/* * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "c1/c1_CodeStubs.hpp" #include "c1/c1_FrameMap.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "nativeInst_arm.hpp" #include "runtime/sharedRuntime.hpp" #include "utilities/macros.hpp" #include "vmreg_arm.inline.hpp" #define __ ce->masm()-> void CounterOverflowStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); ce->store_parameter(_bci, 0); ce->store_parameter(_method->as_constant_ptr()->as_metadata(), 1); __ call(Runtime1::entry_for(Runtime1::counter_overflow_id), relocInfo::runtime_call_type); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ b(_continuation); } // TODO: ARM - is it possible to inline these stubs into the main code stream? RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index, LIR_Opr array) : _throw_index_out_of_bounds_exception(false), _index(index), _array(array) { assert(info != NULL, "must have info"); _info = new CodeEmitInfo(info); } RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index) : _throw_index_out_of_bounds_exception(true), _index(index), _array(NULL) { assert(info != NULL, "must have info"); _info = new CodeEmitInfo(info); } void RangeCheckStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); if (_info->deoptimize_on_exception()) { #ifdef AARCH64 __ NOT_TESTED(); #endif __ call(Runtime1::entry_for(Runtime1::predicate_failed_trap_id), relocInfo::runtime_call_type); ce->add_call_info_here(_info); ce->verify_oop_map(_info); debug_only(__ should_not_reach_here()); return; } // Pass the array index on stack because all registers must be preserved ce->verify_reserved_argument_area_size(_throw_index_out_of_bounds_exception ? 1 : 2); if (_index->is_cpu_register()) { __ str_32(_index->as_register(), Address(SP)); } else { __ mov_slow(Rtemp, _index->as_jint()); // Rtemp should be OK in C1 __ str_32(Rtemp, Address(SP)); } if (_throw_index_out_of_bounds_exception) { #ifdef AARCH64 __ NOT_TESTED(); #endif __ call(Runtime1::entry_for(Runtime1::throw_index_exception_id), relocInfo::runtime_call_type); } else { __ str(_array->as_pointer_register(), Address(SP, BytesPerWord)); // ??? Correct offset? Correct instruction? __ call(Runtime1::entry_for(Runtime1::throw_range_check_failed_id), relocInfo::runtime_call_type); } ce->add_call_info_here(_info); ce->verify_oop_map(_info); DEBUG_ONLY(STOP("RangeCheck");) } PredicateFailedStub::PredicateFailedStub(CodeEmitInfo* info) { _info = new CodeEmitInfo(info); } void PredicateFailedStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); __ call(Runtime1::entry_for(Runtime1::predicate_failed_trap_id), relocInfo::runtime_call_type); ce->add_call_info_here(_info); ce->verify_oop_map(_info); debug_only(__ should_not_reach_here()); } void DivByZeroStub::emit_code(LIR_Assembler* ce) { if (_offset != -1) { ce->compilation()->implicit_exception_table()->append(_offset, __ offset()); } __ bind(_entry); __ call(Runtime1::entry_for(Runtime1::throw_div0_exception_id), relocInfo::runtime_call_type); ce->add_call_info_here(_info); DEBUG_ONLY(STOP("DivByZero");) } // Implementation of NewInstanceStub NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) { _result = result; _klass = klass; _klass_reg = klass_reg; _info = new CodeEmitInfo(info); assert(stub_id == Runtime1::new_instance_id || stub_id == Runtime1::fast_new_instance_id || stub_id == Runtime1::fast_new_instance_init_check_id, "need new_instance id"); _stub_id = stub_id; } void NewInstanceStub::emit_code(LIR_Assembler* ce) { assert(_result->as_register() == R0, "runtime call setup"); assert(_klass_reg->as_register() == R1, "runtime call setup"); __ bind(_entry); __ call(Runtime1::entry_for(_stub_id), relocInfo::runtime_call_type); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ b(_continuation); } // Implementation of NewTypeArrayStub NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) { _klass_reg = klass_reg; _length = length; _result = result; _info = new CodeEmitInfo(info); } void NewTypeArrayStub::emit_code(LIR_Assembler* ce) { assert(_result->as_register() == R0, "runtime call setup"); assert(_klass_reg->as_register() == R1, "runtime call setup"); assert(_length->as_register() == R2, "runtime call setup"); __ bind(_entry); __ call(Runtime1::entry_for(Runtime1::new_type_array_id), relocInfo::runtime_call_type); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ b(_continuation); } // Implementation of NewObjectArrayStub NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) { _klass_reg = klass_reg; _result = result; _length = length; _info = new CodeEmitInfo(info); } void NewObjectArrayStub::emit_code(LIR_Assembler* ce) { assert(_result->as_register() == R0, "runtime call setup"); assert(_klass_reg->as_register() == R1, "runtime call setup"); assert(_length->as_register() == R2, "runtime call setup"); __ bind(_entry); __ call(Runtime1::entry_for(Runtime1::new_object_array_id), relocInfo::runtime_call_type); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ b(_continuation); } // Implementation of MonitorAccessStubs MonitorEnterStub::MonitorEnterStub(LIR_Opr obj_reg, LIR_Opr lock_reg, CodeEmitInfo* info) : MonitorAccessStub(obj_reg, lock_reg) { _info = new CodeEmitInfo(info); } void MonitorEnterStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); const Register obj_reg = _obj_reg->as_pointer_register(); const Register lock_reg = _lock_reg->as_pointer_register(); ce->verify_reserved_argument_area_size(2); #ifdef AARCH64 __ stp(obj_reg, lock_reg, Address(SP)); #else if (obj_reg < lock_reg) { __ stmia(SP, RegisterSet(obj_reg) | RegisterSet(lock_reg)); } else { __ str(obj_reg, Address(SP)); __ str(lock_reg, Address(SP, BytesPerWord)); } #endif // AARCH64 Runtime1::StubID enter_id = ce->compilation()->has_fpu_code() ? Runtime1::monitorenter_id : Runtime1::monitorenter_nofpu_id; __ call(Runtime1::entry_for(enter_id), relocInfo::runtime_call_type); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ b(_continuation); } void MonitorExitStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); if (_compute_lock) { ce->monitor_address(_monitor_ix, _lock_reg); } const Register lock_reg = _lock_reg->as_pointer_register(); ce->verify_reserved_argument_area_size(1); __ str(lock_reg, Address(SP)); // Non-blocking leaf routine - no call info needed Runtime1::StubID exit_id = ce->compilation()->has_fpu_code() ? Runtime1::monitorexit_id : Runtime1::monitorexit_nofpu_id; __ call(Runtime1::entry_for(exit_id), relocInfo::runtime_call_type); __ b(_continuation); } // Call return is directly after patch word int PatchingStub::_patch_info_offset = 0; void PatchingStub::align_patch_site(MacroAssembler* masm) { #if 0 // TODO: investigate if we required to implement this ShouldNotReachHere(); #endif } void PatchingStub::emit_code(LIR_Assembler* ce) { const int patchable_instruction_offset = AARCH64_ONLY(NativeInstruction::instruction_size) NOT_AARCH64(0); assert(NativeCall::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF, "not enough room for call"); assert((_bytes_to_copy & 3) == 0, "must copy a multiple of four bytes"); Label call_patch; bool is_load = (_id == load_klass_id) || (_id == load_mirror_id) || (_id == load_appendix_id); #ifdef AARCH64 assert(nativeInstruction_at(_pc_start)->is_nop(), "required for MT safe patching"); // Same alignment of reg2mem code and PatchingStub code. Required to make copied bind_literal() code properly aligned. __ align(wordSize); #endif // AARCH64 if (is_load NOT_AARCH64(&& !VM_Version::supports_movw())) { address start = __ pc(); // The following sequence duplicates code provided in MacroAssembler::patchable_mov_oop() // without creating relocation info entry. #ifdef AARCH64 // Extra nop for MT safe patching __ nop(); #endif // AARCH64 assert((__ pc() - start) == patchable_instruction_offset, "should be"); #ifdef AARCH64 __ ldr(_obj, __ pc()); #else __ ldr(_obj, Address(PC)); // Extra nop to handle case of large offset of oop placeholder (see NativeMovConstReg::set_data). __ nop(); #endif // AARCH64 #ifdef ASSERT for (int i = 0; i < _bytes_to_copy; i++) { assert(((address)_pc_start)[i] == start[i], "should be the same code"); } #endif // ASSERT } address being_initialized_entry = __ pc(); if (CommentedAssembly) { __ block_comment(" patch template"); } if (is_load) { address start = __ pc(); if (_id == load_mirror_id || _id == load_appendix_id) { __ patchable_mov_oop(_obj, (jobject)Universe::non_oop_word(), _index); } else { __ patchable_mov_metadata(_obj, (Metadata*)Universe::non_oop_word(), _index); } #ifdef ASSERT for (int i = 0; i < _bytes_to_copy; i++) { assert(((address)_pc_start)[i] == start[i], "should be the same code"); } #endif // ASSERT } else { int* start = (int*)_pc_start; int* end = start + (_bytes_to_copy / BytesPerInt); while (start < end) { __ emit_int32(*start++); } } address end_of_patch = __ pc(); int bytes_to_skip = 0; if (_id == load_mirror_id) { int offset = __ offset(); if (CommentedAssembly) { __ block_comment(" being_initialized check"); } assert(_obj != noreg, "must be a valid register"); // Rtemp should be OK in C1 __ ldr(Rtemp, Address(_obj, java_lang_Class::klass_offset_in_bytes())); __ ldr(Rtemp, Address(Rtemp, InstanceKlass::init_thread_offset())); __ cmp(Rtemp, Rthread); __ b(call_patch, ne); __ b(_patch_site_continuation); bytes_to_skip += __ offset() - offset; } if (CommentedAssembly) { __ block_comment("patch data - 3 high bytes of the word"); } const int sizeof_patch_record = 4; bytes_to_skip += sizeof_patch_record; int being_initialized_entry_offset = __ pc() - being_initialized_entry + sizeof_patch_record; __ emit_int32(0xff | being_initialized_entry_offset << 8 | bytes_to_skip << 16 | _bytes_to_copy << 24); address patch_info_pc = __ pc(); assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info"); // runtime call will return here Label call_return; __ bind(call_return); ce->add_call_info_here(_info); assert(_patch_info_offset == (patch_info_pc - __ pc()), "must not change"); __ b(_patch_site_entry); address entry = __ pc(); NativeGeneralJump::insert_unconditional((address)_pc_start, entry); address target = NULL; relocInfo::relocType reloc_type = relocInfo::none; switch (_id) { case access_field_id: target = Runtime1::entry_for(Runtime1::access_field_patching_id); break; case load_klass_id: target = Runtime1::entry_for(Runtime1::load_klass_patching_id); reloc_type = relocInfo::metadata_type; break; case load_mirror_id: target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); reloc_type = relocInfo::oop_type; break; case load_appendix_id: target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); reloc_type = relocInfo::oop_type; break; default: ShouldNotReachHere(); } __ bind(call_patch); if (CommentedAssembly) { __ block_comment("patch entry point"); } // arrange for call to return just after patch word __ adr(LR, call_return); __ jump(target, relocInfo::runtime_call_type, Rtemp); if (is_load) { CodeSection* cs = __ code_section(); address pc = (address)_pc_start; RelocIterator iter(cs, pc, pc + 1); relocInfo::change_reloc_info_for_address(&iter, pc, reloc_type, relocInfo::none); } } void DeoptimizeStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); __ mov_slow(Rtemp, _trap_request); ce->verify_reserved_argument_area_size(1); __ str(Rtemp, Address(SP)); __ call(Runtime1::entry_for(Runtime1::deoptimize_id), relocInfo::runtime_call_type); ce->add_call_info_here(_info); DEBUG_ONLY(__ should_not_reach_here()); } void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) { address a; if (_info->deoptimize_on_exception()) { // Deoptimize, do not throw the exception, because it is // probably wrong to do it here. a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id); } else { a = Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id); } ce->compilation()->implicit_exception_table()->append(_offset, __ offset()); __ bind(_entry); __ call(a, relocInfo::runtime_call_type); ce->add_call_info_here(_info); ce->verify_oop_map(_info); DEBUG_ONLY(STOP("ImplicitNullCheck");) } void SimpleExceptionStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); // Pass the object on stack because all registers must be preserved if (_obj->is_cpu_register()) { ce->verify_reserved_argument_area_size(1); __ str(_obj->as_pointer_register(), Address(SP)); } else { assert(_obj->is_illegal(), "should be"); } __ call(Runtime1::entry_for(_stub), relocInfo::runtime_call_type); ce->add_call_info_here(_info); DEBUG_ONLY(STOP("SimpleException");) } void ArrayCopyStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); VMRegPair args[5]; BasicType signature[5] = { T_OBJECT, T_INT, T_OBJECT, T_INT, T_INT }; SharedRuntime::java_calling_convention(signature, args, 5, true); Register r[5]; r[0] = src()->as_pointer_register(); r[1] = src_pos()->as_register(); r[2] = dst()->as_pointer_register(); r[3] = dst_pos()->as_register(); r[4] = length()->as_register(); for (int i = 0; i < 5; i++) { VMReg arg = args[i].first(); if (arg->is_stack()) { __ str(r[i], Address(SP, arg->reg2stack() * VMRegImpl::stack_slot_size)); } else { assert(r[i] == arg->as_Register(), "Calling conventions must match"); } } ce->emit_static_call_stub(); if (ce->compilation()->bailed_out()) { return; // CodeCache is full } int ret_addr_offset = __ patchable_call(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); assert(ret_addr_offset == __ offset(), "embedded return address not allowed"); ce->add_call_info_here(info()); ce->verify_oop_map(info()); __ b(_continuation); } #undef __