/* * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2016 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "interp_masm_ppc.hpp" #include "interpreter/interpreterRuntime.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/sharedRuntime.hpp" #ifdef PRODUCT #define BLOCK_COMMENT(str) // nothing #else #define BLOCK_COMMENT(str) block_comment(str) #endif void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) { address exception_entry = Interpreter::throw_NullPointerException_entry(); MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry); } void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { assert(entry, "Entry must have been generated by now"); if (is_within_range_of_b(entry, pc())) { b(entry); } else { load_const_optimized(Rscratch, entry, R0); mtctr(Rscratch); bctr(); } } void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) { Register bytecode = R12_scratch2; if (bcp_incr != 0) { lbzu(bytecode, bcp_incr, R14_bcp); } else { lbz(bytecode, 0, R14_bcp); } dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state)); } void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { // Load current bytecode. Register bytecode = R12_scratch2; lbz(bytecode, 0, R14_bcp); dispatch_Lbyte_code(state, bytecode, table); } // Dispatch code executed in the prolog of a bytecode which does not do it's // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr. void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { Register bytecode = R12_scratch2; lbz(bytecode, bcp_incr, R14_bcp); load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state)); sldi(bytecode, bytecode, LogBytesPerWord); ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode); } // Dispatch code executed in the epilog of a bytecode which does not do it's // own dispatch. The dispatch address in R24_dispatch_addr is used for the // dispatch. void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) { if (bcp_incr) { addi(R14_bcp, R14_bcp, bcp_incr); } mtctr(R24_dispatch_addr); bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); } void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { assert(scratch_reg != R0, "can't use R0 as scratch_reg here"); if (JvmtiExport::can_pop_frame()) { Label L; // Check the "pending popframe condition" flag in the current thread. lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); // Initiate popframe handling only if it is not already being // processed. If the flag has the popframe_processing bit set, it // means that this code is called *during* popframe handling - we // don't want to reenter. andi_(R0, scratch_reg, JavaThread::popframe_pending_bit); beq(CCR0, L); andi_(R0, scratch_reg, JavaThread::popframe_processing_bit); bne(CCR0, L); // Call the Interpreter::remove_activation_preserving_args_entry() // func to get the address of the same-named entrypoint in the // generated interpreter code. #if defined(ABI_ELFv2) call_c(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry), relocInfo::none); #else call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, Interpreter::remove_activation_preserving_args_entry), relocInfo::none); #endif // Jump to Interpreter::_remove_activation_preserving_args_entry. mtctr(R3_RET); bctr(); align(32, 12); bind(L); } } void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { const Register Rthr_state_addr = scratch_reg; if (JvmtiExport::can_force_early_return()) { Label Lno_early_ret; ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); cmpdi(CCR0, Rthr_state_addr, 0); beq(CCR0, Lno_early_ret); lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr); cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending); bne(CCR0, Lno_early_ret); // Jump to Interpreter::_earlyret_entry. lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr); call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry)); mtlr(R3_RET); blr(); align(32, 12); bind(Lno_early_ret); } } void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) { const Register RjvmtiState = Rscratch1; const Register Rscratch2 = R0; ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); li(Rscratch2, 0); switch (state) { case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); break; case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); break; case btos: // fall through case ztos: // fall through case ctos: // fall through case stos: // fall through case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); break; case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); break; case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); break; case vtos: break; default : ShouldNotReachHere(); } // Clean up tos value in the jvmti thread state. std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); // Set tos state field to illegal value. li(Rscratch2, ilgl); stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState); } // Common code to dispatch and dispatch_only. // Dispatch value in Lbyte_code and increment Lbcp. void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) { address table_base = (address)Interpreter::dispatch_table((TosState)0); intptr_t table_offs = (intptr_t)table - (intptr_t)table_base; if (is_simm16(table_offs)) { addi(dst, R25_templateTableBase, (int)table_offs); } else { load_const_optimized(dst, table, R0); } } void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, address* table, bool verify) { if (verify) { unimplemented("dispatch_Lbyte_code: verify"); // See Sparc Implementation to implement this } assert_different_registers(bytecode, R11_scratch1); // Calc dispatch table address. load_dispatch_table(R11_scratch1, table); sldi(R12_scratch2, bytecode, LogBytesPerWord); ldx(R11_scratch1, R11_scratch1, R12_scratch2); // Jump off! mtctr(R11_scratch1); bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); } void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) { sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize); ldx(Rrecv_dst, Rrecv_dst, R15_esp); } // helpers for expression stack void InterpreterMacroAssembler::pop_i(Register r) { lwzu(r, Interpreter::stackElementSize, R15_esp); } void InterpreterMacroAssembler::pop_ptr(Register r) { ldu(r, Interpreter::stackElementSize, R15_esp); } void InterpreterMacroAssembler::pop_l(Register r) { ld(r, Interpreter::stackElementSize, R15_esp); addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); } void InterpreterMacroAssembler::pop_f(FloatRegister f) { lfsu(f, Interpreter::stackElementSize, R15_esp); } void InterpreterMacroAssembler::pop_d(FloatRegister f) { lfd(f, Interpreter::stackElementSize, R15_esp); addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); } void InterpreterMacroAssembler::push_i(Register r) { stw(r, 0, R15_esp); addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); } void InterpreterMacroAssembler::push_ptr(Register r) { std(r, 0, R15_esp); addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); } void InterpreterMacroAssembler::push_l(Register r) { // Clear unused slot. load_const_optimized(R0, 0L); std(R0, 0, R15_esp); std(r, - Interpreter::stackElementSize, R15_esp); addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); } void InterpreterMacroAssembler::push_f(FloatRegister f) { stfs(f, 0, R15_esp); addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); } void InterpreterMacroAssembler::push_d(FloatRegister f) { stfd(f, - Interpreter::stackElementSize, R15_esp); addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); } void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) { std(first, 0, R15_esp); std(second, -Interpreter::stackElementSize, R15_esp); addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); } void InterpreterMacroAssembler::move_l_to_d(Register l, FloatRegister d) { if (VM_Version::has_mtfprd()) { mtfprd(d, l); } else { std(l, 0, R15_esp); lfd(d, 0, R15_esp); } } void InterpreterMacroAssembler::move_d_to_l(FloatRegister d, Register l) { if (VM_Version::has_mtfprd()) { mffprd(l, d); } else { stfd(d, 0, R15_esp); ld(l, 0, R15_esp); } } void InterpreterMacroAssembler::push(TosState state) { switch (state) { case atos: push_ptr(); break; case btos: case ztos: case ctos: case stos: case itos: push_i(); break; case ltos: push_l(); break; case ftos: push_f(); break; case dtos: push_d(); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } } void InterpreterMacroAssembler::pop(TosState state) { switch (state) { case atos: pop_ptr(); break; case btos: case ztos: case ctos: case stos: case itos: pop_i(); break; case ltos: pop_l(); break; case ftos: pop_f(); break; case dtos: pop_d(); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } verify_oop(R17_tos, state); } void InterpreterMacroAssembler::empty_expression_stack() { addi(R15_esp, R26_monitor, - Interpreter::stackElementSize); } void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int bcp_offset, Register Rdst, signedOrNot is_signed) { #if defined(VM_LITTLE_ENDIAN) if (bcp_offset) { load_const_optimized(Rdst, bcp_offset); lhbrx(Rdst, R14_bcp, Rdst); } else { lhbrx(Rdst, R14_bcp); } if (is_signed == Signed) { extsh(Rdst, Rdst); } #else // Read Java big endian format. if (is_signed == Signed) { lha(Rdst, bcp_offset, R14_bcp); } else { lhz(Rdst, bcp_offset, R14_bcp); } #endif } void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int bcp_offset, Register Rdst, signedOrNot is_signed) { #if defined(VM_LITTLE_ENDIAN) if (bcp_offset) { load_const_optimized(Rdst, bcp_offset); lwbrx(Rdst, R14_bcp, Rdst); } else { lwbrx(Rdst, R14_bcp); } if (is_signed == Signed) { extsw(Rdst, Rdst); } #else // Read Java big endian format. if (bcp_offset & 3) { // Offset unaligned? load_const_optimized(Rdst, bcp_offset); if (is_signed == Signed) { lwax(Rdst, R14_bcp, Rdst); } else { lwzx(Rdst, R14_bcp, Rdst); } } else { if (is_signed == Signed) { lwa(Rdst, bcp_offset, R14_bcp); } else { lwz(Rdst, bcp_offset, R14_bcp); } } #endif } // Load the constant pool cache index from the bytecode stream. // // Kills / writes: // - Rdst, Rscratch void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, size_t index_size) { assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); // Cache index is always in the native format, courtesy of Rewriter. if (index_size == sizeof(u2)) { lhz(Rdst, bcp_offset, R14_bcp); } else if (index_size == sizeof(u4)) { if (bcp_offset & 3) { load_const_optimized(Rdst, bcp_offset); lwax(Rdst, R14_bcp, Rdst); } else { lwa(Rdst, bcp_offset, R14_bcp); } assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); nand(Rdst, Rdst, Rdst); // convert to plain index } else if (index_size == sizeof(u1)) { lbz(Rdst, bcp_offset, R14_bcp); } else { ShouldNotReachHere(); } // Rdst now contains cp cache index. } void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset, size_t index_size) { get_cache_index_at_bcp(cache, bcp_offset, index_size); sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord)); add(cache, R27_constPoolCache, cache); } // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format) // from (Rsrc)+offset. void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset, signedOrNot is_signed) { #if defined(VM_LITTLE_ENDIAN) if (offset) { load_const_optimized(Rdst, offset); lwbrx(Rdst, Rdst, Rsrc); } else { lwbrx(Rdst, Rsrc); } if (is_signed == Signed) { extsw(Rdst, Rdst); } #else if (is_signed == Signed) { lwa(Rdst, offset, Rsrc); } else { lwz(Rdst, offset, Rsrc); } #endif } // Load object from cpool->resolved_references(index). void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index, Label *is_null) { assert_different_registers(result, index); get_constant_pool(result); // Convert from field index to resolved_references() index and from // word index to byte offset. Since this is a java object, it can be compressed. Register tmp = index; // reuse sldi(tmp, index, LogBytesPerHeapOop); // Load pointer for resolved_references[] objArray. ld(result, ConstantPool::resolved_references_offset_in_bytes(), result); // JNIHandles::resolve(result) ld(result, 0, result); #ifdef ASSERT Label index_ok; lwa(R0, arrayOopDesc::length_offset_in_bytes(), result); sldi(R0, R0, LogBytesPerHeapOop); cmpd(CCR0, tmp, R0); blt(CCR0, index_ok); stop("resolved reference index out of bounds", 0x09256); bind(index_ok); #endif // Add in the index. add(result, tmp, result); load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, is_null); } // Generate a subtype check: branch to ok_is_subtype if sub_klass is // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2. void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1, Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) { // Profile the not-null value's klass. profile_typecheck(Rsub_klass, Rtmp1, Rtmp2); check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); profile_typecheck_failed(Rtmp1, Rtmp2); } // Separate these two to allow for delay slot in middle. // These are used to do a test and full jump to exception-throwing code. // Check that index is in range for array, then shift index by index_shift, // and put arrayOop + shifted_index into res. // Note: res is still shy of address by array offset into object. void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, int index_shift, Register Rtmp, Register Rres) { // Check that index is in range for array, then shift index by index_shift, // and put arrayOop + shifted_index into res. // Note: res is still shy of address by array offset into object. // Kills: // - Rindex // Writes: // - Rres: Address that corresponds to the array index if check was successful. verify_oop(Rarray); const Register Rlength = R0; const Register RsxtIndex = Rtmp; Label LisNull, LnotOOR; // Array nullcheck if (!ImplicitNullChecks) { cmpdi(CCR0, Rarray, 0); beq(CCR0, LisNull); } else { null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex); } // Rindex might contain garbage in upper bits (remember that we don't sign extend // during integer arithmetic operations). So kill them and put value into same register // where ArrayIndexOutOfBounds would expect the index in. rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit // Index check lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray); cmplw(CCR0, Rindex, Rlength); sldi(RsxtIndex, RsxtIndex, index_shift); blt(CCR0, LnotOOR); // Index should be in R17_tos, array should be in R4_ARG2. mr_if_needed(R17_tos, Rindex); mr_if_needed(R4_ARG2, Rarray); load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); mtctr(Rtmp); bctr(); if (!ImplicitNullChecks) { bind(LisNull); load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry); mtctr(Rtmp); bctr(); } align(32, 16); bind(LnotOOR); // Calc address add(Rres, RsxtIndex, Rarray); } void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) { // pop array pop_ptr(array); // check array index_check_without_pop(array, index, index_shift, tmp, res); } void InterpreterMacroAssembler::get_const(Register Rdst) { ld(Rdst, in_bytes(Method::const_offset()), R19_method); } void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { get_const(Rdst); ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst); } void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) { get_constant_pool(Rdst); ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst); } void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { get_constant_pool(Rcpool); ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool); } // Unlock if synchronized method. // // Unlock the receiver if this is a synchronized method. // Unlock any Java monitors from synchronized blocks. // // If there are locked Java monitors // If throw_monitor_exception // throws IllegalMonitorStateException // Else if install_monitor_exception // installs IllegalMonitorStateException // Else // no error processing void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, bool throw_monitor_exception, bool install_monitor_exception) { Label Lunlocked, Lno_unlock; { Register Rdo_not_unlock_flag = R11_scratch1; Register Raccess_flags = R12_scratch2; // Check if synchronized method or unlocking prevented by // JavaThread::do_not_unlock_if_synchronized flag. lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method); li(R0, 0); stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag push(state); // Skip if we don't have to unlock. rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0. beq(CCR0, Lunlocked); cmpwi(CCR0, Rdo_not_unlock_flag, 0); bne(CCR0, Lno_unlock); } // Unlock { Register Rmonitor_base = R11_scratch1; Label Lunlock; // If it's still locked, everything is ok, unlock it. ld(Rmonitor_base, 0, R1_SP); addi(Rmonitor_base, Rmonitor_base, -(frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base); cmpdi(CCR0, R0, 0); bne(CCR0, Lunlock); // If it's already unlocked, throw exception. if (throw_monitor_exception) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { if (install_monitor_exception) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); b(Lunlocked); } } bind(Lunlock); unlock_object(Rmonitor_base); } // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not. bind(Lunlocked); { Label Lexception, Lrestart; Register Rcurrent_obj_addr = R11_scratch1; const int delta = frame::interpreter_frame_monitor_size_in_bytes(); assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords"); bind(Lrestart); // Set up search loop: Calc num of iterations. { Register Riterations = R12_scratch2; Register Rmonitor_base = Rcurrent_obj_addr; ld(Rmonitor_base, 0, R1_SP); addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size); // Monitor base subf_(Riterations, R26_monitor, Rmonitor_base); ble(CCR0, Lno_unlock); addi(Rcurrent_obj_addr, Rmonitor_base, BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes()); // Check if any monitor is on stack, bail out if not srdi(Riterations, Riterations, exact_log2(delta)); mtctr(Riterations); } // The search loop: Look for locked monitors. { const Register Rcurrent_obj = R0; Label Lloop; ld(Rcurrent_obj, 0, Rcurrent_obj_addr); addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); bind(Lloop); // Check if current entry is used. cmpdi(CCR0, Rcurrent_obj, 0); bne(CCR0, Lexception); // Preload next iteration's compare value. ld(Rcurrent_obj, 0, Rcurrent_obj_addr); addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); bdnz(Lloop); } // Fell through: Everything's unlocked => finish. b(Lno_unlock); // An object is still locked => need to throw exception. bind(Lexception); if (throw_monitor_exception) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception. // Unlock does not block, so don't have to worry about the frame. Register Rmonitor_addr = R11_scratch1; addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta); unlock_object(Rmonitor_addr); if (install_monitor_exception) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); } b(Lrestart); } } align(32, 12); bind(Lno_unlock); pop(state); } // Support function for remove_activation & Co. void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc, Register Rscratch1, Register Rscratch2) { // Pop interpreter frame. ld(Rscratch1, 0, R1_SP); // *SP ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp ld(Rscratch2, 0, Rscratch1); // **SP #ifdef ASSERT { Label Lok; ld(R0, _ijava_state_neg(ijava_reserved), Rscratch1); cmpdi(CCR0, R0, 0x5afe); beq(CCR0, Lok); stop("frame corrupted (remove activation)", 0x5afe); bind(Lok); } #endif if (return_pc!=noreg) { ld(return_pc, _abi(lr), Rscratch1); // LR } // Merge top frames. subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP } void InterpreterMacroAssembler::narrow(Register result) { Register ret_type = R11_scratch1; ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method); lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1); Label notBool, notByte, notChar, done; // common case first cmpwi(CCR0, ret_type, T_INT); beq(CCR0, done); cmpwi(CCR0, ret_type, T_BOOLEAN); bne(CCR0, notBool); andi(result, result, 0x1); b(done); bind(notBool); cmpwi(CCR0, ret_type, T_BYTE); bne(CCR0, notByte); extsb(result, result); b(done); bind(notByte); cmpwi(CCR0, ret_type, T_CHAR); bne(CCR0, notChar); andi(result, result, 0xffff); b(done); bind(notChar); // cmpwi(CCR0, ret_type, T_SHORT); // all that's left // bne(CCR0, done); extsh(result, result); // Nothing to do for T_INT bind(done); } // Remove activation. // // Unlock the receiver if this is a synchronized method. // Unlock any Java monitors from synchronized blocks. // Remove the activation from the stack. // // If there are locked Java monitors // If throw_monitor_exception // throws IllegalMonitorStateException // Else if install_monitor_exception // installs IllegalMonitorStateException // Else // no error processing void InterpreterMacroAssembler::remove_activation(TosState state, bool throw_monitor_exception, bool install_monitor_exception) { BLOCK_COMMENT("remove_activation {"); unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); // Save result (push state before jvmti call and pop it afterwards) and notify jvmti. notify_method_exit(false, state, NotifyJVMTI, true); BLOCK_COMMENT("reserved_stack_check:"); if (StackReservedPages > 0) { // Test if reserved zone needs to be enabled. Label no_reserved_zone_enabling; // Compare frame pointers. There is no good stack pointer, as with stack // frame compression we can get different SPs when we do calls. A subsequent // call could have a smaller SP, so that this compare succeeds for an // inner call of the method annotated with ReservedStack. ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread); ld_ptr(R11_scratch1, _abi(callers_sp), R1_SP); // Load frame pointer. cmpld(CCR0, R11_scratch1, R0); blt_predict_taken(CCR0, no_reserved_zone_enabling); // Enable reserved zone again, throw stack overflow exception. call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); should_not_reach_here(); bind(no_reserved_zone_enabling); } verify_oop(R17_tos, state); verify_thread(); merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); mtlr(R0); BLOCK_COMMENT("} remove_activation"); } // Lock object // // Registers alive // monitor - Address of the BasicObjectLock to be used for locking, // which must be initialized with the object to lock. // object - Address of the object to be locked. // void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { if (UseHeavyMonitors) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor, /*check_for_exceptions=*/true); } else { // template code: // // markOop displaced_header = obj->mark().set_unlocked(); // monitor->lock()->set_displaced_header(displaced_header); // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) { // // We stored the monitor address into the object's mark word. // } else if (THREAD->is_lock_owned((address)displaced_header)) // // Simple recursive case. // monitor->lock()->set_displaced_header(NULL); // } else { // // Slow path. // InterpreterRuntime::monitorenter(THREAD, monitor); // } const Register displaced_header = R7_ARG5; const Register object_mark_addr = R8_ARG6; const Register current_header = R9_ARG7; const Register tmp = R10_ARG8; Label done; Label cas_failed, slow_case; assert_different_registers(displaced_header, object_mark_addr, current_header, tmp); // markOop displaced_header = obj->mark().set_unlocked(); // Load markOop from object into displaced_header. ld(displaced_header, oopDesc::mark_offset_in_bytes(), object); if (UseBiasedLocking) { biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case); } // Set displaced_header to be (markOop of object | UNLOCK_VALUE). ori(displaced_header, displaced_header, markOopDesc::unlocked_value); // monitor->lock()->set_displaced_header(displaced_header); // Initialize the box (Must happen before we update the object mark!). std(displaced_header, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes(), monitor); // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) { // Store stack address of the BasicObjectLock (this is monitor) into object. addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); // Must fence, otherwise, preceding store(s) may float below cmpxchg. // CmpxchgX sets CCR0 to cmpX(current, displaced). cmpxchgd(/*flag=*/CCR0, /*current_value=*/current_header, /*compare_value=*/displaced_header, /*exchange_value=*/monitor, /*where=*/object_mark_addr, MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq, MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, &cas_failed, /*check without membar and ldarx first*/true); // If the compare-and-exchange succeeded, then we found an unlocked // object and we have now locked it. b(done); bind(cas_failed); // } else if (THREAD->is_lock_owned((address)displaced_header)) // // Simple recursive case. // monitor->lock()->set_displaced_header(NULL); // We did not see an unlocked object so try the fast recursive case. // Check if owner is self by comparing the value in the markOop of object // (current_header) with the stack pointer. sub(current_header, current_header, R1_SP); assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); load_const_optimized(tmp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place); and_(R0/*==0?*/, current_header, tmp); // If condition is true we are done and hence we can store 0 in the displaced // header indicating it is a recursive lock. bne(CCR0, slow_case); std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes(), monitor); b(done); // } else { // // Slow path. // InterpreterRuntime::monitorenter(THREAD, monitor); // None of the above fast optimizations worked so we have to get into the // slow case of monitor enter. bind(slow_case); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor, /*check_for_exceptions=*/true); // } align(32, 12); bind(done); } } // Unlocks an object. Used in monitorexit bytecode and remove_activation. // // Registers alive // monitor - Address of the BasicObjectLock to be used for locking, // which must be initialized with the object to lock. // // Throw IllegalMonitorException if object is not locked by current thread. void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) { if (UseHeavyMonitors) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor, check_for_exceptions); } else { // template code: // // if ((displaced_header = monitor->displaced_header()) == NULL) { // // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL. // monitor->set_obj(NULL); // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) { // // We swapped the unlocked mark in displaced_header into the object's mark word. // monitor->set_obj(NULL); // } else { // // Slow path. // InterpreterRuntime::monitorexit(THREAD, monitor); // } const Register object = R7_ARG5; const Register displaced_header = R8_ARG6; const Register object_mark_addr = R9_ARG7; const Register current_header = R10_ARG8; Label free_slot; Label slow_case; assert_different_registers(object, displaced_header, object_mark_addr, current_header); if (UseBiasedLocking) { // The object address from the monitor is in object. ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0"); biased_locking_exit(CCR0, object, displaced_header, free_slot); } // Test first if we are in the fast recursive case. ld(displaced_header, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes(), monitor); // If the displaced header is zero, we have a recursive unlock. cmpdi(CCR0, displaced_header, 0); beq(CCR0, free_slot); // recursive unlock // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) { // // We swapped the unlocked mark in displaced_header into the object's mark word. // monitor->set_obj(NULL); // If we still have a lightweight lock, unlock the object and be done. // The object address from the monitor is in object. if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); } addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); // We have the displaced header in displaced_header. If the lock is still // lightweight, it will contain the monitor address and we'll store the // displaced header back into the object's mark word. // CmpxchgX sets CCR0 to cmpX(current, monitor). cmpxchgd(/*flag=*/CCR0, /*current_value=*/current_header, /*compare_value=*/monitor, /*exchange_value=*/displaced_header, /*where=*/object_mark_addr, MacroAssembler::MemBarRel, MacroAssembler::cmpxchgx_hint_release_lock(), noreg, &slow_case); b(free_slot); // } else { // // Slow path. // InterpreterRuntime::monitorexit(THREAD, monitor); // The lock has been converted into a heavy lock and hence // we need to get into the slow case. bind(slow_case); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor, check_for_exceptions); // } Label done; b(done); // Monitor register may be overwritten! Runtime has already freed the slot. // Exchange worked, do monitor->set_obj(NULL); align(32, 12); bind(free_slot); li(R0, 0); std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor); bind(done); } } // Load compiled (i2c) or interpreter entry when calling from interpreted and // do the call. Centralized so that all interpreter calls will do the same actions. // If jvmti single stepping is on for a thread we must not call compiled code. // // Input: // - Rtarget_method: method to call // - Rret_addr: return address // - 2 scratch regs // void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, Register Rscratch1, Register Rscratch2) { assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr); // Assume we want to go compiled if available. const Register Rtarget_addr = Rscratch1; const Register Rinterp_only = Rscratch2; ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method); if (JvmtiExport::can_post_interpreter_events()) { lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); // JVMTI events, such as single-stepping, are implemented partly by avoiding running // compiled code in threads for which the event is enabled. Check here for // interp_only_mode if these events CAN be enabled. Label done; verify_thread(); cmpwi(CCR0, Rinterp_only, 0); beq(CCR0, done); ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method); align(32, 12); bind(done); } #ifdef ASSERT { Label Lok; cmpdi(CCR0, Rtarget_addr, 0); bne(CCR0, Lok); stop("null entry point"); bind(Lok); } #endif // ASSERT mr(R21_sender_SP, R1_SP); // Calc a precise SP for the call. The SP value we calculated in // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space // if esp is not max. Also, the i2c adapter extends the stack space without restoring // our pre-calced value, so repeating calls via i2c would result in stack overflow. // Since esp already points to an empty slot, we just have to sub 1 additional slot // to meet the abi scratch requirements. // The max_stack pointer will get restored by means of the GR_Lmax_stack local in // the return entry of the interpreter. addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size); clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address resize_frame_absolute(Rscratch2, Rscratch2, R0); mr_if_needed(R19_method, Rtarget_method); mtctr(Rtarget_addr); mtlr(Rret_addr); save_interpreter_state(Rscratch2); #ifdef ASSERT ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp cmpd(CCR0, R21_sender_SP, Rscratch1); asm_assert_eq("top_frame_sp incorrect", 0x951); #endif bctr(); } // Set the method data pointer for the current bcp. void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { assert(ProfileInterpreter, "must be profiling interpreter"); Label get_continue; ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method); test_method_data_pointer(get_continue); call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp); addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset())); add(R28_mdx, R28_mdx, R3_RET); bind(get_continue); } // Test ImethodDataPtr. If it is null, continue at the specified label. void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); cmpdi(CCR0, R28_mdx, 0); beq(CCR0, zero_continue); } void InterpreterMacroAssembler::verify_method_data_pointer() { assert(ProfileInterpreter, "must be profiling interpreter"); #ifdef ASSERT Label verify_continue; test_method_data_pointer(verify_continue); // If the mdp is valid, it will point to a DataLayout header which is // consistent with the bcp. The converse is highly probable also. lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx); ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method); addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset())); add(R11_scratch1, R12_scratch2, R12_scratch2); cmpd(CCR0, R11_scratch1, R14_bcp); beq(CCR0, verify_continue); call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx); bind(verify_continue); #endif } void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count, Register method_counters, Register Rscratch, Label &profile_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); // Control will flow to "profile_continue" if the counter is less than the // limit or if we call profile_method(). Label done; // If no method data exists, and the counter is high enough, make one. lwz(Rscratch, in_bytes(MethodCounters::interpreter_profile_limit_offset()), method_counters); cmpdi(CCR0, R28_mdx, 0); // Test to see if we should create a method data oop. cmpd(CCR1, Rscratch, invocation_count); bne(CCR0, done); bge(CCR1, profile_continue); // Build it now. call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); set_method_data_pointer_for_bcp(); b(profile_continue); align(32, 12); bind(done); } void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register method_counters, Register target_bcp, Register disp, Register Rtmp) { assert_different_registers(backedge_count, target_bcp, disp, Rtmp, R4_ARG2); assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr"); Label did_not_overflow; Label overflow_with_error; lwz(Rtmp, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()), method_counters); cmpw(CCR0, backedge_count, Rtmp); blt(CCR0, did_not_overflow); // When ProfileInterpreter is on, the backedge_count comes from the // methodDataOop, which value does not get reset on the call to // frequency_counter_overflow(). To avoid excessive calls to the overflow // routine while the method is being compiled, add a second test to make sure // the overflow function is called only once every overflow_frequency. if (ProfileInterpreter) { const int overflow_frequency = 1024; andi_(Rtmp, backedge_count, overflow_frequency-1); bne(CCR0, did_not_overflow); } // Overflow in loop, pass branch bytecode. subf(R4_ARG2, disp, target_bcp); // Compute branch bytecode (previous bcp). call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true); // Was an OSR adapter generated? cmpdi(CCR0, R3_RET, 0); beq(CCR0, overflow_with_error); // Has the nmethod been invalidated already? lbz(Rtmp, nmethod::state_offset(), R3_RET); cmpwi(CCR0, Rtmp, nmethod::in_use); bne(CCR0, overflow_with_error); // Migrate the interpreter frame off of the stack. // We can use all registers because we will not return to interpreter from this point. // Save nmethod. const Register osr_nmethod = R31; mr(osr_nmethod, R3_RET); set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1); call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread); reset_last_Java_frame(); // OSR buffer is in ARG1 // Remove the interpreter frame. merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); // Jump to the osr code. ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod); mtlr(R0); mtctr(R11_scratch1); bctr(); align(32, 12); bind(overflow_with_error); bind(did_not_overflow); } // Store a value at some constant offset from the method data pointer. void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) { assert(ProfileInterpreter, "must be profiling interpreter"); std(value, constant, R28_mdx); } // Increment the value at some constant offset from the method data pointer. void InterpreterMacroAssembler::increment_mdp_data_at(int constant, Register counter_addr, Register Rbumped_count, bool decrement) { // Locate the counter at a fixed offset from the mdp: addi(counter_addr, R28_mdx, constant); increment_mdp_data_at(counter_addr, Rbumped_count, decrement); } // Increment the value at some non-fixed (reg + constant) offset from // the method data pointer. void InterpreterMacroAssembler::increment_mdp_data_at(Register reg, int constant, Register scratch, Register Rbumped_count, bool decrement) { // Add the constant to reg to get the offset. add(scratch, R28_mdx, reg); // Then calculate the counter address. addi(scratch, scratch, constant); increment_mdp_data_at(scratch, Rbumped_count, decrement); } void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr, Register Rbumped_count, bool decrement) { assert(ProfileInterpreter, "must be profiling interpreter"); // Load the counter. ld(Rbumped_count, 0, counter_addr); if (decrement) { // Decrement the register. Set condition codes. addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment); // Store the decremented counter, if it is still negative. std(Rbumped_count, 0, counter_addr); // Note: add/sub overflow check are not ported, since 64 bit // calculation should never overflow. } else { // Increment the register. Set carry flag. addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment); // Store the incremented counter. std(Rbumped_count, 0, counter_addr); } } // Set a flag value at the current method data pointer position. void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant, Register scratch) { assert(ProfileInterpreter, "must be profiling interpreter"); // Load the data header. lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); // Set the flag. ori(scratch, scratch, flag_constant); // Store the modified header. stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); } // Test the location at some offset from the method data pointer. // If it is not equal to value, branch to the not_equal_continue Label. void InterpreterMacroAssembler::test_mdp_data_at(int offset, Register value, Label& not_equal_continue, Register test_out) { assert(ProfileInterpreter, "must be profiling interpreter"); ld(test_out, offset, R28_mdx); cmpd(CCR0, value, test_out); bne(CCR0, not_equal_continue); } // Update the method data pointer by the displacement located at some fixed // offset from the method data pointer. void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp, Register scratch) { assert(ProfileInterpreter, "must be profiling interpreter"); ld(scratch, offset_of_disp, R28_mdx); add(R28_mdx, scratch, R28_mdx); } // Update the method data pointer by the displacement located at the // offset (reg + offset_of_disp). void InterpreterMacroAssembler::update_mdp_by_offset(Register reg, int offset_of_disp, Register scratch) { assert(ProfileInterpreter, "must be profiling interpreter"); add(scratch, reg, R28_mdx); ld(scratch, offset_of_disp, scratch); add(R28_mdx, scratch, R28_mdx); } // Update the method data pointer by a simple constant displacement. void InterpreterMacroAssembler::update_mdp_by_constant(int constant) { assert(ProfileInterpreter, "must be profiling interpreter"); addi(R28_mdx, R28_mdx, constant); } // Update the method data pointer for a _ret bytecode whose target // was not among our cached targets. void InterpreterMacroAssembler::update_mdp_for_ret(TosState state, Register return_bci) { assert(ProfileInterpreter, "must be profiling interpreter"); push(state); assert(return_bci->is_nonvolatile(), "need to protect return_bci"); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); pop(state); } // Increments the backedge counter. // Returns backedge counter + invocation counter in Rdst. void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst, const Register Rtmp1, Register Rscratch) { assert(UseCompiler, "incrementing must be useful"); assert_different_registers(Rdst, Rtmp1); const Register invocation_counter = Rtmp1; const Register counter = Rdst; // TODO: PPC port: assert(4 == InvocationCounter::sz_counter(), "unexpected field size."); // Load backedge counter. lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset()), Rcounters); // Load invocation counter. lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset()), Rcounters); // Add the delta to the backedge counter. addi(counter, counter, InvocationCounter::count_increment); // Mask the invocation counter. andi(invocation_counter, invocation_counter, InvocationCounter::count_mask_value); // Store new counter value. stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset()), Rcounters); // Return invocation counter + backedge counter. add(counter, counter, invocation_counter); } // Count a taken branch in the bytecodes. void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // We are taking a branch. Increment the taken count. increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch); bind (profile_continue); } } // Count a not-taken branch in the bytecodes. void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // We are taking a branch. Increment the not taken count. increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2); // The method data pointer needs to be updated to correspond to the // next bytecode. update_mdp_by_constant(in_bytes(BranchData::branch_data_size())); bind (profile_continue); } } // Count a non-virtual call in the bytecodes. void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // We are making a call. Increment the count. increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(in_bytes(CounterData::counter_data_size())); bind (profile_continue); } } // Count a final call in the bytecodes. void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // We are making a call. Increment the count. increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); bind (profile_continue); } } // Count a virtual call in the bytecodes. void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver, Register Rscratch1, Register Rscratch2, bool receiver_can_be_null) { if (!ProfileInterpreter) { return; } Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); Label skip_receiver_profile; if (receiver_can_be_null) { Label not_null; cmpdi(CCR0, Rreceiver, 0); bne(CCR0, not_null); // We are making a call. Increment the count for null receiver. increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2); b(skip_receiver_profile); bind(not_null); } // Record the receiver type. record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true); bind(skip_receiver_profile); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); bind (profile_continue); } void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); int mdp_delta = in_bytes(BitData::bit_data_size()); if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); // Record the object type. record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false); } // The method data pointer needs to be updated. update_mdp_by_constant(mdp_delta); bind (profile_continue); } } void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) { if (ProfileInterpreter && TypeProfileCasts) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); int count_offset = in_bytes(CounterData::count_offset()); // Back up the address, since we have already bumped the mdp. count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); // *Decrement* the counter. We expect to see zero or small negatives. increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true); bind (profile_continue); } } // Count a ret in the bytecodes. void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, Register scratch1, Register scratch2) { if (ProfileInterpreter) { Label profile_continue; uint row; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // Update the total ret count. increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 ); for (row = 0; row < RetData::row_limit(); row++) { Label next_test; // See if return_bci is equal to bci[n]: test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1); // return_bci is equal to bci[n]. Increment the count. increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1); b(profile_continue); bind(next_test); } update_mdp_for_ret(state, return_bci); bind (profile_continue); } } // Count the default case of a switch construct. void InterpreterMacroAssembler::profile_switch_default(Register scratch1, Register scratch2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // Update the default case count increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()), scratch1, scratch2); // The method data pointer needs to be updated. update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()), scratch1); bind (profile_continue); } } // Count the index'th case of a switch construct. void InterpreterMacroAssembler::profile_switch_case(Register index, Register scratch1, Register scratch2, Register scratch3) { if (ProfileInterpreter) { assert_different_registers(index, scratch1, scratch2, scratch3); Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes(). li(scratch3, in_bytes(MultiBranchData::case_array_offset())); assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works"); sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); add(scratch1, scratch1, scratch3); // Update the case count. increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3); // The method data pointer needs to be updated. update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2); bind (profile_continue); } } void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) { if (ProfileInterpreter) { assert_different_registers(Rscratch1, Rscratch2); Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(profile_continue); set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1); // The method data pointer needs to be updated. int mdp_delta = in_bytes(BitData::bit_data_size()); if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); } update_mdp_by_constant(mdp_delta); bind (profile_continue); } } void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver, Register Rscratch1, Register Rscratch2, bool is_virtual_call) { assert(ProfileInterpreter, "must be profiling"); assert_different_registers(Rreceiver, Rscratch1, Rscratch2); Label done; record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call); bind (done); } void InterpreterMacroAssembler::record_klass_in_profile_helper( Register receiver, Register scratch1, Register scratch2, int start_row, Label& done, bool is_virtual_call) { if (TypeProfileWidth == 0) { if (is_virtual_call) { increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); } return; } int last_row = VirtualCallData::row_limit() - 1; assert(start_row <= last_row, "must be work left to do"); // Test this row for both the receiver and for null. // Take any of three different outcomes: // 1. found receiver => increment count and goto done // 2. found null => keep looking for case 1, maybe allocate this cell // 3. found something else => keep looking for cases 1 and 2 // Case 3 is handled by a recursive call. for (int row = start_row; row <= last_row; row++) { Label next_test; bool test_for_null_also = (row == start_row); // See if the receiver is receiver[n]. int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); test_mdp_data_at(recvr_offset, receiver, next_test, scratch1); // delayed()->tst(scratch); // The receiver is receiver[n]. Increment count[n]. int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); increment_mdp_data_at(count_offset, scratch1, scratch2); b(done); bind(next_test); if (test_for_null_also) { Label found_null; // Failed the equality check on receiver[n]... Test for null. if (start_row == last_row) { // The only thing left to do is handle the null case. if (is_virtual_call) { // Scratch1 contains test_out from test_mdp_data_at. cmpdi(CCR0, scratch1, 0); beq(CCR0, found_null); // Receiver did not match any saved receiver and there is no empty row for it. // Increment total counter to indicate polymorphic case. increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); b(done); bind(found_null); } else { cmpdi(CCR0, scratch1, 0); bne(CCR0, done); } break; } // Since null is rare, make it be the branch-taken case. cmpdi(CCR0, scratch1, 0); beq(CCR0, found_null); // Put all the "Case 3" tests here. record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call); // Found a null. Keep searching for a matching receiver, // but remember that this is an empty (unused) slot. bind(found_null); } } // In the fall-through case, we found no matching receiver, but we // observed the receiver[start_row] is NULL. // Fill in the receiver field and increment the count. int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); set_mdp_data_at(recvr_offset, receiver); int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); li(scratch1, DataLayout::counter_increment); set_mdp_data_at(count_offset, scratch1); if (start_row > 0) { b(done); } } // Argument and return type profilig. // kills: tmp, tmp2, R0, CR0, CR1 void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base, RegisterOrConstant mdo_addr_offs, Register tmp, Register tmp2) { Label do_nothing, do_update; // tmp2 = obj is allowed assert_different_registers(obj, mdo_addr_base, tmp, R0); assert_different_registers(tmp2, mdo_addr_base, tmp, R0); const Register klass = tmp2; verify_oop(obj); ld(tmp, mdo_addr_offs, mdo_addr_base); // Set null_seen if obj is 0. cmpdi(CCR0, obj, 0); ori(R0, tmp, TypeEntries::null_seen); beq(CCR0, do_update); load_klass(klass, obj); clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); cmpd(CCR1, R0, klass); // Klass seen before, nothing to do (regardless of unknown bit). //beq(CCR1, do_nothing); andi_(R0, klass, TypeEntries::type_unknown); // Already unknown. Nothing to do anymore. //bne(CCR0, do_nothing); crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne beq(CCR0, do_nothing); clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). beq(CCR0, do_update); // First time here. Set profile type. // Different than before. Cannot keep accurate profile. ori(R0, tmp, TypeEntries::type_unknown); bind(do_update); // update profile std(R0, mdo_addr_offs, mdo_addr_base); align(32, 12); bind(do_nothing); } void InterpreterMacroAssembler::profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual) { if (!ProfileInterpreter) { return; } assert_different_registers(callee, tmp1, tmp2, R28_mdx); if (MethodData::profile_arguments() || MethodData::profile_return()) { Label profile_continue; test_method_data_pointer(profile_continue); int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx); cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); bne(CCR0, profile_continue); if (MethodData::profile_arguments()) { Label done; int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); add(R28_mdx, off_to_args, R28_mdx); for (int i = 0; i < TypeProfileArgsLimit; i++) { if (i > 0 || MethodData::profile_return()) { // If return value type is profiled we may have no argument to profile. ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count()); addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count()); blt(CCR0, done); } ld(tmp1, in_bytes(Method::const_offset()), callee); lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1); // Stack offset o (zero based) from the start of the argument // list, for n arguments translates into offset n - o - 1 from // the end of the argument list. But there's an extra slot at // the top of the stack. So the offset is n - o from Lesp. ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx); subf(tmp1, tmp2, tmp1); sldi(tmp1, tmp1, Interpreter::logStackElementSize); ldx(tmp1, tmp1, R15_esp); profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1); int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); addi(R28_mdx, R28_mdx, to_add); off_to_args += to_add; } if (MethodData::profile_return()) { ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); } bind(done); if (MethodData::profile_return()) { // We're right after the type profile for the last // argument. tmp1 is the number of cells left in the // CallTypeData/VirtualCallTypeData to reach its end. Non null // if there's a return to profile. assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size)); add(R28_mdx, tmp1, R28_mdx); } } else { assert(MethodData::profile_return(), "either profile call args or call ret"); update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size())); } // Mdp points right after the end of the // CallTypeData/VirtualCallTypeData, right after the cells for the // return value type if there's one. align(32, 12); bind(profile_continue); } } void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) { assert_different_registers(ret, tmp1, tmp2); if (ProfileInterpreter && MethodData::profile_return()) { Label profile_continue; test_method_data_pointer(profile_continue); if (MethodData::profile_return_jsr292_only()) { // If we don't profile all invoke bytecodes we must make sure // it's a bytecode we indeed profile. We can't go back to the // begining of the ProfileData we intend to update to check its // type because we're right after it and we don't known its // length. lbz(tmp1, 0, R14_bcp); lbz(tmp2, Method::intrinsic_id_offset_in_bytes(), R19_method); cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic); cmpwi(CCR1, tmp1, Bytecodes::_invokehandle); cror(CCR0, Assembler::equal, CCR1, Assembler::equal); cmpwi(CCR1, tmp2, vmIntrinsics::_compiledLambdaForm); cror(CCR0, Assembler::equal, CCR1, Assembler::equal); bne(CCR0, profile_continue); } profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2); align(32, 12); bind(profile_continue); } } void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4) { if (ProfileInterpreter && MethodData::profile_parameters()) { Label profile_continue, done; test_method_data_pointer(profile_continue); // Load the offset of the area within the MDO used for // parameters. If it's negative we're not profiling any parameters. lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx); cmpwi(CCR0, tmp1, 0); blt(CCR0, profile_continue); // Compute a pointer to the area for parameters from the offset // and move the pointer to the slot for the last // parameters. Collect profiling from last parameter down. // mdo start + parameters offset + array length - 1 // Pointer to the parameter area in the MDO. const Register mdp = tmp1; add(mdp, tmp1, R28_mdx); // Offset of the current profile entry to update. const Register entry_offset = tmp2; // entry_offset = array len in number of cells ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp); int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); assert(off_base % DataLayout::cell_size == 0, "should be a number of cells"); // entry_offset (number of cells) = array len - size of 1 entry + offset of the stack slot field addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size)); // entry_offset in bytes sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); Label loop; align(32, 12); bind(loop); // Load offset on the stack from the slot for this parameter. ld(tmp3, entry_offset, mdp); sldi(tmp3, tmp3, Interpreter::logStackElementSize); neg(tmp3, tmp3); // Read the parameter from the local area. ldx(tmp3, tmp3, R18_locals); // Make entry_offset now point to the type field for this parameter. int type_base = in_bytes(ParametersTypeData::type_offset(0)); assert(type_base > off_base, "unexpected"); addi(entry_offset, entry_offset, type_base - off_base); // Profile the parameter. profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3); // Go to next parameter. int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base); cmpdi(CCR0, entry_offset, off_base + delta); addi(entry_offset, entry_offset, -delta); bge(CCR0, loop); align(32, 12); bind(profile_continue); } } // Add a InterpMonitorElem to stack (see frame_sparc.hpp). void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) { // Very-local scratch registers. const Register esp = Rtemp1; const Register slot = Rtemp2; // Extracted monitor_size. int monitor_size = frame::interpreter_frame_monitor_size_in_bytes(); assert(Assembler::is_aligned((unsigned int)monitor_size, (unsigned int)frame::alignment_in_bytes), "size of a monitor must respect alignment of SP"); resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp // Shuffle expression stack down. Recall that stack_base points // just above the new expression stack bottom. Old_tos and new_tos // are used to scan thru the old and new expression stacks. if (!stack_is_empty) { Label copy_slot, copy_slot_finished; const Register n_slots = slot; addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack). subf(n_slots, esp, R26_monitor); srdi_(n_slots, n_slots, LogBytesPerWord); // Compute number of slots to copy. assert(LogBytesPerWord == 3, "conflicts assembler instructions"); beq(CCR0, copy_slot_finished); // Nothing to copy. mtctr(n_slots); // loop bind(copy_slot); ld(slot, 0, esp); // Move expression stack down. std(slot, -monitor_size, esp); // distance = monitor_size addi(esp, esp, BytesPerWord); bdnz(copy_slot); bind(copy_slot_finished); } addi(R15_esp, R15_esp, -monitor_size); addi(R26_monitor, R26_monitor, -monitor_size); // Restart interpreter } // ============================================================================ // Java locals access // Load a local variable at index in Rindex into register Rdst_value. // Also puts address of local into Rdst_address as a service. // Kills: // - Rdst_value // - Rdst_address void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) { sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); subf(Rdst_address, Rdst_address, R18_locals); lwz(Rdst_value, 0, Rdst_address); } // Load a local variable at index in Rindex into register Rdst_value. // Also puts address of local into Rdst_address as a service. // Kills: // - Rdst_value // - Rdst_address void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) { sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); subf(Rdst_address, Rdst_address, R18_locals); ld(Rdst_value, -8, Rdst_address); } // Load a local variable at index in Rindex into register Rdst_value. // Also puts address of local into Rdst_address as a service. // Input: // - Rindex: slot nr of local variable // Kills: // - Rdst_value // - Rdst_address void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, Register Rdst_address, Register Rindex) { sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); subf(Rdst_address, Rdst_address, R18_locals); ld(Rdst_value, 0, Rdst_address); } // Load a local variable at index in Rindex into register Rdst_value. // Also puts address of local into Rdst_address as a service. // Kills: // - Rdst_value // - Rdst_address void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) { sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); subf(Rdst_address, Rdst_address, R18_locals); lfs(Rdst_value, 0, Rdst_address); } // Load a local variable at index in Rindex into register Rdst_value. // Also puts address of local into Rdst_address as a service. // Kills: // - Rdst_value // - Rdst_address void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) { sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); subf(Rdst_address, Rdst_address, R18_locals); lfd(Rdst_value, -8, Rdst_address); } // Store an int value at local variable slot Rindex. // Kills: // - Rindex void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) { sldi(Rindex, Rindex, Interpreter::logStackElementSize); subf(Rindex, Rindex, R18_locals); stw(Rvalue, 0, Rindex); } // Store a long value at local variable slot Rindex. // Kills: // - Rindex void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) { sldi(Rindex, Rindex, Interpreter::logStackElementSize); subf(Rindex, Rindex, R18_locals); std(Rvalue, -8, Rindex); } // Store an oop value at local variable slot Rindex. // Kills: // - Rindex void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) { sldi(Rindex, Rindex, Interpreter::logStackElementSize); subf(Rindex, Rindex, R18_locals); std(Rvalue, 0, Rindex); } // Store an int value at local variable slot Rindex. // Kills: // - Rindex void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) { sldi(Rindex, Rindex, Interpreter::logStackElementSize); subf(Rindex, Rindex, R18_locals); stfs(Rvalue, 0, Rindex); } // Store an int value at local variable slot Rindex. // Kills: // - Rindex void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) { sldi(Rindex, Rindex, Interpreter::logStackElementSize); subf(Rindex, Rindex, R18_locals); stfd(Rvalue, -8, Rindex); } // Read pending exception from thread and jump to interpreter. // Throw exception entry if one if pending. Fall through otherwise. void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) { assert_different_registers(Rscratch1, Rscratch2, R3); Register Rexception = Rscratch1; Register Rtmp = Rscratch2; Label Ldone; // Get pending exception oop. ld(Rexception, thread_(pending_exception)); cmpdi(CCR0, Rexception, 0); beq(CCR0, Ldone); li(Rtmp, 0); mr_if_needed(R3, Rexception); std(Rtmp, thread_(pending_exception)); // Clear exception in thread if (Interpreter::rethrow_exception_entry() != NULL) { // Already got entry address. load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry()); } else { // Dynamically load entry address. int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true); ld(Rtmp, simm16_rest, Rtmp); } mtctr(Rtmp); save_interpreter_state(Rtmp); bctr(); align(32, 12); bind(Ldone); } void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) { save_interpreter_state(R11_scratch1); MacroAssembler::call_VM(oop_result, entry_point, false); restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true); check_and_handle_popframe(R11_scratch1); check_and_handle_earlyret(R11_scratch1); // Now check exceptions manually. if (check_exceptions) { check_and_forward_exception(R11_scratch1, R12_scratch2); } } void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) { // ARG1 is reserved for the thread. mr_if_needed(R4_ARG2, arg_1); call_VM(oop_result, entry_point, check_exceptions); } void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { // ARG1 is reserved for the thread. mr_if_needed(R4_ARG2, arg_1); assert(arg_2 != R4_ARG2, "smashed argument"); mr_if_needed(R5_ARG3, arg_2); call_VM(oop_result, entry_point, check_exceptions); } void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { // ARG1 is reserved for the thread. mr_if_needed(R4_ARG2, arg_1); assert(arg_2 != R4_ARG2, "smashed argument"); mr_if_needed(R5_ARG3, arg_2); assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument"); mr_if_needed(R6_ARG4, arg_3); call_VM(oop_result, entry_point, check_exceptions); } void InterpreterMacroAssembler::save_interpreter_state(Register scratch) { ld(scratch, 0, R1_SP); std(R15_esp, _ijava_state_neg(esp), scratch); std(R14_bcp, _ijava_state_neg(bcp), scratch); std(R26_monitor, _ijava_state_neg(monitors), scratch); if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); } // Other entries should be unchanged. } void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) { ld(scratch, 0, R1_SP); ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception). if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code. if (!bcp_and_mdx_only) { // Following ones are Metadata. ld(R19_method, _ijava_state_neg(method), scratch); ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch); // Following ones are stack addresses and don't require reload. ld(R15_esp, _ijava_state_neg(esp), scratch); ld(R18_locals, _ijava_state_neg(locals), scratch); ld(R26_monitor, _ijava_state_neg(monitors), scratch); } #ifdef ASSERT { Label Lok; subf(R0, R1_SP, scratch); cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size); bge(CCR0, Lok); stop("frame too small (restore istate)", 0x5432); bind(Lok); } { Label Lok; ld(R0, _ijava_state_neg(ijava_reserved), scratch); cmpdi(CCR0, R0, 0x5afe); beq(CCR0, Lok); stop("frame corrupted (restore istate)", 0x5afe); bind(Lok); } #endif } void InterpreterMacroAssembler::get_method_counters(Register method, Register Rcounters, Label& skip) { BLOCK_COMMENT("Load and ev. allocate counter object {"); Label has_counters; ld(Rcounters, in_bytes(Method::method_counters_offset()), method); cmpdi(CCR0, Rcounters, 0); bne(CCR0, has_counters); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), method, false); ld(Rcounters, in_bytes(Method::method_counters_offset()), method); cmpdi(CCR0, Rcounters, 0); beq(CCR0, skip); // No MethodCounters, OutOfMemory. BLOCK_COMMENT("} Load and ev. allocate counter object"); bind(has_counters); } void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register iv_be_count, Register Rtmp_r0) { assert(UseCompiler || LogTouchedMethods, "incrementing must be useful"); Register invocation_count = iv_be_count; Register backedge_count = Rtmp_r0; int delta = InvocationCounter::count_increment; // Load each counter in a register. // ld(inv_counter, Rtmp); // ld(be_counter, Rtmp2); int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset()); int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset()); BLOCK_COMMENT("Increment profiling counters {"); // Load the backedge counter. lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int // Mask the backedge counter. andi(backedge_count, backedge_count, InvocationCounter::count_mask_value); // Load the invocation counter. lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int // Add the delta to the invocation counter and store the result. addi(invocation_count, invocation_count, delta); // Store value. stw(invocation_count, inv_counter_offset, Rcounters); // Add invocation counter + backedge counter. add(iv_be_count, backedge_count, invocation_count); // Note that this macro must leave the backedge_count + invocation_count in // register iv_be_count! BLOCK_COMMENT("} Increment profiling counters"); } void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { if (state == atos) { MacroAssembler::verify_oop(reg); } } // Local helper function for the verify_oop_or_return_address macro. static bool verify_return_address(Method* m, int bci) { #ifndef PRODUCT address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci; // Assume it is a valid return address if it is inside m and is preceded by a jsr. if (!m->contains(pc)) return false; address jsr_pc; jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr); if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true; jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w); if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true; #endif // PRODUCT return false; } void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { if (VerifyFPU) { unimplemented("verfiyFPU"); } } void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) { if (!VerifyOops) return; // The VM documentation for the astore[_wide] bytecode allows // the TOS to be not only an oop but also a return address. Label test; Label skip; // See if it is an address (in the current method): const int log2_bytecode_size_limit = 16; srdi_(Rtmp, reg, log2_bytecode_size_limit); bne(CCR0, test); address fd = CAST_FROM_FN_PTR(address, verify_return_address); const int nbytes_save = MacroAssembler::num_volatile_regs * 8; save_volatile_gprs(R1_SP, -nbytes_save); // except R0 save_LR_CR(Rtmp); // Save in old frame. push_frame_reg_args(nbytes_save, Rtmp); load_const_optimized(Rtmp, fd, R0); mr_if_needed(R4_ARG2, reg); mr(R3_ARG1, R19_method); call_c(Rtmp); // call C pop_frame(); restore_LR_CR(Rtmp); restore_volatile_gprs(R1_SP, -nbytes_save); // except R0 b(skip); // Perform a more elaborate out-of-line call. // Not an address; verify it: bind(test); verify_oop(reg); bind(skip); } // Inline assembly for: // // if (thread is in interp_only_mode) { // InterpreterRuntime::post_method_entry(); // } // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) || // *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2) ) { // SharedRuntime::jvmpi_method_entry(method, receiver); // } void InterpreterMacroAssembler::notify_method_entry() { // JVMTI // Whenever JVMTI puts a thread in interp_only_mode, method // entry/exit events are sent for that thread to track stack // depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. if (JvmtiExport::can_post_interpreter_events()) { Label jvmti_post_done; lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); cmpwi(CCR0, R0, 0); beq(CCR0, jvmti_post_done); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry), /*check_exceptions=*/true); bind(jvmti_post_done); } } // Inline assembly for: // // if (thread is in interp_only_mode) { // // save result // InterpreterRuntime::post_method_exit(); // // restore result // } // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) { // // save result // SharedRuntime::jvmpi_method_exit(); // // restore result // } // // Native methods have their result stored in d_tmp and l_tmp. // Java methods have their result stored in the expression stack. void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state, NotifyMethodExitMode mode, bool check_exceptions) { // JVMTI // Whenever JVMTI puts a thread in interp_only_mode, method // entry/exit events are sent for that thread to track stack // depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { Label jvmti_post_done; lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); cmpwi(CCR0, R0, 0); beq(CCR0, jvmti_post_done); if (!is_native_method) { push(state); } // Expose tos to GC. call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), /*check_exceptions=*/check_exceptions); if (!is_native_method) { pop(state); } align(32, 12); bind(jvmti_post_done); } // Dtrace support not implemented. }