1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.inline.hpp"
  32 #include "gc/shared/referencePolicy.hpp"
  33 #include "gc/shared/referenceProcessor.inline.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/access.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/java.hpp"
  40 
  41 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  42 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  43 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  44 
  45 void referenceProcessor_init() {
  46   ReferenceProcessor::init_statics();
  47 }
  48 
  49 void ReferenceProcessor::init_statics() {
  50   // We need a monotonically non-decreasing time in ms but
  51   // os::javaTimeMillis() does not guarantee monotonicity.
  52   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  53 
  54   // Initialize the soft ref timestamp clock.
  55   _soft_ref_timestamp_clock = now;
  56   // Also update the soft ref clock in j.l.r.SoftReference
  57   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  58 
  59   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  60   if (is_server_compilation_mode_vm()) {
  61     _default_soft_ref_policy = new LRUMaxHeapPolicy();
  62   } else {
  63     _default_soft_ref_policy = new LRUCurrentHeapPolicy();
  64   }
  65   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  66     vm_exit_during_initialization("Could not allocate reference policy object");
  67   }
  68   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  69             RefDiscoveryPolicy == ReferentBasedDiscovery,
  70             "Unrecognized RefDiscoveryPolicy");
  71 }
  72 
  73 void ReferenceProcessor::enable_discovery(bool check_no_refs) {
  74 #ifdef ASSERT
  75   // Verify that we're not currently discovering refs
  76   assert(!_discovering_refs, "nested call?");
  77 
  78   if (check_no_refs) {
  79     // Verify that the discovered lists are empty
  80     verify_no_references_recorded();
  81   }
  82 #endif // ASSERT
  83 
  84   // Someone could have modified the value of the static
  85   // field in the j.l.r.SoftReference class that holds the
  86   // soft reference timestamp clock using reflection or
  87   // Unsafe between GCs. Unconditionally update the static
  88   // field in ReferenceProcessor here so that we use the new
  89   // value during reference discovery.
  90 
  91   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  92   _discovering_refs = true;
  93 }
  94 
  95 ReferenceProcessor::ReferenceProcessor(BoolObjectClosure* is_subject_to_discovery,
  96                                        bool      mt_processing,
  97                                        uint      mt_processing_degree,
  98                                        bool      mt_discovery,
  99                                        uint      mt_discovery_degree,
 100                                        bool      atomic_discovery,
 101                                        BoolObjectClosure* is_alive_non_header)  :
 102   _is_subject_to_discovery(is_subject_to_discovery),
 103   _discovering_refs(false),
 104   _enqueuing_is_done(false),
 105   _is_alive_non_header(is_alive_non_header),
 106   _processing_is_mt(mt_processing),
 107   _next_id(0)
 108 {
 109   assert(is_subject_to_discovery != NULL, "must be set");
 110 
 111   _discovery_is_atomic = atomic_discovery;
 112   _discovery_is_mt     = mt_discovery;
 113   _num_queues          = MAX2(1U, mt_processing_degree);
 114   _max_num_queues      = MAX2(_num_queues, mt_discovery_degree);
 115   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 116             _max_num_queues * number_of_subclasses_of_ref(), mtGC);
 117 
 118   if (_discovered_refs == NULL) {
 119     vm_exit_during_initialization("Could not allocated RefProc Array");
 120   }
 121   _discoveredSoftRefs    = &_discovered_refs[0];
 122   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_queues];
 123   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_queues];
 124   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_queues];
 125 
 126   // Initialize all entries to NULL
 127   for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
 128     _discovered_refs[i].set_head(NULL);
 129     _discovered_refs[i].set_length(0);
 130   }
 131 
 132   setup_policy(false /* default soft ref policy */);
 133 }
 134 
 135 #ifndef PRODUCT
 136 void ReferenceProcessor::verify_no_references_recorded() {
 137   guarantee(!_discovering_refs, "Discovering refs?");
 138   for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
 139     guarantee(_discovered_refs[i].is_empty(),
 140               "Found non-empty discovered list at %u", i);
 141   }
 142 }
 143 #endif
 144 
 145 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 146   for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
 147     if (UseCompressedOops) {
 148       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 149     } else {
 150       f->do_oop((oop*)_discovered_refs[i].adr_head());
 151     }
 152   }
 153 }
 154 
 155 void ReferenceProcessor::update_soft_ref_master_clock() {
 156   // Update (advance) the soft ref master clock field. This must be done
 157   // after processing the soft ref list.
 158 
 159   // We need a monotonically non-decreasing time in ms but
 160   // os::javaTimeMillis() does not guarantee monotonicity.
 161   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 162   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 163   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 164 
 165   NOT_PRODUCT(
 166   if (now < _soft_ref_timestamp_clock) {
 167     log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
 168                     _soft_ref_timestamp_clock, now);
 169   }
 170   )
 171   // The values of now and _soft_ref_timestamp_clock are set using
 172   // javaTimeNanos(), which is guaranteed to be monotonically
 173   // non-decreasing provided the underlying platform provides such
 174   // a time source (and it is bug free).
 175   // In product mode, however, protect ourselves from non-monotonicity.
 176   if (now > _soft_ref_timestamp_clock) {
 177     _soft_ref_timestamp_clock = now;
 178     java_lang_ref_SoftReference::set_clock(now);
 179   }
 180   // Else leave clock stalled at its old value until time progresses
 181   // past clock value.
 182 }
 183 
 184 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) const {
 185   size_t total = 0;
 186   for (uint i = 0; i < _max_num_queues; ++i) {
 187     total += lists[i].length();
 188   }
 189   return total;
 190 }
 191 
 192 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 193   BoolObjectClosure*            is_alive,
 194   OopClosure*                   keep_alive,
 195   VoidClosure*                  complete_gc,
 196   AbstractRefProcTaskExecutor*  task_executor,
 197   ReferenceProcessorPhaseTimes* phase_times) {
 198 
 199   double start_time = os::elapsedTime();
 200 
 201   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 202   // Stop treating discovered references specially.
 203   disable_discovery();
 204 
 205   // If discovery was concurrent, someone could have modified
 206   // the value of the static field in the j.l.r.SoftReference
 207   // class that holds the soft reference timestamp clock using
 208   // reflection or Unsafe between when discovery was enabled and
 209   // now. Unconditionally update the static field in ReferenceProcessor
 210   // here so that we use the new value during processing of the
 211   // discovered soft refs.
 212 
 213   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 214 
 215   ReferenceProcessorStats stats(total_count(_discoveredSoftRefs),
 216                                 total_count(_discoveredWeakRefs),
 217                                 total_count(_discoveredFinalRefs),
 218                                 total_count(_discoveredPhantomRefs));
 219 
 220   // Soft references
 221   {
 222     RefProcPhaseTimesTracker tt(REF_SOFT, phase_times, this);
 223     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 224                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 225   }
 226 
 227   update_soft_ref_master_clock();
 228 
 229   // Weak references
 230   {
 231     RefProcPhaseTimesTracker tt(REF_WEAK, phase_times, this);
 232     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 233                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 234   }
 235 
 236   // Final references
 237   {
 238     RefProcPhaseTimesTracker tt(REF_FINAL, phase_times, this);
 239     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 240                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 241   }
 242 
 243   // Phantom references
 244   {
 245     RefProcPhaseTimesTracker tt(REF_PHANTOM, phase_times, this);
 246     process_discovered_reflist(_discoveredPhantomRefs, NULL, true,
 247                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 248   }
 249 
 250   if (task_executor != NULL) {
 251     // Record the work done by the parallel workers.
 252     task_executor->set_single_threaded_mode();
 253   }
 254 
 255   phase_times->set_total_time_ms((os::elapsedTime() - start_time) * 1000);
 256 
 257   return stats;
 258 }
 259 
 260 void ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor*  task_executor,
 261                                                        ReferenceProcessorPhaseTimes* phase_times) {
 262   // Enqueue references that are not made active again, and
 263   // clear the decks for the next collection (cycle).
 264   enqueue_discovered_reflists(task_executor, phase_times);
 265 
 266   // Stop treating discovered references specially.
 267   disable_discovery();
 268 }
 269 
 270 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list) {
 271   // Given a list of refs linked through the "discovered" field
 272   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 273   // thus distinguishing them from active References, then
 274   // prepend them to the pending list.
 275   //
 276   // The Java threads will see the Reference objects linked together through
 277   // the discovered field. Instead of trying to do the write barrier updates
 278   // in all places in the reference processor where we manipulate the discovered
 279   // field we make sure to do the barrier here where we anyway iterate through
 280   // all linked Reference objects. Note that it is important to not dirty any
 281   // cards during reference processing since this will cause card table
 282   // verification to fail for G1.
 283   log_develop_trace(gc, ref)("ReferenceProcessor::enqueue_discovered_reflist list " INTPTR_FORMAT, p2i(&refs_list));
 284 
 285   oop obj = NULL;
 286   oop next_discovered = refs_list.head();
 287   // Walk down the list, self-looping the next field
 288   // so that the References are not considered active.
 289   while (obj != next_discovered) {
 290     obj = next_discovered;
 291     assert(obj->is_instance(), "should be an instance object");
 292     assert(InstanceKlass::cast(obj->klass())->is_reference_instance_klass(), "should be reference object");
 293     next_discovered = java_lang_ref_Reference::discovered(obj);
 294     log_develop_trace(gc, ref)("        obj " INTPTR_FORMAT "/next_discovered " INTPTR_FORMAT, p2i(obj), p2i(next_discovered));
 295     assert(java_lang_ref_Reference::next(obj) == NULL,
 296            "Reference not active; should not be discovered");
 297     // Self-loop next, so as to make Ref not active.
 298     java_lang_ref_Reference::set_next_raw(obj, obj);
 299     if (next_discovered != obj) {
 300       HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(obj, java_lang_ref_Reference::discovered_offset, next_discovered);
 301     } else {
 302       // This is the last object.
 303       // Swap refs_list into pending list and set obj's
 304       // discovered to what we read from the pending list.
 305       oop old = Universe::swap_reference_pending_list(refs_list.head());
 306       HeapAccess<AS_NO_KEEPALIVE>::oop_store_at(obj, java_lang_ref_Reference::discovered_offset, old);
 307     }
 308   }
 309 }
 310 
 311 // Parallel enqueue task
 312 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 313 public:
 314   RefProcEnqueueTask(ReferenceProcessor&           ref_processor,
 315                      DiscoveredList                discovered_refs[],
 316                      int                           n_queues,
 317                      ReferenceProcessorPhaseTimes* phase_times)
 318     : EnqueueTask(ref_processor, discovered_refs, n_queues, phase_times)
 319   { }
 320 
 321   virtual void work(unsigned int work_id) {
 322     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefEnqueue, _phase_times, work_id);
 323 
 324     assert(work_id < (unsigned int)_ref_processor.max_num_queues(), "Index out of bounds");
 325     // Simplest first cut: static partitioning.
 326     int index = work_id;
 327     // The increment on "index" must correspond to the maximum number of queues
 328     // (n_queues) with which that ReferenceProcessor was created.  That
 329     // is because of the "clever" way the discovered references lists were
 330     // allocated and are indexed into.
 331     assert(_n_queues == (int) _ref_processor.max_num_queues(), "Different number not expected");
 332     for (int j = 0;
 333          j < ReferenceProcessor::number_of_subclasses_of_ref();
 334          j++, index += _n_queues) {
 335       _ref_processor.enqueue_discovered_reflist(_refs_lists[index]);
 336       _refs_lists[index].set_head(NULL);
 337       _refs_lists[index].set_length(0);
 338     }
 339   }
 340 };
 341 
 342 // Enqueue references that are not made active again
 343 void ReferenceProcessor::enqueue_discovered_reflists(AbstractRefProcTaskExecutor*  task_executor,
 344                                                      ReferenceProcessorPhaseTimes* phase_times) {
 345 
 346   ReferenceProcessorStats stats(total_count(_discoveredSoftRefs),
 347                                 total_count(_discoveredWeakRefs),
 348                                 total_count(_discoveredFinalRefs),
 349                                 total_count(_discoveredPhantomRefs));
 350 
 351   RefProcEnqueueTimeTracker tt(phase_times, stats);
 352 
 353   if (_processing_is_mt && task_executor != NULL) {
 354     // Parallel code
 355     RefProcEnqueueTask tsk(*this, _discovered_refs, _max_num_queues, phase_times);
 356     task_executor->execute(tsk);
 357   } else {
 358     // Serial code: call the parent class's implementation
 359     for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
 360       enqueue_discovered_reflist(_discovered_refs[i]);
 361       _discovered_refs[i].set_head(NULL);
 362       _discovered_refs[i].set_length(0);
 363     }
 364   }
 365 }
 366 
 367 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 368   _current_discovered_addr = java_lang_ref_Reference::discovered_addr_raw(_current_discovered);
 369   oop discovered = java_lang_ref_Reference::discovered(_current_discovered);
 370   assert(_current_discovered_addr && oopDesc::is_oop_or_null(discovered),
 371          "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
 372   _next_discovered = discovered;
 373 
 374   _referent_addr = java_lang_ref_Reference::referent_addr_raw(_current_discovered);
 375   _referent = java_lang_ref_Reference::referent(_current_discovered);
 376   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 377          "Wrong oop found in java.lang.Reference object");
 378   assert(allow_null_referent ?
 379              oopDesc::is_oop_or_null(_referent)
 380            : oopDesc::is_oop(_referent),
 381          "Expected an oop%s for referent field at " PTR_FORMAT,
 382          (allow_null_referent ? " or NULL" : ""),
 383          p2i(_referent));
 384 }
 385 
 386 void DiscoveredListIterator::remove() {
 387   assert(oopDesc::is_oop(_current_discovered), "Dropping a bad reference");
 388   RawAccess<>::oop_store(_current_discovered_addr, oop(NULL));
 389 
 390   // First _prev_next ref actually points into DiscoveredList (gross).
 391   oop new_next;
 392   if (_next_discovered == _current_discovered) {
 393     // At the end of the list, we should make _prev point to itself.
 394     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 395     // and _prev will be NULL.
 396     new_next = _prev_discovered;
 397   } else {
 398     new_next = _next_discovered;
 399   }
 400   // Remove Reference object from discovered list. Note that G1 does not need a
 401   // pre-barrier here because we know the Reference has already been found/marked,
 402   // that's how it ended up in the discovered list in the first place.
 403   RawAccess<>::oop_store(_prev_discovered_addr, new_next);
 404   NOT_PRODUCT(_removed++);
 405   _refs_list.dec_length(1);
 406 }
 407 
 408 void DiscoveredListIterator::clear_referent() {
 409   RawAccess<>::oop_store(_referent_addr, oop(NULL));
 410 }
 411 
 412 // NOTE: process_phase*() are largely similar, and at a high level
 413 // merely iterate over the extant list applying a predicate to
 414 // each of its elements and possibly removing that element from the
 415 // list and applying some further closures to that element.
 416 // We should consider the possibility of replacing these
 417 // process_phase*() methods by abstracting them into
 418 // a single general iterator invocation that receives appropriate
 419 // closures that accomplish this work.
 420 
 421 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 422 // referents are not alive, but that should be kept alive for policy reasons.
 423 // Keep alive the transitive closure of all such referents.
 424 void
 425 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 426                                    ReferencePolicy*   policy,
 427                                    BoolObjectClosure* is_alive,
 428                                    OopClosure*        keep_alive,
 429                                    VoidClosure*       complete_gc) {
 430   assert(policy != NULL, "Must have a non-NULL policy");
 431   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 432   // Decide which softly reachable refs should be kept alive.
 433   while (iter.has_next()) {
 434     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 435     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 436     if (referent_is_dead &&
 437         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 438       log_develop_trace(gc, ref)("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 439                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 440       // Remove Reference object from list
 441       iter.remove();
 442       // keep the referent around
 443       iter.make_referent_alive();
 444       iter.move_to_next();
 445     } else {
 446       iter.next();
 447     }
 448   }
 449   // Close the reachable set
 450   complete_gc->do_void();
 451   log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT " discovered Refs by policy, from list " INTPTR_FORMAT,
 452                              iter.removed(), iter.processed(), p2i(&refs_list));
 453 }
 454 
 455 void ReferenceProcessor::process_phase2(DiscoveredList&    refs_list,
 456                                         BoolObjectClosure* is_alive,
 457                                         OopClosure*        keep_alive,
 458                                         VoidClosure*       complete_gc) {
 459   if (discovery_is_atomic()) {
 460     // complete_gc is ignored in this case for this phase
 461     pp2_work(refs_list, is_alive, keep_alive);
 462   } else {
 463     assert(complete_gc != NULL, "Error");
 464     pp2_work_concurrent_discovery(refs_list, is_alive,
 465                                   keep_alive, complete_gc);
 466   }
 467 }
 468 // Traverse the list and remove any Refs that are not active, or
 469 // whose referents are either alive or NULL.
 470 void
 471 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 472                              BoolObjectClosure* is_alive,
 473                              OopClosure*        keep_alive) {
 474   assert(discovery_is_atomic(), "Error");
 475   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 476   while (iter.has_next()) {
 477     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 478     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 479     assert(next == NULL, "Should not discover inactive Reference");
 480     if (iter.is_referent_alive()) {
 481       log_develop_trace(gc, ref)("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 482                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 483       // The referent is reachable after all.
 484       // Remove Reference object from list.
 485       iter.remove();
 486       // Update the referent pointer as necessary: Note that this
 487       // should not entail any recursive marking because the
 488       // referent must already have been traversed.
 489       iter.make_referent_alive();
 490       iter.move_to_next();
 491     } else {
 492       iter.next();
 493     }
 494   }
 495   NOT_PRODUCT(
 496     if (iter.processed() > 0) {
 497       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 498         " Refs in discovered list " INTPTR_FORMAT,
 499         iter.removed(), iter.processed(), p2i(&refs_list));
 500     }
 501   )
 502 }
 503 
 504 void
 505 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 506                                                   BoolObjectClosure* is_alive,
 507                                                   OopClosure*        keep_alive,
 508                                                   VoidClosure*       complete_gc) {
 509   assert(!discovery_is_atomic(), "Error");
 510   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 511   while (iter.has_next()) {
 512     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 513     HeapWord* next_addr = java_lang_ref_Reference::next_addr_raw(iter.obj());
 514     oop next = java_lang_ref_Reference::next(iter.obj());
 515     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 516          next != NULL)) {
 517       assert(oopDesc::is_oop_or_null(next), "Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next));
 518       // Remove Reference object from list
 519       iter.remove();
 520       // Trace the cohorts
 521       iter.make_referent_alive();
 522       if (UseCompressedOops) {
 523         keep_alive->do_oop((narrowOop*)next_addr);
 524       } else {
 525         keep_alive->do_oop((oop*)next_addr);
 526       }
 527       iter.move_to_next();
 528     } else {
 529       iter.next();
 530     }
 531   }
 532   // Now close the newly reachable set
 533   complete_gc->do_void();
 534   NOT_PRODUCT(
 535     if (iter.processed() > 0) {
 536       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 537         " Refs in discovered list " INTPTR_FORMAT,
 538         iter.removed(), iter.processed(), p2i(&refs_list));
 539     }
 540   )
 541 }
 542 
 543 void ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 544                                         bool               clear_referent,
 545                                         BoolObjectClosure* is_alive,
 546                                         OopClosure*        keep_alive,
 547                                         VoidClosure*       complete_gc) {
 548   ResourceMark rm;
 549   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 550   while (iter.has_next()) {
 551     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 552     if (clear_referent) {
 553       // NULL out referent pointer
 554       iter.clear_referent();
 555     } else {
 556       // keep the referent around
 557       iter.make_referent_alive();
 558     }
 559     log_develop_trace(gc, ref)("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 560                                clear_referent ? "cleared " : "", p2i(iter.obj()), iter.obj()->klass()->internal_name());
 561     assert(oopDesc::is_oop(iter.obj(), UseConcMarkSweepGC), "Adding a bad reference");
 562     iter.next();
 563   }
 564   // Close the reachable set
 565   complete_gc->do_void();
 566 }
 567 
 568 void
 569 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 570   oop obj = NULL;
 571   oop next = refs_list.head();
 572   while (next != obj) {
 573     obj = next;
 574     next = java_lang_ref_Reference::discovered(obj);
 575     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 576   }
 577   refs_list.set_head(NULL);
 578   refs_list.set_length(0);
 579 }
 580 
 581 void ReferenceProcessor::abandon_partial_discovery() {
 582   // loop over the lists
 583   for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
 584     if ((i % _max_num_queues) == 0) {
 585       log_develop_trace(gc, ref)("Abandoning %s discovered list", list_name(i));
 586     }
 587     clear_discovered_references(_discovered_refs[i]);
 588   }
 589 }
 590 
 591 size_t ReferenceProcessor::total_reference_count(ReferenceType type) const {
 592   DiscoveredList* list = NULL;
 593 
 594   switch (type) {
 595     case REF_SOFT:
 596       list = _discoveredSoftRefs;
 597       break;
 598     case REF_WEAK:
 599       list = _discoveredWeakRefs;
 600       break;
 601     case REF_FINAL:
 602       list = _discoveredFinalRefs;
 603       break;
 604     case REF_PHANTOM:
 605       list = _discoveredPhantomRefs;
 606       break;
 607     case REF_OTHER:
 608     case REF_NONE:
 609     default:
 610       ShouldNotReachHere();
 611   }
 612   return total_count(list);
 613 }
 614 
 615 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 616 public:
 617   RefProcPhase1Task(ReferenceProcessor&           ref_processor,
 618                     DiscoveredList                refs_lists[],
 619                     ReferencePolicy*              policy,
 620                     bool                          marks_oops_alive,
 621                     ReferenceProcessorPhaseTimes* phase_times)
 622     : ProcessTask(ref_processor, refs_lists, marks_oops_alive, phase_times),
 623       _policy(policy)
 624   { }
 625   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 626                     OopClosure& keep_alive,
 627                     VoidClosure& complete_gc)
 628   {
 629     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase1, _phase_times, i);
 630 
 631     _ref_processor.process_phase1(_refs_lists[i], _policy,
 632                                   &is_alive, &keep_alive, &complete_gc);
 633   }
 634 private:
 635   ReferencePolicy* _policy;
 636 };
 637 
 638 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 639 public:
 640   RefProcPhase2Task(ReferenceProcessor&           ref_processor,
 641                     DiscoveredList                refs_lists[],
 642                     bool                          marks_oops_alive,
 643                     ReferenceProcessorPhaseTimes* phase_times)
 644     : ProcessTask(ref_processor, refs_lists, marks_oops_alive, phase_times)
 645   { }
 646   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 647                     OopClosure& keep_alive,
 648                     VoidClosure& complete_gc)
 649   {
 650     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase2, _phase_times, i);
 651 
 652     _ref_processor.process_phase2(_refs_lists[i],
 653                                   &is_alive, &keep_alive, &complete_gc);
 654   }
 655 };
 656 
 657 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 658 public:
 659   RefProcPhase3Task(ReferenceProcessor&           ref_processor,
 660                     DiscoveredList                refs_lists[],
 661                     bool                         clear_referent,
 662                     bool                          marks_oops_alive,
 663                     ReferenceProcessorPhaseTimes* phase_times)
 664     : ProcessTask(ref_processor, refs_lists, marks_oops_alive, phase_times),
 665       _clear_referent(clear_referent)
 666   { }
 667   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 668                     OopClosure& keep_alive,
 669                     VoidClosure& complete_gc)
 670   {
 671     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase3, _phase_times, i);
 672 
 673     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 674                                   &is_alive, &keep_alive, &complete_gc);
 675   }
 676 private:
 677   bool _clear_referent;
 678 };
 679 
 680 #ifndef PRODUCT
 681 void ReferenceProcessor::log_reflist_counts(DiscoveredList ref_lists[], uint active_length, size_t total_refs) {
 682   if (!log_is_enabled(Trace, gc, ref)) {
 683     return;
 684   }
 685 
 686   stringStream st;
 687   for (uint i = 0; i < active_length; ++i) {
 688     st.print(SIZE_FORMAT " ", ref_lists[i].length());
 689   }
 690   log_develop_trace(gc, ref)("%s= " SIZE_FORMAT, st.as_string(), total_refs);
 691 #ifdef ASSERT
 692   for (uint i = active_length; i < _max_num_queues; i++) {
 693     assert(ref_lists[i].length() == 0, SIZE_FORMAT " unexpected References in %u",
 694            ref_lists[i].length(), i);
 695   }
 696 #endif
 697 }
 698 #endif
 699 
 700 void ReferenceProcessor::set_active_mt_degree(uint v) {
 701   _num_queues = v;
 702   _next_id = 0;
 703 }
 704 
 705 // Balances reference queues.
 706 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 707 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 708 // corresponding to the active workers will be processed.
 709 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 710 {
 711   // calculate total length
 712   size_t total_refs = 0;
 713   log_develop_trace(gc, ref)("Balance ref_lists ");
 714 
 715   for (uint i = 0; i < _max_num_queues; ++i) {
 716     total_refs += ref_lists[i].length();
 717   }
 718   log_reflist_counts(ref_lists, _max_num_queues, total_refs);
 719   size_t avg_refs = total_refs / _num_queues + 1;
 720   uint to_idx = 0;
 721   for (uint from_idx = 0; from_idx < _max_num_queues; from_idx++) {
 722     bool move_all = false;
 723     if (from_idx >= _num_queues) {
 724       move_all = ref_lists[from_idx].length() > 0;
 725     }
 726     while ((ref_lists[from_idx].length() > avg_refs) ||
 727            move_all) {
 728       assert(to_idx < _num_queues, "Sanity Check!");
 729       if (ref_lists[to_idx].length() < avg_refs) {
 730         // move superfluous refs
 731         size_t refs_to_move;
 732         // Move all the Ref's if the from queue will not be processed.
 733         if (move_all) {
 734           refs_to_move = MIN2(ref_lists[from_idx].length(),
 735                               avg_refs - ref_lists[to_idx].length());
 736         } else {
 737           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 738                               avg_refs - ref_lists[to_idx].length());
 739         }
 740 
 741         assert(refs_to_move > 0, "otherwise the code below will fail");
 742 
 743         oop move_head = ref_lists[from_idx].head();
 744         oop move_tail = move_head;
 745         oop new_head  = move_head;
 746         // find an element to split the list on
 747         for (size_t j = 0; j < refs_to_move; ++j) {
 748           move_tail = new_head;
 749           new_head = java_lang_ref_Reference::discovered(new_head);
 750         }
 751 
 752         // Add the chain to the to list.
 753         if (ref_lists[to_idx].head() == NULL) {
 754           // to list is empty. Make a loop at the end.
 755           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 756         } else {
 757           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 758         }
 759         ref_lists[to_idx].set_head(move_head);
 760         ref_lists[to_idx].inc_length(refs_to_move);
 761 
 762         // Remove the chain from the from list.
 763         if (move_tail == new_head) {
 764           // We found the end of the from list.
 765           ref_lists[from_idx].set_head(NULL);
 766         } else {
 767           ref_lists[from_idx].set_head(new_head);
 768         }
 769         ref_lists[from_idx].dec_length(refs_to_move);
 770         if (ref_lists[from_idx].length() == 0) {
 771           break;
 772         }
 773       } else {
 774         to_idx = (to_idx + 1) % _num_queues;
 775       }
 776     }
 777   }
 778 #ifdef ASSERT
 779   size_t balanced_total_refs = 0;
 780   for (uint i = 0; i < _num_queues; ++i) {
 781     balanced_total_refs += ref_lists[i].length();
 782   }
 783   log_reflist_counts(ref_lists, _num_queues, balanced_total_refs);
 784   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 785 #endif
 786 }
 787 
 788 void ReferenceProcessor::balance_all_queues() {
 789   balance_queues(_discoveredSoftRefs);
 790   balance_queues(_discoveredWeakRefs);
 791   balance_queues(_discoveredFinalRefs);
 792   balance_queues(_discoveredPhantomRefs);
 793 }
 794 
 795 void ReferenceProcessor::process_discovered_reflist(
 796   DiscoveredList                refs_lists[],
 797   ReferencePolicy*              policy,
 798   bool                          clear_referent,
 799   BoolObjectClosure*            is_alive,
 800   OopClosure*                   keep_alive,
 801   VoidClosure*                  complete_gc,
 802   AbstractRefProcTaskExecutor*  task_executor,
 803   ReferenceProcessorPhaseTimes* phase_times)
 804 {
 805   bool mt_processing = task_executor != NULL && _processing_is_mt;
 806 
 807   phase_times->set_processing_is_mt(mt_processing);
 808 
 809   if (mt_processing && ParallelRefProcBalancingEnabled) {
 810     RefProcBalanceQueuesTimeTracker tt(phase_times);
 811     balance_queues(refs_lists);
 812   }
 813 
 814   // Phase 1 (soft refs only):
 815   // . Traverse the list and remove any SoftReferences whose
 816   //   referents are not alive, but that should be kept alive for
 817   //   policy reasons. Keep alive the transitive closure of all
 818   //   such referents.
 819   if (policy != NULL) {
 820     RefProcParPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase1, phase_times);
 821 
 822     if (mt_processing) {
 823       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/, phase_times);
 824       task_executor->execute(phase1);
 825     } else {
 826       for (uint i = 0; i < _max_num_queues; i++) {
 827         process_phase1(refs_lists[i], policy,
 828                        is_alive, keep_alive, complete_gc);
 829       }
 830     }
 831   } else { // policy == NULL
 832     assert(refs_lists != _discoveredSoftRefs,
 833            "Policy must be specified for soft references.");
 834   }
 835 
 836   // Phase 2:
 837   // . Traverse the list and remove any refs whose referents are alive.
 838   {
 839     RefProcParPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase2, phase_times);
 840 
 841     if (mt_processing) {
 842       RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/, phase_times);
 843       task_executor->execute(phase2);
 844     } else {
 845       for (uint i = 0; i < _max_num_queues; i++) {
 846         process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 847       }
 848     }
 849   }
 850 
 851   // Phase 3:
 852   // . Traverse the list and process referents as appropriate.
 853   {
 854     RefProcParPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase3, phase_times);
 855 
 856     if (mt_processing) {
 857       RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/, phase_times);
 858       task_executor->execute(phase3);
 859     } else {
 860       for (uint i = 0; i < _max_num_queues; i++) {
 861         process_phase3(refs_lists[i], clear_referent,
 862                        is_alive, keep_alive, complete_gc);
 863       }
 864     }
 865   }
 866 }
 867 
 868 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 869   uint id = 0;
 870   // Determine the queue index to use for this object.
 871   if (_discovery_is_mt) {
 872     // During a multi-threaded discovery phase,
 873     // each thread saves to its "own" list.
 874     Thread* thr = Thread::current();
 875     id = thr->as_Worker_thread()->id();
 876   } else {
 877     // single-threaded discovery, we save in round-robin
 878     // fashion to each of the lists.
 879     if (_processing_is_mt) {
 880       id = next_id();
 881     }
 882   }
 883   assert(id < _max_num_queues, "Id is out of bounds id %u and max id %u)", id, _max_num_queues);
 884 
 885   // Get the discovered queue to which we will add
 886   DiscoveredList* list = NULL;
 887   switch (rt) {
 888     case REF_OTHER:
 889       // Unknown reference type, no special treatment
 890       break;
 891     case REF_SOFT:
 892       list = &_discoveredSoftRefs[id];
 893       break;
 894     case REF_WEAK:
 895       list = &_discoveredWeakRefs[id];
 896       break;
 897     case REF_FINAL:
 898       list = &_discoveredFinalRefs[id];
 899       break;
 900     case REF_PHANTOM:
 901       list = &_discoveredPhantomRefs[id];
 902       break;
 903     case REF_NONE:
 904       // we should not reach here if we are an InstanceRefKlass
 905     default:
 906       ShouldNotReachHere();
 907   }
 908   log_develop_trace(gc, ref)("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
 909   return list;
 910 }
 911 
 912 inline void
 913 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
 914                                               oop             obj,
 915                                               HeapWord*       discovered_addr) {
 916   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
 917   // First we must make sure this object is only enqueued once. CAS in a non null
 918   // discovered_addr.
 919   oop current_head = refs_list.head();
 920   // The last ref must have its discovered field pointing to itself.
 921   oop next_discovered = (current_head != NULL) ? current_head : obj;
 922 
 923   oop retest = RawAccess<>::oop_atomic_cmpxchg(next_discovered, discovered_addr, oop(NULL));
 924 
 925   if (retest == NULL) {
 926     // This thread just won the right to enqueue the object.
 927     // We have separate lists for enqueueing, so no synchronization
 928     // is necessary.
 929     refs_list.set_head(obj);
 930     refs_list.inc_length(1);
 931 
 932     log_develop_trace(gc, ref)("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
 933                                p2i(obj), obj->klass()->internal_name());
 934   } else {
 935     // If retest was non NULL, another thread beat us to it:
 936     // The reference has already been discovered...
 937     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
 938                                p2i(obj), obj->klass()->internal_name());
 939   }
 940 }
 941 
 942 #ifndef PRODUCT
 943 // Non-atomic (i.e. concurrent) discovery might allow us
 944 // to observe j.l.References with NULL referents, being those
 945 // cleared concurrently by mutators during (or after) discovery.
 946 void ReferenceProcessor::verify_referent(oop obj) {
 947   bool da = discovery_is_atomic();
 948   oop referent = java_lang_ref_Reference::referent(obj);
 949   assert(da ? oopDesc::is_oop(referent) : oopDesc::is_oop_or_null(referent),
 950          "Bad referent " INTPTR_FORMAT " found in Reference "
 951          INTPTR_FORMAT " during %satomic discovery ",
 952          p2i(referent), p2i(obj), da ? "" : "non-");
 953 }
 954 #endif
 955 
 956 bool ReferenceProcessor::is_subject_to_discovery(oop const obj) const {
 957   return _is_subject_to_discovery->do_object_b(obj);
 958 }
 959 
 960 // We mention two of several possible choices here:
 961 // #0: if the reference object is not in the "originating generation"
 962 //     (or part of the heap being collected, indicated by our "span"
 963 //     we don't treat it specially (i.e. we scan it as we would
 964 //     a normal oop, treating its references as strong references).
 965 //     This means that references can't be discovered unless their
 966 //     referent is also in the same span. This is the simplest,
 967 //     most "local" and most conservative approach, albeit one
 968 //     that may cause weak references to be enqueued least promptly.
 969 //     We call this choice the "ReferenceBasedDiscovery" policy.
 970 // #1: the reference object may be in any generation (span), but if
 971 //     the referent is in the generation (span) being currently collected
 972 //     then we can discover the reference object, provided
 973 //     the object has not already been discovered by
 974 //     a different concurrently running collector (as may be the
 975 //     case, for instance, if the reference object is in CMS and
 976 //     the referent in DefNewGeneration), and provided the processing
 977 //     of this reference object by the current collector will
 978 //     appear atomic to every other collector in the system.
 979 //     (Thus, for instance, a concurrent collector may not
 980 //     discover references in other generations even if the
 981 //     referent is in its own generation). This policy may,
 982 //     in certain cases, enqueue references somewhat sooner than
 983 //     might Policy #0 above, but at marginally increased cost
 984 //     and complexity in processing these references.
 985 //     We call this choice the "RefeferentBasedDiscovery" policy.
 986 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
 987   // Make sure we are discovering refs (rather than processing discovered refs).
 988   if (!_discovering_refs || !RegisterReferences) {
 989     return false;
 990   }
 991   // We only discover active references.
 992   oop next = java_lang_ref_Reference::next(obj);
 993   if (next != NULL) {   // Ref is no longer active
 994     return false;
 995   }
 996 
 997   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
 998       !is_subject_to_discovery(obj)) {
 999     // Reference is not in the originating generation;
1000     // don't treat it specially (i.e. we want to scan it as a normal
1001     // object with strong references).
1002     return false;
1003   }
1004 
1005   // We only discover references whose referents are not (yet)
1006   // known to be strongly reachable.
1007   if (is_alive_non_header() != NULL) {
1008     verify_referent(obj);
1009     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1010       return false;  // referent is reachable
1011     }
1012   }
1013   if (rt == REF_SOFT) {
1014     // For soft refs we can decide now if these are not
1015     // current candidates for clearing, in which case we
1016     // can mark through them now, rather than delaying that
1017     // to the reference-processing phase. Since all current
1018     // time-stamp policies advance the soft-ref clock only
1019     // at a full collection cycle, this is always currently
1020     // accurate.
1021     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1022       return false;
1023     }
1024   }
1025 
1026   ResourceMark rm;      // Needed for tracing.
1027 
1028   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr_raw(obj);
1029   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1030   assert(oopDesc::is_oop_or_null(discovered), "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
1031   if (discovered != NULL) {
1032     // The reference has already been discovered...
1033     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
1034                                p2i(obj), obj->klass()->internal_name());
1035     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1036       // assumes that an object is not processed twice;
1037       // if it's been already discovered it must be on another
1038       // generation's discovered list; so we won't discover it.
1039       return false;
1040     } else {
1041       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1042              "Unrecognized policy");
1043       // Check assumption that an object is not potentially
1044       // discovered twice except by concurrent collectors that potentially
1045       // trace the same Reference object twice.
1046       assert(UseConcMarkSweepGC || UseG1GC,
1047              "Only possible with a concurrent marking collector");
1048       return true;
1049     }
1050   }
1051 
1052   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1053     verify_referent(obj);
1054     // Discover if and only if EITHER:
1055     // .. reference is in our span, OR
1056     // .. we are an atomic collector and referent is in our span
1057     if (is_subject_to_discovery(obj) ||
1058         (discovery_is_atomic() &&
1059          is_subject_to_discovery(java_lang_ref_Reference::referent(obj)))) {
1060     } else {
1061       return false;
1062     }
1063   } else {
1064     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1065            is_subject_to_discovery(obj), "code inconsistency");
1066   }
1067 
1068   // Get the right type of discovered queue head.
1069   DiscoveredList* list = get_discovered_list(rt);
1070   if (list == NULL) {
1071     return false;   // nothing special needs to be done
1072   }
1073 
1074   if (_discovery_is_mt) {
1075     add_to_discovered_list_mt(*list, obj, discovered_addr);
1076   } else {
1077     // We do a raw store here: the field will be visited later when processing
1078     // the discovered references.
1079     oop current_head = list->head();
1080     // The last ref must have its discovered field pointing to itself.
1081     oop next_discovered = (current_head != NULL) ? current_head : obj;
1082 
1083     assert(discovered == NULL, "control point invariant");
1084     RawAccess<>::oop_store(discovered_addr, next_discovered);
1085     list->set_head(obj);
1086     list->inc_length(1);
1087 
1088     log_develop_trace(gc, ref)("Discovered reference (" INTPTR_FORMAT ": %s)", p2i(obj), obj->klass()->internal_name());
1089   }
1090   assert(oopDesc::is_oop(obj), "Discovered a bad reference");
1091   verify_referent(obj);
1092   return true;
1093 }
1094 
1095 bool ReferenceProcessor::has_discovered_references() {
1096   for (uint i = 0; i < _max_num_queues * number_of_subclasses_of_ref(); i++) {
1097     if (!_discovered_refs[i].is_empty()) {
1098       return true;
1099     }
1100   }
1101   return false;
1102 }
1103 
1104 // Preclean the discovered references by removing those
1105 // whose referents are alive, and by marking from those that
1106 // are not active. These lists can be handled here
1107 // in any order and, indeed, concurrently.
1108 void ReferenceProcessor::preclean_discovered_references(
1109   BoolObjectClosure* is_alive,
1110   OopClosure* keep_alive,
1111   VoidClosure* complete_gc,
1112   YieldClosure* yield,
1113   GCTimer* gc_timer) {
1114 
1115   // Soft references
1116   {
1117     GCTraceTime(Debug, gc, ref) tm("Preclean SoftReferences", gc_timer);
1118     for (uint i = 0; i < _max_num_queues; i++) {
1119       if (yield->should_return()) {
1120         return;
1121       }
1122       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1123                                   keep_alive, complete_gc, yield);
1124     }
1125   }
1126 
1127   // Weak references
1128   {
1129     GCTraceTime(Debug, gc, ref) tm("Preclean WeakReferences", gc_timer);
1130     for (uint i = 0; i < _max_num_queues; i++) {
1131       if (yield->should_return()) {
1132         return;
1133       }
1134       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1135                                   keep_alive, complete_gc, yield);
1136     }
1137   }
1138 
1139   // Final references
1140   {
1141     GCTraceTime(Debug, gc, ref) tm("Preclean FinalReferences", gc_timer);
1142     for (uint i = 0; i < _max_num_queues; i++) {
1143       if (yield->should_return()) {
1144         return;
1145       }
1146       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1147                                   keep_alive, complete_gc, yield);
1148     }
1149   }
1150 
1151   // Phantom references
1152   {
1153     GCTraceTime(Debug, gc, ref) tm("Preclean PhantomReferences", gc_timer);
1154     for (uint i = 0; i < _max_num_queues; i++) {
1155       if (yield->should_return()) {
1156         return;
1157       }
1158       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1159                                   keep_alive, complete_gc, yield);
1160     }
1161   }
1162 }
1163 
1164 // Walk the given discovered ref list, and remove all reference objects
1165 // whose referents are still alive, whose referents are NULL or which
1166 // are not active (have a non-NULL next field). NOTE: When we are
1167 // thus precleaning the ref lists (which happens single-threaded today),
1168 // we do not disable refs discovery to honor the correct semantics of
1169 // java.lang.Reference. As a result, we need to be careful below
1170 // that ref removal steps interleave safely with ref discovery steps
1171 // (in this thread).
1172 void
1173 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1174                                                 BoolObjectClosure* is_alive,
1175                                                 OopClosure*        keep_alive,
1176                                                 VoidClosure*       complete_gc,
1177                                                 YieldClosure*      yield) {
1178   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1179   while (iter.has_next()) {
1180     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1181     oop obj = iter.obj();
1182     oop next = java_lang_ref_Reference::next(obj);
1183     if (iter.referent() == NULL || iter.is_referent_alive() ||
1184         next != NULL) {
1185       // The referent has been cleared, or is alive, or the Reference is not
1186       // active; we need to trace and mark its cohort.
1187       log_develop_trace(gc, ref)("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1188                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
1189       // Remove Reference object from list
1190       iter.remove();
1191       // Keep alive its cohort.
1192       iter.make_referent_alive();
1193       if (UseCompressedOops) {
1194         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr_raw(obj);
1195         keep_alive->do_oop(next_addr);
1196       } else {
1197         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr_raw(obj);
1198         keep_alive->do_oop(next_addr);
1199       }
1200       iter.move_to_next();
1201     } else {
1202       iter.next();
1203     }
1204   }
1205   // Close the reachable set
1206   complete_gc->do_void();
1207 
1208   NOT_PRODUCT(
1209     if (iter.processed() > 0) {
1210       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT " Refs in discovered list " INTPTR_FORMAT,
1211         iter.removed(), iter.processed(), p2i(&refs_list));
1212     }
1213   )
1214 }
1215 
1216 const char* ReferenceProcessor::list_name(uint i) {
1217    assert(i <= _max_num_queues * number_of_subclasses_of_ref(),
1218           "Out of bounds index");
1219 
1220    int j = i / _max_num_queues;
1221    switch (j) {
1222      case 0: return "SoftRef";
1223      case 1: return "WeakRef";
1224      case 2: return "FinalRef";
1225      case 3: return "PhantomRef";
1226    }
1227    ShouldNotReachHere();
1228    return NULL;
1229 }