1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "interpreter/interp_masm.hpp"
  30 #include "interpreter/templateTable.hpp"
  31 #include "memory/universe.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/frame.inline.hpp"
  37 #include "runtime/safepointMechanism.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/synchronizer.hpp"
  41 #include "utilities/macros.hpp"
  42 
  43 #define __ _masm->
  44 
  45 // Global Register Names
  46 static const Register rbcp     = LP64_ONLY(r13) NOT_LP64(rsi);
  47 static const Register rlocals  = LP64_ONLY(r14) NOT_LP64(rdi);
  48 
  49 // Platform-dependent initialization
  50 void TemplateTable::pd_initialize() {
  51   // No x86 specific initialization
  52 }
  53 
  54 // Address Computation: local variables
  55 static inline Address iaddress(int n) {
  56   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
  57 }
  58 
  59 static inline Address laddress(int n) {
  60   return iaddress(n + 1);
  61 }
  62 
  63 #ifndef _LP64
  64 static inline Address haddress(int n) {
  65   return iaddress(n + 0);
  66 }
  67 #endif
  68 
  69 static inline Address faddress(int n) {
  70   return iaddress(n);
  71 }
  72 
  73 static inline Address daddress(int n) {
  74   return laddress(n);
  75 }
  76 
  77 static inline Address aaddress(int n) {
  78   return iaddress(n);
  79 }
  80 
  81 static inline Address iaddress(Register r) {
  82   return Address(rlocals, r, Address::times_ptr);
  83 }
  84 
  85 static inline Address laddress(Register r) {
  86   return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1));
  87 }
  88 
  89 #ifndef _LP64
  90 static inline Address haddress(Register r)       {
  91   return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
  92 }
  93 #endif
  94 
  95 static inline Address faddress(Register r) {
  96   return iaddress(r);
  97 }
  98 
  99 static inline Address daddress(Register r) {
 100   return laddress(r);
 101 }
 102 
 103 static inline Address aaddress(Register r) {
 104   return iaddress(r);
 105 }
 106 
 107 
 108 // expression stack
 109 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
 110 // data beyond the rsp which is potentially unsafe in an MT environment;
 111 // an interrupt may overwrite that data.)
 112 static inline Address at_rsp   () {
 113   return Address(rsp, 0);
 114 }
 115 
 116 // At top of Java expression stack which may be different than esp().  It
 117 // isn't for category 1 objects.
 118 static inline Address at_tos   () {
 119   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
 120 }
 121 
 122 static inline Address at_tos_p1() {
 123   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 124 }
 125 
 126 static inline Address at_tos_p2() {
 127   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 128 }
 129 
 130 // Condition conversion
 131 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 132   switch (cc) {
 133   case TemplateTable::equal        : return Assembler::notEqual;
 134   case TemplateTable::not_equal    : return Assembler::equal;
 135   case TemplateTable::less         : return Assembler::greaterEqual;
 136   case TemplateTable::less_equal   : return Assembler::greater;
 137   case TemplateTable::greater      : return Assembler::lessEqual;
 138   case TemplateTable::greater_equal: return Assembler::less;
 139   }
 140   ShouldNotReachHere();
 141   return Assembler::zero;
 142 }
 143 
 144 
 145 
 146 // Miscelaneous helper routines
 147 // Store an oop (or NULL) at the address described by obj.
 148 // If val == noreg this means store a NULL
 149 
 150 
 151 static void do_oop_store(InterpreterMacroAssembler* _masm,
 152                          Address dst,
 153                          Register val,
 154                          DecoratorSet decorators = 0) {
 155   assert(val == noreg || val == rax, "parameter is just for looks");
 156   __ store_heap_oop(dst, val, rdx, rbx, decorators);
 157 }
 158 
 159 static void do_oop_load(InterpreterMacroAssembler* _masm,
 160                         Address src,
 161                         Register dst,
 162                         DecoratorSet decorators = 0) {
 163   __ load_heap_oop(dst, src, rdx, rbx, decorators);
 164 }
 165 
 166 Address TemplateTable::at_bcp(int offset) {
 167   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 168   return Address(rbcp, offset);
 169 }
 170 
 171 
 172 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 173                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 174                                    int byte_no) {
 175   if (!RewriteBytecodes)  return;
 176   Label L_patch_done;
 177 
 178   switch (bc) {
 179   case Bytecodes::_fast_aputfield:
 180   case Bytecodes::_fast_bputfield:
 181   case Bytecodes::_fast_zputfield:
 182   case Bytecodes::_fast_cputfield:
 183   case Bytecodes::_fast_dputfield:
 184   case Bytecodes::_fast_fputfield:
 185   case Bytecodes::_fast_iputfield:
 186   case Bytecodes::_fast_lputfield:
 187   case Bytecodes::_fast_sputfield:
 188     {
 189       // We skip bytecode quickening for putfield instructions when
 190       // the put_code written to the constant pool cache is zero.
 191       // This is required so that every execution of this instruction
 192       // calls out to InterpreterRuntime::resolve_get_put to do
 193       // additional, required work.
 194       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 195       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 196       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
 197       __ movl(bc_reg, bc);
 198       __ cmpl(temp_reg, (int) 0);
 199       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 200     }
 201     break;
 202   default:
 203     assert(byte_no == -1, "sanity");
 204     // the pair bytecodes have already done the load.
 205     if (load_bc_into_bc_reg) {
 206       __ movl(bc_reg, bc);
 207     }
 208   }
 209 
 210   if (JvmtiExport::can_post_breakpoint()) {
 211     Label L_fast_patch;
 212     // if a breakpoint is present we can't rewrite the stream directly
 213     __ movzbl(temp_reg, at_bcp(0));
 214     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 215     __ jcc(Assembler::notEqual, L_fast_patch);
 216     __ get_method(temp_reg);
 217     // Let breakpoint table handling rewrite to quicker bytecode
 218     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg);
 219 #ifndef ASSERT
 220     __ jmpb(L_patch_done);
 221 #else
 222     __ jmp(L_patch_done);
 223 #endif
 224     __ bind(L_fast_patch);
 225   }
 226 
 227 #ifdef ASSERT
 228   Label L_okay;
 229   __ load_unsigned_byte(temp_reg, at_bcp(0));
 230   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
 231   __ jcc(Assembler::equal, L_okay);
 232   __ cmpl(temp_reg, bc_reg);
 233   __ jcc(Assembler::equal, L_okay);
 234   __ stop("patching the wrong bytecode");
 235   __ bind(L_okay);
 236 #endif
 237 
 238   // patch bytecode
 239   __ movb(at_bcp(0), bc_reg);
 240   __ bind(L_patch_done);
 241 }
 242 // Individual instructions
 243 
 244 
 245 void TemplateTable::nop() {
 246   transition(vtos, vtos);
 247   // nothing to do
 248 }
 249 
 250 void TemplateTable::shouldnotreachhere() {
 251   transition(vtos, vtos);
 252   __ stop("shouldnotreachhere bytecode");
 253 }
 254 
 255 void TemplateTable::aconst_null() {
 256   transition(vtos, atos);
 257   __ xorl(rax, rax);
 258 }
 259 
 260 void TemplateTable::iconst(int value) {
 261   transition(vtos, itos);
 262   if (value == 0) {
 263     __ xorl(rax, rax);
 264   } else {
 265     __ movl(rax, value);
 266   }
 267 }
 268 
 269 void TemplateTable::lconst(int value) {
 270   transition(vtos, ltos);
 271   if (value == 0) {
 272     __ xorl(rax, rax);
 273   } else {
 274     __ movl(rax, value);
 275   }
 276 #ifndef _LP64
 277   assert(value >= 0, "check this code");
 278   __ xorptr(rdx, rdx);
 279 #endif
 280 }
 281 
 282 
 283 
 284 void TemplateTable::fconst(int value) {
 285   transition(vtos, ftos);
 286   if (UseSSE >= 1) {
 287     static float one = 1.0f, two = 2.0f;
 288     switch (value) {
 289     case 0:
 290       __ xorps(xmm0, xmm0);
 291       break;
 292     case 1:
 293       __ movflt(xmm0, ExternalAddress((address) &one));
 294       break;
 295     case 2:
 296       __ movflt(xmm0, ExternalAddress((address) &two));
 297       break;
 298     default:
 299       ShouldNotReachHere();
 300       break;
 301     }
 302   } else {
 303 #ifdef _LP64
 304     ShouldNotReachHere();
 305 #else
 306            if (value == 0) { __ fldz();
 307     } else if (value == 1) { __ fld1();
 308     } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
 309     } else                 { ShouldNotReachHere();
 310     }
 311 #endif // _LP64
 312   }
 313 }
 314 
 315 void TemplateTable::dconst(int value) {
 316   transition(vtos, dtos);
 317   if (UseSSE >= 2) {
 318     static double one = 1.0;
 319     switch (value) {
 320     case 0:
 321       __ xorpd(xmm0, xmm0);
 322       break;
 323     case 1:
 324       __ movdbl(xmm0, ExternalAddress((address) &one));
 325       break;
 326     default:
 327       ShouldNotReachHere();
 328       break;
 329     }
 330   } else {
 331 #ifdef _LP64
 332     ShouldNotReachHere();
 333 #else
 334            if (value == 0) { __ fldz();
 335     } else if (value == 1) { __ fld1();
 336     } else                 { ShouldNotReachHere();
 337     }
 338 #endif
 339   }
 340 }
 341 
 342 void TemplateTable::bipush() {
 343   transition(vtos, itos);
 344   __ load_signed_byte(rax, at_bcp(1));
 345 }
 346 
 347 void TemplateTable::sipush() {
 348   transition(vtos, itos);
 349   __ load_unsigned_short(rax, at_bcp(1));
 350   __ bswapl(rax);
 351   __ sarl(rax, 16);
 352 }
 353 
 354 void TemplateTable::ldc(bool wide) {
 355   transition(vtos, vtos);
 356   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 357   Label call_ldc, notFloat, notClass, notInt, Done;
 358 
 359   if (wide) {
 360     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 361   } else {
 362     __ load_unsigned_byte(rbx, at_bcp(1));
 363   }
 364 
 365   __ get_cpool_and_tags(rcx, rax);
 366   const int base_offset = ConstantPool::header_size() * wordSize;
 367   const int tags_offset = Array<u1>::base_offset_in_bytes();
 368 
 369   // get type
 370   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 371 
 372   // unresolved class - get the resolved class
 373   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 374   __ jccb(Assembler::equal, call_ldc);
 375 
 376   // unresolved class in error state - call into runtime to throw the error
 377   // from the first resolution attempt
 378   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 379   __ jccb(Assembler::equal, call_ldc);
 380 
 381   // resolved class - need to call vm to get java mirror of the class
 382   __ cmpl(rdx, JVM_CONSTANT_Class);
 383   __ jcc(Assembler::notEqual, notClass);
 384 
 385   __ bind(call_ldc);
 386 
 387   __ movl(rarg, wide);
 388   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg);
 389 
 390   __ push(atos);
 391   __ jmp(Done);
 392 
 393   __ bind(notClass);
 394   __ cmpl(rdx, JVM_CONSTANT_Float);
 395   __ jccb(Assembler::notEqual, notFloat);
 396 
 397   // ftos
 398   __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset));
 399   __ push(ftos);
 400   __ jmp(Done);
 401 
 402   __ bind(notFloat);
 403   __ cmpl(rdx, JVM_CONSTANT_Integer);
 404   __ jccb(Assembler::notEqual, notInt);
 405 
 406   // itos
 407   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 408   __ push(itos);
 409   __ jmp(Done);
 410 
 411   // assume the tag is for condy; if not, the VM runtime will tell us
 412   __ bind(notInt);
 413   condy_helper(Done);
 414 
 415   __ bind(Done);
 416 }
 417 
 418 // Fast path for caching oop constants.
 419 void TemplateTable::fast_aldc(bool wide) {
 420   transition(vtos, atos);
 421 
 422   Register result = rax;
 423   Register tmp = rdx;
 424   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 425   int index_size = wide ? sizeof(u2) : sizeof(u1);
 426 
 427   Label resolved;
 428 
 429   // We are resolved if the resolved reference cache entry contains a
 430   // non-null object (String, MethodType, etc.)
 431   assert_different_registers(result, tmp);
 432   __ get_cache_index_at_bcp(tmp, 1, index_size);
 433   __ load_resolved_reference_at_index(result, tmp);
 434   __ testptr(result, result);
 435   __ jcc(Assembler::notZero, resolved);
 436 
 437   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 438 
 439   // first time invocation - must resolve first
 440   __ movl(rarg, (int)bytecode());
 441   __ call_VM(result, entry, rarg);
 442   __ bind(resolved);
 443 
 444   { // Check for the null sentinel.
 445     // If we just called the VM, that already did the mapping for us,
 446     // but it's harmless to retry.
 447     Label notNull;
 448     ExternalAddress null_sentinel((address)Universe::the_null_sentinel_addr());
 449     __ movptr(tmp, null_sentinel);
 450     __ cmpptr(tmp, result);
 451     __ jccb(Assembler::notEqual, notNull);
 452     __ xorptr(result, result);  // NULL object reference
 453     __ bind(notNull);
 454   }
 455 
 456   if (VerifyOops) {
 457     __ verify_oop(result);
 458   }
 459 }
 460 
 461 void TemplateTable::ldc2_w() {
 462   transition(vtos, vtos);
 463   Label notDouble, notLong, Done;
 464   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 465 
 466   __ get_cpool_and_tags(rcx, rax);
 467   const int base_offset = ConstantPool::header_size() * wordSize;
 468   const int tags_offset = Array<u1>::base_offset_in_bytes();
 469 
 470   // get type
 471   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 472   __ cmpl(rdx, JVM_CONSTANT_Double);
 473   __ jccb(Assembler::notEqual, notDouble);
 474 
 475   // dtos
 476   __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset));
 477   __ push(dtos);
 478 
 479   __ jmp(Done);
 480   __ bind(notDouble);
 481   __ cmpl(rdx, JVM_CONSTANT_Long);
 482   __ jccb(Assembler::notEqual, notLong);
 483 
 484   // ltos
 485   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
 486   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
 487   __ push(ltos);
 488   __ jmp(Done);
 489 
 490   __ bind(notLong);
 491   condy_helper(Done);
 492 
 493   __ bind(Done);
 494 }
 495 
 496 void TemplateTable::condy_helper(Label& Done) {
 497   const Register obj = rax;
 498   const Register off = rbx;
 499   const Register flags = rcx;
 500   const Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
 501   __ movl(rarg, (int)bytecode());
 502   call_VM(obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc), rarg);
 503 #ifndef _LP64
 504   // borrow rdi from locals
 505   __ get_thread(rdi);
 506   __ get_vm_result_2(flags, rdi);
 507   __ restore_locals();
 508 #else
 509   __ get_vm_result_2(flags, r15_thread);
 510 #endif
 511   // VMr = obj = base address to find primitive value to push
 512   // VMr2 = flags = (tos, off) using format of CPCE::_flags
 513   __ movl(off, flags);
 514   __ andl(off, ConstantPoolCacheEntry::field_index_mask);
 515   const Address field(obj, off, Address::times_1, 0*wordSize);
 516 
 517   // What sort of thing are we loading?
 518   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
 519   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
 520 
 521   switch (bytecode()) {
 522   case Bytecodes::_ldc:
 523   case Bytecodes::_ldc_w:
 524     {
 525       // tos in (itos, ftos, stos, btos, ctos, ztos)
 526       Label notInt, notFloat, notShort, notByte, notChar, notBool;
 527       __ cmpl(flags, itos);
 528       __ jcc(Assembler::notEqual, notInt);
 529       // itos
 530       __ movl(rax, field);
 531       __ push(itos);
 532       __ jmp(Done);
 533 
 534       __ bind(notInt);
 535       __ cmpl(flags, ftos);
 536       __ jcc(Assembler::notEqual, notFloat);
 537       // ftos
 538       __ load_float(field);
 539       __ push(ftos);
 540       __ jmp(Done);
 541 
 542       __ bind(notFloat);
 543       __ cmpl(flags, stos);
 544       __ jcc(Assembler::notEqual, notShort);
 545       // stos
 546       __ load_signed_short(rax, field);
 547       __ push(stos);
 548       __ jmp(Done);
 549 
 550       __ bind(notShort);
 551       __ cmpl(flags, btos);
 552       __ jcc(Assembler::notEqual, notByte);
 553       // btos
 554       __ load_signed_byte(rax, field);
 555       __ push(btos);
 556       __ jmp(Done);
 557 
 558       __ bind(notByte);
 559       __ cmpl(flags, ctos);
 560       __ jcc(Assembler::notEqual, notChar);
 561       // ctos
 562       __ load_unsigned_short(rax, field);
 563       __ push(ctos);
 564       __ jmp(Done);
 565 
 566       __ bind(notChar);
 567       __ cmpl(flags, ztos);
 568       __ jcc(Assembler::notEqual, notBool);
 569       // ztos
 570       __ load_signed_byte(rax, field);
 571       __ push(ztos);
 572       __ jmp(Done);
 573 
 574       __ bind(notBool);
 575       break;
 576     }
 577 
 578   case Bytecodes::_ldc2_w:
 579     {
 580       Label notLong, notDouble;
 581       __ cmpl(flags, ltos);
 582       __ jcc(Assembler::notEqual, notLong);
 583       // ltos
 584       __ movptr(rax, field);
 585       NOT_LP64(__ movptr(rdx, field.plus_disp(4)));
 586       __ push(ltos);
 587       __ jmp(Done);
 588 
 589       __ bind(notLong);
 590       __ cmpl(flags, dtos);
 591       __ jcc(Assembler::notEqual, notDouble);
 592       // dtos
 593       __ load_double(field);
 594       __ push(dtos);
 595       __ jmp(Done);
 596 
 597       __ bind(notDouble);
 598       break;
 599     }
 600 
 601   default:
 602     ShouldNotReachHere();
 603   }
 604 
 605   __ stop("bad ldc/condy");
 606 }
 607 
 608 void TemplateTable::locals_index(Register reg, int offset) {
 609   __ load_unsigned_byte(reg, at_bcp(offset));
 610   __ negptr(reg);
 611 }
 612 
 613 void TemplateTable::iload() {
 614   iload_internal();
 615 }
 616 
 617 void TemplateTable::nofast_iload() {
 618   iload_internal(may_not_rewrite);
 619 }
 620 
 621 void TemplateTable::iload_internal(RewriteControl rc) {
 622   transition(vtos, itos);
 623   if (RewriteFrequentPairs && rc == may_rewrite) {
 624     Label rewrite, done;
 625     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
 626     LP64_ONLY(assert(rbx != bc, "register damaged"));
 627 
 628     // get next byte
 629     __ load_unsigned_byte(rbx,
 630                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 631     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 632     // last two iloads in a pair.  Comparing against fast_iload means that
 633     // the next bytecode is neither an iload or a caload, and therefore
 634     // an iload pair.
 635     __ cmpl(rbx, Bytecodes::_iload);
 636     __ jcc(Assembler::equal, done);
 637 
 638     __ cmpl(rbx, Bytecodes::_fast_iload);
 639     __ movl(bc, Bytecodes::_fast_iload2);
 640 
 641     __ jccb(Assembler::equal, rewrite);
 642 
 643     // if _caload, rewrite to fast_icaload
 644     __ cmpl(rbx, Bytecodes::_caload);
 645     __ movl(bc, Bytecodes::_fast_icaload);
 646     __ jccb(Assembler::equal, rewrite);
 647 
 648     // rewrite so iload doesn't check again.
 649     __ movl(bc, Bytecodes::_fast_iload);
 650 
 651     // rewrite
 652     // bc: fast bytecode
 653     __ bind(rewrite);
 654     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 655     __ bind(done);
 656   }
 657 
 658   // Get the local value into tos
 659   locals_index(rbx);
 660   __ movl(rax, iaddress(rbx));
 661 }
 662 
 663 void TemplateTable::fast_iload2() {
 664   transition(vtos, itos);
 665   locals_index(rbx);
 666   __ movl(rax, iaddress(rbx));
 667   __ push(itos);
 668   locals_index(rbx, 3);
 669   __ movl(rax, iaddress(rbx));
 670 }
 671 
 672 void TemplateTable::fast_iload() {
 673   transition(vtos, itos);
 674   locals_index(rbx);
 675   __ movl(rax, iaddress(rbx));
 676 }
 677 
 678 void TemplateTable::lload() {
 679   transition(vtos, ltos);
 680   locals_index(rbx);
 681   __ movptr(rax, laddress(rbx));
 682   NOT_LP64(__ movl(rdx, haddress(rbx)));
 683 }
 684 
 685 void TemplateTable::fload() {
 686   transition(vtos, ftos);
 687   locals_index(rbx);
 688   __ load_float(faddress(rbx));
 689 }
 690 
 691 void TemplateTable::dload() {
 692   transition(vtos, dtos);
 693   locals_index(rbx);
 694   __ load_double(daddress(rbx));
 695 }
 696 
 697 void TemplateTable::aload() {
 698   transition(vtos, atos);
 699   locals_index(rbx);
 700   __ movptr(rax, aaddress(rbx));
 701 }
 702 
 703 void TemplateTable::locals_index_wide(Register reg) {
 704   __ load_unsigned_short(reg, at_bcp(2));
 705   __ bswapl(reg);
 706   __ shrl(reg, 16);
 707   __ negptr(reg);
 708 }
 709 
 710 void TemplateTable::wide_iload() {
 711   transition(vtos, itos);
 712   locals_index_wide(rbx);
 713   __ movl(rax, iaddress(rbx));
 714 }
 715 
 716 void TemplateTable::wide_lload() {
 717   transition(vtos, ltos);
 718   locals_index_wide(rbx);
 719   __ movptr(rax, laddress(rbx));
 720   NOT_LP64(__ movl(rdx, haddress(rbx)));
 721 }
 722 
 723 void TemplateTable::wide_fload() {
 724   transition(vtos, ftos);
 725   locals_index_wide(rbx);
 726   __ load_float(faddress(rbx));
 727 }
 728 
 729 void TemplateTable::wide_dload() {
 730   transition(vtos, dtos);
 731   locals_index_wide(rbx);
 732   __ load_double(daddress(rbx));
 733 }
 734 
 735 void TemplateTable::wide_aload() {
 736   transition(vtos, atos);
 737   locals_index_wide(rbx);
 738   __ movptr(rax, aaddress(rbx));
 739 }
 740 
 741 void TemplateTable::index_check(Register array, Register index) {
 742   // Pop ptr into array
 743   __ pop_ptr(array);
 744   index_check_without_pop(array, index);
 745 }
 746 
 747 void TemplateTable::index_check_without_pop(Register array, Register index) {
 748   // destroys rbx
 749   // check array
 750   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 751   // sign extend index for use by indexed load
 752   __ movl2ptr(index, index);
 753   // check index
 754   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 755   if (index != rbx) {
 756     // ??? convention: move aberrant index into rbx for exception message
 757     assert(rbx != array, "different registers");
 758     __ movl(rbx, index);
 759   }
 760   Label skip;
 761   __ jccb(Assembler::below, skip);
 762   // Pass array to create more detailed exceptions.
 763   __ mov(NOT_LP64(rax) LP64_ONLY(c_rarg1), array);
 764   __ jump(ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 765   __ bind(skip);
 766 }
 767 
 768 void TemplateTable::iaload() {
 769   transition(itos, itos);
 770   // rax: index
 771   // rdx: array
 772   index_check(rdx, rax); // kills rbx
 773   __ movl(rax, Address(rdx, rax,
 774                        Address::times_4,
 775                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 776 }
 777 
 778 void TemplateTable::laload() {
 779   transition(itos, ltos);
 780   // rax: index
 781   // rdx: array
 782   index_check(rdx, rax); // kills rbx
 783   NOT_LP64(__ mov(rbx, rax));
 784   // rbx,: index
 785   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
 786   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
 787 }
 788 
 789 
 790 
 791 void TemplateTable::faload() {
 792   transition(itos, ftos);
 793   // rax: index
 794   // rdx: array
 795   index_check(rdx, rax); // kills rbx
 796   __ load_float(Address(rdx, rax,
 797                         Address::times_4,
 798                         arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 799 }
 800 
 801 void TemplateTable::daload() {
 802   transition(itos, dtos);
 803   // rax: index
 804   // rdx: array
 805   index_check(rdx, rax); // kills rbx
 806   __ load_double(Address(rdx, rax,
 807                          Address::times_8,
 808                          arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 809 }
 810 
 811 void TemplateTable::aaload() {
 812   transition(itos, atos);
 813   // rax: index
 814   // rdx: array
 815   index_check(rdx, rax); // kills rbx
 816   do_oop_load(_masm,
 817               Address(rdx, rax,
 818                       UseCompressedOops ? Address::times_4 : Address::times_ptr,
 819                       arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
 820               rax,
 821               IN_HEAP_ARRAY);
 822 }
 823 
 824 void TemplateTable::baload() {
 825   transition(itos, itos);
 826   // rax: index
 827   // rdx: array
 828   index_check(rdx, rax); // kills rbx
 829   __ load_signed_byte(rax, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 830 }
 831 
 832 void TemplateTable::caload() {
 833   transition(itos, itos);
 834   // rax: index
 835   // rdx: array
 836   index_check(rdx, rax); // kills rbx
 837   __ load_unsigned_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 838 }
 839 
 840 // iload followed by caload frequent pair
 841 void TemplateTable::fast_icaload() {
 842   transition(vtos, itos);
 843   // load index out of locals
 844   locals_index(rbx);
 845   __ movl(rax, iaddress(rbx));
 846 
 847   // rax: index
 848   // rdx: array
 849   index_check(rdx, rax); // kills rbx
 850   __ load_unsigned_short(rax,
 851                          Address(rdx, rax,
 852                                  Address::times_2,
 853                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 854 }
 855 
 856 
 857 void TemplateTable::saload() {
 858   transition(itos, itos);
 859   // rax: index
 860   // rdx: array
 861   index_check(rdx, rax); // kills rbx
 862   __ load_signed_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 863 }
 864 
 865 void TemplateTable::iload(int n) {
 866   transition(vtos, itos);
 867   __ movl(rax, iaddress(n));
 868 }
 869 
 870 void TemplateTable::lload(int n) {
 871   transition(vtos, ltos);
 872   __ movptr(rax, laddress(n));
 873   NOT_LP64(__ movptr(rdx, haddress(n)));
 874 }
 875 
 876 void TemplateTable::fload(int n) {
 877   transition(vtos, ftos);
 878   __ load_float(faddress(n));
 879 }
 880 
 881 void TemplateTable::dload(int n) {
 882   transition(vtos, dtos);
 883   __ load_double(daddress(n));
 884 }
 885 
 886 void TemplateTable::aload(int n) {
 887   transition(vtos, atos);
 888   __ movptr(rax, aaddress(n));
 889 }
 890 
 891 void TemplateTable::aload_0() {
 892   aload_0_internal();
 893 }
 894 
 895 void TemplateTable::nofast_aload_0() {
 896   aload_0_internal(may_not_rewrite);
 897 }
 898 
 899 void TemplateTable::aload_0_internal(RewriteControl rc) {
 900   transition(vtos, atos);
 901   // According to bytecode histograms, the pairs:
 902   //
 903   // _aload_0, _fast_igetfield
 904   // _aload_0, _fast_agetfield
 905   // _aload_0, _fast_fgetfield
 906   //
 907   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 908   // _aload_0 bytecode checks if the next bytecode is either
 909   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 910   // rewrites the current bytecode into a pair bytecode; otherwise it
 911   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 912   // the pair check anymore.
 913   //
 914   // Note: If the next bytecode is _getfield, the rewrite must be
 915   //       delayed, otherwise we may miss an opportunity for a pair.
 916   //
 917   // Also rewrite frequent pairs
 918   //   aload_0, aload_1
 919   //   aload_0, iload_1
 920   // These bytecodes with a small amount of code are most profitable
 921   // to rewrite
 922   if (RewriteFrequentPairs && rc == may_rewrite) {
 923     Label rewrite, done;
 924 
 925     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
 926     LP64_ONLY(assert(rbx != bc, "register damaged"));
 927 
 928     // get next byte
 929     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 930 
 931     // if _getfield then wait with rewrite
 932     __ cmpl(rbx, Bytecodes::_getfield);
 933     __ jcc(Assembler::equal, done);
 934 
 935     // if _igetfield then rewrite to _fast_iaccess_0
 936     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 937     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 938     __ movl(bc, Bytecodes::_fast_iaccess_0);
 939     __ jccb(Assembler::equal, rewrite);
 940 
 941     // if _agetfield then rewrite to _fast_aaccess_0
 942     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 943     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 944     __ movl(bc, Bytecodes::_fast_aaccess_0);
 945     __ jccb(Assembler::equal, rewrite);
 946 
 947     // if _fgetfield then rewrite to _fast_faccess_0
 948     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 949     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 950     __ movl(bc, Bytecodes::_fast_faccess_0);
 951     __ jccb(Assembler::equal, rewrite);
 952 
 953     // else rewrite to _fast_aload0
 954     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
 955     __ movl(bc, Bytecodes::_fast_aload_0);
 956 
 957     // rewrite
 958     // bc: fast bytecode
 959     __ bind(rewrite);
 960     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
 961 
 962     __ bind(done);
 963   }
 964 
 965   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
 966   aload(0);
 967 }
 968 
 969 void TemplateTable::istore() {
 970   transition(itos, vtos);
 971   locals_index(rbx);
 972   __ movl(iaddress(rbx), rax);
 973 }
 974 
 975 
 976 void TemplateTable::lstore() {
 977   transition(ltos, vtos);
 978   locals_index(rbx);
 979   __ movptr(laddress(rbx), rax);
 980   NOT_LP64(__ movptr(haddress(rbx), rdx));
 981 }
 982 
 983 void TemplateTable::fstore() {
 984   transition(ftos, vtos);
 985   locals_index(rbx);
 986   __ store_float(faddress(rbx));
 987 }
 988 
 989 void TemplateTable::dstore() {
 990   transition(dtos, vtos);
 991   locals_index(rbx);
 992   __ store_double(daddress(rbx));
 993 }
 994 
 995 void TemplateTable::astore() {
 996   transition(vtos, vtos);
 997   __ pop_ptr(rax);
 998   locals_index(rbx);
 999   __ movptr(aaddress(rbx), rax);
1000 }
1001 
1002 void TemplateTable::wide_istore() {
1003   transition(vtos, vtos);
1004   __ pop_i();
1005   locals_index_wide(rbx);
1006   __ movl(iaddress(rbx), rax);
1007 }
1008 
1009 void TemplateTable::wide_lstore() {
1010   transition(vtos, vtos);
1011   NOT_LP64(__ pop_l(rax, rdx));
1012   LP64_ONLY(__ pop_l());
1013   locals_index_wide(rbx);
1014   __ movptr(laddress(rbx), rax);
1015   NOT_LP64(__ movl(haddress(rbx), rdx));
1016 }
1017 
1018 void TemplateTable::wide_fstore() {
1019 #ifdef _LP64
1020   transition(vtos, vtos);
1021   __ pop_f(xmm0);
1022   locals_index_wide(rbx);
1023   __ movflt(faddress(rbx), xmm0);
1024 #else
1025   wide_istore();
1026 #endif
1027 }
1028 
1029 void TemplateTable::wide_dstore() {
1030 #ifdef _LP64
1031   transition(vtos, vtos);
1032   __ pop_d(xmm0);
1033   locals_index_wide(rbx);
1034   __ movdbl(daddress(rbx), xmm0);
1035 #else
1036   wide_lstore();
1037 #endif
1038 }
1039 
1040 void TemplateTable::wide_astore() {
1041   transition(vtos, vtos);
1042   __ pop_ptr(rax);
1043   locals_index_wide(rbx);
1044   __ movptr(aaddress(rbx), rax);
1045 }
1046 
1047 void TemplateTable::iastore() {
1048   transition(itos, vtos);
1049   __ pop_i(rbx);
1050   // rax: value
1051   // rbx: index
1052   // rdx: array
1053   index_check(rdx, rbx); // prefer index in rbx
1054   __ movl(Address(rdx, rbx,
1055                   Address::times_4,
1056                   arrayOopDesc::base_offset_in_bytes(T_INT)),
1057           rax);
1058 }
1059 
1060 void TemplateTable::lastore() {
1061   transition(ltos, vtos);
1062   __ pop_i(rbx);
1063   // rax,: low(value)
1064   // rcx: array
1065   // rdx: high(value)
1066   index_check(rcx, rbx);  // prefer index in rbx,
1067   // rbx,: index
1068   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
1069   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
1070 }
1071 
1072 
1073 void TemplateTable::fastore() {
1074   transition(ftos, vtos);
1075   __ pop_i(rbx);
1076   // value is in UseSSE >= 1 ? xmm0 : ST(0)
1077   // rbx:  index
1078   // rdx:  array
1079   index_check(rdx, rbx); // prefer index in rbx
1080   __ store_float(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
1081 }
1082 
1083 void TemplateTable::dastore() {
1084   transition(dtos, vtos);
1085   __ pop_i(rbx);
1086   // value is in UseSSE >= 2 ? xmm0 : ST(0)
1087   // rbx:  index
1088   // rdx:  array
1089   index_check(rdx, rbx); // prefer index in rbx
1090   __ store_double(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
1091 }
1092 
1093 void TemplateTable::aastore() {
1094   Label is_null, ok_is_subtype, done;
1095   transition(vtos, vtos);
1096   // stack: ..., array, index, value
1097   __ movptr(rax, at_tos());    // value
1098   __ movl(rcx, at_tos_p1()); // index
1099   __ movptr(rdx, at_tos_p2()); // array
1100 
1101   Address element_address(rdx, rcx,
1102                           UseCompressedOops? Address::times_4 : Address::times_ptr,
1103                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1104 
1105   index_check_without_pop(rdx, rcx);     // kills rbx
1106   __ testptr(rax, rax);
1107   __ jcc(Assembler::zero, is_null);
1108 
1109   // Move subklass into rbx
1110   __ load_klass(rbx, rax);
1111   // Move superklass into rax
1112   __ load_klass(rax, rdx);
1113   __ movptr(rax, Address(rax,
1114                          ObjArrayKlass::element_klass_offset()));
1115   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
1116   __ lea(rdx, element_address);
1117 
1118   // Generate subtype check.  Blows rcx, rdi
1119   // Superklass in rax.  Subklass in rbx.
1120   __ gen_subtype_check(rbx, ok_is_subtype);
1121 
1122   // Come here on failure
1123   // object is at TOS
1124   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
1125 
1126   // Come here on success
1127   __ bind(ok_is_subtype);
1128 
1129   // Get the value we will store
1130   __ movptr(rax, at_tos());
1131   // Now store using the appropriate barrier
1132   do_oop_store(_masm, Address(rdx, 0), rax, IN_HEAP_ARRAY);
1133   __ jmp(done);
1134 
1135   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
1136   __ bind(is_null);
1137   __ profile_null_seen(rbx);
1138 
1139   // Store a NULL
1140   do_oop_store(_masm, element_address, noreg, IN_HEAP_ARRAY);
1141 
1142   // Pop stack arguments
1143   __ bind(done);
1144   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1145 }
1146 
1147 void TemplateTable::bastore() {
1148   transition(itos, vtos);
1149   __ pop_i(rbx);
1150   // rax: value
1151   // rbx: index
1152   // rdx: array
1153   index_check(rdx, rbx); // prefer index in rbx
1154   // Need to check whether array is boolean or byte
1155   // since both types share the bastore bytecode.
1156   __ load_klass(rcx, rdx);
1157   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1158   int diffbit = Klass::layout_helper_boolean_diffbit();
1159   __ testl(rcx, diffbit);
1160   Label L_skip;
1161   __ jccb(Assembler::zero, L_skip);
1162   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1163   __ bind(L_skip);
1164   __ movb(Address(rdx, rbx,
1165                   Address::times_1,
1166                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1167           rax);
1168 }
1169 
1170 void TemplateTable::castore() {
1171   transition(itos, vtos);
1172   __ pop_i(rbx);
1173   // rax: value
1174   // rbx: index
1175   // rdx: array
1176   index_check(rdx, rbx);  // prefer index in rbx
1177   __ movw(Address(rdx, rbx,
1178                   Address::times_2,
1179                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1180           rax);
1181 }
1182 
1183 
1184 void TemplateTable::sastore() {
1185   castore();
1186 }
1187 
1188 void TemplateTable::istore(int n) {
1189   transition(itos, vtos);
1190   __ movl(iaddress(n), rax);
1191 }
1192 
1193 void TemplateTable::lstore(int n) {
1194   transition(ltos, vtos);
1195   __ movptr(laddress(n), rax);
1196   NOT_LP64(__ movptr(haddress(n), rdx));
1197 }
1198 
1199 void TemplateTable::fstore(int n) {
1200   transition(ftos, vtos);
1201   __ store_float(faddress(n));
1202 }
1203 
1204 void TemplateTable::dstore(int n) {
1205   transition(dtos, vtos);
1206   __ store_double(daddress(n));
1207 }
1208 
1209 
1210 void TemplateTable::astore(int n) {
1211   transition(vtos, vtos);
1212   __ pop_ptr(rax);
1213   __ movptr(aaddress(n), rax);
1214 }
1215 
1216 void TemplateTable::pop() {
1217   transition(vtos, vtos);
1218   __ addptr(rsp, Interpreter::stackElementSize);
1219 }
1220 
1221 void TemplateTable::pop2() {
1222   transition(vtos, vtos);
1223   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1224 }
1225 
1226 
1227 void TemplateTable::dup() {
1228   transition(vtos, vtos);
1229   __ load_ptr(0, rax);
1230   __ push_ptr(rax);
1231   // stack: ..., a, a
1232 }
1233 
1234 void TemplateTable::dup_x1() {
1235   transition(vtos, vtos);
1236   // stack: ..., a, b
1237   __ load_ptr( 0, rax);  // load b
1238   __ load_ptr( 1, rcx);  // load a
1239   __ store_ptr(1, rax);  // store b
1240   __ store_ptr(0, rcx);  // store a
1241   __ push_ptr(rax);      // push b
1242   // stack: ..., b, a, b
1243 }
1244 
1245 void TemplateTable::dup_x2() {
1246   transition(vtos, vtos);
1247   // stack: ..., a, b, c
1248   __ load_ptr( 0, rax);  // load c
1249   __ load_ptr( 2, rcx);  // load a
1250   __ store_ptr(2, rax);  // store c in a
1251   __ push_ptr(rax);      // push c
1252   // stack: ..., c, b, c, c
1253   __ load_ptr( 2, rax);  // load b
1254   __ store_ptr(2, rcx);  // store a in b
1255   // stack: ..., c, a, c, c
1256   __ store_ptr(1, rax);  // store b in c
1257   // stack: ..., c, a, b, c
1258 }
1259 
1260 void TemplateTable::dup2() {
1261   transition(vtos, vtos);
1262   // stack: ..., a, b
1263   __ load_ptr(1, rax);  // load a
1264   __ push_ptr(rax);     // push a
1265   __ load_ptr(1, rax);  // load b
1266   __ push_ptr(rax);     // push b
1267   // stack: ..., a, b, a, b
1268 }
1269 
1270 
1271 void TemplateTable::dup2_x1() {
1272   transition(vtos, vtos);
1273   // stack: ..., a, b, c
1274   __ load_ptr( 0, rcx);  // load c
1275   __ load_ptr( 1, rax);  // load b
1276   __ push_ptr(rax);      // push b
1277   __ push_ptr(rcx);      // push c
1278   // stack: ..., a, b, c, b, c
1279   __ store_ptr(3, rcx);  // store c in b
1280   // stack: ..., a, c, c, b, c
1281   __ load_ptr( 4, rcx);  // load a
1282   __ store_ptr(2, rcx);  // store a in 2nd c
1283   // stack: ..., a, c, a, b, c
1284   __ store_ptr(4, rax);  // store b in a
1285   // stack: ..., b, c, a, b, c
1286 }
1287 
1288 void TemplateTable::dup2_x2() {
1289   transition(vtos, vtos);
1290   // stack: ..., a, b, c, d
1291   __ load_ptr( 0, rcx);  // load d
1292   __ load_ptr( 1, rax);  // load c
1293   __ push_ptr(rax);      // push c
1294   __ push_ptr(rcx);      // push d
1295   // stack: ..., a, b, c, d, c, d
1296   __ load_ptr( 4, rax);  // load b
1297   __ store_ptr(2, rax);  // store b in d
1298   __ store_ptr(4, rcx);  // store d in b
1299   // stack: ..., a, d, c, b, c, d
1300   __ load_ptr( 5, rcx);  // load a
1301   __ load_ptr( 3, rax);  // load c
1302   __ store_ptr(3, rcx);  // store a in c
1303   __ store_ptr(5, rax);  // store c in a
1304   // stack: ..., c, d, a, b, c, d
1305 }
1306 
1307 void TemplateTable::swap() {
1308   transition(vtos, vtos);
1309   // stack: ..., a, b
1310   __ load_ptr( 1, rcx);  // load a
1311   __ load_ptr( 0, rax);  // load b
1312   __ store_ptr(0, rcx);  // store a in b
1313   __ store_ptr(1, rax);  // store b in a
1314   // stack: ..., b, a
1315 }
1316 
1317 void TemplateTable::iop2(Operation op) {
1318   transition(itos, itos);
1319   switch (op) {
1320   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1321   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1322   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1323   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1324   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1325   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1326   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1327   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1328   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1329   default   : ShouldNotReachHere();
1330   }
1331 }
1332 
1333 void TemplateTable::lop2(Operation op) {
1334   transition(ltos, ltos);
1335 #ifdef _LP64
1336   switch (op) {
1337   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1338   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1339   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1340   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1341   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1342   default   : ShouldNotReachHere();
1343   }
1344 #else
1345   __ pop_l(rbx, rcx);
1346   switch (op) {
1347     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1348     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1349                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1350     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1351     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1352     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1353     default   : ShouldNotReachHere();
1354   }
1355 #endif
1356 }
1357 
1358 void TemplateTable::idiv() {
1359   transition(itos, itos);
1360   __ movl(rcx, rax);
1361   __ pop_i(rax);
1362   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1363   //       they are not equal, one could do a normal division (no correction
1364   //       needed), which may speed up this implementation for the common case.
1365   //       (see also JVM spec., p.243 & p.271)
1366   __ corrected_idivl(rcx);
1367 }
1368 
1369 void TemplateTable::irem() {
1370   transition(itos, itos);
1371   __ movl(rcx, rax);
1372   __ pop_i(rax);
1373   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
1374   //       they are not equal, one could do a normal division (no correction
1375   //       needed), which may speed up this implementation for the common case.
1376   //       (see also JVM spec., p.243 & p.271)
1377   __ corrected_idivl(rcx);
1378   __ movl(rax, rdx);
1379 }
1380 
1381 void TemplateTable::lmul() {
1382   transition(ltos, ltos);
1383 #ifdef _LP64
1384   __ pop_l(rdx);
1385   __ imulq(rax, rdx);
1386 #else
1387   __ pop_l(rbx, rcx);
1388   __ push(rcx); __ push(rbx);
1389   __ push(rdx); __ push(rax);
1390   __ lmul(2 * wordSize, 0);
1391   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1392 #endif
1393 }
1394 
1395 void TemplateTable::ldiv() {
1396   transition(ltos, ltos);
1397 #ifdef _LP64
1398   __ mov(rcx, rax);
1399   __ pop_l(rax);
1400   // generate explicit div0 check
1401   __ testq(rcx, rcx);
1402   __ jump_cc(Assembler::zero,
1403              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1404   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1405   //       they are not equal, one could do a normal division (no correction
1406   //       needed), which may speed up this implementation for the common case.
1407   //       (see also JVM spec., p.243 & p.271)
1408   __ corrected_idivq(rcx); // kills rbx
1409 #else
1410   __ pop_l(rbx, rcx);
1411   __ push(rcx); __ push(rbx);
1412   __ push(rdx); __ push(rax);
1413   // check if y = 0
1414   __ orl(rax, rdx);
1415   __ jump_cc(Assembler::zero,
1416              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1417   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1418   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1419 #endif
1420 }
1421 
1422 void TemplateTable::lrem() {
1423   transition(ltos, ltos);
1424 #ifdef _LP64
1425   __ mov(rcx, rax);
1426   __ pop_l(rax);
1427   __ testq(rcx, rcx);
1428   __ jump_cc(Assembler::zero,
1429              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1430   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1431   //       they are not equal, one could do a normal division (no correction
1432   //       needed), which may speed up this implementation for the common case.
1433   //       (see also JVM spec., p.243 & p.271)
1434   __ corrected_idivq(rcx); // kills rbx
1435   __ mov(rax, rdx);
1436 #else
1437   __ pop_l(rbx, rcx);
1438   __ push(rcx); __ push(rbx);
1439   __ push(rdx); __ push(rax);
1440   // check if y = 0
1441   __ orl(rax, rdx);
1442   __ jump_cc(Assembler::zero,
1443              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1444   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1445   __ addptr(rsp, 4 * wordSize);
1446 #endif
1447 }
1448 
1449 void TemplateTable::lshl() {
1450   transition(itos, ltos);
1451   __ movl(rcx, rax);                             // get shift count
1452   #ifdef _LP64
1453   __ pop_l(rax);                                 // get shift value
1454   __ shlq(rax);
1455 #else
1456   __ pop_l(rax, rdx);                            // get shift value
1457   __ lshl(rdx, rax);
1458 #endif
1459 }
1460 
1461 void TemplateTable::lshr() {
1462 #ifdef _LP64
1463   transition(itos, ltos);
1464   __ movl(rcx, rax);                             // get shift count
1465   __ pop_l(rax);                                 // get shift value
1466   __ sarq(rax);
1467 #else
1468   transition(itos, ltos);
1469   __ mov(rcx, rax);                              // get shift count
1470   __ pop_l(rax, rdx);                            // get shift value
1471   __ lshr(rdx, rax, true);
1472 #endif
1473 }
1474 
1475 void TemplateTable::lushr() {
1476   transition(itos, ltos);
1477 #ifdef _LP64
1478   __ movl(rcx, rax);                             // get shift count
1479   __ pop_l(rax);                                 // get shift value
1480   __ shrq(rax);
1481 #else
1482   __ mov(rcx, rax);                              // get shift count
1483   __ pop_l(rax, rdx);                            // get shift value
1484   __ lshr(rdx, rax);
1485 #endif
1486 }
1487 
1488 void TemplateTable::fop2(Operation op) {
1489   transition(ftos, ftos);
1490 
1491   if (UseSSE >= 1) {
1492     switch (op) {
1493     case add:
1494       __ addss(xmm0, at_rsp());
1495       __ addptr(rsp, Interpreter::stackElementSize);
1496       break;
1497     case sub:
1498       __ movflt(xmm1, xmm0);
1499       __ pop_f(xmm0);
1500       __ subss(xmm0, xmm1);
1501       break;
1502     case mul:
1503       __ mulss(xmm0, at_rsp());
1504       __ addptr(rsp, Interpreter::stackElementSize);
1505       break;
1506     case div:
1507       __ movflt(xmm1, xmm0);
1508       __ pop_f(xmm0);
1509       __ divss(xmm0, xmm1);
1510       break;
1511     case rem:
1512       // On x86_64 platforms the SharedRuntime::frem method is called to perform the
1513       // modulo operation. The frem method calls the function
1514       // double fmod(double x, double y) in math.h. The documentation of fmod states:
1515       // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN
1516       // (signalling or quiet) is returned.
1517       //
1518       // On x86_32 platforms the FPU is used to perform the modulo operation. The
1519       // reason is that on 32-bit Windows the sign of modulo operations diverges from
1520       // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f).
1521       // The fprem instruction used on x86_32 is functionally equivalent to
1522       // SharedRuntime::frem in that it returns a NaN.
1523 #ifdef _LP64
1524       __ movflt(xmm1, xmm0);
1525       __ pop_f(xmm0);
1526       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1527 #else
1528       __ push_f(xmm0);
1529       __ pop_f();
1530       __ fld_s(at_rsp());
1531       __ fremr(rax);
1532       __ f2ieee();
1533       __ pop(rax);  // pop second operand off the stack
1534       __ push_f();
1535       __ pop_f(xmm0);
1536 #endif
1537       break;
1538     default:
1539       ShouldNotReachHere();
1540       break;
1541     }
1542   } else {
1543 #ifdef _LP64
1544     ShouldNotReachHere();
1545 #else
1546     switch (op) {
1547     case add: __ fadd_s (at_rsp());                break;
1548     case sub: __ fsubr_s(at_rsp());                break;
1549     case mul: __ fmul_s (at_rsp());                break;
1550     case div: __ fdivr_s(at_rsp());                break;
1551     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
1552     default : ShouldNotReachHere();
1553     }
1554     __ f2ieee();
1555     __ pop(rax);  // pop second operand off the stack
1556 #endif // _LP64
1557   }
1558 }
1559 
1560 void TemplateTable::dop2(Operation op) {
1561   transition(dtos, dtos);
1562   if (UseSSE >= 2) {
1563     switch (op) {
1564     case add:
1565       __ addsd(xmm0, at_rsp());
1566       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1567       break;
1568     case sub:
1569       __ movdbl(xmm1, xmm0);
1570       __ pop_d(xmm0);
1571       __ subsd(xmm0, xmm1);
1572       break;
1573     case mul:
1574       __ mulsd(xmm0, at_rsp());
1575       __ addptr(rsp, 2 * Interpreter::stackElementSize);
1576       break;
1577     case div:
1578       __ movdbl(xmm1, xmm0);
1579       __ pop_d(xmm0);
1580       __ divsd(xmm0, xmm1);
1581       break;
1582     case rem:
1583       // Similar to fop2(), the modulo operation is performed using the
1584       // SharedRuntime::drem method (on x86_64 platforms) or using the
1585       // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2().
1586 #ifdef _LP64
1587       __ movdbl(xmm1, xmm0);
1588       __ pop_d(xmm0);
1589       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1590 #else
1591       __ push_d(xmm0);
1592       __ pop_d();
1593       __ fld_d(at_rsp());
1594       __ fremr(rax);
1595       __ d2ieee();
1596       __ pop(rax);
1597       __ pop(rdx);
1598       __ push_d();
1599       __ pop_d(xmm0);
1600 #endif
1601       break;
1602     default:
1603       ShouldNotReachHere();
1604       break;
1605     }
1606   } else {
1607 #ifdef _LP64
1608     ShouldNotReachHere();
1609 #else
1610     switch (op) {
1611     case add: __ fadd_d (at_rsp());                break;
1612     case sub: __ fsubr_d(at_rsp());                break;
1613     case mul: {
1614       Label L_strict;
1615       Label L_join;
1616       const Address access_flags      (rcx, Method::access_flags_offset());
1617       __ get_method(rcx);
1618       __ movl(rcx, access_flags);
1619       __ testl(rcx, JVM_ACC_STRICT);
1620       __ jccb(Assembler::notZero, L_strict);
1621       __ fmul_d (at_rsp());
1622       __ jmpb(L_join);
1623       __ bind(L_strict);
1624       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1625       __ fmulp();
1626       __ fmul_d (at_rsp());
1627       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1628       __ fmulp();
1629       __ bind(L_join);
1630       break;
1631     }
1632     case div: {
1633       Label L_strict;
1634       Label L_join;
1635       const Address access_flags      (rcx, Method::access_flags_offset());
1636       __ get_method(rcx);
1637       __ movl(rcx, access_flags);
1638       __ testl(rcx, JVM_ACC_STRICT);
1639       __ jccb(Assembler::notZero, L_strict);
1640       __ fdivr_d(at_rsp());
1641       __ jmp(L_join);
1642       __ bind(L_strict);
1643       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1644       __ fmul_d (at_rsp());
1645       __ fdivrp();
1646       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1647       __ fmulp();
1648       __ bind(L_join);
1649       break;
1650     }
1651     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
1652     default : ShouldNotReachHere();
1653     }
1654     __ d2ieee();
1655     // Pop double precision number from rsp.
1656     __ pop(rax);
1657     __ pop(rdx);
1658 #endif
1659   }
1660 }
1661 
1662 void TemplateTable::ineg() {
1663   transition(itos, itos);
1664   __ negl(rax);
1665 }
1666 
1667 void TemplateTable::lneg() {
1668   transition(ltos, ltos);
1669   LP64_ONLY(__ negq(rax));
1670   NOT_LP64(__ lneg(rdx, rax));
1671 }
1672 
1673 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1674 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1675   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1676   // of 128-bits operands for SSE instructions.
1677   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1678   // Store the value to a 128-bits operand.
1679   operand[0] = lo;
1680   operand[1] = hi;
1681   return operand;
1682 }
1683 
1684 // Buffer for 128-bits masks used by SSE instructions.
1685 static jlong float_signflip_pool[2*2];
1686 static jlong double_signflip_pool[2*2];
1687 
1688 void TemplateTable::fneg() {
1689   transition(ftos, ftos);
1690   if (UseSSE >= 1) {
1691     static jlong *float_signflip  = double_quadword(&float_signflip_pool[1],  CONST64(0x8000000080000000),  CONST64(0x8000000080000000));
1692     __ xorps(xmm0, ExternalAddress((address) float_signflip));
1693   } else {
1694     LP64_ONLY(ShouldNotReachHere());
1695     NOT_LP64(__ fchs());
1696   }
1697 }
1698 
1699 void TemplateTable::dneg() {
1700   transition(dtos, dtos);
1701   if (UseSSE >= 2) {
1702     static jlong *double_signflip =
1703       double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
1704     __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1705   } else {
1706 #ifdef _LP64
1707     ShouldNotReachHere();
1708 #else
1709     __ fchs();
1710 #endif
1711   }
1712 }
1713 
1714 void TemplateTable::iinc() {
1715   transition(vtos, vtos);
1716   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1717   locals_index(rbx);
1718   __ addl(iaddress(rbx), rdx);
1719 }
1720 
1721 void TemplateTable::wide_iinc() {
1722   transition(vtos, vtos);
1723   __ movl(rdx, at_bcp(4)); // get constant
1724   locals_index_wide(rbx);
1725   __ bswapl(rdx); // swap bytes & sign-extend constant
1726   __ sarl(rdx, 16);
1727   __ addl(iaddress(rbx), rdx);
1728   // Note: should probably use only one movl to get both
1729   //       the index and the constant -> fix this
1730 }
1731 
1732 void TemplateTable::convert() {
1733 #ifdef _LP64
1734   // Checking
1735 #ifdef ASSERT
1736   {
1737     TosState tos_in  = ilgl;
1738     TosState tos_out = ilgl;
1739     switch (bytecode()) {
1740     case Bytecodes::_i2l: // fall through
1741     case Bytecodes::_i2f: // fall through
1742     case Bytecodes::_i2d: // fall through
1743     case Bytecodes::_i2b: // fall through
1744     case Bytecodes::_i2c: // fall through
1745     case Bytecodes::_i2s: tos_in = itos; break;
1746     case Bytecodes::_l2i: // fall through
1747     case Bytecodes::_l2f: // fall through
1748     case Bytecodes::_l2d: tos_in = ltos; break;
1749     case Bytecodes::_f2i: // fall through
1750     case Bytecodes::_f2l: // fall through
1751     case Bytecodes::_f2d: tos_in = ftos; break;
1752     case Bytecodes::_d2i: // fall through
1753     case Bytecodes::_d2l: // fall through
1754     case Bytecodes::_d2f: tos_in = dtos; break;
1755     default             : ShouldNotReachHere();
1756     }
1757     switch (bytecode()) {
1758     case Bytecodes::_l2i: // fall through
1759     case Bytecodes::_f2i: // fall through
1760     case Bytecodes::_d2i: // fall through
1761     case Bytecodes::_i2b: // fall through
1762     case Bytecodes::_i2c: // fall through
1763     case Bytecodes::_i2s: tos_out = itos; break;
1764     case Bytecodes::_i2l: // fall through
1765     case Bytecodes::_f2l: // fall through
1766     case Bytecodes::_d2l: tos_out = ltos; break;
1767     case Bytecodes::_i2f: // fall through
1768     case Bytecodes::_l2f: // fall through
1769     case Bytecodes::_d2f: tos_out = ftos; break;
1770     case Bytecodes::_i2d: // fall through
1771     case Bytecodes::_l2d: // fall through
1772     case Bytecodes::_f2d: tos_out = dtos; break;
1773     default             : ShouldNotReachHere();
1774     }
1775     transition(tos_in, tos_out);
1776   }
1777 #endif // ASSERT
1778 
1779   static const int64_t is_nan = 0x8000000000000000L;
1780 
1781   // Conversion
1782   switch (bytecode()) {
1783   case Bytecodes::_i2l:
1784     __ movslq(rax, rax);
1785     break;
1786   case Bytecodes::_i2f:
1787     __ cvtsi2ssl(xmm0, rax);
1788     break;
1789   case Bytecodes::_i2d:
1790     __ cvtsi2sdl(xmm0, rax);
1791     break;
1792   case Bytecodes::_i2b:
1793     __ movsbl(rax, rax);
1794     break;
1795   case Bytecodes::_i2c:
1796     __ movzwl(rax, rax);
1797     break;
1798   case Bytecodes::_i2s:
1799     __ movswl(rax, rax);
1800     break;
1801   case Bytecodes::_l2i:
1802     __ movl(rax, rax);
1803     break;
1804   case Bytecodes::_l2f:
1805     __ cvtsi2ssq(xmm0, rax);
1806     break;
1807   case Bytecodes::_l2d:
1808     __ cvtsi2sdq(xmm0, rax);
1809     break;
1810   case Bytecodes::_f2i:
1811   {
1812     Label L;
1813     __ cvttss2sil(rax, xmm0);
1814     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1815     __ jcc(Assembler::notEqual, L);
1816     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1817     __ bind(L);
1818   }
1819     break;
1820   case Bytecodes::_f2l:
1821   {
1822     Label L;
1823     __ cvttss2siq(rax, xmm0);
1824     // NaN or overflow/underflow?
1825     __ cmp64(rax, ExternalAddress((address) &is_nan));
1826     __ jcc(Assembler::notEqual, L);
1827     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1828     __ bind(L);
1829   }
1830     break;
1831   case Bytecodes::_f2d:
1832     __ cvtss2sd(xmm0, xmm0);
1833     break;
1834   case Bytecodes::_d2i:
1835   {
1836     Label L;
1837     __ cvttsd2sil(rax, xmm0);
1838     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1839     __ jcc(Assembler::notEqual, L);
1840     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1841     __ bind(L);
1842   }
1843     break;
1844   case Bytecodes::_d2l:
1845   {
1846     Label L;
1847     __ cvttsd2siq(rax, xmm0);
1848     // NaN or overflow/underflow?
1849     __ cmp64(rax, ExternalAddress((address) &is_nan));
1850     __ jcc(Assembler::notEqual, L);
1851     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1852     __ bind(L);
1853   }
1854     break;
1855   case Bytecodes::_d2f:
1856     __ cvtsd2ss(xmm0, xmm0);
1857     break;
1858   default:
1859     ShouldNotReachHere();
1860   }
1861 #else
1862   // Checking
1863 #ifdef ASSERT
1864   { TosState tos_in  = ilgl;
1865     TosState tos_out = ilgl;
1866     switch (bytecode()) {
1867       case Bytecodes::_i2l: // fall through
1868       case Bytecodes::_i2f: // fall through
1869       case Bytecodes::_i2d: // fall through
1870       case Bytecodes::_i2b: // fall through
1871       case Bytecodes::_i2c: // fall through
1872       case Bytecodes::_i2s: tos_in = itos; break;
1873       case Bytecodes::_l2i: // fall through
1874       case Bytecodes::_l2f: // fall through
1875       case Bytecodes::_l2d: tos_in = ltos; break;
1876       case Bytecodes::_f2i: // fall through
1877       case Bytecodes::_f2l: // fall through
1878       case Bytecodes::_f2d: tos_in = ftos; break;
1879       case Bytecodes::_d2i: // fall through
1880       case Bytecodes::_d2l: // fall through
1881       case Bytecodes::_d2f: tos_in = dtos; break;
1882       default             : ShouldNotReachHere();
1883     }
1884     switch (bytecode()) {
1885       case Bytecodes::_l2i: // fall through
1886       case Bytecodes::_f2i: // fall through
1887       case Bytecodes::_d2i: // fall through
1888       case Bytecodes::_i2b: // fall through
1889       case Bytecodes::_i2c: // fall through
1890       case Bytecodes::_i2s: tos_out = itos; break;
1891       case Bytecodes::_i2l: // fall through
1892       case Bytecodes::_f2l: // fall through
1893       case Bytecodes::_d2l: tos_out = ltos; break;
1894       case Bytecodes::_i2f: // fall through
1895       case Bytecodes::_l2f: // fall through
1896       case Bytecodes::_d2f: tos_out = ftos; break;
1897       case Bytecodes::_i2d: // fall through
1898       case Bytecodes::_l2d: // fall through
1899       case Bytecodes::_f2d: tos_out = dtos; break;
1900       default             : ShouldNotReachHere();
1901     }
1902     transition(tos_in, tos_out);
1903   }
1904 #endif // ASSERT
1905 
1906   // Conversion
1907   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1908   switch (bytecode()) {
1909     case Bytecodes::_i2l:
1910       __ extend_sign(rdx, rax);
1911       break;
1912     case Bytecodes::_i2f:
1913       if (UseSSE >= 1) {
1914         __ cvtsi2ssl(xmm0, rax);
1915       } else {
1916         __ push(rax);          // store int on tos
1917         __ fild_s(at_rsp());   // load int to ST0
1918         __ f2ieee();           // truncate to float size
1919         __ pop(rcx);           // adjust rsp
1920       }
1921       break;
1922     case Bytecodes::_i2d:
1923       if (UseSSE >= 2) {
1924         __ cvtsi2sdl(xmm0, rax);
1925       } else {
1926       __ push(rax);          // add one slot for d2ieee()
1927       __ push(rax);          // store int on tos
1928       __ fild_s(at_rsp());   // load int to ST0
1929       __ d2ieee();           // truncate to double size
1930       __ pop(rcx);           // adjust rsp
1931       __ pop(rcx);
1932       }
1933       break;
1934     case Bytecodes::_i2b:
1935       __ shll(rax, 24);      // truncate upper 24 bits
1936       __ sarl(rax, 24);      // and sign-extend byte
1937       LP64_ONLY(__ movsbl(rax, rax));
1938       break;
1939     case Bytecodes::_i2c:
1940       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
1941       LP64_ONLY(__ movzwl(rax, rax));
1942       break;
1943     case Bytecodes::_i2s:
1944       __ shll(rax, 16);      // truncate upper 16 bits
1945       __ sarl(rax, 16);      // and sign-extend short
1946       LP64_ONLY(__ movswl(rax, rax));
1947       break;
1948     case Bytecodes::_l2i:
1949       /* nothing to do */
1950       break;
1951     case Bytecodes::_l2f:
1952       // On 64-bit platforms, the cvtsi2ssq instruction is used to convert
1953       // 64-bit long values to floats. On 32-bit platforms it is not possible
1954       // to use that instruction with 64-bit operands, therefore the FPU is
1955       // used to perform the conversion.
1956       __ push(rdx);          // store long on tos
1957       __ push(rax);
1958       __ fild_d(at_rsp());   // load long to ST0
1959       __ f2ieee();           // truncate to float size
1960       __ pop(rcx);           // adjust rsp
1961       __ pop(rcx);
1962       if (UseSSE >= 1) {
1963         __ push_f();
1964         __ pop_f(xmm0);
1965       }
1966       break;
1967     case Bytecodes::_l2d:
1968       // On 32-bit platforms the FPU is used for conversion because on
1969       // 32-bit platforms it is not not possible to use the cvtsi2sdq
1970       // instruction with 64-bit operands.
1971       __ push(rdx);          // store long on tos
1972       __ push(rax);
1973       __ fild_d(at_rsp());   // load long to ST0
1974       __ d2ieee();           // truncate to double size
1975       __ pop(rcx);           // adjust rsp
1976       __ pop(rcx);
1977       if (UseSSE >= 2) {
1978         __ push_d();
1979         __ pop_d(xmm0);
1980       }
1981       break;
1982     case Bytecodes::_f2i:
1983       // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs
1984       // as it returns 0 for any NaN.
1985       if (UseSSE >= 1) {
1986         __ push_f(xmm0);
1987       } else {
1988         __ push(rcx);          // reserve space for argument
1989         __ fstp_s(at_rsp());   // pass float argument on stack
1990       }
1991       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1992       break;
1993     case Bytecodes::_f2l:
1994       // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs
1995       // as it returns 0 for any NaN.
1996       if (UseSSE >= 1) {
1997        __ push_f(xmm0);
1998       } else {
1999         __ push(rcx);          // reserve space for argument
2000         __ fstp_s(at_rsp());   // pass float argument on stack
2001       }
2002       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
2003       break;
2004     case Bytecodes::_f2d:
2005       if (UseSSE < 1) {
2006         /* nothing to do */
2007       } else if (UseSSE == 1) {
2008         __ push_f(xmm0);
2009         __ pop_f();
2010       } else { // UseSSE >= 2
2011         __ cvtss2sd(xmm0, xmm0);
2012       }
2013       break;
2014     case Bytecodes::_d2i:
2015       if (UseSSE >= 2) {
2016         __ push_d(xmm0);
2017       } else {
2018         __ push(rcx);          // reserve space for argument
2019         __ push(rcx);
2020         __ fstp_d(at_rsp());   // pass double argument on stack
2021       }
2022       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
2023       break;
2024     case Bytecodes::_d2l:
2025       if (UseSSE >= 2) {
2026         __ push_d(xmm0);
2027       } else {
2028         __ push(rcx);          // reserve space for argument
2029         __ push(rcx);
2030         __ fstp_d(at_rsp());   // pass double argument on stack
2031       }
2032       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
2033       break;
2034     case Bytecodes::_d2f:
2035       if (UseSSE <= 1) {
2036         __ push(rcx);          // reserve space for f2ieee()
2037         __ f2ieee();           // truncate to float size
2038         __ pop(rcx);           // adjust rsp
2039         if (UseSSE == 1) {
2040           // The cvtsd2ss instruction is not available if UseSSE==1, therefore
2041           // the conversion is performed using the FPU in this case.
2042           __ push_f();
2043           __ pop_f(xmm0);
2044         }
2045       } else { // UseSSE >= 2
2046         __ cvtsd2ss(xmm0, xmm0);
2047       }
2048       break;
2049     default             :
2050       ShouldNotReachHere();
2051   }
2052 #endif
2053 }
2054 
2055 void TemplateTable::lcmp() {
2056   transition(ltos, itos);
2057 #ifdef _LP64
2058   Label done;
2059   __ pop_l(rdx);
2060   __ cmpq(rdx, rax);
2061   __ movl(rax, -1);
2062   __ jccb(Assembler::less, done);
2063   __ setb(Assembler::notEqual, rax);
2064   __ movzbl(rax, rax);
2065   __ bind(done);
2066 #else
2067 
2068   // y = rdx:rax
2069   __ pop_l(rbx, rcx);             // get x = rcx:rbx
2070   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
2071   __ mov(rax, rcx);
2072 #endif
2073 }
2074 
2075 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
2076   if ((is_float && UseSSE >= 1) ||
2077       (!is_float && UseSSE >= 2)) {
2078     Label done;
2079     if (is_float) {
2080       // XXX get rid of pop here, use ... reg, mem32
2081       __ pop_f(xmm1);
2082       __ ucomiss(xmm1, xmm0);
2083     } else {
2084       // XXX get rid of pop here, use ... reg, mem64
2085       __ pop_d(xmm1);
2086       __ ucomisd(xmm1, xmm0);
2087     }
2088     if (unordered_result < 0) {
2089       __ movl(rax, -1);
2090       __ jccb(Assembler::parity, done);
2091       __ jccb(Assembler::below, done);
2092       __ setb(Assembler::notEqual, rdx);
2093       __ movzbl(rax, rdx);
2094     } else {
2095       __ movl(rax, 1);
2096       __ jccb(Assembler::parity, done);
2097       __ jccb(Assembler::above, done);
2098       __ movl(rax, 0);
2099       __ jccb(Assembler::equal, done);
2100       __ decrementl(rax);
2101     }
2102     __ bind(done);
2103   } else {
2104 #ifdef _LP64
2105     ShouldNotReachHere();
2106 #else
2107     if (is_float) {
2108       __ fld_s(at_rsp());
2109     } else {
2110       __ fld_d(at_rsp());
2111       __ pop(rdx);
2112     }
2113     __ pop(rcx);
2114     __ fcmp2int(rax, unordered_result < 0);
2115 #endif // _LP64
2116   }
2117 }
2118 
2119 void TemplateTable::branch(bool is_jsr, bool is_wide) {
2120   __ get_method(rcx); // rcx holds method
2121   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
2122                                      // holds bumped taken count
2123 
2124   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
2125                              InvocationCounter::counter_offset();
2126   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
2127                               InvocationCounter::counter_offset();
2128 
2129   // Load up edx with the branch displacement
2130   if (is_wide) {
2131     __ movl(rdx, at_bcp(1));
2132   } else {
2133     __ load_signed_short(rdx, at_bcp(1));
2134   }
2135   __ bswapl(rdx);
2136 
2137   if (!is_wide) {
2138     __ sarl(rdx, 16);
2139   }
2140   LP64_ONLY(__ movl2ptr(rdx, rdx));
2141 
2142   // Handle all the JSR stuff here, then exit.
2143   // It's much shorter and cleaner than intermingling with the non-JSR
2144   // normal-branch stuff occurring below.
2145   if (is_jsr) {
2146     // Pre-load the next target bytecode into rbx
2147     __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0));
2148 
2149     // compute return address as bci in rax
2150     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
2151                         in_bytes(ConstMethod::codes_offset())));
2152     __ subptr(rax, Address(rcx, Method::const_offset()));
2153     // Adjust the bcp in r13 by the displacement in rdx
2154     __ addptr(rbcp, rdx);
2155     // jsr returns atos that is not an oop
2156     __ push_i(rax);
2157     __ dispatch_only(vtos, true);
2158     return;
2159   }
2160 
2161   // Normal (non-jsr) branch handling
2162 
2163   // Adjust the bcp in r13 by the displacement in rdx
2164   __ addptr(rbcp, rdx);
2165 
2166   assert(UseLoopCounter || !UseOnStackReplacement,
2167          "on-stack-replacement requires loop counters");
2168   Label backedge_counter_overflow;
2169   Label profile_method;
2170   Label dispatch;
2171   if (UseLoopCounter) {
2172     // increment backedge counter for backward branches
2173     // rax: MDO
2174     // rbx: MDO bumped taken-count
2175     // rcx: method
2176     // rdx: target offset
2177     // r13: target bcp
2178     // r14: locals pointer
2179     __ testl(rdx, rdx);             // check if forward or backward branch
2180     __ jcc(Assembler::positive, dispatch); // count only if backward branch
2181 
2182     // check if MethodCounters exists
2183     Label has_counters;
2184     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2185     __ testptr(rax, rax);
2186     __ jcc(Assembler::notZero, has_counters);
2187     __ push(rdx);
2188     __ push(rcx);
2189     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
2190                rcx);
2191     __ pop(rcx);
2192     __ pop(rdx);
2193     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
2194     __ testptr(rax, rax);
2195     __ jcc(Assembler::zero, dispatch);
2196     __ bind(has_counters);
2197 
2198     if (TieredCompilation) {
2199       Label no_mdo;
2200       int increment = InvocationCounter::count_increment;
2201       if (ProfileInterpreter) {
2202         // Are we profiling?
2203         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
2204         __ testptr(rbx, rbx);
2205         __ jccb(Assembler::zero, no_mdo);
2206         // Increment the MDO backedge counter
2207         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
2208                                            in_bytes(InvocationCounter::counter_offset()));
2209         const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
2210         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
2211                                    rax, false, Assembler::zero, &backedge_counter_overflow);
2212         __ jmp(dispatch);
2213       }
2214       __ bind(no_mdo);
2215       // Increment backedge counter in MethodCounters*
2216       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2217       const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
2218       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
2219                                  rax, false, Assembler::zero, &backedge_counter_overflow);
2220     } else { // not TieredCompilation
2221       // increment counter
2222       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
2223       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
2224       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
2225       __ movl(Address(rcx, be_offset), rax);        // store counter
2226 
2227       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
2228 
2229       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
2230       __ addl(rax, Address(rcx, be_offset));        // add both counters
2231 
2232       if (ProfileInterpreter) {
2233         // Test to see if we should create a method data oop
2234         __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
2235         __ jcc(Assembler::less, dispatch);
2236 
2237         // if no method data exists, go to profile method
2238         __ test_method_data_pointer(rax, profile_method);
2239 
2240         if (UseOnStackReplacement) {
2241           // check for overflow against rbx which is the MDO taken count
2242           __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2243           __ jcc(Assembler::below, dispatch);
2244 
2245           // When ProfileInterpreter is on, the backedge_count comes
2246           // from the MethodData*, which value does not get reset on
2247           // the call to frequency_counter_overflow().  To avoid
2248           // excessive calls to the overflow routine while the method is
2249           // being compiled, add a second test to make sure the overflow
2250           // function is called only once every overflow_frequency.
2251           const int overflow_frequency = 1024;
2252           __ andl(rbx, overflow_frequency - 1);
2253           __ jcc(Assembler::zero, backedge_counter_overflow);
2254 
2255         }
2256       } else {
2257         if (UseOnStackReplacement) {
2258           // check for overflow against rax, which is the sum of the
2259           // counters
2260           __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
2261           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
2262 
2263         }
2264       }
2265     }
2266     __ bind(dispatch);
2267   }
2268 
2269   // Pre-load the next target bytecode into rbx
2270   __ load_unsigned_byte(rbx, Address(rbcp, 0));
2271 
2272   // continue with the bytecode @ target
2273   // rax: return bci for jsr's, unused otherwise
2274   // rbx: target bytecode
2275   // r13: target bcp
2276   __ dispatch_only(vtos, true);
2277 
2278   if (UseLoopCounter) {
2279     if (ProfileInterpreter) {
2280       // Out-of-line code to allocate method data oop.
2281       __ bind(profile_method);
2282       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
2283       __ set_method_data_pointer_for_bcp();
2284       __ jmp(dispatch);
2285     }
2286 
2287     if (UseOnStackReplacement) {
2288       // invocation counter overflow
2289       __ bind(backedge_counter_overflow);
2290       __ negptr(rdx);
2291       __ addptr(rdx, rbcp); // branch bcp
2292       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
2293       __ call_VM(noreg,
2294                  CAST_FROM_FN_PTR(address,
2295                                   InterpreterRuntime::frequency_counter_overflow),
2296                  rdx);
2297 
2298       // rax: osr nmethod (osr ok) or NULL (osr not possible)
2299       // rdx: scratch
2300       // r14: locals pointer
2301       // r13: bcp
2302       __ testptr(rax, rax);                        // test result
2303       __ jcc(Assembler::zero, dispatch);         // no osr if null
2304       // nmethod may have been invalidated (VM may block upon call_VM return)
2305       __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
2306       __ jcc(Assembler::notEqual, dispatch);
2307 
2308       // We have the address of an on stack replacement routine in rax.
2309       // In preparation of invoking it, first we must migrate the locals
2310       // and monitors from off the interpreter frame on the stack.
2311       // Ensure to save the osr nmethod over the migration call,
2312       // it will be preserved in rbx.
2313       __ mov(rbx, rax);
2314 
2315       NOT_LP64(__ get_thread(rcx));
2316 
2317       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
2318 
2319       // rax is OSR buffer, move it to expected parameter location
2320       LP64_ONLY(__ mov(j_rarg0, rax));
2321       NOT_LP64(__ mov(rcx, rax));
2322       // We use j_rarg definitions here so that registers don't conflict as parameter
2323       // registers change across platforms as we are in the midst of a calling
2324       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
2325 
2326       const Register retaddr   = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
2327       const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
2328 
2329       // pop the interpreter frame
2330       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
2331       __ leave();                                // remove frame anchor
2332       __ pop(retaddr);                           // get return address
2333       __ mov(rsp, sender_sp);                   // set sp to sender sp
2334       // Ensure compiled code always sees stack at proper alignment
2335       __ andptr(rsp, -(StackAlignmentInBytes));
2336 
2337       // unlike x86 we need no specialized return from compiled code
2338       // to the interpreter or the call stub.
2339 
2340       // push the return address
2341       __ push(retaddr);
2342 
2343       // and begin the OSR nmethod
2344       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
2345     }
2346   }
2347 }
2348 
2349 void TemplateTable::if_0cmp(Condition cc) {
2350   transition(itos, vtos);
2351   // assume branch is more often taken than not (loops use backward branches)
2352   Label not_taken;
2353   __ testl(rax, rax);
2354   __ jcc(j_not(cc), not_taken);
2355   branch(false, false);
2356   __ bind(not_taken);
2357   __ profile_not_taken_branch(rax);
2358 }
2359 
2360 void TemplateTable::if_icmp(Condition cc) {
2361   transition(itos, vtos);
2362   // assume branch is more often taken than not (loops use backward branches)
2363   Label not_taken;
2364   __ pop_i(rdx);
2365   __ cmpl(rdx, rax);
2366   __ jcc(j_not(cc), not_taken);
2367   branch(false, false);
2368   __ bind(not_taken);
2369   __ profile_not_taken_branch(rax);
2370 }
2371 
2372 void TemplateTable::if_nullcmp(Condition cc) {
2373   transition(atos, vtos);
2374   // assume branch is more often taken than not (loops use backward branches)
2375   Label not_taken;
2376   __ testptr(rax, rax);
2377   __ jcc(j_not(cc), not_taken);
2378   branch(false, false);
2379   __ bind(not_taken);
2380   __ profile_not_taken_branch(rax);
2381 }
2382 
2383 void TemplateTable::if_acmp(Condition cc) {
2384   transition(atos, vtos);
2385   // assume branch is more often taken than not (loops use backward branches)
2386   Label not_taken;
2387   __ pop_ptr(rdx);
2388   __ cmpoop(rdx, rax);
2389   __ jcc(j_not(cc), not_taken);
2390   branch(false, false);
2391   __ bind(not_taken);
2392   __ profile_not_taken_branch(rax);
2393 }
2394 
2395 void TemplateTable::ret() {
2396   transition(vtos, vtos);
2397   locals_index(rbx);
2398   LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp
2399   NOT_LP64(__ movptr(rbx, iaddress(rbx)));
2400   __ profile_ret(rbx, rcx);
2401   __ get_method(rax);
2402   __ movptr(rbcp, Address(rax, Method::const_offset()));
2403   __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
2404                       ConstMethod::codes_offset()));
2405   __ dispatch_next(vtos, 0, true);
2406 }
2407 
2408 void TemplateTable::wide_ret() {
2409   transition(vtos, vtos);
2410   locals_index_wide(rbx);
2411   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
2412   __ profile_ret(rbx, rcx);
2413   __ get_method(rax);
2414   __ movptr(rbcp, Address(rax, Method::const_offset()));
2415   __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset()));
2416   __ dispatch_next(vtos, 0, true);
2417 }
2418 
2419 void TemplateTable::tableswitch() {
2420   Label default_case, continue_execution;
2421   transition(itos, vtos);
2422 
2423   // align r13/rsi
2424   __ lea(rbx, at_bcp(BytesPerInt));
2425   __ andptr(rbx, -BytesPerInt);
2426   // load lo & hi
2427   __ movl(rcx, Address(rbx, BytesPerInt));
2428   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
2429   __ bswapl(rcx);
2430   __ bswapl(rdx);
2431   // check against lo & hi
2432   __ cmpl(rax, rcx);
2433   __ jcc(Assembler::less, default_case);
2434   __ cmpl(rax, rdx);
2435   __ jcc(Assembler::greater, default_case);
2436   // lookup dispatch offset
2437   __ subl(rax, rcx);
2438   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
2439   __ profile_switch_case(rax, rbx, rcx);
2440   // continue execution
2441   __ bind(continue_execution);
2442   __ bswapl(rdx);
2443   LP64_ONLY(__ movl2ptr(rdx, rdx));
2444   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2445   __ addptr(rbcp, rdx);
2446   __ dispatch_only(vtos, true);
2447   // handle default
2448   __ bind(default_case);
2449   __ profile_switch_default(rax);
2450   __ movl(rdx, Address(rbx, 0));
2451   __ jmp(continue_execution);
2452 }
2453 
2454 void TemplateTable::lookupswitch() {
2455   transition(itos, itos);
2456   __ stop("lookupswitch bytecode should have been rewritten");
2457 }
2458 
2459 void TemplateTable::fast_linearswitch() {
2460   transition(itos, vtos);
2461   Label loop_entry, loop, found, continue_execution;
2462   // bswap rax so we can avoid bswapping the table entries
2463   __ bswapl(rax);
2464   // align r13
2465   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2466                                     // this instruction (change offsets
2467                                     // below)
2468   __ andptr(rbx, -BytesPerInt);
2469   // set counter
2470   __ movl(rcx, Address(rbx, BytesPerInt));
2471   __ bswapl(rcx);
2472   __ jmpb(loop_entry);
2473   // table search
2474   __ bind(loop);
2475   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
2476   __ jcc(Assembler::equal, found);
2477   __ bind(loop_entry);
2478   __ decrementl(rcx);
2479   __ jcc(Assembler::greaterEqual, loop);
2480   // default case
2481   __ profile_switch_default(rax);
2482   __ movl(rdx, Address(rbx, 0));
2483   __ jmp(continue_execution);
2484   // entry found -> get offset
2485   __ bind(found);
2486   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
2487   __ profile_switch_case(rcx, rax, rbx);
2488   // continue execution
2489   __ bind(continue_execution);
2490   __ bswapl(rdx);
2491   __ movl2ptr(rdx, rdx);
2492   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
2493   __ addptr(rbcp, rdx);
2494   __ dispatch_only(vtos, true);
2495 }
2496 
2497 void TemplateTable::fast_binaryswitch() {
2498   transition(itos, vtos);
2499   // Implementation using the following core algorithm:
2500   //
2501   // int binary_search(int key, LookupswitchPair* array, int n) {
2502   //   // Binary search according to "Methodik des Programmierens" by
2503   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2504   //   int i = 0;
2505   //   int j = n;
2506   //   while (i+1 < j) {
2507   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2508   //     // with      Q: for all i: 0 <= i < n: key < a[i]
2509   //     // where a stands for the array and assuming that the (inexisting)
2510   //     // element a[n] is infinitely big.
2511   //     int h = (i + j) >> 1;
2512   //     // i < h < j
2513   //     if (key < array[h].fast_match()) {
2514   //       j = h;
2515   //     } else {
2516   //       i = h;
2517   //     }
2518   //   }
2519   //   // R: a[i] <= key < a[i+1] or Q
2520   //   // (i.e., if key is within array, i is the correct index)
2521   //   return i;
2522   // }
2523 
2524   // Register allocation
2525   const Register key   = rax; // already set (tosca)
2526   const Register array = rbx;
2527   const Register i     = rcx;
2528   const Register j     = rdx;
2529   const Register h     = rdi;
2530   const Register temp  = rsi;
2531 
2532   // Find array start
2533   NOT_LP64(__ save_bcp());
2534 
2535   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2536                                           // get rid of this
2537                                           // instruction (change
2538                                           // offsets below)
2539   __ andptr(array, -BytesPerInt);
2540 
2541   // Initialize i & j
2542   __ xorl(i, i);                            // i = 0;
2543   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
2544 
2545   // Convert j into native byteordering
2546   __ bswapl(j);
2547 
2548   // And start
2549   Label entry;
2550   __ jmp(entry);
2551 
2552   // binary search loop
2553   {
2554     Label loop;
2555     __ bind(loop);
2556     // int h = (i + j) >> 1;
2557     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2558     __ sarl(h, 1);                               // h = (i + j) >> 1;
2559     // if (key < array[h].fast_match()) {
2560     //   j = h;
2561     // } else {
2562     //   i = h;
2563     // }
2564     // Convert array[h].match to native byte-ordering before compare
2565     __ movl(temp, Address(array, h, Address::times_8));
2566     __ bswapl(temp);
2567     __ cmpl(key, temp);
2568     // j = h if (key <  array[h].fast_match())
2569     __ cmov32(Assembler::less, j, h);
2570     // i = h if (key >= array[h].fast_match())
2571     __ cmov32(Assembler::greaterEqual, i, h);
2572     // while (i+1 < j)
2573     __ bind(entry);
2574     __ leal(h, Address(i, 1)); // i+1
2575     __ cmpl(h, j);             // i+1 < j
2576     __ jcc(Assembler::less, loop);
2577   }
2578 
2579   // end of binary search, result index is i (must check again!)
2580   Label default_case;
2581   // Convert array[i].match to native byte-ordering before compare
2582   __ movl(temp, Address(array, i, Address::times_8));
2583   __ bswapl(temp);
2584   __ cmpl(key, temp);
2585   __ jcc(Assembler::notEqual, default_case);
2586 
2587   // entry found -> j = offset
2588   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2589   __ profile_switch_case(i, key, array);
2590   __ bswapl(j);
2591   LP64_ONLY(__ movslq(j, j));
2592 
2593   NOT_LP64(__ restore_bcp());
2594   NOT_LP64(__ restore_locals());                           // restore rdi
2595 
2596   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2597   __ addptr(rbcp, j);
2598   __ dispatch_only(vtos, true);
2599 
2600   // default case -> j = default offset
2601   __ bind(default_case);
2602   __ profile_switch_default(i);
2603   __ movl(j, Address(array, -2 * BytesPerInt));
2604   __ bswapl(j);
2605   LP64_ONLY(__ movslq(j, j));
2606 
2607   NOT_LP64(__ restore_bcp());
2608   NOT_LP64(__ restore_locals());
2609 
2610   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
2611   __ addptr(rbcp, j);
2612   __ dispatch_only(vtos, true);
2613 }
2614 
2615 void TemplateTable::_return(TosState state) {
2616   transition(state, state);
2617 
2618   assert(_desc->calls_vm(),
2619          "inconsistent calls_vm information"); // call in remove_activation
2620 
2621   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2622     assert(state == vtos, "only valid state");
2623     Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax);
2624     __ movptr(robj, aaddress(0));
2625     __ load_klass(rdi, robj);
2626     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2627     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2628     Label skip_register_finalizer;
2629     __ jcc(Assembler::zero, skip_register_finalizer);
2630 
2631     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj);
2632 
2633     __ bind(skip_register_finalizer);
2634   }
2635 
2636   if (SafepointMechanism::uses_thread_local_poll() && _desc->bytecode() != Bytecodes::_return_register_finalizer) {
2637     Label no_safepoint;
2638     NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll"));
2639 #ifdef _LP64
2640     __ testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
2641 #else
2642     const Register thread = rdi;
2643     __ get_thread(thread);
2644     __ testb(Address(thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
2645 #endif
2646     __ jcc(Assembler::zero, no_safepoint);
2647     __ push(state);
2648     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2649                                     InterpreterRuntime::at_safepoint));
2650     __ pop(state);
2651     __ bind(no_safepoint);
2652   }
2653 
2654   // Narrow result if state is itos but result type is smaller.
2655   // Need to narrow in the return bytecode rather than in generate_return_entry
2656   // since compiled code callers expect the result to already be narrowed.
2657   if (state == itos) {
2658     __ narrow(rax);
2659   }
2660   __ remove_activation(state, rbcp);
2661 
2662   __ jmp(rbcp);
2663 }
2664 
2665 // ----------------------------------------------------------------------------
2666 // Volatile variables demand their effects be made known to all CPU's
2667 // in order.  Store buffers on most chips allow reads & writes to
2668 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2669 // without some kind of memory barrier (i.e., it's not sufficient that
2670 // the interpreter does not reorder volatile references, the hardware
2671 // also must not reorder them).
2672 //
2673 // According to the new Java Memory Model (JMM):
2674 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2675 //     writes act as aquire & release, so:
2676 // (2) A read cannot let unrelated NON-volatile memory refs that
2677 //     happen after the read float up to before the read.  It's OK for
2678 //     non-volatile memory refs that happen before the volatile read to
2679 //     float down below it.
2680 // (3) Similar a volatile write cannot let unrelated NON-volatile
2681 //     memory refs that happen BEFORE the write float down to after the
2682 //     write.  It's OK for non-volatile memory refs that happen after the
2683 //     volatile write to float up before it.
2684 //
2685 // We only put in barriers around volatile refs (they are expensive),
2686 // not _between_ memory refs (that would require us to track the
2687 // flavor of the previous memory refs).  Requirements (2) and (3)
2688 // require some barriers before volatile stores and after volatile
2689 // loads.  These nearly cover requirement (1) but miss the
2690 // volatile-store-volatile-load case.  This final case is placed after
2691 // volatile-stores although it could just as well go before
2692 // volatile-loads.
2693 
2694 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2695   // Helper function to insert a is-volatile test and memory barrier
2696   if(!os::is_MP()) return;    // Not needed on single CPU
2697   __ membar(order_constraint);
2698 }
2699 
2700 void TemplateTable::resolve_cache_and_index(int byte_no,
2701                                             Register Rcache,
2702                                             Register index,
2703                                             size_t index_size) {
2704   const Register temp = rbx;
2705   assert_different_registers(Rcache, index, temp);
2706 
2707   Label resolved;
2708 
2709   Bytecodes::Code code = bytecode();
2710   switch (code) {
2711   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2712   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2713   default: break;
2714   }
2715 
2716   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2717   __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2718   __ cmpl(temp, code);  // have we resolved this bytecode?
2719   __ jcc(Assembler::equal, resolved);
2720 
2721   // resolve first time through
2722   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2723   __ movl(temp, code);
2724   __ call_VM(noreg, entry, temp);
2725   // Update registers with resolved info
2726   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2727   __ bind(resolved);
2728 }
2729 
2730 // The cache and index registers must be set before call
2731 void TemplateTable::load_field_cp_cache_entry(Register obj,
2732                                               Register cache,
2733                                               Register index,
2734                                               Register off,
2735                                               Register flags,
2736                                               bool is_static = false) {
2737   assert_different_registers(cache, index, flags, off);
2738 
2739   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2740   // Field offset
2741   __ movptr(off, Address(cache, index, Address::times_ptr,
2742                          in_bytes(cp_base_offset +
2743                                   ConstantPoolCacheEntry::f2_offset())));
2744   // Flags
2745   __ movl(flags, Address(cache, index, Address::times_ptr,
2746                          in_bytes(cp_base_offset +
2747                                   ConstantPoolCacheEntry::flags_offset())));
2748 
2749   // klass overwrite register
2750   if (is_static) {
2751     __ movptr(obj, Address(cache, index, Address::times_ptr,
2752                            in_bytes(cp_base_offset +
2753                                     ConstantPoolCacheEntry::f1_offset())));
2754     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2755     __ movptr(obj, Address(obj, mirror_offset));
2756     __ resolve_oop_handle(obj);
2757   }
2758 }
2759 
2760 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2761                                                Register method,
2762                                                Register itable_index,
2763                                                Register flags,
2764                                                bool is_invokevirtual,
2765                                                bool is_invokevfinal, /*unused*/
2766                                                bool is_invokedynamic) {
2767   // setup registers
2768   const Register cache = rcx;
2769   const Register index = rdx;
2770   assert_different_registers(method, flags);
2771   assert_different_registers(method, cache, index);
2772   assert_different_registers(itable_index, flags);
2773   assert_different_registers(itable_index, cache, index);
2774   // determine constant pool cache field offsets
2775   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2776   const int method_offset = in_bytes(
2777     ConstantPoolCache::base_offset() +
2778       ((byte_no == f2_byte)
2779        ? ConstantPoolCacheEntry::f2_offset()
2780        : ConstantPoolCacheEntry::f1_offset()));
2781   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2782                                     ConstantPoolCacheEntry::flags_offset());
2783   // access constant pool cache fields
2784   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2785                                     ConstantPoolCacheEntry::f2_offset());
2786 
2787   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2788   resolve_cache_and_index(byte_no, cache, index, index_size);
2789     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2790 
2791   if (itable_index != noreg) {
2792     // pick up itable or appendix index from f2 also:
2793     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2794   }
2795   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2796 }
2797 
2798 // The registers cache and index expected to be set before call.
2799 // Correct values of the cache and index registers are preserved.
2800 void TemplateTable::jvmti_post_field_access(Register cache,
2801                                             Register index,
2802                                             bool is_static,
2803                                             bool has_tos) {
2804   if (JvmtiExport::can_post_field_access()) {
2805     // Check to see if a field access watch has been set before we take
2806     // the time to call into the VM.
2807     Label L1;
2808     assert_different_registers(cache, index, rax);
2809     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2810     __ testl(rax,rax);
2811     __ jcc(Assembler::zero, L1);
2812 
2813     // cache entry pointer
2814     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
2815     __ shll(index, LogBytesPerWord);
2816     __ addptr(cache, index);
2817     if (is_static) {
2818       __ xorptr(rax, rax);      // NULL object reference
2819     } else {
2820       __ pop(atos);         // Get the object
2821       __ verify_oop(rax);
2822       __ push(atos);        // Restore stack state
2823     }
2824     // rax,:   object pointer or NULL
2825     // cache: cache entry pointer
2826     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2827                rax, cache);
2828     __ get_cache_and_index_at_bcp(cache, index, 1);
2829     __ bind(L1);
2830   }
2831 }
2832 
2833 void TemplateTable::pop_and_check_object(Register r) {
2834   __ pop_ptr(r);
2835   __ null_check(r);  // for field access must check obj.
2836   __ verify_oop(r);
2837 }
2838 
2839 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2840   transition(vtos, vtos);
2841 
2842   const Register cache = rcx;
2843   const Register index = rdx;
2844   const Register obj   = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
2845   const Register off   = rbx;
2846   const Register flags = rax;
2847   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them
2848 
2849   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2850   jvmti_post_field_access(cache, index, is_static, false);
2851   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2852 
2853   if (!is_static) pop_and_check_object(obj);
2854 
2855   const Address field(obj, off, Address::times_1, 0*wordSize);
2856   NOT_LP64(const Address hi(obj, off, Address::times_1, 1*wordSize));
2857 
2858   Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2859 
2860   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2861   // Make sure we don't need to mask edx after the above shift
2862   assert(btos == 0, "change code, btos != 0");
2863 
2864   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2865 
2866   __ jcc(Assembler::notZero, notByte);
2867   // btos
2868   __ load_signed_byte(rax, field);
2869   __ push(btos);
2870   // Rewrite bytecode to be faster
2871   if (!is_static && rc == may_rewrite) {
2872     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2873   }
2874   __ jmp(Done);
2875 
2876   __ bind(notByte);
2877   __ cmpl(flags, ztos);
2878   __ jcc(Assembler::notEqual, notBool);
2879 
2880   // ztos (same code as btos)
2881   __ load_signed_byte(rax, field);
2882   __ push(ztos);
2883   // Rewrite bytecode to be faster
2884   if (!is_static && rc == may_rewrite) {
2885     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2886     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2887   }
2888   __ jmp(Done);
2889 
2890   __ bind(notBool);
2891   __ cmpl(flags, atos);
2892   __ jcc(Assembler::notEqual, notObj);
2893   // atos
2894   do_oop_load(_masm, field, rax);
2895   __ push(atos);
2896   if (!is_static && rc == may_rewrite) {
2897     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2898   }
2899   __ jmp(Done);
2900 
2901   __ bind(notObj);
2902   __ cmpl(flags, itos);
2903   __ jcc(Assembler::notEqual, notInt);
2904   // itos
2905   __ movl(rax, field);
2906   __ push(itos);
2907   // Rewrite bytecode to be faster
2908   if (!is_static && rc == may_rewrite) {
2909     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2910   }
2911   __ jmp(Done);
2912 
2913   __ bind(notInt);
2914   __ cmpl(flags, ctos);
2915   __ jcc(Assembler::notEqual, notChar);
2916   // ctos
2917   __ load_unsigned_short(rax, field);
2918   __ push(ctos);
2919   // Rewrite bytecode to be faster
2920   if (!is_static && rc == may_rewrite) {
2921     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2922   }
2923   __ jmp(Done);
2924 
2925   __ bind(notChar);
2926   __ cmpl(flags, stos);
2927   __ jcc(Assembler::notEqual, notShort);
2928   // stos
2929   __ load_signed_short(rax, field);
2930   __ push(stos);
2931   // Rewrite bytecode to be faster
2932   if (!is_static && rc == may_rewrite) {
2933     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2934   }
2935   __ jmp(Done);
2936 
2937   __ bind(notShort);
2938   __ cmpl(flags, ltos);
2939   __ jcc(Assembler::notEqual, notLong);
2940   // ltos
2941 
2942 #ifndef _LP64
2943   // Generate code as if volatile.  There just aren't enough registers to
2944   // save that information and this code is faster than the test.
2945   __ fild_d(field);                // Must load atomically
2946   __ subptr(rsp,2*wordSize);    // Make space for store
2947   __ fistp_d(Address(rsp,0));
2948   __ pop(rax);
2949   __ pop(rdx);
2950 #else
2951   __ movq(rax, field);
2952 #endif
2953 
2954   __ push(ltos);
2955   // Rewrite bytecode to be faster
2956   LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx));
2957   __ jmp(Done);
2958 
2959   __ bind(notLong);
2960   __ cmpl(flags, ftos);
2961   __ jcc(Assembler::notEqual, notFloat);
2962   // ftos
2963 
2964   __ load_float(field);
2965   __ push(ftos);
2966   // Rewrite bytecode to be faster
2967   if (!is_static && rc == may_rewrite) {
2968     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2969   }
2970   __ jmp(Done);
2971 
2972   __ bind(notFloat);
2973 #ifdef ASSERT
2974   __ cmpl(flags, dtos);
2975   __ jcc(Assembler::notEqual, notDouble);
2976 #endif
2977   // dtos
2978   __ load_double(field);
2979   __ push(dtos);
2980   // Rewrite bytecode to be faster
2981   if (!is_static && rc == may_rewrite) {
2982     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2983   }
2984 #ifdef ASSERT
2985   __ jmp(Done);
2986 
2987 
2988   __ bind(notDouble);
2989   __ stop("Bad state");
2990 #endif
2991 
2992   __ bind(Done);
2993   // [jk] not needed currently
2994   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2995   //                                              Assembler::LoadStore));
2996 }
2997 
2998 void TemplateTable::getfield(int byte_no) {
2999   getfield_or_static(byte_no, false);
3000 }
3001 
3002 void TemplateTable::nofast_getfield(int byte_no) {
3003   getfield_or_static(byte_no, false, may_not_rewrite);
3004 }
3005 
3006 void TemplateTable::getstatic(int byte_no) {
3007   getfield_or_static(byte_no, true);
3008 }
3009 
3010 
3011 // The registers cache and index expected to be set before call.
3012 // The function may destroy various registers, just not the cache and index registers.
3013 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
3014 
3015   const Register robj = LP64_ONLY(c_rarg2)   NOT_LP64(rax);
3016   const Register RBX  = LP64_ONLY(c_rarg1)   NOT_LP64(rbx);
3017   const Register RCX  = LP64_ONLY(c_rarg3)   NOT_LP64(rcx);
3018   const Register RDX  = LP64_ONLY(rscratch1) NOT_LP64(rdx);
3019 
3020   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3021 
3022   if (JvmtiExport::can_post_field_modification()) {
3023     // Check to see if a field modification watch has been set before
3024     // we take the time to call into the VM.
3025     Label L1;
3026     assert_different_registers(cache, index, rax);
3027     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3028     __ testl(rax, rax);
3029     __ jcc(Assembler::zero, L1);
3030 
3031     __ get_cache_and_index_at_bcp(robj, RDX, 1);
3032 
3033 
3034     if (is_static) {
3035       // Life is simple.  Null out the object pointer.
3036       __ xorl(RBX, RBX);
3037 
3038     } else {
3039       // Life is harder. The stack holds the value on top, followed by
3040       // the object.  We don't know the size of the value, though; it
3041       // could be one or two words depending on its type. As a result,
3042       // we must find the type to determine where the object is.
3043 #ifndef _LP64
3044       Label two_word, valsize_known;
3045 #endif
3046       __ movl(RCX, Address(robj, RDX,
3047                            Address::times_ptr,
3048                            in_bytes(cp_base_offset +
3049                                      ConstantPoolCacheEntry::flags_offset())));
3050       NOT_LP64(__ mov(rbx, rsp));
3051       __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift);
3052 
3053       // Make sure we don't need to mask rcx after the above shift
3054       ConstantPoolCacheEntry::verify_tos_state_shift();
3055 #ifdef _LP64
3056       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
3057       __ cmpl(c_rarg3, ltos);
3058       __ cmovptr(Assembler::equal,
3059                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
3060       __ cmpl(c_rarg3, dtos);
3061       __ cmovptr(Assembler::equal,
3062                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
3063 #else
3064       __ cmpl(rcx, ltos);
3065       __ jccb(Assembler::equal, two_word);
3066       __ cmpl(rcx, dtos);
3067       __ jccb(Assembler::equal, two_word);
3068       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
3069       __ jmpb(valsize_known);
3070 
3071       __ bind(two_word);
3072       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
3073 
3074       __ bind(valsize_known);
3075       // setup object pointer
3076       __ movptr(rbx, Address(rbx, 0));
3077 #endif
3078     }
3079     // cache entry pointer
3080     __ addptr(robj, in_bytes(cp_base_offset));
3081     __ shll(RDX, LogBytesPerWord);
3082     __ addptr(robj, RDX);
3083     // object (tos)
3084     __ mov(RCX, rsp);
3085     // c_rarg1: object pointer set up above (NULL if static)
3086     // c_rarg2: cache entry pointer
3087     // c_rarg3: jvalue object on the stack
3088     __ call_VM(noreg,
3089                CAST_FROM_FN_PTR(address,
3090                                 InterpreterRuntime::post_field_modification),
3091                RBX, robj, RCX);
3092     __ get_cache_and_index_at_bcp(cache, index, 1);
3093     __ bind(L1);
3094   }
3095 }
3096 
3097 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
3098   transition(vtos, vtos);
3099 
3100   const Register cache = rcx;
3101   const Register index = rdx;
3102   const Register obj   = rcx;
3103   const Register off   = rbx;
3104   const Register flags = rax;
3105   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3106 
3107   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
3108   jvmti_post_field_mod(cache, index, is_static);
3109   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
3110 
3111   // [jk] not needed currently
3112   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3113   //                                              Assembler::StoreStore));
3114 
3115   Label notVolatile, Done;
3116   __ movl(rdx, flags);
3117   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3118   __ andl(rdx, 0x1);
3119 
3120   // field addresses
3121   const Address field(obj, off, Address::times_1, 0*wordSize);
3122   NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);)
3123 
3124   Label notByte, notBool, notInt, notShort, notChar,
3125         notLong, notFloat, notObj, notDouble;
3126 
3127   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3128 
3129   assert(btos == 0, "change code, btos != 0");
3130   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
3131   __ jcc(Assembler::notZero, notByte);
3132 
3133   // btos
3134   {
3135     __ pop(btos);
3136     if (!is_static) pop_and_check_object(obj);
3137     __ movb(field, rax);
3138     if (!is_static && rc == may_rewrite) {
3139       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
3140     }
3141     __ jmp(Done);
3142   }
3143 
3144   __ bind(notByte);
3145   __ cmpl(flags, ztos);
3146   __ jcc(Assembler::notEqual, notBool);
3147 
3148   // ztos
3149   {
3150     __ pop(ztos);
3151     if (!is_static) pop_and_check_object(obj);
3152     __ andl(rax, 0x1);
3153     __ movb(field, rax);
3154     if (!is_static && rc == may_rewrite) {
3155       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
3156     }
3157     __ jmp(Done);
3158   }
3159 
3160   __ bind(notBool);
3161   __ cmpl(flags, atos);
3162   __ jcc(Assembler::notEqual, notObj);
3163 
3164   // atos
3165   {
3166     __ pop(atos);
3167     if (!is_static) pop_and_check_object(obj);
3168     // Store into the field
3169     do_oop_store(_masm, field, rax);
3170     if (!is_static && rc == may_rewrite) {
3171       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
3172     }
3173     __ jmp(Done);
3174   }
3175 
3176   __ bind(notObj);
3177   __ cmpl(flags, itos);
3178   __ jcc(Assembler::notEqual, notInt);
3179 
3180   // itos
3181   {
3182     __ pop(itos);
3183     if (!is_static) pop_and_check_object(obj);
3184     __ movl(field, rax);
3185     if (!is_static && rc == may_rewrite) {
3186       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
3187     }
3188     __ jmp(Done);
3189   }
3190 
3191   __ bind(notInt);
3192   __ cmpl(flags, ctos);
3193   __ jcc(Assembler::notEqual, notChar);
3194 
3195   // ctos
3196   {
3197     __ pop(ctos);
3198     if (!is_static) pop_and_check_object(obj);
3199     __ movw(field, rax);
3200     if (!is_static && rc == may_rewrite) {
3201       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
3202     }
3203     __ jmp(Done);
3204   }
3205 
3206   __ bind(notChar);
3207   __ cmpl(flags, stos);
3208   __ jcc(Assembler::notEqual, notShort);
3209 
3210   // stos
3211   {
3212     __ pop(stos);
3213     if (!is_static) pop_and_check_object(obj);
3214     __ movw(field, rax);
3215     if (!is_static && rc == may_rewrite) {
3216       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
3217     }
3218     __ jmp(Done);
3219   }
3220 
3221   __ bind(notShort);
3222   __ cmpl(flags, ltos);
3223   __ jcc(Assembler::notEqual, notLong);
3224 
3225   // ltos
3226 #ifdef _LP64
3227   {
3228     __ pop(ltos);
3229     if (!is_static) pop_and_check_object(obj);
3230     __ movq(field, rax);
3231     if (!is_static && rc == may_rewrite) {
3232       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
3233     }
3234     __ jmp(Done);
3235   }
3236 #else
3237   {
3238     Label notVolatileLong;
3239     __ testl(rdx, rdx);
3240     __ jcc(Assembler::zero, notVolatileLong);
3241 
3242     __ pop(ltos);  // overwrites rdx, do this after testing volatile.
3243     if (!is_static) pop_and_check_object(obj);
3244 
3245     // Replace with real volatile test
3246     __ push(rdx);
3247     __ push(rax);                 // Must update atomically with FIST
3248     __ fild_d(Address(rsp,0));    // So load into FPU register
3249     __ fistp_d(field);            // and put into memory atomically
3250     __ addptr(rsp, 2*wordSize);
3251     // volatile_barrier();
3252     volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3253                                                  Assembler::StoreStore));
3254     // Don't rewrite volatile version
3255     __ jmp(notVolatile);
3256 
3257     __ bind(notVolatileLong);
3258 
3259     __ pop(ltos);  // overwrites rdx
3260     if (!is_static) pop_and_check_object(obj);
3261     __ movptr(hi, rdx);
3262     __ movptr(field, rax);
3263     // Don't rewrite to _fast_lputfield for potential volatile case.
3264     __ jmp(notVolatile);
3265   }
3266 #endif // _LP64
3267 
3268   __ bind(notLong);
3269   __ cmpl(flags, ftos);
3270   __ jcc(Assembler::notEqual, notFloat);
3271 
3272   // ftos
3273   {
3274     __ pop(ftos);
3275     if (!is_static) pop_and_check_object(obj);
3276     __ store_float(field);
3277     if (!is_static && rc == may_rewrite) {
3278       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
3279     }
3280     __ jmp(Done);
3281   }
3282 
3283   __ bind(notFloat);
3284 #ifdef ASSERT
3285   __ cmpl(flags, dtos);
3286   __ jcc(Assembler::notEqual, notDouble);
3287 #endif
3288 
3289   // dtos
3290   {
3291     __ pop(dtos);
3292     if (!is_static) pop_and_check_object(obj);
3293     __ store_double(field);
3294     if (!is_static && rc == may_rewrite) {
3295       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
3296     }
3297   }
3298 
3299 #ifdef ASSERT
3300   __ jmp(Done);
3301 
3302   __ bind(notDouble);
3303   __ stop("Bad state");
3304 #endif
3305 
3306   __ bind(Done);
3307 
3308   // Check for volatile store
3309   __ testl(rdx, rdx);
3310   __ jcc(Assembler::zero, notVolatile);
3311   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3312                                                Assembler::StoreStore));
3313   __ bind(notVolatile);
3314 }
3315 
3316 void TemplateTable::putfield(int byte_no) {
3317   putfield_or_static(byte_no, false);
3318 }
3319 
3320 void TemplateTable::nofast_putfield(int byte_no) {
3321   putfield_or_static(byte_no, false, may_not_rewrite);
3322 }
3323 
3324 void TemplateTable::putstatic(int byte_no) {
3325   putfield_or_static(byte_no, true);
3326 }
3327 
3328 void TemplateTable::jvmti_post_fast_field_mod() {
3329 
3330   const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
3331 
3332   if (JvmtiExport::can_post_field_modification()) {
3333     // Check to see if a field modification watch has been set before
3334     // we take the time to call into the VM.
3335     Label L2;
3336     __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
3337     __ testl(scratch, scratch);
3338     __ jcc(Assembler::zero, L2);
3339     __ pop_ptr(rbx);                  // copy the object pointer from tos
3340     __ verify_oop(rbx);
3341     __ push_ptr(rbx);                 // put the object pointer back on tos
3342     // Save tos values before call_VM() clobbers them. Since we have
3343     // to do it for every data type, we use the saved values as the
3344     // jvalue object.
3345     switch (bytecode()) {          // load values into the jvalue object
3346     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
3347     case Bytecodes::_fast_bputfield: // fall through
3348     case Bytecodes::_fast_zputfield: // fall through
3349     case Bytecodes::_fast_sputfield: // fall through
3350     case Bytecodes::_fast_cputfield: // fall through
3351     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
3352     case Bytecodes::_fast_dputfield: __ push(dtos); break;
3353     case Bytecodes::_fast_fputfield: __ push(ftos); break;
3354     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
3355 
3356     default:
3357       ShouldNotReachHere();
3358     }
3359     __ mov(scratch, rsp);             // points to jvalue on the stack
3360     // access constant pool cache entry
3361     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1));
3362     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1));
3363     __ verify_oop(rbx);
3364     // rbx: object pointer copied above
3365     // c_rarg2: cache entry pointer
3366     // c_rarg3: jvalue object on the stack
3367     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3));
3368     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx));
3369 
3370     switch (bytecode()) {             // restore tos values
3371     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
3372     case Bytecodes::_fast_bputfield: // fall through
3373     case Bytecodes::_fast_zputfield: // fall through
3374     case Bytecodes::_fast_sputfield: // fall through
3375     case Bytecodes::_fast_cputfield: // fall through
3376     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
3377     case Bytecodes::_fast_dputfield: __ pop(dtos); break;
3378     case Bytecodes::_fast_fputfield: __ pop(ftos); break;
3379     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
3380     default: break;
3381     }
3382     __ bind(L2);
3383   }
3384 }
3385 
3386 void TemplateTable::fast_storefield(TosState state) {
3387   transition(state, vtos);
3388 
3389   ByteSize base = ConstantPoolCache::base_offset();
3390 
3391   jvmti_post_fast_field_mod();
3392 
3393   // access constant pool cache
3394   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3395 
3396   // test for volatile with rdx but rdx is tos register for lputfield.
3397   __ movl(rdx, Address(rcx, rbx, Address::times_ptr,
3398                        in_bytes(base +
3399                                 ConstantPoolCacheEntry::flags_offset())));
3400 
3401   // replace index with field offset from cache entry
3402   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3403                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
3404 
3405   // [jk] not needed currently
3406   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
3407   //                                              Assembler::StoreStore));
3408 
3409   Label notVolatile;
3410   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3411   __ andl(rdx, 0x1);
3412 
3413   // Get object from stack
3414   pop_and_check_object(rcx);
3415 
3416   // field address
3417   const Address field(rcx, rbx, Address::times_1);
3418 
3419   // access field
3420   switch (bytecode()) {
3421   case Bytecodes::_fast_aputfield:
3422     do_oop_store(_masm, field, rax);
3423     break;
3424   case Bytecodes::_fast_lputfield:
3425 #ifdef _LP64
3426   __ movq(field, rax);
3427 #else
3428   __ stop("should not be rewritten");
3429 #endif
3430     break;
3431   case Bytecodes::_fast_iputfield:
3432     __ movl(field, rax);
3433     break;
3434   case Bytecodes::_fast_zputfield:
3435     __ andl(rax, 0x1);  // boolean is true if LSB is 1
3436     // fall through to bputfield
3437   case Bytecodes::_fast_bputfield:
3438     __ movb(field, rax);
3439     break;
3440   case Bytecodes::_fast_sputfield:
3441     // fall through
3442   case Bytecodes::_fast_cputfield:
3443     __ movw(field, rax);
3444     break;
3445   case Bytecodes::_fast_fputfield:
3446     __ store_float(field);
3447     break;
3448   case Bytecodes::_fast_dputfield:
3449     __ store_double(field);
3450     break;
3451   default:
3452     ShouldNotReachHere();
3453   }
3454 
3455   // Check for volatile store
3456   __ testl(rdx, rdx);
3457   __ jcc(Assembler::zero, notVolatile);
3458   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
3459                                                Assembler::StoreStore));
3460   __ bind(notVolatile);
3461 }
3462 
3463 void TemplateTable::fast_accessfield(TosState state) {
3464   transition(atos, state);
3465 
3466   // Do the JVMTI work here to avoid disturbing the register state below
3467   if (JvmtiExport::can_post_field_access()) {
3468     // Check to see if a field access watch has been set before we
3469     // take the time to call into the VM.
3470     Label L1;
3471     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3472     __ testl(rcx, rcx);
3473     __ jcc(Assembler::zero, L1);
3474     // access constant pool cache entry
3475     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1));
3476     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1));
3477     __ verify_oop(rax);
3478     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
3479     LP64_ONLY(__ mov(c_rarg1, rax));
3480     // c_rarg1: object pointer copied above
3481     // c_rarg2: cache entry pointer
3482     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2));
3483     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx));
3484     __ pop_ptr(rax); // restore object pointer
3485     __ bind(L1);
3486   }
3487 
3488   // access constant pool cache
3489   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
3490   // replace index with field offset from cache entry
3491   // [jk] not needed currently
3492   // if (os::is_MP()) {
3493   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
3494   //                        in_bytes(ConstantPoolCache::base_offset() +
3495   //                                 ConstantPoolCacheEntry::flags_offset())));
3496   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3497   //   __ andl(rdx, 0x1);
3498   // }
3499   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
3500                          in_bytes(ConstantPoolCache::base_offset() +
3501                                   ConstantPoolCacheEntry::f2_offset())));
3502 
3503   // rax: object
3504   __ verify_oop(rax);
3505   __ null_check(rax);
3506   Address field(rax, rbx, Address::times_1);
3507 
3508   // access field
3509   switch (bytecode()) {
3510   case Bytecodes::_fast_agetfield:
3511     do_oop_load(_masm, field, rax);
3512     __ verify_oop(rax);
3513     break;
3514   case Bytecodes::_fast_lgetfield:
3515 #ifdef _LP64
3516   __ movq(rax, field);
3517 #else
3518   __ stop("should not be rewritten");
3519 #endif
3520     break;
3521   case Bytecodes::_fast_igetfield:
3522     __ movl(rax, field);
3523     break;
3524   case Bytecodes::_fast_bgetfield:
3525     __ movsbl(rax, field);
3526     break;
3527   case Bytecodes::_fast_sgetfield:
3528     __ load_signed_short(rax, field);
3529     break;
3530   case Bytecodes::_fast_cgetfield:
3531     __ load_unsigned_short(rax, field);
3532     break;
3533   case Bytecodes::_fast_fgetfield:
3534     __ load_float(field);
3535     break;
3536   case Bytecodes::_fast_dgetfield:
3537     __ load_double(field);
3538     break;
3539   default:
3540     ShouldNotReachHere();
3541   }
3542   // [jk] not needed currently
3543   // if (os::is_MP()) {
3544   //   Label notVolatile;
3545   //   __ testl(rdx, rdx);
3546   //   __ jcc(Assembler::zero, notVolatile);
3547   //   __ membar(Assembler::LoadLoad);
3548   //   __ bind(notVolatile);
3549   //};
3550 }
3551 
3552 void TemplateTable::fast_xaccess(TosState state) {
3553   transition(vtos, state);
3554 
3555   // get receiver
3556   __ movptr(rax, aaddress(0));
3557   // access constant pool cache
3558   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
3559   __ movptr(rbx,
3560             Address(rcx, rdx, Address::times_ptr,
3561                     in_bytes(ConstantPoolCache::base_offset() +
3562                              ConstantPoolCacheEntry::f2_offset())));
3563   // make sure exception is reported in correct bcp range (getfield is
3564   // next instruction)
3565   __ increment(rbcp);
3566   __ null_check(rax);
3567   const Address field = Address(rax, rbx, Address::times_1, 0*wordSize);
3568   switch (state) {
3569   case itos:
3570     __ movl(rax, field);
3571     break;
3572   case atos:
3573     do_oop_load(_masm, field, rax);
3574     __ verify_oop(rax);
3575     break;
3576   case ftos:
3577     __ load_float(field);
3578     break;
3579   default:
3580     ShouldNotReachHere();
3581   }
3582 
3583   // [jk] not needed currently
3584   // if (os::is_MP()) {
3585   //   Label notVolatile;
3586   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
3587   //                        in_bytes(ConstantPoolCache::base_offset() +
3588   //                                 ConstantPoolCacheEntry::flags_offset())));
3589   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
3590   //   __ testl(rdx, 0x1);
3591   //   __ jcc(Assembler::zero, notVolatile);
3592   //   __ membar(Assembler::LoadLoad);
3593   //   __ bind(notVolatile);
3594   // }
3595 
3596   __ decrement(rbcp);
3597 }
3598 
3599 //-----------------------------------------------------------------------------
3600 // Calls
3601 
3602 void TemplateTable::count_calls(Register method, Register temp) {
3603   // implemented elsewhere
3604   ShouldNotReachHere();
3605 }
3606 
3607 void TemplateTable::prepare_invoke(int byte_no,
3608                                    Register method,  // linked method (or i-klass)
3609                                    Register index,   // itable index, MethodType, etc.
3610                                    Register recv,    // if caller wants to see it
3611                                    Register flags    // if caller wants to test it
3612                                    ) {
3613   // determine flags
3614   const Bytecodes::Code code = bytecode();
3615   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3616   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3617   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3618   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3619   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3620   const bool load_receiver       = (recv  != noreg);
3621   const bool save_flags          = (flags != noreg);
3622   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3623   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
3624   assert(flags == noreg || flags == rdx, "");
3625   assert(recv  == noreg || recv  == rcx, "");
3626 
3627   // setup registers & access constant pool cache
3628   if (recv  == noreg)  recv  = rcx;
3629   if (flags == noreg)  flags = rdx;
3630   assert_different_registers(method, index, recv, flags);
3631 
3632   // save 'interpreter return address'
3633   __ save_bcp();
3634 
3635   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3636 
3637   // maybe push appendix to arguments (just before return address)
3638   if (is_invokedynamic || is_invokehandle) {
3639     Label L_no_push;
3640     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
3641     __ jcc(Assembler::zero, L_no_push);
3642     // Push the appendix as a trailing parameter.
3643     // This must be done before we get the receiver,
3644     // since the parameter_size includes it.
3645     __ push(rbx);
3646     __ mov(rbx, index);
3647     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
3648     __ load_resolved_reference_at_index(index, rbx);
3649     __ pop(rbx);
3650     __ push(index);  // push appendix (MethodType, CallSite, etc.)
3651     __ bind(L_no_push);
3652   }
3653 
3654   // load receiver if needed (after appendix is pushed so parameter size is correct)
3655   // Note: no return address pushed yet
3656   if (load_receiver) {
3657     __ movl(recv, flags);
3658     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
3659     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
3660     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
3661     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3662     __ movptr(recv, recv_addr);
3663     __ verify_oop(recv);
3664   }
3665 
3666   if (save_flags) {
3667     __ movl(rbcp, flags);
3668   }
3669 
3670   // compute return type
3671   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3672   // Make sure we don't need to mask flags after the above shift
3673   ConstantPoolCacheEntry::verify_tos_state_shift();
3674   // load return address
3675   {
3676     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3677     ExternalAddress table(table_addr);
3678     LP64_ONLY(__ lea(rscratch1, table));
3679     LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr)));
3680     NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))));
3681   }
3682 
3683   // push return address
3684   __ push(flags);
3685 
3686   // Restore flags value from the constant pool cache, and restore rsi
3687   // for later null checks.  r13 is the bytecode pointer
3688   if (save_flags) {
3689     __ movl(flags, rbcp);
3690     __ restore_bcp();
3691   }
3692 }
3693 
3694 void TemplateTable::invokevirtual_helper(Register index,
3695                                          Register recv,
3696                                          Register flags) {
3697   // Uses temporary registers rax, rdx
3698   assert_different_registers(index, recv, rax, rdx);
3699   assert(index == rbx, "");
3700   assert(recv  == rcx, "");
3701 
3702   // Test for an invoke of a final method
3703   Label notFinal;
3704   __ movl(rax, flags);
3705   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3706   __ jcc(Assembler::zero, notFinal);
3707 
3708   const Register method = index;  // method must be rbx
3709   assert(method == rbx,
3710          "Method* must be rbx for interpreter calling convention");
3711 
3712   // do the call - the index is actually the method to call
3713   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3714 
3715   // It's final, need a null check here!
3716   __ null_check(recv);
3717 
3718   // profile this call
3719   __ profile_final_call(rax);
3720   __ profile_arguments_type(rax, method, rbcp, true);
3721 
3722   __ jump_from_interpreted(method, rax);
3723 
3724   __ bind(notFinal);
3725 
3726   // get receiver klass
3727   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3728   __ load_klass(rax, recv);
3729 
3730   // profile this call
3731   __ profile_virtual_call(rax, rlocals, rdx);
3732   // get target Method* & entry point
3733   __ lookup_virtual_method(rax, index, method);
3734   __ profile_called_method(method, rdx, rbcp);
3735 
3736   __ profile_arguments_type(rdx, method, rbcp, true);
3737   __ jump_from_interpreted(method, rdx);
3738 }
3739 
3740 void TemplateTable::invokevirtual(int byte_no) {
3741   transition(vtos, vtos);
3742   assert(byte_no == f2_byte, "use this argument");
3743   prepare_invoke(byte_no,
3744                  rbx,    // method or vtable index
3745                  noreg,  // unused itable index
3746                  rcx, rdx); // recv, flags
3747 
3748   // rbx: index
3749   // rcx: receiver
3750   // rdx: flags
3751 
3752   invokevirtual_helper(rbx, rcx, rdx);
3753 }
3754 
3755 void TemplateTable::invokespecial(int byte_no) {
3756   transition(vtos, vtos);
3757   assert(byte_no == f1_byte, "use this argument");
3758   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
3759                  rcx);  // get receiver also for null check
3760   __ verify_oop(rcx);
3761   __ null_check(rcx);
3762   // do the call
3763   __ profile_call(rax);
3764   __ profile_arguments_type(rax, rbx, rbcp, false);
3765   __ jump_from_interpreted(rbx, rax);
3766 }
3767 
3768 void TemplateTable::invokestatic(int byte_no) {
3769   transition(vtos, vtos);
3770   assert(byte_no == f1_byte, "use this argument");
3771   prepare_invoke(byte_no, rbx);  // get f1 Method*
3772   // do the call
3773   __ profile_call(rax);
3774   __ profile_arguments_type(rax, rbx, rbcp, false);
3775   __ jump_from_interpreted(rbx, rax);
3776 }
3777 
3778 
3779 void TemplateTable::fast_invokevfinal(int byte_no) {
3780   transition(vtos, vtos);
3781   assert(byte_no == f2_byte, "use this argument");
3782   __ stop("fast_invokevfinal not used on x86");
3783 }
3784 
3785 
3786 void TemplateTable::invokeinterface(int byte_no) {
3787   transition(vtos, vtos);
3788   assert(byte_no == f1_byte, "use this argument");
3789   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 Method*
3790                  rcx, rdx); // recv, flags
3791 
3792   // rax: reference klass (from f1)
3793   // rbx: method (from f2)
3794   // rcx: receiver
3795   // rdx: flags
3796 
3797   // Special case of invokeinterface called for virtual method of
3798   // java.lang.Object.  See cpCacheOop.cpp for details.
3799   // This code isn't produced by javac, but could be produced by
3800   // another compliant java compiler.
3801   Label notMethod;
3802   __ movl(rlocals, rdx);
3803   __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3804 
3805   __ jcc(Assembler::zero, notMethod);
3806 
3807   invokevirtual_helper(rbx, rcx, rdx);
3808   __ bind(notMethod);
3809 
3810   // Get receiver klass into rdx - also a null check
3811   __ restore_locals();  // restore r14
3812   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3813   __ load_klass(rdx, rcx);
3814 
3815   Label no_such_interface, no_such_method;
3816 
3817   // Preserve method for throw_AbstractMethodErrorVerbose.
3818   __ mov(rcx, rbx);
3819   // Receiver subtype check against REFC.
3820   // Superklass in rax. Subklass in rdx. Blows rcx, rdi.
3821   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3822                              rdx, rax, noreg,
3823                              // outputs: scan temp. reg, scan temp. reg
3824                              rbcp, rlocals,
3825                              no_such_interface,
3826                              /*return_method=*/false);
3827 
3828   // profile this call
3829   __ restore_bcp(); // rbcp was destroyed by receiver type check
3830   __ profile_virtual_call(rdx, rbcp, rlocals);
3831 
3832   // Get declaring interface class from method, and itable index
3833   __ movptr(rax, Address(rbx, Method::const_offset()));
3834   __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
3835   __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
3836   __ movl(rbx, Address(rbx, Method::itable_index_offset()));
3837   __ subl(rbx, Method::itable_index_max);
3838   __ negl(rbx);
3839 
3840   // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3841   __ mov(rlocals, rdx);
3842   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3843                              rlocals, rax, rbx,
3844                              // outputs: method, scan temp. reg
3845                              rbx, rbcp,
3846                              no_such_interface);
3847 
3848   // rbx: Method* to call
3849   // rcx: receiver
3850   // Check for abstract method error
3851   // Note: This should be done more efficiently via a throw_abstract_method_error
3852   //       interpreter entry point and a conditional jump to it in case of a null
3853   //       method.
3854   __ testptr(rbx, rbx);
3855   __ jcc(Assembler::zero, no_such_method);
3856 
3857   __ profile_called_method(rbx, rbcp, rdx);
3858   __ profile_arguments_type(rdx, rbx, rbcp, true);
3859 
3860   // do the call
3861   // rcx: receiver
3862   // rbx,: Method*
3863   __ jump_from_interpreted(rbx, rdx);
3864   __ should_not_reach_here();
3865 
3866   // exception handling code follows...
3867   // note: must restore interpreter registers to canonical
3868   //       state for exception handling to work correctly!
3869 
3870   __ bind(no_such_method);
3871   // throw exception
3872   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3873   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
3874   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3875   // Pass arguments for generating a verbose error message.
3876 #ifdef _LP64
3877   Register recvKlass = c_rarg1;
3878   Register method    = c_rarg2;
3879   if (recvKlass != rdx) { __ movq(recvKlass, rdx); }
3880   if (method != rcx)    { __ movq(method, rcx);    }
3881 #else
3882   Register recvKlass = rdx;
3883   Register method    = rcx;
3884 #endif
3885   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose),
3886              recvKlass, method);
3887   // The call_VM checks for exception, so we should never return here.
3888   __ should_not_reach_here();
3889 
3890   __ bind(no_such_interface);
3891   // throw exception
3892   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3893   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
3894   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3895   // Pass arguments for generating a verbose error message.
3896   LP64_ONLY( if (recvKlass != rdx) { __ movq(recvKlass, rdx); } )
3897   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose),
3898              recvKlass, rax);
3899   // the call_VM checks for exception, so we should never return here.
3900   __ should_not_reach_here();
3901 }
3902 
3903 void TemplateTable::invokehandle(int byte_no) {
3904   transition(vtos, vtos);
3905   assert(byte_no == f1_byte, "use this argument");
3906   const Register rbx_method = rbx;
3907   const Register rax_mtype  = rax;
3908   const Register rcx_recv   = rcx;
3909   const Register rdx_flags  = rdx;
3910 
3911   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3912   __ verify_method_ptr(rbx_method);
3913   __ verify_oop(rcx_recv);
3914   __ null_check(rcx_recv);
3915 
3916   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3917   // rbx: MH.invokeExact_MT method (from f2)
3918 
3919   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
3920 
3921   // FIXME: profile the LambdaForm also
3922   __ profile_final_call(rax);
3923   __ profile_arguments_type(rdx, rbx_method, rbcp, true);
3924 
3925   __ jump_from_interpreted(rbx_method, rdx);
3926 }
3927 
3928 void TemplateTable::invokedynamic(int byte_no) {
3929   transition(vtos, vtos);
3930   assert(byte_no == f1_byte, "use this argument");
3931 
3932   const Register rbx_method   = rbx;
3933   const Register rax_callsite = rax;
3934 
3935   prepare_invoke(byte_no, rbx_method, rax_callsite);
3936 
3937   // rax: CallSite object (from cpool->resolved_references[f1])
3938   // rbx: MH.linkToCallSite method (from f2)
3939 
3940   // Note:  rax_callsite is already pushed by prepare_invoke
3941 
3942   // %%% should make a type profile for any invokedynamic that takes a ref argument
3943   // profile this call
3944   __ profile_call(rbcp);
3945   __ profile_arguments_type(rdx, rbx_method, rbcp, false);
3946 
3947   __ verify_oop(rax_callsite);
3948 
3949   __ jump_from_interpreted(rbx_method, rdx);
3950 }
3951 
3952 //-----------------------------------------------------------------------------
3953 // Allocation
3954 
3955 void TemplateTable::_new() {
3956   transition(vtos, atos);
3957   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3958   Label slow_case;
3959   Label slow_case_no_pop;
3960   Label done;
3961   Label initialize_header;
3962   Label initialize_object;  // including clearing the fields
3963 
3964   __ get_cpool_and_tags(rcx, rax);
3965 
3966   // Make sure the class we're about to instantiate has been resolved.
3967   // This is done before loading InstanceKlass to be consistent with the order
3968   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3969   const int tags_offset = Array<u1>::base_offset_in_bytes();
3970   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3971   __ jcc(Assembler::notEqual, slow_case_no_pop);
3972 
3973   // get InstanceKlass
3974   __ load_resolved_klass_at_index(rcx, rdx, rcx);
3975   __ push(rcx);  // save the contexts of klass for initializing the header
3976 
3977   // make sure klass is initialized & doesn't have finalizer
3978   // make sure klass is fully initialized
3979   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
3980   __ jcc(Assembler::notEqual, slow_case);
3981 
3982   // get instance_size in InstanceKlass (scaled to a count of bytes)
3983   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
3984   // test to see if it has a finalizer or is malformed in some way
3985   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3986   __ jcc(Assembler::notZero, slow_case);
3987 
3988   // Allocate the instance:
3989   //  If TLAB is enabled:
3990   //    Try to allocate in the TLAB.
3991   //    If fails, go to the slow path.
3992   //  Else If inline contiguous allocations are enabled:
3993   //    Try to allocate in eden.
3994   //    If fails due to heap end, go to slow path.
3995   //
3996   //  If TLAB is enabled OR inline contiguous is enabled:
3997   //    Initialize the allocation.
3998   //    Exit.
3999   //
4000   //  Go to slow path.
4001 
4002   const bool allow_shared_alloc =
4003     Universe::heap()->supports_inline_contig_alloc();
4004 
4005   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
4006 #ifndef _LP64
4007   if (UseTLAB || allow_shared_alloc) {
4008     __ get_thread(thread);
4009   }
4010 #endif // _LP64
4011 
4012   if (UseTLAB) {
4013     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
4014     __ lea(rbx, Address(rax, rdx, Address::times_1));
4015     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
4016     __ jcc(Assembler::above, slow_case);
4017     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
4018     if (ZeroTLAB) {
4019       // the fields have been already cleared
4020       __ jmp(initialize_header);
4021     } else {
4022       // initialize both the header and fields
4023       __ jmp(initialize_object);
4024     }
4025   } else {
4026     // Allocation in the shared Eden, if allowed.
4027     //
4028     // rdx: instance size in bytes
4029     if (allow_shared_alloc) {
4030       ExternalAddress heap_top((address)Universe::heap()->top_addr());
4031       ExternalAddress heap_end((address)Universe::heap()->end_addr());
4032 
4033       Label retry;
4034       __ bind(retry);
4035       __ movptr(rax, heap_top);
4036       __ lea(rbx, Address(rax, rdx, Address::times_1));
4037       __ cmpptr(rbx, heap_end);
4038       __ jcc(Assembler::above, slow_case);
4039 
4040       // Compare rax, with the top addr, and if still equal, store the new
4041       // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
4042       // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
4043       //
4044       // rax,: object begin
4045       // rbx,: object end
4046       // rdx: instance size in bytes
4047       __ locked_cmpxchgptr(rbx, heap_top);
4048 
4049       // if someone beat us on the allocation, try again, otherwise continue
4050       __ jcc(Assembler::notEqual, retry);
4051 
4052       __ incr_allocated_bytes(thread, rdx, 0);
4053     }
4054   }
4055 
4056   // If UseTLAB or allow_shared_alloc are true, the object is created above and
4057   // there is an initialize need. Otherwise, skip and go to the slow path.
4058   if (UseTLAB || allow_shared_alloc) {
4059     // The object is initialized before the header.  If the object size is
4060     // zero, go directly to the header initialization.
4061     __ bind(initialize_object);
4062     __ decrement(rdx, sizeof(oopDesc));
4063     __ jcc(Assembler::zero, initialize_header);
4064 
4065     // Initialize topmost object field, divide rdx by 8, check if odd and
4066     // test if zero.
4067     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
4068     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
4069 
4070     // rdx must have been multiple of 8
4071 #ifdef ASSERT
4072     // make sure rdx was multiple of 8
4073     Label L;
4074     // Ignore partial flag stall after shrl() since it is debug VM
4075     __ jccb(Assembler::carryClear, L);
4076     __ stop("object size is not multiple of 2 - adjust this code");
4077     __ bind(L);
4078     // rdx must be > 0, no extra check needed here
4079 #endif
4080 
4081     // initialize remaining object fields: rdx was a multiple of 8
4082     { Label loop;
4083     __ bind(loop);
4084     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
4085     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
4086     __ decrement(rdx);
4087     __ jcc(Assembler::notZero, loop);
4088     }
4089 
4090     // initialize object header only.
4091     __ bind(initialize_header);
4092     if (UseBiasedLocking) {
4093       __ pop(rcx);   // get saved klass back in the register.
4094       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
4095       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
4096     } else {
4097       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
4098                 (intptr_t)markOopDesc::prototype()); // header
4099       __ pop(rcx);   // get saved klass back in the register.
4100     }
4101 #ifdef _LP64
4102     __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code)
4103     __ store_klass_gap(rax, rsi);  // zero klass gap for compressed oops
4104 #endif
4105     __ store_klass(rax, rcx);  // klass
4106 
4107     {
4108       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
4109       // Trigger dtrace event for fastpath
4110       __ push(atos);
4111       __ call_VM_leaf(
4112            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
4113       __ pop(atos);
4114     }
4115 
4116     __ jmp(done);
4117   }
4118 
4119   // slow case
4120   __ bind(slow_case);
4121   __ pop(rcx);   // restore stack pointer to what it was when we came in.
4122   __ bind(slow_case_no_pop);
4123 
4124   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4125   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4126 
4127   __ get_constant_pool(rarg1);
4128   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4129   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2);
4130    __ verify_oop(rax);
4131 
4132   // continue
4133   __ bind(done);
4134 }
4135 
4136 void TemplateTable::newarray() {
4137   transition(itos, atos);
4138   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4139   __ load_unsigned_byte(rarg1, at_bcp(1));
4140   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
4141           rarg1, rax);
4142 }
4143 
4144 void TemplateTable::anewarray() {
4145   transition(itos, atos);
4146 
4147   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4148   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
4149 
4150   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
4151   __ get_constant_pool(rarg1);
4152   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
4153           rarg1, rarg2, rax);
4154 }
4155 
4156 void TemplateTable::arraylength() {
4157   transition(atos, itos);
4158   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
4159   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
4160 }
4161 
4162 void TemplateTable::checkcast() {
4163   transition(atos, atos);
4164   Label done, is_null, ok_is_subtype, quicked, resolved;
4165   __ testptr(rax, rax); // object is in rax
4166   __ jcc(Assembler::zero, is_null);
4167 
4168   // Get cpool & tags index
4169   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4170   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4171   // See if bytecode has already been quicked
4172   __ cmpb(Address(rdx, rbx,
4173                   Address::times_1,
4174                   Array<u1>::base_offset_in_bytes()),
4175           JVM_CONSTANT_Class);
4176   __ jcc(Assembler::equal, quicked);
4177   __ push(atos); // save receiver for result, and for GC
4178   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4179 
4180   // vm_result_2 has metadata result
4181 #ifndef _LP64
4182   // borrow rdi from locals
4183   __ get_thread(rdi);
4184   __ get_vm_result_2(rax, rdi);
4185   __ restore_locals();
4186 #else
4187   __ get_vm_result_2(rax, r15_thread);
4188 #endif
4189 
4190   __ pop_ptr(rdx); // restore receiver
4191   __ jmpb(resolved);
4192 
4193   // Get superklass in rax and subklass in rbx
4194   __ bind(quicked);
4195   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
4196   __ load_resolved_klass_at_index(rcx, rbx, rax);
4197 
4198   __ bind(resolved);
4199   __ load_klass(rbx, rdx);
4200 
4201   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
4202   // Superklass in rax.  Subklass in rbx.
4203   __ gen_subtype_check(rbx, ok_is_subtype);
4204 
4205   // Come here on failure
4206   __ push_ptr(rdx);
4207   // object is at TOS
4208   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
4209 
4210   // Come here on success
4211   __ bind(ok_is_subtype);
4212   __ mov(rax, rdx); // Restore object in rdx
4213 
4214   // Collect counts on whether this check-cast sees NULLs a lot or not.
4215   if (ProfileInterpreter) {
4216     __ jmp(done);
4217     __ bind(is_null);
4218     __ profile_null_seen(rcx);
4219   } else {
4220     __ bind(is_null);   // same as 'done'
4221   }
4222   __ bind(done);
4223 }
4224 
4225 void TemplateTable::instanceof() {
4226   transition(atos, itos);
4227   Label done, is_null, ok_is_subtype, quicked, resolved;
4228   __ testptr(rax, rax);
4229   __ jcc(Assembler::zero, is_null);
4230 
4231   // Get cpool & tags index
4232   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
4233   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
4234   // See if bytecode has already been quicked
4235   __ cmpb(Address(rdx, rbx,
4236                   Address::times_1,
4237                   Array<u1>::base_offset_in_bytes()),
4238           JVM_CONSTANT_Class);
4239   __ jcc(Assembler::equal, quicked);
4240 
4241   __ push(atos); // save receiver for result, and for GC
4242   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
4243   // vm_result_2 has metadata result
4244 
4245 #ifndef _LP64
4246   // borrow rdi from locals
4247   __ get_thread(rdi);
4248   __ get_vm_result_2(rax, rdi);
4249   __ restore_locals();
4250 #else
4251   __ get_vm_result_2(rax, r15_thread);
4252 #endif
4253 
4254   __ pop_ptr(rdx); // restore receiver
4255   __ verify_oop(rdx);
4256   __ load_klass(rdx, rdx);
4257   __ jmpb(resolved);
4258 
4259   // Get superklass in rax and subklass in rdx
4260   __ bind(quicked);
4261   __ load_klass(rdx, rax);
4262   __ load_resolved_klass_at_index(rcx, rbx, rax);
4263 
4264   __ bind(resolved);
4265 
4266   // Generate subtype check.  Blows rcx, rdi
4267   // Superklass in rax.  Subklass in rdx.
4268   __ gen_subtype_check(rdx, ok_is_subtype);
4269 
4270   // Come here on failure
4271   __ xorl(rax, rax);
4272   __ jmpb(done);
4273   // Come here on success
4274   __ bind(ok_is_subtype);
4275   __ movl(rax, 1);
4276 
4277   // Collect counts on whether this test sees NULLs a lot or not.
4278   if (ProfileInterpreter) {
4279     __ jmp(done);
4280     __ bind(is_null);
4281     __ profile_null_seen(rcx);
4282   } else {
4283     __ bind(is_null);   // same as 'done'
4284   }
4285   __ bind(done);
4286   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
4287   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
4288 }
4289 
4290 
4291 //----------------------------------------------------------------------------------------------------
4292 // Breakpoints
4293 void TemplateTable::_breakpoint() {
4294   // Note: We get here even if we are single stepping..
4295   // jbug insists on setting breakpoints at every bytecode
4296   // even if we are in single step mode.
4297 
4298   transition(vtos, vtos);
4299 
4300   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
4301 
4302   // get the unpatched byte code
4303   __ get_method(rarg);
4304   __ call_VM(noreg,
4305              CAST_FROM_FN_PTR(address,
4306                               InterpreterRuntime::get_original_bytecode_at),
4307              rarg, rbcp);
4308   __ mov(rbx, rax);  // why?
4309 
4310   // post the breakpoint event
4311   __ get_method(rarg);
4312   __ call_VM(noreg,
4313              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
4314              rarg, rbcp);
4315 
4316   // complete the execution of original bytecode
4317   __ dispatch_only_normal(vtos);
4318 }
4319 
4320 //-----------------------------------------------------------------------------
4321 // Exceptions
4322 
4323 void TemplateTable::athrow() {
4324   transition(atos, vtos);
4325   __ null_check(rax);
4326   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
4327 }
4328 
4329 //-----------------------------------------------------------------------------
4330 // Synchronization
4331 //
4332 // Note: monitorenter & exit are symmetric routines; which is reflected
4333 //       in the assembly code structure as well
4334 //
4335 // Stack layout:
4336 //
4337 // [expressions  ] <--- rsp               = expression stack top
4338 // ..
4339 // [expressions  ]
4340 // [monitor entry] <--- monitor block top = expression stack bot
4341 // ..
4342 // [monitor entry]
4343 // [frame data   ] <--- monitor block bot
4344 // ...
4345 // [saved rbp    ] <--- rbp
4346 void TemplateTable::monitorenter() {
4347   transition(atos, vtos);
4348 
4349   // check for NULL object
4350   __ null_check(rax);
4351 
4352   const Address monitor_block_top(
4353         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4354   const Address monitor_block_bot(
4355         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4356   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4357 
4358   Label allocated;
4359 
4360   Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
4361   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4362   Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4363 
4364   // initialize entry pointer
4365   __ xorl(rmon, rmon); // points to free slot or NULL
4366 
4367   // find a free slot in the monitor block (result in rmon)
4368   {
4369     Label entry, loop, exit;
4370     __ movptr(rtop, monitor_block_top); // points to current entry,
4371                                         // starting with top-most entry
4372     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4373                                         // of monitor block
4374     __ jmpb(entry);
4375 
4376     __ bind(loop);
4377     // check if current entry is used
4378     __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
4379     // if not used then remember entry in rmon
4380     __ cmovptr(Assembler::equal, rmon, rtop);   // cmov => cmovptr
4381     // check if current entry is for same object
4382     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4383     // if same object then stop searching
4384     __ jccb(Assembler::equal, exit);
4385     // otherwise advance to next entry
4386     __ addptr(rtop, entry_size);
4387     __ bind(entry);
4388     // check if bottom reached
4389     __ cmpptr(rtop, rbot);
4390     // if not at bottom then check this entry
4391     __ jcc(Assembler::notEqual, loop);
4392     __ bind(exit);
4393   }
4394 
4395   __ testptr(rmon, rmon); // check if a slot has been found
4396   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
4397 
4398   // allocate one if there's no free slot
4399   {
4400     Label entry, loop;
4401     // 1. compute new pointers          // rsp: old expression stack top
4402     __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom
4403     __ subptr(rsp, entry_size);         // move expression stack top
4404     __ subptr(rmon, entry_size);        // move expression stack bottom
4405     __ mov(rtop, rsp);                  // set start value for copy loop
4406     __ movptr(monitor_block_bot, rmon); // set new monitor block bottom
4407     __ jmp(entry);
4408     // 2. move expression stack contents
4409     __ bind(loop);
4410     __ movptr(rbot, Address(rtop, entry_size)); // load expression stack
4411                                                 // word from old location
4412     __ movptr(Address(rtop, 0), rbot);          // and store it at new location
4413     __ addptr(rtop, wordSize);                  // advance to next word
4414     __ bind(entry);
4415     __ cmpptr(rtop, rmon);                      // check if bottom reached
4416     __ jcc(Assembler::notEqual, loop);          // if not at bottom then
4417                                                 // copy next word
4418   }
4419 
4420   // call run-time routine
4421   // rmon: points to monitor entry
4422   __ bind(allocated);
4423 
4424   // Increment bcp to point to the next bytecode, so exception
4425   // handling for async. exceptions work correctly.
4426   // The object has already been poped from the stack, so the
4427   // expression stack looks correct.
4428   __ increment(rbcp);
4429 
4430   // store object
4431   __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax);
4432   __ lock_object(rmon);
4433 
4434   // check to make sure this monitor doesn't cause stack overflow after locking
4435   __ save_bcp();  // in case of exception
4436   __ generate_stack_overflow_check(0);
4437 
4438   // The bcp has already been incremented. Just need to dispatch to
4439   // next instruction.
4440   __ dispatch_next(vtos);
4441 }
4442 
4443 void TemplateTable::monitorexit() {
4444   transition(atos, vtos);
4445 
4446   // check for NULL object
4447   __ null_check(rax);
4448 
4449   const Address monitor_block_top(
4450         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
4451   const Address monitor_block_bot(
4452         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
4453   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
4454 
4455   Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
4456   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
4457 
4458   Label found;
4459 
4460   // find matching slot
4461   {
4462     Label entry, loop;
4463     __ movptr(rtop, monitor_block_top); // points to current entry,
4464                                         // starting with top-most entry
4465     __ lea(rbot, monitor_block_bot);    // points to word before bottom
4466                                         // of monitor block
4467     __ jmpb(entry);
4468 
4469     __ bind(loop);
4470     // check if current entry is for same object
4471     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
4472     // if same object then stop searching
4473     __ jcc(Assembler::equal, found);
4474     // otherwise advance to next entry
4475     __ addptr(rtop, entry_size);
4476     __ bind(entry);
4477     // check if bottom reached
4478     __ cmpptr(rtop, rbot);
4479     // if not at bottom then check this entry
4480     __ jcc(Assembler::notEqual, loop);
4481   }
4482 
4483   // error handling. Unlocking was not block-structured
4484   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
4485                    InterpreterRuntime::throw_illegal_monitor_state_exception));
4486   __ should_not_reach_here();
4487 
4488   // call run-time routine
4489   __ bind(found);
4490   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
4491   __ unlock_object(rtop);
4492   __ pop_ptr(rax); // discard object
4493 }
4494 
4495 // Wide instructions
4496 void TemplateTable::wide() {
4497   transition(vtos, vtos);
4498   __ load_unsigned_byte(rbx, at_bcp(1));
4499   ExternalAddress wtable((address)Interpreter::_wentry_point);
4500   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
4501   // Note: the rbcp increment step is part of the individual wide bytecode implementations
4502 }
4503 
4504 // Multi arrays
4505 void TemplateTable::multianewarray() {
4506   transition(vtos, atos);
4507 
4508   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax);
4509   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
4510   // last dim is on top of stack; we want address of first one:
4511   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
4512   // the latter wordSize to point to the beginning of the array.
4513   __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
4514   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg);
4515   __ load_unsigned_byte(rbx, at_bcp(3));
4516   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
4517 }