1 /*
   2  * Copyright (c) 2007, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/cardTableModRefBS.hpp"
  28 #include "memory/cardTableRS.hpp"
  29 #include "memory/sharedHeap.hpp"
  30 #include "memory/space.inline.hpp"
  31 #include "memory/universe.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/mutexLocker.hpp"
  35 #include "runtime/orderAccess.inline.hpp"
  36 #include "runtime/virtualspace.hpp"
  37 #include "runtime/vmThread.hpp"
  38 
  39 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  40 
  41 void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
  42                                                              OopsInGenClosure* cl,
  43                                                              CardTableRS* ct,
  44                                                              int n_threads) {
  45   assert(n_threads > 0, "Error: expected n_threads > 0");
  46   assert((n_threads == 1 && ParallelGCThreads == 0) ||
  47          n_threads <= (int)ParallelGCThreads,
  48          "# worker threads != # requested!");
  49   assert(!Thread::current()->is_VM_thread() || (n_threads == 1), "There is only 1 VM thread");
  50   assert(UseDynamicNumberOfGCThreads ||
  51          !FLAG_IS_DEFAULT(ParallelGCThreads) ||
  52          n_threads == (int)ParallelGCThreads,
  53          "# worker threads != # requested!");
  54   // Make sure the LNC array is valid for the space.
  55   jbyte**   lowest_non_clean;
  56   uintptr_t lowest_non_clean_base_chunk_index;
  57   size_t    lowest_non_clean_chunk_size;
  58   get_LNC_array_for_space(sp, lowest_non_clean,
  59                           lowest_non_clean_base_chunk_index,
  60                           lowest_non_clean_chunk_size);
  61 
  62   uint n_strides = n_threads * ParGCStridesPerThread;
  63   SequentialSubTasksDone* pst = sp->par_seq_tasks();
  64   // Sets the condition for completion of the subtask (how many threads
  65   // need to finish in order to be done).
  66   pst->set_n_threads(n_threads);
  67   pst->set_n_tasks(n_strides);
  68 
  69   uint stride = 0;
  70   while (!pst->is_task_claimed(/* reference */ stride)) {
  71     process_stride(sp, mr, stride, n_strides, cl, ct,
  72                    lowest_non_clean,
  73                    lowest_non_clean_base_chunk_index,
  74                    lowest_non_clean_chunk_size);
  75   }
  76   if (pst->all_tasks_completed()) {
  77     // Clear lowest_non_clean array for next time.
  78     intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
  79     uintptr_t last_chunk_index  = addr_to_chunk_index(mr.last());
  80     for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
  81       intptr_t ind = ch - lowest_non_clean_base_chunk_index;
  82       assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
  83              "Bounds error");
  84       lowest_non_clean[ind] = NULL;
  85     }
  86   }
  87 }
  88 
  89 void
  90 CardTableModRefBS::
  91 process_stride(Space* sp,
  92                MemRegion used,
  93                jint stride, int n_strides,
  94                OopsInGenClosure* cl,
  95                CardTableRS* ct,
  96                jbyte** lowest_non_clean,
  97                uintptr_t lowest_non_clean_base_chunk_index,
  98                size_t    lowest_non_clean_chunk_size) {
  99   // We go from higher to lower addresses here; it wouldn't help that much
 100   // because of the strided parallelism pattern used here.
 101 
 102   // Find the first card address of the first chunk in the stride that is
 103   // at least "bottom" of the used region.
 104   jbyte*    start_card  = byte_for(used.start());
 105   jbyte*    end_card    = byte_after(used.last());
 106   uintptr_t start_chunk = addr_to_chunk_index(used.start());
 107   uintptr_t start_chunk_stride_num = start_chunk % n_strides;
 108   jbyte* chunk_card_start;
 109 
 110   if ((uintptr_t)stride >= start_chunk_stride_num) {
 111     chunk_card_start = (jbyte*)(start_card +
 112                                 (stride - start_chunk_stride_num) *
 113                                 ParGCCardsPerStrideChunk);
 114   } else {
 115     // Go ahead to the next chunk group boundary, then to the requested stride.
 116     chunk_card_start = (jbyte*)(start_card +
 117                                 (n_strides - start_chunk_stride_num + stride) *
 118                                 ParGCCardsPerStrideChunk);
 119   }
 120 
 121   while (chunk_card_start < end_card) {
 122     // Even though we go from lower to higher addresses below, the
 123     // strided parallelism can interleave the actual processing of the
 124     // dirty pages in various ways. For a specific chunk within this
 125     // stride, we take care to avoid double scanning or missing a card
 126     // by suitably initializing the "min_done" field in process_chunk_boundaries()
 127     // below, together with the dirty region extension accomplished in
 128     // DirtyCardToOopClosure::do_MemRegion().
 129     jbyte*    chunk_card_end = chunk_card_start + ParGCCardsPerStrideChunk;
 130     // Invariant: chunk_mr should be fully contained within the "used" region.
 131     MemRegion chunk_mr       = MemRegion(addr_for(chunk_card_start),
 132                                          chunk_card_end >= end_card ?
 133                                            used.end() : addr_for(chunk_card_end));
 134     assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
 135     assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
 136 
 137     DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
 138                                                      cl->gen_boundary());
 139     ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
 140 
 141 
 142     // Process the chunk.
 143     process_chunk_boundaries(sp,
 144                              dcto_cl,
 145                              chunk_mr,
 146                              used,
 147                              lowest_non_clean,
 148                              lowest_non_clean_base_chunk_index,
 149                              lowest_non_clean_chunk_size);
 150 
 151     // We want the LNC array updates above in process_chunk_boundaries
 152     // to be visible before any of the card table value changes as a
 153     // result of the dirty card iteration below.
 154     OrderAccess::storestore();
 155 
 156     // We do not call the non_clean_card_iterate_serial() version because
 157     // we want to clear the cards: clear_cl here does the work of finding
 158     // contiguous dirty ranges of cards to process and clear.
 159     clear_cl.do_MemRegion(chunk_mr);
 160 
 161     // Find the next chunk of the stride.
 162     chunk_card_start += ParGCCardsPerStrideChunk * n_strides;
 163   }
 164 }
 165 
 166 
 167 // If you want a talkative process_chunk_boundaries,
 168 // then #define NOISY(x) x
 169 #ifdef NOISY
 170 #error "Encountered a global preprocessor flag, NOISY, which might clash with local definition to follow"
 171 #else
 172 #define NOISY(x)
 173 #endif
 174 
 175 void
 176 CardTableModRefBS::
 177 process_chunk_boundaries(Space* sp,
 178                          DirtyCardToOopClosure* dcto_cl,
 179                          MemRegion chunk_mr,
 180                          MemRegion used,
 181                          jbyte** lowest_non_clean,
 182                          uintptr_t lowest_non_clean_base_chunk_index,
 183                          size_t    lowest_non_clean_chunk_size)
 184 {
 185   // We must worry about non-array objects that cross chunk boundaries,
 186   // because such objects are both precisely and imprecisely marked:
 187   // .. if the head of such an object is dirty, the entire object
 188   //    needs to be scanned, under the interpretation that this
 189   //    was an imprecise mark
 190   // .. if the head of such an object is not dirty, we can assume
 191   //    precise marking and it's efficient to scan just the dirty
 192   //    cards.
 193   // In either case, each scanned reference must be scanned precisely
 194   // once so as to avoid cloning of a young referent. For efficiency,
 195   // our closures depend on this property and do not protect against
 196   // double scans.
 197 
 198   uintptr_t cur_chunk_index = addr_to_chunk_index(chunk_mr.start());
 199   cur_chunk_index           = cur_chunk_index - lowest_non_clean_base_chunk_index;
 200 
 201   NOISY(tty->print_cr("===========================================================================");)
 202   NOISY(tty->print_cr(" process_chunk_boundary: Called with [" PTR_FORMAT "," PTR_FORMAT ")",
 203                       chunk_mr.start(), chunk_mr.end());)
 204 
 205   // First, set "our" lowest_non_clean entry, which would be
 206   // used by the thread scanning an adjoining left chunk with
 207   // a non-array object straddling the mutual boundary.
 208   // Find the object that spans our boundary, if one exists.
 209   // first_block is the block possibly straddling our left boundary.
 210   HeapWord* first_block = sp->block_start(chunk_mr.start());
 211   assert((chunk_mr.start() != used.start()) || (first_block == chunk_mr.start()),
 212          "First chunk should always have a co-initial block");
 213   // Does the block straddle the chunk's left boundary, and is it
 214   // a non-array object?
 215   if (first_block < chunk_mr.start()        // first block straddles left bdry
 216       && sp->block_is_obj(first_block)      // first block is an object
 217       && !(oop(first_block)->is_objArray()  // first block is not an array (arrays are precisely dirtied)
 218            || oop(first_block)->is_typeArray())) {
 219     // Find our least non-clean card, so that a left neighbour
 220     // does not scan an object straddling the mutual boundary
 221     // too far to the right, and attempt to scan a portion of
 222     // that object twice.
 223     jbyte* first_dirty_card = NULL;
 224     jbyte* last_card_of_first_obj =
 225         byte_for(first_block + sp->block_size(first_block) - 1);
 226     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
 227     jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last());
 228     jbyte* last_card_to_check =
 229       (jbyte*) MIN2((intptr_t) last_card_of_cur_chunk,
 230                     (intptr_t) last_card_of_first_obj);
 231     // Note that this does not need to go beyond our last card
 232     // if our first object completely straddles this chunk.
 233     for (jbyte* cur = first_card_of_cur_chunk;
 234          cur <= last_card_to_check; cur++) {
 235       jbyte val = *cur;
 236       if (card_will_be_scanned(val)) {
 237         first_dirty_card = cur; break;
 238       } else {
 239         assert(!card_may_have_been_dirty(val), "Error");
 240       }
 241     }
 242     if (first_dirty_card != NULL) {
 243       NOISY(tty->print_cr(" LNC: Found a dirty card at " PTR_FORMAT " in current chunk",
 244                     first_dirty_card);)
 245       assert(0 <= cur_chunk_index && cur_chunk_index < lowest_non_clean_chunk_size,
 246              "Bounds error.");
 247       assert(lowest_non_clean[cur_chunk_index] == NULL,
 248              "Write exactly once : value should be stable hereafter for this round");
 249       lowest_non_clean[cur_chunk_index] = first_dirty_card;
 250     } NOISY(else {
 251       tty->print_cr(" LNC: Found no dirty card in current chunk; leaving LNC entry NULL");
 252       // In the future, we could have this thread look for a non-NULL value to copy from its
 253       // right neighbour (up to the end of the first object).
 254       if (last_card_of_cur_chunk < last_card_of_first_obj) {
 255         tty->print_cr(" LNC: BEWARE!!! first obj straddles past right end of chunk:\n"
 256                       "   might be efficient to get value from right neighbour?");
 257       }
 258     })
 259   } else {
 260     // In this case we can help our neighbour by just asking them
 261     // to stop at our first card (even though it may not be dirty).
 262     NOISY(tty->print_cr(" LNC: first block is not a non-array object; setting LNC to first card of current chunk");)
 263     assert(lowest_non_clean[cur_chunk_index] == NULL, "Write once : value should be stable hereafter");
 264     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
 265     lowest_non_clean[cur_chunk_index] = first_card_of_cur_chunk;
 266   }
 267   NOISY(tty->print_cr(" process_chunk_boundary: lowest_non_clean[" INTPTR_FORMAT "] = " PTR_FORMAT
 268                 "   which corresponds to the heap address " PTR_FORMAT,
 269                 cur_chunk_index, lowest_non_clean[cur_chunk_index],
 270                 (lowest_non_clean[cur_chunk_index] != NULL)
 271                 ? addr_for(lowest_non_clean[cur_chunk_index])
 272                 : NULL);)
 273   NOISY(tty->print_cr("---------------------------------------------------------------------------");)
 274 
 275   // Next, set our own max_to_do, which will strictly/exclusively bound
 276   // the highest address that we will scan past the right end of our chunk.
 277   HeapWord* max_to_do = NULL;
 278   if (chunk_mr.end() < used.end()) {
 279     // This is not the last chunk in the used region.
 280     // What is our last block? We check the first block of
 281     // the next (right) chunk rather than strictly check our last block
 282     // because it's potentially more efficient to do so.
 283     HeapWord* const last_block = sp->block_start(chunk_mr.end());
 284     assert(last_block <= chunk_mr.end(), "In case this property changes.");
 285     if ((last_block == chunk_mr.end())     // our last block does not straddle boundary
 286         || !sp->block_is_obj(last_block)   // last_block isn't an object
 287         || oop(last_block)->is_objArray()  // last_block is an array (precisely marked)
 288         || oop(last_block)->is_typeArray()) {
 289       max_to_do = chunk_mr.end();
 290       NOISY(tty->print_cr(" process_chunk_boundary: Last block on this card is not a non-array object;\n"
 291                          "   max_to_do left at " PTR_FORMAT, max_to_do);)
 292     } else {
 293       assert(last_block < chunk_mr.end(), "Tautology");
 294       // It is a non-array object that straddles the right boundary of this chunk.
 295       // last_obj_card is the card corresponding to the start of the last object
 296       // in the chunk.  Note that the last object may not start in
 297       // the chunk.
 298       jbyte* const last_obj_card = byte_for(last_block);
 299       const jbyte val = *last_obj_card;
 300       if (!card_will_be_scanned(val)) {
 301         assert(!card_may_have_been_dirty(val), "Error");
 302         // The card containing the head is not dirty.  Any marks on
 303         // subsequent cards still in this chunk must have been made
 304         // precisely; we can cap processing at the end of our chunk.
 305         max_to_do = chunk_mr.end();
 306         NOISY(tty->print_cr(" process_chunk_boundary: Head of last object on this card is not dirty;\n"
 307                             "   max_to_do left at " PTR_FORMAT,
 308                             max_to_do);)
 309       } else {
 310         // The last object must be considered dirty, and extends onto the
 311         // following chunk.  Look for a dirty card in that chunk that will
 312         // bound our processing.
 313         jbyte* limit_card = NULL;
 314         const size_t last_block_size = sp->block_size(last_block);
 315         jbyte* const last_card_of_last_obj =
 316           byte_for(last_block + last_block_size - 1);
 317         jbyte* const first_card_of_next_chunk = byte_for(chunk_mr.end());
 318         // This search potentially goes a long distance looking
 319         // for the next card that will be scanned, terminating
 320         // at the end of the last_block, if no earlier dirty card
 321         // is found.
 322         assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start()) == ParGCCardsPerStrideChunk,
 323                "last card of next chunk may be wrong");
 324         for (jbyte* cur = first_card_of_next_chunk;
 325              cur <= last_card_of_last_obj; cur++) {
 326           const jbyte val = *cur;
 327           if (card_will_be_scanned(val)) {
 328             NOISY(tty->print_cr(" Found a non-clean card " PTR_FORMAT " with value 0x%x",
 329                                 cur, (int)val);)
 330             limit_card = cur; break;
 331           } else {
 332             assert(!card_may_have_been_dirty(val), "Error: card can't be skipped");
 333           }
 334         }
 335         if (limit_card != NULL) {
 336           max_to_do = addr_for(limit_card);
 337           assert(limit_card != NULL && max_to_do != NULL, "Error");
 338           NOISY(tty->print_cr(" process_chunk_boundary: Found a dirty card at " PTR_FORMAT
 339                         "   max_to_do set at " PTR_FORMAT " which is before end of last block in chunk: "
 340                         PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
 341                         limit_card, max_to_do, last_block, last_block_size, (last_block+last_block_size));)
 342         } else {
 343           // The following is a pessimistic value, because it's possible
 344           // that a dirty card on a subsequent chunk has been cleared by
 345           // the time we get to look at it; we'll correct for that further below,
 346           // using the LNC array which records the least non-clean card
 347           // before cards were cleared in a particular chunk.
 348           limit_card = last_card_of_last_obj;
 349           max_to_do = last_block + last_block_size;
 350           assert(limit_card != NULL && max_to_do != NULL, "Error");
 351           NOISY(tty->print_cr(" process_chunk_boundary: Found no dirty card before end of last block in chunk\n"
 352                               "   Setting limit_card to " PTR_FORMAT
 353                               " and max_to_do " PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
 354                               limit_card, last_block, last_block_size, max_to_do);)
 355         }
 356         assert(0 < cur_chunk_index+1 && cur_chunk_index+1 < lowest_non_clean_chunk_size,
 357                "Bounds error.");
 358         // It is possible that a dirty card for the last object may have been
 359         // cleared before we had a chance to examine it. In that case, the value
 360         // will have been logged in the LNC for that chunk.
 361         // We need to examine as many chunks to the right as this object
 362         // covers. However, we need to bound this checking to the largest
 363         // entry in the LNC array: this is because the heap may expand
 364         // after the LNC array has been created but before we reach this point,
 365         // and the last block in our chunk may have been expanded to include
 366         // the expansion delta (and possibly subsequently allocated from, so
 367         // it wouldn't be sufficient to check whether that last block was
 368         // or was not an object at this point).
 369         uintptr_t last_chunk_index_to_check = addr_to_chunk_index(last_block + last_block_size - 1)
 370                                               - lowest_non_clean_base_chunk_index;
 371         const uintptr_t last_chunk_index    = addr_to_chunk_index(used.last())
 372                                               - lowest_non_clean_base_chunk_index;
 373         if (last_chunk_index_to_check > last_chunk_index) {
 374           assert(last_block + last_block_size > used.end(),
 375                  err_msg("Inconsistency detected: last_block [" PTR_FORMAT "," PTR_FORMAT "]"
 376                          " does not exceed used.end() = " PTR_FORMAT ","
 377                          " yet last_chunk_index_to_check " INTPTR_FORMAT
 378                          " exceeds last_chunk_index " INTPTR_FORMAT,
 379                          last_block, last_block + last_block_size,
 380                          used.end(),
 381                          last_chunk_index_to_check, last_chunk_index));
 382           assert(sp->used_region().end() > used.end(),
 383                  err_msg("Expansion did not happen: "
 384                          "[" PTR_FORMAT "," PTR_FORMAT ") -> [" PTR_FORMAT "," PTR_FORMAT ")",
 385                          sp->used_region().start(), sp->used_region().end(), used.start(), used.end()));
 386           NOISY(tty->print_cr(" process_chunk_boundary: heap expanded; explicitly bounding last_chunk");)
 387           last_chunk_index_to_check = last_chunk_index;
 388         }
 389         for (uintptr_t lnc_index = cur_chunk_index + 1;
 390              lnc_index <= last_chunk_index_to_check;
 391              lnc_index++) {
 392           jbyte* lnc_card = lowest_non_clean[lnc_index];
 393           if (lnc_card != NULL) {
 394             // we can stop at the first non-NULL entry we find
 395             if (lnc_card <= limit_card) {
 396               NOISY(tty->print_cr(" process_chunk_boundary: LNC card " PTR_FORMAT " is lower than limit_card " PTR_FORMAT,
 397                                   "   max_to_do will be lowered to " PTR_FORMAT " from " PTR_FORMAT,
 398                                   lnc_card, limit_card, addr_for(lnc_card), max_to_do);)
 399               limit_card = lnc_card;
 400               max_to_do = addr_for(limit_card);
 401               assert(limit_card != NULL && max_to_do != NULL, "Error");
 402             }
 403             // In any case, we break now
 404             break;
 405           }  // else continue to look for a non-NULL entry if any
 406         }
 407         assert(limit_card != NULL && max_to_do != NULL, "Error");
 408       }
 409       assert(max_to_do != NULL, "OOPS 1 !");
 410     }
 411     assert(max_to_do != NULL, "OOPS 2!");
 412   } else {
 413     max_to_do = used.end();
 414     NOISY(tty->print_cr(" process_chunk_boundary: Last chunk of this space;\n"
 415                   "   max_to_do left at " PTR_FORMAT,
 416                   max_to_do);)
 417   }
 418   assert(max_to_do != NULL, "OOPS 3!");
 419   // Now we can set the closure we're using so it doesn't to beyond
 420   // max_to_do.
 421   dcto_cl->set_min_done(max_to_do);
 422 #ifndef PRODUCT
 423   dcto_cl->set_last_bottom(max_to_do);
 424 #endif
 425   NOISY(tty->print_cr("===========================================================================\n");)
 426 }
 427 
 428 #undef NOISY
 429 
 430 void
 431 CardTableModRefBS::
 432 get_LNC_array_for_space(Space* sp,
 433                         jbyte**& lowest_non_clean,
 434                         uintptr_t& lowest_non_clean_base_chunk_index,
 435                         size_t& lowest_non_clean_chunk_size) {
 436 
 437   int       i        = find_covering_region_containing(sp->bottom());
 438   MemRegion covered  = _covered[i];
 439   size_t    n_chunks = chunks_to_cover(covered);
 440 
 441   // Only the first thread to obtain the lock will resize the
 442   // LNC array for the covered region.  Any later expansion can't affect
 443   // the used_at_save_marks region.
 444   // (I observed a bug in which the first thread to execute this would
 445   // resize, and then it would cause "expand_and_allocate" that would
 446   // increase the number of chunks in the covered region.  Then a second
 447   // thread would come and execute this, see that the size didn't match,
 448   // and free and allocate again.  So the first thread would be using a
 449   // freed "_lowest_non_clean" array.)
 450 
 451   // Do a dirty read here. If we pass the conditional then take the rare
 452   // event lock and do the read again in case some other thread had already
 453   // succeeded and done the resize.
 454   int cur_collection = Universe::heap()->total_collections();
 455   // Updated _last_LNC_resizing_collection[i] must not be visible before
 456   // _lowest_non_clean and friends are visible. Therefore use acquire/release
 457   // to guarantee this on non TSO architecures.
 458   if (OrderAccess::load_acquire(&_last_LNC_resizing_collection[i]) != cur_collection) {
 459     MutexLocker x(ParGCRareEvent_lock);
 460     // This load_acquire is here for clarity only. The MutexLocker already fences.
 461     if (OrderAccess::load_acquire(&_last_LNC_resizing_collection[i]) != cur_collection) {
 462       if (_lowest_non_clean[i] == NULL ||
 463           n_chunks != _lowest_non_clean_chunk_size[i]) {
 464 
 465         // Should we delete the old?
 466         if (_lowest_non_clean[i] != NULL) {
 467           assert(n_chunks != _lowest_non_clean_chunk_size[i],
 468                  "logical consequence");
 469           FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i], mtGC);
 470           _lowest_non_clean[i] = NULL;
 471         }
 472         // Now allocate a new one if necessary.
 473         if (_lowest_non_clean[i] == NULL) {
 474           _lowest_non_clean[i]                  = NEW_C_HEAP_ARRAY(CardPtr, n_chunks, mtGC);
 475           _lowest_non_clean_chunk_size[i]       = n_chunks;
 476           _lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
 477           for (int j = 0; j < (int)n_chunks; j++)
 478             _lowest_non_clean[i][j] = NULL;
 479         }
 480       }
 481       // Make sure this gets visible only after _lowest_non_clean* was initialized
 482       OrderAccess::release_store(&_last_LNC_resizing_collection[i], cur_collection);
 483     }
 484   }
 485   // In any case, now do the initialization.
 486   lowest_non_clean                  = _lowest_non_clean[i];
 487   lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
 488   lowest_non_clean_chunk_size       = _lowest_non_clean_chunk_size[i];
 489 }