1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2018, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "nativeInst_ppc.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/icache.hpp"
  38 #include "runtime/interfaceSupport.inline.hpp"
  39 #include "runtime/objectMonitor.hpp"
  40 #include "runtime/os.hpp"
  41 #include "runtime/safepoint.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "utilities/macros.hpp"
  46 #ifdef COMPILER2
  47 #include "opto/intrinsicnode.hpp"
  48 #endif
  49 
  50 #ifdef PRODUCT
  51 #define BLOCK_COMMENT(str) // nothing
  52 #else
  53 #define BLOCK_COMMENT(str) block_comment(str)
  54 #endif
  55 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  56 
  57 #ifdef ASSERT
  58 // On RISC, there's no benefit to verifying instruction boundaries.
  59 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
  60 #endif
  61 
  62 void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) {
  63   assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range");
  64   if (Assembler::is_simm(si31, 16)) {
  65     ld(d, si31, a);
  66     if (emit_filler_nop) nop();
  67   } else {
  68     const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31);
  69     const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31);
  70     addis(d, a, hi);
  71     ld(d, lo, d);
  72   }
  73 }
  74 
  75 void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) {
  76   assert_different_registers(d, a);
  77   ld_largeoffset_unchecked(d, si31, a, emit_filler_nop);
  78 }
  79 
  80 void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base,
  81                                       size_t size_in_bytes, bool is_signed) {
  82   switch (size_in_bytes) {
  83   case  8:              ld(dst, offs, base);                         break;
  84   case  4:  is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break;
  85   case  2:  is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break;
  86   case  1:  lbz(dst, offs, base); if (is_signed) extsb(dst, dst);    break; // lba doesn't exist :(
  87   default:  ShouldNotReachHere();
  88   }
  89 }
  90 
  91 void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base,
  92                                        size_t size_in_bytes) {
  93   switch (size_in_bytes) {
  94   case  8:  std(dst, offs, base); break;
  95   case  4:  stw(dst, offs, base); break;
  96   case  2:  sth(dst, offs, base); break;
  97   case  1:  stb(dst, offs, base); break;
  98   default:  ShouldNotReachHere();
  99   }
 100 }
 101 
 102 void MacroAssembler::align(int modulus, int max, int rem) {
 103   int padding = (rem + modulus - (offset() % modulus)) % modulus;
 104   if (padding > max) return;
 105   for (int c = (padding >> 2); c > 0; --c) { nop(); }
 106 }
 107 
 108 // Issue instructions that calculate given TOC from global TOC.
 109 void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16,
 110                                                        bool add_relocation, bool emit_dummy_addr) {
 111   int offset = -1;
 112   if (emit_dummy_addr) {
 113     offset = -128; // dummy address
 114   } else if (addr != (address)(intptr_t)-1) {
 115     offset = MacroAssembler::offset_to_global_toc(addr);
 116   }
 117 
 118   if (hi16) {
 119     addis(dst, R29_TOC, MacroAssembler::largeoffset_si16_si16_hi(offset));
 120   }
 121   if (lo16) {
 122     if (add_relocation) {
 123       // Relocate at the addi to avoid confusion with a load from the method's TOC.
 124       relocate(internal_word_Relocation::spec(addr));
 125     }
 126     addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset));
 127   }
 128 }
 129 
 130 address MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) {
 131   const int offset = MacroAssembler::offset_to_global_toc(addr);
 132 
 133   const address inst2_addr = a;
 134   const int inst2 = *(int *)inst2_addr;
 135 
 136   // The relocation points to the second instruction, the addi,
 137   // and the addi reads and writes the same register dst.
 138   const int dst = inv_rt_field(inst2);
 139   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 140 
 141   // Now, find the preceding addis which writes to dst.
 142   int inst1 = 0;
 143   address inst1_addr = inst2_addr - BytesPerInstWord;
 144   while (inst1_addr >= bound) {
 145     inst1 = *(int *) inst1_addr;
 146     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 147       // Stop, found the addis which writes dst.
 148       break;
 149     }
 150     inst1_addr -= BytesPerInstWord;
 151   }
 152 
 153   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 154   set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset));
 155   set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset));
 156   return inst1_addr;
 157 }
 158 
 159 address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) {
 160   const address inst2_addr = a;
 161   const int inst2 = *(int *)inst2_addr;
 162 
 163   // The relocation points to the second instruction, the addi,
 164   // and the addi reads and writes the same register dst.
 165   const int dst = inv_rt_field(inst2);
 166   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 167 
 168   // Now, find the preceding addis which writes to dst.
 169   int inst1 = 0;
 170   address inst1_addr = inst2_addr - BytesPerInstWord;
 171   while (inst1_addr >= bound) {
 172     inst1 = *(int *) inst1_addr;
 173     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 174       // stop, found the addis which writes dst
 175       break;
 176     }
 177     inst1_addr -= BytesPerInstWord;
 178   }
 179 
 180   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 181 
 182   int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0);
 183   // -1 is a special case
 184   if (offset == -1) {
 185     return (address)(intptr_t)-1;
 186   } else {
 187     return global_toc() + offset;
 188   }
 189 }
 190 
 191 #ifdef _LP64
 192 // Patch compressed oops or klass constants.
 193 // Assembler sequence is
 194 // 1) compressed oops:
 195 //    lis  rx = const.hi
 196 //    ori rx = rx | const.lo
 197 // 2) compressed klass:
 198 //    lis  rx = const.hi
 199 //    clrldi rx = rx & 0xFFFFffff // clearMS32b, optional
 200 //    ori rx = rx | const.lo
 201 // Clrldi will be passed by.
 202 address MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) {
 203   assert(UseCompressedOops, "Should only patch compressed oops");
 204 
 205   const address inst2_addr = a;
 206   const int inst2 = *(int *)inst2_addr;
 207 
 208   // The relocation points to the second instruction, the ori,
 209   // and the ori reads and writes the same register dst.
 210   const int dst = inv_rta_field(inst2);
 211   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 212   // Now, find the preceding addis which writes to dst.
 213   int inst1 = 0;
 214   address inst1_addr = inst2_addr - BytesPerInstWord;
 215   bool inst1_found = false;
 216   while (inst1_addr >= bound) {
 217     inst1 = *(int *)inst1_addr;
 218     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; }
 219     inst1_addr -= BytesPerInstWord;
 220   }
 221   assert(inst1_found, "inst is not lis");
 222 
 223   int xc = (data >> 16) & 0xffff;
 224   int xd = (data >>  0) & 0xffff;
 225 
 226   set_imm((int *)inst1_addr, (short)(xc)); // see enc_load_con_narrow_hi/_lo
 227   set_imm((int *)inst2_addr,        (xd)); // unsigned int
 228   return inst1_addr;
 229 }
 230 
 231 // Get compressed oop or klass constant.
 232 narrowOop MacroAssembler::get_narrow_oop(address a, address bound) {
 233   assert(UseCompressedOops, "Should only patch compressed oops");
 234 
 235   const address inst2_addr = a;
 236   const int inst2 = *(int *)inst2_addr;
 237 
 238   // The relocation points to the second instruction, the ori,
 239   // and the ori reads and writes the same register dst.
 240   const int dst = inv_rta_field(inst2);
 241   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 242   // Now, find the preceding lis which writes to dst.
 243   int inst1 = 0;
 244   address inst1_addr = inst2_addr - BytesPerInstWord;
 245   bool inst1_found = false;
 246 
 247   while (inst1_addr >= bound) {
 248     inst1 = *(int *) inst1_addr;
 249     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;}
 250     inst1_addr -= BytesPerInstWord;
 251   }
 252   assert(inst1_found, "inst is not lis");
 253 
 254   uint xl = ((unsigned int) (get_imm(inst2_addr, 0) & 0xffff));
 255   uint xh = (((get_imm(inst1_addr, 0)) & 0xffff) << 16);
 256 
 257   return (int) (xl | xh);
 258 }
 259 #endif // _LP64
 260 
 261 // Returns true if successful.
 262 bool MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a,
 263                                                 Register toc, bool fixed_size) {
 264   int toc_offset = 0;
 265   // Use RelocationHolder::none for the constant pool entry, otherwise
 266   // we will end up with a failing NativeCall::verify(x) where x is
 267   // the address of the constant pool entry.
 268   // FIXME: We should insert relocation information for oops at the constant
 269   // pool entries instead of inserting it at the loads; patching of a constant
 270   // pool entry should be less expensive.
 271   address const_address = address_constant((address)a.value(), RelocationHolder::none);
 272   if (const_address == NULL) { return false; } // allocation failure
 273   // Relocate at the pc of the load.
 274   relocate(a.rspec());
 275   toc_offset = (int)(const_address - code()->consts()->start());
 276   ld_largeoffset_unchecked(dst, toc_offset, toc, fixed_size);
 277   return true;
 278 }
 279 
 280 bool MacroAssembler::is_load_const_from_method_toc_at(address a) {
 281   const address inst1_addr = a;
 282   const int inst1 = *(int *)inst1_addr;
 283 
 284    // The relocation points to the ld or the addis.
 285    return (is_ld(inst1)) ||
 286           (is_addis(inst1) && inv_ra_field(inst1) != 0);
 287 }
 288 
 289 int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) {
 290   assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc");
 291 
 292   const address inst1_addr = a;
 293   const int inst1 = *(int *)inst1_addr;
 294 
 295   if (is_ld(inst1)) {
 296     return inv_d1_field(inst1);
 297   } else if (is_addis(inst1)) {
 298     const int dst = inv_rt_field(inst1);
 299 
 300     // Now, find the succeeding ld which reads and writes to dst.
 301     address inst2_addr = inst1_addr + BytesPerInstWord;
 302     int inst2 = 0;
 303     while (true) {
 304       inst2 = *(int *) inst2_addr;
 305       if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) {
 306         // Stop, found the ld which reads and writes dst.
 307         break;
 308       }
 309       inst2_addr += BytesPerInstWord;
 310     }
 311     return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
 312   }
 313   ShouldNotReachHere();
 314   return 0;
 315 }
 316 
 317 // Get the constant from a `load_const' sequence.
 318 long MacroAssembler::get_const(address a) {
 319   assert(is_load_const_at(a), "not a load of a constant");
 320   const int *p = (const int*) a;
 321   unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48);
 322   if (is_ori(*(p+1))) {
 323     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32);
 324     x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16);
 325     x |= (((unsigned long) (get_imm(a,4) & 0xffff)));
 326   } else if (is_lis(*(p+1))) {
 327     x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32);
 328     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16);
 329     x |= (((unsigned long) (get_imm(a,3) & 0xffff)));
 330   } else {
 331     ShouldNotReachHere();
 332     return (long) 0;
 333   }
 334   return (long) x;
 335 }
 336 
 337 // Patch the 64 bit constant of a `load_const' sequence. This is a low
 338 // level procedure. It neither flushes the instruction cache nor is it
 339 // mt safe.
 340 void MacroAssembler::patch_const(address a, long x) {
 341   assert(is_load_const_at(a), "not a load of a constant");
 342   int *p = (int*) a;
 343   if (is_ori(*(p+1))) {
 344     set_imm(0 + p, (x >> 48) & 0xffff);
 345     set_imm(1 + p, (x >> 32) & 0xffff);
 346     set_imm(3 + p, (x >> 16) & 0xffff);
 347     set_imm(4 + p, x & 0xffff);
 348   } else if (is_lis(*(p+1))) {
 349     set_imm(0 + p, (x >> 48) & 0xffff);
 350     set_imm(2 + p, (x >> 32) & 0xffff);
 351     set_imm(1 + p, (x >> 16) & 0xffff);
 352     set_imm(3 + p, x & 0xffff);
 353   } else {
 354     ShouldNotReachHere();
 355   }
 356 }
 357 
 358 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
 359   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
 360   int index = oop_recorder()->allocate_metadata_index(obj);
 361   RelocationHolder rspec = metadata_Relocation::spec(index);
 362   return AddressLiteral((address)obj, rspec);
 363 }
 364 
 365 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
 366   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
 367   int index = oop_recorder()->find_index(obj);
 368   RelocationHolder rspec = metadata_Relocation::spec(index);
 369   return AddressLiteral((address)obj, rspec);
 370 }
 371 
 372 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
 373   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
 374   int oop_index = oop_recorder()->allocate_oop_index(obj);
 375   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 376 }
 377 
 378 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
 379   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
 380   int oop_index = oop_recorder()->find_index(obj);
 381   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 382 }
 383 
 384 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
 385                                                       Register tmp, int offset) {
 386   intptr_t value = *delayed_value_addr;
 387   if (value != 0) {
 388     return RegisterOrConstant(value + offset);
 389   }
 390 
 391   // Load indirectly to solve generation ordering problem.
 392   // static address, no relocation
 393   int simm16_offset = load_const_optimized(tmp, delayed_value_addr, noreg, true);
 394   ld(tmp, simm16_offset, tmp); // must be aligned ((xa & 3) == 0)
 395 
 396   if (offset != 0) {
 397     addi(tmp, tmp, offset);
 398   }
 399 
 400   return RegisterOrConstant(tmp);
 401 }
 402 
 403 #ifndef PRODUCT
 404 void MacroAssembler::pd_print_patched_instruction(address branch) {
 405   Unimplemented(); // TODO: PPC port
 406 }
 407 #endif // ndef PRODUCT
 408 
 409 // Conditional far branch for destinations encodable in 24+2 bits.
 410 void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) {
 411 
 412   // If requested by flag optimize, relocate the bc_far as a
 413   // runtime_call and prepare for optimizing it when the code gets
 414   // relocated.
 415   if (optimize == bc_far_optimize_on_relocate) {
 416     relocate(relocInfo::runtime_call_type);
 417   }
 418 
 419   // variant 2:
 420   //
 421   //    b!cxx SKIP
 422   //    bxx   DEST
 423   //  SKIP:
 424   //
 425 
 426   const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 427                                                 opposite_bcond(inv_boint_bcond(boint)));
 428 
 429   // We emit two branches.
 430   // First, a conditional branch which jumps around the far branch.
 431   const address not_taken_pc = pc() + 2 * BytesPerInstWord;
 432   const address bc_pc        = pc();
 433   bc(opposite_boint, biint, not_taken_pc);
 434 
 435   const int bc_instr = *(int*)bc_pc;
 436   assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition");
 437   assert(opposite_boint == inv_bo_field(bc_instr), "postcondition");
 438   assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))),
 439                                      opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))),
 440          "postcondition");
 441   assert(biint == inv_bi_field(bc_instr), "postcondition");
 442 
 443   // Second, an unconditional far branch which jumps to dest.
 444   // Note: target(dest) remembers the current pc (see CodeSection::target)
 445   //       and returns the current pc if the label is not bound yet; when
 446   //       the label gets bound, the unconditional far branch will be patched.
 447   const address target_pc = target(dest);
 448   const address b_pc  = pc();
 449   b(target_pc);
 450 
 451   assert(not_taken_pc == pc(),                     "postcondition");
 452   assert(dest.is_bound() || target_pc == b_pc, "postcondition");
 453 }
 454 
 455 // 1 or 2 instructions
 456 void MacroAssembler::bc_far_optimized(int boint, int biint, Label& dest) {
 457   if (dest.is_bound() && is_within_range_of_bcxx(target(dest), pc())) {
 458     bc(boint, biint, dest);
 459   } else {
 460     bc_far(boint, biint, dest, MacroAssembler::bc_far_optimize_on_relocate);
 461   }
 462 }
 463 
 464 bool MacroAssembler::is_bc_far_at(address instruction_addr) {
 465   return is_bc_far_variant1_at(instruction_addr) ||
 466          is_bc_far_variant2_at(instruction_addr) ||
 467          is_bc_far_variant3_at(instruction_addr);
 468 }
 469 
 470 address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) {
 471   if (is_bc_far_variant1_at(instruction_addr)) {
 472     const address instruction_1_addr = instruction_addr;
 473     const int instruction_1 = *(int*)instruction_1_addr;
 474     return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr);
 475   } else if (is_bc_far_variant2_at(instruction_addr)) {
 476     const address instruction_2_addr = instruction_addr + 4;
 477     return bxx_destination(instruction_2_addr);
 478   } else if (is_bc_far_variant3_at(instruction_addr)) {
 479     return instruction_addr + 8;
 480   }
 481   // variant 4 ???
 482   ShouldNotReachHere();
 483   return NULL;
 484 }
 485 void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) {
 486 
 487   if (is_bc_far_variant3_at(instruction_addr)) {
 488     // variant 3, far cond branch to the next instruction, already patched to nops:
 489     //
 490     //    nop
 491     //    endgroup
 492     //  SKIP/DEST:
 493     //
 494     return;
 495   }
 496 
 497   // first, extract boint and biint from the current branch
 498   int boint = 0;
 499   int biint = 0;
 500 
 501   ResourceMark rm;
 502   const int code_size = 2 * BytesPerInstWord;
 503   CodeBuffer buf(instruction_addr, code_size);
 504   MacroAssembler masm(&buf);
 505   if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) {
 506     // Far branch to next instruction: Optimize it by patching nops (produce variant 3).
 507     masm.nop();
 508     masm.endgroup();
 509   } else {
 510     if (is_bc_far_variant1_at(instruction_addr)) {
 511       // variant 1, the 1st instruction contains the destination address:
 512       //
 513       //    bcxx  DEST
 514       //    nop
 515       //
 516       const int instruction_1 = *(int*)(instruction_addr);
 517       boint = inv_bo_field(instruction_1);
 518       biint = inv_bi_field(instruction_1);
 519     } else if (is_bc_far_variant2_at(instruction_addr)) {
 520       // variant 2, the 2nd instruction contains the destination address:
 521       //
 522       //    b!cxx SKIP
 523       //    bxx   DEST
 524       //  SKIP:
 525       //
 526       const int instruction_1 = *(int*)(instruction_addr);
 527       boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))),
 528           opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1))));
 529       biint = inv_bi_field(instruction_1);
 530     } else {
 531       // variant 4???
 532       ShouldNotReachHere();
 533     }
 534 
 535     // second, set the new branch destination and optimize the code
 536     if (dest != instruction_addr + 4 && // the bc_far is still unbound!
 537         masm.is_within_range_of_bcxx(dest, instruction_addr)) {
 538       // variant 1:
 539       //
 540       //    bcxx  DEST
 541       //    nop
 542       //
 543       masm.bc(boint, biint, dest);
 544       masm.nop();
 545     } else {
 546       // variant 2:
 547       //
 548       //    b!cxx SKIP
 549       //    bxx   DEST
 550       //  SKIP:
 551       //
 552       const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 553                                                     opposite_bcond(inv_boint_bcond(boint)));
 554       const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord;
 555       masm.bc(opposite_boint, biint, not_taken_pc);
 556       masm.b(dest);
 557     }
 558   }
 559   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 560 }
 561 
 562 // Emit a NOT mt-safe patchable 64 bit absolute call/jump.
 563 void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) {
 564   // get current pc
 565   uint64_t start_pc = (uint64_t) pc();
 566 
 567   const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last
 568   const address pc_of_b  = (address) (start_pc + (0*BytesPerInstWord)); // b is first
 569 
 570   // relocate here
 571   if (rt != relocInfo::none) {
 572     relocate(rt);
 573   }
 574 
 575   if ( ReoptimizeCallSequences &&
 576        (( link && is_within_range_of_b(dest, pc_of_bl)) ||
 577         (!link && is_within_range_of_b(dest, pc_of_b)))) {
 578     // variant 2:
 579     // Emit an optimized, pc-relative call/jump.
 580 
 581     if (link) {
 582       // some padding
 583       nop();
 584       nop();
 585       nop();
 586       nop();
 587       nop();
 588       nop();
 589 
 590       // do the call
 591       assert(pc() == pc_of_bl, "just checking");
 592       bl(dest, relocInfo::none);
 593     } else {
 594       // do the jump
 595       assert(pc() == pc_of_b, "just checking");
 596       b(dest, relocInfo::none);
 597 
 598       // some padding
 599       nop();
 600       nop();
 601       nop();
 602       nop();
 603       nop();
 604       nop();
 605     }
 606 
 607     // Assert that we can identify the emitted call/jump.
 608     assert(is_bxx64_patchable_variant2_at((address)start_pc, link),
 609            "can't identify emitted call");
 610   } else {
 611     // variant 1:
 612     mr(R0, R11);  // spill R11 -> R0.
 613 
 614     // Load the destination address into CTR,
 615     // calculate destination relative to global toc.
 616     calculate_address_from_global_toc(R11, dest, true, true, false);
 617 
 618     mtctr(R11);
 619     mr(R11, R0);  // spill R11 <- R0.
 620     nop();
 621 
 622     // do the call/jump
 623     if (link) {
 624       bctrl();
 625     } else{
 626       bctr();
 627     }
 628     // Assert that we can identify the emitted call/jump.
 629     assert(is_bxx64_patchable_variant1b_at((address)start_pc, link),
 630            "can't identify emitted call");
 631   }
 632 
 633   // Assert that we can identify the emitted call/jump.
 634   assert(is_bxx64_patchable_at((address)start_pc, link),
 635          "can't identify emitted call");
 636   assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest,
 637          "wrong encoding of dest address");
 638 }
 639 
 640 // Identify a bxx64_patchable instruction.
 641 bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) {
 642   return is_bxx64_patchable_variant1b_at(instruction_addr, link)
 643     //|| is_bxx64_patchable_variant1_at(instruction_addr, link)
 644       || is_bxx64_patchable_variant2_at(instruction_addr, link);
 645 }
 646 
 647 // Does the call64_patchable instruction use a pc-relative encoding of
 648 // the call destination?
 649 bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) {
 650   // variant 2 is pc-relative
 651   return is_bxx64_patchable_variant2_at(instruction_addr, link);
 652 }
 653 
 654 // Identify variant 1.
 655 bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) {
 656   unsigned int* instr = (unsigned int*) instruction_addr;
 657   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 658       && is_mtctr(instr[5]) // mtctr
 659     && is_load_const_at(instruction_addr);
 660 }
 661 
 662 // Identify variant 1b: load destination relative to global toc.
 663 bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) {
 664   unsigned int* instr = (unsigned int*) instruction_addr;
 665   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 666     && is_mtctr(instr[3]) // mtctr
 667     && is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr);
 668 }
 669 
 670 // Identify variant 2.
 671 bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) {
 672   unsigned int* instr = (unsigned int*) instruction_addr;
 673   if (link) {
 674     return is_bl (instr[6])  // bl dest is last
 675       && is_nop(instr[0])  // nop
 676       && is_nop(instr[1])  // nop
 677       && is_nop(instr[2])  // nop
 678       && is_nop(instr[3])  // nop
 679       && is_nop(instr[4])  // nop
 680       && is_nop(instr[5]); // nop
 681   } else {
 682     return is_b  (instr[0])  // b  dest is first
 683       && is_nop(instr[1])  // nop
 684       && is_nop(instr[2])  // nop
 685       && is_nop(instr[3])  // nop
 686       && is_nop(instr[4])  // nop
 687       && is_nop(instr[5])  // nop
 688       && is_nop(instr[6]); // nop
 689   }
 690 }
 691 
 692 // Set dest address of a bxx64_patchable instruction.
 693 void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) {
 694   ResourceMark rm;
 695   int code_size = MacroAssembler::bxx64_patchable_size;
 696   CodeBuffer buf(instruction_addr, code_size);
 697   MacroAssembler masm(&buf);
 698   masm.bxx64_patchable(dest, relocInfo::none, link);
 699   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 700 }
 701 
 702 // Get dest address of a bxx64_patchable instruction.
 703 address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) {
 704   if (is_bxx64_patchable_variant1_at(instruction_addr, link)) {
 705     return (address) (unsigned long) get_const(instruction_addr);
 706   } else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) {
 707     unsigned int* instr = (unsigned int*) instruction_addr;
 708     if (link) {
 709       const int instr_idx = 6; // bl is last
 710       int branchoffset = branch_destination(instr[instr_idx], 0);
 711       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 712     } else {
 713       const int instr_idx = 0; // b is first
 714       int branchoffset = branch_destination(instr[instr_idx], 0);
 715       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 716     }
 717   // Load dest relative to global toc.
 718   } else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) {
 719     return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord,
 720                                                                instruction_addr);
 721   } else {
 722     ShouldNotReachHere();
 723     return NULL;
 724   }
 725 }
 726 
 727 // Uses ordering which corresponds to ABI:
 728 //    _savegpr0_14:  std  r14,-144(r1)
 729 //    _savegpr0_15:  std  r15,-136(r1)
 730 //    _savegpr0_16:  std  r16,-128(r1)
 731 void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) {
 732   std(R14, offset, dst);   offset += 8;
 733   std(R15, offset, dst);   offset += 8;
 734   std(R16, offset, dst);   offset += 8;
 735   std(R17, offset, dst);   offset += 8;
 736   std(R18, offset, dst);   offset += 8;
 737   std(R19, offset, dst);   offset += 8;
 738   std(R20, offset, dst);   offset += 8;
 739   std(R21, offset, dst);   offset += 8;
 740   std(R22, offset, dst);   offset += 8;
 741   std(R23, offset, dst);   offset += 8;
 742   std(R24, offset, dst);   offset += 8;
 743   std(R25, offset, dst);   offset += 8;
 744   std(R26, offset, dst);   offset += 8;
 745   std(R27, offset, dst);   offset += 8;
 746   std(R28, offset, dst);   offset += 8;
 747   std(R29, offset, dst);   offset += 8;
 748   std(R30, offset, dst);   offset += 8;
 749   std(R31, offset, dst);   offset += 8;
 750 
 751   stfd(F14, offset, dst);   offset += 8;
 752   stfd(F15, offset, dst);   offset += 8;
 753   stfd(F16, offset, dst);   offset += 8;
 754   stfd(F17, offset, dst);   offset += 8;
 755   stfd(F18, offset, dst);   offset += 8;
 756   stfd(F19, offset, dst);   offset += 8;
 757   stfd(F20, offset, dst);   offset += 8;
 758   stfd(F21, offset, dst);   offset += 8;
 759   stfd(F22, offset, dst);   offset += 8;
 760   stfd(F23, offset, dst);   offset += 8;
 761   stfd(F24, offset, dst);   offset += 8;
 762   stfd(F25, offset, dst);   offset += 8;
 763   stfd(F26, offset, dst);   offset += 8;
 764   stfd(F27, offset, dst);   offset += 8;
 765   stfd(F28, offset, dst);   offset += 8;
 766   stfd(F29, offset, dst);   offset += 8;
 767   stfd(F30, offset, dst);   offset += 8;
 768   stfd(F31, offset, dst);
 769 }
 770 
 771 // Uses ordering which corresponds to ABI:
 772 //    _restgpr0_14:  ld   r14,-144(r1)
 773 //    _restgpr0_15:  ld   r15,-136(r1)
 774 //    _restgpr0_16:  ld   r16,-128(r1)
 775 void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) {
 776   ld(R14, offset, src);   offset += 8;
 777   ld(R15, offset, src);   offset += 8;
 778   ld(R16, offset, src);   offset += 8;
 779   ld(R17, offset, src);   offset += 8;
 780   ld(R18, offset, src);   offset += 8;
 781   ld(R19, offset, src);   offset += 8;
 782   ld(R20, offset, src);   offset += 8;
 783   ld(R21, offset, src);   offset += 8;
 784   ld(R22, offset, src);   offset += 8;
 785   ld(R23, offset, src);   offset += 8;
 786   ld(R24, offset, src);   offset += 8;
 787   ld(R25, offset, src);   offset += 8;
 788   ld(R26, offset, src);   offset += 8;
 789   ld(R27, offset, src);   offset += 8;
 790   ld(R28, offset, src);   offset += 8;
 791   ld(R29, offset, src);   offset += 8;
 792   ld(R30, offset, src);   offset += 8;
 793   ld(R31, offset, src);   offset += 8;
 794 
 795   // FP registers
 796   lfd(F14, offset, src);   offset += 8;
 797   lfd(F15, offset, src);   offset += 8;
 798   lfd(F16, offset, src);   offset += 8;
 799   lfd(F17, offset, src);   offset += 8;
 800   lfd(F18, offset, src);   offset += 8;
 801   lfd(F19, offset, src);   offset += 8;
 802   lfd(F20, offset, src);   offset += 8;
 803   lfd(F21, offset, src);   offset += 8;
 804   lfd(F22, offset, src);   offset += 8;
 805   lfd(F23, offset, src);   offset += 8;
 806   lfd(F24, offset, src);   offset += 8;
 807   lfd(F25, offset, src);   offset += 8;
 808   lfd(F26, offset, src);   offset += 8;
 809   lfd(F27, offset, src);   offset += 8;
 810   lfd(F28, offset, src);   offset += 8;
 811   lfd(F29, offset, src);   offset += 8;
 812   lfd(F30, offset, src);   offset += 8;
 813   lfd(F31, offset, src);
 814 }
 815 
 816 // For verify_oops.
 817 void MacroAssembler::save_volatile_gprs(Register dst, int offset) {
 818   std(R2,  offset, dst);   offset += 8;
 819   std(R3,  offset, dst);   offset += 8;
 820   std(R4,  offset, dst);   offset += 8;
 821   std(R5,  offset, dst);   offset += 8;
 822   std(R6,  offset, dst);   offset += 8;
 823   std(R7,  offset, dst);   offset += 8;
 824   std(R8,  offset, dst);   offset += 8;
 825   std(R9,  offset, dst);   offset += 8;
 826   std(R10, offset, dst);   offset += 8;
 827   std(R11, offset, dst);   offset += 8;
 828   std(R12, offset, dst);   offset += 8;
 829 
 830   stfd(F0, offset, dst);   offset += 8;
 831   stfd(F1, offset, dst);   offset += 8;
 832   stfd(F2, offset, dst);   offset += 8;
 833   stfd(F3, offset, dst);   offset += 8;
 834   stfd(F4, offset, dst);   offset += 8;
 835   stfd(F5, offset, dst);   offset += 8;
 836   stfd(F6, offset, dst);   offset += 8;
 837   stfd(F7, offset, dst);   offset += 8;
 838   stfd(F8, offset, dst);   offset += 8;
 839   stfd(F9, offset, dst);   offset += 8;
 840   stfd(F10, offset, dst);  offset += 8;
 841   stfd(F11, offset, dst);  offset += 8;
 842   stfd(F12, offset, dst);  offset += 8;
 843   stfd(F13, offset, dst);
 844 }
 845 
 846 // For verify_oops.
 847 void MacroAssembler::restore_volatile_gprs(Register src, int offset) {
 848   ld(R2,  offset, src);   offset += 8;
 849   ld(R3,  offset, src);   offset += 8;
 850   ld(R4,  offset, src);   offset += 8;
 851   ld(R5,  offset, src);   offset += 8;
 852   ld(R6,  offset, src);   offset += 8;
 853   ld(R7,  offset, src);   offset += 8;
 854   ld(R8,  offset, src);   offset += 8;
 855   ld(R9,  offset, src);   offset += 8;
 856   ld(R10, offset, src);   offset += 8;
 857   ld(R11, offset, src);   offset += 8;
 858   ld(R12, offset, src);   offset += 8;
 859 
 860   lfd(F0, offset, src);   offset += 8;
 861   lfd(F1, offset, src);   offset += 8;
 862   lfd(F2, offset, src);   offset += 8;
 863   lfd(F3, offset, src);   offset += 8;
 864   lfd(F4, offset, src);   offset += 8;
 865   lfd(F5, offset, src);   offset += 8;
 866   lfd(F6, offset, src);   offset += 8;
 867   lfd(F7, offset, src);   offset += 8;
 868   lfd(F8, offset, src);   offset += 8;
 869   lfd(F9, offset, src);   offset += 8;
 870   lfd(F10, offset, src);  offset += 8;
 871   lfd(F11, offset, src);  offset += 8;
 872   lfd(F12, offset, src);  offset += 8;
 873   lfd(F13, offset, src);
 874 }
 875 
 876 void MacroAssembler::save_LR_CR(Register tmp) {
 877   mfcr(tmp);
 878   std(tmp, _abi(cr), R1_SP);
 879   mflr(tmp);
 880   std(tmp, _abi(lr), R1_SP);
 881   // Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad)
 882 }
 883 
 884 void MacroAssembler::restore_LR_CR(Register tmp) {
 885   assert(tmp != R1_SP, "must be distinct");
 886   ld(tmp, _abi(lr), R1_SP);
 887   mtlr(tmp);
 888   ld(tmp, _abi(cr), R1_SP);
 889   mtcr(tmp);
 890 }
 891 
 892 address MacroAssembler::get_PC_trash_LR(Register result) {
 893   Label L;
 894   bl(L);
 895   bind(L);
 896   address lr_pc = pc();
 897   mflr(result);
 898   return lr_pc;
 899 }
 900 
 901 void MacroAssembler::resize_frame(Register offset, Register tmp) {
 902 #ifdef ASSERT
 903   assert_different_registers(offset, tmp, R1_SP);
 904   andi_(tmp, offset, frame::alignment_in_bytes-1);
 905   asm_assert_eq("resize_frame: unaligned", 0x204);
 906 #endif
 907 
 908   // tmp <- *(SP)
 909   ld(tmp, _abi(callers_sp), R1_SP);
 910   // addr <- SP + offset;
 911   // *(addr) <- tmp;
 912   // SP <- addr
 913   stdux(tmp, R1_SP, offset);
 914 }
 915 
 916 void MacroAssembler::resize_frame(int offset, Register tmp) {
 917   assert(is_simm(offset, 16), "too big an offset");
 918   assert_different_registers(tmp, R1_SP);
 919   assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned");
 920   // tmp <- *(SP)
 921   ld(tmp, _abi(callers_sp), R1_SP);
 922   // addr <- SP + offset;
 923   // *(addr) <- tmp;
 924   // SP <- addr
 925   stdu(tmp, offset, R1_SP);
 926 }
 927 
 928 void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) {
 929   // (addr == tmp1) || (addr == tmp2) is allowed here!
 930   assert(tmp1 != tmp2, "must be distinct");
 931 
 932   // compute offset w.r.t. current stack pointer
 933   // tmp_1 <- addr - SP (!)
 934   subf(tmp1, R1_SP, addr);
 935 
 936   // atomically update SP keeping back link.
 937   resize_frame(tmp1/* offset */, tmp2/* tmp */);
 938 }
 939 
 940 void MacroAssembler::push_frame(Register bytes, Register tmp) {
 941 #ifdef ASSERT
 942   assert(bytes != R0, "r0 not allowed here");
 943   andi_(R0, bytes, frame::alignment_in_bytes-1);
 944   asm_assert_eq("push_frame(Reg, Reg): unaligned", 0x203);
 945 #endif
 946   neg(tmp, bytes);
 947   stdux(R1_SP, R1_SP, tmp);
 948 }
 949 
 950 // Push a frame of size `bytes'.
 951 void MacroAssembler::push_frame(unsigned int bytes, Register tmp) {
 952   long offset = align_addr(bytes, frame::alignment_in_bytes);
 953   if (is_simm(-offset, 16)) {
 954     stdu(R1_SP, -offset, R1_SP);
 955   } else {
 956     load_const_optimized(tmp, -offset);
 957     stdux(R1_SP, R1_SP, tmp);
 958   }
 959 }
 960 
 961 // Push a frame of size `bytes' plus abi_reg_args on top.
 962 void MacroAssembler::push_frame_reg_args(unsigned int bytes, Register tmp) {
 963   push_frame(bytes + frame::abi_reg_args_size, tmp);
 964 }
 965 
 966 // Setup up a new C frame with a spill area for non-volatile GPRs and
 967 // additional space for local variables.
 968 void MacroAssembler::push_frame_reg_args_nonvolatiles(unsigned int bytes,
 969                                                       Register tmp) {
 970   push_frame(bytes + frame::abi_reg_args_size + frame::spill_nonvolatiles_size, tmp);
 971 }
 972 
 973 // Pop current C frame.
 974 void MacroAssembler::pop_frame() {
 975   ld(R1_SP, _abi(callers_sp), R1_SP);
 976 }
 977 
 978 #if defined(ABI_ELFv2)
 979 address MacroAssembler::branch_to(Register r_function_entry, bool and_link) {
 980   // TODO(asmundak): make sure the caller uses R12 as function descriptor
 981   // most of the times.
 982   if (R12 != r_function_entry) {
 983     mr(R12, r_function_entry);
 984   }
 985   mtctr(R12);
 986   // Do a call or a branch.
 987   if (and_link) {
 988     bctrl();
 989   } else {
 990     bctr();
 991   }
 992   _last_calls_return_pc = pc();
 993 
 994   return _last_calls_return_pc;
 995 }
 996 
 997 // Call a C function via a function descriptor and use full C
 998 // calling conventions. Updates and returns _last_calls_return_pc.
 999 address MacroAssembler::call_c(Register r_function_entry) {
1000   return branch_to(r_function_entry, /*and_link=*/true);
1001 }
1002 
1003 // For tail calls: only branch, don't link, so callee returns to caller of this function.
1004 address MacroAssembler::call_c_and_return_to_caller(Register r_function_entry) {
1005   return branch_to(r_function_entry, /*and_link=*/false);
1006 }
1007 
1008 address MacroAssembler::call_c(address function_entry, relocInfo::relocType rt) {
1009   load_const(R12, function_entry, R0);
1010   return branch_to(R12,  /*and_link=*/true);
1011 }
1012 
1013 #else
1014 // Generic version of a call to C function via a function descriptor
1015 // with variable support for C calling conventions (TOC, ENV, etc.).
1016 // Updates and returns _last_calls_return_pc.
1017 address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
1018                                   bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) {
1019   // we emit standard ptrgl glue code here
1020   assert((function_descriptor != R0), "function_descriptor cannot be R0");
1021 
1022   // retrieve necessary entries from the function descriptor
1023   ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor);
1024   mtctr(R0);
1025 
1026   if (load_toc_of_callee) {
1027     ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor);
1028   }
1029   if (load_env_of_callee) {
1030     ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor);
1031   } else if (load_toc_of_callee) {
1032     li(R11, 0);
1033   }
1034 
1035   // do a call or a branch
1036   if (and_link) {
1037     bctrl();
1038   } else {
1039     bctr();
1040   }
1041   _last_calls_return_pc = pc();
1042 
1043   return _last_calls_return_pc;
1044 }
1045 
1046 // Call a C function via a function descriptor and use full C calling
1047 // conventions.
1048 // We don't use the TOC in generated code, so there is no need to save
1049 // and restore its value.
1050 address MacroAssembler::call_c(Register fd) {
1051   return branch_to(fd, /*and_link=*/true,
1052                        /*save toc=*/false,
1053                        /*restore toc=*/false,
1054                        /*load toc=*/true,
1055                        /*load env=*/true);
1056 }
1057 
1058 address MacroAssembler::call_c_and_return_to_caller(Register fd) {
1059   return branch_to(fd, /*and_link=*/false,
1060                        /*save toc=*/false,
1061                        /*restore toc=*/false,
1062                        /*load toc=*/true,
1063                        /*load env=*/true);
1064 }
1065 
1066 address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) {
1067   if (rt != relocInfo::none) {
1068     // this call needs to be relocatable
1069     if (!ReoptimizeCallSequences
1070         || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1071         || fd == NULL   // support code-size estimation
1072         || !fd->is_friend_function()
1073         || fd->entry() == NULL) {
1074       // it's not a friend function as defined by class FunctionDescriptor,
1075       // so do a full call-c here.
1076       load_const(R11, (address)fd, R0);
1077 
1078       bool has_env = (fd != NULL && fd->env() != NULL);
1079       return branch_to(R11, /*and_link=*/true,
1080                             /*save toc=*/false,
1081                             /*restore toc=*/false,
1082                             /*load toc=*/true,
1083                             /*load env=*/has_env);
1084     } else {
1085       // It's a friend function. Load the entry point and don't care about
1086       // toc and env. Use an optimizable call instruction, but ensure the
1087       // same code-size as in the case of a non-friend function.
1088       nop();
1089       nop();
1090       nop();
1091       bl64_patchable(fd->entry(), rt);
1092       _last_calls_return_pc = pc();
1093       return _last_calls_return_pc;
1094     }
1095   } else {
1096     // This call does not need to be relocatable, do more aggressive
1097     // optimizations.
1098     if (!ReoptimizeCallSequences
1099       || !fd->is_friend_function()) {
1100       // It's not a friend function as defined by class FunctionDescriptor,
1101       // so do a full call-c here.
1102       load_const(R11, (address)fd, R0);
1103       return branch_to(R11, /*and_link=*/true,
1104                             /*save toc=*/false,
1105                             /*restore toc=*/false,
1106                             /*load toc=*/true,
1107                             /*load env=*/true);
1108     } else {
1109       // it's a friend function, load the entry point and don't care about
1110       // toc and env.
1111       address dest = fd->entry();
1112       if (is_within_range_of_b(dest, pc())) {
1113         bl(dest);
1114       } else {
1115         bl64_patchable(dest, rt);
1116       }
1117       _last_calls_return_pc = pc();
1118       return _last_calls_return_pc;
1119     }
1120   }
1121 }
1122 
1123 // Call a C function.  All constants needed reside in TOC.
1124 //
1125 // Read the address to call from the TOC.
1126 // Read env from TOC, if fd specifies an env.
1127 // Read new TOC from TOC.
1128 address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
1129                                          relocInfo::relocType rt, Register toc) {
1130   if (!ReoptimizeCallSequences
1131     || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1132     || !fd->is_friend_function()) {
1133     // It's not a friend function as defined by class FunctionDescriptor,
1134     // so do a full call-c here.
1135     assert(fd->entry() != NULL, "function must be linked");
1136 
1137     AddressLiteral fd_entry(fd->entry());
1138     bool success = load_const_from_method_toc(R11, fd_entry, toc, /*fixed_size*/ true);
1139     mtctr(R11);
1140     if (fd->env() == NULL) {
1141       li(R11, 0);
1142       nop();
1143     } else {
1144       AddressLiteral fd_env(fd->env());
1145       success = success && load_const_from_method_toc(R11, fd_env, toc, /*fixed_size*/ true);
1146     }
1147     AddressLiteral fd_toc(fd->toc());
1148     // Set R2_TOC (load from toc)
1149     success = success && load_const_from_method_toc(R2_TOC, fd_toc, toc, /*fixed_size*/ true);
1150     bctrl();
1151     _last_calls_return_pc = pc();
1152     if (!success) { return NULL; }
1153   } else {
1154     // It's a friend function, load the entry point and don't care about
1155     // toc and env. Use an optimizable call instruction, but ensure the
1156     // same code-size as in the case of a non-friend function.
1157     nop();
1158     bl64_patchable(fd->entry(), rt);
1159     _last_calls_return_pc = pc();
1160   }
1161   return _last_calls_return_pc;
1162 }
1163 #endif // ABI_ELFv2
1164 
1165 void MacroAssembler::call_VM_base(Register oop_result,
1166                                   Register last_java_sp,
1167                                   address  entry_point,
1168                                   bool     check_exceptions) {
1169   BLOCK_COMMENT("call_VM {");
1170   // Determine last_java_sp register.
1171   if (!last_java_sp->is_valid()) {
1172     last_java_sp = R1_SP;
1173   }
1174   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1);
1175 
1176   // ARG1 must hold thread address.
1177   mr(R3_ARG1, R16_thread);
1178 #if defined(ABI_ELFv2)
1179   address return_pc = call_c(entry_point, relocInfo::none);
1180 #else
1181   address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none);
1182 #endif
1183 
1184   reset_last_Java_frame();
1185 
1186   // Check for pending exceptions.
1187   if (check_exceptions) {
1188     // We don't check for exceptions here.
1189     ShouldNotReachHere();
1190   }
1191 
1192   // Get oop result if there is one and reset the value in the thread.
1193   if (oop_result->is_valid()) {
1194     get_vm_result(oop_result);
1195   }
1196 
1197   _last_calls_return_pc = return_pc;
1198   BLOCK_COMMENT("} call_VM");
1199 }
1200 
1201 void MacroAssembler::call_VM_leaf_base(address entry_point) {
1202   BLOCK_COMMENT("call_VM_leaf {");
1203 #if defined(ABI_ELFv2)
1204   call_c(entry_point, relocInfo::none);
1205 #else
1206   call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none);
1207 #endif
1208   BLOCK_COMMENT("} call_VM_leaf");
1209 }
1210 
1211 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
1212   call_VM_base(oop_result, noreg, entry_point, check_exceptions);
1213 }
1214 
1215 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1,
1216                              bool check_exceptions) {
1217   // R3_ARG1 is reserved for the thread.
1218   mr_if_needed(R4_ARG2, arg_1);
1219   call_VM(oop_result, entry_point, check_exceptions);
1220 }
1221 
1222 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
1223                              bool check_exceptions) {
1224   // R3_ARG1 is reserved for the thread
1225   mr_if_needed(R4_ARG2, arg_1);
1226   assert(arg_2 != R4_ARG2, "smashed argument");
1227   mr_if_needed(R5_ARG3, arg_2);
1228   call_VM(oop_result, entry_point, check_exceptions);
1229 }
1230 
1231 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3,
1232                              bool check_exceptions) {
1233   // R3_ARG1 is reserved for the thread
1234   mr_if_needed(R4_ARG2, arg_1);
1235   assert(arg_2 != R4_ARG2, "smashed argument");
1236   mr_if_needed(R5_ARG3, arg_2);
1237   mr_if_needed(R6_ARG4, arg_3);
1238   call_VM(oop_result, entry_point, check_exceptions);
1239 }
1240 
1241 void MacroAssembler::call_VM_leaf(address entry_point) {
1242   call_VM_leaf_base(entry_point);
1243 }
1244 
1245 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
1246   mr_if_needed(R3_ARG1, arg_1);
1247   call_VM_leaf(entry_point);
1248 }
1249 
1250 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
1251   mr_if_needed(R3_ARG1, arg_1);
1252   assert(arg_2 != R3_ARG1, "smashed argument");
1253   mr_if_needed(R4_ARG2, arg_2);
1254   call_VM_leaf(entry_point);
1255 }
1256 
1257 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1258   mr_if_needed(R3_ARG1, arg_1);
1259   assert(arg_2 != R3_ARG1, "smashed argument");
1260   mr_if_needed(R4_ARG2, arg_2);
1261   assert(arg_3 != R3_ARG1 && arg_3 != R4_ARG2, "smashed argument");
1262   mr_if_needed(R5_ARG3, arg_3);
1263   call_VM_leaf(entry_point);
1264 }
1265 
1266 // Check whether instruction is a read access to the polling page
1267 // which was emitted by load_from_polling_page(..).
1268 bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext,
1269                                                address* polling_address_ptr) {
1270   if (!is_ld(instruction))
1271     return false; // It's not a ld. Fail.
1272 
1273   int rt = inv_rt_field(instruction);
1274   int ra = inv_ra_field(instruction);
1275   int ds = inv_ds_field(instruction);
1276   if (!(ds == 0 && ra != 0 && rt == 0)) {
1277     return false; // It's not a ld(r0, X, ra). Fail.
1278   }
1279 
1280   if (!ucontext) {
1281     // Set polling address.
1282     if (polling_address_ptr != NULL) {
1283       *polling_address_ptr = NULL;
1284     }
1285     return true; // No ucontext given. Can't check value of ra. Assume true.
1286   }
1287 
1288 #ifdef LINUX
1289   // Ucontext given. Check that register ra contains the address of
1290   // the safepoing polling page.
1291   ucontext_t* uc = (ucontext_t*) ucontext;
1292   // Set polling address.
1293   address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds;
1294   if (polling_address_ptr != NULL) {
1295     *polling_address_ptr = addr;
1296   }
1297   return os::is_poll_address(addr);
1298 #else
1299   // Not on Linux, ucontext must be NULL.
1300   ShouldNotReachHere();
1301   return false;
1302 #endif
1303 }
1304 
1305 bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) {
1306 #ifdef LINUX
1307   ucontext_t* uc = (ucontext_t*) ucontext;
1308 
1309   if (is_stwx(instruction) || is_stwux(instruction)) {
1310     int ra = inv_ra_field(instruction);
1311     int rb = inv_rb_field(instruction);
1312 
1313     // look up content of ra and rb in ucontext
1314     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1315     long rb_val=(long)uc->uc_mcontext.regs->gpr[rb];
1316     return os::is_memory_serialize_page(thread, ra_val+rb_val);
1317   } else if (is_stw(instruction) || is_stwu(instruction)) {
1318     int ra = inv_ra_field(instruction);
1319     int d1 = inv_d1_field(instruction);
1320 
1321     // look up content of ra in ucontext
1322     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1323     return os::is_memory_serialize_page(thread, ra_val+d1);
1324   } else {
1325     return false;
1326   }
1327 #else
1328   // workaround not needed on !LINUX :-)
1329   ShouldNotCallThis();
1330   return false;
1331 #endif
1332 }
1333 
1334 void MacroAssembler::bang_stack_with_offset(int offset) {
1335   // When increasing the stack, the old stack pointer will be written
1336   // to the new top of stack according to the PPC64 abi.
1337   // Therefore, stack banging is not necessary when increasing
1338   // the stack by <= os::vm_page_size() bytes.
1339   // When increasing the stack by a larger amount, this method is
1340   // called repeatedly to bang the intermediate pages.
1341 
1342   // Stack grows down, caller passes positive offset.
1343   assert(offset > 0, "must bang with positive offset");
1344 
1345   long stdoffset = -offset;
1346 
1347   if (is_simm(stdoffset, 16)) {
1348     // Signed 16 bit offset, a simple std is ok.
1349     if (UseLoadInstructionsForStackBangingPPC64) {
1350       ld(R0, (int)(signed short)stdoffset, R1_SP);
1351     } else {
1352       std(R0,(int)(signed short)stdoffset, R1_SP);
1353     }
1354   } else if (is_simm(stdoffset, 31)) {
1355     const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1356     const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1357 
1358     Register tmp = R11;
1359     addis(tmp, R1_SP, hi);
1360     if (UseLoadInstructionsForStackBangingPPC64) {
1361       ld(R0,  lo, tmp);
1362     } else {
1363       std(R0, lo, tmp);
1364     }
1365   } else {
1366     ShouldNotReachHere();
1367   }
1368 }
1369 
1370 // If instruction is a stack bang of the form
1371 //    std    R0,    x(Ry),       (see bang_stack_with_offset())
1372 //    stdu   R1_SP, x(R1_SP),    (see push_frame(), resize_frame())
1373 // or stdux  R1_SP, Rx, R1_SP    (see push_frame(), resize_frame())
1374 // return the banged address. Otherwise, return 0.
1375 address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) {
1376 #ifdef LINUX
1377   ucontext_t* uc = (ucontext_t*) ucontext;
1378   int rs = inv_rs_field(instruction);
1379   int ra = inv_ra_field(instruction);
1380   if (   (is_ld(instruction)   && rs == 0 &&  UseLoadInstructionsForStackBangingPPC64)
1381       || (is_std(instruction)  && rs == 0 && !UseLoadInstructionsForStackBangingPPC64)
1382       || (is_stdu(instruction) && rs == 1)) {
1383     int ds = inv_ds_field(instruction);
1384     // return banged address
1385     return ds+(address)uc->uc_mcontext.regs->gpr[ra];
1386   } else if (is_stdux(instruction) && rs == 1) {
1387     int rb = inv_rb_field(instruction);
1388     address sp = (address)uc->uc_mcontext.regs->gpr[1];
1389     long rb_val = (long)uc->uc_mcontext.regs->gpr[rb];
1390     return ra != 1 || rb_val >= 0 ? NULL         // not a stack bang
1391                                   : sp + rb_val; // banged address
1392   }
1393   return NULL; // not a stack bang
1394 #else
1395   // workaround not needed on !LINUX :-)
1396   ShouldNotCallThis();
1397   return NULL;
1398 #endif
1399 }
1400 
1401 void MacroAssembler::reserved_stack_check(Register return_pc) {
1402   // Test if reserved zone needs to be enabled.
1403   Label no_reserved_zone_enabling;
1404 
1405   ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
1406   cmpld(CCR0, R1_SP, R0);
1407   blt_predict_taken(CCR0, no_reserved_zone_enabling);
1408 
1409   // Enable reserved zone again, throw stack overflow exception.
1410   push_frame_reg_args(0, R0);
1411   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
1412   pop_frame();
1413   mtlr(return_pc);
1414   load_const_optimized(R0, StubRoutines::throw_delayed_StackOverflowError_entry());
1415   mtctr(R0);
1416   bctr();
1417 
1418   should_not_reach_here();
1419 
1420   bind(no_reserved_zone_enabling);
1421 }
1422 
1423 void MacroAssembler::getandsetd(Register dest_current_value, Register exchange_value, Register addr_base,
1424                                 bool cmpxchgx_hint) {
1425   Label retry;
1426   bind(retry);
1427   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1428   stdcx_(exchange_value, addr_base);
1429   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1430     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1431   } else {
1432     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1433   }
1434 }
1435 
1436 void MacroAssembler::getandaddd(Register dest_current_value, Register inc_value, Register addr_base,
1437                                 Register tmp, bool cmpxchgx_hint) {
1438   Label retry;
1439   bind(retry);
1440   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1441   add(tmp, dest_current_value, inc_value);
1442   stdcx_(tmp, addr_base);
1443   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1444     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1445   } else {
1446     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1447   }
1448 }
1449 
1450 // Word/sub-word atomic helper functions
1451 
1452 // Temps and addr_base are killed if size < 4 and processor does not support respective instructions.
1453 // Only signed types are supported with size < 4.
1454 // Atomic add always kills tmp1.
1455 void MacroAssembler::atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value,
1456                                                    Register addr_base, Register tmp1, Register tmp2, Register tmp3,
1457                                                    bool cmpxchgx_hint, bool is_add, int size) {
1458   // Sub-word instructions are available since Power 8.
1459   // For older processors, instruction_type != size holds, and we
1460   // emulate the sub-word instructions by constructing a 4-byte value
1461   // that leaves the other bytes unchanged.
1462   const int instruction_type = VM_Version::has_lqarx() ? size : 4;
1463 
1464   Label retry;
1465   Register shift_amount = noreg,
1466            val32 = dest_current_value,
1467            modval = is_add ? tmp1 : exchange_value;
1468 
1469   if (instruction_type != size) {
1470     assert_different_registers(tmp1, tmp2, tmp3, dest_current_value, exchange_value, addr_base);
1471     modval = tmp1;
1472     shift_amount = tmp2;
1473     val32 = tmp3;
1474     // Need some preperation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
1475 #ifdef VM_LITTLE_ENDIAN
1476     rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
1477     clrrdi(addr_base, addr_base, 2);
1478 #else
1479     xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
1480     clrrdi(addr_base, addr_base, 2);
1481     rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
1482 #endif
1483   }
1484 
1485   // atomic emulation loop
1486   bind(retry);
1487 
1488   switch (instruction_type) {
1489     case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
1490     case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
1491     case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
1492     default: ShouldNotReachHere();
1493   }
1494 
1495   if (instruction_type != size) {
1496     srw(dest_current_value, val32, shift_amount);
1497   }
1498 
1499   if (is_add) { add(modval, dest_current_value, exchange_value); }
1500 
1501   if (instruction_type != size) {
1502     // Transform exchange value such that the replacement can be done by one xor instruction.
1503     xorr(modval, dest_current_value, is_add ? modval : exchange_value);
1504     clrldi(modval, modval, (size == 1) ? 56 : 48);
1505     slw(modval, modval, shift_amount);
1506     xorr(modval, val32, modval);
1507   }
1508 
1509   switch (instruction_type) {
1510     case 4: stwcx_(modval, addr_base); break;
1511     case 2: sthcx_(modval, addr_base); break;
1512     case 1: stbcx_(modval, addr_base); break;
1513     default: ShouldNotReachHere();
1514   }
1515 
1516   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1517     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1518   } else {
1519     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1520   }
1521 
1522   // l?arx zero-extends, but Java wants byte/short values sign-extended.
1523   if (size == 1) {
1524     extsb(dest_current_value, dest_current_value);
1525   } else if (size == 2) {
1526     extsh(dest_current_value, dest_current_value);
1527   };
1528 }
1529 
1530 // Temps, addr_base and exchange_value are killed if size < 4 and processor does not support respective instructions.
1531 // Only signed types are supported with size < 4.
1532 void MacroAssembler::cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value,
1533                                        Register compare_value, Register exchange_value,
1534                                        Register addr_base, Register tmp1, Register tmp2,
1535                                        Label &retry, Label &failed, bool cmpxchgx_hint, int size) {
1536   // Sub-word instructions are available since Power 8.
1537   // For older processors, instruction_type != size holds, and we
1538   // emulate the sub-word instructions by constructing a 4-byte value
1539   // that leaves the other bytes unchanged.
1540   const int instruction_type = VM_Version::has_lqarx() ? size : 4;
1541 
1542   Register shift_amount = noreg,
1543            val32 = dest_current_value,
1544            modval = exchange_value;
1545 
1546   if (instruction_type != size) {
1547     assert_different_registers(tmp1, tmp2, dest_current_value, compare_value, exchange_value, addr_base);
1548     shift_amount = tmp1;
1549     val32 = tmp2;
1550     modval = tmp2;
1551     // Need some preperation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
1552 #ifdef VM_LITTLE_ENDIAN
1553     rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
1554     clrrdi(addr_base, addr_base, 2);
1555 #else
1556     xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
1557     clrrdi(addr_base, addr_base, 2);
1558     rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
1559 #endif
1560     // Transform exchange value such that the replacement can be done by one xor instruction.
1561     xorr(exchange_value, compare_value, exchange_value);
1562     clrldi(exchange_value, exchange_value, (size == 1) ? 56 : 48);
1563     slw(exchange_value, exchange_value, shift_amount);
1564   }
1565 
1566   // atomic emulation loop
1567   bind(retry);
1568 
1569   switch (instruction_type) {
1570     case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
1571     case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
1572     case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
1573     default: ShouldNotReachHere();
1574   }
1575 
1576   if (instruction_type != size) {
1577     srw(dest_current_value, val32, shift_amount);
1578   }
1579   if (size == 1) {
1580     extsb(dest_current_value, dest_current_value);
1581   } else if (size == 2) {
1582     extsh(dest_current_value, dest_current_value);
1583   };
1584 
1585   cmpw(flag, dest_current_value, compare_value);
1586   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1587     bne_predict_not_taken(flag, failed);
1588   } else {
1589     bne(                  flag, failed);
1590   }
1591   // branch to done  => (flag == ne), (dest_current_value != compare_value)
1592   // fall through    => (flag == eq), (dest_current_value == compare_value)
1593 
1594   if (instruction_type != size) {
1595     xorr(modval, val32, exchange_value);
1596   }
1597 
1598   switch (instruction_type) {
1599     case 4: stwcx_(modval, addr_base); break;
1600     case 2: sthcx_(modval, addr_base); break;
1601     case 1: stbcx_(modval, addr_base); break;
1602     default: ShouldNotReachHere();
1603   }
1604 }
1605 
1606 // CmpxchgX sets condition register to cmpX(current, compare).
1607 void MacroAssembler::cmpxchg_generic(ConditionRegister flag, Register dest_current_value,
1608                                      Register compare_value, Register exchange_value,
1609                                      Register addr_base, Register tmp1, Register tmp2,
1610                                      int semantics, bool cmpxchgx_hint,
1611                                      Register int_flag_success, bool contention_hint, bool weak, int size) {
1612   Label retry;
1613   Label failed;
1614   Label done;
1615 
1616   // Save one branch if result is returned via register and
1617   // result register is different from the other ones.
1618   bool use_result_reg    = (int_flag_success != noreg);
1619   bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value &&
1620                             int_flag_success != exchange_value && int_flag_success != addr_base &&
1621                             int_flag_success != tmp1 && int_flag_success != tmp2);
1622   assert(!weak || flag == CCR0, "weak only supported with CCR0");
1623   assert(size == 1 || size == 2 || size == 4, "unsupported");
1624 
1625   if (use_result_reg && preset_result_reg) {
1626     li(int_flag_success, 0); // preset (assume cas failed)
1627   }
1628 
1629   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1630   if (contention_hint) { // Don't try to reserve if cmp fails.
1631     switch (size) {
1632       case 1: lbz(dest_current_value, 0, addr_base); extsb(dest_current_value, dest_current_value); break;
1633       case 2: lha(dest_current_value, 0, addr_base); break;
1634       case 4: lwz(dest_current_value, 0, addr_base); break;
1635       default: ShouldNotReachHere();
1636     }
1637     cmpw(flag, dest_current_value, compare_value);
1638     bne(flag, failed);
1639   }
1640 
1641   // release/fence semantics
1642   if (semantics & MemBarRel) {
1643     release();
1644   }
1645 
1646   cmpxchg_loop_body(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
1647                     retry, failed, cmpxchgx_hint, size);
1648   if (!weak || use_result_reg) {
1649     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1650       bne_predict_not_taken(CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
1651     } else {
1652       bne(                  CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
1653     }
1654   }
1655   // fall through    => (flag == eq), (dest_current_value == compare_value), (swapped)
1656 
1657   // Result in register (must do this at the end because int_flag_success can be the
1658   // same register as one above).
1659   if (use_result_reg) {
1660     li(int_flag_success, 1);
1661   }
1662 
1663   if (semantics & MemBarFenceAfter) {
1664     fence();
1665   } else if (semantics & MemBarAcq) {
1666     isync();
1667   }
1668 
1669   if (use_result_reg && !preset_result_reg) {
1670     b(done);
1671   }
1672 
1673   bind(failed);
1674   if (use_result_reg && !preset_result_reg) {
1675     li(int_flag_success, 0);
1676   }
1677 
1678   bind(done);
1679   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1680   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1681 }
1682 
1683 // Preforms atomic compare exchange:
1684 //   if (compare_value == *addr_base)
1685 //     *addr_base = exchange_value
1686 //     int_flag_success = 1;
1687 //   else
1688 //     int_flag_success = 0;
1689 //
1690 // ConditionRegister flag       = cmp(compare_value, *addr_base)
1691 // Register dest_current_value  = *addr_base
1692 // Register compare_value       Used to compare with value in memory
1693 // Register exchange_value      Written to memory if compare_value == *addr_base
1694 // Register addr_base           The memory location to compareXChange
1695 // Register int_flag_success    Set to 1 if exchange_value was written to *addr_base
1696 //
1697 // To avoid the costly compare exchange the value is tested beforehand.
1698 // Several special cases exist to avoid that unnecessary information is generated.
1699 //
1700 void MacroAssembler::cmpxchgd(ConditionRegister flag,
1701                               Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value,
1702                               Register addr_base, int semantics, bool cmpxchgx_hint,
1703                               Register int_flag_success, Label* failed_ext, bool contention_hint, bool weak) {
1704   Label retry;
1705   Label failed_int;
1706   Label& failed = (failed_ext != NULL) ? *failed_ext : failed_int;
1707   Label done;
1708 
1709   // Save one branch if result is returned via register and result register is different from the other ones.
1710   bool use_result_reg    = (int_flag_success!=noreg);
1711   bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value.register_or_noreg() &&
1712                             int_flag_success!=exchange_value && int_flag_success!=addr_base);
1713   assert(!weak || flag == CCR0, "weak only supported with CCR0");
1714   assert(int_flag_success == noreg || failed_ext == NULL, "cannot have both");
1715 
1716   if (use_result_reg && preset_result_reg) {
1717     li(int_flag_success, 0); // preset (assume cas failed)
1718   }
1719 
1720   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1721   if (contention_hint) { // Don't try to reserve if cmp fails.
1722     ld(dest_current_value, 0, addr_base);
1723     cmpd(flag, compare_value, dest_current_value);
1724     bne(flag, failed);
1725   }
1726 
1727   // release/fence semantics
1728   if (semantics & MemBarRel) {
1729     release();
1730   }
1731 
1732   // atomic emulation loop
1733   bind(retry);
1734 
1735   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1736   cmpd(flag, compare_value, dest_current_value);
1737   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1738     bne_predict_not_taken(flag, failed);
1739   } else {
1740     bne(                  flag, failed);
1741   }
1742 
1743   stdcx_(exchange_value, addr_base);
1744   if (!weak || use_result_reg || failed_ext) {
1745     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1746       bne_predict_not_taken(CCR0, weak ? failed : retry); // stXcx_ sets CCR0
1747     } else {
1748       bne(                  CCR0, weak ? failed : retry); // stXcx_ sets CCR0
1749     }
1750   }
1751 
1752   // result in register (must do this at the end because int_flag_success can be the same register as one above)
1753   if (use_result_reg) {
1754     li(int_flag_success, 1);
1755   }
1756 
1757   if (semantics & MemBarFenceAfter) {
1758     fence();
1759   } else if (semantics & MemBarAcq) {
1760     isync();
1761   }
1762 
1763   if (use_result_reg && !preset_result_reg) {
1764     b(done);
1765   }
1766 
1767   bind(failed_int);
1768   if (use_result_reg && !preset_result_reg) {
1769     li(int_flag_success, 0);
1770   }
1771 
1772   bind(done);
1773   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1774   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1775 }
1776 
1777 // Look up the method for a megamorphic invokeinterface call.
1778 // The target method is determined by <intf_klass, itable_index>.
1779 // The receiver klass is in recv_klass.
1780 // On success, the result will be in method_result, and execution falls through.
1781 // On failure, execution transfers to the given label.
1782 void MacroAssembler::lookup_interface_method(Register recv_klass,
1783                                              Register intf_klass,
1784                                              RegisterOrConstant itable_index,
1785                                              Register method_result,
1786                                              Register scan_temp,
1787                                              Register temp2,
1788                                              Label& L_no_such_interface,
1789                                              bool return_method) {
1790   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
1791 
1792   // Compute start of first itableOffsetEntry (which is at the end of the vtable).
1793   int vtable_base = in_bytes(Klass::vtable_start_offset());
1794   int itentry_off = itableMethodEntry::method_offset_in_bytes();
1795   int logMEsize   = exact_log2(itableMethodEntry::size() * wordSize);
1796   int scan_step   = itableOffsetEntry::size() * wordSize;
1797   int log_vte_size= exact_log2(vtableEntry::size_in_bytes());
1798 
1799   lwz(scan_temp, in_bytes(Klass::vtable_length_offset()), recv_klass);
1800   // %%% We should store the aligned, prescaled offset in the klassoop.
1801   // Then the next several instructions would fold away.
1802 
1803   sldi(scan_temp, scan_temp, log_vte_size);
1804   addi(scan_temp, scan_temp, vtable_base);
1805   add(scan_temp, recv_klass, scan_temp);
1806 
1807   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
1808   if (return_method) {
1809     if (itable_index.is_register()) {
1810       Register itable_offset = itable_index.as_register();
1811       sldi(method_result, itable_offset, logMEsize);
1812       if (itentry_off) { addi(method_result, method_result, itentry_off); }
1813       add(method_result, method_result, recv_klass);
1814     } else {
1815       long itable_offset = (long)itable_index.as_constant();
1816       // static address, no relocation
1817       add_const_optimized(method_result, recv_klass, (itable_offset << logMEsize) + itentry_off, temp2);
1818     }
1819   }
1820 
1821   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
1822   //   if (scan->interface() == intf) {
1823   //     result = (klass + scan->offset() + itable_index);
1824   //   }
1825   // }
1826   Label search, found_method;
1827 
1828   for (int peel = 1; peel >= 0; peel--) {
1829     // %%%% Could load both offset and interface in one ldx, if they were
1830     // in the opposite order. This would save a load.
1831     ld(temp2, itableOffsetEntry::interface_offset_in_bytes(), scan_temp);
1832 
1833     // Check that this entry is non-null. A null entry means that
1834     // the receiver class doesn't implement the interface, and wasn't the
1835     // same as when the caller was compiled.
1836     cmpd(CCR0, temp2, intf_klass);
1837 
1838     if (peel) {
1839       beq(CCR0, found_method);
1840     } else {
1841       bne(CCR0, search);
1842       // (invert the test to fall through to found_method...)
1843     }
1844 
1845     if (!peel) break;
1846 
1847     bind(search);
1848 
1849     cmpdi(CCR0, temp2, 0);
1850     beq(CCR0, L_no_such_interface);
1851     addi(scan_temp, scan_temp, scan_step);
1852   }
1853 
1854   bind(found_method);
1855 
1856   // Got a hit.
1857   if (return_method) {
1858     int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
1859     lwz(scan_temp, ito_offset, scan_temp);
1860     ldx(method_result, scan_temp, method_result);
1861   }
1862 }
1863 
1864 // virtual method calling
1865 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1866                                            RegisterOrConstant vtable_index,
1867                                            Register method_result) {
1868 
1869   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
1870 
1871   const int base = in_bytes(Klass::vtable_start_offset());
1872   assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1873 
1874   if (vtable_index.is_register()) {
1875     sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord);
1876     add(recv_klass, vtable_index.as_register(), recv_klass);
1877   } else {
1878     addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord);
1879   }
1880   ld(R19_method, base + vtableEntry::method_offset_in_bytes(), recv_klass);
1881 }
1882 
1883 /////////////////////////////////////////// subtype checking ////////////////////////////////////////////
1884 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1885                                                    Register super_klass,
1886                                                    Register temp1_reg,
1887                                                    Register temp2_reg,
1888                                                    Label* L_success,
1889                                                    Label* L_failure,
1890                                                    Label* L_slow_path,
1891                                                    RegisterOrConstant super_check_offset) {
1892 
1893   const Register check_cache_offset = temp1_reg;
1894   const Register cached_super       = temp2_reg;
1895 
1896   assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super);
1897 
1898   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1899   int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
1900 
1901   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1902   bool need_slow_path = (must_load_sco || super_check_offset.constant_or_zero() == sco_offset);
1903 
1904   Label L_fallthrough;
1905   int label_nulls = 0;
1906   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1907   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1908   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
1909   assert(label_nulls <= 1 ||
1910          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
1911          "at most one NULL in the batch, usually");
1912 
1913   // If the pointers are equal, we are done (e.g., String[] elements).
1914   // This self-check enables sharing of secondary supertype arrays among
1915   // non-primary types such as array-of-interface. Otherwise, each such
1916   // type would need its own customized SSA.
1917   // We move this check to the front of the fast path because many
1918   // type checks are in fact trivially successful in this manner,
1919   // so we get a nicely predicted branch right at the start of the check.
1920   cmpd(CCR0, sub_klass, super_klass);
1921   beq(CCR0, *L_success);
1922 
1923   // Check the supertype display:
1924   if (must_load_sco) {
1925     // The super check offset is always positive...
1926     lwz(check_cache_offset, sco_offset, super_klass);
1927     super_check_offset = RegisterOrConstant(check_cache_offset);
1928     // super_check_offset is register.
1929     assert_different_registers(sub_klass, super_klass, cached_super, super_check_offset.as_register());
1930   }
1931   // The loaded value is the offset from KlassOopDesc.
1932 
1933   ld(cached_super, super_check_offset, sub_klass);
1934   cmpd(CCR0, cached_super, super_klass);
1935 
1936   // This check has worked decisively for primary supers.
1937   // Secondary supers are sought in the super_cache ('super_cache_addr').
1938   // (Secondary supers are interfaces and very deeply nested subtypes.)
1939   // This works in the same check above because of a tricky aliasing
1940   // between the super_cache and the primary super display elements.
1941   // (The 'super_check_addr' can address either, as the case requires.)
1942   // Note that the cache is updated below if it does not help us find
1943   // what we need immediately.
1944   // So if it was a primary super, we can just fail immediately.
1945   // Otherwise, it's the slow path for us (no success at this point).
1946 
1947 #define FINAL_JUMP(label) if (&(label) != &L_fallthrough) { b(label); }
1948 
1949   if (super_check_offset.is_register()) {
1950     beq(CCR0, *L_success);
1951     cmpwi(CCR0, super_check_offset.as_register(), sc_offset);
1952     if (L_failure == &L_fallthrough) {
1953       beq(CCR0, *L_slow_path);
1954     } else {
1955       bne(CCR0, *L_failure);
1956       FINAL_JUMP(*L_slow_path);
1957     }
1958   } else {
1959     if (super_check_offset.as_constant() == sc_offset) {
1960       // Need a slow path; fast failure is impossible.
1961       if (L_slow_path == &L_fallthrough) {
1962         beq(CCR0, *L_success);
1963       } else {
1964         bne(CCR0, *L_slow_path);
1965         FINAL_JUMP(*L_success);
1966       }
1967     } else {
1968       // No slow path; it's a fast decision.
1969       if (L_failure == &L_fallthrough) {
1970         beq(CCR0, *L_success);
1971       } else {
1972         bne(CCR0, *L_failure);
1973         FINAL_JUMP(*L_success);
1974       }
1975     }
1976   }
1977 
1978   bind(L_fallthrough);
1979 #undef FINAL_JUMP
1980 }
1981 
1982 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1983                                                    Register super_klass,
1984                                                    Register temp1_reg,
1985                                                    Register temp2_reg,
1986                                                    Label* L_success,
1987                                                    Register result_reg) {
1988   const Register array_ptr = temp1_reg; // current value from cache array
1989   const Register temp      = temp2_reg;
1990 
1991   assert_different_registers(sub_klass, super_klass, array_ptr, temp);
1992 
1993   int source_offset = in_bytes(Klass::secondary_supers_offset());
1994   int target_offset = in_bytes(Klass::secondary_super_cache_offset());
1995 
1996   int length_offset = Array<Klass*>::length_offset_in_bytes();
1997   int base_offset   = Array<Klass*>::base_offset_in_bytes();
1998 
1999   Label hit, loop, failure, fallthru;
2000 
2001   ld(array_ptr, source_offset, sub_klass);
2002 
2003   // TODO: PPC port: assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated.");
2004   lwz(temp, length_offset, array_ptr);
2005   cmpwi(CCR0, temp, 0);
2006   beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0
2007 
2008   mtctr(temp); // load ctr
2009 
2010   bind(loop);
2011   // Oops in table are NO MORE compressed.
2012   ld(temp, base_offset, array_ptr);
2013   cmpd(CCR0, temp, super_klass);
2014   beq(CCR0, hit);
2015   addi(array_ptr, array_ptr, BytesPerWord);
2016   bdnz(loop);
2017 
2018   bind(failure);
2019   if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss)
2020   b(fallthru);
2021 
2022   bind(hit);
2023   std(super_klass, target_offset, sub_klass); // save result to cache
2024   if (result_reg != noreg) { li(result_reg, 0); } // load zero result (indicates a hit)
2025   if (L_success != NULL) { b(*L_success); }
2026   else if (result_reg == noreg) { blr(); } // return with CR0.eq if neither label nor result reg provided
2027 
2028   bind(fallthru);
2029 }
2030 
2031 // Try fast path, then go to slow one if not successful
2032 void MacroAssembler::check_klass_subtype(Register sub_klass,
2033                          Register super_klass,
2034                          Register temp1_reg,
2035                          Register temp2_reg,
2036                          Label& L_success) {
2037   Label L_failure;
2038   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success, &L_failure);
2039   check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success);
2040   bind(L_failure); // Fallthru if not successful.
2041 }
2042 
2043 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
2044                                               Register temp_reg,
2045                                               Label& wrong_method_type) {
2046   assert_different_registers(mtype_reg, mh_reg, temp_reg);
2047   // Compare method type against that of the receiver.
2048   load_heap_oop(temp_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg), mh_reg,
2049                 noreg, noreg, false, IS_NOT_NULL);
2050   cmpd(CCR0, temp_reg, mtype_reg);
2051   bne(CCR0, wrong_method_type);
2052 }
2053 
2054 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
2055                                                    Register temp_reg,
2056                                                    int extra_slot_offset) {
2057   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
2058   int stackElementSize = Interpreter::stackElementSize;
2059   int offset = extra_slot_offset * stackElementSize;
2060   if (arg_slot.is_constant()) {
2061     offset += arg_slot.as_constant() * stackElementSize;
2062     return offset;
2063   } else {
2064     assert(temp_reg != noreg, "must specify");
2065     sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize));
2066     if (offset != 0)
2067       addi(temp_reg, temp_reg, offset);
2068     return temp_reg;
2069   }
2070 }
2071 
2072 // Supports temp2_reg = R0.
2073 void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj_reg,
2074                                           Register mark_reg, Register temp_reg,
2075                                           Register temp2_reg, Label& done, Label* slow_case) {
2076   assert(UseBiasedLocking, "why call this otherwise?");
2077 
2078 #ifdef ASSERT
2079   assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
2080 #endif
2081 
2082   Label cas_label;
2083 
2084   // Branch to done if fast path fails and no slow_case provided.
2085   Label *slow_case_int = (slow_case != NULL) ? slow_case : &done;
2086 
2087   // Biased locking
2088   // See whether the lock is currently biased toward our thread and
2089   // whether the epoch is still valid
2090   // Note that the runtime guarantees sufficient alignment of JavaThread
2091   // pointers to allow age to be placed into low bits
2092   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits,
2093          "biased locking makes assumptions about bit layout");
2094 
2095   if (PrintBiasedLockingStatistics) {
2096     load_const(temp2_reg, (address) BiasedLocking::total_entry_count_addr(), temp_reg);
2097     lwzx(temp_reg, temp2_reg);
2098     addi(temp_reg, temp_reg, 1);
2099     stwx(temp_reg, temp2_reg);
2100   }
2101 
2102   andi(temp_reg, mark_reg, markOopDesc::biased_lock_mask_in_place);
2103   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
2104   bne(cr_reg, cas_label);
2105 
2106   load_klass(temp_reg, obj_reg);
2107 
2108   load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
2109   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2110   orr(temp_reg, R16_thread, temp_reg);
2111   xorr(temp_reg, mark_reg, temp_reg);
2112   andr(temp_reg, temp_reg, temp2_reg);
2113   cmpdi(cr_reg, temp_reg, 0);
2114   if (PrintBiasedLockingStatistics) {
2115     Label l;
2116     bne(cr_reg, l);
2117     load_const(temp2_reg, (address) BiasedLocking::biased_lock_entry_count_addr());
2118     lwzx(mark_reg, temp2_reg);
2119     addi(mark_reg, mark_reg, 1);
2120     stwx(mark_reg, temp2_reg);
2121     // restore mark_reg
2122     ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
2123     bind(l);
2124   }
2125   beq(cr_reg, done);
2126 
2127   Label try_revoke_bias;
2128   Label try_rebias;
2129 
2130   // At this point we know that the header has the bias pattern and
2131   // that we are not the bias owner in the current epoch. We need to
2132   // figure out more details about the state of the header in order to
2133   // know what operations can be legally performed on the object's
2134   // header.
2135 
2136   // If the low three bits in the xor result aren't clear, that means
2137   // the prototype header is no longer biased and we have to revoke
2138   // the bias on this object.
2139   andi(temp2_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
2140   cmpwi(cr_reg, temp2_reg, 0);
2141   bne(cr_reg, try_revoke_bias);
2142 
2143   // Biasing is still enabled for this data type. See whether the
2144   // epoch of the current bias is still valid, meaning that the epoch
2145   // bits of the mark word are equal to the epoch bits of the
2146   // prototype header. (Note that the prototype header's epoch bits
2147   // only change at a safepoint.) If not, attempt to rebias the object
2148   // toward the current thread. Note that we must be absolutely sure
2149   // that the current epoch is invalid in order to do this because
2150   // otherwise the manipulations it performs on the mark word are
2151   // illegal.
2152 
2153   int shift_amount = 64 - markOopDesc::epoch_shift;
2154   // rotate epoch bits to right (little) end and set other bits to 0
2155   // [ big part | epoch | little part ] -> [ 0..0 | epoch ]
2156   rldicl_(temp2_reg, temp_reg, shift_amount, 64 - markOopDesc::epoch_bits);
2157   // branch if epoch bits are != 0, i.e. they differ, because the epoch has been incremented
2158   bne(CCR0, try_rebias);
2159 
2160   // The epoch of the current bias is still valid but we know nothing
2161   // about the owner; it might be set or it might be clear. Try to
2162   // acquire the bias of the object using an atomic operation. If this
2163   // fails we will go in to the runtime to revoke the object's bias.
2164   // Note that we first construct the presumed unbiased header so we
2165   // don't accidentally blow away another thread's valid bias.
2166   andi(mark_reg, mark_reg, (markOopDesc::biased_lock_mask_in_place |
2167                                 markOopDesc::age_mask_in_place |
2168                                 markOopDesc::epoch_mask_in_place));
2169   orr(temp_reg, R16_thread, mark_reg);
2170 
2171   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2172 
2173   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
2174   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2175            /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2176            /*where=*/obj_reg,
2177            MacroAssembler::MemBarAcq,
2178            MacroAssembler::cmpxchgx_hint_acquire_lock(),
2179            noreg, slow_case_int); // bail out if failed
2180 
2181   // If the biasing toward our thread failed, this means that
2182   // another thread succeeded in biasing it toward itself and we
2183   // need to revoke that bias. The revocation will occur in the
2184   // interpreter runtime in the slow case.
2185   if (PrintBiasedLockingStatistics) {
2186     load_const(temp2_reg, (address) BiasedLocking::anonymously_biased_lock_entry_count_addr(), temp_reg);
2187     lwzx(temp_reg, temp2_reg);
2188     addi(temp_reg, temp_reg, 1);
2189     stwx(temp_reg, temp2_reg);
2190   }
2191   b(done);
2192 
2193   bind(try_rebias);
2194   // At this point we know the epoch has expired, meaning that the
2195   // current "bias owner", if any, is actually invalid. Under these
2196   // circumstances _only_, we are allowed to use the current header's
2197   // value as the comparison value when doing the cas to acquire the
2198   // bias in the current epoch. In other words, we allow transfer of
2199   // the bias from one thread to another directly in this situation.
2200   load_klass(temp_reg, obj_reg);
2201   andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
2202   orr(temp2_reg, R16_thread, temp2_reg);
2203   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2204   orr(temp_reg, temp2_reg, temp_reg);
2205 
2206   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2207 
2208   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2209                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2210                  /*where=*/obj_reg,
2211                  MacroAssembler::MemBarAcq,
2212                  MacroAssembler::cmpxchgx_hint_acquire_lock(),
2213                  noreg, slow_case_int); // bail out if failed
2214 
2215   // If the biasing toward our thread failed, this means that
2216   // another thread succeeded in biasing it toward itself and we
2217   // need to revoke that bias. The revocation will occur in the
2218   // interpreter runtime in the slow case.
2219   if (PrintBiasedLockingStatistics) {
2220     load_const(temp2_reg, (address) BiasedLocking::rebiased_lock_entry_count_addr(), temp_reg);
2221     lwzx(temp_reg, temp2_reg);
2222     addi(temp_reg, temp_reg, 1);
2223     stwx(temp_reg, temp2_reg);
2224   }
2225   b(done);
2226 
2227   bind(try_revoke_bias);
2228   // The prototype mark in the klass doesn't have the bias bit set any
2229   // more, indicating that objects of this data type are not supposed
2230   // to be biased any more. We are going to try to reset the mark of
2231   // this object to the prototype value and fall through to the
2232   // CAS-based locking scheme. Note that if our CAS fails, it means
2233   // that another thread raced us for the privilege of revoking the
2234   // bias of this particular object, so it's okay to continue in the
2235   // normal locking code.
2236   load_klass(temp_reg, obj_reg);
2237   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2238   andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
2239   orr(temp_reg, temp_reg, temp2_reg);
2240 
2241   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2242 
2243   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
2244   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2245                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2246                  /*where=*/obj_reg,
2247                  MacroAssembler::MemBarAcq,
2248                  MacroAssembler::cmpxchgx_hint_acquire_lock());
2249 
2250   // reload markOop in mark_reg before continuing with lightweight locking
2251   ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
2252 
2253   // Fall through to the normal CAS-based lock, because no matter what
2254   // the result of the above CAS, some thread must have succeeded in
2255   // removing the bias bit from the object's header.
2256   if (PrintBiasedLockingStatistics) {
2257     Label l;
2258     bne(cr_reg, l);
2259     load_const(temp2_reg, (address) BiasedLocking::revoked_lock_entry_count_addr(), temp_reg);
2260     lwzx(temp_reg, temp2_reg);
2261     addi(temp_reg, temp_reg, 1);
2262     stwx(temp_reg, temp2_reg);
2263     bind(l);
2264   }
2265 
2266   bind(cas_label);
2267 }
2268 
2269 void MacroAssembler::biased_locking_exit (ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done) {
2270   // Check for biased locking unlock case, which is a no-op
2271   // Note: we do not have to check the thread ID for two reasons.
2272   // First, the interpreter checks for IllegalMonitorStateException at
2273   // a higher level. Second, if the bias was revoked while we held the
2274   // lock, the object could not be rebiased toward another thread, so
2275   // the bias bit would be clear.
2276 
2277   ld(temp_reg, 0, mark_addr);
2278   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
2279 
2280   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
2281   beq(cr_reg, done);
2282 }
2283 
2284 // allocation (for C1)
2285 void MacroAssembler::eden_allocate(
2286   Register obj,                      // result: pointer to object after successful allocation
2287   Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2288   int      con_size_in_bytes,        // object size in bytes if   known at compile time
2289   Register t1,                       // temp register
2290   Register t2,                       // temp register
2291   Label&   slow_case                 // continuation point if fast allocation fails
2292 ) {
2293   b(slow_case);
2294 }
2295 
2296 void MacroAssembler::tlab_allocate(
2297   Register obj,                      // result: pointer to object after successful allocation
2298   Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2299   int      con_size_in_bytes,        // object size in bytes if   known at compile time
2300   Register t1,                       // temp register
2301   Label&   slow_case                 // continuation point if fast allocation fails
2302 ) {
2303   // make sure arguments make sense
2304   assert_different_registers(obj, var_size_in_bytes, t1);
2305   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
2306   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
2307 
2308   const Register new_top = t1;
2309   //verify_tlab(); not implemented
2310 
2311   ld(obj, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
2312   ld(R0, in_bytes(JavaThread::tlab_end_offset()), R16_thread);
2313   if (var_size_in_bytes == noreg) {
2314     addi(new_top, obj, con_size_in_bytes);
2315   } else {
2316     add(new_top, obj, var_size_in_bytes);
2317   }
2318   cmpld(CCR0, new_top, R0);
2319   bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_case);
2320 
2321 #ifdef ASSERT
2322   // make sure new free pointer is properly aligned
2323   {
2324     Label L;
2325     andi_(R0, new_top, MinObjAlignmentInBytesMask);
2326     beq(CCR0, L);
2327     stop("updated TLAB free is not properly aligned", 0x934);
2328     bind(L);
2329   }
2330 #endif // ASSERT
2331 
2332   // update the tlab top pointer
2333   std(new_top, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
2334   //verify_tlab(); not implemented
2335 }
2336 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2) {
2337   unimplemented("incr_allocated_bytes");
2338 }
2339 
2340 address MacroAssembler::emit_trampoline_stub(int destination_toc_offset,
2341                                              int insts_call_instruction_offset, Register Rtoc) {
2342   // Start the stub.
2343   address stub = start_a_stub(64);
2344   if (stub == NULL) { return NULL; } // CodeCache full: bail out
2345 
2346   // Create a trampoline stub relocation which relates this trampoline stub
2347   // with the call instruction at insts_call_instruction_offset in the
2348   // instructions code-section.
2349   relocate(trampoline_stub_Relocation::spec(code()->insts()->start() + insts_call_instruction_offset));
2350   const int stub_start_offset = offset();
2351 
2352   // For java_to_interp stubs we use R11_scratch1 as scratch register
2353   // and in call trampoline stubs we use R12_scratch2. This way we
2354   // can distinguish them (see is_NativeCallTrampolineStub_at()).
2355   Register reg_scratch = R12_scratch2;
2356 
2357   // Now, create the trampoline stub's code:
2358   // - load the TOC
2359   // - load the call target from the constant pool
2360   // - call
2361   if (Rtoc == noreg) {
2362     calculate_address_from_global_toc(reg_scratch, method_toc());
2363     Rtoc = reg_scratch;
2364   }
2365 
2366   ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, Rtoc, false);
2367   mtctr(reg_scratch);
2368   bctr();
2369 
2370   const address stub_start_addr = addr_at(stub_start_offset);
2371 
2372   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
2373   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
2374          "encoded offset into the constant pool must match");
2375   // Trampoline_stub_size should be good.
2376   assert((uint)(offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
2377   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
2378 
2379   // End the stub.
2380   end_a_stub();
2381   return stub;
2382 }
2383 
2384 // TM on PPC64.
2385 void MacroAssembler::atomic_inc_ptr(Register addr, Register result, int simm16) {
2386   Label retry;
2387   bind(retry);
2388   ldarx(result, addr, /*hint*/ false);
2389   addi(result, result, simm16);
2390   stdcx_(result, addr);
2391   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
2392     bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
2393   } else {
2394     bne(                  CCR0, retry); // stXcx_ sets CCR0
2395   }
2396 }
2397 
2398 void MacroAssembler::atomic_ori_int(Register addr, Register result, int uimm16) {
2399   Label retry;
2400   bind(retry);
2401   lwarx(result, addr, /*hint*/ false);
2402   ori(result, result, uimm16);
2403   stwcx_(result, addr);
2404   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
2405     bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
2406   } else {
2407     bne(                  CCR0, retry); // stXcx_ sets CCR0
2408   }
2409 }
2410 
2411 #if INCLUDE_RTM_OPT
2412 
2413 // Update rtm_counters based on abort status
2414 // input: abort_status
2415 //        rtm_counters (RTMLockingCounters*)
2416 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters_Reg) {
2417   // Mapping to keep PreciseRTMLockingStatistics similar to x86.
2418   // x86 ppc (! means inverted, ? means not the same)
2419   //  0   31  Set if abort caused by XABORT instruction.
2420   //  1  ! 7  If set, the transaction may succeed on a retry. This bit is always clear if bit 0 is set.
2421   //  2   13  Set if another logical processor conflicted with a memory address that was part of the transaction that aborted.
2422   //  3   10  Set if an internal buffer overflowed.
2423   //  4  ?12  Set if a debug breakpoint was hit.
2424   //  5  ?32  Set if an abort occurred during execution of a nested transaction.
2425   const  int tm_failure_bit[] = {Assembler::tm_tabort, // Note: Seems like signal handler sets this, too.
2426                                  Assembler::tm_failure_persistent, // inverted: transient
2427                                  Assembler::tm_trans_cf,
2428                                  Assembler::tm_footprint_of,
2429                                  Assembler::tm_non_trans_cf,
2430                                  Assembler::tm_suspended};
2431   const bool tm_failure_inv[] = {false, true, false, false, false, false};
2432   assert(sizeof(tm_failure_bit)/sizeof(int) == RTMLockingCounters::ABORT_STATUS_LIMIT, "adapt mapping!");
2433 
2434   const Register addr_Reg = R0;
2435   // Keep track of offset to where rtm_counters_Reg had pointed to.
2436   int counters_offs = RTMLockingCounters::abort_count_offset();
2437   addi(addr_Reg, rtm_counters_Reg, counters_offs);
2438   const Register temp_Reg = rtm_counters_Reg;
2439 
2440   //atomic_inc_ptr(addr_Reg, temp_Reg); We don't increment atomically
2441   ldx(temp_Reg, addr_Reg);
2442   addi(temp_Reg, temp_Reg, 1);
2443   stdx(temp_Reg, addr_Reg);
2444 
2445   if (PrintPreciseRTMLockingStatistics) {
2446     int counters_offs_delta = RTMLockingCounters::abortX_count_offset() - counters_offs;
2447 
2448     //mftexasr(abort_status); done by caller
2449     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
2450       counters_offs += counters_offs_delta;
2451       li(temp_Reg, counters_offs_delta); // can't use addi with R0
2452       add(addr_Reg, addr_Reg, temp_Reg); // point to next counter
2453       counters_offs_delta = sizeof(uintx);
2454 
2455       Label check_abort;
2456       rldicr_(temp_Reg, abort_status, tm_failure_bit[i], 0);
2457       if (tm_failure_inv[i]) {
2458         bne(CCR0, check_abort);
2459       } else {
2460         beq(CCR0, check_abort);
2461       }
2462       //atomic_inc_ptr(addr_Reg, temp_Reg); We don't increment atomically
2463       ldx(temp_Reg, addr_Reg);
2464       addi(temp_Reg, temp_Reg, 1);
2465       stdx(temp_Reg, addr_Reg);
2466       bind(check_abort);
2467     }
2468   }
2469   li(temp_Reg, -counters_offs); // can't use addi with R0
2470   add(rtm_counters_Reg, addr_Reg, temp_Reg); // restore
2471 }
2472 
2473 // Branch if (random & (count-1) != 0), count is 2^n
2474 // tmp and CR0 are killed
2475 void MacroAssembler::branch_on_random_using_tb(Register tmp, int count, Label& brLabel) {
2476   mftb(tmp);
2477   andi_(tmp, tmp, count-1);
2478   bne(CCR0, brLabel);
2479 }
2480 
2481 // Perform abort ratio calculation, set no_rtm bit if high ratio.
2482 // input:  rtm_counters_Reg (RTMLockingCounters* address) - KILLED
2483 void MacroAssembler::rtm_abort_ratio_calculation(Register rtm_counters_Reg,
2484                                                  RTMLockingCounters* rtm_counters,
2485                                                  Metadata* method_data) {
2486   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
2487 
2488   if (RTMLockingCalculationDelay > 0) {
2489     // Delay calculation.
2490     ld(rtm_counters_Reg, (RegisterOrConstant)(intptr_t)RTMLockingCounters::rtm_calculation_flag_addr());
2491     cmpdi(CCR0, rtm_counters_Reg, 0);
2492     beq(CCR0, L_done);
2493     load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
2494   }
2495   // Abort ratio calculation only if abort_count > RTMAbortThreshold.
2496   //   Aborted transactions = abort_count * 100
2497   //   All transactions = total_count *  RTMTotalCountIncrRate
2498   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
2499   ld(R0, RTMLockingCounters::abort_count_offset(), rtm_counters_Reg);
2500   if (is_simm(RTMAbortThreshold, 16)) {   // cmpdi can handle 16bit immediate only.
2501     cmpdi(CCR0, R0, RTMAbortThreshold);
2502     blt(CCR0, L_check_always_rtm2);  // reload of rtm_counters_Reg not necessary
2503   } else {
2504     load_const_optimized(rtm_counters_Reg, RTMAbortThreshold);
2505     cmpd(CCR0, R0, rtm_counters_Reg);
2506     blt(CCR0, L_check_always_rtm1);  // reload of rtm_counters_Reg required
2507   }
2508   mulli(R0, R0, 100);
2509 
2510   const Register tmpReg = rtm_counters_Reg;
2511   ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
2512   mulli(tmpReg, tmpReg, RTMTotalCountIncrRate); // allowable range: int16
2513   mulli(tmpReg, tmpReg, RTMAbortRatio);         // allowable range: int16
2514   cmpd(CCR0, R0, tmpReg);
2515   blt(CCR0, L_check_always_rtm1); // jump to reload
2516   if (method_data != NULL) {
2517     // Set rtm_state to "no rtm" in MDO.
2518     // Not using a metadata relocation. Method and Class Loader are kept alive anyway.
2519     // (See nmethod::metadata_do and CodeBuffer::finalize_oop_references.)
2520     load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
2521     atomic_ori_int(R0, tmpReg, NoRTM);
2522   }
2523   b(L_done);
2524 
2525   bind(L_check_always_rtm1);
2526   load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
2527   bind(L_check_always_rtm2);
2528   ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
2529   int64_t thresholdValue = RTMLockingThreshold / RTMTotalCountIncrRate;
2530   if (is_simm(thresholdValue, 16)) {   // cmpdi can handle 16bit immediate only.
2531     cmpdi(CCR0, tmpReg, thresholdValue);
2532   } else {
2533     load_const_optimized(R0, thresholdValue);
2534     cmpd(CCR0, tmpReg, R0);
2535   }
2536   blt(CCR0, L_done);
2537   if (method_data != NULL) {
2538     // Set rtm_state to "always rtm" in MDO.
2539     // Not using a metadata relocation. See above.
2540     load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
2541     atomic_ori_int(R0, tmpReg, UseRTM);
2542   }
2543   bind(L_done);
2544 }
2545 
2546 // Update counters and perform abort ratio calculation.
2547 // input: abort_status_Reg
2548 void MacroAssembler::rtm_profiling(Register abort_status_Reg, Register temp_Reg,
2549                                    RTMLockingCounters* rtm_counters,
2550                                    Metadata* method_data,
2551                                    bool profile_rtm) {
2552 
2553   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2554   // Update rtm counters based on state at abort.
2555   // Reads abort_status_Reg, updates flags.
2556   assert_different_registers(abort_status_Reg, temp_Reg);
2557   load_const_optimized(temp_Reg, (address)rtm_counters, R0);
2558   rtm_counters_update(abort_status_Reg, temp_Reg);
2559   if (profile_rtm) {
2560     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2561     rtm_abort_ratio_calculation(temp_Reg, rtm_counters, method_data);
2562   }
2563 }
2564 
2565 // Retry on abort if abort's status indicates non-persistent failure.
2566 // inputs: retry_count_Reg
2567 //       : abort_status_Reg
2568 // output: retry_count_Reg decremented by 1
2569 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg,
2570                                              Label& retryLabel, Label* checkRetry) {
2571   Label doneRetry;
2572   rldicr_(R0, abort_status_Reg, tm_failure_persistent, 0);
2573   bne(CCR0, doneRetry);
2574   if (checkRetry) { bind(*checkRetry); }
2575   addic_(retry_count_Reg, retry_count_Reg, -1);
2576   blt(CCR0, doneRetry);
2577   b(retryLabel);
2578   bind(doneRetry);
2579 }
2580 
2581 // Spin and retry if lock is busy.
2582 // inputs: owner_addr_Reg (monitor address)
2583 //       : retry_count_Reg
2584 // output: retry_count_Reg decremented by 1
2585 // CTR is killed
2586 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register owner_addr_Reg, Label& retryLabel) {
2587   Label SpinLoop, doneRetry, doRetry;
2588   addic_(retry_count_Reg, retry_count_Reg, -1);
2589   blt(CCR0, doneRetry);
2590 
2591   if (RTMSpinLoopCount > 1) {
2592     li(R0, RTMSpinLoopCount);
2593     mtctr(R0);
2594   }
2595 
2596   // low thread priority
2597   smt_prio_low();
2598   bind(SpinLoop);
2599 
2600   if (RTMSpinLoopCount > 1) {
2601     bdz(doRetry);
2602     ld(R0, 0, owner_addr_Reg);
2603     cmpdi(CCR0, R0, 0);
2604     bne(CCR0, SpinLoop);
2605   }
2606 
2607   bind(doRetry);
2608 
2609   // restore thread priority to default in userspace
2610 #ifdef LINUX
2611   smt_prio_medium_low();
2612 #else
2613   smt_prio_medium();
2614 #endif
2615 
2616   b(retryLabel);
2617 
2618   bind(doneRetry);
2619 }
2620 
2621 // Use RTM for normal stack locks.
2622 // Input: objReg (object to lock)
2623 void MacroAssembler::rtm_stack_locking(ConditionRegister flag,
2624                                        Register obj, Register mark_word, Register tmp,
2625                                        Register retry_on_abort_count_Reg,
2626                                        RTMLockingCounters* stack_rtm_counters,
2627                                        Metadata* method_data, bool profile_rtm,
2628                                        Label& DONE_LABEL, Label& IsInflated) {
2629   assert(UseRTMForStackLocks, "why call this otherwise?");
2630   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2631   Label L_rtm_retry, L_decrement_retry, L_on_abort;
2632 
2633   if (RTMRetryCount > 0) {
2634     load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
2635     bind(L_rtm_retry);
2636   }
2637   andi_(R0, mark_word, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
2638   bne(CCR0, IsInflated);
2639 
2640   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2641     Label L_noincrement;
2642     if (RTMTotalCountIncrRate > 1) {
2643       branch_on_random_using_tb(tmp, RTMTotalCountIncrRate, L_noincrement);
2644     }
2645     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
2646     load_const_optimized(tmp, (address)stack_rtm_counters->total_count_addr(), R0);
2647     //atomic_inc_ptr(tmp, /*temp, will be reloaded*/mark_word); We don't increment atomically
2648     ldx(mark_word, tmp);
2649     addi(mark_word, mark_word, 1);
2650     stdx(mark_word, tmp);
2651     bind(L_noincrement);
2652   }
2653   tbegin_();
2654   beq(CCR0, L_on_abort);
2655   ld(mark_word, oopDesc::mark_offset_in_bytes(), obj);         // Reload in transaction, conflicts need to be tracked.
2656   andi(R0, mark_word, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2657   cmpwi(flag, R0, markOopDesc::unlocked_value);                // bits = 001 unlocked
2658   beq(flag, DONE_LABEL);                                       // all done if unlocked
2659 
2660   if (UseRTMXendForLockBusy) {
2661     tend_();
2662     b(L_decrement_retry);
2663   } else {
2664     tabort_();
2665   }
2666   bind(L_on_abort);
2667   const Register abort_status_Reg = tmp;
2668   mftexasr(abort_status_Reg);
2669   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2670     rtm_profiling(abort_status_Reg, /*temp*/mark_word, stack_rtm_counters, method_data, profile_rtm);
2671   }
2672   ld(mark_word, oopDesc::mark_offset_in_bytes(), obj); // reload
2673   if (RTMRetryCount > 0) {
2674     // Retry on lock abort if abort status is not permanent.
2675     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry, &L_decrement_retry);
2676   } else {
2677     bind(L_decrement_retry);
2678   }
2679 }
2680 
2681 // Use RTM for inflating locks
2682 // inputs: obj       (object to lock)
2683 //         mark_word (current header - KILLED)
2684 //         boxReg    (on-stack box address (displaced header location) - KILLED)
2685 void MacroAssembler::rtm_inflated_locking(ConditionRegister flag,
2686                                           Register obj, Register mark_word, Register boxReg,
2687                                           Register retry_on_busy_count_Reg, Register retry_on_abort_count_Reg,
2688                                           RTMLockingCounters* rtm_counters,
2689                                           Metadata* method_data, bool profile_rtm,
2690                                           Label& DONE_LABEL) {
2691   assert(UseRTMLocking, "why call this otherwise?");
2692   Label L_rtm_retry, L_decrement_retry, L_on_abort;
2693   // Clean monitor_value bit to get valid pointer.
2694   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
2695 
2696   // Store non-null, using boxReg instead of (intptr_t)markOopDesc::unused_mark().
2697   std(boxReg, BasicLock::displaced_header_offset_in_bytes(), boxReg);
2698   const Register tmpReg = boxReg;
2699   const Register owner_addr_Reg = mark_word;
2700   addi(owner_addr_Reg, mark_word, owner_offset);
2701 
2702   if (RTMRetryCount > 0) {
2703     load_const_optimized(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy.
2704     load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort.
2705     bind(L_rtm_retry);
2706   }
2707   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2708     Label L_noincrement;
2709     if (RTMTotalCountIncrRate > 1) {
2710       branch_on_random_using_tb(R0, RTMTotalCountIncrRate, L_noincrement);
2711     }
2712     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2713     load_const(R0, (address)rtm_counters->total_count_addr(), tmpReg);
2714     //atomic_inc_ptr(R0, tmpReg); We don't increment atomically
2715     ldx(tmpReg, R0);
2716     addi(tmpReg, tmpReg, 1);
2717     stdx(tmpReg, R0);
2718     bind(L_noincrement);
2719   }
2720   tbegin_();
2721   beq(CCR0, L_on_abort);
2722   // We don't reload mark word. Will only be reset at safepoint.
2723   ld(R0, 0, owner_addr_Reg); // Load in transaction, conflicts need to be tracked.
2724   cmpdi(flag, R0, 0);
2725   beq(flag, DONE_LABEL);
2726 
2727   if (UseRTMXendForLockBusy) {
2728     tend_();
2729     b(L_decrement_retry);
2730   } else {
2731     tabort_();
2732   }
2733   bind(L_on_abort);
2734   const Register abort_status_Reg = tmpReg;
2735   mftexasr(abort_status_Reg);
2736   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2737     rtm_profiling(abort_status_Reg, /*temp*/ owner_addr_Reg, rtm_counters, method_data, profile_rtm);
2738     // Restore owner_addr_Reg
2739     ld(mark_word, oopDesc::mark_offset_in_bytes(), obj);
2740 #ifdef ASSERT
2741     andi_(R0, mark_word, markOopDesc::monitor_value);
2742     asm_assert_ne("must be inflated", 0xa754); // Deflating only allowed at safepoint.
2743 #endif
2744     addi(owner_addr_Reg, mark_word, owner_offset);
2745   }
2746   if (RTMRetryCount > 0) {
2747     // Retry on lock abort if abort status is not permanent.
2748     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
2749   }
2750 
2751   // Appears unlocked - try to swing _owner from null to non-null.
2752   cmpxchgd(flag, /*current val*/ R0, (intptr_t)0, /*new val*/ R16_thread, owner_addr_Reg,
2753            MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2754            MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, &L_decrement_retry, true);
2755 
2756   if (RTMRetryCount > 0) {
2757     // success done else retry
2758     b(DONE_LABEL);
2759     bind(L_decrement_retry);
2760     // Spin and retry if lock is busy.
2761     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, owner_addr_Reg, L_rtm_retry);
2762   } else {
2763     bind(L_decrement_retry);
2764   }
2765 }
2766 
2767 #endif //  INCLUDE_RTM_OPT
2768 
2769 // "The box" is the space on the stack where we copy the object mark.
2770 void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
2771                                                Register temp, Register displaced_header, Register current_header,
2772                                                bool try_bias,
2773                                                RTMLockingCounters* rtm_counters,
2774                                                RTMLockingCounters* stack_rtm_counters,
2775                                                Metadata* method_data,
2776                                                bool use_rtm, bool profile_rtm) {
2777   assert_different_registers(oop, box, temp, displaced_header, current_header);
2778   assert(flag != CCR0, "bad condition register");
2779   Label cont;
2780   Label object_has_monitor;
2781   Label cas_failed;
2782 
2783   // Load markOop from object into displaced_header.
2784   ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop);
2785 
2786 
2787   // Always do locking in runtime.
2788   if (EmitSync & 0x01) {
2789     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
2790     return;
2791   }
2792 
2793   if (try_bias) {
2794     biased_locking_enter(flag, oop, displaced_header, temp, current_header, cont);
2795   }
2796 
2797 #if INCLUDE_RTM_OPT
2798   if (UseRTMForStackLocks && use_rtm) {
2799     rtm_stack_locking(flag, oop, displaced_header, temp, /*temp*/ current_header,
2800                       stack_rtm_counters, method_data, profile_rtm,
2801                       cont, object_has_monitor);
2802   }
2803 #endif // INCLUDE_RTM_OPT
2804 
2805   // Handle existing monitor.
2806   if ((EmitSync & 0x02) == 0) {
2807     // The object has an existing monitor iff (mark & monitor_value) != 0.
2808     andi_(temp, displaced_header, markOopDesc::monitor_value);
2809     bne(CCR0, object_has_monitor);
2810   }
2811 
2812   // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
2813   ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
2814 
2815   // Load Compare Value application register.
2816 
2817   // Initialize the box. (Must happen before we update the object mark!)
2818   std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2819 
2820   // Must fence, otherwise, preceding store(s) may float below cmpxchg.
2821   // Compare object markOop with mark and if equal exchange scratch1 with object markOop.
2822   cmpxchgd(/*flag=*/flag,
2823            /*current_value=*/current_header,
2824            /*compare_value=*/displaced_header,
2825            /*exchange_value=*/box,
2826            /*where=*/oop,
2827            MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2828            MacroAssembler::cmpxchgx_hint_acquire_lock(),
2829            noreg,
2830            &cas_failed,
2831            /*check without membar and ldarx first*/true);
2832   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2833 
2834   // If the compare-and-exchange succeeded, then we found an unlocked
2835   // object and we have now locked it.
2836   b(cont);
2837 
2838   bind(cas_failed);
2839   // We did not see an unlocked object so try the fast recursive case.
2840 
2841   // Check if the owner is self by comparing the value in the markOop of object
2842   // (current_header) with the stack pointer.
2843   sub(current_header, current_header, R1_SP);
2844   load_const_optimized(temp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place);
2845 
2846   and_(R0/*==0?*/, current_header, temp);
2847   // If condition is true we are cont and hence we can store 0 as the
2848   // displaced header in the box, which indicates that it is a recursive lock.
2849   mcrf(flag,CCR0);
2850   std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box);
2851 
2852   // Handle existing monitor.
2853   if ((EmitSync & 0x02) == 0) {
2854     b(cont);
2855 
2856     bind(object_has_monitor);
2857     // The object's monitor m is unlocked iff m->owner == NULL,
2858     // otherwise m->owner may contain a thread or a stack address.
2859 
2860 #if INCLUDE_RTM_OPT
2861     // Use the same RTM locking code in 32- and 64-bit VM.
2862     if (use_rtm) {
2863       rtm_inflated_locking(flag, oop, displaced_header, box, temp, /*temp*/ current_header,
2864                            rtm_counters, method_data, profile_rtm, cont);
2865     } else {
2866 #endif // INCLUDE_RTM_OPT
2867 
2868     // Try to CAS m->owner from NULL to current thread.
2869     addi(temp, displaced_header, ObjectMonitor::owner_offset_in_bytes()-markOopDesc::monitor_value);
2870     cmpxchgd(/*flag=*/flag,
2871              /*current_value=*/current_header,
2872              /*compare_value=*/(intptr_t)0,
2873              /*exchange_value=*/R16_thread,
2874              /*where=*/temp,
2875              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2876              MacroAssembler::cmpxchgx_hint_acquire_lock());
2877 
2878     // Store a non-null value into the box.
2879     std(box, BasicLock::displaced_header_offset_in_bytes(), box);
2880 
2881 #   ifdef ASSERT
2882     bne(flag, cont);
2883     // We have acquired the monitor, check some invariants.
2884     addi(/*monitor=*/temp, temp, -ObjectMonitor::owner_offset_in_bytes());
2885     // Invariant 1: _recursions should be 0.
2886     //assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size");
2887     asm_assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), temp,
2888                             "monitor->_recursions should be 0", -1);
2889 #   endif
2890 
2891 #if INCLUDE_RTM_OPT
2892     } // use_rtm()
2893 #endif
2894   }
2895 
2896   bind(cont);
2897   // flag == EQ indicates success
2898   // flag == NE indicates failure
2899 }
2900 
2901 void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
2902                                                  Register temp, Register displaced_header, Register current_header,
2903                                                  bool try_bias, bool use_rtm) {
2904   assert_different_registers(oop, box, temp, displaced_header, current_header);
2905   assert(flag != CCR0, "bad condition register");
2906   Label cont;
2907   Label object_has_monitor;
2908 
2909   // Always do locking in runtime.
2910   if (EmitSync & 0x01) {
2911     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
2912     return;
2913   }
2914 
2915   if (try_bias) {
2916     biased_locking_exit(flag, oop, current_header, cont);
2917   }
2918 
2919 #if INCLUDE_RTM_OPT
2920   if (UseRTMForStackLocks && use_rtm) {
2921     assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2922     Label L_regular_unlock;
2923     ld(current_header, oopDesc::mark_offset_in_bytes(), oop);         // fetch markword
2924     andi(R0, current_header, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2925     cmpwi(flag, R0, markOopDesc::unlocked_value);                     // bits = 001 unlocked
2926     bne(flag, L_regular_unlock);                                      // else RegularLock
2927     tend_();                                                          // otherwise end...
2928     b(cont);                                                          // ... and we're done
2929     bind(L_regular_unlock);
2930   }
2931 #endif
2932 
2933   // Find the lock address and load the displaced header from the stack.
2934   ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2935 
2936   // If the displaced header is 0, we have a recursive unlock.
2937   cmpdi(flag, displaced_header, 0);
2938   beq(flag, cont);
2939 
2940   // Handle existing monitor.
2941   if ((EmitSync & 0x02) == 0) {
2942     // The object has an existing monitor iff (mark & monitor_value) != 0.
2943     RTM_OPT_ONLY( if (!(UseRTMForStackLocks && use_rtm)) ) // skip load if already done
2944     ld(current_header, oopDesc::mark_offset_in_bytes(), oop);
2945     andi_(R0, current_header, markOopDesc::monitor_value);
2946     bne(CCR0, object_has_monitor);
2947   }
2948 
2949   // Check if it is still a light weight lock, this is is true if we see
2950   // the stack address of the basicLock in the markOop of the object.
2951   // Cmpxchg sets flag to cmpd(current_header, box).
2952   cmpxchgd(/*flag=*/flag,
2953            /*current_value=*/current_header,
2954            /*compare_value=*/box,
2955            /*exchange_value=*/displaced_header,
2956            /*where=*/oop,
2957            MacroAssembler::MemBarRel,
2958            MacroAssembler::cmpxchgx_hint_release_lock(),
2959            noreg,
2960            &cont);
2961 
2962   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2963 
2964   // Handle existing monitor.
2965   if ((EmitSync & 0x02) == 0) {
2966     b(cont);
2967 
2968     bind(object_has_monitor);
2969     addi(current_header, current_header, -markOopDesc::monitor_value); // monitor
2970     ld(temp,             ObjectMonitor::owner_offset_in_bytes(), current_header);
2971 
2972     // It's inflated.
2973 #if INCLUDE_RTM_OPT
2974     if (use_rtm) {
2975       Label L_regular_inflated_unlock;
2976       // Clean monitor_value bit to get valid pointer
2977       cmpdi(flag, temp, 0);
2978       bne(flag, L_regular_inflated_unlock);
2979       tend_();
2980       b(cont);
2981       bind(L_regular_inflated_unlock);
2982     }
2983 #endif
2984 
2985     ld(displaced_header, ObjectMonitor::recursions_offset_in_bytes(), current_header);
2986     xorr(temp, R16_thread, temp);      // Will be 0 if we are the owner.
2987     orr(temp, temp, displaced_header); // Will be 0 if there are 0 recursions.
2988     cmpdi(flag, temp, 0);
2989     bne(flag, cont);
2990 
2991     ld(temp,             ObjectMonitor::EntryList_offset_in_bytes(), current_header);
2992     ld(displaced_header, ObjectMonitor::cxq_offset_in_bytes(), current_header);
2993     orr(temp, temp, displaced_header); // Will be 0 if both are 0.
2994     cmpdi(flag, temp, 0);
2995     bne(flag, cont);
2996     release();
2997     std(temp, ObjectMonitor::owner_offset_in_bytes(), current_header);
2998   }
2999 
3000   bind(cont);
3001   // flag == EQ indicates success
3002   // flag == NE indicates failure
3003 }
3004 
3005 // Write serialization page so VM thread can do a pseudo remote membar.
3006 // We use the current thread pointer to calculate a thread specific
3007 // offset to write to within the page. This minimizes bus traffic
3008 // due to cache line collision.
3009 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
3010   srdi(tmp2, thread, os::get_serialize_page_shift_count());
3011 
3012   int mask = os::vm_page_size() - sizeof(int);
3013   if (Assembler::is_simm(mask, 16)) {
3014     andi(tmp2, tmp2, mask);
3015   } else {
3016     lis(tmp1, (int)((signed short) (mask >> 16)));
3017     ori(tmp1, tmp1, mask & 0x0000ffff);
3018     andr(tmp2, tmp2, tmp1);
3019   }
3020 
3021   load_const(tmp1, (long) os::get_memory_serialize_page());
3022   release();
3023   stwx(R0, tmp1, tmp2);
3024 }
3025 
3026 void MacroAssembler::safepoint_poll(Label& slow_path, Register temp_reg) {
3027   if (SafepointMechanism::uses_thread_local_poll()) {
3028     ld(temp_reg, in_bytes(Thread::polling_page_offset()), R16_thread);
3029     // Armed page has poll_bit set.
3030     andi_(temp_reg, temp_reg, SafepointMechanism::poll_bit());
3031   } else {
3032     lwz(temp_reg, (RegisterOrConstant)(intptr_t)SafepointSynchronize::address_of_state());
3033     cmpwi(CCR0, temp_reg, SafepointSynchronize::_not_synchronized);
3034   }
3035   bne(CCR0, slow_path);
3036 }
3037 
3038 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2, bool needs_frame) {
3039   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3040   bs->resolve_jobject(this, value, tmp1, tmp2, needs_frame);
3041 }
3042 
3043 // Values for last_Java_pc, and last_Java_sp must comply to the rules
3044 // in frame_ppc.hpp.
3045 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) {
3046   // Always set last_Java_pc and flags first because once last_Java_sp
3047   // is visible has_last_Java_frame is true and users will look at the
3048   // rest of the fields. (Note: flags should always be zero before we
3049   // get here so doesn't need to be set.)
3050 
3051   // Verify that last_Java_pc was zeroed on return to Java
3052   asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread,
3053                           "last_Java_pc not zeroed before leaving Java", 0x200);
3054 
3055   // When returning from calling out from Java mode the frame anchor's
3056   // last_Java_pc will always be set to NULL. It is set here so that
3057   // if we are doing a call to native (not VM) that we capture the
3058   // known pc and don't have to rely on the native call having a
3059   // standard frame linkage where we can find the pc.
3060   if (last_Java_pc != noreg)
3061     std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
3062 
3063   // Set last_Java_sp last.
3064   std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
3065 }
3066 
3067 void MacroAssembler::reset_last_Java_frame(void) {
3068   asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
3069                              R16_thread, "SP was not set, still zero", 0x202);
3070 
3071   BLOCK_COMMENT("reset_last_Java_frame {");
3072   li(R0, 0);
3073 
3074   // _last_Java_sp = 0
3075   std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
3076 
3077   // _last_Java_pc = 0
3078   std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
3079   BLOCK_COMMENT("} reset_last_Java_frame");
3080 }
3081 
3082 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) {
3083   assert_different_registers(sp, tmp1);
3084 
3085   // sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via
3086   // TOP_IJAVA_FRAME_ABI.
3087   // FIXME: assert that we really have a TOP_IJAVA_FRAME here!
3088   address entry = pc();
3089   load_const_optimized(tmp1, entry);
3090 
3091   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1);
3092 }
3093 
3094 void MacroAssembler::get_vm_result(Register oop_result) {
3095   // Read:
3096   //   R16_thread
3097   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
3098   //
3099   // Updated:
3100   //   oop_result
3101   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
3102 
3103   verify_thread();
3104 
3105   ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3106   li(R0, 0);
3107   std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3108 
3109   verify_oop(oop_result);
3110 }
3111 
3112 void MacroAssembler::get_vm_result_2(Register metadata_result) {
3113   // Read:
3114   //   R16_thread
3115   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
3116   //
3117   // Updated:
3118   //   metadata_result
3119   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
3120 
3121   ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
3122   li(R0, 0);
3123   std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
3124 }
3125 
3126 Register MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3127   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided.
3128   if (Universe::narrow_klass_base() != 0) {
3129     // Use dst as temp if it is free.
3130     sub_const_optimized(dst, current, Universe::narrow_klass_base(), R0);
3131     current = dst;
3132   }
3133   if (Universe::narrow_klass_shift() != 0) {
3134     srdi(dst, current, Universe::narrow_klass_shift());
3135     current = dst;
3136   }
3137   return current;
3138 }
3139 
3140 void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) {
3141   if (UseCompressedClassPointers) {
3142     Register compressedKlass = encode_klass_not_null(ck, klass);
3143     stw(compressedKlass, oopDesc::klass_offset_in_bytes(), dst_oop);
3144   } else {
3145     std(klass, oopDesc::klass_offset_in_bytes(), dst_oop);
3146   }
3147 }
3148 
3149 void MacroAssembler::store_klass_gap(Register dst_oop, Register val) {
3150   if (UseCompressedClassPointers) {
3151     if (val == noreg) {
3152       val = R0;
3153       li(val, 0);
3154     }
3155     stw(val, oopDesc::klass_gap_offset_in_bytes(), dst_oop); // klass gap if compressed
3156   }
3157 }
3158 
3159 int MacroAssembler::instr_size_for_decode_klass_not_null() {
3160   if (!UseCompressedClassPointers) return 0;
3161   int num_instrs = 1;  // shift or move
3162   if (Universe::narrow_klass_base() != 0) num_instrs = 7;  // shift + load const + add
3163   return num_instrs * BytesPerInstWord;
3164 }
3165 
3166 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3167   assert(dst != R0, "Dst reg may not be R0, as R0 is used here.");
3168   if (src == noreg) src = dst;
3169   Register shifted_src = src;
3170   if (Universe::narrow_klass_shift() != 0 ||
3171       Universe::narrow_klass_base() == 0 && src != dst) {  // Move required.
3172     shifted_src = dst;
3173     sldi(shifted_src, src, Universe::narrow_klass_shift());
3174   }
3175   if (Universe::narrow_klass_base() != 0) {
3176     add_const_optimized(dst, shifted_src, Universe::narrow_klass_base(), R0);
3177   }
3178 }
3179 
3180 void MacroAssembler::load_klass(Register dst, Register src) {
3181   if (UseCompressedClassPointers) {
3182     lwz(dst, oopDesc::klass_offset_in_bytes(), src);
3183     // Attention: no null check here!
3184     decode_klass_not_null(dst, dst);
3185   } else {
3186     ld(dst, oopDesc::klass_offset_in_bytes(), src);
3187   }
3188 }
3189 
3190 // ((OopHandle)result).resolve();
3191 void MacroAssembler::resolve_oop_handle(Register result) {
3192   // OopHandle::resolve is an indirection.
3193   ld(result, 0, result);
3194 }
3195 
3196 void MacroAssembler::load_mirror_from_const_method(Register mirror, Register const_method) {
3197   ld(mirror, in_bytes(ConstMethod::constants_offset()), const_method);
3198   ld(mirror, ConstantPool::pool_holder_offset_in_bytes(), mirror);
3199   ld(mirror, in_bytes(Klass::java_mirror_offset()), mirror);
3200   resolve_oop_handle(mirror);
3201 }
3202 
3203 // Clear Array
3204 // For very short arrays. tmp == R0 is allowed.
3205 void MacroAssembler::clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp, int offset) {
3206   if (cnt_dwords > 0) { li(tmp, 0); }
3207   for (int i = 0; i < cnt_dwords; ++i) { std(tmp, offset + i * 8, base_ptr); }
3208 }
3209 
3210 // Version for constant short array length. Kills base_ptr. tmp == R0 is allowed.
3211 void MacroAssembler::clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp) {
3212   if (cnt_dwords < 8) {
3213     clear_memory_unrolled(base_ptr, cnt_dwords, tmp);
3214     return;
3215   }
3216 
3217   Label loop;
3218   const long loopcnt   = cnt_dwords >> 1,
3219              remainder = cnt_dwords & 1;
3220 
3221   li(tmp, loopcnt);
3222   mtctr(tmp);
3223   li(tmp, 0);
3224   bind(loop);
3225     std(tmp, 0, base_ptr);
3226     std(tmp, 8, base_ptr);
3227     addi(base_ptr, base_ptr, 16);
3228     bdnz(loop);
3229   if (remainder) { std(tmp, 0, base_ptr); }
3230 }
3231 
3232 // Kills both input registers. tmp == R0 is allowed.
3233 void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp, long const_cnt) {
3234   // Procedure for large arrays (uses data cache block zero instruction).
3235     Label startloop, fast, fastloop, small_rest, restloop, done;
3236     const int cl_size         = VM_Version::L1_data_cache_line_size(),
3237               cl_dwords       = cl_size >> 3,
3238               cl_dw_addr_bits = exact_log2(cl_dwords),
3239               dcbz_min        = 1,  // Min count of dcbz executions, needs to be >0.
3240               min_cnt         = ((dcbz_min + 1) << cl_dw_addr_bits) - 1;
3241 
3242   if (const_cnt >= 0) {
3243     // Constant case.
3244     if (const_cnt < min_cnt) {
3245       clear_memory_constlen(base_ptr, const_cnt, tmp);
3246       return;
3247     }
3248     load_const_optimized(cnt_dwords, const_cnt, tmp);
3249   } else {
3250     // cnt_dwords already loaded in register. Need to check size.
3251     cmpdi(CCR1, cnt_dwords, min_cnt); // Big enough? (ensure >= dcbz_min lines included).
3252     blt(CCR1, small_rest);
3253   }
3254     rldicl_(tmp, base_ptr, 64-3, 64-cl_dw_addr_bits); // Extract dword offset within first cache line.
3255     beq(CCR0, fast);                                  // Already 128byte aligned.
3256 
3257     subfic(tmp, tmp, cl_dwords);
3258     mtctr(tmp);                        // Set ctr to hit 128byte boundary (0<ctr<cl_dwords).
3259     subf(cnt_dwords, tmp, cnt_dwords); // rest.
3260     li(tmp, 0);
3261 
3262   bind(startloop);                     // Clear at the beginning to reach 128byte boundary.
3263     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
3264     addi(base_ptr, base_ptr, 8);
3265     bdnz(startloop);
3266 
3267   bind(fast);                                  // Clear 128byte blocks.
3268     srdi(tmp, cnt_dwords, cl_dw_addr_bits);    // Loop count for 128byte loop (>0).
3269     andi(cnt_dwords, cnt_dwords, cl_dwords-1); // Rest in dwords.
3270     mtctr(tmp);                                // Load counter.
3271 
3272   bind(fastloop);
3273     dcbz(base_ptr);                    // Clear 128byte aligned block.
3274     addi(base_ptr, base_ptr, cl_size);
3275     bdnz(fastloop);
3276 
3277   bind(small_rest);
3278     cmpdi(CCR0, cnt_dwords, 0);        // size 0?
3279     beq(CCR0, done);                   // rest == 0
3280     li(tmp, 0);
3281     mtctr(cnt_dwords);                 // Load counter.
3282 
3283   bind(restloop);                      // Clear rest.
3284     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
3285     addi(base_ptr, base_ptr, 8);
3286     bdnz(restloop);
3287 
3288   bind(done);
3289 }
3290 
3291 /////////////////////////////////////////// String intrinsics ////////////////////////////////////////////
3292 
3293 #ifdef COMPILER2
3294 // Intrinsics for CompactStrings
3295 
3296 // Compress char[] to byte[] by compressing 16 bytes at once.
3297 void MacroAssembler::string_compress_16(Register src, Register dst, Register cnt,
3298                                         Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
3299                                         Label& Lfailure) {
3300 
3301   const Register tmp0 = R0;
3302   assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3303   Label Lloop, Lslow;
3304 
3305   // Check if cnt >= 8 (= 16 bytes)
3306   lis(tmp1, 0xFF);                // tmp1 = 0x00FF00FF00FF00FF
3307   srwi_(tmp2, cnt, 3);
3308   beq(CCR0, Lslow);
3309   ori(tmp1, tmp1, 0xFF);
3310   rldimi(tmp1, tmp1, 32, 0);
3311   mtctr(tmp2);
3312 
3313   // 2x unrolled loop
3314   bind(Lloop);
3315   ld(tmp2, 0, src);               // _0_1_2_3 (Big Endian)
3316   ld(tmp4, 8, src);               // _4_5_6_7
3317 
3318   orr(tmp0, tmp2, tmp4);
3319   rldicl(tmp3, tmp2, 6*8, 64-24); // _____1_2
3320   rldimi(tmp2, tmp2, 2*8, 2*8);   // _0_2_3_3
3321   rldicl(tmp5, tmp4, 6*8, 64-24); // _____5_6
3322   rldimi(tmp4, tmp4, 2*8, 2*8);   // _4_6_7_7
3323 
3324   andc_(tmp0, tmp0, tmp1);
3325   bne(CCR0, Lfailure);            // Not latin1.
3326   addi(src, src, 16);
3327 
3328   rlwimi(tmp3, tmp2, 0*8, 24, 31);// _____1_3
3329   srdi(tmp2, tmp2, 3*8);          // ____0_2_
3330   rlwimi(tmp5, tmp4, 0*8, 24, 31);// _____5_7
3331   srdi(tmp4, tmp4, 3*8);          // ____4_6_
3332 
3333   orr(tmp2, tmp2, tmp3);          // ____0123
3334   orr(tmp4, tmp4, tmp5);          // ____4567
3335 
3336   stw(tmp2, 0, dst);
3337   stw(tmp4, 4, dst);
3338   addi(dst, dst, 8);
3339   bdnz(Lloop);
3340 
3341   bind(Lslow);                    // Fallback to slow version
3342 }
3343 
3344 // Compress char[] to byte[]. cnt must be positive int.
3345 void MacroAssembler::string_compress(Register src, Register dst, Register cnt, Register tmp, Label& Lfailure) {
3346   Label Lloop;
3347   mtctr(cnt);
3348 
3349   bind(Lloop);
3350   lhz(tmp, 0, src);
3351   cmplwi(CCR0, tmp, 0xff);
3352   bgt(CCR0, Lfailure);            // Not latin1.
3353   addi(src, src, 2);
3354   stb(tmp, 0, dst);
3355   addi(dst, dst, 1);
3356   bdnz(Lloop);
3357 }
3358 
3359 // Inflate byte[] to char[] by inflating 16 bytes at once.
3360 void MacroAssembler::string_inflate_16(Register src, Register dst, Register cnt,
3361                                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
3362   const Register tmp0 = R0;
3363   assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3364   Label Lloop, Lslow;
3365 
3366   // Check if cnt >= 8
3367   srwi_(tmp2, cnt, 3);
3368   beq(CCR0, Lslow);
3369   lis(tmp1, 0xFF);                // tmp1 = 0x00FF00FF
3370   ori(tmp1, tmp1, 0xFF);
3371   mtctr(tmp2);
3372 
3373   // 2x unrolled loop
3374   bind(Lloop);
3375   lwz(tmp2, 0, src);              // ____0123 (Big Endian)
3376   lwz(tmp4, 4, src);              // ____4567
3377   addi(src, src, 8);
3378 
3379   rldicl(tmp3, tmp2, 7*8, 64-8);  // _______2
3380   rlwimi(tmp2, tmp2, 3*8, 16, 23);// ____0113
3381   rldicl(tmp5, tmp4, 7*8, 64-8);  // _______6
3382   rlwimi(tmp4, tmp4, 3*8, 16, 23);// ____4557
3383 
3384   andc(tmp0, tmp2, tmp1);         // ____0_1_
3385   rlwimi(tmp2, tmp3, 2*8, 0, 23); // _____2_3
3386   andc(tmp3, tmp4, tmp1);         // ____4_5_
3387   rlwimi(tmp4, tmp5, 2*8, 0, 23); // _____6_7
3388 
3389   rldimi(tmp2, tmp0, 3*8, 0*8);   // _0_1_2_3
3390   rldimi(tmp4, tmp3, 3*8, 0*8);   // _4_5_6_7
3391 
3392   std(tmp2, 0, dst);
3393   std(tmp4, 8, dst);
3394   addi(dst, dst, 16);
3395   bdnz(Lloop);
3396 
3397   bind(Lslow);                    // Fallback to slow version
3398 }
3399 
3400 // Inflate byte[] to char[]. cnt must be positive int.
3401 void MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp) {
3402   Label Lloop;
3403   mtctr(cnt);
3404 
3405   bind(Lloop);
3406   lbz(tmp, 0, src);
3407   addi(src, src, 1);
3408   sth(tmp, 0, dst);
3409   addi(dst, dst, 2);
3410   bdnz(Lloop);
3411 }
3412 
3413 void MacroAssembler::string_compare(Register str1, Register str2,
3414                                     Register cnt1, Register cnt2,
3415                                     Register tmp1, Register result, int ae) {
3416   const Register tmp0 = R0,
3417                  diff = tmp1;
3418 
3419   assert_different_registers(str1, str2, cnt1, cnt2, tmp0, tmp1, result);
3420   Label Ldone, Lslow, Lloop, Lreturn_diff;
3421 
3422   // Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
3423   // we interchange str1 and str2 in the UL case and negate the result.
3424   // Like this, str1 is always latin1 encoded, except for the UU case.
3425   // In addition, we need 0 (or sign which is 0) extend.
3426 
3427   if (ae == StrIntrinsicNode::UU) {
3428     srwi(cnt1, cnt1, 1);
3429   } else {
3430     clrldi(cnt1, cnt1, 32);
3431   }
3432 
3433   if (ae != StrIntrinsicNode::LL) {
3434     srwi(cnt2, cnt2, 1);
3435   } else {
3436     clrldi(cnt2, cnt2, 32);
3437   }
3438 
3439   // See if the lengths are different, and calculate min in cnt1.
3440   // Save diff in case we need it for a tie-breaker.
3441   subf_(diff, cnt2, cnt1); // diff = cnt1 - cnt2
3442   // if (diff > 0) { cnt1 = cnt2; }
3443   if (VM_Version::has_isel()) {
3444     isel(cnt1, CCR0, Assembler::greater, /*invert*/ false, cnt2);
3445   } else {
3446     Label Lskip;
3447     blt(CCR0, Lskip);
3448     mr(cnt1, cnt2);
3449     bind(Lskip);
3450   }
3451 
3452   // Rename registers
3453   Register chr1 = result;
3454   Register chr2 = tmp0;
3455 
3456   // Compare multiple characters in fast loop (only implemented for same encoding).
3457   int stride1 = 8, stride2 = 8;
3458   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
3459     int log2_chars_per_iter = (ae == StrIntrinsicNode::LL) ? 3 : 2;
3460     Label Lfastloop, Lskipfast;
3461 
3462     srwi_(tmp0, cnt1, log2_chars_per_iter);
3463     beq(CCR0, Lskipfast);
3464     rldicl(cnt2, cnt1, 0, 64 - log2_chars_per_iter); // Remaining characters.
3465     li(cnt1, 1 << log2_chars_per_iter); // Initialize for failure case: Rescan characters from current iteration.
3466     mtctr(tmp0);
3467 
3468     bind(Lfastloop);
3469     ld(chr1, 0, str1);
3470     ld(chr2, 0, str2);
3471     cmpd(CCR0, chr1, chr2);
3472     bne(CCR0, Lslow);
3473     addi(str1, str1, stride1);
3474     addi(str2, str2, stride2);
3475     bdnz(Lfastloop);
3476     mr(cnt1, cnt2); // Remaining characters.
3477     bind(Lskipfast);
3478   }
3479 
3480   // Loop which searches the first difference character by character.
3481   cmpwi(CCR0, cnt1, 0);
3482   beq(CCR0, Lreturn_diff);
3483   bind(Lslow);
3484   mtctr(cnt1);
3485 
3486   switch (ae) {
3487     case StrIntrinsicNode::LL: stride1 = 1; stride2 = 1; break;
3488     case StrIntrinsicNode::UL: // fallthru (see comment above)
3489     case StrIntrinsicNode::LU: stride1 = 1; stride2 = 2; break;
3490     case StrIntrinsicNode::UU: stride1 = 2; stride2 = 2; break;
3491     default: ShouldNotReachHere(); break;
3492   }
3493 
3494   bind(Lloop);
3495   if (stride1 == 1) { lbz(chr1, 0, str1); } else { lhz(chr1, 0, str1); }
3496   if (stride2 == 1) { lbz(chr2, 0, str2); } else { lhz(chr2, 0, str2); }
3497   subf_(result, chr2, chr1); // result = chr1 - chr2
3498   bne(CCR0, Ldone);
3499   addi(str1, str1, stride1);
3500   addi(str2, str2, stride2);
3501   bdnz(Lloop);
3502 
3503   // If strings are equal up to min length, return the length difference.
3504   bind(Lreturn_diff);
3505   mr(result, diff);
3506 
3507   // Otherwise, return the difference between the first mismatched chars.
3508   bind(Ldone);
3509   if (ae == StrIntrinsicNode::UL) {
3510     neg(result, result); // Negate result (see note above).
3511   }
3512 }
3513 
3514 void MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2,
3515                                   Register limit, Register tmp1, Register result, bool is_byte) {
3516   const Register tmp0 = R0;
3517   assert_different_registers(ary1, ary2, limit, tmp0, tmp1, result);
3518   Label Ldone, Lskiploop, Lloop, Lfastloop, Lskipfast;
3519   bool limit_needs_shift = false;
3520 
3521   if (is_array_equ) {
3522     const int length_offset = arrayOopDesc::length_offset_in_bytes();
3523     const int base_offset   = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
3524 
3525     // Return true if the same array.
3526     cmpd(CCR0, ary1, ary2);
3527     beq(CCR0, Lskiploop);
3528 
3529     // Return false if one of them is NULL.
3530     cmpdi(CCR0, ary1, 0);
3531     cmpdi(CCR1, ary2, 0);
3532     li(result, 0);
3533     cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
3534     beq(CCR0, Ldone);
3535 
3536     // Load the lengths of arrays.
3537     lwz(limit, length_offset, ary1);
3538     lwz(tmp0, length_offset, ary2);
3539 
3540     // Return false if the two arrays are not equal length.
3541     cmpw(CCR0, limit, tmp0);
3542     bne(CCR0, Ldone);
3543 
3544     // Load array addresses.
3545     addi(ary1, ary1, base_offset);
3546     addi(ary2, ary2, base_offset);
3547   } else {
3548     limit_needs_shift = !is_byte;
3549     li(result, 0); // Assume not equal.
3550   }
3551 
3552   // Rename registers
3553   Register chr1 = tmp0;
3554   Register chr2 = tmp1;
3555 
3556   // Compare 8 bytes per iteration in fast loop.
3557   const int log2_chars_per_iter = is_byte ? 3 : 2;
3558 
3559   srwi_(tmp0, limit, log2_chars_per_iter + (limit_needs_shift ? 1 : 0));
3560   beq(CCR0, Lskipfast);
3561   mtctr(tmp0);
3562 
3563   bind(Lfastloop);
3564   ld(chr1, 0, ary1);
3565   ld(chr2, 0, ary2);
3566   addi(ary1, ary1, 8);
3567   addi(ary2, ary2, 8);
3568   cmpd(CCR0, chr1, chr2);
3569   bne(CCR0, Ldone);
3570   bdnz(Lfastloop);
3571 
3572   bind(Lskipfast);
3573   rldicl_(limit, limit, limit_needs_shift ? 64 - 1 : 0, 64 - log2_chars_per_iter); // Remaining characters.
3574   beq(CCR0, Lskiploop);
3575   mtctr(limit);
3576 
3577   // Character by character.
3578   bind(Lloop);
3579   if (is_byte) {
3580     lbz(chr1, 0, ary1);
3581     lbz(chr2, 0, ary2);
3582     addi(ary1, ary1, 1);
3583     addi(ary2, ary2, 1);
3584   } else {
3585     lhz(chr1, 0, ary1);
3586     lhz(chr2, 0, ary2);
3587     addi(ary1, ary1, 2);
3588     addi(ary2, ary2, 2);
3589   }
3590   cmpw(CCR0, chr1, chr2);
3591   bne(CCR0, Ldone);
3592   bdnz(Lloop);
3593 
3594   bind(Lskiploop);
3595   li(result, 1); // All characters are equal.
3596   bind(Ldone);
3597 }
3598 
3599 void MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
3600                                     Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
3601                                     Register tmp1, Register tmp2, Register tmp3, Register tmp4, int ae) {
3602 
3603   // Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
3604   Label L_TooShort, L_Found, L_NotFound, L_End;
3605   Register last_addr = haycnt, // Kill haycnt at the beginning.
3606   addr      = tmp1,
3607   n_start   = tmp2,
3608   ch1       = tmp3,
3609   ch2       = R0;
3610 
3611   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
3612   const int h_csize = (ae == StrIntrinsicNode::LL) ? 1 : 2;
3613   const int n_csize = (ae == StrIntrinsicNode::UU) ? 2 : 1;
3614 
3615   // **************************************************************************************************
3616   // Prepare for main loop: optimized for needle count >=2, bail out otherwise.
3617   // **************************************************************************************************
3618 
3619   // Compute last haystack addr to use if no match gets found.
3620   clrldi(haycnt, haycnt, 32);         // Ensure positive int is valid as 64 bit value.
3621   addi(addr, haystack, -h_csize);     // Accesses use pre-increment.
3622   if (needlecntval == 0) { // variable needlecnt
3623    cmpwi(CCR6, needlecnt, 2);
3624    clrldi(needlecnt, needlecnt, 32);  // Ensure positive int is valid as 64 bit value.
3625    blt(CCR6, L_TooShort);             // Variable needlecnt: handle short needle separately.
3626   }
3627 
3628   if (n_csize == 2) { lwz(n_start, 0, needle); } else { lhz(n_start, 0, needle); } // Load first 2 characters of needle.
3629 
3630   if (needlecntval == 0) { // variable needlecnt
3631    subf(ch1, needlecnt, haycnt);      // Last character index to compare is haycnt-needlecnt.
3632    addi(needlecnt, needlecnt, -2);    // Rest of needle.
3633   } else { // constant needlecnt
3634   guarantee(needlecntval != 1, "IndexOf with single-character needle must be handled separately");
3635   assert((needlecntval & 0x7fff) == needlecntval, "wrong immediate");
3636    addi(ch1, haycnt, -needlecntval);  // Last character index to compare is haycnt-needlecnt.
3637    if (needlecntval > 3) { li(needlecnt, needlecntval - 2); } // Rest of needle.
3638   }
3639 
3640   if (h_csize == 2) { slwi(ch1, ch1, 1); } // Scale to number of bytes.
3641 
3642   if (ae ==StrIntrinsicNode::UL) {
3643    srwi(tmp4, n_start, 1*8);          // ___0
3644    rlwimi(n_start, tmp4, 2*8, 0, 23); // _0_1
3645   }
3646 
3647   add(last_addr, haystack, ch1);      // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
3648 
3649   // Main Loop (now we have at least 2 characters).
3650   Label L_OuterLoop, L_InnerLoop, L_FinalCheck, L_Comp1, L_Comp2;
3651   bind(L_OuterLoop); // Search for 1st 2 characters.
3652   Register addr_diff = tmp4;
3653    subf(addr_diff, addr, last_addr);  // Difference between already checked address and last address to check.
3654    addi(addr, addr, h_csize);         // This is the new address we want to use for comparing.
3655    srdi_(ch2, addr_diff, h_csize);
3656    beq(CCR0, L_FinalCheck);           // 2 characters left?
3657    mtctr(ch2);                        // num of characters / 2
3658   bind(L_InnerLoop);                  // Main work horse (2x unrolled search loop)
3659    if (h_csize == 2) {                // Load 2 characters of haystack (ignore alignment).
3660     lwz(ch1, 0, addr);
3661     lwz(ch2, 2, addr);
3662    } else {
3663     lhz(ch1, 0, addr);
3664     lhz(ch2, 1, addr);
3665    }
3666    cmpw(CCR0, ch1, n_start);          // Compare 2 characters (1 would be sufficient but try to reduce branches to CompLoop).
3667    cmpw(CCR1, ch2, n_start);
3668    beq(CCR0, L_Comp1);                // Did we find the needle start?
3669    beq(CCR1, L_Comp2);
3670    addi(addr, addr, 2 * h_csize);
3671    bdnz(L_InnerLoop);
3672   bind(L_FinalCheck);
3673    andi_(addr_diff, addr_diff, h_csize); // Remaining characters not covered by InnerLoop: (num of characters) & 1.
3674    beq(CCR0, L_NotFound);
3675    if (h_csize == 2) { lwz(ch1, 0, addr); } else { lhz(ch1, 0, addr); } // One position left at which we have to compare.
3676    cmpw(CCR1, ch1, n_start);
3677    beq(CCR1, L_Comp1);
3678   bind(L_NotFound);
3679    li(result, -1);                    // not found
3680    b(L_End);
3681 
3682    // **************************************************************************************************
3683    // Special Case: unfortunately, the variable needle case can be called with needlecnt<2
3684    // **************************************************************************************************
3685   if (needlecntval == 0) {           // We have to handle these cases separately.
3686   Label L_OneCharLoop;
3687   bind(L_TooShort);
3688    mtctr(haycnt);
3689    if (n_csize == 2) { lhz(n_start, 0, needle); } else { lbz(n_start, 0, needle); } // First character of needle
3690   bind(L_OneCharLoop);
3691    if (h_csize == 2) { lhzu(ch1, 2, addr); } else { lbzu(ch1, 1, addr); }
3692    cmpw(CCR1, ch1, n_start);
3693    beq(CCR1, L_Found);               // Did we find the one character needle?
3694    bdnz(L_OneCharLoop);
3695    li(result, -1);                   // Not found.
3696    b(L_End);
3697   }
3698 
3699   // **************************************************************************************************
3700   // Regular Case Part II: compare rest of needle (first 2 characters have been compared already)
3701   // **************************************************************************************************
3702 
3703   // Compare the rest
3704   bind(L_Comp2);
3705    addi(addr, addr, h_csize);        // First comparison has failed, 2nd one hit.
3706   bind(L_Comp1);                     // Addr points to possible needle start.
3707   if (needlecntval != 2) {           // Const needlecnt==2?
3708    if (needlecntval != 3) {
3709     if (needlecntval == 0) { beq(CCR6, L_Found); } // Variable needlecnt==2?
3710     Register n_ind = tmp4,
3711              h_ind = n_ind;
3712     li(n_ind, 2 * n_csize);          // First 2 characters are already compared, use index 2.
3713     mtctr(needlecnt);                // Decremented by 2, still > 0.
3714    Label L_CompLoop;
3715    bind(L_CompLoop);
3716     if (ae ==StrIntrinsicNode::UL) {
3717       h_ind = ch1;
3718       sldi(h_ind, n_ind, 1);
3719     }
3720     if (n_csize == 2) { lhzx(ch2, needle, n_ind); } else { lbzx(ch2, needle, n_ind); }
3721     if (h_csize == 2) { lhzx(ch1, addr, h_ind); } else { lbzx(ch1, addr, h_ind); }
3722     cmpw(CCR1, ch1, ch2);
3723     bne(CCR1, L_OuterLoop);
3724     addi(n_ind, n_ind, n_csize);
3725     bdnz(L_CompLoop);
3726    } else { // No loop required if there's only one needle character left.
3727     if (n_csize == 2) { lhz(ch2, 2 * 2, needle); } else { lbz(ch2, 2 * 1, needle); }
3728     if (h_csize == 2) { lhz(ch1, 2 * 2, addr); } else { lbz(ch1, 2 * 1, addr); }
3729     cmpw(CCR1, ch1, ch2);
3730     bne(CCR1, L_OuterLoop);
3731    }
3732   }
3733   // Return index ...
3734   bind(L_Found);
3735    subf(result, haystack, addr);     // relative to haystack, ...
3736    if (h_csize == 2) { srdi(result, result, 1); } // in characters.
3737   bind(L_End);
3738 } // string_indexof
3739 
3740 void MacroAssembler::string_indexof_char(Register result, Register haystack, Register haycnt,
3741                                          Register needle, jchar needleChar, Register tmp1, Register tmp2, bool is_byte) {
3742   assert_different_registers(haystack, haycnt, needle, tmp1, tmp2);
3743 
3744   Label L_InnerLoop, L_FinalCheck, L_Found1, L_Found2, L_NotFound, L_End;
3745   Register addr = tmp1,
3746            ch1 = tmp2,
3747            ch2 = R0;
3748 
3749   const int h_csize = is_byte ? 1 : 2;
3750 
3751 //4:
3752    srwi_(tmp2, haycnt, 1);   // Shift right by exact_log2(UNROLL_FACTOR).
3753    mr(addr, haystack);
3754    beq(CCR0, L_FinalCheck);
3755    mtctr(tmp2);              // Move to count register.
3756 //8:
3757   bind(L_InnerLoop);         // Main work horse (2x unrolled search loop).
3758    if (!is_byte) {
3759     lhz(ch1, 0, addr);
3760     lhz(ch2, 2, addr);
3761    } else {
3762     lbz(ch1, 0, addr);
3763     lbz(ch2, 1, addr);
3764    }
3765    (needle != R0) ? cmpw(CCR0, ch1, needle) : cmplwi(CCR0, ch1, (unsigned int)needleChar);
3766    (needle != R0) ? cmpw(CCR1, ch2, needle) : cmplwi(CCR1, ch2, (unsigned int)needleChar);
3767    beq(CCR0, L_Found1);      // Did we find the needle?
3768    beq(CCR1, L_Found2);
3769    addi(addr, addr, 2 * h_csize);
3770    bdnz(L_InnerLoop);
3771 //16:
3772   bind(L_FinalCheck);
3773    andi_(R0, haycnt, 1);
3774    beq(CCR0, L_NotFound);
3775    if (!is_byte) { lhz(ch1, 0, addr); } else { lbz(ch1, 0, addr); } // One position left at which we have to compare.
3776    (needle != R0) ? cmpw(CCR1, ch1, needle) : cmplwi(CCR1, ch1, (unsigned int)needleChar);
3777    beq(CCR1, L_Found1);
3778 //21:
3779   bind(L_NotFound);
3780    li(result, -1);           // Not found.
3781    b(L_End);
3782 
3783   bind(L_Found2);
3784    addi(addr, addr, h_csize);
3785 //24:
3786   bind(L_Found1);            // Return index ...
3787    subf(result, haystack, addr); // relative to haystack, ...
3788    if (!is_byte) { srdi(result, result, 1); } // in characters.
3789   bind(L_End);
3790 } // string_indexof_char
3791 
3792 
3793 void MacroAssembler::has_negatives(Register src, Register cnt, Register result,
3794                                    Register tmp1, Register tmp2) {
3795   const Register tmp0 = R0;
3796   assert_different_registers(src, result, cnt, tmp0, tmp1, tmp2);
3797   Label Lfastloop, Lslow, Lloop, Lnoneg, Ldone;
3798 
3799   // Check if cnt >= 8 (= 16 bytes)
3800   lis(tmp1, (int)(short)0x8080);  // tmp1 = 0x8080808080808080
3801   srwi_(tmp2, cnt, 4);
3802   li(result, 1);                  // Assume there's a negative byte.
3803   beq(CCR0, Lslow);
3804   ori(tmp1, tmp1, 0x8080);
3805   rldimi(tmp1, tmp1, 32, 0);
3806   mtctr(tmp2);
3807 
3808   // 2x unrolled loop
3809   bind(Lfastloop);
3810   ld(tmp2, 0, src);
3811   ld(tmp0, 8, src);
3812 
3813   orr(tmp0, tmp2, tmp0);
3814 
3815   and_(tmp0, tmp0, tmp1);
3816   bne(CCR0, Ldone);               // Found negative byte.
3817   addi(src, src, 16);
3818 
3819   bdnz(Lfastloop);
3820 
3821   bind(Lslow);                    // Fallback to slow version
3822   rldicl_(tmp0, cnt, 0, 64-4);
3823   beq(CCR0, Lnoneg);
3824   mtctr(tmp0);
3825   bind(Lloop);
3826   lbz(tmp0, 0, src);
3827   addi(src, src, 1);
3828   andi_(tmp0, tmp0, 0x80);
3829   bne(CCR0, Ldone);               // Found negative byte.
3830   bdnz(Lloop);
3831   bind(Lnoneg);
3832   li(result, 0);
3833 
3834   bind(Ldone);
3835 }
3836 
3837 #endif // Compiler2
3838 
3839 // Helpers for Intrinsic Emitters
3840 //
3841 // Revert the byte order of a 32bit value in a register
3842 //   src: 0x44556677
3843 //   dst: 0x77665544
3844 // Three steps to obtain the result:
3845 //  1) Rotate src (as doubleword) left 5 bytes. That puts the leftmost byte of the src word
3846 //     into the rightmost byte position. Afterwards, everything left of the rightmost byte is cleared.
3847 //     This value initializes dst.
3848 //  2) Rotate src (as word) left 3 bytes. That puts the rightmost byte of the src word into the leftmost
3849 //     byte position. Furthermore, byte 5 is rotated into byte 6 position where it is supposed to go.
3850 //     This value is mask inserted into dst with a [0..23] mask of 1s.
3851 //  3) Rotate src (as word) left 1 byte. That puts byte 6 into byte 5 position.
3852 //     This value is mask inserted into dst with a [8..15] mask of 1s.
3853 void MacroAssembler::load_reverse_32(Register dst, Register src) {
3854   assert_different_registers(dst, src);
3855 
3856   rldicl(dst, src, (4+1)*8, 56);       // Rotate byte 4 into position 7 (rightmost), clear all to the left.
3857   rlwimi(dst, src,     3*8,  0, 23);   // Insert byte 5 into position 6, 7 into 4, leave pos 7 alone.
3858   rlwimi(dst, src,     1*8,  8, 15);   // Insert byte 6 into position 5, leave the rest alone.
3859 }
3860 
3861 // Calculate the column addresses of the crc32 lookup table into distinct registers.
3862 // This loop-invariant calculation is moved out of the loop body, reducing the loop
3863 // body size from 20 to 16 instructions.
3864 // Returns the offset that was used to calculate the address of column tc3.
3865 // Due to register shortage, setting tc3 may overwrite table. With the return offset
3866 // at hand, the original table address can be easily reconstructed.
3867 int MacroAssembler::crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3) {
3868 
3869 #ifdef VM_LITTLE_ENDIAN
3870   // This is what we implement (the DOLIT4 part):
3871   // ========================================================================= */
3872   // #define DOLIT4 c ^= *buf4++; \
3873   //         c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
3874   //             crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
3875   // #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
3876   // ========================================================================= */
3877   const int ix0 = 3*(4*CRC32_COLUMN_SIZE);
3878   const int ix1 = 2*(4*CRC32_COLUMN_SIZE);
3879   const int ix2 = 1*(4*CRC32_COLUMN_SIZE);
3880   const int ix3 = 0*(4*CRC32_COLUMN_SIZE);
3881 #else
3882   // This is what we implement (the DOBIG4 part):
3883   // =========================================================================
3884   // #define DOBIG4 c ^= *++buf4; \
3885   //         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
3886   //             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
3887   // #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
3888   // =========================================================================
3889   const int ix0 = 4*(4*CRC32_COLUMN_SIZE);
3890   const int ix1 = 5*(4*CRC32_COLUMN_SIZE);
3891   const int ix2 = 6*(4*CRC32_COLUMN_SIZE);
3892   const int ix3 = 7*(4*CRC32_COLUMN_SIZE);
3893 #endif
3894   assert_different_registers(table, tc0, tc1, tc2);
3895   assert(table == tc3, "must be!");
3896 
3897   addi(tc0, table, ix0);
3898   addi(tc1, table, ix1);
3899   addi(tc2, table, ix2);
3900   if (ix3 != 0) addi(tc3, table, ix3);
3901 
3902   return ix3;
3903 }
3904 
3905 /**
3906  * uint32_t crc;
3907  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
3908  */
3909 void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
3910   assert_different_registers(crc, table, tmp);
3911   assert_different_registers(val, table);
3912 
3913   if (crc == val) {                   // Must rotate first to use the unmodified value.
3914     rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
3915                                       // As we use a word (4-byte) instruction, we have to adapt the mask bit positions.
3916     srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
3917   } else {
3918     srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
3919     rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
3920   }
3921   lwzx(tmp, table, tmp);
3922   xorr(crc, crc, tmp);
3923 }
3924 
3925 /**
3926  * uint32_t crc;
3927  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
3928  */
3929 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
3930   fold_byte_crc32(crc, crc, table, tmp);
3931 }
3932 
3933 /**
3934  * Emits code to update CRC-32 with a byte value according to constants in table.
3935  *
3936  * @param [in,out]crc   Register containing the crc.
3937  * @param [in]val       Register containing the byte to fold into the CRC.
3938  * @param [in]table     Register containing the table of crc constants.
3939  *
3940  * uint32_t crc;
3941  * val = crc_table[(val ^ crc) & 0xFF];
3942  * crc = val ^ (crc >> 8);
3943  */
3944 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
3945   BLOCK_COMMENT("update_byte_crc32:");
3946   xorr(val, val, crc);
3947   fold_byte_crc32(crc, val, table, val);
3948 }
3949 
3950 /**
3951  * @param crc   register containing existing CRC (32-bit)
3952  * @param buf   register pointing to input byte buffer (byte*)
3953  * @param len   register containing number of bytes
3954  * @param table register pointing to CRC table
3955  */
3956 void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
3957                                            Register data, bool loopAlignment) {
3958   assert_different_registers(crc, buf, len, table, data);
3959 
3960   Label L_mainLoop, L_done;
3961   const int mainLoop_stepping  = 1;
3962   const int mainLoop_alignment = loopAlignment ? 32 : 4; // (InputForNewCode > 4 ? InputForNewCode : 32) : 4;
3963 
3964   // Process all bytes in a single-byte loop.
3965   clrldi_(len, len, 32);                         // Enforce 32 bit. Anything to do?
3966   beq(CCR0, L_done);
3967 
3968   mtctr(len);
3969   align(mainLoop_alignment);
3970   BIND(L_mainLoop);
3971     lbz(data, 0, buf);                           // Byte from buffer, zero-extended.
3972     addi(buf, buf, mainLoop_stepping);           // Advance buffer position.
3973     update_byte_crc32(crc, data, table);
3974     bdnz(L_mainLoop);                            // Iterate.
3975 
3976   bind(L_done);
3977 }
3978 
3979 /**
3980  * Emits code to update CRC-32 with a 4-byte value according to constants in table
3981  * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c
3982  */
3983 // A not on the lookup table address(es):
3984 // The lookup table consists of two sets of four columns each.
3985 // The columns {0..3} are used for little-endian machines.
3986 // The columns {4..7} are used for big-endian machines.
3987 // To save the effort of adding the column offset to the table address each time
3988 // a table element is looked up, it is possible to pass the pre-calculated
3989 // column addresses.
3990 // Uses R9..R12 as work register. Must be saved/restored by caller, if necessary.
3991 void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
3992                                         Register t0,  Register t1,  Register t2,  Register t3,
3993                                         Register tc0, Register tc1, Register tc2, Register tc3) {
3994   assert_different_registers(crc, t3);
3995 
3996   // XOR crc with next four bytes of buffer.
3997   lwz(t3, bufDisp, buf);
3998   if (bufInc != 0) {
3999     addi(buf, buf, bufInc);
4000   }
4001   xorr(t3, t3, crc);
4002 
4003   // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
4004   rlwinm(t0, t3,  2,         24-2, 31-2);  // ((t1 >>  0) & 0xff) << 2
4005   rlwinm(t1, t3,  32+(2- 8), 24-2, 31-2);  // ((t1 >>  8) & 0xff) << 2
4006   rlwinm(t2, t3,  32+(2-16), 24-2, 31-2);  // ((t1 >> 16) & 0xff) << 2
4007   rlwinm(t3, t3,  32+(2-24), 24-2, 31-2);  // ((t1 >> 24) & 0xff) << 2
4008 
4009   // Use the pre-calculated column addresses.
4010   // Load pre-calculated table values.
4011   lwzx(t0, tc0, t0);
4012   lwzx(t1, tc1, t1);
4013   lwzx(t2, tc2, t2);
4014   lwzx(t3, tc3, t3);
4015 
4016   // Calculate new crc from table values.
4017   xorr(t0,  t0, t1);
4018   xorr(t2,  t2, t3);
4019   xorr(crc, t0, t2);  // Now crc contains the final checksum value.
4020 }
4021 
4022 /**
4023  * @param crc   register containing existing CRC (32-bit)
4024  * @param buf   register pointing to input byte buffer (byte*)
4025  * @param len   register containing number of bytes
4026  * @param table register pointing to CRC table
4027  *
4028  * Uses R9..R12 as work register. Must be saved/restored by caller!
4029  */
4030 void MacroAssembler::kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
4031                                         Register t0,  Register t1,  Register t2,  Register t3,
4032                                         Register tc0, Register tc1, Register tc2, Register tc3,
4033                                         bool invertCRC) {
4034   assert_different_registers(crc, buf, len, table);
4035 
4036   Label L_mainLoop, L_tail;
4037   Register  tmp  = t0;
4038   Register  data = t0;
4039   Register  tmp2 = t1;
4040   const int mainLoop_stepping  = 8;
4041   const int tailLoop_stepping  = 1;
4042   const int log_stepping       = exact_log2(mainLoop_stepping);
4043   const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
4044   const int complexThreshold   = 2*mainLoop_stepping;
4045 
4046   // Don't test for len <= 0 here. This pathological case should not occur anyway.
4047   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles
4048   // for all well-behaved cases. The situation itself is detected and handled correctly
4049   // within update_byteLoop_crc32.
4050   assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
4051 
4052   BLOCK_COMMENT("kernel_crc32_2word {");
4053 
4054   if (invertCRC) {
4055     nand(crc, crc, crc);                      // 1s complement of crc
4056   }
4057 
4058   // Check for short (<mainLoop_stepping) buffer.
4059   cmpdi(CCR0, len, complexThreshold);
4060   blt(CCR0, L_tail);
4061 
4062   // Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
4063   // We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
4064   {
4065     // Align buf addr to mainLoop_stepping boundary.
4066     neg(tmp2, buf);                           // Calculate # preLoop iterations for alignment.
4067     rldicl(tmp2, tmp2, 0, 64-log_stepping);   // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
4068 
4069     if (complexThreshold > mainLoop_stepping) {
4070       sub(len, len, tmp2);                       // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4071     } else {
4072       sub(tmp, len, tmp2);                       // Remaining bytes for main loop.
4073       cmpdi(CCR0, tmp, mainLoop_stepping);
4074       blt(CCR0, L_tail);                         // For less than one mainloop_stepping left, do only tail processing
4075       mr(len, tmp);                              // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4076     }
4077     update_byteLoop_crc32(crc, buf, tmp2, table, data, false);
4078   }
4079 
4080   srdi(tmp2, len, log_stepping);                 // #iterations for mainLoop
4081   andi(len, len, mainLoop_stepping-1);           // remaining bytes for tailLoop
4082   mtctr(tmp2);
4083 
4084 #ifdef VM_LITTLE_ENDIAN
4085   Register crc_rv = crc;
4086 #else
4087   Register crc_rv = tmp;                         // Load_reverse needs separate registers to work on.
4088                                                  // Occupies tmp, but frees up crc.
4089   load_reverse_32(crc_rv, crc);                  // Revert byte order because we are dealing with big-endian data.
4090   tmp = crc;
4091 #endif
4092 
4093   int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
4094 
4095   align(mainLoop_alignment);                     // Octoword-aligned loop address. Shows 2% improvement.
4096   BIND(L_mainLoop);
4097     update_1word_crc32(crc_rv, buf, table, 0, 0, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4098     update_1word_crc32(crc_rv, buf, table, 4, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4099     bdnz(L_mainLoop);
4100 
4101 #ifndef VM_LITTLE_ENDIAN
4102   load_reverse_32(crc, crc_rv);                  // Revert byte order because we are dealing with big-endian data.
4103   tmp = crc_rv;                                  // Tmp uses it's original register again.
4104 #endif
4105 
4106   // Restore original table address for tailLoop.
4107   if (reconstructTableOffset != 0) {
4108     addi(table, table, -reconstructTableOffset);
4109   }
4110 
4111   // Process last few (<complexThreshold) bytes of buffer.
4112   BIND(L_tail);
4113   update_byteLoop_crc32(crc, buf, len, table, data, false);
4114 
4115   if (invertCRC) {
4116     nand(crc, crc, crc);                      // 1s complement of crc
4117   }
4118   BLOCK_COMMENT("} kernel_crc32_2word");
4119 }
4120 
4121 /**
4122  * @param crc   register containing existing CRC (32-bit)
4123  * @param buf   register pointing to input byte buffer (byte*)
4124  * @param len   register containing number of bytes
4125  * @param table register pointing to CRC table
4126  *
4127  * uses R9..R12 as work register. Must be saved/restored by caller!
4128  */
4129 void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
4130                                         Register t0,  Register t1,  Register t2,  Register t3,
4131                                         Register tc0, Register tc1, Register tc2, Register tc3,
4132                                         bool invertCRC) {
4133   assert_different_registers(crc, buf, len, table);
4134 
4135   Label L_mainLoop, L_tail;
4136   Register  tmp          = t0;
4137   Register  data         = t0;
4138   Register  tmp2         = t1;
4139   const int mainLoop_stepping  = 4;
4140   const int tailLoop_stepping  = 1;
4141   const int log_stepping       = exact_log2(mainLoop_stepping);
4142   const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
4143   const int complexThreshold   = 2*mainLoop_stepping;
4144 
4145   // Don't test for len <= 0 here. This pathological case should not occur anyway.
4146   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles
4147   // for all well-behaved cases. The situation itself is detected and handled correctly
4148   // within update_byteLoop_crc32.
4149   assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
4150 
4151   BLOCK_COMMENT("kernel_crc32_1word {");
4152 
4153   if (invertCRC) {
4154     nand(crc, crc, crc);                      // 1s complement of crc
4155   }
4156 
4157   // Check for short (<mainLoop_stepping) buffer.
4158   cmpdi(CCR0, len, complexThreshold);
4159   blt(CCR0, L_tail);
4160 
4161   // Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
4162   // We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
4163   {
4164     // Align buf addr to mainLoop_stepping boundary.
4165     neg(tmp2, buf);                              // Calculate # preLoop iterations for alignment.
4166     rldicl(tmp2, tmp2, 0, 64-log_stepping);      // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
4167 
4168     if (complexThreshold > mainLoop_stepping) {
4169       sub(len, len, tmp2);                       // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4170     } else {
4171       sub(tmp, len, tmp2);                       // Remaining bytes for main loop.
4172       cmpdi(CCR0, tmp, mainLoop_stepping);
4173       blt(CCR0, L_tail);                         // For less than one mainloop_stepping left, do only tail processing
4174       mr(len, tmp);                              // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4175     }
4176     update_byteLoop_crc32(crc, buf, tmp2, table, data, false);
4177   }
4178 
4179   srdi(tmp2, len, log_stepping);                 // #iterations for mainLoop
4180   andi(len, len, mainLoop_stepping-1);           // remaining bytes for tailLoop
4181   mtctr(tmp2);
4182 
4183 #ifdef VM_LITTLE_ENDIAN
4184   Register crc_rv = crc;
4185 #else
4186   Register crc_rv = tmp;                         // Load_reverse needs separate registers to work on.
4187                                                  // Occupies tmp, but frees up crc.
4188   load_reverse_32(crc_rv, crc);                  // Revert byte order because we are dealing with big-endian data.
4189   tmp = crc;
4190 #endif
4191 
4192   int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
4193 
4194   align(mainLoop_alignment);                     // Octoword-aligned loop address. Shows 2% improvement.
4195   BIND(L_mainLoop);
4196     update_1word_crc32(crc_rv, buf, table, 0, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4197     bdnz(L_mainLoop);
4198 
4199 #ifndef VM_LITTLE_ENDIAN
4200   load_reverse_32(crc, crc_rv);                  // Revert byte order because we are dealing with big-endian data.
4201   tmp = crc_rv;                                  // Tmp uses it's original register again.
4202 #endif
4203 
4204   // Restore original table address for tailLoop.
4205   if (reconstructTableOffset != 0) {
4206     addi(table, table, -reconstructTableOffset);
4207   }
4208 
4209   // Process last few (<complexThreshold) bytes of buffer.
4210   BIND(L_tail);
4211   update_byteLoop_crc32(crc, buf, len, table, data, false);
4212 
4213   if (invertCRC) {
4214     nand(crc, crc, crc);                      // 1s complement of crc
4215   }
4216   BLOCK_COMMENT("} kernel_crc32_1word");
4217 }
4218 
4219 /**
4220  * @param crc   register containing existing CRC (32-bit)
4221  * @param buf   register pointing to input byte buffer (byte*)
4222  * @param len   register containing number of bytes
4223  * @param table register pointing to CRC table
4224  *
4225  * Uses R7_ARG5, R8_ARG6 as work registers.
4226  */
4227 void MacroAssembler::kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
4228                                         Register t0,  Register t1,  Register t2,  Register t3,
4229                                         bool invertCRC) {
4230   assert_different_registers(crc, buf, len, table);
4231 
4232   Register  data = t0;                   // Holds the current byte to be folded into crc.
4233 
4234   BLOCK_COMMENT("kernel_crc32_1byte {");
4235 
4236   if (invertCRC) {
4237     nand(crc, crc, crc);                      // 1s complement of crc
4238   }
4239 
4240   // Process all bytes in a single-byte loop.
4241   update_byteLoop_crc32(crc, buf, len, table, data, true);
4242 
4243   if (invertCRC) {
4244     nand(crc, crc, crc);                      // 1s complement of crc
4245   }
4246   BLOCK_COMMENT("} kernel_crc32_1byte");
4247 }
4248 
4249 /**
4250  * @param crc             register containing existing CRC (32-bit)
4251  * @param buf             register pointing to input byte buffer (byte*)
4252  * @param len             register containing number of bytes
4253  * @param table           register pointing to CRC table
4254  * @param constants       register pointing to CRC table for 128-bit aligned memory
4255  * @param barretConstants register pointing to table for barrett reduction
4256  * @param t0-t4           temp registers
4257  */
4258 void MacroAssembler::kernel_crc32_1word_vpmsum(Register crc, Register buf, Register len, Register table,
4259                                                Register constants, Register barretConstants,
4260                                                Register t0, Register t1, Register t2, Register t3, Register t4,
4261                                                bool invertCRC) {
4262   assert_different_registers(crc, buf, len, table);
4263 
4264   Label L_alignedHead, L_tail;
4265 
4266   BLOCK_COMMENT("kernel_crc32_1word_vpmsum {");
4267 
4268   // 1. ~c
4269   if (invertCRC) {
4270     nand(crc, crc, crc);                      // 1s complement of crc
4271   }
4272 
4273   // 2. use kernel_crc32_1word for short len
4274   clrldi(len, len, 32);
4275   cmpdi(CCR0, len, 512);
4276   blt(CCR0, L_tail);
4277 
4278   // 3. calculate from 0 to first aligned address
4279   const int alignment = 16;
4280   Register prealign = t0;
4281 
4282   andi_(prealign, buf, alignment - 1);
4283   beq(CCR0, L_alignedHead);
4284   subfic(prealign, prealign, alignment);
4285 
4286   subf(len, prealign, len);
4287   update_byteLoop_crc32(crc, buf, prealign, table, t2, false);
4288 
4289   // 4. calculate from first aligned address as far as possible
4290   BIND(L_alignedHead);
4291   kernel_crc32_1word_aligned(crc, buf, len, constants, barretConstants, t0, t1, t2, t3, t4);
4292 
4293   // 5. remaining bytes
4294   BIND(L_tail);
4295   Register tc0 = t4;
4296   Register tc1 = constants;
4297   Register tc2 = barretConstants;
4298   kernel_crc32_1word(crc, buf, len, table, t0, t1, t2, t3, tc0, tc1, tc2, table, false);
4299 
4300   // 6. ~c
4301   if (invertCRC) {
4302     nand(crc, crc, crc);                      // 1s complement of crc
4303   }
4304 
4305   BLOCK_COMMENT("} kernel_crc32_1word_vpmsum");
4306 }
4307 
4308 /**
4309  * @param crc             register containing existing CRC (32-bit)
4310  * @param buf             register pointing to input byte buffer (byte*)
4311  * @param len             register containing number of bytes (will get updated to remaining bytes)
4312  * @param constants       register pointing to CRC table for 128-bit aligned memory
4313  * @param barretConstants register pointing to table for barrett reduction
4314  * @param t0-t4           temp registers
4315  * Precondition: len should be >= 512. Otherwise, nothing will be done.
4316  */
4317 void MacroAssembler::kernel_crc32_1word_aligned(Register crc, Register buf, Register len,
4318     Register constants, Register barretConstants,
4319     Register t0, Register t1, Register t2, Register t3, Register t4) {
4320 
4321   // Save non-volatile vector registers (frameless).
4322   Register offset = t1;
4323   int offsetInt = 0;
4324   offsetInt -= 16; li(offset, offsetInt); stvx(VR20, offset, R1_SP);
4325   offsetInt -= 16; li(offset, offsetInt); stvx(VR21, offset, R1_SP);
4326   offsetInt -= 16; li(offset, offsetInt); stvx(VR22, offset, R1_SP);
4327   offsetInt -= 16; li(offset, offsetInt); stvx(VR23, offset, R1_SP);
4328   offsetInt -= 16; li(offset, offsetInt); stvx(VR24, offset, R1_SP);
4329   offsetInt -= 16; li(offset, offsetInt); stvx(VR25, offset, R1_SP);
4330 #ifndef VM_LITTLE_ENDIAN
4331   offsetInt -= 16; li(offset, offsetInt); stvx(VR26, offset, R1_SP);
4332 #endif
4333   offsetInt -= 8; std(R14, offsetInt, R1_SP);
4334   offsetInt -= 8; std(R15, offsetInt, R1_SP);
4335   offsetInt -= 8; std(R16, offsetInt, R1_SP);
4336   offsetInt -= 8; std(R17, offsetInt, R1_SP);
4337 
4338   // Implementation uses an inner loop which uses between 256 and 16 * unroll_factor
4339   // bytes per iteration. The basic scheme is:
4340   // lvx: load vector (Big Endian needs reversal)
4341   // vpmsumw: carry-less 32 bit multiplications with constant representing a large CRC shift
4342   // vxor: xor partial results together to get unroll_factor2 vectors
4343 
4344   // Outer loop performs the CRC shifts needed to combine the unroll_factor2 vectors.
4345 
4346   // Using 16 * unroll_factor / unroll_factor_2 bytes for constants.
4347   const int unroll_factor = 2048;
4348   const int unroll_factor2 = 8;
4349 
4350   // Support registers.
4351   Register offs[] = { noreg, t0, t1, t2, t3, t4, crc /* will live in VCRC */, R14 };
4352   Register num_bytes = R15,
4353            loop_count = R16,
4354            cur_const = R17;
4355   // Constant array for outer loop: unroll_factor2 - 1 registers,
4356   // Constant array for inner loop: unroll_factor / unroll_factor2 registers.
4357   VectorRegister consts0[] = { VR16, VR17, VR18, VR19, VR20, VR21, VR22 },
4358                  consts1[] = { VR23, VR24 };
4359   // Data register arrays: 2 arrays with unroll_factor2 registers.
4360   VectorRegister data0[] = { VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7 },
4361                  data1[] = { VR8, VR9, VR10, VR11, VR12, VR13, VR14, VR15 };
4362 
4363   VectorRegister VCRC = data0[0];
4364   VectorRegister Vc = VR25;
4365   VectorRegister swap_bytes = VR26; // Only for Big Endian.
4366 
4367   // We have at least 1 iteration (ensured by caller).
4368   Label L_outer_loop, L_inner_loop, L_last;
4369 
4370   // If supported set DSCR pre-fetch to deepest.
4371   if (VM_Version::has_mfdscr()) {
4372     load_const_optimized(t0, VM_Version::_dscr_val | 7);
4373     mtdscr(t0);
4374   }
4375 
4376   mtvrwz(VCRC, crc); // crc lives lives in VCRC, now
4377 
4378   for (int i = 1; i < unroll_factor2; ++i) {
4379     li(offs[i], 16 * i);
4380   }
4381 
4382   // Load consts for outer loop
4383   lvx(consts0[0], constants);
4384   for (int i = 1; i < unroll_factor2 - 1; ++i) {
4385     lvx(consts0[i], offs[i], constants);
4386   }
4387   addi(constants, constants, (unroll_factor2 - 1) * 16);
4388 
4389   load_const_optimized(num_bytes, 16 * unroll_factor);
4390   load_const_optimized(loop_count, unroll_factor / (2 * unroll_factor2) - 1); // One double-iteration peeled off.
4391 
4392   // Reuse data registers outside of the loop.
4393   VectorRegister Vtmp = data1[0];
4394   VectorRegister Vtmp2 = data1[1];
4395   VectorRegister zeroes = data1[2];
4396 
4397   vspltisb(Vtmp, 0);
4398   vsldoi(VCRC, Vtmp, VCRC, 8); // 96 bit zeroes, 32 bit CRC.
4399 
4400   // Load vector for vpermxor (to xor both 64 bit parts together)
4401   lvsl(Vtmp, buf);   // 000102030405060708090a0b0c0d0e0f
4402   vspltisb(Vc, 4);
4403   vsl(Vc, Vtmp, Vc); // 00102030405060708090a0b0c0d0e0f0
4404   xxspltd(Vc->to_vsr(), Vc->to_vsr(), 0);
4405   vor(Vc, Vtmp, Vc); // 001122334455667708192a3b4c5d6e7f
4406 
4407 #ifdef VM_LITTLE_ENDIAN
4408 #define BE_swap_bytes(x)
4409 #else
4410   vspltisb(Vtmp2, 0xf);
4411   vxor(swap_bytes, Vtmp, Vtmp2);
4412 #define BE_swap_bytes(x) vperm(x, x, x, swap_bytes)
4413 #endif
4414 
4415   cmpd(CCR0, len, num_bytes);
4416   blt(CCR0, L_last);
4417 
4418   // ********** Main loop start **********
4419   align(32);
4420   bind(L_outer_loop);
4421 
4422   // Begin of unrolled first iteration (no xor).
4423   lvx(data1[0], buf);
4424   mr(cur_const, constants);
4425   for (int i = 1; i < unroll_factor2 / 2; ++i) {
4426     lvx(data1[i], offs[i], buf);
4427   }
4428   vpermxor(VCRC, VCRC, VCRC, Vc); // xor both halves to 64 bit result.
4429   lvx(consts1[0], cur_const);
4430   mtctr(loop_count);
4431   for (int i = 0; i < unroll_factor2 / 2; ++i) {
4432     BE_swap_bytes(data1[i]);
4433     if (i == 0) { vxor(data1[0], data1[0], VCRC); } // xor in previous CRC.
4434     lvx(data1[i + unroll_factor2 / 2], offs[i + unroll_factor2 / 2], buf);
4435     vpmsumw(data0[i], data1[i], consts1[0]);
4436   }
4437   addi(buf, buf, 16 * unroll_factor2);
4438   subf(len, num_bytes, len);
4439   lvx(consts1[1], offs[1], cur_const);
4440   addi(cur_const, cur_const, 32);
4441   // Begin of unrolled second iteration (head).
4442   for (int i = 0; i < unroll_factor2 / 2; ++i) {
4443     BE_swap_bytes(data1[i + unroll_factor2 / 2]);
4444     if (i == 0) { lvx(data1[0], buf); } else { lvx(data1[i], offs[i], buf); }
4445     vpmsumw(data0[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2], consts1[0]);
4446   }
4447   for (int i = 0; i < unroll_factor2 / 2; ++i) {
4448     BE_swap_bytes(data1[i]);
4449     lvx(data1[i + unroll_factor2 / 2], offs[i + unroll_factor2 / 2], buf);
4450     vpmsumw(data1[i], data1[i], consts1[1]);
4451   }
4452   addi(buf, buf, 16 * unroll_factor2);
4453 
4454   // Generate most performance relevant code. Loads + half of the vpmsumw have been generated.
4455   // Double-iteration allows using the 2 constant registers alternatingly.
4456   align(32);
4457   bind(L_inner_loop);
4458   for (int j = 1; j < 3; ++j) { // j < unroll_factor / unroll_factor2 - 1 for complete unrolling.
4459     if (j & 1) {
4460       lvx(consts1[0], cur_const);
4461     } else {
4462       lvx(consts1[1], offs[1], cur_const);
4463       addi(cur_const, cur_const, 32);
4464     }
4465     for (int i = 0; i < unroll_factor2; ++i) {
4466       int idx = i + unroll_factor2 / 2, inc = 0; // For modulo-scheduled input.
4467       if (idx >= unroll_factor2) { idx -= unroll_factor2; inc = 1; }
4468       BE_swap_bytes(data1[idx]);
4469       vxor(data0[i], data0[i], data1[i]);
4470       if (i == 0) lvx(data1[0], buf); else lvx(data1[i], offs[i], buf);
4471       vpmsumw(data1[idx], data1[idx], consts1[(j + inc) & 1]);
4472     }
4473     addi(buf, buf, 16 * unroll_factor2);
4474   }
4475   bdnz(L_inner_loop);
4476 
4477   // Tail of last iteration (no loads).
4478   for (int i = 0; i < unroll_factor2 / 2; ++i) {
4479     BE_swap_bytes(data1[i + unroll_factor2 / 2]);
4480     vxor(data0[i], data0[i], data1[i]);
4481     vpmsumw(data1[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2], consts1[1]);
4482   }
4483   for (int i = 0; i < unroll_factor2 / 2; ++i) {
4484     vpmsumw(data0[i], data0[i], consts0[unroll_factor2 - 2 - i]); // First half of fixup shifts.
4485     vxor(data0[i + unroll_factor2 / 2], data0[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2]);
4486   }
4487 
4488   // Last data register is ok, other ones need fixup shift.
4489   for (int i = unroll_factor2 / 2; i < unroll_factor2 - 1; ++i) {
4490     vpmsumw(data0[i], data0[i], consts0[unroll_factor2 - 2 - i]);
4491   }
4492 
4493   // Combine to 128 bit result vector VCRC = data0[0].
4494   for (int i = 1; i < unroll_factor2; i<<=1) {
4495     for (int j = 0; j <= unroll_factor2 - 2*i; j+=2*i) {
4496       vxor(data0[j], data0[j], data0[j+i]);
4497     }
4498   }
4499   cmpd(CCR0, len, num_bytes);
4500   bge(CCR0, L_outer_loop);
4501 
4502   // Last chance with lower num_bytes.
4503   bind(L_last);
4504   srdi(loop_count, len, exact_log2(16 * 2 * unroll_factor2)); // Use double-iterations.
4505   add_const_optimized(constants, constants, 16 * (unroll_factor / unroll_factor2)); // Point behind last one.
4506   sldi(R0, loop_count, exact_log2(16 * 2)); // Bytes of constants to be used.
4507   clrrdi(num_bytes, len, exact_log2(16 * 2 * unroll_factor2));
4508   subf(constants, R0, constants); // Point to constant to be used first.
4509 
4510   addic_(loop_count, loop_count, -1); // One double-iteration peeled off.
4511   bgt(CCR0, L_outer_loop);
4512   // ********** Main loop end **********
4513 #undef BE_swap_bytes
4514 
4515   // Restore DSCR pre-fetch value.
4516   if (VM_Version::has_mfdscr()) {
4517     load_const_optimized(t0, VM_Version::_dscr_val);
4518     mtdscr(t0);
4519   }
4520 
4521   vspltisb(zeroes, 0);
4522 
4523   // Combine to 64 bit result.
4524   vpermxor(VCRC, VCRC, VCRC, Vc); // xor both halves to 64 bit result.
4525 
4526   // Reduce to 32 bit CRC: Remainder by multiply-high.
4527   lvx(Vtmp, barretConstants);
4528   vsldoi(Vtmp2, zeroes, VCRC, 12);  // Extract high 32 bit.
4529   vpmsumd(Vtmp2, Vtmp2, Vtmp);      // Multiply by inverse long poly.
4530   vsldoi(Vtmp2, zeroes, Vtmp2, 12); // Extract high 32 bit.
4531   vsldoi(Vtmp, zeroes, Vtmp, 8);
4532   vpmsumd(Vtmp2, Vtmp2, Vtmp);      // Multiply quotient by long poly.
4533   vxor(VCRC, VCRC, Vtmp2);          // Remainder fits into 32 bit.
4534 
4535   // Move result. len is already updated.
4536   vsldoi(VCRC, VCRC, zeroes, 8);
4537   mfvrd(crc, VCRC);
4538 
4539   // Restore non-volatile Vector registers (frameless).
4540   offsetInt = 0;
4541   offsetInt -= 16; li(offset, offsetInt); lvx(VR20, offset, R1_SP);
4542   offsetInt -= 16; li(offset, offsetInt); lvx(VR21, offset, R1_SP);
4543   offsetInt -= 16; li(offset, offsetInt); lvx(VR22, offset, R1_SP);
4544   offsetInt -= 16; li(offset, offsetInt); lvx(VR23, offset, R1_SP);
4545   offsetInt -= 16; li(offset, offsetInt); lvx(VR24, offset, R1_SP);
4546   offsetInt -= 16; li(offset, offsetInt); lvx(VR25, offset, R1_SP);
4547 #ifndef VM_LITTLE_ENDIAN
4548   offsetInt -= 16; li(offset, offsetInt); lvx(VR26, offset, R1_SP);
4549 #endif
4550   offsetInt -= 8;  ld(R14, offsetInt, R1_SP);
4551   offsetInt -= 8;  ld(R15, offsetInt, R1_SP);
4552   offsetInt -= 8;  ld(R16, offsetInt, R1_SP);
4553   offsetInt -= 8;  ld(R17, offsetInt, R1_SP);
4554 }
4555 
4556 void MacroAssembler::kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp, bool invertCRC) {
4557   assert_different_registers(crc, buf, /* len,  not used!! */ table, tmp);
4558 
4559   BLOCK_COMMENT("kernel_crc32_singleByte:");
4560   if (invertCRC) {
4561     nand(crc, crc, crc);                // 1s complement of crc
4562   }
4563 
4564   lbz(tmp, 0, buf);                     // Byte from buffer, zero-extended.
4565   update_byte_crc32(crc, tmp, table);
4566 
4567   if (invertCRC) {
4568     nand(crc, crc, crc);                // 1s complement of crc
4569   }
4570 }
4571 
4572 void MacroAssembler::kernel_crc32_singleByteReg(Register crc, Register val, Register table, bool invertCRC) {
4573   assert_different_registers(crc, val, table);
4574 
4575   BLOCK_COMMENT("kernel_crc32_singleByteReg:");
4576   if (invertCRC) {
4577     nand(crc, crc, crc);                // 1s complement of crc
4578   }
4579 
4580   update_byte_crc32(crc, val, table);
4581 
4582   if (invertCRC) {
4583     nand(crc, crc, crc);                // 1s complement of crc
4584   }
4585 }
4586 
4587 // dest_lo += src1 + src2
4588 // dest_hi += carry1 + carry2
4589 void MacroAssembler::add2_with_carry(Register dest_hi,
4590                                      Register dest_lo,
4591                                      Register src1, Register src2) {
4592   li(R0, 0);
4593   addc(dest_lo, dest_lo, src1);
4594   adde(dest_hi, dest_hi, R0);
4595   addc(dest_lo, dest_lo, src2);
4596   adde(dest_hi, dest_hi, R0);
4597 }
4598 
4599 // Multiply 64 bit by 64 bit first loop.
4600 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
4601                                            Register x_xstart,
4602                                            Register y, Register y_idx,
4603                                            Register z,
4604                                            Register carry,
4605                                            Register product_high, Register product,
4606                                            Register idx, Register kdx,
4607                                            Register tmp) {
4608   //  jlong carry, x[], y[], z[];
4609   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
4610   //    huge_128 product = y[idx] * x[xstart] + carry;
4611   //    z[kdx] = (jlong)product;
4612   //    carry  = (jlong)(product >>> 64);
4613   //  }
4614   //  z[xstart] = carry;
4615 
4616   Label L_first_loop, L_first_loop_exit;
4617   Label L_one_x, L_one_y, L_multiply;
4618 
4619   addic_(xstart, xstart, -1);
4620   blt(CCR0, L_one_x);   // Special case: length of x is 1.
4621 
4622   // Load next two integers of x.
4623   sldi(tmp, xstart, LogBytesPerInt);
4624   ldx(x_xstart, x, tmp);
4625 #ifdef VM_LITTLE_ENDIAN
4626   rldicl(x_xstart, x_xstart, 32, 0);
4627 #endif
4628 
4629   align(32, 16);
4630   bind(L_first_loop);
4631 
4632   cmpdi(CCR0, idx, 1);
4633   blt(CCR0, L_first_loop_exit);
4634   addi(idx, idx, -2);
4635   beq(CCR0, L_one_y);
4636 
4637   // Load next two integers of y.
4638   sldi(tmp, idx, LogBytesPerInt);
4639   ldx(y_idx, y, tmp);
4640 #ifdef VM_LITTLE_ENDIAN
4641   rldicl(y_idx, y_idx, 32, 0);
4642 #endif
4643 
4644 
4645   bind(L_multiply);
4646   multiply64(product_high, product, x_xstart, y_idx);
4647 
4648   li(tmp, 0);
4649   addc(product, product, carry);         // Add carry to result.
4650   adde(product_high, product_high, tmp); // Add carry of the last addition.
4651   addi(kdx, kdx, -2);
4652 
4653   // Store result.
4654 #ifdef VM_LITTLE_ENDIAN
4655   rldicl(product, product, 32, 0);
4656 #endif
4657   sldi(tmp, kdx, LogBytesPerInt);
4658   stdx(product, z, tmp);
4659   mr_if_needed(carry, product_high);
4660   b(L_first_loop);
4661 
4662 
4663   bind(L_one_y); // Load one 32 bit portion of y as (0,value).
4664 
4665   lwz(y_idx, 0, y);
4666   b(L_multiply);
4667 
4668 
4669   bind(L_one_x); // Load one 32 bit portion of x as (0,value).
4670 
4671   lwz(x_xstart, 0, x);
4672   b(L_first_loop);
4673 
4674   bind(L_first_loop_exit);
4675 }
4676 
4677 // Multiply 64 bit by 64 bit and add 128 bit.
4678 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
4679                                             Register z, Register yz_idx,
4680                                             Register idx, Register carry,
4681                                             Register product_high, Register product,
4682                                             Register tmp, int offset) {
4683 
4684   //  huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
4685   //  z[kdx] = (jlong)product;
4686 
4687   sldi(tmp, idx, LogBytesPerInt);
4688   if (offset) {
4689     addi(tmp, tmp, offset);
4690   }
4691   ldx(yz_idx, y, tmp);
4692 #ifdef VM_LITTLE_ENDIAN
4693   rldicl(yz_idx, yz_idx, 32, 0);
4694 #endif
4695 
4696   multiply64(product_high, product, x_xstart, yz_idx);
4697   ldx(yz_idx, z, tmp);
4698 #ifdef VM_LITTLE_ENDIAN
4699   rldicl(yz_idx, yz_idx, 32, 0);
4700 #endif
4701 
4702   add2_with_carry(product_high, product, carry, yz_idx);
4703 
4704   sldi(tmp, idx, LogBytesPerInt);
4705   if (offset) {
4706     addi(tmp, tmp, offset);
4707   }
4708 #ifdef VM_LITTLE_ENDIAN
4709   rldicl(product, product, 32, 0);
4710 #endif
4711   stdx(product, z, tmp);
4712 }
4713 
4714 // Multiply 128 bit by 128 bit. Unrolled inner loop.
4715 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
4716                                              Register y, Register z,
4717                                              Register yz_idx, Register idx, Register carry,
4718                                              Register product_high, Register product,
4719                                              Register carry2, Register tmp) {
4720 
4721   //  jlong carry, x[], y[], z[];
4722   //  int kdx = ystart+1;
4723   //  for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
4724   //    huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
4725   //    z[kdx+idx+1] = (jlong)product;
4726   //    jlong carry2 = (jlong)(product >>> 64);
4727   //    product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
4728   //    z[kdx+idx] = (jlong)product;
4729   //    carry = (jlong)(product >>> 64);
4730   //  }
4731   //  idx += 2;
4732   //  if (idx > 0) {
4733   //    product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
4734   //    z[kdx+idx] = (jlong)product;
4735   //    carry = (jlong)(product >>> 64);
4736   //  }
4737 
4738   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
4739   const Register jdx = R0;
4740 
4741   // Scale the index.
4742   srdi_(jdx, idx, 2);
4743   beq(CCR0, L_third_loop_exit);
4744   mtctr(jdx);
4745 
4746   align(32, 16);
4747   bind(L_third_loop);
4748 
4749   addi(idx, idx, -4);
4750 
4751   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 8);
4752   mr_if_needed(carry2, product_high);
4753 
4754   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product_high, product, tmp, 0);
4755   mr_if_needed(carry, product_high);
4756   bdnz(L_third_loop);
4757 
4758   bind(L_third_loop_exit);  // Handle any left-over operand parts.
4759 
4760   andi_(idx, idx, 0x3);
4761   beq(CCR0, L_post_third_loop_done);
4762 
4763   Label L_check_1;
4764 
4765   addic_(idx, idx, -2);
4766   blt(CCR0, L_check_1);
4767 
4768   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 0);
4769   mr_if_needed(carry, product_high);
4770 
4771   bind(L_check_1);
4772 
4773   addi(idx, idx, 0x2);
4774   andi_(idx, idx, 0x1);
4775   addic_(idx, idx, -1);
4776   blt(CCR0, L_post_third_loop_done);
4777 
4778   sldi(tmp, idx, LogBytesPerInt);
4779   lwzx(yz_idx, y, tmp);
4780   multiply64(product_high, product, x_xstart, yz_idx);
4781   lwzx(yz_idx, z, tmp);
4782 
4783   add2_with_carry(product_high, product, yz_idx, carry);
4784 
4785   sldi(tmp, idx, LogBytesPerInt);
4786   stwx(product, z, tmp);
4787   srdi(product, product, 32);
4788 
4789   sldi(product_high, product_high, 32);
4790   orr(product, product, product_high);
4791   mr_if_needed(carry, product);
4792 
4793   bind(L_post_third_loop_done);
4794 }   // multiply_128_x_128_loop
4795 
4796 void MacroAssembler::muladd(Register out, Register in,
4797                             Register offset, Register len, Register k,
4798                             Register tmp1, Register tmp2, Register carry) {
4799 
4800   // Labels
4801   Label LOOP, SKIP;
4802 
4803   // Make sure length is positive.
4804   cmpdi  (CCR0,    len,     0);
4805 
4806   // Prepare variables
4807   subi   (offset,  offset,  4);
4808   li     (carry,   0);
4809   ble    (CCR0,    SKIP);
4810 
4811   mtctr  (len);
4812   subi   (len,     len,     1    );
4813   sldi   (len,     len,     2    );
4814 
4815   // Main loop
4816   bind(LOOP);
4817   lwzx   (tmp1,    len,     in   );
4818   lwzx   (tmp2,    offset,  out  );
4819   mulld  (tmp1,    tmp1,    k    );
4820   add    (tmp2,    carry,   tmp2 );
4821   add    (tmp2,    tmp1,    tmp2 );
4822   stwx   (tmp2,    offset,  out  );
4823   srdi   (carry,   tmp2,    32   );
4824   subi   (offset,  offset,  4    );
4825   subi   (len,     len,     4    );
4826   bdnz   (LOOP);
4827   bind(SKIP);
4828 }
4829 
4830 void MacroAssembler::multiply_to_len(Register x, Register xlen,
4831                                      Register y, Register ylen,
4832                                      Register z, Register zlen,
4833                                      Register tmp1, Register tmp2,
4834                                      Register tmp3, Register tmp4,
4835                                      Register tmp5, Register tmp6,
4836                                      Register tmp7, Register tmp8,
4837                                      Register tmp9, Register tmp10,
4838                                      Register tmp11, Register tmp12,
4839                                      Register tmp13) {
4840 
4841   ShortBranchVerifier sbv(this);
4842 
4843   assert_different_registers(x, xlen, y, ylen, z, zlen,
4844                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
4845   assert_different_registers(x, xlen, y, ylen, z, zlen,
4846                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp7);
4847   assert_different_registers(x, xlen, y, ylen, z, zlen,
4848                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp8);
4849 
4850   const Register idx = tmp1;
4851   const Register kdx = tmp2;
4852   const Register xstart = tmp3;
4853 
4854   const Register y_idx = tmp4;
4855   const Register carry = tmp5;
4856   const Register product = tmp6;
4857   const Register product_high = tmp7;
4858   const Register x_xstart = tmp8;
4859   const Register tmp = tmp9;
4860 
4861   // First Loop.
4862   //
4863   //  final static long LONG_MASK = 0xffffffffL;
4864   //  int xstart = xlen - 1;
4865   //  int ystart = ylen - 1;
4866   //  long carry = 0;
4867   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
4868   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
4869   //    z[kdx] = (int)product;
4870   //    carry = product >>> 32;
4871   //  }
4872   //  z[xstart] = (int)carry;
4873 
4874   mr_if_needed(idx, ylen);        // idx = ylen
4875   mr_if_needed(kdx, zlen);        // kdx = xlen + ylen
4876   li(carry, 0);                   // carry = 0
4877 
4878   Label L_done;
4879 
4880   addic_(xstart, xlen, -1);
4881   blt(CCR0, L_done);
4882 
4883   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z,
4884                         carry, product_high, product, idx, kdx, tmp);
4885 
4886   Label L_second_loop;
4887 
4888   cmpdi(CCR0, kdx, 0);
4889   beq(CCR0, L_second_loop);
4890 
4891   Label L_carry;
4892 
4893   addic_(kdx, kdx, -1);
4894   beq(CCR0, L_carry);
4895 
4896   // Store lower 32 bits of carry.
4897   sldi(tmp, kdx, LogBytesPerInt);
4898   stwx(carry, z, tmp);
4899   srdi(carry, carry, 32);
4900   addi(kdx, kdx, -1);
4901 
4902 
4903   bind(L_carry);
4904 
4905   // Store upper 32 bits of carry.
4906   sldi(tmp, kdx, LogBytesPerInt);
4907   stwx(carry, z, tmp);
4908 
4909   // Second and third (nested) loops.
4910   //
4911   //  for (int i = xstart-1; i >= 0; i--) { // Second loop
4912   //    carry = 0;
4913   //    for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
4914   //      long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
4915   //                     (z[k] & LONG_MASK) + carry;
4916   //      z[k] = (int)product;
4917   //      carry = product >>> 32;
4918   //    }
4919   //    z[i] = (int)carry;
4920   //  }
4921   //
4922   //  i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
4923 
4924   bind(L_second_loop);
4925 
4926   li(carry, 0);                   // carry = 0;
4927 
4928   addic_(xstart, xstart, -1);     // i = xstart-1;
4929   blt(CCR0, L_done);
4930 
4931   Register zsave = tmp10;
4932 
4933   mr(zsave, z);
4934 
4935 
4936   Label L_last_x;
4937 
4938   sldi(tmp, xstart, LogBytesPerInt);
4939   add(z, z, tmp);                 // z = z + k - j
4940   addi(z, z, 4);
4941   addic_(xstart, xstart, -1);     // i = xstart-1;
4942   blt(CCR0, L_last_x);
4943 
4944   sldi(tmp, xstart, LogBytesPerInt);
4945   ldx(x_xstart, x, tmp);
4946 #ifdef VM_LITTLE_ENDIAN
4947   rldicl(x_xstart, x_xstart, 32, 0);
4948 #endif
4949 
4950 
4951   Label L_third_loop_prologue;
4952 
4953   bind(L_third_loop_prologue);
4954 
4955   Register xsave = tmp11;
4956   Register xlensave = tmp12;
4957   Register ylensave = tmp13;
4958 
4959   mr(xsave, x);
4960   mr(xlensave, xstart);
4961   mr(ylensave, ylen);
4962 
4963 
4964   multiply_128_x_128_loop(x_xstart, y, z, y_idx, ylen,
4965                           carry, product_high, product, x, tmp);
4966 
4967   mr(z, zsave);
4968   mr(x, xsave);
4969   mr(xlen, xlensave);   // This is the decrement of the loop counter!
4970   mr(ylen, ylensave);
4971 
4972   addi(tmp3, xlen, 1);
4973   sldi(tmp, tmp3, LogBytesPerInt);
4974   stwx(carry, z, tmp);
4975   addic_(tmp3, tmp3, -1);
4976   blt(CCR0, L_done);
4977 
4978   srdi(carry, carry, 32);
4979   sldi(tmp, tmp3, LogBytesPerInt);
4980   stwx(carry, z, tmp);
4981   b(L_second_loop);
4982 
4983   // Next infrequent code is moved outside loops.
4984   bind(L_last_x);
4985 
4986   lwz(x_xstart, 0, x);
4987   b(L_third_loop_prologue);
4988 
4989   bind(L_done);
4990 }   // multiply_to_len
4991 
4992 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
4993 #ifdef ASSERT
4994   Label ok;
4995   if (check_equal) {
4996     beq(CCR0, ok);
4997   } else {
4998     bne(CCR0, ok);
4999   }
5000   stop(msg, id);
5001   bind(ok);
5002 #endif
5003 }
5004 
5005 void MacroAssembler::asm_assert_mems_zero(bool check_equal, int size, int mem_offset,
5006                                           Register mem_base, const char* msg, int id) {
5007 #ifdef ASSERT
5008   switch (size) {
5009     case 4:
5010       lwz(R0, mem_offset, mem_base);
5011       cmpwi(CCR0, R0, 0);
5012       break;
5013     case 8:
5014       ld(R0, mem_offset, mem_base);
5015       cmpdi(CCR0, R0, 0);
5016       break;
5017     default:
5018       ShouldNotReachHere();
5019   }
5020   asm_assert(check_equal, msg, id);
5021 #endif // ASSERT
5022 }
5023 
5024 void MacroAssembler::verify_thread() {
5025   if (VerifyThread) {
5026     unimplemented("'VerifyThread' currently not implemented on PPC");
5027   }
5028 }
5029 
5030 // READ: oop. KILL: R0. Volatile floats perhaps.
5031 void MacroAssembler::verify_oop(Register oop, const char* msg) {
5032   if (!VerifyOops) {
5033     return;
5034   }
5035 
5036   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
5037   const Register tmp = R11; // Will be preserved.
5038   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
5039   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
5040 
5041   mr_if_needed(R4_ARG2, oop);
5042   save_LR_CR(tmp); // save in old frame
5043   push_frame_reg_args(nbytes_save, tmp);
5044   // load FunctionDescriptor** / entry_address *
5045   load_const_optimized(tmp, fd, R0);
5046   // load FunctionDescriptor* / entry_address
5047   ld(tmp, 0, tmp);
5048   load_const_optimized(R3_ARG1, (address)msg, R0);
5049   // Call destination for its side effect.
5050   call_c(tmp);
5051 
5052   pop_frame();
5053   restore_LR_CR(tmp);
5054   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
5055 }
5056 
5057 void MacroAssembler::verify_oop_addr(RegisterOrConstant offs, Register base, const char* msg) {
5058   if (!VerifyOops) {
5059     return;
5060   }
5061 
5062   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
5063   const Register tmp = R11; // Will be preserved.
5064   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
5065   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
5066 
5067   ld(R4_ARG2, offs, base);
5068   save_LR_CR(tmp); // save in old frame
5069   push_frame_reg_args(nbytes_save, tmp);
5070   // load FunctionDescriptor** / entry_address *
5071   load_const_optimized(tmp, fd, R0);
5072   // load FunctionDescriptor* / entry_address
5073   ld(tmp, 0, tmp);
5074   load_const_optimized(R3_ARG1, (address)msg, R0);
5075   // Call destination for its side effect.
5076   call_c(tmp);
5077 
5078   pop_frame();
5079   restore_LR_CR(tmp);
5080   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
5081 }
5082 
5083 const char* stop_types[] = {
5084   "stop",
5085   "untested",
5086   "unimplemented",
5087   "shouldnotreachhere"
5088 };
5089 
5090 static void stop_on_request(int tp, const char* msg) {
5091   tty->print("PPC assembly code requires stop: (%s) %s\n", stop_types[tp%/*stop_end*/4], msg);
5092   guarantee(false, "PPC assembly code requires stop: %s", msg);
5093 }
5094 
5095 // Call a C-function that prints output.
5096 void MacroAssembler::stop(int type, const char* msg, int id) {
5097 #ifndef PRODUCT
5098   block_comment(err_msg("stop: %s %s {", stop_types[type%stop_end], msg));
5099 #else
5100   block_comment("stop {");
5101 #endif
5102 
5103   // setup arguments
5104   load_const_optimized(R3_ARG1, type);
5105   load_const_optimized(R4_ARG2, (void *)msg, /*tmp=*/R0);
5106   call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), R3_ARG1, R4_ARG2);
5107   illtrap();
5108   emit_int32(id);
5109   block_comment("} stop;");
5110 }
5111 
5112 #ifndef PRODUCT
5113 // Write pattern 0x0101010101010101 in memory region [low-before, high+after].
5114 // Val, addr are temp registers.
5115 // If low == addr, addr is killed.
5116 // High is preserved.
5117 void MacroAssembler::zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) {
5118   if (!ZapMemory) return;
5119 
5120   assert_different_registers(low, val);
5121 
5122   BLOCK_COMMENT("zap memory region {");
5123   load_const_optimized(val, 0x0101010101010101);
5124   int size = before + after;
5125   if (low == high && size < 5 && size > 0) {
5126     int offset = -before*BytesPerWord;
5127     for (int i = 0; i < size; ++i) {
5128       std(val, offset, low);
5129       offset += (1*BytesPerWord);
5130     }
5131   } else {
5132     addi(addr, low, -before*BytesPerWord);
5133     assert_different_registers(high, val);
5134     if (after) addi(high, high, after * BytesPerWord);
5135     Label loop;
5136     bind(loop);
5137     std(val, 0, addr);
5138     addi(addr, addr, 8);
5139     cmpd(CCR6, addr, high);
5140     ble(CCR6, loop);
5141     if (after) addi(high, high, -after * BytesPerWord);  // Correct back to old value.
5142   }
5143   BLOCK_COMMENT("} zap memory region");
5144 }
5145 
5146 #endif // !PRODUCT
5147 
5148 void SkipIfEqualZero::skip_to_label_if_equal_zero(MacroAssembler* masm, Register temp,
5149                                                   const bool* flag_addr, Label& label) {
5150   int simm16_offset = masm->load_const_optimized(temp, (address)flag_addr, R0, true);
5151   assert(sizeof(bool) == 1, "PowerPC ABI");
5152   masm->lbz(temp, simm16_offset, temp);
5153   masm->cmpwi(CCR0, temp, 0);
5154   masm->beq(CCR0, label);
5155 }
5156 
5157 SkipIfEqualZero::SkipIfEqualZero(MacroAssembler* masm, Register temp, const bool* flag_addr) : _masm(masm), _label() {
5158   skip_to_label_if_equal_zero(masm, temp, flag_addr, _label);
5159 }
5160 
5161 SkipIfEqualZero::~SkipIfEqualZero() {
5162   _masm->bind(_label);
5163 }