590 
1591     // We are making a call.  Increment the count.
1592     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1593 
1594     // The method data pointer needs to be updated to reflect the new target.
1595     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1596     bind (profile_continue);
1597   }
1598 }
1599 
1600 
1601 // Count a final call in the bytecodes.
1602 
1603 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1604   if (ProfileInterpreter) {
1605     Label profile_continue;
1606 
1607     // If no method data exists, go to profile_continue.
1608     test_method_data_pointer(profile_continue);
1609 
1610     // We are making a call.  Increment the count.
1611     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1612 
1613     // The method data pointer needs to be updated to reflect the new target.
1614     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1615     bind (profile_continue);
1616   }
1617 }
1618 
1619 
1620 // Count a virtual call in the bytecodes.
1621 
1622 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1623                                                      Register scratch,
1624                                                      bool receiver_can_be_null) {
1625   if (ProfileInterpreter) {
1626     Label profile_continue;
1627 
1628     // If no method data exists, go to profile_continue.
1629     test_method_data_pointer(profile_continue);
1630 
1631 
1632     Label skip_receiver_profile;
1633     if (receiver_can_be_null) {
1634       Label not_null;
1635       br_notnull_short(receiver, Assembler::pt, not_null);
1636       // We are making a call.  Increment the count for null receiver.
1637       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1638       ba_short(skip_receiver_profile);
1639       bind(not_null);
1640     }
1641 
1642     // Record the receiver type.
1643     record_klass_in_profile(receiver, scratch, true);
1644     bind(skip_receiver_profile);
1645 
1646     // The method data pointer needs to be updated to reflect the new target.
1647 #if INCLUDE_JVMCI
1648     if (MethodProfileWidth == 0) {
1649       update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1650     }
1651 #else
1652     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1653 #endif
1654     bind(profile_continue);
1655   }
1656 }
1657 
1658 #if INCLUDE_JVMCI
1659 void InterpreterMacroAssembler::profile_called_method(Register method, Register scratch) {
1660   assert_different_registers(method, scratch);
1661   if (ProfileInterpreter && MethodProfileWidth > 0) {
1662     Label profile_continue;
1663 
1664     // If no method data exists, go to profile_continue.
1665     test_method_data_pointer(profile_continue);
1666 
1667     Label done;
1668     record_item_in_profile_helper(method, scratch, 0, done, MethodProfileWidth,
1669       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1670     bind(done);
1671 
1672     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1673     bind(profile_continue);
1674   }
1675 }
1676 #endif // INCLUDE_JVMCI
1677 
1678 void InterpreterMacroAssembler::record_klass_in_profile_helper(Register receiver, Register scratch,
1679                                                                Label& done, bool is_virtual_call) {
1680   if (TypeProfileWidth == 0) {
1681     if (is_virtual_call) {
1682       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1683     }
1684 #if INCLUDE_JVMCI
1685     else if (EnableJVMCI) {
1686       increment_mdp_data_at(in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()), scratch);
1687     }
1688 #endif
1689   } else {
1690     int non_profiled_offset = -1;
1691     if (is_virtual_call) {
1692       non_profiled_offset = in_bytes(CounterData::count_offset());
1693     }
1694 #if INCLUDE_JVMCI
1695     else if (EnableJVMCI) {
1696       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1697     }
1698 #endif
1699 
1700     record_item_in_profile_helper(receiver, scratch, 0, done, TypeProfileWidth,
1701       &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1702   }
1703 }
1704 
1705 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item,
1706                                           Register scratch, int start_row, Label& done, int total_rows,
1707                                           OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1708                                           int non_profiled_offset) {
1709   int last_row = total_rows - 1;
1710   assert(start_row <= last_row, "must be work left to do");
1711   // Test this row for both the item and for null.
1712   // Take any of three different outcomes:
1713   //   1. found item => increment count and goto done
1714   //   2. found null => keep looking for case 1, maybe allocate this cell
1715   //   3. found something else => keep looking for cases 1 and 2
1716   // Case 3 is handled by a recursive call.
1717   for (int row = start_row; row <= last_row; row++) {
1718     Label next_test;
1719     bool test_for_null_also = (row == start_row);
1720 
1721     // See if the item is item[n].
1722     int item_offset = in_bytes(item_offset_fn(row));
1723     test_mdp_data_at(item_offset, item, next_test, scratch);
1724     // delayed()->tst(scratch);
1725 
1726     // The receiver is item[n].  Increment count[n].
1727     int count_offset = in_bytes(item_count_offset_fn(row));
1728     increment_mdp_data_at(count_offset, scratch);
1729     ba_short(done);
1730     bind(next_test);
1731 
1732     if (test_for_null_also) {
1733       Label found_null;
1734       // Failed the equality check on item[n]...  Test for null.
1735       if (start_row == last_row) {
1736         // The only thing left to do is handle the null case.
1737         if (non_profiled_offset >= 0) {
1738           brx(Assembler::zero, false, Assembler::pn, found_null);
1739           delayed()->nop();
1740           // Item did not match any saved item and there is no empty row for it.
1741           // Increment total counter to indicate polymorphic case.
1742           increment_mdp_data_at(non_profiled_offset, scratch);
1743           ba_short(done);
1744           bind(found_null);
1745         } else {
1746           brx(Assembler::notZero, false, Assembler::pt, done);
1747           delayed()->nop();
1748         }
1749         break;
1750       }
1751       // Since null is rare, make it be the branch-taken case.
1752       brx(Assembler::zero, false, Assembler::pn, found_null);
1753       delayed()->nop();
1754 
1755       // Put all the "Case 3" tests here.
1756       record_item_in_profile_helper(item, scratch, start_row + 1, done, total_rows,
1757         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1758 
1759       // Found a null.  Keep searching for a matching item,
1760       // but remember that this is an empty (unused) slot.
1761       bind(found_null);
1762     }
1763   }
1764 
1765   // In the fall-through case, we found no matching item, but we
1766   // observed the item[start_row] is NULL.
1767 
1768   // Fill in the item field and increment the count.
1769   int item_offset = in_bytes(item_offset_fn(start_row));
1770   set_mdp_data_at(item_offset, item);
1771   int count_offset = in_bytes(item_count_offset_fn(start_row));
1772   mov(DataLayout::counter_increment, scratch);
1773   set_mdp_data_at(count_offset, scratch);
1774   if (start_row > 0) {
1775     ba_short(done);
1776   }
1777 }
1778 
1779 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1780                                                         Register scratch, bool is_virtual_call) {
1781   assert(ProfileInterpreter, "must be profiling");
1782   Label done;
1783 
1784   record_klass_in_profile_helper(receiver, scratch, done, is_virtual_call);
1785 
1786   bind (done);
1787 }
1788 
1789 
1790 // Count a ret in the bytecodes.
1791 
1792 void InterpreterMacroAssembler::profile_ret(TosState state,
1793                                             Register return_bci,
1794                                             Register scratch) {
1795   if (ProfileInterpreter) {
1796     Label profile_continue;
1797     uint row;
1798 
1799     // If no method data exists, go to profile_continue.
1800     test_method_data_pointer(profile_continue);
1801 
1802     // Update the total ret count.
1803     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1804 
1805     for (row = 0; row < RetData::row_limit(); row++) {
1806       Label next_test;
1807 
1808       // See if return_bci is equal to bci[n]:
1809       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1810                        return_bci, next_test, scratch);
1811 
1812       // return_bci is equal to bci[n].  Increment the count.
1813       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1814 
1815       // The method data pointer needs to be updated to reflect the new target.
1816       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1817       ba_short(profile_continue);
1818       bind(next_test);
1819     }
1820 
1821     update_mdp_for_ret(state, return_bci);
1822 
1823     bind (profile_continue);
1824   }
1825 }
1826 
1827 // Profile an unexpected null in the bytecodes.
1828 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1829   if (ProfileInterpreter) {
1830     Label profile_continue;
1831 
1832     // If no method data exists, go to profile_continue.
1833     test_method_data_pointer(profile_continue);
1834 
1835     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1836 
1837     // The method data pointer needs to be updated.
1838     int mdp_delta = in_bytes(BitData::bit_data_size());
1839     if (TypeProfileCasts) {
1840       mdp_delta = in_bytes(ReceiverTypeData::receiver_type_data_size());
1841     }
1842     update_mdp_by_constant(mdp_delta);
1843 
1844     bind (profile_continue);
1845   }
1846 }
1847 
1848 void InterpreterMacroAssembler::profile_typecheck(Register klass,
1849                                                   Register scratch) {
1850   if (ProfileInterpreter) {
1851     Label profile_continue;
1852 
1853     // If no method data exists, go to profile_continue.
1854     test_method_data_pointer(profile_continue);
1855 
1856     int mdp_delta = in_bytes(BitData::bit_data_size());
1857     if (TypeProfileCasts) {
1858       mdp_delta = in_bytes(ReceiverTypeData::receiver_type_data_size());
1859 
1860       // Record the object type.
1861       record_klass_in_profile(klass, scratch, false);
1862     }
1863 
1864     // The method data pointer needs to be updated.
1865     update_mdp_by_constant(mdp_delta);
1866 
1867     bind (profile_continue);
1868   }
1869 }
1870 
1871 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1872   if (ProfileInterpreter && TypeProfileCasts) {
1873     Label profile_continue;
1874 
1875     // If no method data exists, go to profile_continue.
1876     test_method_data_pointer(profile_continue);
1877 
1878     int count_offset = in_bytes(CounterData::count_offset());
1879     // Back up the address, since we have already bumped the mdp.
1880     count_offset -= in_bytes(ReceiverTypeData::receiver_type_data_size());
1881 
1882     // *Decrement* the counter.  We expect to see zero or small negatives.
1883     increment_mdp_data_at(count_offset, scratch, true);
1884 
1885     bind (profile_continue);
1886   }
1887 }
1888 
1889 // Count the default case of a switch construct.
1890 
1891 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1892   if (ProfileInterpreter) {
1893     Label profile_continue;
1894 
1895     // If no method data exists, go to profile_continue.
1896     test_method_data_pointer(profile_continue);
1897 
1898     // Update the default case count
1899     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1900                           scratch);
1901 
1902     // The method data pointer needs to be updated.
1903     update_mdp_by_offset(
1904                     in_bytes(MultiBranchData::default_displacement_offset()),
1905                     scratch);
1906 
1907     bind (profile_continue);
1908   }
1909 }
1910 
1911 // Count the index'th case of a switch construct.
1912 
1913 void InterpreterMacroAssembler::profile_switch_case(Register index,
1914                                                     Register scratch,
1915                                                     Register scratch2,
1916                                                     Register scratch3) {
1917   if (ProfileInterpreter) {
1918     Label profile_continue;
1919 
1920     // If no method data exists, go to profile_continue.
1921     test_method_data_pointer(profile_continue);
1922 
1923     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1924     set(in_bytes(MultiBranchData::per_case_size()), scratch);
1925     smul(index, scratch, scratch);
1926     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1927 
1928     // Update the case count
1929     increment_mdp_data_at(scratch,
1930                           in_bytes(MultiBranchData::relative_count_offset()),
1931                           scratch2,
1932                           scratch3);
1933 
1934     // The method data pointer needs to be updated.
1935     update_mdp_by_offset(scratch,
1936                      in_bytes(MultiBranchData::relative_displacement_offset()),
1937                      scratch2);
1938 
1939     bind (profile_continue);
1940   }
1941 }
1942 
1943 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) {
1944   Label not_null, do_nothing, do_update;
1945 
1946   assert_different_registers(obj, mdo_addr.base(), tmp);
1947 
1948   verify_oop(obj);
1949 
1950   ld_ptr(mdo_addr, tmp);
1951 
1952   br_notnull_short(obj, pt, not_null);
1953   or3(tmp, TypeEntries::null_seen, tmp);
1954   ba_short(do_update);
1955 
1956   bind(not_null);
1957   load_klass(obj, obj);
1958 
1959   xor3(obj, tmp, obj);
1960   btst(TypeEntries::type_klass_mask, obj);
1961   // klass seen before, nothing to do. The unknown bit may have been
1962   // set already but no need to check.
1963   brx(zero, false, pt, do_nothing);
1964   delayed()->
1965 
1966   btst(TypeEntries::type_unknown, obj);
1967   // already unknown. Nothing to do anymore.
1968   brx(notZero, false, pt, do_nothing);
1969   delayed()->
1970 
1971   btst(TypeEntries::type_mask, tmp);
1972   brx(zero, true, pt, do_update);
1973   // first time here. Set profile type.
1974   delayed()->or3(tmp, obj, tmp);
1975 
1976   // different than before. Cannot keep accurate profile.
1977   or3(tmp, TypeEntries::type_unknown, tmp);
1978 
1979   bind(do_update);
1980   // update profile
1981   st_ptr(tmp, mdo_addr);
1982 
1983   bind(do_nothing);
1984 }
1985 
1986 void InterpreterMacroAssembler::profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual) {
1987   if (!ProfileInterpreter) {
1988     return;
1989   }
1990 
1991   assert_different_registers(callee, tmp1, tmp2, ImethodDataPtr);
1992 
1993   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1994     Label profile_continue;
1995 
1996     test_method_data_pointer(profile_continue);
1997 
1998     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1999 
2000     ldub(ImethodDataPtr, in_bytes(DataLayout::tag_offset()) - off_to_start, tmp1);
2001     cmp_and_br_short(tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag, notEqual, pn, profile_continue);
2002 
2003     if (MethodData::profile_arguments()) {
2004       Label done;
2005       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
2006       add(ImethodDataPtr, off_to_args, ImethodDataPtr);
2007 
2008       for (int i = 0; i < TypeProfileArgsLimit; i++) {
2009         if (i > 0 || MethodData::profile_return()) {
2010           // If return value type is profiled we may have no argument to profile
2011           ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
2012           sub(tmp1, i*TypeStackSlotEntries::per_arg_count(), tmp1);
2013           cmp_and_br_short(tmp1, TypeStackSlotEntries::per_arg_count(), less, pn, done);
2014         }
2015         ld_ptr(Address(callee, Method::const_offset()), tmp1);
2016         lduh(Address(tmp1, ConstMethod::size_of_parameters_offset()), tmp1);
2017         // stack offset o (zero based) from the start of the argument
2018         // list, for n arguments translates into offset n - o - 1 from
2019         // the end of the argument list. But there's an extra slot at
2020         // the stop of the stack. So the offset is n - o from Lesp.
2021         ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, tmp2);
2022         sub(tmp1, tmp2, tmp1);
2023 
2024         // Can't use MacroAssembler::argument_address() which needs Gargs to be set up
2025         sll(tmp1, Interpreter::logStackElementSize, tmp1);
2026         ld_ptr(Lesp, tmp1, tmp1);
2027 
2028         Address mdo_arg_addr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
2029         profile_obj_type(tmp1, mdo_arg_addr, tmp2);
2030 
2031         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
2032         add(ImethodDataPtr, to_add, ImethodDataPtr);
2033         off_to_args += to_add;
2034       }
2035 
2036       if (MethodData::profile_return()) {
2037         ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
2038         sub(tmp1, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count(), tmp1);
2039       }
2040 
2041       bind(done);
2042 
2043       if (MethodData::profile_return()) {
2044         // We're right after the type profile for the last
2045         // argument. tmp1 is the number of cells left in the
2046         // CallTypeData/VirtualCallTypeData to reach its end. Non null
2047         // if there's a return to profile.
2048         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
2049         sll(tmp1, exact_log2(DataLayout::cell_size), tmp1);
2050         add(ImethodDataPtr, tmp1, ImethodDataPtr);
2051       }
2052     } else {
2053       assert(MethodData::profile_return(), "either profile call args or call ret");
2054       update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
2055     }
2056 
2057     // mdp points right after the end of the
2058     // CallTypeData/VirtualCallTypeData, right after the cells for the
2059     // return value type if there's one.
2060 
2061     bind(profile_continue);
2062   }
2063 }
2064 
2065 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
2066   assert_different_registers(ret, tmp1, tmp2);
2067   if (ProfileInterpreter && MethodData::profile_return()) {
2068     Label profile_continue, done;
2069 
2070     test_method_data_pointer(profile_continue);
2071 
2072     if (MethodData::profile_return_jsr292_only()) {
2073       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
2074 
2075       // If we don't profile all invoke bytecodes we must make sure
2076       // it's a bytecode we indeed profile. We can't go back to the
2077       // begining of the ProfileData we intend to update to check its
2078       // type because we're right after it and we don't known its
2079       // length.
2080       Label do_profile;
2081       ldub(Lbcp, 0, tmp1);
2082       cmp_and_br_short(tmp1, Bytecodes::_invokedynamic, equal, pn, do_profile);
2083       cmp(tmp1, Bytecodes::_invokehandle);
2084       br(equal, false, pn, do_profile);
2085       delayed()->lduh(Lmethod, Method::intrinsic_id_offset_in_bytes(), tmp1);
2086       cmp_and_br_short(tmp1, vmIntrinsics::_compiledLambdaForm, notEqual, pt, profile_continue);
2087 
2088       bind(do_profile);
2089     }
2090 
2091     Address mdo_ret_addr(ImethodDataPtr, -in_bytes(ReturnTypeEntry::size()));
2092     mov(ret, tmp1);
2093     profile_obj_type(tmp1, mdo_ret_addr, tmp2);
2094 
2095     bind(profile_continue);
2096   }
2097 }
2098 
2099 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
2100   if (ProfileInterpreter && MethodData::profile_parameters()) {
2101     Label profile_continue, done;
2102 
2103     test_method_data_pointer(profile_continue);
2104 
2105     // Load the offset of the area within the MDO used for
2106     // parameters. If it's negative we're not profiling any parameters.
2107     lduw(ImethodDataPtr, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), tmp1);
2108     cmp_and_br_short(tmp1, 0, less, pn, profile_continue);
2109 
2110     // Compute a pointer to the area for parameters from the offset
2111     // and move the pointer to the slot for the last
2112     // parameters. Collect profiling from last parameter down.
2113     // mdo start + parameters offset + array length - 1
2114 
2115     // Pointer to the parameter area in the MDO
2116     Register mdp = tmp1;
2117     add(ImethodDataPtr, tmp1, mdp);
2118 
2119     // offset of the current profile entry to update
2120     Register entry_offset = tmp2;
2121     // entry_offset = array len in number of cells
2122     ld_ptr(mdp, ArrayData::array_len_offset(), entry_offset);
2123 
2124     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
2125     assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
2126 
2127     // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
2128     sub(entry_offset, TypeStackSlotEntries::per_arg_count() - (off_base / DataLayout::cell_size), entry_offset);
2129     // entry_offset in bytes
2130     sll(entry_offset, exact_log2(DataLayout::cell_size), entry_offset);
2131 
2132     Label loop;
2133     bind(loop);
2134 
2135     // load offset on the stack from the slot for this parameter
2136     ld_ptr(mdp, entry_offset, tmp3);
2137     sll(tmp3,Interpreter::logStackElementSize, tmp3);
2138     neg(tmp3);
2139     // read the parameter from the local area
2140     ld_ptr(Llocals, tmp3, tmp3);
2141 
2142     // make entry_offset now point to the type field for this parameter
2143     int type_base = in_bytes(ParametersTypeData::type_offset(0));
2144     assert(type_base > off_base, "unexpected");
2145     add(entry_offset, type_base - off_base, entry_offset);
2146 
2147     // profile the parameter
2148     Address arg_type(mdp, entry_offset);
2149     profile_obj_type(tmp3, arg_type, tmp4);
2150 
2151     // go to next parameter
2152     sub(entry_offset, TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base), entry_offset);
2153     cmp_and_br_short(entry_offset, off_base, greaterEqual, pt, loop);
2154 
2155     bind(profile_continue);
2156   }
2157 }
2158 
2159 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
2160 
2161 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
2162                                                       Register Rtemp,
2163                                                       Register Rtemp2 ) {
2164 
2165   Register Rlimit = Lmonitors;
2166   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2167   assert( (delta & LongAlignmentMask) == 0,
2168           "sizeof BasicObjectLock must be even number of doublewords");
2169 
2170   sub( SP,        delta, SP);
2171   sub( Lesp,      delta, Lesp);
2172   sub( Lmonitors, delta, Lmonitors);
2173 
2174   if (!stack_is_empty) {
2175 
2176     // must copy stack contents down
2177 
2178     Label start_copying, next;
2179 
2180     // untested("monitor stack expansion");
2181     compute_stack_base(Rtemp);
2182     ba(start_copying);
2183     delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
2184 
2185     // note: must copy from low memory upwards
2186     // On entry to loop,
2187     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
2188     // Loop mutates Rtemp
2189 
2190     bind( next);
2191 
2192     st_ptr(Rtemp2, Rtemp, 0);
2193     inc(Rtemp, wordSize);
2194     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
2195 
2196     bind( start_copying );
2197 
2198     brx( notEqual, true, pn, next );
2199     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
2200 
2201     // done copying stack
2202   }
2203 }
2204 
2205 // Locals
2206 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
2207   assert_not_delayed();
2208   sll(index, Interpreter::logStackElementSize, index);
2209   sub(Llocals, index, index);
2210   ld_ptr(index, 0, dst);
2211   // Note:  index must hold the effective address--the iinc template uses it
2212 }
2213 
2214 // Just like access_local_ptr but the tag is a returnAddress
2215 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
2216                                                            Register dst ) {
2217   assert_not_delayed();
2218   sll(index, Interpreter::logStackElementSize, index);
2219   sub(Llocals, index, index);
2220   ld_ptr(index, 0, dst);
2221 }
2222 
2223 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
2224   assert_not_delayed();
2225   sll(index, Interpreter::logStackElementSize, index);
2226   sub(Llocals, index, index);
2227   ld(index, 0, dst);
2228   // Note:  index must hold the effective address--the iinc template uses it
2229 }
2230 
2231 
2232 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
2233   assert_not_delayed();
2234   sll(index, Interpreter::logStackElementSize, index);
2235   sub(Llocals, index, index);
2236   // First half stored at index n+1 (which grows down from Llocals[n])
2237   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
2238 }
2239 
2240 
2241 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
2242   assert_not_delayed();
2243   sll(index, Interpreter::logStackElementSize, index);
2244   sub(Llocals, index, index);
2245   ldf(FloatRegisterImpl::S, index, 0, dst);
2246 }
2247 
2248 
2249 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
2250   assert_not_delayed();
2251   sll(index, Interpreter::logStackElementSize, index);
2252   sub(Llocals, index, index);
2253   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
2254 }
2255 
2256 
2257 #ifdef ASSERT
2258 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
2259   Label L;
2260 
2261   assert(Rindex != Rscratch, "Registers cannot be same");
2262   assert(Rindex != Rscratch1, "Registers cannot be same");
2263   assert(Rlimit != Rscratch, "Registers cannot be same");
2264   assert(Rlimit != Rscratch1, "Registers cannot be same");
2265   assert(Rscratch1 != Rscratch, "Registers cannot be same");
2266 
2267   // untested("reg area corruption");
2268   add(Rindex, offset, Rscratch);
2269   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2270   cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
2271   stop("regsave area is being clobbered");
2272   bind(L);
2273 }
2274 #endif // ASSERT
2275 
2276 
2277 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2278   assert_not_delayed();
2279   sll(index, Interpreter::logStackElementSize, index);
2280   sub(Llocals, index, index);
2281   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2282   st(src, index, 0);
2283 }
2284 
2285 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2286   assert_not_delayed();
2287   sll(index, Interpreter::logStackElementSize, index);
2288   sub(Llocals, index, index);
2289 #ifdef ASSERT
2290   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2291 #endif
2292   st_ptr(src, index, 0);
2293 }
2294 
2295 
2296 
2297 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2298   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2299 }
2300 
2301 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2302   assert_not_delayed();
2303   sll(index, Interpreter::logStackElementSize, index);
2304   sub(Llocals, index, index);
2305 #ifdef ASSERT
2306   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2307 #endif
2308   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2309 }
2310 
2311 
2312 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2313   assert_not_delayed();
2314   sll(index, Interpreter::logStackElementSize, index);
2315   sub(Llocals, index, index);
2316 #ifdef ASSERT
2317   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2318 #endif
2319   stf(FloatRegisterImpl::S, src, index, 0);
2320 }
2321 
2322 
2323 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2324   assert_not_delayed();
2325   sll(index, Interpreter::logStackElementSize, index);
2326   sub(Llocals, index, index);
2327 #ifdef ASSERT
2328   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2329 #endif
2330   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2331 }
2332 
2333 
2334 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2335   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2336   int rounded_vm_local_words = align_up((int)frame::interpreter_frame_vm_local_words, WordsPerLong);
2337   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2338 }
2339 
2340 
2341 Address InterpreterMacroAssembler::top_most_monitor() {
2342   return Address(FP, top_most_monitor_byte_offset());
2343 }
2344 
2345 
2346 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2347   add( Lesp,      wordSize,                                    Rdest );
2348 }
2349 
2350 void InterpreterMacroAssembler::get_method_counters(Register method,
2351                                                     Register Rcounters,
2352                                                     Label& skip) {
2353   Label has_counters;
2354   Address method_counters(method, in_bytes(Method::method_counters_offset()));
2355   ld_ptr(method_counters, Rcounters);
2356   br_notnull_short(Rcounters, Assembler::pt, has_counters);
2357   call_VM(noreg, CAST_FROM_FN_PTR(address,
2358           InterpreterRuntime::build_method_counters), method);
2359   ld_ptr(method_counters, Rcounters);
2360   br_null(Rcounters, false, Assembler::pn, skip); // No MethodCounters, OutOfMemory
2361   delayed()->nop();
2362   bind(has_counters);
2363 }
2364 
2365 void InterpreterMacroAssembler::increment_invocation_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2366   assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
2367   assert_different_registers(Rcounters, Rtmp, Rtmp2);
2368 
2369   Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2370                                  InvocationCounter::counter_offset());
2371   Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2372                                  InvocationCounter::counter_offset());
2373   int delta = InvocationCounter::count_increment;
2374 
2375   // Load each counter in a register
2376   ld( inv_counter, Rtmp );
2377   ld( be_counter, Rtmp2 );
2378 
2379   assert( is_simm13( delta ), " delta too large.");
2380 
2381   // Add the delta to the invocation counter and store the result
2382   add( Rtmp, delta, Rtmp );
2383 
2384   // Mask the backedge counter
2385   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2386 
2387   // Store value
2388   st( Rtmp, inv_counter);
2389 
2390   // Add invocation counter + backedge counter
2391   add( Rtmp, Rtmp2, Rtmp);
2392 
2393   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2394 }
2395 
2396 void InterpreterMacroAssembler::increment_backedge_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2397   assert(UseCompiler, "incrementing must be useful");
2398   assert_different_registers(Rcounters, Rtmp, Rtmp2);
2399 
2400   Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2401                                  InvocationCounter::counter_offset());
2402   Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2403                                  InvocationCounter::counter_offset());
2404 
2405   int delta = InvocationCounter::count_increment;
2406   // Load each counter in a register
2407   ld( be_counter, Rtmp );
2408   ld( inv_counter, Rtmp2 );
2409 
2410   // Add the delta to the backedge counter
2411   add( Rtmp, delta, Rtmp );
2412 
2413   // Mask the invocation counter, add to backedge counter
2414   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2415 
2416   // and store the result to memory
2417   st( Rtmp, be_counter );
2418 
2419   // Add backedge + invocation counter
2420   add( Rtmp, Rtmp2, Rtmp );
2421 
2422   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2423 }
2424 
2425 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2426                                                              Register method_counters,
2427                                                              Register branch_bcp,
2428                                                              Register Rtmp ) {
2429   Label did_not_overflow;
2430   Label overflow_with_error;
2431   assert_different_registers(backedge_count, Rtmp, branch_bcp);
2432   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2433 
2434   Address limit(method_counters, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()));
2435   ld(limit, Rtmp);
2436   cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
2437 
2438   // When ProfileInterpreter is on, the backedge_count comes from the
2439   // MethodData*, which value does not get reset on the call to
2440   // frequency_counter_overflow().  To avoid excessive calls to the overflow
2441   // routine while the method is being compiled, add a second test to make sure
2442   // the overflow function is called only once every overflow_frequency.
2443   if (ProfileInterpreter) {
2444     const int overflow_frequency = 1024;
2445     andcc(backedge_count, overflow_frequency-1, Rtmp);
2446     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2447     delayed()->nop();
2448   }
2449 
2450   // overflow in loop, pass branch bytecode
2451   set(6,Rtmp);
2452   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2453 
2454   // Was an OSR adapter generated?
2455   // O0 = osr nmethod
2456   br_null_short(O0, Assembler::pn, overflow_with_error);
2457 
2458   // Has the nmethod been invalidated already?
2459   ldub(O0, nmethod::state_offset(), O2);
2460   cmp_and_br_short(O2, nmethod::in_use, Assembler::notEqual, Assembler::pn, overflow_with_error);
2461 
2462   // migrate the interpreter frame off of the stack
2463 
2464   mov(G2_thread, L7);
2465   // save nmethod
2466   mov(O0, L6);
2467   set_last_Java_frame(SP, noreg);
2468   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2469   reset_last_Java_frame();
2470   mov(L7, G2_thread);
2471 
2472   // move OSR nmethod to I1
2473   mov(L6, I1);
2474 
2475   // OSR buffer to I0
2476   mov(O0, I0);
2477 
2478   // remove the interpreter frame
2479   restore(I5_savedSP, 0, SP);
2480 
2481   // Jump to the osr code.
2482   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2483   jmp(O2, G0);
2484   delayed()->nop();
2485 
2486   bind(overflow_with_error);
2487 
2488   bind(did_not_overflow);
2489 }
2490 
2491 
2492 
2493 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2494   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2495 }
2496 
2497 
2498 // local helper function for the verify_oop_or_return_address macro
2499 static bool verify_return_address(Method* m, int bci) {
2500 #ifndef PRODUCT
2501   address pc = (address)(m->constMethod())
2502              + in_bytes(ConstMethod::codes_offset()) + bci;
2503   // assume it is a valid return address if it is inside m and is preceded by a jsr
2504   if (!m->contains(pc))                                          return false;
2505   address jsr_pc;
2506   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2507   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2508   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2509   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2510 #endif // PRODUCT
2511   return false;
2512 }
2513 
2514 
2515 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2516   if (!VerifyOops)  return;
2517   // the VM documentation for the astore[_wide] bytecode allows
2518   // the TOS to be not only an oop but also a return address
2519   Label test;
2520   Label skip;
2521   // See if it is an address (in the current method):
2522 
2523   mov(reg, Rtmp);
2524   const int log2_bytecode_size_limit = 16;
2525   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2526   br_notnull_short( Rtmp, pt, test );
2527 
2528   // %%% should use call_VM_leaf here?
2529   save_frame_and_mov(0, Lmethod, O0, reg, O1);
2530   save_thread(L7_thread_cache);
2531   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2532   delayed()->nop();
2533   restore_thread(L7_thread_cache);
2534   br_notnull( O0, false, pt, skip );
2535   delayed()->restore();
2536 
2537   // Perform a more elaborate out-of-line call
2538   // Not an address; verify it:
2539   bind(test);
2540   verify_oop(reg);
2541   bind(skip);
2542 }
2543 
2544 
2545 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2546   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2547 }
2548 
2549 
2550 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2551 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2552                                                         int increment, Address mask_addr,
2553                                                         Register scratch1, Register scratch2,
2554                                                         Condition cond, Label *where) {
2555   ld(counter_addr, scratch1);
2556   add(scratch1, increment, scratch1);
2557   ld(mask_addr, scratch2);
2558   andcc(scratch1, scratch2,  G0);
2559   br(cond, false, Assembler::pn, *where);
2560   delayed()->st(scratch1, counter_addr);
2561 }
2562 
2563 // Inline assembly for:
2564 //
2565 // if (thread is in interp_only_mode) {
2566 //   InterpreterRuntime::post_method_entry();
2567 // }
2568 // if (DTraceMethodProbes) {
2569 //   SharedRuntime::dtrace_method_entry(method, receiver);
2570 // }
2571 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2572 //   SharedRuntime::rc_trace_method_entry(method, receiver);
2573 // }
2574 
2575 void InterpreterMacroAssembler::notify_method_entry() {
2576 
2577   // Whenever JVMTI puts a thread in interp_only_mode, method
2578   // entry/exit events are sent for that thread to track stack
2579   // depth.  If it is possible to enter interp_only_mode we add
2580   // the code to check if the event should be sent.
2581   if (JvmtiExport::can_post_interpreter_events()) {
2582     Label L;
2583     Register temp_reg = O5;
2584     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2585     ld(interp_only, temp_reg);
2586     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2587     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2588     bind(L);
2589   }
2590 
2591   {
2592     Register temp_reg = O5;
2593     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2594     call_VM_leaf(noreg,
2595       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2596       G2_thread, Lmethod);
2597   }
2598 
2599   // RedefineClasses() tracing support for obsolete method entry
2600   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2601     call_VM_leaf(noreg,
2602       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2603       G2_thread, Lmethod);
2604   }
2605 }
2606 
2607 
2608 // Inline assembly for:
2609 //
2610 // if (thread is in interp_only_mode) {
2611 //   // save result
2612 //   InterpreterRuntime::post_method_exit();
2613 //   // restore result
2614 // }
2615 // if (DTraceMethodProbes) {
2616 //   SharedRuntime::dtrace_method_exit(thread, method);
2617 // }
2618 //
2619 // Native methods have their result stored in d_tmp and l_tmp
2620 // Java methods have their result stored in the expression stack
2621 
2622 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2623                                                    TosState state,
2624                                                    NotifyMethodExitMode mode) {
2625 
2626   // Whenever JVMTI puts a thread in interp_only_mode, method
2627   // entry/exit events are sent for that thread to track stack
2628   // depth.  If it is possible to enter interp_only_mode we add
2629   // the code to check if the event should be sent.
2630   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2631     Label L;
2632     Register temp_reg = O5;
2633     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2634     ld(interp_only, temp_reg);
2635     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2636 
2637     // Note: frame::interpreter_frame_result has a dependency on how the
2638     // method result is saved across the call to post_method_exit. For
2639     // native methods it assumes the result registers are saved to
2640     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2641     // implementation will need to be updated too.
2642 
2643     save_return_value(state, is_native_method);
2644     call_VM(noreg,
2645             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2646     restore_return_value(state, is_native_method);
2647     bind(L);
2648   }
2649 
2650   {
2651     Register temp_reg = O5;
2652     // Dtrace notification
2653     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2654     save_return_value(state, is_native_method);
2655     call_VM_leaf(
2656       noreg,
2657       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2658       G2_thread, Lmethod);
2659     restore_return_value(state, is_native_method);
2660   }
2661 }
2662 
2663 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2664   if (is_native_call) {
2665     stf(FloatRegisterImpl::D, F0, d_tmp);
2666     stx(O0, l_tmp);
2667   } else {
2668     push(state);
2669   }
2670 }
2671 
2672 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2673   if (is_native_call) {
2674     ldf(FloatRegisterImpl::D, d_tmp, F0);
2675     ldx(l_tmp, O0);
2676   } else {
2677     pop(state);
2678   }
2679 }