1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2018, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "nativeInst_ppc.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/icache.hpp"
  38 #include "runtime/interfaceSupport.inline.hpp"
  39 #include "runtime/objectMonitor.hpp"
  40 #include "runtime/os.hpp"
  41 #include "runtime/safepoint.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "utilities/macros.hpp"
  46 #ifdef COMPILER2
  47 #include "opto/intrinsicnode.hpp"
  48 #endif
  49 
  50 #ifdef PRODUCT
  51 #define BLOCK_COMMENT(str) // nothing
  52 #else
  53 #define BLOCK_COMMENT(str) block_comment(str)
  54 #endif
  55 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  56 
  57 #ifdef ASSERT
  58 // On RISC, there's no benefit to verifying instruction boundaries.
  59 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
  60 #endif
  61 
  62 void MacroAssembler::ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop) {
  63   assert(Assembler::is_simm(si31, 31) && si31 >= 0, "si31 out of range");
  64   if (Assembler::is_simm(si31, 16)) {
  65     ld(d, si31, a);
  66     if (emit_filler_nop) nop();
  67   } else {
  68     const int hi = MacroAssembler::largeoffset_si16_si16_hi(si31);
  69     const int lo = MacroAssembler::largeoffset_si16_si16_lo(si31);
  70     addis(d, a, hi);
  71     ld(d, lo, d);
  72   }
  73 }
  74 
  75 void MacroAssembler::ld_largeoffset(Register d, int si31, Register a, int emit_filler_nop) {
  76   assert_different_registers(d, a);
  77   ld_largeoffset_unchecked(d, si31, a, emit_filler_nop);
  78 }
  79 
  80 void MacroAssembler::load_sized_value(Register dst, RegisterOrConstant offs, Register base,
  81                                       size_t size_in_bytes, bool is_signed) {
  82   switch (size_in_bytes) {
  83   case  8:              ld(dst, offs, base);                         break;
  84   case  4:  is_signed ? lwa(dst, offs, base) : lwz(dst, offs, base); break;
  85   case  2:  is_signed ? lha(dst, offs, base) : lhz(dst, offs, base); break;
  86   case  1:  lbz(dst, offs, base); if (is_signed) extsb(dst, dst);    break; // lba doesn't exist :(
  87   default:  ShouldNotReachHere();
  88   }
  89 }
  90 
  91 void MacroAssembler::store_sized_value(Register dst, RegisterOrConstant offs, Register base,
  92                                        size_t size_in_bytes) {
  93   switch (size_in_bytes) {
  94   case  8:  std(dst, offs, base); break;
  95   case  4:  stw(dst, offs, base); break;
  96   case  2:  sth(dst, offs, base); break;
  97   case  1:  stb(dst, offs, base); break;
  98   default:  ShouldNotReachHere();
  99   }
 100 }
 101 
 102 void MacroAssembler::align(int modulus, int max, int rem) {
 103   int padding = (rem + modulus - (offset() % modulus)) % modulus;
 104   if (padding > max) return;
 105   for (int c = (padding >> 2); c > 0; --c) { nop(); }
 106 }
 107 
 108 // Issue instructions that calculate given TOC from global TOC.
 109 void MacroAssembler::calculate_address_from_global_toc(Register dst, address addr, bool hi16, bool lo16,
 110                                                        bool add_relocation, bool emit_dummy_addr) {
 111   int offset = -1;
 112   if (emit_dummy_addr) {
 113     offset = -128; // dummy address
 114   } else if (addr != (address)(intptr_t)-1) {
 115     offset = MacroAssembler::offset_to_global_toc(addr);
 116   }
 117 
 118   if (hi16) {
 119     addis(dst, R29_TOC, MacroAssembler::largeoffset_si16_si16_hi(offset));
 120   }
 121   if (lo16) {
 122     if (add_relocation) {
 123       // Relocate at the addi to avoid confusion with a load from the method's TOC.
 124       relocate(internal_word_Relocation::spec(addr));
 125     }
 126     addi(dst, dst, MacroAssembler::largeoffset_si16_si16_lo(offset));
 127   }
 128 }
 129 
 130 address MacroAssembler::patch_calculate_address_from_global_toc_at(address a, address bound, address addr) {
 131   const int offset = MacroAssembler::offset_to_global_toc(addr);
 132 
 133   const address inst2_addr = a;
 134   const int inst2 = *(int *)inst2_addr;
 135 
 136   // The relocation points to the second instruction, the addi,
 137   // and the addi reads and writes the same register dst.
 138   const int dst = inv_rt_field(inst2);
 139   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 140 
 141   // Now, find the preceding addis which writes to dst.
 142   int inst1 = 0;
 143   address inst1_addr = inst2_addr - BytesPerInstWord;
 144   while (inst1_addr >= bound) {
 145     inst1 = *(int *) inst1_addr;
 146     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 147       // Stop, found the addis which writes dst.
 148       break;
 149     }
 150     inst1_addr -= BytesPerInstWord;
 151   }
 152 
 153   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 154   set_imm((int *)inst1_addr, MacroAssembler::largeoffset_si16_si16_hi(offset));
 155   set_imm((int *)inst2_addr, MacroAssembler::largeoffset_si16_si16_lo(offset));
 156   return inst1_addr;
 157 }
 158 
 159 address MacroAssembler::get_address_of_calculate_address_from_global_toc_at(address a, address bound) {
 160   const address inst2_addr = a;
 161   const int inst2 = *(int *)inst2_addr;
 162 
 163   // The relocation points to the second instruction, the addi,
 164   // and the addi reads and writes the same register dst.
 165   const int dst = inv_rt_field(inst2);
 166   assert(is_addi(inst2) && inv_ra_field(inst2) == dst, "must be addi reading and writing dst");
 167 
 168   // Now, find the preceding addis which writes to dst.
 169   int inst1 = 0;
 170   address inst1_addr = inst2_addr - BytesPerInstWord;
 171   while (inst1_addr >= bound) {
 172     inst1 = *(int *) inst1_addr;
 173     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
 174       // stop, found the addis which writes dst
 175       break;
 176     }
 177     inst1_addr -= BytesPerInstWord;
 178   }
 179 
 180   assert(is_addis(inst1) && inv_ra_field(inst1) == 29 /* R29 */, "source must be global TOC");
 181 
 182   int offset = (get_imm(inst1_addr, 0) << 16) + get_imm(inst2_addr, 0);
 183   // -1 is a special case
 184   if (offset == -1) {
 185     return (address)(intptr_t)-1;
 186   } else {
 187     return global_toc() + offset;
 188   }
 189 }
 190 
 191 #ifdef _LP64
 192 // Patch compressed oops or klass constants.
 193 // Assembler sequence is
 194 // 1) compressed oops:
 195 //    lis  rx = const.hi
 196 //    ori rx = rx | const.lo
 197 // 2) compressed klass:
 198 //    lis  rx = const.hi
 199 //    clrldi rx = rx & 0xFFFFffff // clearMS32b, optional
 200 //    ori rx = rx | const.lo
 201 // Clrldi will be passed by.
 202 address MacroAssembler::patch_set_narrow_oop(address a, address bound, narrowOop data) {
 203   assert(UseCompressedOops, "Should only patch compressed oops");
 204 
 205   const address inst2_addr = a;
 206   const int inst2 = *(int *)inst2_addr;
 207 
 208   // The relocation points to the second instruction, the ori,
 209   // and the ori reads and writes the same register dst.
 210   const int dst = inv_rta_field(inst2);
 211   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 212   // Now, find the preceding addis which writes to dst.
 213   int inst1 = 0;
 214   address inst1_addr = inst2_addr - BytesPerInstWord;
 215   bool inst1_found = false;
 216   while (inst1_addr >= bound) {
 217     inst1 = *(int *)inst1_addr;
 218     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break; }
 219     inst1_addr -= BytesPerInstWord;
 220   }
 221   assert(inst1_found, "inst is not lis");
 222 
 223   int xc = (data >> 16) & 0xffff;
 224   int xd = (data >>  0) & 0xffff;
 225 
 226   set_imm((int *)inst1_addr, (short)(xc)); // see enc_load_con_narrow_hi/_lo
 227   set_imm((int *)inst2_addr,        (xd)); // unsigned int
 228   return inst1_addr;
 229 }
 230 
 231 // Get compressed oop or klass constant.
 232 narrowOop MacroAssembler::get_narrow_oop(address a, address bound) {
 233   assert(UseCompressedOops, "Should only patch compressed oops");
 234 
 235   const address inst2_addr = a;
 236   const int inst2 = *(int *)inst2_addr;
 237 
 238   // The relocation points to the second instruction, the ori,
 239   // and the ori reads and writes the same register dst.
 240   const int dst = inv_rta_field(inst2);
 241   assert(is_ori(inst2) && inv_rs_field(inst2) == dst, "must be ori reading and writing dst");
 242   // Now, find the preceding lis which writes to dst.
 243   int inst1 = 0;
 244   address inst1_addr = inst2_addr - BytesPerInstWord;
 245   bool inst1_found = false;
 246 
 247   while (inst1_addr >= bound) {
 248     inst1 = *(int *) inst1_addr;
 249     if (is_lis(inst1) && inv_rs_field(inst1) == dst) { inst1_found = true; break;}
 250     inst1_addr -= BytesPerInstWord;
 251   }
 252   assert(inst1_found, "inst is not lis");
 253 
 254   uint xl = ((unsigned int) (get_imm(inst2_addr, 0) & 0xffff));
 255   uint xh = (((get_imm(inst1_addr, 0)) & 0xffff) << 16);
 256 
 257   return (int) (xl | xh);
 258 }
 259 #endif // _LP64
 260 
 261 // Returns true if successful.
 262 bool MacroAssembler::load_const_from_method_toc(Register dst, AddressLiteral& a,
 263                                                 Register toc, bool fixed_size) {
 264   int toc_offset = 0;
 265   // Use RelocationHolder::none for the constant pool entry, otherwise
 266   // we will end up with a failing NativeCall::verify(x) where x is
 267   // the address of the constant pool entry.
 268   // FIXME: We should insert relocation information for oops at the constant
 269   // pool entries instead of inserting it at the loads; patching of a constant
 270   // pool entry should be less expensive.
 271   address const_address = address_constant((address)a.value(), RelocationHolder::none);
 272   if (const_address == NULL) { return false; } // allocation failure
 273   // Relocate at the pc of the load.
 274   relocate(a.rspec());
 275   toc_offset = (int)(const_address - code()->consts()->start());
 276   ld_largeoffset_unchecked(dst, toc_offset, toc, fixed_size);
 277   return true;
 278 }
 279 
 280 bool MacroAssembler::is_load_const_from_method_toc_at(address a) {
 281   const address inst1_addr = a;
 282   const int inst1 = *(int *)inst1_addr;
 283 
 284    // The relocation points to the ld or the addis.
 285    return (is_ld(inst1)) ||
 286           (is_addis(inst1) && inv_ra_field(inst1) != 0);
 287 }
 288 
 289 int MacroAssembler::get_offset_of_load_const_from_method_toc_at(address a) {
 290   assert(is_load_const_from_method_toc_at(a), "must be load_const_from_method_toc");
 291 
 292   const address inst1_addr = a;
 293   const int inst1 = *(int *)inst1_addr;
 294 
 295   if (is_ld(inst1)) {
 296     return inv_d1_field(inst1);
 297   } else if (is_addis(inst1)) {
 298     const int dst = inv_rt_field(inst1);
 299 
 300     // Now, find the succeeding ld which reads and writes to dst.
 301     address inst2_addr = inst1_addr + BytesPerInstWord;
 302     int inst2 = 0;
 303     while (true) {
 304       inst2 = *(int *) inst2_addr;
 305       if (is_ld(inst2) && inv_ra_field(inst2) == dst && inv_rt_field(inst2) == dst) {
 306         // Stop, found the ld which reads and writes dst.
 307         break;
 308       }
 309       inst2_addr += BytesPerInstWord;
 310     }
 311     return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
 312   }
 313   ShouldNotReachHere();
 314   return 0;
 315 }
 316 
 317 // Get the constant from a `load_const' sequence.
 318 long MacroAssembler::get_const(address a) {
 319   assert(is_load_const_at(a), "not a load of a constant");
 320   const int *p = (const int*) a;
 321   unsigned long x = (((unsigned long) (get_imm(a,0) & 0xffff)) << 48);
 322   if (is_ori(*(p+1))) {
 323     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 32);
 324     x |= (((unsigned long) (get_imm(a,3) & 0xffff)) << 16);
 325     x |= (((unsigned long) (get_imm(a,4) & 0xffff)));
 326   } else if (is_lis(*(p+1))) {
 327     x |= (((unsigned long) (get_imm(a,2) & 0xffff)) << 32);
 328     x |= (((unsigned long) (get_imm(a,1) & 0xffff)) << 16);
 329     x |= (((unsigned long) (get_imm(a,3) & 0xffff)));
 330   } else {
 331     ShouldNotReachHere();
 332     return (long) 0;
 333   }
 334   return (long) x;
 335 }
 336 
 337 // Patch the 64 bit constant of a `load_const' sequence. This is a low
 338 // level procedure. It neither flushes the instruction cache nor is it
 339 // mt safe.
 340 void MacroAssembler::patch_const(address a, long x) {
 341   assert(is_load_const_at(a), "not a load of a constant");
 342   int *p = (int*) a;
 343   if (is_ori(*(p+1))) {
 344     set_imm(0 + p, (x >> 48) & 0xffff);
 345     set_imm(1 + p, (x >> 32) & 0xffff);
 346     set_imm(3 + p, (x >> 16) & 0xffff);
 347     set_imm(4 + p, x & 0xffff);
 348   } else if (is_lis(*(p+1))) {
 349     set_imm(0 + p, (x >> 48) & 0xffff);
 350     set_imm(2 + p, (x >> 32) & 0xffff);
 351     set_imm(1 + p, (x >> 16) & 0xffff);
 352     set_imm(3 + p, x & 0xffff);
 353   } else {
 354     ShouldNotReachHere();
 355   }
 356 }
 357 
 358 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
 359   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
 360   int index = oop_recorder()->allocate_metadata_index(obj);
 361   RelocationHolder rspec = metadata_Relocation::spec(index);
 362   return AddressLiteral((address)obj, rspec);
 363 }
 364 
 365 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
 366   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
 367   int index = oop_recorder()->find_index(obj);
 368   RelocationHolder rspec = metadata_Relocation::spec(index);
 369   return AddressLiteral((address)obj, rspec);
 370 }
 371 
 372 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
 373   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
 374   int oop_index = oop_recorder()->allocate_oop_index(obj);
 375   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 376 }
 377 
 378 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
 379   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
 380   int oop_index = oop_recorder()->find_index(obj);
 381   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
 382 }
 383 
 384 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
 385                                                       Register tmp, int offset) {
 386   intptr_t value = *delayed_value_addr;
 387   if (value != 0) {
 388     return RegisterOrConstant(value + offset);
 389   }
 390 
 391   // Load indirectly to solve generation ordering problem.
 392   // static address, no relocation
 393   int simm16_offset = load_const_optimized(tmp, delayed_value_addr, noreg, true);
 394   ld(tmp, simm16_offset, tmp); // must be aligned ((xa & 3) == 0)
 395 
 396   if (offset != 0) {
 397     addi(tmp, tmp, offset);
 398   }
 399 
 400   return RegisterOrConstant(tmp);
 401 }
 402 
 403 #ifndef PRODUCT
 404 void MacroAssembler::pd_print_patched_instruction(address branch) {
 405   Unimplemented(); // TODO: PPC port
 406 }
 407 #endif // ndef PRODUCT
 408 
 409 // Conditional far branch for destinations encodable in 24+2 bits.
 410 void MacroAssembler::bc_far(int boint, int biint, Label& dest, int optimize) {
 411 
 412   // If requested by flag optimize, relocate the bc_far as a
 413   // runtime_call and prepare for optimizing it when the code gets
 414   // relocated.
 415   if (optimize == bc_far_optimize_on_relocate) {
 416     relocate(relocInfo::runtime_call_type);
 417   }
 418 
 419   // variant 2:
 420   //
 421   //    b!cxx SKIP
 422   //    bxx   DEST
 423   //  SKIP:
 424   //
 425 
 426   const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 427                                                 opposite_bcond(inv_boint_bcond(boint)));
 428 
 429   // We emit two branches.
 430   // First, a conditional branch which jumps around the far branch.
 431   const address not_taken_pc = pc() + 2 * BytesPerInstWord;
 432   const address bc_pc        = pc();
 433   bc(opposite_boint, biint, not_taken_pc);
 434 
 435   const int bc_instr = *(int*)bc_pc;
 436   assert(not_taken_pc == (address)inv_bd_field(bc_instr, (intptr_t)bc_pc), "postcondition");
 437   assert(opposite_boint == inv_bo_field(bc_instr), "postcondition");
 438   assert(boint == add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(bc_instr))),
 439                                      opposite_bcond(inv_boint_bcond(inv_bo_field(bc_instr)))),
 440          "postcondition");
 441   assert(biint == inv_bi_field(bc_instr), "postcondition");
 442 
 443   // Second, an unconditional far branch which jumps to dest.
 444   // Note: target(dest) remembers the current pc (see CodeSection::target)
 445   //       and returns the current pc if the label is not bound yet; when
 446   //       the label gets bound, the unconditional far branch will be patched.
 447   const address target_pc = target(dest);
 448   const address b_pc  = pc();
 449   b(target_pc);
 450 
 451   assert(not_taken_pc == pc(),                     "postcondition");
 452   assert(dest.is_bound() || target_pc == b_pc, "postcondition");
 453 }
 454 
 455 // 1 or 2 instructions
 456 void MacroAssembler::bc_far_optimized(int boint, int biint, Label& dest) {
 457   if (dest.is_bound() && is_within_range_of_bcxx(target(dest), pc())) {
 458     bc(boint, biint, dest);
 459   } else {
 460     bc_far(boint, biint, dest, MacroAssembler::bc_far_optimize_on_relocate);
 461   }
 462 }
 463 
 464 bool MacroAssembler::is_bc_far_at(address instruction_addr) {
 465   return is_bc_far_variant1_at(instruction_addr) ||
 466          is_bc_far_variant2_at(instruction_addr) ||
 467          is_bc_far_variant3_at(instruction_addr);
 468 }
 469 
 470 address MacroAssembler::get_dest_of_bc_far_at(address instruction_addr) {
 471   if (is_bc_far_variant1_at(instruction_addr)) {
 472     const address instruction_1_addr = instruction_addr;
 473     const int instruction_1 = *(int*)instruction_1_addr;
 474     return (address)inv_bd_field(instruction_1, (intptr_t)instruction_1_addr);
 475   } else if (is_bc_far_variant2_at(instruction_addr)) {
 476     const address instruction_2_addr = instruction_addr + 4;
 477     return bxx_destination(instruction_2_addr);
 478   } else if (is_bc_far_variant3_at(instruction_addr)) {
 479     return instruction_addr + 8;
 480   }
 481   // variant 4 ???
 482   ShouldNotReachHere();
 483   return NULL;
 484 }
 485 void MacroAssembler::set_dest_of_bc_far_at(address instruction_addr, address dest) {
 486 
 487   if (is_bc_far_variant3_at(instruction_addr)) {
 488     // variant 3, far cond branch to the next instruction, already patched to nops:
 489     //
 490     //    nop
 491     //    endgroup
 492     //  SKIP/DEST:
 493     //
 494     return;
 495   }
 496 
 497   // first, extract boint and biint from the current branch
 498   int boint = 0;
 499   int biint = 0;
 500 
 501   ResourceMark rm;
 502   const int code_size = 2 * BytesPerInstWord;
 503   CodeBuffer buf(instruction_addr, code_size);
 504   MacroAssembler masm(&buf);
 505   if (is_bc_far_variant2_at(instruction_addr) && dest == instruction_addr + 8) {
 506     // Far branch to next instruction: Optimize it by patching nops (produce variant 3).
 507     masm.nop();
 508     masm.endgroup();
 509   } else {
 510     if (is_bc_far_variant1_at(instruction_addr)) {
 511       // variant 1, the 1st instruction contains the destination address:
 512       //
 513       //    bcxx  DEST
 514       //    nop
 515       //
 516       const int instruction_1 = *(int*)(instruction_addr);
 517       boint = inv_bo_field(instruction_1);
 518       biint = inv_bi_field(instruction_1);
 519     } else if (is_bc_far_variant2_at(instruction_addr)) {
 520       // variant 2, the 2nd instruction contains the destination address:
 521       //
 522       //    b!cxx SKIP
 523       //    bxx   DEST
 524       //  SKIP:
 525       //
 526       const int instruction_1 = *(int*)(instruction_addr);
 527       boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(inv_bo_field(instruction_1))),
 528           opposite_bcond(inv_boint_bcond(inv_bo_field(instruction_1))));
 529       biint = inv_bi_field(instruction_1);
 530     } else {
 531       // variant 4???
 532       ShouldNotReachHere();
 533     }
 534 
 535     // second, set the new branch destination and optimize the code
 536     if (dest != instruction_addr + 4 && // the bc_far is still unbound!
 537         masm.is_within_range_of_bcxx(dest, instruction_addr)) {
 538       // variant 1:
 539       //
 540       //    bcxx  DEST
 541       //    nop
 542       //
 543       masm.bc(boint, biint, dest);
 544       masm.nop();
 545     } else {
 546       // variant 2:
 547       //
 548       //    b!cxx SKIP
 549       //    bxx   DEST
 550       //  SKIP:
 551       //
 552       const int opposite_boint = add_bhint_to_boint(opposite_bhint(inv_boint_bhint(boint)),
 553                                                     opposite_bcond(inv_boint_bcond(boint)));
 554       const address not_taken_pc = masm.pc() + 2 * BytesPerInstWord;
 555       masm.bc(opposite_boint, biint, not_taken_pc);
 556       masm.b(dest);
 557     }
 558   }
 559   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 560 }
 561 
 562 // Emit a NOT mt-safe patchable 64 bit absolute call/jump.
 563 void MacroAssembler::bxx64_patchable(address dest, relocInfo::relocType rt, bool link) {
 564   // get current pc
 565   uint64_t start_pc = (uint64_t) pc();
 566 
 567   const address pc_of_bl = (address) (start_pc + (6*BytesPerInstWord)); // bl is last
 568   const address pc_of_b  = (address) (start_pc + (0*BytesPerInstWord)); // b is first
 569 
 570   // relocate here
 571   if (rt != relocInfo::none) {
 572     relocate(rt);
 573   }
 574 
 575   if ( ReoptimizeCallSequences &&
 576        (( link && is_within_range_of_b(dest, pc_of_bl)) ||
 577         (!link && is_within_range_of_b(dest, pc_of_b)))) {
 578     // variant 2:
 579     // Emit an optimized, pc-relative call/jump.
 580 
 581     if (link) {
 582       // some padding
 583       nop();
 584       nop();
 585       nop();
 586       nop();
 587       nop();
 588       nop();
 589 
 590       // do the call
 591       assert(pc() == pc_of_bl, "just checking");
 592       bl(dest, relocInfo::none);
 593     } else {
 594       // do the jump
 595       assert(pc() == pc_of_b, "just checking");
 596       b(dest, relocInfo::none);
 597 
 598       // some padding
 599       nop();
 600       nop();
 601       nop();
 602       nop();
 603       nop();
 604       nop();
 605     }
 606 
 607     // Assert that we can identify the emitted call/jump.
 608     assert(is_bxx64_patchable_variant2_at((address)start_pc, link),
 609            "can't identify emitted call");
 610   } else {
 611     // variant 1:
 612     mr(R0, R11);  // spill R11 -> R0.
 613 
 614     // Load the destination address into CTR,
 615     // calculate destination relative to global toc.
 616     calculate_address_from_global_toc(R11, dest, true, true, false);
 617 
 618     mtctr(R11);
 619     mr(R11, R0);  // spill R11 <- R0.
 620     nop();
 621 
 622     // do the call/jump
 623     if (link) {
 624       bctrl();
 625     } else{
 626       bctr();
 627     }
 628     // Assert that we can identify the emitted call/jump.
 629     assert(is_bxx64_patchable_variant1b_at((address)start_pc, link),
 630            "can't identify emitted call");
 631   }
 632 
 633   // Assert that we can identify the emitted call/jump.
 634   assert(is_bxx64_patchable_at((address)start_pc, link),
 635          "can't identify emitted call");
 636   assert(get_dest_of_bxx64_patchable_at((address)start_pc, link) == dest,
 637          "wrong encoding of dest address");
 638 }
 639 
 640 // Identify a bxx64_patchable instruction.
 641 bool MacroAssembler::is_bxx64_patchable_at(address instruction_addr, bool link) {
 642   return is_bxx64_patchable_variant1b_at(instruction_addr, link)
 643     //|| is_bxx64_patchable_variant1_at(instruction_addr, link)
 644       || is_bxx64_patchable_variant2_at(instruction_addr, link);
 645 }
 646 
 647 // Does the call64_patchable instruction use a pc-relative encoding of
 648 // the call destination?
 649 bool MacroAssembler::is_bxx64_patchable_pcrelative_at(address instruction_addr, bool link) {
 650   // variant 2 is pc-relative
 651   return is_bxx64_patchable_variant2_at(instruction_addr, link);
 652 }
 653 
 654 // Identify variant 1.
 655 bool MacroAssembler::is_bxx64_patchable_variant1_at(address instruction_addr, bool link) {
 656   unsigned int* instr = (unsigned int*) instruction_addr;
 657   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 658       && is_mtctr(instr[5]) // mtctr
 659     && is_load_const_at(instruction_addr);
 660 }
 661 
 662 // Identify variant 1b: load destination relative to global toc.
 663 bool MacroAssembler::is_bxx64_patchable_variant1b_at(address instruction_addr, bool link) {
 664   unsigned int* instr = (unsigned int*) instruction_addr;
 665   return (link ? is_bctrl(instr[6]) : is_bctr(instr[6])) // bctr[l]
 666     && is_mtctr(instr[3]) // mtctr
 667     && is_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord, instruction_addr);
 668 }
 669 
 670 // Identify variant 2.
 671 bool MacroAssembler::is_bxx64_patchable_variant2_at(address instruction_addr, bool link) {
 672   unsigned int* instr = (unsigned int*) instruction_addr;
 673   if (link) {
 674     return is_bl (instr[6])  // bl dest is last
 675       && is_nop(instr[0])  // nop
 676       && is_nop(instr[1])  // nop
 677       && is_nop(instr[2])  // nop
 678       && is_nop(instr[3])  // nop
 679       && is_nop(instr[4])  // nop
 680       && is_nop(instr[5]); // nop
 681   } else {
 682     return is_b  (instr[0])  // b  dest is first
 683       && is_nop(instr[1])  // nop
 684       && is_nop(instr[2])  // nop
 685       && is_nop(instr[3])  // nop
 686       && is_nop(instr[4])  // nop
 687       && is_nop(instr[5])  // nop
 688       && is_nop(instr[6]); // nop
 689   }
 690 }
 691 
 692 // Set dest address of a bxx64_patchable instruction.
 693 void MacroAssembler::set_dest_of_bxx64_patchable_at(address instruction_addr, address dest, bool link) {
 694   ResourceMark rm;
 695   int code_size = MacroAssembler::bxx64_patchable_size;
 696   CodeBuffer buf(instruction_addr, code_size);
 697   MacroAssembler masm(&buf);
 698   masm.bxx64_patchable(dest, relocInfo::none, link);
 699   ICache::ppc64_flush_icache_bytes(instruction_addr, code_size);
 700 }
 701 
 702 // Get dest address of a bxx64_patchable instruction.
 703 address MacroAssembler::get_dest_of_bxx64_patchable_at(address instruction_addr, bool link) {
 704   if (is_bxx64_patchable_variant1_at(instruction_addr, link)) {
 705     return (address) (unsigned long) get_const(instruction_addr);
 706   } else if (is_bxx64_patchable_variant2_at(instruction_addr, link)) {
 707     unsigned int* instr = (unsigned int*) instruction_addr;
 708     if (link) {
 709       const int instr_idx = 6; // bl is last
 710       int branchoffset = branch_destination(instr[instr_idx], 0);
 711       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 712     } else {
 713       const int instr_idx = 0; // b is first
 714       int branchoffset = branch_destination(instr[instr_idx], 0);
 715       return instruction_addr + branchoffset + instr_idx*BytesPerInstWord;
 716     }
 717   // Load dest relative to global toc.
 718   } else if (is_bxx64_patchable_variant1b_at(instruction_addr, link)) {
 719     return get_address_of_calculate_address_from_global_toc_at(instruction_addr + 2*BytesPerInstWord,
 720                                                                instruction_addr);
 721   } else {
 722     ShouldNotReachHere();
 723     return NULL;
 724   }
 725 }
 726 
 727 // Uses ordering which corresponds to ABI:
 728 //    _savegpr0_14:  std  r14,-144(r1)
 729 //    _savegpr0_15:  std  r15,-136(r1)
 730 //    _savegpr0_16:  std  r16,-128(r1)
 731 void MacroAssembler::save_nonvolatile_gprs(Register dst, int offset) {
 732   std(R14, offset, dst);   offset += 8;
 733   std(R15, offset, dst);   offset += 8;
 734   std(R16, offset, dst);   offset += 8;
 735   std(R17, offset, dst);   offset += 8;
 736   std(R18, offset, dst);   offset += 8;
 737   std(R19, offset, dst);   offset += 8;
 738   std(R20, offset, dst);   offset += 8;
 739   std(R21, offset, dst);   offset += 8;
 740   std(R22, offset, dst);   offset += 8;
 741   std(R23, offset, dst);   offset += 8;
 742   std(R24, offset, dst);   offset += 8;
 743   std(R25, offset, dst);   offset += 8;
 744   std(R26, offset, dst);   offset += 8;
 745   std(R27, offset, dst);   offset += 8;
 746   std(R28, offset, dst);   offset += 8;
 747   std(R29, offset, dst);   offset += 8;
 748   std(R30, offset, dst);   offset += 8;
 749   std(R31, offset, dst);   offset += 8;
 750 
 751   stfd(F14, offset, dst);   offset += 8;
 752   stfd(F15, offset, dst);   offset += 8;
 753   stfd(F16, offset, dst);   offset += 8;
 754   stfd(F17, offset, dst);   offset += 8;
 755   stfd(F18, offset, dst);   offset += 8;
 756   stfd(F19, offset, dst);   offset += 8;
 757   stfd(F20, offset, dst);   offset += 8;
 758   stfd(F21, offset, dst);   offset += 8;
 759   stfd(F22, offset, dst);   offset += 8;
 760   stfd(F23, offset, dst);   offset += 8;
 761   stfd(F24, offset, dst);   offset += 8;
 762   stfd(F25, offset, dst);   offset += 8;
 763   stfd(F26, offset, dst);   offset += 8;
 764   stfd(F27, offset, dst);   offset += 8;
 765   stfd(F28, offset, dst);   offset += 8;
 766   stfd(F29, offset, dst);   offset += 8;
 767   stfd(F30, offset, dst);   offset += 8;
 768   stfd(F31, offset, dst);
 769 }
 770 
 771 // Uses ordering which corresponds to ABI:
 772 //    _restgpr0_14:  ld   r14,-144(r1)
 773 //    _restgpr0_15:  ld   r15,-136(r1)
 774 //    _restgpr0_16:  ld   r16,-128(r1)
 775 void MacroAssembler::restore_nonvolatile_gprs(Register src, int offset) {
 776   ld(R14, offset, src);   offset += 8;
 777   ld(R15, offset, src);   offset += 8;
 778   ld(R16, offset, src);   offset += 8;
 779   ld(R17, offset, src);   offset += 8;
 780   ld(R18, offset, src);   offset += 8;
 781   ld(R19, offset, src);   offset += 8;
 782   ld(R20, offset, src);   offset += 8;
 783   ld(R21, offset, src);   offset += 8;
 784   ld(R22, offset, src);   offset += 8;
 785   ld(R23, offset, src);   offset += 8;
 786   ld(R24, offset, src);   offset += 8;
 787   ld(R25, offset, src);   offset += 8;
 788   ld(R26, offset, src);   offset += 8;
 789   ld(R27, offset, src);   offset += 8;
 790   ld(R28, offset, src);   offset += 8;
 791   ld(R29, offset, src);   offset += 8;
 792   ld(R30, offset, src);   offset += 8;
 793   ld(R31, offset, src);   offset += 8;
 794 
 795   // FP registers
 796   lfd(F14, offset, src);   offset += 8;
 797   lfd(F15, offset, src);   offset += 8;
 798   lfd(F16, offset, src);   offset += 8;
 799   lfd(F17, offset, src);   offset += 8;
 800   lfd(F18, offset, src);   offset += 8;
 801   lfd(F19, offset, src);   offset += 8;
 802   lfd(F20, offset, src);   offset += 8;
 803   lfd(F21, offset, src);   offset += 8;
 804   lfd(F22, offset, src);   offset += 8;
 805   lfd(F23, offset, src);   offset += 8;
 806   lfd(F24, offset, src);   offset += 8;
 807   lfd(F25, offset, src);   offset += 8;
 808   lfd(F26, offset, src);   offset += 8;
 809   lfd(F27, offset, src);   offset += 8;
 810   lfd(F28, offset, src);   offset += 8;
 811   lfd(F29, offset, src);   offset += 8;
 812   lfd(F30, offset, src);   offset += 8;
 813   lfd(F31, offset, src);
 814 }
 815 
 816 // For verify_oops.
 817 void MacroAssembler::save_volatile_gprs(Register dst, int offset) {
 818   std(R2,  offset, dst);   offset += 8;
 819   std(R3,  offset, dst);   offset += 8;
 820   std(R4,  offset, dst);   offset += 8;
 821   std(R5,  offset, dst);   offset += 8;
 822   std(R6,  offset, dst);   offset += 8;
 823   std(R7,  offset, dst);   offset += 8;
 824   std(R8,  offset, dst);   offset += 8;
 825   std(R9,  offset, dst);   offset += 8;
 826   std(R10, offset, dst);   offset += 8;
 827   std(R11, offset, dst);   offset += 8;
 828   std(R12, offset, dst);   offset += 8;
 829 
 830   stfd(F0, offset, dst);   offset += 8;
 831   stfd(F1, offset, dst);   offset += 8;
 832   stfd(F2, offset, dst);   offset += 8;
 833   stfd(F3, offset, dst);   offset += 8;
 834   stfd(F4, offset, dst);   offset += 8;
 835   stfd(F5, offset, dst);   offset += 8;
 836   stfd(F6, offset, dst);   offset += 8;
 837   stfd(F7, offset, dst);   offset += 8;
 838   stfd(F8, offset, dst);   offset += 8;
 839   stfd(F9, offset, dst);   offset += 8;
 840   stfd(F10, offset, dst);  offset += 8;
 841   stfd(F11, offset, dst);  offset += 8;
 842   stfd(F12, offset, dst);  offset += 8;
 843   stfd(F13, offset, dst);
 844 }
 845 
 846 // For verify_oops.
 847 void MacroAssembler::restore_volatile_gprs(Register src, int offset) {
 848   ld(R2,  offset, src);   offset += 8;
 849   ld(R3,  offset, src);   offset += 8;
 850   ld(R4,  offset, src);   offset += 8;
 851   ld(R5,  offset, src);   offset += 8;
 852   ld(R6,  offset, src);   offset += 8;
 853   ld(R7,  offset, src);   offset += 8;
 854   ld(R8,  offset, src);   offset += 8;
 855   ld(R9,  offset, src);   offset += 8;
 856   ld(R10, offset, src);   offset += 8;
 857   ld(R11, offset, src);   offset += 8;
 858   ld(R12, offset, src);   offset += 8;
 859 
 860   lfd(F0, offset, src);   offset += 8;
 861   lfd(F1, offset, src);   offset += 8;
 862   lfd(F2, offset, src);   offset += 8;
 863   lfd(F3, offset, src);   offset += 8;
 864   lfd(F4, offset, src);   offset += 8;
 865   lfd(F5, offset, src);   offset += 8;
 866   lfd(F6, offset, src);   offset += 8;
 867   lfd(F7, offset, src);   offset += 8;
 868   lfd(F8, offset, src);   offset += 8;
 869   lfd(F9, offset, src);   offset += 8;
 870   lfd(F10, offset, src);  offset += 8;
 871   lfd(F11, offset, src);  offset += 8;
 872   lfd(F12, offset, src);  offset += 8;
 873   lfd(F13, offset, src);
 874 }
 875 
 876 void MacroAssembler::save_LR_CR(Register tmp) {
 877   mfcr(tmp);
 878   std(tmp, _abi(cr), R1_SP);
 879   mflr(tmp);
 880   std(tmp, _abi(lr), R1_SP);
 881   // Tmp must contain lr on exit! (see return_addr and prolog in ppc64.ad)
 882 }
 883 
 884 void MacroAssembler::restore_LR_CR(Register tmp) {
 885   assert(tmp != R1_SP, "must be distinct");
 886   ld(tmp, _abi(lr), R1_SP);
 887   mtlr(tmp);
 888   ld(tmp, _abi(cr), R1_SP);
 889   mtcr(tmp);
 890 }
 891 
 892 address MacroAssembler::get_PC_trash_LR(Register result) {
 893   Label L;
 894   bl(L);
 895   bind(L);
 896   address lr_pc = pc();
 897   mflr(result);
 898   return lr_pc;
 899 }
 900 
 901 void MacroAssembler::resize_frame(Register offset, Register tmp) {
 902 #ifdef ASSERT
 903   assert_different_registers(offset, tmp, R1_SP);
 904   andi_(tmp, offset, frame::alignment_in_bytes-1);
 905   asm_assert_eq("resize_frame: unaligned", 0x204);
 906 #endif
 907 
 908   // tmp <- *(SP)
 909   ld(tmp, _abi(callers_sp), R1_SP);
 910   // addr <- SP + offset;
 911   // *(addr) <- tmp;
 912   // SP <- addr
 913   stdux(tmp, R1_SP, offset);
 914 }
 915 
 916 void MacroAssembler::resize_frame(int offset, Register tmp) {
 917   assert(is_simm(offset, 16), "too big an offset");
 918   assert_different_registers(tmp, R1_SP);
 919   assert((offset & (frame::alignment_in_bytes-1))==0, "resize_frame: unaligned");
 920   // tmp <- *(SP)
 921   ld(tmp, _abi(callers_sp), R1_SP);
 922   // addr <- SP + offset;
 923   // *(addr) <- tmp;
 924   // SP <- addr
 925   stdu(tmp, offset, R1_SP);
 926 }
 927 
 928 void MacroAssembler::resize_frame_absolute(Register addr, Register tmp1, Register tmp2) {
 929   // (addr == tmp1) || (addr == tmp2) is allowed here!
 930   assert(tmp1 != tmp2, "must be distinct");
 931 
 932   // compute offset w.r.t. current stack pointer
 933   // tmp_1 <- addr - SP (!)
 934   subf(tmp1, R1_SP, addr);
 935 
 936   // atomically update SP keeping back link.
 937   resize_frame(tmp1/* offset */, tmp2/* tmp */);
 938 }
 939 
 940 void MacroAssembler::push_frame(Register bytes, Register tmp) {
 941 #ifdef ASSERT
 942   assert(bytes != R0, "r0 not allowed here");
 943   andi_(R0, bytes, frame::alignment_in_bytes-1);
 944   asm_assert_eq("push_frame(Reg, Reg): unaligned", 0x203);
 945 #endif
 946   neg(tmp, bytes);
 947   stdux(R1_SP, R1_SP, tmp);
 948 }
 949 
 950 // Push a frame of size `bytes'.
 951 void MacroAssembler::push_frame(unsigned int bytes, Register tmp) {
 952   long offset = align_addr(bytes, frame::alignment_in_bytes);
 953   if (is_simm(-offset, 16)) {
 954     stdu(R1_SP, -offset, R1_SP);
 955   } else {
 956     load_const_optimized(tmp, -offset);
 957     stdux(R1_SP, R1_SP, tmp);
 958   }
 959 }
 960 
 961 // Push a frame of size `bytes' plus abi_reg_args on top.
 962 void MacroAssembler::push_frame_reg_args(unsigned int bytes, Register tmp) {
 963   push_frame(bytes + frame::abi_reg_args_size, tmp);
 964 }
 965 
 966 // Setup up a new C frame with a spill area for non-volatile GPRs and
 967 // additional space for local variables.
 968 void MacroAssembler::push_frame_reg_args_nonvolatiles(unsigned int bytes,
 969                                                       Register tmp) {
 970   push_frame(bytes + frame::abi_reg_args_size + frame::spill_nonvolatiles_size, tmp);
 971 }
 972 
 973 // Pop current C frame.
 974 void MacroAssembler::pop_frame() {
 975   ld(R1_SP, _abi(callers_sp), R1_SP);
 976 }
 977 
 978 #if defined(ABI_ELFv2)
 979 address MacroAssembler::branch_to(Register r_function_entry, bool and_link) {
 980   // TODO(asmundak): make sure the caller uses R12 as function descriptor
 981   // most of the times.
 982   if (R12 != r_function_entry) {
 983     mr(R12, r_function_entry);
 984   }
 985   mtctr(R12);
 986   // Do a call or a branch.
 987   if (and_link) {
 988     bctrl();
 989   } else {
 990     bctr();
 991   }
 992   _last_calls_return_pc = pc();
 993 
 994   return _last_calls_return_pc;
 995 }
 996 
 997 // Call a C function via a function descriptor and use full C
 998 // calling conventions. Updates and returns _last_calls_return_pc.
 999 address MacroAssembler::call_c(Register r_function_entry) {
1000   return branch_to(r_function_entry, /*and_link=*/true);
1001 }
1002 
1003 // For tail calls: only branch, don't link, so callee returns to caller of this function.
1004 address MacroAssembler::call_c_and_return_to_caller(Register r_function_entry) {
1005   return branch_to(r_function_entry, /*and_link=*/false);
1006 }
1007 
1008 address MacroAssembler::call_c(address function_entry, relocInfo::relocType rt) {
1009   load_const(R12, function_entry, R0);
1010   return branch_to(R12,  /*and_link=*/true);
1011 }
1012 
1013 #else
1014 // Generic version of a call to C function via a function descriptor
1015 // with variable support for C calling conventions (TOC, ENV, etc.).
1016 // Updates and returns _last_calls_return_pc.
1017 address MacroAssembler::branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
1018                                   bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee) {
1019   // we emit standard ptrgl glue code here
1020   assert((function_descriptor != R0), "function_descriptor cannot be R0");
1021 
1022   // retrieve necessary entries from the function descriptor
1023   ld(R0, in_bytes(FunctionDescriptor::entry_offset()), function_descriptor);
1024   mtctr(R0);
1025 
1026   if (load_toc_of_callee) {
1027     ld(R2_TOC, in_bytes(FunctionDescriptor::toc_offset()), function_descriptor);
1028   }
1029   if (load_env_of_callee) {
1030     ld(R11, in_bytes(FunctionDescriptor::env_offset()), function_descriptor);
1031   } else if (load_toc_of_callee) {
1032     li(R11, 0);
1033   }
1034 
1035   // do a call or a branch
1036   if (and_link) {
1037     bctrl();
1038   } else {
1039     bctr();
1040   }
1041   _last_calls_return_pc = pc();
1042 
1043   return _last_calls_return_pc;
1044 }
1045 
1046 // Call a C function via a function descriptor and use full C calling
1047 // conventions.
1048 // We don't use the TOC in generated code, so there is no need to save
1049 // and restore its value.
1050 address MacroAssembler::call_c(Register fd) {
1051   return branch_to(fd, /*and_link=*/true,
1052                        /*save toc=*/false,
1053                        /*restore toc=*/false,
1054                        /*load toc=*/true,
1055                        /*load env=*/true);
1056 }
1057 
1058 address MacroAssembler::call_c_and_return_to_caller(Register fd) {
1059   return branch_to(fd, /*and_link=*/false,
1060                        /*save toc=*/false,
1061                        /*restore toc=*/false,
1062                        /*load toc=*/true,
1063                        /*load env=*/true);
1064 }
1065 
1066 address MacroAssembler::call_c(const FunctionDescriptor* fd, relocInfo::relocType rt) {
1067   if (rt != relocInfo::none) {
1068     // this call needs to be relocatable
1069     if (!ReoptimizeCallSequences
1070         || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1071         || fd == NULL   // support code-size estimation
1072         || !fd->is_friend_function()
1073         || fd->entry() == NULL) {
1074       // it's not a friend function as defined by class FunctionDescriptor,
1075       // so do a full call-c here.
1076       load_const(R11, (address)fd, R0);
1077 
1078       bool has_env = (fd != NULL && fd->env() != NULL);
1079       return branch_to(R11, /*and_link=*/true,
1080                             /*save toc=*/false,
1081                             /*restore toc=*/false,
1082                             /*load toc=*/true,
1083                             /*load env=*/has_env);
1084     } else {
1085       // It's a friend function. Load the entry point and don't care about
1086       // toc and env. Use an optimizable call instruction, but ensure the
1087       // same code-size as in the case of a non-friend function.
1088       nop();
1089       nop();
1090       nop();
1091       bl64_patchable(fd->entry(), rt);
1092       _last_calls_return_pc = pc();
1093       return _last_calls_return_pc;
1094     }
1095   } else {
1096     // This call does not need to be relocatable, do more aggressive
1097     // optimizations.
1098     if (!ReoptimizeCallSequences
1099       || !fd->is_friend_function()) {
1100       // It's not a friend function as defined by class FunctionDescriptor,
1101       // so do a full call-c here.
1102       load_const(R11, (address)fd, R0);
1103       return branch_to(R11, /*and_link=*/true,
1104                             /*save toc=*/false,
1105                             /*restore toc=*/false,
1106                             /*load toc=*/true,
1107                             /*load env=*/true);
1108     } else {
1109       // it's a friend function, load the entry point and don't care about
1110       // toc and env.
1111       address dest = fd->entry();
1112       if (is_within_range_of_b(dest, pc())) {
1113         bl(dest);
1114       } else {
1115         bl64_patchable(dest, rt);
1116       }
1117       _last_calls_return_pc = pc();
1118       return _last_calls_return_pc;
1119     }
1120   }
1121 }
1122 
1123 // Call a C function.  All constants needed reside in TOC.
1124 //
1125 // Read the address to call from the TOC.
1126 // Read env from TOC, if fd specifies an env.
1127 // Read new TOC from TOC.
1128 address MacroAssembler::call_c_using_toc(const FunctionDescriptor* fd,
1129                                          relocInfo::relocType rt, Register toc) {
1130   if (!ReoptimizeCallSequences
1131     || (rt != relocInfo::runtime_call_type && rt != relocInfo::none)
1132     || !fd->is_friend_function()) {
1133     // It's not a friend function as defined by class FunctionDescriptor,
1134     // so do a full call-c here.
1135     assert(fd->entry() != NULL, "function must be linked");
1136 
1137     AddressLiteral fd_entry(fd->entry());
1138     bool success = load_const_from_method_toc(R11, fd_entry, toc, /*fixed_size*/ true);
1139     mtctr(R11);
1140     if (fd->env() == NULL) {
1141       li(R11, 0);
1142       nop();
1143     } else {
1144       AddressLiteral fd_env(fd->env());
1145       success = success && load_const_from_method_toc(R11, fd_env, toc, /*fixed_size*/ true);
1146     }
1147     AddressLiteral fd_toc(fd->toc());
1148     // Set R2_TOC (load from toc)
1149     success = success && load_const_from_method_toc(R2_TOC, fd_toc, toc, /*fixed_size*/ true);
1150     bctrl();
1151     _last_calls_return_pc = pc();
1152     if (!success) { return NULL; }
1153   } else {
1154     // It's a friend function, load the entry point and don't care about
1155     // toc and env. Use an optimizable call instruction, but ensure the
1156     // same code-size as in the case of a non-friend function.
1157     nop();
1158     bl64_patchable(fd->entry(), rt);
1159     _last_calls_return_pc = pc();
1160   }
1161   return _last_calls_return_pc;
1162 }
1163 #endif // ABI_ELFv2
1164 
1165 void MacroAssembler::call_VM_base(Register oop_result,
1166                                   Register last_java_sp,
1167                                   address  entry_point,
1168                                   bool     check_exceptions) {
1169   BLOCK_COMMENT("call_VM {");
1170   // Determine last_java_sp register.
1171   if (!last_java_sp->is_valid()) {
1172     last_java_sp = R1_SP;
1173   }
1174   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, R11_scratch1);
1175 
1176   // ARG1 must hold thread address.
1177   mr(R3_ARG1, R16_thread);
1178 #if defined(ABI_ELFv2)
1179   address return_pc = call_c(entry_point, relocInfo::none);
1180 #else
1181   address return_pc = call_c((FunctionDescriptor*)entry_point, relocInfo::none);
1182 #endif
1183 
1184   reset_last_Java_frame();
1185 
1186   // Check for pending exceptions.
1187   if (check_exceptions) {
1188     // We don't check for exceptions here.
1189     ShouldNotReachHere();
1190   }
1191 
1192   // Get oop result if there is one and reset the value in the thread.
1193   if (oop_result->is_valid()) {
1194     get_vm_result(oop_result);
1195   }
1196 
1197   _last_calls_return_pc = return_pc;
1198   BLOCK_COMMENT("} call_VM");
1199 }
1200 
1201 void MacroAssembler::call_VM_leaf_base(address entry_point) {
1202   BLOCK_COMMENT("call_VM_leaf {");
1203 #if defined(ABI_ELFv2)
1204   call_c(entry_point, relocInfo::none);
1205 #else
1206   call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::none);
1207 #endif
1208   BLOCK_COMMENT("} call_VM_leaf");
1209 }
1210 
1211 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
1212   call_VM_base(oop_result, noreg, entry_point, check_exceptions);
1213 }
1214 
1215 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1,
1216                              bool check_exceptions) {
1217   // R3_ARG1 is reserved for the thread.
1218   mr_if_needed(R4_ARG2, arg_1);
1219   call_VM(oop_result, entry_point, check_exceptions);
1220 }
1221 
1222 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
1223                              bool check_exceptions) {
1224   // R3_ARG1 is reserved for the thread
1225   mr_if_needed(R4_ARG2, arg_1);
1226   assert(arg_2 != R4_ARG2, "smashed argument");
1227   mr_if_needed(R5_ARG3, arg_2);
1228   call_VM(oop_result, entry_point, check_exceptions);
1229 }
1230 
1231 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3,
1232                              bool check_exceptions) {
1233   // R3_ARG1 is reserved for the thread
1234   mr_if_needed(R4_ARG2, arg_1);
1235   assert(arg_2 != R4_ARG2, "smashed argument");
1236   mr_if_needed(R5_ARG3, arg_2);
1237   mr_if_needed(R6_ARG4, arg_3);
1238   call_VM(oop_result, entry_point, check_exceptions);
1239 }
1240 
1241 void MacroAssembler::call_VM_leaf(address entry_point) {
1242   call_VM_leaf_base(entry_point);
1243 }
1244 
1245 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
1246   mr_if_needed(R3_ARG1, arg_1);
1247   call_VM_leaf(entry_point);
1248 }
1249 
1250 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
1251   mr_if_needed(R3_ARG1, arg_1);
1252   assert(arg_2 != R3_ARG1, "smashed argument");
1253   mr_if_needed(R4_ARG2, arg_2);
1254   call_VM_leaf(entry_point);
1255 }
1256 
1257 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1258   mr_if_needed(R3_ARG1, arg_1);
1259   assert(arg_2 != R3_ARG1, "smashed argument");
1260   mr_if_needed(R4_ARG2, arg_2);
1261   assert(arg_3 != R3_ARG1 && arg_3 != R4_ARG2, "smashed argument");
1262   mr_if_needed(R5_ARG3, arg_3);
1263   call_VM_leaf(entry_point);
1264 }
1265 
1266 // Check whether instruction is a read access to the polling page
1267 // which was emitted by load_from_polling_page(..).
1268 bool MacroAssembler::is_load_from_polling_page(int instruction, void* ucontext,
1269                                                address* polling_address_ptr) {
1270   if (!is_ld(instruction))
1271     return false; // It's not a ld. Fail.
1272 
1273   int rt = inv_rt_field(instruction);
1274   int ra = inv_ra_field(instruction);
1275   int ds = inv_ds_field(instruction);
1276   if (!(ds == 0 && ra != 0 && rt == 0)) {
1277     return false; // It's not a ld(r0, X, ra). Fail.
1278   }
1279 
1280   if (!ucontext) {
1281     // Set polling address.
1282     if (polling_address_ptr != NULL) {
1283       *polling_address_ptr = NULL;
1284     }
1285     return true; // No ucontext given. Can't check value of ra. Assume true.
1286   }
1287 
1288 #ifdef LINUX
1289   // Ucontext given. Check that register ra contains the address of
1290   // the safepoing polling page.
1291   ucontext_t* uc = (ucontext_t*) ucontext;
1292   // Set polling address.
1293   address addr = (address)uc->uc_mcontext.regs->gpr[ra] + (ssize_t)ds;
1294   if (polling_address_ptr != NULL) {
1295     *polling_address_ptr = addr;
1296   }
1297   return os::is_poll_address(addr);
1298 #else
1299   // Not on Linux, ucontext must be NULL.
1300   ShouldNotReachHere();
1301   return false;
1302 #endif
1303 }
1304 
1305 bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) {
1306 #ifdef LINUX
1307   ucontext_t* uc = (ucontext_t*) ucontext;
1308 
1309   if (is_stwx(instruction) || is_stwux(instruction)) {
1310     int ra = inv_ra_field(instruction);
1311     int rb = inv_rb_field(instruction);
1312 
1313     // look up content of ra and rb in ucontext
1314     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1315     long rb_val=(long)uc->uc_mcontext.regs->gpr[rb];
1316     return os::is_memory_serialize_page(thread, ra_val+rb_val);
1317   } else if (is_stw(instruction) || is_stwu(instruction)) {
1318     int ra = inv_ra_field(instruction);
1319     int d1 = inv_d1_field(instruction);
1320 
1321     // look up content of ra in ucontext
1322     address ra_val=(address)uc->uc_mcontext.regs->gpr[ra];
1323     return os::is_memory_serialize_page(thread, ra_val+d1);
1324   } else {
1325     return false;
1326   }
1327 #else
1328   // workaround not needed on !LINUX :-)
1329   ShouldNotCallThis();
1330   return false;
1331 #endif
1332 }
1333 
1334 void MacroAssembler::bang_stack_with_offset(int offset) {
1335   // When increasing the stack, the old stack pointer will be written
1336   // to the new top of stack according to the PPC64 abi.
1337   // Therefore, stack banging is not necessary when increasing
1338   // the stack by <= os::vm_page_size() bytes.
1339   // When increasing the stack by a larger amount, this method is
1340   // called repeatedly to bang the intermediate pages.
1341 
1342   // Stack grows down, caller passes positive offset.
1343   assert(offset > 0, "must bang with positive offset");
1344 
1345   long stdoffset = -offset;
1346 
1347   if (is_simm(stdoffset, 16)) {
1348     // Signed 16 bit offset, a simple std is ok.
1349     if (UseLoadInstructionsForStackBangingPPC64) {
1350       ld(R0, (int)(signed short)stdoffset, R1_SP);
1351     } else {
1352       std(R0,(int)(signed short)stdoffset, R1_SP);
1353     }
1354   } else if (is_simm(stdoffset, 31)) {
1355     const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
1356     const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
1357 
1358     Register tmp = R11;
1359     addis(tmp, R1_SP, hi);
1360     if (UseLoadInstructionsForStackBangingPPC64) {
1361       ld(R0,  lo, tmp);
1362     } else {
1363       std(R0, lo, tmp);
1364     }
1365   } else {
1366     ShouldNotReachHere();
1367   }
1368 }
1369 
1370 // If instruction is a stack bang of the form
1371 //    std    R0,    x(Ry),       (see bang_stack_with_offset())
1372 //    stdu   R1_SP, x(R1_SP),    (see push_frame(), resize_frame())
1373 // or stdux  R1_SP, Rx, R1_SP    (see push_frame(), resize_frame())
1374 // return the banged address. Otherwise, return 0.
1375 address MacroAssembler::get_stack_bang_address(int instruction, void *ucontext) {
1376 #ifdef LINUX
1377   ucontext_t* uc = (ucontext_t*) ucontext;
1378   int rs = inv_rs_field(instruction);
1379   int ra = inv_ra_field(instruction);
1380   if (   (is_ld(instruction)   && rs == 0 &&  UseLoadInstructionsForStackBangingPPC64)
1381       || (is_std(instruction)  && rs == 0 && !UseLoadInstructionsForStackBangingPPC64)
1382       || (is_stdu(instruction) && rs == 1)) {
1383     int ds = inv_ds_field(instruction);
1384     // return banged address
1385     return ds+(address)uc->uc_mcontext.regs->gpr[ra];
1386   } else if (is_stdux(instruction) && rs == 1) {
1387     int rb = inv_rb_field(instruction);
1388     address sp = (address)uc->uc_mcontext.regs->gpr[1];
1389     long rb_val = (long)uc->uc_mcontext.regs->gpr[rb];
1390     return ra != 1 || rb_val >= 0 ? NULL         // not a stack bang
1391                                   : sp + rb_val; // banged address
1392   }
1393   return NULL; // not a stack bang
1394 #else
1395   // workaround not needed on !LINUX :-)
1396   ShouldNotCallThis();
1397   return NULL;
1398 #endif
1399 }
1400 
1401 void MacroAssembler::reserved_stack_check(Register return_pc) {
1402   // Test if reserved zone needs to be enabled.
1403   Label no_reserved_zone_enabling;
1404 
1405   ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
1406   cmpld(CCR0, R1_SP, R0);
1407   blt_predict_taken(CCR0, no_reserved_zone_enabling);
1408 
1409   // Enable reserved zone again, throw stack overflow exception.
1410   push_frame_reg_args(0, R0);
1411   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
1412   pop_frame();
1413   mtlr(return_pc);
1414   load_const_optimized(R0, StubRoutines::throw_delayed_StackOverflowError_entry());
1415   mtctr(R0);
1416   bctr();
1417 
1418   should_not_reach_here();
1419 
1420   bind(no_reserved_zone_enabling);
1421 }
1422 
1423 void MacroAssembler::getandsetd(Register dest_current_value, Register exchange_value, Register addr_base,
1424                                 bool cmpxchgx_hint) {
1425   Label retry;
1426   bind(retry);
1427   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1428   stdcx_(exchange_value, addr_base);
1429   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1430     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1431   } else {
1432     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1433   }
1434 }
1435 
1436 void MacroAssembler::getandaddd(Register dest_current_value, Register inc_value, Register addr_base,
1437                                 Register tmp, bool cmpxchgx_hint) {
1438   Label retry;
1439   bind(retry);
1440   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1441   add(tmp, dest_current_value, inc_value);
1442   stdcx_(tmp, addr_base);
1443   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1444     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1445   } else {
1446     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1447   }
1448 }
1449 
1450 // Word/sub-word atomic helper functions
1451 
1452 // Temps and addr_base are killed if size < 4 and processor does not support respective instructions.
1453 // Only signed types are supported with size < 4.
1454 // Atomic add always kills tmp1.
1455 void MacroAssembler::atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value,
1456                                                    Register addr_base, Register tmp1, Register tmp2, Register tmp3,
1457                                                    bool cmpxchgx_hint, bool is_add, int size) {
1458   // Sub-word instructions are available since Power 8.
1459   // For older processors, instruction_type != size holds, and we
1460   // emulate the sub-word instructions by constructing a 4-byte value
1461   // that leaves the other bytes unchanged.
1462   const int instruction_type = VM_Version::has_lqarx() ? size : 4;
1463 
1464   Label retry;
1465   Register shift_amount = noreg,
1466            val32 = dest_current_value,
1467            modval = is_add ? tmp1 : exchange_value;
1468 
1469   if (instruction_type != size) {
1470     assert_different_registers(tmp1, tmp2, tmp3, dest_current_value, exchange_value, addr_base);
1471     modval = tmp1;
1472     shift_amount = tmp2;
1473     val32 = tmp3;
1474     // Need some preperation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
1475 #ifdef VM_LITTLE_ENDIAN
1476     rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
1477     clrrdi(addr_base, addr_base, 2);
1478 #else
1479     xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
1480     clrrdi(addr_base, addr_base, 2);
1481     rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
1482 #endif
1483   }
1484 
1485   // atomic emulation loop
1486   bind(retry);
1487 
1488   switch (instruction_type) {
1489     case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
1490     case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
1491     case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
1492     default: ShouldNotReachHere();
1493   }
1494 
1495   if (instruction_type != size) {
1496     srw(dest_current_value, val32, shift_amount);
1497   }
1498 
1499   if (is_add) { add(modval, dest_current_value, exchange_value); }
1500 
1501   if (instruction_type != size) {
1502     // Transform exchange value such that the replacement can be done by one xor instruction.
1503     xorr(modval, dest_current_value, is_add ? modval : exchange_value);
1504     clrldi(modval, modval, (size == 1) ? 56 : 48);
1505     slw(modval, modval, shift_amount);
1506     xorr(modval, val32, modval);
1507   }
1508 
1509   switch (instruction_type) {
1510     case 4: stwcx_(modval, addr_base); break;
1511     case 2: sthcx_(modval, addr_base); break;
1512     case 1: stbcx_(modval, addr_base); break;
1513     default: ShouldNotReachHere();
1514   }
1515 
1516   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1517     bne_predict_not_taken(CCR0, retry); // StXcx_ sets CCR0.
1518   } else {
1519     bne(                  CCR0, retry); // StXcx_ sets CCR0.
1520   }
1521 
1522   // l?arx zero-extends, but Java wants byte/short values sign-extended.
1523   if (size == 1) {
1524     extsb(dest_current_value, dest_current_value);
1525   } else if (size == 2) {
1526     extsh(dest_current_value, dest_current_value);
1527   };
1528 }
1529 
1530 // Temps, addr_base and exchange_value are killed if size < 4 and processor does not support respective instructions.
1531 // Only signed types are supported with size < 4.
1532 void MacroAssembler::cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value,
1533                                        Register compare_value, Register exchange_value,
1534                                        Register addr_base, Register tmp1, Register tmp2,
1535                                        Label &retry, Label &failed, bool cmpxchgx_hint, int size) {
1536   // Sub-word instructions are available since Power 8.
1537   // For older processors, instruction_type != size holds, and we
1538   // emulate the sub-word instructions by constructing a 4-byte value
1539   // that leaves the other bytes unchanged.
1540   const int instruction_type = VM_Version::has_lqarx() ? size : 4;
1541 
1542   Register shift_amount = noreg,
1543            val32 = dest_current_value,
1544            modval = exchange_value;
1545 
1546   if (instruction_type != size) {
1547     assert_different_registers(tmp1, tmp2, dest_current_value, compare_value, exchange_value, addr_base);
1548     shift_amount = tmp1;
1549     val32 = tmp2;
1550     modval = tmp2;
1551     // Need some preperation: Compute shift amount, align address. Note: shorts must be 2 byte aligned.
1552 #ifdef VM_LITTLE_ENDIAN
1553     rldic(shift_amount, addr_base, 3, 64-5); // (dest & 3) * 8;
1554     clrrdi(addr_base, addr_base, 2);
1555 #else
1556     xori(shift_amount, addr_base, (size == 1) ? 3 : 2);
1557     clrrdi(addr_base, addr_base, 2);
1558     rldic(shift_amount, shift_amount, 3, 64-5); // byte: ((3-dest) & 3) * 8; short: ((1-dest/2) & 1) * 16;
1559 #endif
1560     // Transform exchange value such that the replacement can be done by one xor instruction.
1561     xorr(exchange_value, compare_value, exchange_value);
1562     clrldi(exchange_value, exchange_value, (size == 1) ? 56 : 48);
1563     slw(exchange_value, exchange_value, shift_amount);
1564   }
1565 
1566   // atomic emulation loop
1567   bind(retry);
1568 
1569   switch (instruction_type) {
1570     case 4: lwarx(val32, addr_base, cmpxchgx_hint); break;
1571     case 2: lharx(val32, addr_base, cmpxchgx_hint); break;
1572     case 1: lbarx(val32, addr_base, cmpxchgx_hint); break;
1573     default: ShouldNotReachHere();
1574   }
1575 
1576   if (instruction_type != size) {
1577     srw(dest_current_value, val32, shift_amount);
1578   }
1579   if (size == 1) {
1580     extsb(dest_current_value, dest_current_value);
1581   } else if (size == 2) {
1582     extsh(dest_current_value, dest_current_value);
1583   };
1584 
1585   cmpw(flag, dest_current_value, compare_value);
1586   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1587     bne_predict_not_taken(flag, failed);
1588   } else {
1589     bne(                  flag, failed);
1590   }
1591   // branch to done  => (flag == ne), (dest_current_value != compare_value)
1592   // fall through    => (flag == eq), (dest_current_value == compare_value)
1593 
1594   if (instruction_type != size) {
1595     xorr(modval, val32, exchange_value);
1596   }
1597 
1598   switch (instruction_type) {
1599     case 4: stwcx_(modval, addr_base); break;
1600     case 2: sthcx_(modval, addr_base); break;
1601     case 1: stbcx_(modval, addr_base); break;
1602     default: ShouldNotReachHere();
1603   }
1604 }
1605 
1606 // CmpxchgX sets condition register to cmpX(current, compare).
1607 void MacroAssembler::cmpxchg_generic(ConditionRegister flag, Register dest_current_value,
1608                                      Register compare_value, Register exchange_value,
1609                                      Register addr_base, Register tmp1, Register tmp2,
1610                                      int semantics, bool cmpxchgx_hint,
1611                                      Register int_flag_success, bool contention_hint, bool weak, int size) {
1612   Label retry;
1613   Label failed;
1614   Label done;
1615 
1616   // Save one branch if result is returned via register and
1617   // result register is different from the other ones.
1618   bool use_result_reg    = (int_flag_success != noreg);
1619   bool preset_result_reg = (int_flag_success != dest_current_value && int_flag_success != compare_value &&
1620                             int_flag_success != exchange_value && int_flag_success != addr_base &&
1621                             int_flag_success != tmp1 && int_flag_success != tmp2);
1622   assert(!weak || flag == CCR0, "weak only supported with CCR0");
1623   assert(size == 1 || size == 2 || size == 4, "unsupported");
1624 
1625   if (use_result_reg && preset_result_reg) {
1626     li(int_flag_success, 0); // preset (assume cas failed)
1627   }
1628 
1629   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1630   if (contention_hint) { // Don't try to reserve if cmp fails.
1631     switch (size) {
1632       case 1: lbz(dest_current_value, 0, addr_base); extsb(dest_current_value, dest_current_value); break;
1633       case 2: lha(dest_current_value, 0, addr_base); break;
1634       case 4: lwz(dest_current_value, 0, addr_base); break;
1635       default: ShouldNotReachHere();
1636     }
1637     cmpw(flag, dest_current_value, compare_value);
1638     bne(flag, failed);
1639   }
1640 
1641   // release/fence semantics
1642   if (semantics & MemBarRel) {
1643     release();
1644   }
1645 
1646   cmpxchg_loop_body(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2,
1647                     retry, failed, cmpxchgx_hint, size);
1648   if (!weak || use_result_reg) {
1649     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1650       bne_predict_not_taken(CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
1651     } else {
1652       bne(                  CCR0, weak ? failed : retry); // StXcx_ sets CCR0.
1653     }
1654   }
1655   // fall through    => (flag == eq), (dest_current_value == compare_value), (swapped)
1656 
1657   // Result in register (must do this at the end because int_flag_success can be the
1658   // same register as one above).
1659   if (use_result_reg) {
1660     li(int_flag_success, 1);
1661   }
1662 
1663   if (semantics & MemBarFenceAfter) {
1664     fence();
1665   } else if (semantics & MemBarAcq) {
1666     isync();
1667   }
1668 
1669   if (use_result_reg && !preset_result_reg) {
1670     b(done);
1671   }
1672 
1673   bind(failed);
1674   if (use_result_reg && !preset_result_reg) {
1675     li(int_flag_success, 0);
1676   }
1677 
1678   bind(done);
1679   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1680   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1681 }
1682 
1683 // Preforms atomic compare exchange:
1684 //   if (compare_value == *addr_base)
1685 //     *addr_base = exchange_value
1686 //     int_flag_success = 1;
1687 //   else
1688 //     int_flag_success = 0;
1689 //
1690 // ConditionRegister flag       = cmp(compare_value, *addr_base)
1691 // Register dest_current_value  = *addr_base
1692 // Register compare_value       Used to compare with value in memory
1693 // Register exchange_value      Written to memory if compare_value == *addr_base
1694 // Register addr_base           The memory location to compareXChange
1695 // Register int_flag_success    Set to 1 if exchange_value was written to *addr_base
1696 //
1697 // To avoid the costly compare exchange the value is tested beforehand.
1698 // Several special cases exist to avoid that unnecessary information is generated.
1699 //
1700 void MacroAssembler::cmpxchgd(ConditionRegister flag,
1701                               Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value,
1702                               Register addr_base, int semantics, bool cmpxchgx_hint,
1703                               Register int_flag_success, Label* failed_ext, bool contention_hint, bool weak) {
1704   Label retry;
1705   Label failed_int;
1706   Label& failed = (failed_ext != NULL) ? *failed_ext : failed_int;
1707   Label done;
1708 
1709   // Save one branch if result is returned via register and result register is different from the other ones.
1710   bool use_result_reg    = (int_flag_success!=noreg);
1711   bool preset_result_reg = (int_flag_success!=dest_current_value && int_flag_success!=compare_value.register_or_noreg() &&
1712                             int_flag_success!=exchange_value && int_flag_success!=addr_base);
1713   assert(!weak || flag == CCR0, "weak only supported with CCR0");
1714   assert(int_flag_success == noreg || failed_ext == NULL, "cannot have both");
1715 
1716   if (use_result_reg && preset_result_reg) {
1717     li(int_flag_success, 0); // preset (assume cas failed)
1718   }
1719 
1720   // Add simple guard in order to reduce risk of starving under high contention (recommended by IBM).
1721   if (contention_hint) { // Don't try to reserve if cmp fails.
1722     ld(dest_current_value, 0, addr_base);
1723     cmpd(flag, compare_value, dest_current_value);
1724     bne(flag, failed);
1725   }
1726 
1727   // release/fence semantics
1728   if (semantics & MemBarRel) {
1729     release();
1730   }
1731 
1732   // atomic emulation loop
1733   bind(retry);
1734 
1735   ldarx(dest_current_value, addr_base, cmpxchgx_hint);
1736   cmpd(flag, compare_value, dest_current_value);
1737   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1738     bne_predict_not_taken(flag, failed);
1739   } else {
1740     bne(                  flag, failed);
1741   }
1742 
1743   stdcx_(exchange_value, addr_base);
1744   if (!weak || use_result_reg || failed_ext) {
1745     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
1746       bne_predict_not_taken(CCR0, weak ? failed : retry); // stXcx_ sets CCR0
1747     } else {
1748       bne(                  CCR0, weak ? failed : retry); // stXcx_ sets CCR0
1749     }
1750   }
1751 
1752   // result in register (must do this at the end because int_flag_success can be the same register as one above)
1753   if (use_result_reg) {
1754     li(int_flag_success, 1);
1755   }
1756 
1757   if (semantics & MemBarFenceAfter) {
1758     fence();
1759   } else if (semantics & MemBarAcq) {
1760     isync();
1761   }
1762 
1763   if (use_result_reg && !preset_result_reg) {
1764     b(done);
1765   }
1766 
1767   bind(failed_int);
1768   if (use_result_reg && !preset_result_reg) {
1769     li(int_flag_success, 0);
1770   }
1771 
1772   bind(done);
1773   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
1774   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
1775 }
1776 
1777 // Look up the method for a megamorphic invokeinterface call.
1778 // The target method is determined by <intf_klass, itable_index>.
1779 // The receiver klass is in recv_klass.
1780 // On success, the result will be in method_result, and execution falls through.
1781 // On failure, execution transfers to the given label.
1782 void MacroAssembler::lookup_interface_method(Register recv_klass,
1783                                              Register intf_klass,
1784                                              RegisterOrConstant itable_index,
1785                                              Register method_result,
1786                                              Register scan_temp,
1787                                              Register temp2,
1788                                              Label& L_no_such_interface,
1789                                              bool return_method) {
1790   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
1791 
1792   // Compute start of first itableOffsetEntry (which is at the end of the vtable).
1793   int vtable_base = in_bytes(Klass::vtable_start_offset());
1794   int itentry_off = itableMethodEntry::method_offset_in_bytes();
1795   int logMEsize   = exact_log2(itableMethodEntry::size() * wordSize);
1796   int scan_step   = itableOffsetEntry::size() * wordSize;
1797   int log_vte_size= exact_log2(vtableEntry::size_in_bytes());
1798 
1799   lwz(scan_temp, in_bytes(Klass::vtable_length_offset()), recv_klass);
1800   // %%% We should store the aligned, prescaled offset in the klassoop.
1801   // Then the next several instructions would fold away.
1802 
1803   sldi(scan_temp, scan_temp, log_vte_size);
1804   addi(scan_temp, scan_temp, vtable_base);
1805   add(scan_temp, recv_klass, scan_temp);
1806 
1807   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
1808   if (return_method) {
1809     if (itable_index.is_register()) {
1810       Register itable_offset = itable_index.as_register();
1811       sldi(method_result, itable_offset, logMEsize);
1812       if (itentry_off) { addi(method_result, method_result, itentry_off); }
1813       add(method_result, method_result, recv_klass);
1814     } else {
1815       long itable_offset = (long)itable_index.as_constant();
1816       // static address, no relocation
1817       add_const_optimized(method_result, recv_klass, (itable_offset << logMEsize) + itentry_off, temp2);
1818     }
1819   }
1820 
1821   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
1822   //   if (scan->interface() == intf) {
1823   //     result = (klass + scan->offset() + itable_index);
1824   //   }
1825   // }
1826   Label search, found_method;
1827 
1828   for (int peel = 1; peel >= 0; peel--) {
1829     // %%%% Could load both offset and interface in one ldx, if they were
1830     // in the opposite order. This would save a load.
1831     ld(temp2, itableOffsetEntry::interface_offset_in_bytes(), scan_temp);
1832 
1833     // Check that this entry is non-null. A null entry means that
1834     // the receiver class doesn't implement the interface, and wasn't the
1835     // same as when the caller was compiled.
1836     cmpd(CCR0, temp2, intf_klass);
1837 
1838     if (peel) {
1839       beq(CCR0, found_method);
1840     } else {
1841       bne(CCR0, search);
1842       // (invert the test to fall through to found_method...)
1843     }
1844 
1845     if (!peel) break;
1846 
1847     bind(search);
1848 
1849     cmpdi(CCR0, temp2, 0);
1850     beq(CCR0, L_no_such_interface);
1851     addi(scan_temp, scan_temp, scan_step);
1852   }
1853 
1854   bind(found_method);
1855 
1856   // Got a hit.
1857   if (return_method) {
1858     int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
1859     lwz(scan_temp, ito_offset, scan_temp);
1860     ldx(method_result, scan_temp, method_result);
1861   }
1862 }
1863 
1864 // virtual method calling
1865 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1866                                            RegisterOrConstant vtable_index,
1867                                            Register method_result) {
1868 
1869   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
1870 
1871   const int base = in_bytes(Klass::vtable_start_offset());
1872   assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1873 
1874   if (vtable_index.is_register()) {
1875     sldi(vtable_index.as_register(), vtable_index.as_register(), LogBytesPerWord);
1876     add(recv_klass, vtable_index.as_register(), recv_klass);
1877   } else {
1878     addi(recv_klass, recv_klass, vtable_index.as_constant() << LogBytesPerWord);
1879   }
1880   ld(R19_method, base + vtableEntry::method_offset_in_bytes(), recv_klass);
1881 }
1882 
1883 /////////////////////////////////////////// subtype checking ////////////////////////////////////////////
1884 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1885                                                    Register super_klass,
1886                                                    Register temp1_reg,
1887                                                    Register temp2_reg,
1888                                                    Label* L_success,
1889                                                    Label* L_failure,
1890                                                    Label* L_slow_path,
1891                                                    RegisterOrConstant super_check_offset) {
1892 
1893   const Register check_cache_offset = temp1_reg;
1894   const Register cached_super       = temp2_reg;
1895 
1896   assert_different_registers(sub_klass, super_klass, check_cache_offset, cached_super);
1897 
1898   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1899   int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
1900 
1901   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1902   bool need_slow_path = (must_load_sco || super_check_offset.constant_or_zero() == sco_offset);
1903 
1904   Label L_fallthrough;
1905   int label_nulls = 0;
1906   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1907   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1908   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
1909   assert(label_nulls <= 1 ||
1910          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
1911          "at most one NULL in the batch, usually");
1912 
1913   // If the pointers are equal, we are done (e.g., String[] elements).
1914   // This self-check enables sharing of secondary supertype arrays among
1915   // non-primary types such as array-of-interface. Otherwise, each such
1916   // type would need its own customized SSA.
1917   // We move this check to the front of the fast path because many
1918   // type checks are in fact trivially successful in this manner,
1919   // so we get a nicely predicted branch right at the start of the check.
1920   cmpd(CCR0, sub_klass, super_klass);
1921   beq(CCR0, *L_success);
1922 
1923   // Check the supertype display:
1924   if (must_load_sco) {
1925     // The super check offset is always positive...
1926     lwz(check_cache_offset, sco_offset, super_klass);
1927     super_check_offset = RegisterOrConstant(check_cache_offset);
1928     // super_check_offset is register.
1929     assert_different_registers(sub_klass, super_klass, cached_super, super_check_offset.as_register());
1930   }
1931   // The loaded value is the offset from KlassOopDesc.
1932 
1933   ld(cached_super, super_check_offset, sub_klass);
1934   cmpd(CCR0, cached_super, super_klass);
1935 
1936   // This check has worked decisively for primary supers.
1937   // Secondary supers are sought in the super_cache ('super_cache_addr').
1938   // (Secondary supers are interfaces and very deeply nested subtypes.)
1939   // This works in the same check above because of a tricky aliasing
1940   // between the super_cache and the primary super display elements.
1941   // (The 'super_check_addr' can address either, as the case requires.)
1942   // Note that the cache is updated below if it does not help us find
1943   // what we need immediately.
1944   // So if it was a primary super, we can just fail immediately.
1945   // Otherwise, it's the slow path for us (no success at this point).
1946 
1947 #define FINAL_JUMP(label) if (&(label) != &L_fallthrough) { b(label); }
1948 
1949   if (super_check_offset.is_register()) {
1950     beq(CCR0, *L_success);
1951     cmpwi(CCR0, super_check_offset.as_register(), sc_offset);
1952     if (L_failure == &L_fallthrough) {
1953       beq(CCR0, *L_slow_path);
1954     } else {
1955       bne(CCR0, *L_failure);
1956       FINAL_JUMP(*L_slow_path);
1957     }
1958   } else {
1959     if (super_check_offset.as_constant() == sc_offset) {
1960       // Need a slow path; fast failure is impossible.
1961       if (L_slow_path == &L_fallthrough) {
1962         beq(CCR0, *L_success);
1963       } else {
1964         bne(CCR0, *L_slow_path);
1965         FINAL_JUMP(*L_success);
1966       }
1967     } else {
1968       // No slow path; it's a fast decision.
1969       if (L_failure == &L_fallthrough) {
1970         beq(CCR0, *L_success);
1971       } else {
1972         bne(CCR0, *L_failure);
1973         FINAL_JUMP(*L_success);
1974       }
1975     }
1976   }
1977 
1978   bind(L_fallthrough);
1979 #undef FINAL_JUMP
1980 }
1981 
1982 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1983                                                    Register super_klass,
1984                                                    Register temp1_reg,
1985                                                    Register temp2_reg,
1986                                                    Label* L_success,
1987                                                    Register result_reg) {
1988   const Register array_ptr = temp1_reg; // current value from cache array
1989   const Register temp      = temp2_reg;
1990 
1991   assert_different_registers(sub_klass, super_klass, array_ptr, temp);
1992 
1993   int source_offset = in_bytes(Klass::secondary_supers_offset());
1994   int target_offset = in_bytes(Klass::secondary_super_cache_offset());
1995 
1996   int length_offset = Array<Klass*>::length_offset_in_bytes();
1997   int base_offset   = Array<Klass*>::base_offset_in_bytes();
1998 
1999   Label hit, loop, failure, fallthru;
2000 
2001   ld(array_ptr, source_offset, sub_klass);
2002 
2003   // TODO: PPC port: assert(4 == arrayOopDesc::length_length_in_bytes(), "precondition violated.");
2004   lwz(temp, length_offset, array_ptr);
2005   cmpwi(CCR0, temp, 0);
2006   beq(CCR0, result_reg!=noreg ? failure : fallthru); // length 0
2007 
2008   mtctr(temp); // load ctr
2009 
2010   bind(loop);
2011   // Oops in table are NO MORE compressed.
2012   ld(temp, base_offset, array_ptr);
2013   cmpd(CCR0, temp, super_klass);
2014   beq(CCR0, hit);
2015   addi(array_ptr, array_ptr, BytesPerWord);
2016   bdnz(loop);
2017 
2018   bind(failure);
2019   if (result_reg!=noreg) li(result_reg, 1); // load non-zero result (indicates a miss)
2020   b(fallthru);
2021 
2022   bind(hit);
2023   std(super_klass, target_offset, sub_klass); // save result to cache
2024   if (result_reg != noreg) { li(result_reg, 0); } // load zero result (indicates a hit)
2025   if (L_success != NULL) { b(*L_success); }
2026   else if (result_reg == noreg) { blr(); } // return with CR0.eq if neither label nor result reg provided
2027 
2028   bind(fallthru);
2029 }
2030 
2031 // Try fast path, then go to slow one if not successful
2032 void MacroAssembler::check_klass_subtype(Register sub_klass,
2033                          Register super_klass,
2034                          Register temp1_reg,
2035                          Register temp2_reg,
2036                          Label& L_success) {
2037   Label L_failure;
2038   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success, &L_failure);
2039   check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg, &L_success);
2040   bind(L_failure); // Fallthru if not successful.
2041 }
2042 
2043 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
2044                                               Register temp_reg,
2045                                               Label& wrong_method_type) {
2046   assert_different_registers(mtype_reg, mh_reg, temp_reg);
2047   // Compare method type against that of the receiver.
2048   load_heap_oop(temp_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg), mh_reg,
2049                 noreg, noreg, false, IS_NOT_NULL);
2050   cmpd(CCR0, temp_reg, mtype_reg);
2051   bne(CCR0, wrong_method_type);
2052 }
2053 
2054 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
2055                                                    Register temp_reg,
2056                                                    int extra_slot_offset) {
2057   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
2058   int stackElementSize = Interpreter::stackElementSize;
2059   int offset = extra_slot_offset * stackElementSize;
2060   if (arg_slot.is_constant()) {
2061     offset += arg_slot.as_constant() * stackElementSize;
2062     return offset;
2063   } else {
2064     assert(temp_reg != noreg, "must specify");
2065     sldi(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize));
2066     if (offset != 0)
2067       addi(temp_reg, temp_reg, offset);
2068     return temp_reg;
2069   }
2070 }
2071 
2072 // Supports temp2_reg = R0.
2073 void MacroAssembler::biased_locking_enter(ConditionRegister cr_reg, Register obj_reg,
2074                                           Register mark_reg, Register temp_reg,
2075                                           Register temp2_reg, Label& done, Label* slow_case) {
2076   assert(UseBiasedLocking, "why call this otherwise?");
2077 
2078 #ifdef ASSERT
2079   assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
2080 #endif
2081 
2082   Label cas_label;
2083 
2084   // Branch to done if fast path fails and no slow_case provided.
2085   Label *slow_case_int = (slow_case != NULL) ? slow_case : &done;
2086 
2087   // Biased locking
2088   // See whether the lock is currently biased toward our thread and
2089   // whether the epoch is still valid
2090   // Note that the runtime guarantees sufficient alignment of JavaThread
2091   // pointers to allow age to be placed into low bits
2092   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits,
2093          "biased locking makes assumptions about bit layout");
2094 
2095   if (PrintBiasedLockingStatistics) {
2096     load_const(temp2_reg, (address) BiasedLocking::total_entry_count_addr(), temp_reg);
2097     lwzx(temp_reg, temp2_reg);
2098     addi(temp_reg, temp_reg, 1);
2099     stwx(temp_reg, temp2_reg);
2100   }
2101 
2102   andi(temp_reg, mark_reg, markOopDesc::biased_lock_mask_in_place);
2103   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
2104   bne(cr_reg, cas_label);
2105 
2106   load_klass(temp_reg, obj_reg);
2107 
2108   load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
2109   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2110   orr(temp_reg, R16_thread, temp_reg);
2111   xorr(temp_reg, mark_reg, temp_reg);
2112   andr(temp_reg, temp_reg, temp2_reg);
2113   cmpdi(cr_reg, temp_reg, 0);
2114   if (PrintBiasedLockingStatistics) {
2115     Label l;
2116     bne(cr_reg, l);
2117     load_const(temp2_reg, (address) BiasedLocking::biased_lock_entry_count_addr());
2118     lwzx(mark_reg, temp2_reg);
2119     addi(mark_reg, mark_reg, 1);
2120     stwx(mark_reg, temp2_reg);
2121     // restore mark_reg
2122     ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
2123     bind(l);
2124   }
2125   beq(cr_reg, done);
2126 
2127   Label try_revoke_bias;
2128   Label try_rebias;
2129 
2130   // At this point we know that the header has the bias pattern and
2131   // that we are not the bias owner in the current epoch. We need to
2132   // figure out more details about the state of the header in order to
2133   // know what operations can be legally performed on the object's
2134   // header.
2135 
2136   // If the low three bits in the xor result aren't clear, that means
2137   // the prototype header is no longer biased and we have to revoke
2138   // the bias on this object.
2139   andi(temp2_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
2140   cmpwi(cr_reg, temp2_reg, 0);
2141   bne(cr_reg, try_revoke_bias);
2142 
2143   // Biasing is still enabled for this data type. See whether the
2144   // epoch of the current bias is still valid, meaning that the epoch
2145   // bits of the mark word are equal to the epoch bits of the
2146   // prototype header. (Note that the prototype header's epoch bits
2147   // only change at a safepoint.) If not, attempt to rebias the object
2148   // toward the current thread. Note that we must be absolutely sure
2149   // that the current epoch is invalid in order to do this because
2150   // otherwise the manipulations it performs on the mark word are
2151   // illegal.
2152 
2153   int shift_amount = 64 - markOopDesc::epoch_shift;
2154   // rotate epoch bits to right (little) end and set other bits to 0
2155   // [ big part | epoch | little part ] -> [ 0..0 | epoch ]
2156   rldicl_(temp2_reg, temp_reg, shift_amount, 64 - markOopDesc::epoch_bits);
2157   // branch if epoch bits are != 0, i.e. they differ, because the epoch has been incremented
2158   bne(CCR0, try_rebias);
2159 
2160   // The epoch of the current bias is still valid but we know nothing
2161   // about the owner; it might be set or it might be clear. Try to
2162   // acquire the bias of the object using an atomic operation. If this
2163   // fails we will go in to the runtime to revoke the object's bias.
2164   // Note that we first construct the presumed unbiased header so we
2165   // don't accidentally blow away another thread's valid bias.
2166   andi(mark_reg, mark_reg, (markOopDesc::biased_lock_mask_in_place |
2167                                 markOopDesc::age_mask_in_place |
2168                                 markOopDesc::epoch_mask_in_place));
2169   orr(temp_reg, R16_thread, mark_reg);
2170 
2171   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2172 
2173   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
2174   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2175            /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2176            /*where=*/obj_reg,
2177            MacroAssembler::MemBarAcq,
2178            MacroAssembler::cmpxchgx_hint_acquire_lock(),
2179            noreg, slow_case_int); // bail out if failed
2180 
2181   // If the biasing toward our thread failed, this means that
2182   // another thread succeeded in biasing it toward itself and we
2183   // need to revoke that bias. The revocation will occur in the
2184   // interpreter runtime in the slow case.
2185   if (PrintBiasedLockingStatistics) {
2186     load_const(temp2_reg, (address) BiasedLocking::anonymously_biased_lock_entry_count_addr(), temp_reg);
2187     lwzx(temp_reg, temp2_reg);
2188     addi(temp_reg, temp_reg, 1);
2189     stwx(temp_reg, temp2_reg);
2190   }
2191   b(done);
2192 
2193   bind(try_rebias);
2194   // At this point we know the epoch has expired, meaning that the
2195   // current "bias owner", if any, is actually invalid. Under these
2196   // circumstances _only_, we are allowed to use the current header's
2197   // value as the comparison value when doing the cas to acquire the
2198   // bias in the current epoch. In other words, we allow transfer of
2199   // the bias from one thread to another directly in this situation.
2200   load_klass(temp_reg, obj_reg);
2201   andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
2202   orr(temp2_reg, R16_thread, temp2_reg);
2203   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2204   orr(temp_reg, temp2_reg, temp_reg);
2205 
2206   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2207 
2208   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2209                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2210                  /*where=*/obj_reg,
2211                  MacroAssembler::MemBarAcq,
2212                  MacroAssembler::cmpxchgx_hint_acquire_lock(),
2213                  noreg, slow_case_int); // bail out if failed
2214 
2215   // If the biasing toward our thread failed, this means that
2216   // another thread succeeded in biasing it toward itself and we
2217   // need to revoke that bias. The revocation will occur in the
2218   // interpreter runtime in the slow case.
2219   if (PrintBiasedLockingStatistics) {
2220     load_const(temp2_reg, (address) BiasedLocking::rebiased_lock_entry_count_addr(), temp_reg);
2221     lwzx(temp_reg, temp2_reg);
2222     addi(temp_reg, temp_reg, 1);
2223     stwx(temp_reg, temp2_reg);
2224   }
2225   b(done);
2226 
2227   bind(try_revoke_bias);
2228   // The prototype mark in the klass doesn't have the bias bit set any
2229   // more, indicating that objects of this data type are not supposed
2230   // to be biased any more. We are going to try to reset the mark of
2231   // this object to the prototype value and fall through to the
2232   // CAS-based locking scheme. Note that if our CAS fails, it means
2233   // that another thread raced us for the privilege of revoking the
2234   // bias of this particular object, so it's okay to continue in the
2235   // normal locking code.
2236   load_klass(temp_reg, obj_reg);
2237   ld(temp_reg, in_bytes(Klass::prototype_header_offset()), temp_reg);
2238   andi(temp2_reg, mark_reg, markOopDesc::age_mask_in_place);
2239   orr(temp_reg, temp_reg, temp2_reg);
2240 
2241   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2242 
2243   // CmpxchgX sets cr_reg to cmpX(temp2_reg, mark_reg).
2244   cmpxchgd(/*flag=*/cr_reg, /*current_value=*/temp2_reg,
2245                  /*compare_value=*/mark_reg, /*exchange_value=*/temp_reg,
2246                  /*where=*/obj_reg,
2247                  MacroAssembler::MemBarAcq,
2248                  MacroAssembler::cmpxchgx_hint_acquire_lock());
2249 
2250   // reload markOop in mark_reg before continuing with lightweight locking
2251   ld(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
2252 
2253   // Fall through to the normal CAS-based lock, because no matter what
2254   // the result of the above CAS, some thread must have succeeded in
2255   // removing the bias bit from the object's header.
2256   if (PrintBiasedLockingStatistics) {
2257     Label l;
2258     bne(cr_reg, l);
2259     load_const(temp2_reg, (address) BiasedLocking::revoked_lock_entry_count_addr(), temp_reg);
2260     lwzx(temp_reg, temp2_reg);
2261     addi(temp_reg, temp_reg, 1);
2262     stwx(temp_reg, temp2_reg);
2263     bind(l);
2264   }
2265 
2266   bind(cas_label);
2267 }
2268 
2269 void MacroAssembler::biased_locking_exit (ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done) {
2270   // Check for biased locking unlock case, which is a no-op
2271   // Note: we do not have to check the thread ID for two reasons.
2272   // First, the interpreter checks for IllegalMonitorStateException at
2273   // a higher level. Second, if the bias was revoked while we held the
2274   // lock, the object could not be rebiased toward another thread, so
2275   // the bias bit would be clear.
2276 
2277   ld(temp_reg, 0, mark_addr);
2278   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
2279 
2280   cmpwi(cr_reg, temp_reg, markOopDesc::biased_lock_pattern);
2281   beq(cr_reg, done);
2282 }
2283 
2284 // allocation (for C1)
2285 void MacroAssembler::eden_allocate(
2286   Register obj,                      // result: pointer to object after successful allocation
2287   Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2288   int      con_size_in_bytes,        // object size in bytes if   known at compile time
2289   Register t1,                       // temp register
2290   Register t2,                       // temp register
2291   Label&   slow_case                 // continuation point if fast allocation fails
2292 ) {
2293   b(slow_case);
2294 }
2295 
2296 void MacroAssembler::tlab_allocate(
2297   Register obj,                      // result: pointer to object after successful allocation
2298   Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2299   int      con_size_in_bytes,        // object size in bytes if   known at compile time
2300   Register t1,                       // temp register
2301   Label&   slow_case                 // continuation point if fast allocation fails
2302 ) {
2303   // make sure arguments make sense
2304   assert_different_registers(obj, var_size_in_bytes, t1);
2305   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
2306   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
2307 
2308   const Register new_top = t1;
2309   //verify_tlab(); not implemented
2310 
2311   ld(obj, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
2312   ld(R0, in_bytes(JavaThread::tlab_end_offset()), R16_thread);
2313   if (var_size_in_bytes == noreg) {
2314     addi(new_top, obj, con_size_in_bytes);
2315   } else {
2316     add(new_top, obj, var_size_in_bytes);
2317   }
2318   cmpld(CCR0, new_top, R0);
2319   bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_case);
2320 
2321 #ifdef ASSERT
2322   // make sure new free pointer is properly aligned
2323   {
2324     Label L;
2325     andi_(R0, new_top, MinObjAlignmentInBytesMask);
2326     beq(CCR0, L);
2327     stop("updated TLAB free is not properly aligned", 0x934);
2328     bind(L);
2329   }
2330 #endif // ASSERT
2331 
2332   // update the tlab top pointer
2333   std(new_top, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
2334   //verify_tlab(); not implemented
2335 }
2336 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2) {
2337   unimplemented("incr_allocated_bytes");
2338 }
2339 
2340 address MacroAssembler::emit_trampoline_stub(int destination_toc_offset,
2341                                              int insts_call_instruction_offset, Register Rtoc) {
2342   // Start the stub.
2343   address stub = start_a_stub(64);
2344   if (stub == NULL) { return NULL; } // CodeCache full: bail out
2345 
2346   // Create a trampoline stub relocation which relates this trampoline stub
2347   // with the call instruction at insts_call_instruction_offset in the
2348   // instructions code-section.
2349   relocate(trampoline_stub_Relocation::spec(code()->insts()->start() + insts_call_instruction_offset));
2350   const int stub_start_offset = offset();
2351 
2352   // For java_to_interp stubs we use R11_scratch1 as scratch register
2353   // and in call trampoline stubs we use R12_scratch2. This way we
2354   // can distinguish them (see is_NativeCallTrampolineStub_at()).
2355   Register reg_scratch = R12_scratch2;
2356 
2357   // Now, create the trampoline stub's code:
2358   // - load the TOC
2359   // - load the call target from the constant pool
2360   // - call
2361   if (Rtoc == noreg) {
2362     calculate_address_from_global_toc(reg_scratch, method_toc());
2363     Rtoc = reg_scratch;
2364   }
2365 
2366   ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, Rtoc, false);
2367   mtctr(reg_scratch);
2368   bctr();
2369 
2370   const address stub_start_addr = addr_at(stub_start_offset);
2371 
2372   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
2373   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
2374          "encoded offset into the constant pool must match");
2375   // Trampoline_stub_size should be good.
2376   assert((uint)(offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
2377   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
2378 
2379   // End the stub.
2380   end_a_stub();
2381   return stub;
2382 }
2383 
2384 // TM on PPC64.
2385 void MacroAssembler::atomic_inc_ptr(Register addr, Register result, int simm16) {
2386   Label retry;
2387   bind(retry);
2388   ldarx(result, addr, /*hint*/ false);
2389   addi(result, result, simm16);
2390   stdcx_(result, addr);
2391   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
2392     bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
2393   } else {
2394     bne(                  CCR0, retry); // stXcx_ sets CCR0
2395   }
2396 }
2397 
2398 void MacroAssembler::atomic_ori_int(Register addr, Register result, int uimm16) {
2399   Label retry;
2400   bind(retry);
2401   lwarx(result, addr, /*hint*/ false);
2402   ori(result, result, uimm16);
2403   stwcx_(result, addr);
2404   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
2405     bne_predict_not_taken(CCR0, retry); // stXcx_ sets CCR0
2406   } else {
2407     bne(                  CCR0, retry); // stXcx_ sets CCR0
2408   }
2409 }
2410 
2411 #if INCLUDE_RTM_OPT
2412 
2413 // Update rtm_counters based on abort status
2414 // input: abort_status
2415 //        rtm_counters_Reg (RTMLockingCounters*)
2416 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters_Reg) {
2417   // Mapping to keep PreciseRTMLockingStatistics similar to x86.
2418   // x86 ppc (! means inverted, ? means not the same)
2419   //  0   31  Set if abort caused by XABORT instruction.
2420   //  1  ! 7  If set, the transaction may succeed on a retry. This bit is always clear if bit 0 is set.
2421   //  2   13  Set if another logical processor conflicted with a memory address that was part of the transaction that aborted.
2422   //  3   10  Set if an internal buffer overflowed.
2423   //  4  ?12  Set if a debug breakpoint was hit.
2424   //  5  ?32  Set if an abort occurred during execution of a nested transaction.
2425   const int failure_bit[] = {tm_tabort, // Signal handler will set this too.
2426                              tm_failure_persistent,
2427                              tm_non_trans_cf,
2428                              tm_trans_cf,
2429                              tm_footprint_of,
2430                              tm_failure_code,
2431                              tm_transaction_level};
2432 
2433   const int num_failure_bits = sizeof(failure_bit) / sizeof(int);
2434   const int num_counters = RTMLockingCounters::ABORT_STATUS_LIMIT;
2435 
2436   const int bit2counter_map[][num_counters] =
2437   // 0 = no map; 1 = mapped, no inverted logic; -1 = mapped, inverted logic
2438   // Inverted logic means that if a bit is set don't count it, or vice-versa.
2439   // Care must be taken when mapping bits to counters as bits for a given
2440   // counter must be mutually exclusive. Otherwise, counter will be increment
2441   // more than once.
2442   // counters:
2443   // 0        1        2         3         4         5
2444   // abort  , persist, conflict, overflow, debug   , nested         bits:
2445   {{ 1      , 0      , 0       , 0       , 0       , 0      },   // abort
2446    { 0      , -1     , 0       , 0       , 0       , 0      },   // failure_persistent
2447    { 0      , 0      , 1       , 0       , 0       , 0      },   // non_trans_cf
2448    { 0      , 0      , 1       , 0       , 0       , 0      },   // trans_cf
2449    { 0      , 0      , 0       , 1       , 0       , 0      },   // footprint_of
2450    { 0      , 0      , 0       , 0       , -1      , 0      },   // failure_code = 0xD4
2451    { 0      , 0      , 0       , 0       , 0       , 1      }};  // transaction_level > 1
2452   // ...
2453 
2454   // Move abort_status value to R0 and use abort_status register as a
2455   // temporary register because R0 as third operand in ld/std is treated
2456   // as base address zero (value). Likewise, R0 as second operand in addi
2457   // is problematic because it amounts to li.
2458   const Register temp_Reg = abort_status;
2459   const Register abort_status_R0 = R0;
2460   mr(abort_status_R0, abort_status);
2461 
2462   // Increment total abort counter.
2463   int counters_offs = RTMLockingCounters::abort_count_offset();
2464   ld(temp_Reg, counters_offs, rtm_counters_Reg);
2465   addi(temp_Reg, temp_Reg, 1);
2466   std(temp_Reg, counters_offs, rtm_counters_Reg);
2467 
2468   // Increment specific abort counters.
2469   if (PrintPreciseRTMLockingStatistics) {
2470 
2471     // #0 counter offset.
2472     int abortX_offs;
2473     abortX_offs = RTMLockingCounters::abortX_count_offset();
2474 
2475     for (int nbit = 0; nbit < num_failure_bits; nbit++) {
2476       for (int ncounter = 0; ncounter < num_counters; ncounter++) {
2477         if (bit2counter_map[nbit][ncounter] != 0) {
2478           Label check_abort;
2479           int abort_counter_offs;
2480 
2481           abort_counter_offs = abortX_offs + (ncounter << 3);
2482 
2483           if (failure_bit[nbit] == tm_transaction_level) {
2484             // Don't check outer transaction, TL = 1 (bit 63). Hence only
2485             // 11 bits in the TL field are checked to find out if failure
2486             // occured in a nested transaction. This check also matches
2487             // the case when nesting_of = 1 (nesting overflow).
2488             rldicr_(temp_Reg, abort_status_R0, failure_bit[nbit], 10);
2489           } else if (failure_bit[nbit] == tm_failure_code) {
2490             // Check failure code for trap or illegal caught in TM.
2491             // Bits 0:7 are tested as bit 7 (persistent) is copied from
2492             // tabort or treclaim source operand.
2493             // On Linux: trap or illegal is TM_CAUSE_SIGNAL (0xD4).
2494             rldicl(temp_Reg, abort_status_R0, 8, 56);
2495             cmpdi(CCR0, temp_Reg, 0xD4);
2496           } else {
2497             rldicr_(temp_Reg, abort_status_R0, failure_bit[nbit], 0);
2498           }
2499 
2500           if (bit2counter_map[nbit][ncounter] == 1) {
2501             beq(CCR0, check_abort);
2502           } else {
2503             bne(CCR0, check_abort);
2504           }
2505 
2506           // We don't increment atomically.
2507           ld(temp_Reg, abort_counter_offs, rtm_counters_Reg);
2508           addi(temp_Reg, temp_Reg, 1);
2509           std(temp_Reg, abort_counter_offs, rtm_counters_Reg);
2510 
2511           bind(check_abort);
2512         }
2513       }
2514     }
2515   }
2516   // Restore abort_status.
2517   mr(abort_status, abort_status_R0);
2518 }
2519 
2520 // Branch if (random & (count-1) != 0), count is 2^n
2521 // tmp and CR0 are killed
2522 void MacroAssembler::branch_on_random_using_tb(Register tmp, int count, Label& brLabel) {
2523   mftb(tmp);
2524   andi_(tmp, tmp, count-1);
2525   bne(CCR0, brLabel);
2526 }
2527 
2528 // Perform abort ratio calculation, set no_rtm bit if high ratio.
2529 // input:  rtm_counters_Reg (RTMLockingCounters* address) - KILLED
2530 void MacroAssembler::rtm_abort_ratio_calculation(Register rtm_counters_Reg,
2531                                                  RTMLockingCounters* rtm_counters,
2532                                                  Metadata* method_data) {
2533   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
2534 
2535   if (RTMLockingCalculationDelay > 0) {
2536     // Delay calculation.
2537     ld(rtm_counters_Reg, (RegisterOrConstant)(intptr_t)RTMLockingCounters::rtm_calculation_flag_addr());
2538     cmpdi(CCR0, rtm_counters_Reg, 0);
2539     beq(CCR0, L_done);
2540     load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
2541   }
2542   // Abort ratio calculation only if abort_count > RTMAbortThreshold.
2543   //   Aborted transactions = abort_count * 100
2544   //   All transactions = total_count *  RTMTotalCountIncrRate
2545   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
2546   ld(R0, RTMLockingCounters::abort_count_offset(), rtm_counters_Reg);
2547   if (is_simm(RTMAbortThreshold, 16)) {   // cmpdi can handle 16bit immediate only.
2548     cmpdi(CCR0, R0, RTMAbortThreshold);
2549     blt(CCR0, L_check_always_rtm2);  // reload of rtm_counters_Reg not necessary
2550   } else {
2551     load_const_optimized(rtm_counters_Reg, RTMAbortThreshold);
2552     cmpd(CCR0, R0, rtm_counters_Reg);
2553     blt(CCR0, L_check_always_rtm1);  // reload of rtm_counters_Reg required
2554   }
2555   mulli(R0, R0, 100);
2556 
2557   const Register tmpReg = rtm_counters_Reg;
2558   ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
2559   mulli(tmpReg, tmpReg, RTMTotalCountIncrRate); // allowable range: int16
2560   mulli(tmpReg, tmpReg, RTMAbortRatio);         // allowable range: int16
2561   cmpd(CCR0, R0, tmpReg);
2562   blt(CCR0, L_check_always_rtm1); // jump to reload
2563   if (method_data != NULL) {
2564     // Set rtm_state to "no rtm" in MDO.
2565     // Not using a metadata relocation. Method and Class Loader are kept alive anyway.
2566     // (See nmethod::metadata_do and CodeBuffer::finalize_oop_references.)
2567     load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
2568     atomic_ori_int(R0, tmpReg, NoRTM);
2569   }
2570   b(L_done);
2571 
2572   bind(L_check_always_rtm1);
2573   load_const_optimized(rtm_counters_Reg, (address)rtm_counters, R0); // reload
2574   bind(L_check_always_rtm2);
2575   ld(tmpReg, RTMLockingCounters::total_count_offset(), rtm_counters_Reg);
2576   int64_t thresholdValue = RTMLockingThreshold / RTMTotalCountIncrRate;
2577   if (is_simm(thresholdValue, 16)) {   // cmpdi can handle 16bit immediate only.
2578     cmpdi(CCR0, tmpReg, thresholdValue);
2579   } else {
2580     load_const_optimized(R0, thresholdValue);
2581     cmpd(CCR0, tmpReg, R0);
2582   }
2583   blt(CCR0, L_done);
2584   if (method_data != NULL) {
2585     // Set rtm_state to "always rtm" in MDO.
2586     // Not using a metadata relocation. See above.
2587     load_const(R0, (address)method_data + MethodData::rtm_state_offset_in_bytes(), tmpReg);
2588     atomic_ori_int(R0, tmpReg, UseRTM);
2589   }
2590   bind(L_done);
2591 }
2592 
2593 // Update counters and perform abort ratio calculation.
2594 // input: abort_status_Reg
2595 void MacroAssembler::rtm_profiling(Register abort_status_Reg, Register temp_Reg,
2596                                    RTMLockingCounters* rtm_counters,
2597                                    Metadata* method_data,
2598                                    bool profile_rtm) {
2599 
2600   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2601   // Update rtm counters based on state at abort.
2602   // Reads abort_status_Reg, updates flags.
2603   assert_different_registers(abort_status_Reg, temp_Reg);
2604   load_const_optimized(temp_Reg, (address)rtm_counters, R0);
2605   rtm_counters_update(abort_status_Reg, temp_Reg);
2606   if (profile_rtm) {
2607     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2608     rtm_abort_ratio_calculation(temp_Reg, rtm_counters, method_data);
2609   }
2610 }
2611 
2612 // Retry on abort if abort's status indicates non-persistent failure.
2613 // inputs: retry_count_Reg
2614 //       : abort_status_Reg
2615 // output: retry_count_Reg decremented by 1
2616 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg,
2617                                              Label& retryLabel, Label* checkRetry) {
2618   Label doneRetry;
2619   rldicr_(R0, abort_status_Reg, tm_failure_persistent, 0);
2620   bne(CCR0, doneRetry);
2621   if (checkRetry) { bind(*checkRetry); }
2622   addic_(retry_count_Reg, retry_count_Reg, -1);
2623   blt(CCR0, doneRetry);
2624   b(retryLabel);
2625   bind(doneRetry);
2626 }
2627 
2628 // Spin and retry if lock is busy.
2629 // inputs: owner_addr_Reg (monitor address)
2630 //       : retry_count_Reg
2631 // output: retry_count_Reg decremented by 1
2632 // CTR is killed
2633 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register owner_addr_Reg, Label& retryLabel) {
2634   Label SpinLoop, doneRetry, doRetry;
2635   addic_(retry_count_Reg, retry_count_Reg, -1);
2636   blt(CCR0, doneRetry);
2637 
2638   if (RTMSpinLoopCount > 1) {
2639     li(R0, RTMSpinLoopCount);
2640     mtctr(R0);
2641   }
2642 
2643   // low thread priority
2644   smt_prio_low();
2645   bind(SpinLoop);
2646 
2647   if (RTMSpinLoopCount > 1) {
2648     bdz(doRetry);
2649     ld(R0, 0, owner_addr_Reg);
2650     cmpdi(CCR0, R0, 0);
2651     bne(CCR0, SpinLoop);
2652   }
2653 
2654   bind(doRetry);
2655 
2656   // restore thread priority to default in userspace
2657 #ifdef LINUX
2658   smt_prio_medium_low();
2659 #else
2660   smt_prio_medium();
2661 #endif
2662 
2663   b(retryLabel);
2664 
2665   bind(doneRetry);
2666 }
2667 
2668 // Use RTM for normal stack locks.
2669 // Input: objReg (object to lock)
2670 void MacroAssembler::rtm_stack_locking(ConditionRegister flag,
2671                                        Register obj, Register mark_word, Register tmp,
2672                                        Register retry_on_abort_count_Reg,
2673                                        RTMLockingCounters* stack_rtm_counters,
2674                                        Metadata* method_data, bool profile_rtm,
2675                                        Label& DONE_LABEL, Label& IsInflated) {
2676   assert(UseRTMForStackLocks, "why call this otherwise?");
2677   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2678   Label L_rtm_retry, L_decrement_retry, L_on_abort;
2679 
2680   if (RTMRetryCount > 0) {
2681     load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
2682     bind(L_rtm_retry);
2683   }
2684   andi_(R0, mark_word, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
2685   bne(CCR0, IsInflated);
2686 
2687   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2688     Label L_noincrement;
2689     if (RTMTotalCountIncrRate > 1) {
2690       branch_on_random_using_tb(tmp, RTMTotalCountIncrRate, L_noincrement);
2691     }
2692     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
2693     load_const_optimized(tmp, (address)stack_rtm_counters->total_count_addr(), R0);
2694     //atomic_inc_ptr(tmp, /*temp, will be reloaded*/mark_word); We don't increment atomically
2695     ldx(mark_word, tmp);
2696     addi(mark_word, mark_word, 1);
2697     stdx(mark_word, tmp);
2698     bind(L_noincrement);
2699   }
2700   tbegin_();
2701   beq(CCR0, L_on_abort);
2702   ld(mark_word, oopDesc::mark_offset_in_bytes(), obj);         // Reload in transaction, conflicts need to be tracked.
2703   andi(R0, mark_word, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2704   cmpwi(flag, R0, markOopDesc::unlocked_value);                // bits = 001 unlocked
2705   beq(flag, DONE_LABEL);                                       // all done if unlocked
2706 
2707   if (UseRTMXendForLockBusy) {
2708     tend_();
2709     b(L_decrement_retry);
2710   } else {
2711     tabort_();
2712   }
2713   bind(L_on_abort);
2714   const Register abort_status_Reg = tmp;
2715   mftexasr(abort_status_Reg);
2716   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2717     rtm_profiling(abort_status_Reg, /*temp*/mark_word, stack_rtm_counters, method_data, profile_rtm);
2718   }
2719   ld(mark_word, oopDesc::mark_offset_in_bytes(), obj); // reload
2720   if (RTMRetryCount > 0) {
2721     // Retry on lock abort if abort status is not permanent.
2722     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry, &L_decrement_retry);
2723   } else {
2724     bind(L_decrement_retry);
2725   }
2726 }
2727 
2728 // Use RTM for inflating locks
2729 // inputs: obj       (object to lock)
2730 //         mark_word (current header - KILLED)
2731 //         boxReg    (on-stack box address (displaced header location) - KILLED)
2732 void MacroAssembler::rtm_inflated_locking(ConditionRegister flag,
2733                                           Register obj, Register mark_word, Register boxReg,
2734                                           Register retry_on_busy_count_Reg, Register retry_on_abort_count_Reg,
2735                                           RTMLockingCounters* rtm_counters,
2736                                           Metadata* method_data, bool profile_rtm,
2737                                           Label& DONE_LABEL) {
2738   assert(UseRTMLocking, "why call this otherwise?");
2739   Label L_rtm_retry, L_decrement_retry, L_on_abort;
2740   // Clean monitor_value bit to get valid pointer.
2741   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
2742 
2743   // Store non-null, using boxReg instead of (intptr_t)markOopDesc::unused_mark().
2744   std(boxReg, BasicLock::displaced_header_offset_in_bytes(), boxReg);
2745   const Register tmpReg = boxReg;
2746   const Register owner_addr_Reg = mark_word;
2747   addi(owner_addr_Reg, mark_word, owner_offset);
2748 
2749   if (RTMRetryCount > 0) {
2750     load_const_optimized(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy.
2751     load_const_optimized(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort.
2752     bind(L_rtm_retry);
2753   }
2754   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2755     Label L_noincrement;
2756     if (RTMTotalCountIncrRate > 1) {
2757       branch_on_random_using_tb(R0, RTMTotalCountIncrRate, L_noincrement);
2758     }
2759     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
2760     load_const(R0, (address)rtm_counters->total_count_addr(), tmpReg);
2761     //atomic_inc_ptr(R0, tmpReg); We don't increment atomically
2762     ldx(tmpReg, R0);
2763     addi(tmpReg, tmpReg, 1);
2764     stdx(tmpReg, R0);
2765     bind(L_noincrement);
2766   }
2767   tbegin_();
2768   beq(CCR0, L_on_abort);
2769   // We don't reload mark word. Will only be reset at safepoint.
2770   ld(R0, 0, owner_addr_Reg); // Load in transaction, conflicts need to be tracked.
2771   cmpdi(flag, R0, 0);
2772   beq(flag, DONE_LABEL);
2773 
2774   if (UseRTMXendForLockBusy) {
2775     tend_();
2776     b(L_decrement_retry);
2777   } else {
2778     tabort_();
2779   }
2780   bind(L_on_abort);
2781   const Register abort_status_Reg = tmpReg;
2782   mftexasr(abort_status_Reg);
2783   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
2784     rtm_profiling(abort_status_Reg, /*temp*/ owner_addr_Reg, rtm_counters, method_data, profile_rtm);
2785     // Restore owner_addr_Reg
2786     ld(mark_word, oopDesc::mark_offset_in_bytes(), obj);
2787 #ifdef ASSERT
2788     andi_(R0, mark_word, markOopDesc::monitor_value);
2789     asm_assert_ne("must be inflated", 0xa754); // Deflating only allowed at safepoint.
2790 #endif
2791     addi(owner_addr_Reg, mark_word, owner_offset);
2792   }
2793   if (RTMRetryCount > 0) {
2794     // Retry on lock abort if abort status is not permanent.
2795     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
2796   }
2797 
2798   // Appears unlocked - try to swing _owner from null to non-null.
2799   cmpxchgd(flag, /*current val*/ R0, (intptr_t)0, /*new val*/ R16_thread, owner_addr_Reg,
2800            MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2801            MacroAssembler::cmpxchgx_hint_acquire_lock(), noreg, &L_decrement_retry, true);
2802 
2803   if (RTMRetryCount > 0) {
2804     // success done else retry
2805     b(DONE_LABEL);
2806     bind(L_decrement_retry);
2807     // Spin and retry if lock is busy.
2808     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, owner_addr_Reg, L_rtm_retry);
2809   } else {
2810     bind(L_decrement_retry);
2811   }
2812 }
2813 
2814 #endif //  INCLUDE_RTM_OPT
2815 
2816 // "The box" is the space on the stack where we copy the object mark.
2817 void MacroAssembler::compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
2818                                                Register temp, Register displaced_header, Register current_header,
2819                                                bool try_bias,
2820                                                RTMLockingCounters* rtm_counters,
2821                                                RTMLockingCounters* stack_rtm_counters,
2822                                                Metadata* method_data,
2823                                                bool use_rtm, bool profile_rtm) {
2824   assert_different_registers(oop, box, temp, displaced_header, current_header);
2825   assert(flag != CCR0, "bad condition register");
2826   Label cont;
2827   Label object_has_monitor;
2828   Label cas_failed;
2829 
2830   // Load markOop from object into displaced_header.
2831   ld(displaced_header, oopDesc::mark_offset_in_bytes(), oop);
2832 
2833 
2834   // Always do locking in runtime.
2835   if (EmitSync & 0x01) {
2836     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
2837     return;
2838   }
2839 
2840   if (try_bias) {
2841     biased_locking_enter(flag, oop, displaced_header, temp, current_header, cont);
2842   }
2843 
2844 #if INCLUDE_RTM_OPT
2845   if (UseRTMForStackLocks && use_rtm) {
2846     rtm_stack_locking(flag, oop, displaced_header, temp, /*temp*/ current_header,
2847                       stack_rtm_counters, method_data, profile_rtm,
2848                       cont, object_has_monitor);
2849   }
2850 #endif // INCLUDE_RTM_OPT
2851 
2852   // Handle existing monitor.
2853   if ((EmitSync & 0x02) == 0) {
2854     // The object has an existing monitor iff (mark & monitor_value) != 0.
2855     andi_(temp, displaced_header, markOopDesc::monitor_value);
2856     bne(CCR0, object_has_monitor);
2857   }
2858 
2859   // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
2860   ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
2861 
2862   // Load Compare Value application register.
2863 
2864   // Initialize the box. (Must happen before we update the object mark!)
2865   std(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2866 
2867   // Must fence, otherwise, preceding store(s) may float below cmpxchg.
2868   // Compare object markOop with mark and if equal exchange scratch1 with object markOop.
2869   cmpxchgd(/*flag=*/flag,
2870            /*current_value=*/current_header,
2871            /*compare_value=*/displaced_header,
2872            /*exchange_value=*/box,
2873            /*where=*/oop,
2874            MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2875            MacroAssembler::cmpxchgx_hint_acquire_lock(),
2876            noreg,
2877            &cas_failed,
2878            /*check without membar and ldarx first*/true);
2879   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
2880 
2881   // If the compare-and-exchange succeeded, then we found an unlocked
2882   // object and we have now locked it.
2883   b(cont);
2884 
2885   bind(cas_failed);
2886   // We did not see an unlocked object so try the fast recursive case.
2887 
2888   // Check if the owner is self by comparing the value in the markOop of object
2889   // (current_header) with the stack pointer.
2890   sub(current_header, current_header, R1_SP);
2891   load_const_optimized(temp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place);
2892 
2893   and_(R0/*==0?*/, current_header, temp);
2894   // If condition is true we are cont and hence we can store 0 as the
2895   // displaced header in the box, which indicates that it is a recursive lock.
2896   mcrf(flag,CCR0);
2897   std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), box);
2898 
2899   // Handle existing monitor.
2900   if ((EmitSync & 0x02) == 0) {
2901     b(cont);
2902 
2903     bind(object_has_monitor);
2904     // The object's monitor m is unlocked iff m->owner == NULL,
2905     // otherwise m->owner may contain a thread or a stack address.
2906 
2907 #if INCLUDE_RTM_OPT
2908     // Use the same RTM locking code in 32- and 64-bit VM.
2909     if (use_rtm) {
2910       rtm_inflated_locking(flag, oop, displaced_header, box, temp, /*temp*/ current_header,
2911                            rtm_counters, method_data, profile_rtm, cont);
2912     } else {
2913 #endif // INCLUDE_RTM_OPT
2914 
2915     // Try to CAS m->owner from NULL to current thread.
2916     addi(temp, displaced_header, ObjectMonitor::owner_offset_in_bytes()-markOopDesc::monitor_value);
2917     cmpxchgd(/*flag=*/flag,
2918              /*current_value=*/current_header,
2919              /*compare_value=*/(intptr_t)0,
2920              /*exchange_value=*/R16_thread,
2921              /*where=*/temp,
2922              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
2923              MacroAssembler::cmpxchgx_hint_acquire_lock());
2924 
2925     // Store a non-null value into the box.
2926     std(box, BasicLock::displaced_header_offset_in_bytes(), box);
2927 
2928 #   ifdef ASSERT
2929     bne(flag, cont);
2930     // We have acquired the monitor, check some invariants.
2931     addi(/*monitor=*/temp, temp, -ObjectMonitor::owner_offset_in_bytes());
2932     // Invariant 1: _recursions should be 0.
2933     //assert(ObjectMonitor::recursions_size_in_bytes() == 8, "unexpected size");
2934     asm_assert_mem8_is_zero(ObjectMonitor::recursions_offset_in_bytes(), temp,
2935                             "monitor->_recursions should be 0", -1);
2936 #   endif
2937 
2938 #if INCLUDE_RTM_OPT
2939     } // use_rtm()
2940 #endif
2941   }
2942 
2943   bind(cont);
2944   // flag == EQ indicates success
2945   // flag == NE indicates failure
2946 }
2947 
2948 void MacroAssembler::compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
2949                                                  Register temp, Register displaced_header, Register current_header,
2950                                                  bool try_bias, bool use_rtm) {
2951   assert_different_registers(oop, box, temp, displaced_header, current_header);
2952   assert(flag != CCR0, "bad condition register");
2953   Label cont;
2954   Label object_has_monitor;
2955 
2956   // Always do locking in runtime.
2957   if (EmitSync & 0x01) {
2958     cmpdi(flag, oop, 0); // Oop can't be 0 here => always false.
2959     return;
2960   }
2961 
2962   if (try_bias) {
2963     biased_locking_exit(flag, oop, current_header, cont);
2964   }
2965 
2966 #if INCLUDE_RTM_OPT
2967   if (UseRTMForStackLocks && use_rtm) {
2968     assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2969     Label L_regular_unlock;
2970     ld(current_header, oopDesc::mark_offset_in_bytes(), oop);         // fetch markword
2971     andi(R0, current_header, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2972     cmpwi(flag, R0, markOopDesc::unlocked_value);                     // bits = 001 unlocked
2973     bne(flag, L_regular_unlock);                                      // else RegularLock
2974     tend_();                                                          // otherwise end...
2975     b(cont);                                                          // ... and we're done
2976     bind(L_regular_unlock);
2977   }
2978 #endif
2979 
2980   // Find the lock address and load the displaced header from the stack.
2981   ld(displaced_header, BasicLock::displaced_header_offset_in_bytes(), box);
2982 
2983   // If the displaced header is 0, we have a recursive unlock.
2984   cmpdi(flag, displaced_header, 0);
2985   beq(flag, cont);
2986 
2987   // Handle existing monitor.
2988   if ((EmitSync & 0x02) == 0) {
2989     // The object has an existing monitor iff (mark & monitor_value) != 0.
2990     RTM_OPT_ONLY( if (!(UseRTMForStackLocks && use_rtm)) ) // skip load if already done
2991     ld(current_header, oopDesc::mark_offset_in_bytes(), oop);
2992     andi_(R0, current_header, markOopDesc::monitor_value);
2993     bne(CCR0, object_has_monitor);
2994   }
2995 
2996   // Check if it is still a light weight lock, this is is true if we see
2997   // the stack address of the basicLock in the markOop of the object.
2998   // Cmpxchg sets flag to cmpd(current_header, box).
2999   cmpxchgd(/*flag=*/flag,
3000            /*current_value=*/current_header,
3001            /*compare_value=*/box,
3002            /*exchange_value=*/displaced_header,
3003            /*where=*/oop,
3004            MacroAssembler::MemBarRel,
3005            MacroAssembler::cmpxchgx_hint_release_lock(),
3006            noreg,
3007            &cont);
3008 
3009   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
3010 
3011   // Handle existing monitor.
3012   if ((EmitSync & 0x02) == 0) {
3013     b(cont);
3014 
3015     bind(object_has_monitor);
3016     addi(current_header, current_header, -markOopDesc::monitor_value); // monitor
3017     ld(temp,             ObjectMonitor::owner_offset_in_bytes(), current_header);
3018 
3019     // It's inflated.
3020 #if INCLUDE_RTM_OPT
3021     if (use_rtm) {
3022       Label L_regular_inflated_unlock;
3023       // Clean monitor_value bit to get valid pointer
3024       cmpdi(flag, temp, 0);
3025       bne(flag, L_regular_inflated_unlock);
3026       tend_();
3027       b(cont);
3028       bind(L_regular_inflated_unlock);
3029     }
3030 #endif
3031 
3032     ld(displaced_header, ObjectMonitor::recursions_offset_in_bytes(), current_header);
3033     xorr(temp, R16_thread, temp);      // Will be 0 if we are the owner.
3034     orr(temp, temp, displaced_header); // Will be 0 if there are 0 recursions.
3035     cmpdi(flag, temp, 0);
3036     bne(flag, cont);
3037 
3038     ld(temp,             ObjectMonitor::EntryList_offset_in_bytes(), current_header);
3039     ld(displaced_header, ObjectMonitor::cxq_offset_in_bytes(), current_header);
3040     orr(temp, temp, displaced_header); // Will be 0 if both are 0.
3041     cmpdi(flag, temp, 0);
3042     bne(flag, cont);
3043     release();
3044     std(temp, ObjectMonitor::owner_offset_in_bytes(), current_header);
3045   }
3046 
3047   bind(cont);
3048   // flag == EQ indicates success
3049   // flag == NE indicates failure
3050 }
3051 
3052 // Write serialization page so VM thread can do a pseudo remote membar.
3053 // We use the current thread pointer to calculate a thread specific
3054 // offset to write to within the page. This minimizes bus traffic
3055 // due to cache line collision.
3056 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
3057   srdi(tmp2, thread, os::get_serialize_page_shift_count());
3058 
3059   int mask = os::vm_page_size() - sizeof(int);
3060   if (Assembler::is_simm(mask, 16)) {
3061     andi(tmp2, tmp2, mask);
3062   } else {
3063     lis(tmp1, (int)((signed short) (mask >> 16)));
3064     ori(tmp1, tmp1, mask & 0x0000ffff);
3065     andr(tmp2, tmp2, tmp1);
3066   }
3067 
3068   load_const(tmp1, (long) os::get_memory_serialize_page());
3069   release();
3070   stwx(R0, tmp1, tmp2);
3071 }
3072 
3073 void MacroAssembler::safepoint_poll(Label& slow_path, Register temp_reg) {
3074   if (SafepointMechanism::uses_thread_local_poll()) {
3075     ld(temp_reg, in_bytes(Thread::polling_page_offset()), R16_thread);
3076     // Armed page has poll_bit set.
3077     andi_(temp_reg, temp_reg, SafepointMechanism::poll_bit());
3078   } else {
3079     lwz(temp_reg, (RegisterOrConstant)(intptr_t)SafepointSynchronize::address_of_state());
3080     cmpwi(CCR0, temp_reg, SafepointSynchronize::_not_synchronized);
3081   }
3082   bne(CCR0, slow_path);
3083 }
3084 
3085 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2, bool needs_frame) {
3086   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
3087   bs->resolve_jobject(this, value, tmp1, tmp2, needs_frame);
3088 }
3089 
3090 // Values for last_Java_pc, and last_Java_sp must comply to the rules
3091 // in frame_ppc.hpp.
3092 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) {
3093   // Always set last_Java_pc and flags first because once last_Java_sp
3094   // is visible has_last_Java_frame is true and users will look at the
3095   // rest of the fields. (Note: flags should always be zero before we
3096   // get here so doesn't need to be set.)
3097 
3098   // Verify that last_Java_pc was zeroed on return to Java
3099   asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()), R16_thread,
3100                           "last_Java_pc not zeroed before leaving Java", 0x200);
3101 
3102   // When returning from calling out from Java mode the frame anchor's
3103   // last_Java_pc will always be set to NULL. It is set here so that
3104   // if we are doing a call to native (not VM) that we capture the
3105   // known pc and don't have to rely on the native call having a
3106   // standard frame linkage where we can find the pc.
3107   if (last_Java_pc != noreg)
3108     std(last_Java_pc, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
3109 
3110   // Set last_Java_sp last.
3111   std(last_Java_sp, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
3112 }
3113 
3114 void MacroAssembler::reset_last_Java_frame(void) {
3115   asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
3116                              R16_thread, "SP was not set, still zero", 0x202);
3117 
3118   BLOCK_COMMENT("reset_last_Java_frame {");
3119   li(R0, 0);
3120 
3121   // _last_Java_sp = 0
3122   std(R0, in_bytes(JavaThread::last_Java_sp_offset()), R16_thread);
3123 
3124   // _last_Java_pc = 0
3125   std(R0, in_bytes(JavaThread::last_Java_pc_offset()), R16_thread);
3126   BLOCK_COMMENT("} reset_last_Java_frame");
3127 }
3128 
3129 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1) {
3130   assert_different_registers(sp, tmp1);
3131 
3132   // sp points to a TOP_IJAVA_FRAME, retrieve frame's PC via
3133   // TOP_IJAVA_FRAME_ABI.
3134   // FIXME: assert that we really have a TOP_IJAVA_FRAME here!
3135   address entry = pc();
3136   load_const_optimized(tmp1, entry);
3137 
3138   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1);
3139 }
3140 
3141 void MacroAssembler::get_vm_result(Register oop_result) {
3142   // Read:
3143   //   R16_thread
3144   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
3145   //
3146   // Updated:
3147   //   oop_result
3148   //   R16_thread->in_bytes(JavaThread::vm_result_offset())
3149 
3150   verify_thread();
3151 
3152   ld(oop_result, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3153   li(R0, 0);
3154   std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3155 
3156   verify_oop(oop_result);
3157 }
3158 
3159 void MacroAssembler::get_vm_result_2(Register metadata_result) {
3160   // Read:
3161   //   R16_thread
3162   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
3163   //
3164   // Updated:
3165   //   metadata_result
3166   //   R16_thread->in_bytes(JavaThread::vm_result_2_offset())
3167 
3168   ld(metadata_result, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
3169   li(R0, 0);
3170   std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread);
3171 }
3172 
3173 Register MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3174   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided.
3175   if (Universe::narrow_klass_base() != 0) {
3176     // Use dst as temp if it is free.
3177     sub_const_optimized(dst, current, Universe::narrow_klass_base(), R0);
3178     current = dst;
3179   }
3180   if (Universe::narrow_klass_shift() != 0) {
3181     srdi(dst, current, Universe::narrow_klass_shift());
3182     current = dst;
3183   }
3184   return current;
3185 }
3186 
3187 void MacroAssembler::store_klass(Register dst_oop, Register klass, Register ck) {
3188   if (UseCompressedClassPointers) {
3189     Register compressedKlass = encode_klass_not_null(ck, klass);
3190     stw(compressedKlass, oopDesc::klass_offset_in_bytes(), dst_oop);
3191   } else {
3192     std(klass, oopDesc::klass_offset_in_bytes(), dst_oop);
3193   }
3194 }
3195 
3196 void MacroAssembler::store_klass_gap(Register dst_oop, Register val) {
3197   if (UseCompressedClassPointers) {
3198     if (val == noreg) {
3199       val = R0;
3200       li(val, 0);
3201     }
3202     stw(val, oopDesc::klass_gap_offset_in_bytes(), dst_oop); // klass gap if compressed
3203   }
3204 }
3205 
3206 int MacroAssembler::instr_size_for_decode_klass_not_null() {
3207   if (!UseCompressedClassPointers) return 0;
3208   int num_instrs = 1;  // shift or move
3209   if (Universe::narrow_klass_base() != 0) num_instrs = 7;  // shift + load const + add
3210   return num_instrs * BytesPerInstWord;
3211 }
3212 
3213 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3214   assert(dst != R0, "Dst reg may not be R0, as R0 is used here.");
3215   if (src == noreg) src = dst;
3216   Register shifted_src = src;
3217   if (Universe::narrow_klass_shift() != 0 ||
3218       Universe::narrow_klass_base() == 0 && src != dst) {  // Move required.
3219     shifted_src = dst;
3220     sldi(shifted_src, src, Universe::narrow_klass_shift());
3221   }
3222   if (Universe::narrow_klass_base() != 0) {
3223     add_const_optimized(dst, shifted_src, Universe::narrow_klass_base(), R0);
3224   }
3225 }
3226 
3227 void MacroAssembler::load_klass(Register dst, Register src) {
3228   if (UseCompressedClassPointers) {
3229     lwz(dst, oopDesc::klass_offset_in_bytes(), src);
3230     // Attention: no null check here!
3231     decode_klass_not_null(dst, dst);
3232   } else {
3233     ld(dst, oopDesc::klass_offset_in_bytes(), src);
3234   }
3235 }
3236 
3237 // ((OopHandle)result).resolve();
3238 void MacroAssembler::resolve_oop_handle(Register result) {
3239   // OopHandle::resolve is an indirection.
3240   ld(result, 0, result);
3241 }
3242 
3243 void MacroAssembler::load_mirror_from_const_method(Register mirror, Register const_method) {
3244   ld(mirror, in_bytes(ConstMethod::constants_offset()), const_method);
3245   ld(mirror, ConstantPool::pool_holder_offset_in_bytes(), mirror);
3246   ld(mirror, in_bytes(Klass::java_mirror_offset()), mirror);
3247   resolve_oop_handle(mirror);
3248 }
3249 
3250 // Clear Array
3251 // For very short arrays. tmp == R0 is allowed.
3252 void MacroAssembler::clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp, int offset) {
3253   if (cnt_dwords > 0) { li(tmp, 0); }
3254   for (int i = 0; i < cnt_dwords; ++i) { std(tmp, offset + i * 8, base_ptr); }
3255 }
3256 
3257 // Version for constant short array length. Kills base_ptr. tmp == R0 is allowed.
3258 void MacroAssembler::clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp) {
3259   if (cnt_dwords < 8) {
3260     clear_memory_unrolled(base_ptr, cnt_dwords, tmp);
3261     return;
3262   }
3263 
3264   Label loop;
3265   const long loopcnt   = cnt_dwords >> 1,
3266              remainder = cnt_dwords & 1;
3267 
3268   li(tmp, loopcnt);
3269   mtctr(tmp);
3270   li(tmp, 0);
3271   bind(loop);
3272     std(tmp, 0, base_ptr);
3273     std(tmp, 8, base_ptr);
3274     addi(base_ptr, base_ptr, 16);
3275     bdnz(loop);
3276   if (remainder) { std(tmp, 0, base_ptr); }
3277 }
3278 
3279 // Kills both input registers. tmp == R0 is allowed.
3280 void MacroAssembler::clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp, long const_cnt) {
3281   // Procedure for large arrays (uses data cache block zero instruction).
3282     Label startloop, fast, fastloop, small_rest, restloop, done;
3283     const int cl_size         = VM_Version::L1_data_cache_line_size(),
3284               cl_dwords       = cl_size >> 3,
3285               cl_dw_addr_bits = exact_log2(cl_dwords),
3286               dcbz_min        = 1,  // Min count of dcbz executions, needs to be >0.
3287               min_cnt         = ((dcbz_min + 1) << cl_dw_addr_bits) - 1;
3288 
3289   if (const_cnt >= 0) {
3290     // Constant case.
3291     if (const_cnt < min_cnt) {
3292       clear_memory_constlen(base_ptr, const_cnt, tmp);
3293       return;
3294     }
3295     load_const_optimized(cnt_dwords, const_cnt, tmp);
3296   } else {
3297     // cnt_dwords already loaded in register. Need to check size.
3298     cmpdi(CCR1, cnt_dwords, min_cnt); // Big enough? (ensure >= dcbz_min lines included).
3299     blt(CCR1, small_rest);
3300   }
3301     rldicl_(tmp, base_ptr, 64-3, 64-cl_dw_addr_bits); // Extract dword offset within first cache line.
3302     beq(CCR0, fast);                                  // Already 128byte aligned.
3303 
3304     subfic(tmp, tmp, cl_dwords);
3305     mtctr(tmp);                        // Set ctr to hit 128byte boundary (0<ctr<cl_dwords).
3306     subf(cnt_dwords, tmp, cnt_dwords); // rest.
3307     li(tmp, 0);
3308 
3309   bind(startloop);                     // Clear at the beginning to reach 128byte boundary.
3310     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
3311     addi(base_ptr, base_ptr, 8);
3312     bdnz(startloop);
3313 
3314   bind(fast);                                  // Clear 128byte blocks.
3315     srdi(tmp, cnt_dwords, cl_dw_addr_bits);    // Loop count for 128byte loop (>0).
3316     andi(cnt_dwords, cnt_dwords, cl_dwords-1); // Rest in dwords.
3317     mtctr(tmp);                                // Load counter.
3318 
3319   bind(fastloop);
3320     dcbz(base_ptr);                    // Clear 128byte aligned block.
3321     addi(base_ptr, base_ptr, cl_size);
3322     bdnz(fastloop);
3323 
3324   bind(small_rest);
3325     cmpdi(CCR0, cnt_dwords, 0);        // size 0?
3326     beq(CCR0, done);                   // rest == 0
3327     li(tmp, 0);
3328     mtctr(cnt_dwords);                 // Load counter.
3329 
3330   bind(restloop);                      // Clear rest.
3331     std(tmp, 0, base_ptr);             // Clear 8byte aligned block.
3332     addi(base_ptr, base_ptr, 8);
3333     bdnz(restloop);
3334 
3335   bind(done);
3336 }
3337 
3338 /////////////////////////////////////////// String intrinsics ////////////////////////////////////////////
3339 
3340 #ifdef COMPILER2
3341 // Intrinsics for CompactStrings
3342 
3343 // Compress char[] to byte[] by compressing 16 bytes at once.
3344 void MacroAssembler::string_compress_16(Register src, Register dst, Register cnt,
3345                                         Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
3346                                         Label& Lfailure) {
3347 
3348   const Register tmp0 = R0;
3349   assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3350   Label Lloop, Lslow;
3351 
3352   // Check if cnt >= 8 (= 16 bytes)
3353   lis(tmp1, 0xFF);                // tmp1 = 0x00FF00FF00FF00FF
3354   srwi_(tmp2, cnt, 3);
3355   beq(CCR0, Lslow);
3356   ori(tmp1, tmp1, 0xFF);
3357   rldimi(tmp1, tmp1, 32, 0);
3358   mtctr(tmp2);
3359 
3360   // 2x unrolled loop
3361   bind(Lloop);
3362   ld(tmp2, 0, src);               // _0_1_2_3 (Big Endian)
3363   ld(tmp4, 8, src);               // _4_5_6_7
3364 
3365   orr(tmp0, tmp2, tmp4);
3366   rldicl(tmp3, tmp2, 6*8, 64-24); // _____1_2
3367   rldimi(tmp2, tmp2, 2*8, 2*8);   // _0_2_3_3
3368   rldicl(tmp5, tmp4, 6*8, 64-24); // _____5_6
3369   rldimi(tmp4, tmp4, 2*8, 2*8);   // _4_6_7_7
3370 
3371   andc_(tmp0, tmp0, tmp1);
3372   bne(CCR0, Lfailure);            // Not latin1.
3373   addi(src, src, 16);
3374 
3375   rlwimi(tmp3, tmp2, 0*8, 24, 31);// _____1_3
3376   srdi(tmp2, tmp2, 3*8);          // ____0_2_
3377   rlwimi(tmp5, tmp4, 0*8, 24, 31);// _____5_7
3378   srdi(tmp4, tmp4, 3*8);          // ____4_6_
3379 
3380   orr(tmp2, tmp2, tmp3);          // ____0123
3381   orr(tmp4, tmp4, tmp5);          // ____4567
3382 
3383   stw(tmp2, 0, dst);
3384   stw(tmp4, 4, dst);
3385   addi(dst, dst, 8);
3386   bdnz(Lloop);
3387 
3388   bind(Lslow);                    // Fallback to slow version
3389 }
3390 
3391 // Compress char[] to byte[]. cnt must be positive int.
3392 void MacroAssembler::string_compress(Register src, Register dst, Register cnt, Register tmp, Label& Lfailure) {
3393   Label Lloop;
3394   mtctr(cnt);
3395 
3396   bind(Lloop);
3397   lhz(tmp, 0, src);
3398   cmplwi(CCR0, tmp, 0xff);
3399   bgt(CCR0, Lfailure);            // Not latin1.
3400   addi(src, src, 2);
3401   stb(tmp, 0, dst);
3402   addi(dst, dst, 1);
3403   bdnz(Lloop);
3404 }
3405 
3406 // Inflate byte[] to char[] by inflating 16 bytes at once.
3407 void MacroAssembler::string_inflate_16(Register src, Register dst, Register cnt,
3408                                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
3409   const Register tmp0 = R0;
3410   assert_different_registers(src, dst, cnt, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
3411   Label Lloop, Lslow;
3412 
3413   // Check if cnt >= 8
3414   srwi_(tmp2, cnt, 3);
3415   beq(CCR0, Lslow);
3416   lis(tmp1, 0xFF);                // tmp1 = 0x00FF00FF
3417   ori(tmp1, tmp1, 0xFF);
3418   mtctr(tmp2);
3419 
3420   // 2x unrolled loop
3421   bind(Lloop);
3422   lwz(tmp2, 0, src);              // ____0123 (Big Endian)
3423   lwz(tmp4, 4, src);              // ____4567
3424   addi(src, src, 8);
3425 
3426   rldicl(tmp3, tmp2, 7*8, 64-8);  // _______2
3427   rlwimi(tmp2, tmp2, 3*8, 16, 23);// ____0113
3428   rldicl(tmp5, tmp4, 7*8, 64-8);  // _______6
3429   rlwimi(tmp4, tmp4, 3*8, 16, 23);// ____4557
3430 
3431   andc(tmp0, tmp2, tmp1);         // ____0_1_
3432   rlwimi(tmp2, tmp3, 2*8, 0, 23); // _____2_3
3433   andc(tmp3, tmp4, tmp1);         // ____4_5_
3434   rlwimi(tmp4, tmp5, 2*8, 0, 23); // _____6_7
3435 
3436   rldimi(tmp2, tmp0, 3*8, 0*8);   // _0_1_2_3
3437   rldimi(tmp4, tmp3, 3*8, 0*8);   // _4_5_6_7
3438 
3439   std(tmp2, 0, dst);
3440   std(tmp4, 8, dst);
3441   addi(dst, dst, 16);
3442   bdnz(Lloop);
3443 
3444   bind(Lslow);                    // Fallback to slow version
3445 }
3446 
3447 // Inflate byte[] to char[]. cnt must be positive int.
3448 void MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp) {
3449   Label Lloop;
3450   mtctr(cnt);
3451 
3452   bind(Lloop);
3453   lbz(tmp, 0, src);
3454   addi(src, src, 1);
3455   sth(tmp, 0, dst);
3456   addi(dst, dst, 2);
3457   bdnz(Lloop);
3458 }
3459 
3460 void MacroAssembler::string_compare(Register str1, Register str2,
3461                                     Register cnt1, Register cnt2,
3462                                     Register tmp1, Register result, int ae) {
3463   const Register tmp0 = R0,
3464                  diff = tmp1;
3465 
3466   assert_different_registers(str1, str2, cnt1, cnt2, tmp0, tmp1, result);
3467   Label Ldone, Lslow, Lloop, Lreturn_diff;
3468 
3469   // Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
3470   // we interchange str1 and str2 in the UL case and negate the result.
3471   // Like this, str1 is always latin1 encoded, except for the UU case.
3472   // In addition, we need 0 (or sign which is 0) extend.
3473 
3474   if (ae == StrIntrinsicNode::UU) {
3475     srwi(cnt1, cnt1, 1);
3476   } else {
3477     clrldi(cnt1, cnt1, 32);
3478   }
3479 
3480   if (ae != StrIntrinsicNode::LL) {
3481     srwi(cnt2, cnt2, 1);
3482   } else {
3483     clrldi(cnt2, cnt2, 32);
3484   }
3485 
3486   // See if the lengths are different, and calculate min in cnt1.
3487   // Save diff in case we need it for a tie-breaker.
3488   subf_(diff, cnt2, cnt1); // diff = cnt1 - cnt2
3489   // if (diff > 0) { cnt1 = cnt2; }
3490   if (VM_Version::has_isel()) {
3491     isel(cnt1, CCR0, Assembler::greater, /*invert*/ false, cnt2);
3492   } else {
3493     Label Lskip;
3494     blt(CCR0, Lskip);
3495     mr(cnt1, cnt2);
3496     bind(Lskip);
3497   }
3498 
3499   // Rename registers
3500   Register chr1 = result;
3501   Register chr2 = tmp0;
3502 
3503   // Compare multiple characters in fast loop (only implemented for same encoding).
3504   int stride1 = 8, stride2 = 8;
3505   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
3506     int log2_chars_per_iter = (ae == StrIntrinsicNode::LL) ? 3 : 2;
3507     Label Lfastloop, Lskipfast;
3508 
3509     srwi_(tmp0, cnt1, log2_chars_per_iter);
3510     beq(CCR0, Lskipfast);
3511     rldicl(cnt2, cnt1, 0, 64 - log2_chars_per_iter); // Remaining characters.
3512     li(cnt1, 1 << log2_chars_per_iter); // Initialize for failure case: Rescan characters from current iteration.
3513     mtctr(tmp0);
3514 
3515     bind(Lfastloop);
3516     ld(chr1, 0, str1);
3517     ld(chr2, 0, str2);
3518     cmpd(CCR0, chr1, chr2);
3519     bne(CCR0, Lslow);
3520     addi(str1, str1, stride1);
3521     addi(str2, str2, stride2);
3522     bdnz(Lfastloop);
3523     mr(cnt1, cnt2); // Remaining characters.
3524     bind(Lskipfast);
3525   }
3526 
3527   // Loop which searches the first difference character by character.
3528   cmpwi(CCR0, cnt1, 0);
3529   beq(CCR0, Lreturn_diff);
3530   bind(Lslow);
3531   mtctr(cnt1);
3532 
3533   switch (ae) {
3534     case StrIntrinsicNode::LL: stride1 = 1; stride2 = 1; break;
3535     case StrIntrinsicNode::UL: // fallthru (see comment above)
3536     case StrIntrinsicNode::LU: stride1 = 1; stride2 = 2; break;
3537     case StrIntrinsicNode::UU: stride1 = 2; stride2 = 2; break;
3538     default: ShouldNotReachHere(); break;
3539   }
3540 
3541   bind(Lloop);
3542   if (stride1 == 1) { lbz(chr1, 0, str1); } else { lhz(chr1, 0, str1); }
3543   if (stride2 == 1) { lbz(chr2, 0, str2); } else { lhz(chr2, 0, str2); }
3544   subf_(result, chr2, chr1); // result = chr1 - chr2
3545   bne(CCR0, Ldone);
3546   addi(str1, str1, stride1);
3547   addi(str2, str2, stride2);
3548   bdnz(Lloop);
3549 
3550   // If strings are equal up to min length, return the length difference.
3551   bind(Lreturn_diff);
3552   mr(result, diff);
3553 
3554   // Otherwise, return the difference between the first mismatched chars.
3555   bind(Ldone);
3556   if (ae == StrIntrinsicNode::UL) {
3557     neg(result, result); // Negate result (see note above).
3558   }
3559 }
3560 
3561 void MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2,
3562                                   Register limit, Register tmp1, Register result, bool is_byte) {
3563   const Register tmp0 = R0;
3564   assert_different_registers(ary1, ary2, limit, tmp0, tmp1, result);
3565   Label Ldone, Lskiploop, Lloop, Lfastloop, Lskipfast;
3566   bool limit_needs_shift = false;
3567 
3568   if (is_array_equ) {
3569     const int length_offset = arrayOopDesc::length_offset_in_bytes();
3570     const int base_offset   = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
3571 
3572     // Return true if the same array.
3573     cmpd(CCR0, ary1, ary2);
3574     beq(CCR0, Lskiploop);
3575 
3576     // Return false if one of them is NULL.
3577     cmpdi(CCR0, ary1, 0);
3578     cmpdi(CCR1, ary2, 0);
3579     li(result, 0);
3580     cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
3581     beq(CCR0, Ldone);
3582 
3583     // Load the lengths of arrays.
3584     lwz(limit, length_offset, ary1);
3585     lwz(tmp0, length_offset, ary2);
3586 
3587     // Return false if the two arrays are not equal length.
3588     cmpw(CCR0, limit, tmp0);
3589     bne(CCR0, Ldone);
3590 
3591     // Load array addresses.
3592     addi(ary1, ary1, base_offset);
3593     addi(ary2, ary2, base_offset);
3594   } else {
3595     limit_needs_shift = !is_byte;
3596     li(result, 0); // Assume not equal.
3597   }
3598 
3599   // Rename registers
3600   Register chr1 = tmp0;
3601   Register chr2 = tmp1;
3602 
3603   // Compare 8 bytes per iteration in fast loop.
3604   const int log2_chars_per_iter = is_byte ? 3 : 2;
3605 
3606   srwi_(tmp0, limit, log2_chars_per_iter + (limit_needs_shift ? 1 : 0));
3607   beq(CCR0, Lskipfast);
3608   mtctr(tmp0);
3609 
3610   bind(Lfastloop);
3611   ld(chr1, 0, ary1);
3612   ld(chr2, 0, ary2);
3613   addi(ary1, ary1, 8);
3614   addi(ary2, ary2, 8);
3615   cmpd(CCR0, chr1, chr2);
3616   bne(CCR0, Ldone);
3617   bdnz(Lfastloop);
3618 
3619   bind(Lskipfast);
3620   rldicl_(limit, limit, limit_needs_shift ? 64 - 1 : 0, 64 - log2_chars_per_iter); // Remaining characters.
3621   beq(CCR0, Lskiploop);
3622   mtctr(limit);
3623 
3624   // Character by character.
3625   bind(Lloop);
3626   if (is_byte) {
3627     lbz(chr1, 0, ary1);
3628     lbz(chr2, 0, ary2);
3629     addi(ary1, ary1, 1);
3630     addi(ary2, ary2, 1);
3631   } else {
3632     lhz(chr1, 0, ary1);
3633     lhz(chr2, 0, ary2);
3634     addi(ary1, ary1, 2);
3635     addi(ary2, ary2, 2);
3636   }
3637   cmpw(CCR0, chr1, chr2);
3638   bne(CCR0, Ldone);
3639   bdnz(Lloop);
3640 
3641   bind(Lskiploop);
3642   li(result, 1); // All characters are equal.
3643   bind(Ldone);
3644 }
3645 
3646 void MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
3647                                     Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
3648                                     Register tmp1, Register tmp2, Register tmp3, Register tmp4, int ae) {
3649 
3650   // Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
3651   Label L_TooShort, L_Found, L_NotFound, L_End;
3652   Register last_addr = haycnt, // Kill haycnt at the beginning.
3653   addr      = tmp1,
3654   n_start   = tmp2,
3655   ch1       = tmp3,
3656   ch2       = R0;
3657 
3658   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
3659   const int h_csize = (ae == StrIntrinsicNode::LL) ? 1 : 2;
3660   const int n_csize = (ae == StrIntrinsicNode::UU) ? 2 : 1;
3661 
3662   // **************************************************************************************************
3663   // Prepare for main loop: optimized for needle count >=2, bail out otherwise.
3664   // **************************************************************************************************
3665 
3666   // Compute last haystack addr to use if no match gets found.
3667   clrldi(haycnt, haycnt, 32);         // Ensure positive int is valid as 64 bit value.
3668   addi(addr, haystack, -h_csize);     // Accesses use pre-increment.
3669   if (needlecntval == 0) { // variable needlecnt
3670    cmpwi(CCR6, needlecnt, 2);
3671    clrldi(needlecnt, needlecnt, 32);  // Ensure positive int is valid as 64 bit value.
3672    blt(CCR6, L_TooShort);             // Variable needlecnt: handle short needle separately.
3673   }
3674 
3675   if (n_csize == 2) { lwz(n_start, 0, needle); } else { lhz(n_start, 0, needle); } // Load first 2 characters of needle.
3676 
3677   if (needlecntval == 0) { // variable needlecnt
3678    subf(ch1, needlecnt, haycnt);      // Last character index to compare is haycnt-needlecnt.
3679    addi(needlecnt, needlecnt, -2);    // Rest of needle.
3680   } else { // constant needlecnt
3681   guarantee(needlecntval != 1, "IndexOf with single-character needle must be handled separately");
3682   assert((needlecntval & 0x7fff) == needlecntval, "wrong immediate");
3683    addi(ch1, haycnt, -needlecntval);  // Last character index to compare is haycnt-needlecnt.
3684    if (needlecntval > 3) { li(needlecnt, needlecntval - 2); } // Rest of needle.
3685   }
3686 
3687   if (h_csize == 2) { slwi(ch1, ch1, 1); } // Scale to number of bytes.
3688 
3689   if (ae ==StrIntrinsicNode::UL) {
3690    srwi(tmp4, n_start, 1*8);          // ___0
3691    rlwimi(n_start, tmp4, 2*8, 0, 23); // _0_1
3692   }
3693 
3694   add(last_addr, haystack, ch1);      // Point to last address to compare (haystack+2*(haycnt-needlecnt)).
3695 
3696   // Main Loop (now we have at least 2 characters).
3697   Label L_OuterLoop, L_InnerLoop, L_FinalCheck, L_Comp1, L_Comp2;
3698   bind(L_OuterLoop); // Search for 1st 2 characters.
3699   Register addr_diff = tmp4;
3700    subf(addr_diff, addr, last_addr);  // Difference between already checked address and last address to check.
3701    addi(addr, addr, h_csize);         // This is the new address we want to use for comparing.
3702    srdi_(ch2, addr_diff, h_csize);
3703    beq(CCR0, L_FinalCheck);           // 2 characters left?
3704    mtctr(ch2);                        // num of characters / 2
3705   bind(L_InnerLoop);                  // Main work horse (2x unrolled search loop)
3706    if (h_csize == 2) {                // Load 2 characters of haystack (ignore alignment).
3707     lwz(ch1, 0, addr);
3708     lwz(ch2, 2, addr);
3709    } else {
3710     lhz(ch1, 0, addr);
3711     lhz(ch2, 1, addr);
3712    }
3713    cmpw(CCR0, ch1, n_start);          // Compare 2 characters (1 would be sufficient but try to reduce branches to CompLoop).
3714    cmpw(CCR1, ch2, n_start);
3715    beq(CCR0, L_Comp1);                // Did we find the needle start?
3716    beq(CCR1, L_Comp2);
3717    addi(addr, addr, 2 * h_csize);
3718    bdnz(L_InnerLoop);
3719   bind(L_FinalCheck);
3720    andi_(addr_diff, addr_diff, h_csize); // Remaining characters not covered by InnerLoop: (num of characters) & 1.
3721    beq(CCR0, L_NotFound);
3722    if (h_csize == 2) { lwz(ch1, 0, addr); } else { lhz(ch1, 0, addr); } // One position left at which we have to compare.
3723    cmpw(CCR1, ch1, n_start);
3724    beq(CCR1, L_Comp1);
3725   bind(L_NotFound);
3726    li(result, -1);                    // not found
3727    b(L_End);
3728 
3729    // **************************************************************************************************
3730    // Special Case: unfortunately, the variable needle case can be called with needlecnt<2
3731    // **************************************************************************************************
3732   if (needlecntval == 0) {           // We have to handle these cases separately.
3733   Label L_OneCharLoop;
3734   bind(L_TooShort);
3735    mtctr(haycnt);
3736    if (n_csize == 2) { lhz(n_start, 0, needle); } else { lbz(n_start, 0, needle); } // First character of needle
3737   bind(L_OneCharLoop);
3738    if (h_csize == 2) { lhzu(ch1, 2, addr); } else { lbzu(ch1, 1, addr); }
3739    cmpw(CCR1, ch1, n_start);
3740    beq(CCR1, L_Found);               // Did we find the one character needle?
3741    bdnz(L_OneCharLoop);
3742    li(result, -1);                   // Not found.
3743    b(L_End);
3744   }
3745 
3746   // **************************************************************************************************
3747   // Regular Case Part II: compare rest of needle (first 2 characters have been compared already)
3748   // **************************************************************************************************
3749 
3750   // Compare the rest
3751   bind(L_Comp2);
3752    addi(addr, addr, h_csize);        // First comparison has failed, 2nd one hit.
3753   bind(L_Comp1);                     // Addr points to possible needle start.
3754   if (needlecntval != 2) {           // Const needlecnt==2?
3755    if (needlecntval != 3) {
3756     if (needlecntval == 0) { beq(CCR6, L_Found); } // Variable needlecnt==2?
3757     Register n_ind = tmp4,
3758              h_ind = n_ind;
3759     li(n_ind, 2 * n_csize);          // First 2 characters are already compared, use index 2.
3760     mtctr(needlecnt);                // Decremented by 2, still > 0.
3761    Label L_CompLoop;
3762    bind(L_CompLoop);
3763     if (ae ==StrIntrinsicNode::UL) {
3764       h_ind = ch1;
3765       sldi(h_ind, n_ind, 1);
3766     }
3767     if (n_csize == 2) { lhzx(ch2, needle, n_ind); } else { lbzx(ch2, needle, n_ind); }
3768     if (h_csize == 2) { lhzx(ch1, addr, h_ind); } else { lbzx(ch1, addr, h_ind); }
3769     cmpw(CCR1, ch1, ch2);
3770     bne(CCR1, L_OuterLoop);
3771     addi(n_ind, n_ind, n_csize);
3772     bdnz(L_CompLoop);
3773    } else { // No loop required if there's only one needle character left.
3774     if (n_csize == 2) { lhz(ch2, 2 * 2, needle); } else { lbz(ch2, 2 * 1, needle); }
3775     if (h_csize == 2) { lhz(ch1, 2 * 2, addr); } else { lbz(ch1, 2 * 1, addr); }
3776     cmpw(CCR1, ch1, ch2);
3777     bne(CCR1, L_OuterLoop);
3778    }
3779   }
3780   // Return index ...
3781   bind(L_Found);
3782    subf(result, haystack, addr);     // relative to haystack, ...
3783    if (h_csize == 2) { srdi(result, result, 1); } // in characters.
3784   bind(L_End);
3785 } // string_indexof
3786 
3787 void MacroAssembler::string_indexof_char(Register result, Register haystack, Register haycnt,
3788                                          Register needle, jchar needleChar, Register tmp1, Register tmp2, bool is_byte) {
3789   assert_different_registers(haystack, haycnt, needle, tmp1, tmp2);
3790 
3791   Label L_InnerLoop, L_FinalCheck, L_Found1, L_Found2, L_NotFound, L_End;
3792   Register addr = tmp1,
3793            ch1 = tmp2,
3794            ch2 = R0;
3795 
3796   const int h_csize = is_byte ? 1 : 2;
3797 
3798 //4:
3799    srwi_(tmp2, haycnt, 1);   // Shift right by exact_log2(UNROLL_FACTOR).
3800    mr(addr, haystack);
3801    beq(CCR0, L_FinalCheck);
3802    mtctr(tmp2);              // Move to count register.
3803 //8:
3804   bind(L_InnerLoop);         // Main work horse (2x unrolled search loop).
3805    if (!is_byte) {
3806     lhz(ch1, 0, addr);
3807     lhz(ch2, 2, addr);
3808    } else {
3809     lbz(ch1, 0, addr);
3810     lbz(ch2, 1, addr);
3811    }
3812    (needle != R0) ? cmpw(CCR0, ch1, needle) : cmplwi(CCR0, ch1, (unsigned int)needleChar);
3813    (needle != R0) ? cmpw(CCR1, ch2, needle) : cmplwi(CCR1, ch2, (unsigned int)needleChar);
3814    beq(CCR0, L_Found1);      // Did we find the needle?
3815    beq(CCR1, L_Found2);
3816    addi(addr, addr, 2 * h_csize);
3817    bdnz(L_InnerLoop);
3818 //16:
3819   bind(L_FinalCheck);
3820    andi_(R0, haycnt, 1);
3821    beq(CCR0, L_NotFound);
3822    if (!is_byte) { lhz(ch1, 0, addr); } else { lbz(ch1, 0, addr); } // One position left at which we have to compare.
3823    (needle != R0) ? cmpw(CCR1, ch1, needle) : cmplwi(CCR1, ch1, (unsigned int)needleChar);
3824    beq(CCR1, L_Found1);
3825 //21:
3826   bind(L_NotFound);
3827    li(result, -1);           // Not found.
3828    b(L_End);
3829 
3830   bind(L_Found2);
3831    addi(addr, addr, h_csize);
3832 //24:
3833   bind(L_Found1);            // Return index ...
3834    subf(result, haystack, addr); // relative to haystack, ...
3835    if (!is_byte) { srdi(result, result, 1); } // in characters.
3836   bind(L_End);
3837 } // string_indexof_char
3838 
3839 
3840 void MacroAssembler::has_negatives(Register src, Register cnt, Register result,
3841                                    Register tmp1, Register tmp2) {
3842   const Register tmp0 = R0;
3843   assert_different_registers(src, result, cnt, tmp0, tmp1, tmp2);
3844   Label Lfastloop, Lslow, Lloop, Lnoneg, Ldone;
3845 
3846   // Check if cnt >= 8 (= 16 bytes)
3847   lis(tmp1, (int)(short)0x8080);  // tmp1 = 0x8080808080808080
3848   srwi_(tmp2, cnt, 4);
3849   li(result, 1);                  // Assume there's a negative byte.
3850   beq(CCR0, Lslow);
3851   ori(tmp1, tmp1, 0x8080);
3852   rldimi(tmp1, tmp1, 32, 0);
3853   mtctr(tmp2);
3854 
3855   // 2x unrolled loop
3856   bind(Lfastloop);
3857   ld(tmp2, 0, src);
3858   ld(tmp0, 8, src);
3859 
3860   orr(tmp0, tmp2, tmp0);
3861 
3862   and_(tmp0, tmp0, tmp1);
3863   bne(CCR0, Ldone);               // Found negative byte.
3864   addi(src, src, 16);
3865 
3866   bdnz(Lfastloop);
3867 
3868   bind(Lslow);                    // Fallback to slow version
3869   rldicl_(tmp0, cnt, 0, 64-4);
3870   beq(CCR0, Lnoneg);
3871   mtctr(tmp0);
3872   bind(Lloop);
3873   lbz(tmp0, 0, src);
3874   addi(src, src, 1);
3875   andi_(tmp0, tmp0, 0x80);
3876   bne(CCR0, Ldone);               // Found negative byte.
3877   bdnz(Lloop);
3878   bind(Lnoneg);
3879   li(result, 0);
3880 
3881   bind(Ldone);
3882 }
3883 
3884 #endif // Compiler2
3885 
3886 // Helpers for Intrinsic Emitters
3887 //
3888 // Revert the byte order of a 32bit value in a register
3889 //   src: 0x44556677
3890 //   dst: 0x77665544
3891 // Three steps to obtain the result:
3892 //  1) Rotate src (as doubleword) left 5 bytes. That puts the leftmost byte of the src word
3893 //     into the rightmost byte position. Afterwards, everything left of the rightmost byte is cleared.
3894 //     This value initializes dst.
3895 //  2) Rotate src (as word) left 3 bytes. That puts the rightmost byte of the src word into the leftmost
3896 //     byte position. Furthermore, byte 5 is rotated into byte 6 position where it is supposed to go.
3897 //     This value is mask inserted into dst with a [0..23] mask of 1s.
3898 //  3) Rotate src (as word) left 1 byte. That puts byte 6 into byte 5 position.
3899 //     This value is mask inserted into dst with a [8..15] mask of 1s.
3900 void MacroAssembler::load_reverse_32(Register dst, Register src) {
3901   assert_different_registers(dst, src);
3902 
3903   rldicl(dst, src, (4+1)*8, 56);       // Rotate byte 4 into position 7 (rightmost), clear all to the left.
3904   rlwimi(dst, src,     3*8,  0, 23);   // Insert byte 5 into position 6, 7 into 4, leave pos 7 alone.
3905   rlwimi(dst, src,     1*8,  8, 15);   // Insert byte 6 into position 5, leave the rest alone.
3906 }
3907 
3908 // Calculate the column addresses of the crc32 lookup table into distinct registers.
3909 // This loop-invariant calculation is moved out of the loop body, reducing the loop
3910 // body size from 20 to 16 instructions.
3911 // Returns the offset that was used to calculate the address of column tc3.
3912 // Due to register shortage, setting tc3 may overwrite table. With the return offset
3913 // at hand, the original table address can be easily reconstructed.
3914 int MacroAssembler::crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3) {
3915 
3916 #ifdef VM_LITTLE_ENDIAN
3917   // This is what we implement (the DOLIT4 part):
3918   // ========================================================================= */
3919   // #define DOLIT4 c ^= *buf4++; \
3920   //         c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
3921   //             crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
3922   // #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
3923   // ========================================================================= */
3924   const int ix0 = 3*(4*CRC32_COLUMN_SIZE);
3925   const int ix1 = 2*(4*CRC32_COLUMN_SIZE);
3926   const int ix2 = 1*(4*CRC32_COLUMN_SIZE);
3927   const int ix3 = 0*(4*CRC32_COLUMN_SIZE);
3928 #else
3929   // This is what we implement (the DOBIG4 part):
3930   // =========================================================================
3931   // #define DOBIG4 c ^= *++buf4; \
3932   //         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
3933   //             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
3934   // #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
3935   // =========================================================================
3936   const int ix0 = 4*(4*CRC32_COLUMN_SIZE);
3937   const int ix1 = 5*(4*CRC32_COLUMN_SIZE);
3938   const int ix2 = 6*(4*CRC32_COLUMN_SIZE);
3939   const int ix3 = 7*(4*CRC32_COLUMN_SIZE);
3940 #endif
3941   assert_different_registers(table, tc0, tc1, tc2);
3942   assert(table == tc3, "must be!");
3943 
3944   addi(tc0, table, ix0);
3945   addi(tc1, table, ix1);
3946   addi(tc2, table, ix2);
3947   if (ix3 != 0) addi(tc3, table, ix3);
3948 
3949   return ix3;
3950 }
3951 
3952 /**
3953  * uint32_t crc;
3954  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
3955  */
3956 void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
3957   assert_different_registers(crc, table, tmp);
3958   assert_different_registers(val, table);
3959 
3960   if (crc == val) {                   // Must rotate first to use the unmodified value.
3961     rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
3962                                       // As we use a word (4-byte) instruction, we have to adapt the mask bit positions.
3963     srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
3964   } else {
3965     srwi(crc, crc, 8);                // Unsigned shift, clear leftmost 8 bits.
3966     rlwinm(tmp, val, 2, 24-2, 31-2);  // Insert (rightmost) byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
3967   }
3968   lwzx(tmp, table, tmp);
3969   xorr(crc, crc, tmp);
3970 }
3971 
3972 /**
3973  * uint32_t crc;
3974  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
3975  */
3976 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
3977   fold_byte_crc32(crc, crc, table, tmp);
3978 }
3979 
3980 /**
3981  * Emits code to update CRC-32 with a byte value according to constants in table.
3982  *
3983  * @param [in,out]crc   Register containing the crc.
3984  * @param [in]val       Register containing the byte to fold into the CRC.
3985  * @param [in]table     Register containing the table of crc constants.
3986  *
3987  * uint32_t crc;
3988  * val = crc_table[(val ^ crc) & 0xFF];
3989  * crc = val ^ (crc >> 8);
3990  */
3991 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
3992   BLOCK_COMMENT("update_byte_crc32:");
3993   xorr(val, val, crc);
3994   fold_byte_crc32(crc, val, table, val);
3995 }
3996 
3997 /**
3998  * @param crc   register containing existing CRC (32-bit)
3999  * @param buf   register pointing to input byte buffer (byte*)
4000  * @param len   register containing number of bytes
4001  * @param table register pointing to CRC table
4002  */
4003 void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
4004                                            Register data, bool loopAlignment) {
4005   assert_different_registers(crc, buf, len, table, data);
4006 
4007   Label L_mainLoop, L_done;
4008   const int mainLoop_stepping  = 1;
4009   const int mainLoop_alignment = loopAlignment ? 32 : 4; // (InputForNewCode > 4 ? InputForNewCode : 32) : 4;
4010 
4011   // Process all bytes in a single-byte loop.
4012   clrldi_(len, len, 32);                         // Enforce 32 bit. Anything to do?
4013   beq(CCR0, L_done);
4014 
4015   mtctr(len);
4016   align(mainLoop_alignment);
4017   BIND(L_mainLoop);
4018     lbz(data, 0, buf);                           // Byte from buffer, zero-extended.
4019     addi(buf, buf, mainLoop_stepping);           // Advance buffer position.
4020     update_byte_crc32(crc, data, table);
4021     bdnz(L_mainLoop);                            // Iterate.
4022 
4023   bind(L_done);
4024 }
4025 
4026 /**
4027  * Emits code to update CRC-32 with a 4-byte value according to constants in table
4028  * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c
4029  */
4030 // A not on the lookup table address(es):
4031 // The lookup table consists of two sets of four columns each.
4032 // The columns {0..3} are used for little-endian machines.
4033 // The columns {4..7} are used for big-endian machines.
4034 // To save the effort of adding the column offset to the table address each time
4035 // a table element is looked up, it is possible to pass the pre-calculated
4036 // column addresses.
4037 // Uses R9..R12 as work register. Must be saved/restored by caller, if necessary.
4038 void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
4039                                         Register t0,  Register t1,  Register t2,  Register t3,
4040                                         Register tc0, Register tc1, Register tc2, Register tc3) {
4041   assert_different_registers(crc, t3);
4042 
4043   // XOR crc with next four bytes of buffer.
4044   lwz(t3, bufDisp, buf);
4045   if (bufInc != 0) {
4046     addi(buf, buf, bufInc);
4047   }
4048   xorr(t3, t3, crc);
4049 
4050   // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
4051   rlwinm(t0, t3,  2,         24-2, 31-2);  // ((t1 >>  0) & 0xff) << 2
4052   rlwinm(t1, t3,  32+(2- 8), 24-2, 31-2);  // ((t1 >>  8) & 0xff) << 2
4053   rlwinm(t2, t3,  32+(2-16), 24-2, 31-2);  // ((t1 >> 16) & 0xff) << 2
4054   rlwinm(t3, t3,  32+(2-24), 24-2, 31-2);  // ((t1 >> 24) & 0xff) << 2
4055 
4056   // Use the pre-calculated column addresses.
4057   // Load pre-calculated table values.
4058   lwzx(t0, tc0, t0);
4059   lwzx(t1, tc1, t1);
4060   lwzx(t2, tc2, t2);
4061   lwzx(t3, tc3, t3);
4062 
4063   // Calculate new crc from table values.
4064   xorr(t0,  t0, t1);
4065   xorr(t2,  t2, t3);
4066   xorr(crc, t0, t2);  // Now crc contains the final checksum value.
4067 }
4068 
4069 /**
4070  * @param crc   register containing existing CRC (32-bit)
4071  * @param buf   register pointing to input byte buffer (byte*)
4072  * @param len   register containing number of bytes
4073  * @param table register pointing to CRC table
4074  *
4075  * Uses R9..R12 as work register. Must be saved/restored by caller!
4076  */
4077 void MacroAssembler::kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
4078                                         Register t0,  Register t1,  Register t2,  Register t3,
4079                                         Register tc0, Register tc1, Register tc2, Register tc3,
4080                                         bool invertCRC) {
4081   assert_different_registers(crc, buf, len, table);
4082 
4083   Label L_mainLoop, L_tail;
4084   Register  tmp  = t0;
4085   Register  data = t0;
4086   Register  tmp2 = t1;
4087   const int mainLoop_stepping  = 8;
4088   const int tailLoop_stepping  = 1;
4089   const int log_stepping       = exact_log2(mainLoop_stepping);
4090   const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
4091   const int complexThreshold   = 2*mainLoop_stepping;
4092 
4093   // Don't test for len <= 0 here. This pathological case should not occur anyway.
4094   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles
4095   // for all well-behaved cases. The situation itself is detected and handled correctly
4096   // within update_byteLoop_crc32.
4097   assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
4098 
4099   BLOCK_COMMENT("kernel_crc32_2word {");
4100 
4101   if (invertCRC) {
4102     nand(crc, crc, crc);                      // 1s complement of crc
4103   }
4104 
4105   // Check for short (<mainLoop_stepping) buffer.
4106   cmpdi(CCR0, len, complexThreshold);
4107   blt(CCR0, L_tail);
4108 
4109   // Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
4110   // We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
4111   {
4112     // Align buf addr to mainLoop_stepping boundary.
4113     neg(tmp2, buf);                           // Calculate # preLoop iterations for alignment.
4114     rldicl(tmp2, tmp2, 0, 64-log_stepping);   // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
4115 
4116     if (complexThreshold > mainLoop_stepping) {
4117       sub(len, len, tmp2);                       // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4118     } else {
4119       sub(tmp, len, tmp2);                       // Remaining bytes for main loop.
4120       cmpdi(CCR0, tmp, mainLoop_stepping);
4121       blt(CCR0, L_tail);                         // For less than one mainloop_stepping left, do only tail processing
4122       mr(len, tmp);                              // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4123     }
4124     update_byteLoop_crc32(crc, buf, tmp2, table, data, false);
4125   }
4126 
4127   srdi(tmp2, len, log_stepping);                 // #iterations for mainLoop
4128   andi(len, len, mainLoop_stepping-1);           // remaining bytes for tailLoop
4129   mtctr(tmp2);
4130 
4131 #ifdef VM_LITTLE_ENDIAN
4132   Register crc_rv = crc;
4133 #else
4134   Register crc_rv = tmp;                         // Load_reverse needs separate registers to work on.
4135                                                  // Occupies tmp, but frees up crc.
4136   load_reverse_32(crc_rv, crc);                  // Revert byte order because we are dealing with big-endian data.
4137   tmp = crc;
4138 #endif
4139 
4140   int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
4141 
4142   align(mainLoop_alignment);                     // Octoword-aligned loop address. Shows 2% improvement.
4143   BIND(L_mainLoop);
4144     update_1word_crc32(crc_rv, buf, table, 0, 0, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4145     update_1word_crc32(crc_rv, buf, table, 4, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4146     bdnz(L_mainLoop);
4147 
4148 #ifndef VM_LITTLE_ENDIAN
4149   load_reverse_32(crc, crc_rv);                  // Revert byte order because we are dealing with big-endian data.
4150   tmp = crc_rv;                                  // Tmp uses it's original register again.
4151 #endif
4152 
4153   // Restore original table address for tailLoop.
4154   if (reconstructTableOffset != 0) {
4155     addi(table, table, -reconstructTableOffset);
4156   }
4157 
4158   // Process last few (<complexThreshold) bytes of buffer.
4159   BIND(L_tail);
4160   update_byteLoop_crc32(crc, buf, len, table, data, false);
4161 
4162   if (invertCRC) {
4163     nand(crc, crc, crc);                      // 1s complement of crc
4164   }
4165   BLOCK_COMMENT("} kernel_crc32_2word");
4166 }
4167 
4168 /**
4169  * @param crc   register containing existing CRC (32-bit)
4170  * @param buf   register pointing to input byte buffer (byte*)
4171  * @param len   register containing number of bytes
4172  * @param table register pointing to CRC table
4173  *
4174  * uses R9..R12 as work register. Must be saved/restored by caller!
4175  */
4176 void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
4177                                         Register t0,  Register t1,  Register t2,  Register t3,
4178                                         Register tc0, Register tc1, Register tc2, Register tc3,
4179                                         bool invertCRC) {
4180   assert_different_registers(crc, buf, len, table);
4181 
4182   Label L_mainLoop, L_tail;
4183   Register  tmp          = t0;
4184   Register  data         = t0;
4185   Register  tmp2         = t1;
4186   const int mainLoop_stepping  = 4;
4187   const int tailLoop_stepping  = 1;
4188   const int log_stepping       = exact_log2(mainLoop_stepping);
4189   const int mainLoop_alignment = 32; // InputForNewCode > 4 ? InputForNewCode : 32;
4190   const int complexThreshold   = 2*mainLoop_stepping;
4191 
4192   // Don't test for len <= 0 here. This pathological case should not occur anyway.
4193   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles
4194   // for all well-behaved cases. The situation itself is detected and handled correctly
4195   // within update_byteLoop_crc32.
4196   assert(tailLoop_stepping == 1, "check tailLoop_stepping!");
4197 
4198   BLOCK_COMMENT("kernel_crc32_1word {");
4199 
4200   if (invertCRC) {
4201     nand(crc, crc, crc);                      // 1s complement of crc
4202   }
4203 
4204   // Check for short (<mainLoop_stepping) buffer.
4205   cmpdi(CCR0, len, complexThreshold);
4206   blt(CCR0, L_tail);
4207 
4208   // Pre-mainLoop alignment did show a slight (1%) positive effect on performance.
4209   // We leave the code in for reference. Maybe we need alignment when we exploit vector instructions.
4210   {
4211     // Align buf addr to mainLoop_stepping boundary.
4212     neg(tmp2, buf);                              // Calculate # preLoop iterations for alignment.
4213     rldicl(tmp2, tmp2, 0, 64-log_stepping);      // Rotate tmp2 0 bits, insert into tmp2, anding with mask with 1s from 62..63.
4214 
4215     if (complexThreshold > mainLoop_stepping) {
4216       sub(len, len, tmp2);                       // Remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4217     } else {
4218       sub(tmp, len, tmp2);                       // Remaining bytes for main loop.
4219       cmpdi(CCR0, tmp, mainLoop_stepping);
4220       blt(CCR0, L_tail);                         // For less than one mainloop_stepping left, do only tail processing
4221       mr(len, tmp);                              // remaining bytes for main loop (>=mainLoop_stepping is guaranteed).
4222     }
4223     update_byteLoop_crc32(crc, buf, tmp2, table, data, false);
4224   }
4225 
4226   srdi(tmp2, len, log_stepping);                 // #iterations for mainLoop
4227   andi(len, len, mainLoop_stepping-1);           // remaining bytes for tailLoop
4228   mtctr(tmp2);
4229 
4230 #ifdef VM_LITTLE_ENDIAN
4231   Register crc_rv = crc;
4232 #else
4233   Register crc_rv = tmp;                         // Load_reverse needs separate registers to work on.
4234                                                  // Occupies tmp, but frees up crc.
4235   load_reverse_32(crc_rv, crc);                  // Revert byte order because we are dealing with big-endian data.
4236   tmp = crc;
4237 #endif
4238 
4239   int reconstructTableOffset = crc32_table_columns(table, tc0, tc1, tc2, tc3);
4240 
4241   align(mainLoop_alignment);                     // Octoword-aligned loop address. Shows 2% improvement.
4242   BIND(L_mainLoop);
4243     update_1word_crc32(crc_rv, buf, table, 0, mainLoop_stepping, crc_rv, t1, t2, t3, tc0, tc1, tc2, tc3);
4244     bdnz(L_mainLoop);
4245 
4246 #ifndef VM_LITTLE_ENDIAN
4247   load_reverse_32(crc, crc_rv);                  // Revert byte order because we are dealing with big-endian data.
4248   tmp = crc_rv;                                  // Tmp uses it's original register again.
4249 #endif
4250 
4251   // Restore original table address for tailLoop.
4252   if (reconstructTableOffset != 0) {
4253     addi(table, table, -reconstructTableOffset);
4254   }
4255 
4256   // Process last few (<complexThreshold) bytes of buffer.
4257   BIND(L_tail);
4258   update_byteLoop_crc32(crc, buf, len, table, data, false);
4259 
4260   if (invertCRC) {
4261     nand(crc, crc, crc);                      // 1s complement of crc
4262   }
4263   BLOCK_COMMENT("} kernel_crc32_1word");
4264 }
4265 
4266 /**
4267  * @param crc   register containing existing CRC (32-bit)
4268  * @param buf   register pointing to input byte buffer (byte*)
4269  * @param len   register containing number of bytes
4270  * @param table register pointing to CRC table
4271  *
4272  * Uses R7_ARG5, R8_ARG6 as work registers.
4273  */
4274 void MacroAssembler::kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
4275                                         Register t0,  Register t1,  Register t2,  Register t3,
4276                                         bool invertCRC) {
4277   assert_different_registers(crc, buf, len, table);
4278 
4279   Register  data = t0;                   // Holds the current byte to be folded into crc.
4280 
4281   BLOCK_COMMENT("kernel_crc32_1byte {");
4282 
4283   if (invertCRC) {
4284     nand(crc, crc, crc);                      // 1s complement of crc
4285   }
4286 
4287   // Process all bytes in a single-byte loop.
4288   update_byteLoop_crc32(crc, buf, len, table, data, true);
4289 
4290   if (invertCRC) {
4291     nand(crc, crc, crc);                      // 1s complement of crc
4292   }
4293   BLOCK_COMMENT("} kernel_crc32_1byte");
4294 }
4295 
4296 /**
4297  * @param crc             register containing existing CRC (32-bit)
4298  * @param buf             register pointing to input byte buffer (byte*)
4299  * @param len             register containing number of bytes
4300  * @param table           register pointing to CRC table
4301  * @param constants       register pointing to CRC table for 128-bit aligned memory
4302  * @param barretConstants register pointing to table for barrett reduction
4303  * @param t0-t4           temp registers
4304  */
4305 void MacroAssembler::kernel_crc32_1word_vpmsum(Register crc, Register buf, Register len, Register table,
4306                                                Register constants, Register barretConstants,
4307                                                Register t0, Register t1, Register t2, Register t3, Register t4,
4308                                                bool invertCRC) {
4309   assert_different_registers(crc, buf, len, table);
4310 
4311   Label L_alignedHead, L_tail;
4312 
4313   BLOCK_COMMENT("kernel_crc32_1word_vpmsum {");
4314 
4315   // 1. ~c
4316   if (invertCRC) {
4317     nand(crc, crc, crc);                      // 1s complement of crc
4318   }
4319 
4320   // 2. use kernel_crc32_1word for short len
4321   clrldi(len, len, 32);
4322   cmpdi(CCR0, len, 512);
4323   blt(CCR0, L_tail);
4324 
4325   // 3. calculate from 0 to first aligned address
4326   const int alignment = 16;
4327   Register prealign = t0;
4328 
4329   andi_(prealign, buf, alignment - 1);
4330   beq(CCR0, L_alignedHead);
4331   subfic(prealign, prealign, alignment);
4332 
4333   subf(len, prealign, len);
4334   update_byteLoop_crc32(crc, buf, prealign, table, t2, false);
4335 
4336   // 4. calculate from first aligned address as far as possible
4337   BIND(L_alignedHead);
4338   kernel_crc32_1word_aligned(crc, buf, len, constants, barretConstants, t0, t1, t2, t3, t4);
4339 
4340   // 5. remaining bytes
4341   BIND(L_tail);
4342   Register tc0 = t4;
4343   Register tc1 = constants;
4344   Register tc2 = barretConstants;
4345   kernel_crc32_1word(crc, buf, len, table, t0, t1, t2, t3, tc0, tc1, tc2, table, false);
4346 
4347   // 6. ~c
4348   if (invertCRC) {
4349     nand(crc, crc, crc);                      // 1s complement of crc
4350   }
4351 
4352   BLOCK_COMMENT("} kernel_crc32_1word_vpmsum");
4353 }
4354 
4355 /**
4356  * @param crc             register containing existing CRC (32-bit)
4357  * @param buf             register pointing to input byte buffer (byte*)
4358  * @param len             register containing number of bytes (will get updated to remaining bytes)
4359  * @param constants       register pointing to CRC table for 128-bit aligned memory
4360  * @param barretConstants register pointing to table for barrett reduction
4361  * @param t0-t4           temp registers
4362  * Precondition: len should be >= 512. Otherwise, nothing will be done.
4363  */
4364 void MacroAssembler::kernel_crc32_1word_aligned(Register crc, Register buf, Register len,
4365     Register constants, Register barretConstants,
4366     Register t0, Register t1, Register t2, Register t3, Register t4) {
4367 
4368   // Save non-volatile vector registers (frameless).
4369   Register offset = t1;
4370   int offsetInt = 0;
4371   offsetInt -= 16; li(offset, offsetInt); stvx(VR20, offset, R1_SP);
4372   offsetInt -= 16; li(offset, offsetInt); stvx(VR21, offset, R1_SP);
4373   offsetInt -= 16; li(offset, offsetInt); stvx(VR22, offset, R1_SP);
4374   offsetInt -= 16; li(offset, offsetInt); stvx(VR23, offset, R1_SP);
4375   offsetInt -= 16; li(offset, offsetInt); stvx(VR24, offset, R1_SP);
4376   offsetInt -= 16; li(offset, offsetInt); stvx(VR25, offset, R1_SP);
4377 #ifndef VM_LITTLE_ENDIAN
4378   offsetInt -= 16; li(offset, offsetInt); stvx(VR26, offset, R1_SP);
4379 #endif
4380   offsetInt -= 8; std(R14, offsetInt, R1_SP);
4381   offsetInt -= 8; std(R15, offsetInt, R1_SP);
4382   offsetInt -= 8; std(R16, offsetInt, R1_SP);
4383   offsetInt -= 8; std(R17, offsetInt, R1_SP);
4384 
4385   // Implementation uses an inner loop which uses between 256 and 16 * unroll_factor
4386   // bytes per iteration. The basic scheme is:
4387   // lvx: load vector (Big Endian needs reversal)
4388   // vpmsumw: carry-less 32 bit multiplications with constant representing a large CRC shift
4389   // vxor: xor partial results together to get unroll_factor2 vectors
4390 
4391   // Outer loop performs the CRC shifts needed to combine the unroll_factor2 vectors.
4392 
4393   // Using 16 * unroll_factor / unroll_factor_2 bytes for constants.
4394   const int unroll_factor = 2048;
4395   const int unroll_factor2 = 8;
4396 
4397   // Support registers.
4398   Register offs[] = { noreg, t0, t1, t2, t3, t4, crc /* will live in VCRC */, R14 };
4399   Register num_bytes = R15,
4400            loop_count = R16,
4401            cur_const = R17;
4402   // Constant array for outer loop: unroll_factor2 - 1 registers,
4403   // Constant array for inner loop: unroll_factor / unroll_factor2 registers.
4404   VectorRegister consts0[] = { VR16, VR17, VR18, VR19, VR20, VR21, VR22 },
4405                  consts1[] = { VR23, VR24 };
4406   // Data register arrays: 2 arrays with unroll_factor2 registers.
4407   VectorRegister data0[] = { VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7 },
4408                  data1[] = { VR8, VR9, VR10, VR11, VR12, VR13, VR14, VR15 };
4409 
4410   VectorRegister VCRC = data0[0];
4411   VectorRegister Vc = VR25;
4412   VectorRegister swap_bytes = VR26; // Only for Big Endian.
4413 
4414   // We have at least 1 iteration (ensured by caller).
4415   Label L_outer_loop, L_inner_loop, L_last;
4416 
4417   // If supported set DSCR pre-fetch to deepest.
4418   if (VM_Version::has_mfdscr()) {
4419     load_const_optimized(t0, VM_Version::_dscr_val | 7);
4420     mtdscr(t0);
4421   }
4422 
4423   mtvrwz(VCRC, crc); // crc lives lives in VCRC, now
4424 
4425   for (int i = 1; i < unroll_factor2; ++i) {
4426     li(offs[i], 16 * i);
4427   }
4428 
4429   // Load consts for outer loop
4430   lvx(consts0[0], constants);
4431   for (int i = 1; i < unroll_factor2 - 1; ++i) {
4432     lvx(consts0[i], offs[i], constants);
4433   }
4434   addi(constants, constants, (unroll_factor2 - 1) * 16);
4435 
4436   load_const_optimized(num_bytes, 16 * unroll_factor);
4437   load_const_optimized(loop_count, unroll_factor / (2 * unroll_factor2) - 1); // One double-iteration peeled off.
4438 
4439   // Reuse data registers outside of the loop.
4440   VectorRegister Vtmp = data1[0];
4441   VectorRegister Vtmp2 = data1[1];
4442   VectorRegister zeroes = data1[2];
4443 
4444   vspltisb(Vtmp, 0);
4445   vsldoi(VCRC, Vtmp, VCRC, 8); // 96 bit zeroes, 32 bit CRC.
4446 
4447   // Load vector for vpermxor (to xor both 64 bit parts together)
4448   lvsl(Vtmp, buf);   // 000102030405060708090a0b0c0d0e0f
4449   vspltisb(Vc, 4);
4450   vsl(Vc, Vtmp, Vc); // 00102030405060708090a0b0c0d0e0f0
4451   xxspltd(Vc->to_vsr(), Vc->to_vsr(), 0);
4452   vor(Vc, Vtmp, Vc); // 001122334455667708192a3b4c5d6e7f
4453 
4454 #ifdef VM_LITTLE_ENDIAN
4455 #define BE_swap_bytes(x)
4456 #else
4457   vspltisb(Vtmp2, 0xf);
4458   vxor(swap_bytes, Vtmp, Vtmp2);
4459 #define BE_swap_bytes(x) vperm(x, x, x, swap_bytes)
4460 #endif
4461 
4462   cmpd(CCR0, len, num_bytes);
4463   blt(CCR0, L_last);
4464 
4465   // ********** Main loop start **********
4466   align(32);
4467   bind(L_outer_loop);
4468 
4469   // Begin of unrolled first iteration (no xor).
4470   lvx(data1[0], buf);
4471   mr(cur_const, constants);
4472   for (int i = 1; i < unroll_factor2 / 2; ++i) {
4473     lvx(data1[i], offs[i], buf);
4474   }
4475   vpermxor(VCRC, VCRC, VCRC, Vc); // xor both halves to 64 bit result.
4476   lvx(consts1[0], cur_const);
4477   mtctr(loop_count);
4478   for (int i = 0; i < unroll_factor2 / 2; ++i) {
4479     BE_swap_bytes(data1[i]);
4480     if (i == 0) { vxor(data1[0], data1[0], VCRC); } // xor in previous CRC.
4481     lvx(data1[i + unroll_factor2 / 2], offs[i + unroll_factor2 / 2], buf);
4482     vpmsumw(data0[i], data1[i], consts1[0]);
4483   }
4484   addi(buf, buf, 16 * unroll_factor2);
4485   subf(len, num_bytes, len);
4486   lvx(consts1[1], offs[1], cur_const);
4487   addi(cur_const, cur_const, 32);
4488   // Begin of unrolled second iteration (head).
4489   for (int i = 0; i < unroll_factor2 / 2; ++i) {
4490     BE_swap_bytes(data1[i + unroll_factor2 / 2]);
4491     if (i == 0) { lvx(data1[0], buf); } else { lvx(data1[i], offs[i], buf); }
4492     vpmsumw(data0[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2], consts1[0]);
4493   }
4494   for (int i = 0; i < unroll_factor2 / 2; ++i) {
4495     BE_swap_bytes(data1[i]);
4496     lvx(data1[i + unroll_factor2 / 2], offs[i + unroll_factor2 / 2], buf);
4497     vpmsumw(data1[i], data1[i], consts1[1]);
4498   }
4499   addi(buf, buf, 16 * unroll_factor2);
4500 
4501   // Generate most performance relevant code. Loads + half of the vpmsumw have been generated.
4502   // Double-iteration allows using the 2 constant registers alternatingly.
4503   align(32);
4504   bind(L_inner_loop);
4505   for (int j = 1; j < 3; ++j) { // j < unroll_factor / unroll_factor2 - 1 for complete unrolling.
4506     if (j & 1) {
4507       lvx(consts1[0], cur_const);
4508     } else {
4509       lvx(consts1[1], offs[1], cur_const);
4510       addi(cur_const, cur_const, 32);
4511     }
4512     for (int i = 0; i < unroll_factor2; ++i) {
4513       int idx = i + unroll_factor2 / 2, inc = 0; // For modulo-scheduled input.
4514       if (idx >= unroll_factor2) { idx -= unroll_factor2; inc = 1; }
4515       BE_swap_bytes(data1[idx]);
4516       vxor(data0[i], data0[i], data1[i]);
4517       if (i == 0) lvx(data1[0], buf); else lvx(data1[i], offs[i], buf);
4518       vpmsumw(data1[idx], data1[idx], consts1[(j + inc) & 1]);
4519     }
4520     addi(buf, buf, 16 * unroll_factor2);
4521   }
4522   bdnz(L_inner_loop);
4523 
4524   // Tail of last iteration (no loads).
4525   for (int i = 0; i < unroll_factor2 / 2; ++i) {
4526     BE_swap_bytes(data1[i + unroll_factor2 / 2]);
4527     vxor(data0[i], data0[i], data1[i]);
4528     vpmsumw(data1[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2], consts1[1]);
4529   }
4530   for (int i = 0; i < unroll_factor2 / 2; ++i) {
4531     vpmsumw(data0[i], data0[i], consts0[unroll_factor2 - 2 - i]); // First half of fixup shifts.
4532     vxor(data0[i + unroll_factor2 / 2], data0[i + unroll_factor2 / 2], data1[i + unroll_factor2 / 2]);
4533   }
4534 
4535   // Last data register is ok, other ones need fixup shift.
4536   for (int i = unroll_factor2 / 2; i < unroll_factor2 - 1; ++i) {
4537     vpmsumw(data0[i], data0[i], consts0[unroll_factor2 - 2 - i]);
4538   }
4539 
4540   // Combine to 128 bit result vector VCRC = data0[0].
4541   for (int i = 1; i < unroll_factor2; i<<=1) {
4542     for (int j = 0; j <= unroll_factor2 - 2*i; j+=2*i) {
4543       vxor(data0[j], data0[j], data0[j+i]);
4544     }
4545   }
4546   cmpd(CCR0, len, num_bytes);
4547   bge(CCR0, L_outer_loop);
4548 
4549   // Last chance with lower num_bytes.
4550   bind(L_last);
4551   srdi(loop_count, len, exact_log2(16 * 2 * unroll_factor2)); // Use double-iterations.
4552   add_const_optimized(constants, constants, 16 * (unroll_factor / unroll_factor2)); // Point behind last one.
4553   sldi(R0, loop_count, exact_log2(16 * 2)); // Bytes of constants to be used.
4554   clrrdi(num_bytes, len, exact_log2(16 * 2 * unroll_factor2));
4555   subf(constants, R0, constants); // Point to constant to be used first.
4556 
4557   addic_(loop_count, loop_count, -1); // One double-iteration peeled off.
4558   bgt(CCR0, L_outer_loop);
4559   // ********** Main loop end **********
4560 #undef BE_swap_bytes
4561 
4562   // Restore DSCR pre-fetch value.
4563   if (VM_Version::has_mfdscr()) {
4564     load_const_optimized(t0, VM_Version::_dscr_val);
4565     mtdscr(t0);
4566   }
4567 
4568   vspltisb(zeroes, 0);
4569 
4570   // Combine to 64 bit result.
4571   vpermxor(VCRC, VCRC, VCRC, Vc); // xor both halves to 64 bit result.
4572 
4573   // Reduce to 32 bit CRC: Remainder by multiply-high.
4574   lvx(Vtmp, barretConstants);
4575   vsldoi(Vtmp2, zeroes, VCRC, 12);  // Extract high 32 bit.
4576   vpmsumd(Vtmp2, Vtmp2, Vtmp);      // Multiply by inverse long poly.
4577   vsldoi(Vtmp2, zeroes, Vtmp2, 12); // Extract high 32 bit.
4578   vsldoi(Vtmp, zeroes, Vtmp, 8);
4579   vpmsumd(Vtmp2, Vtmp2, Vtmp);      // Multiply quotient by long poly.
4580   vxor(VCRC, VCRC, Vtmp2);          // Remainder fits into 32 bit.
4581 
4582   // Move result. len is already updated.
4583   vsldoi(VCRC, VCRC, zeroes, 8);
4584   mfvrd(crc, VCRC);
4585 
4586   // Restore non-volatile Vector registers (frameless).
4587   offsetInt = 0;
4588   offsetInt -= 16; li(offset, offsetInt); lvx(VR20, offset, R1_SP);
4589   offsetInt -= 16; li(offset, offsetInt); lvx(VR21, offset, R1_SP);
4590   offsetInt -= 16; li(offset, offsetInt); lvx(VR22, offset, R1_SP);
4591   offsetInt -= 16; li(offset, offsetInt); lvx(VR23, offset, R1_SP);
4592   offsetInt -= 16; li(offset, offsetInt); lvx(VR24, offset, R1_SP);
4593   offsetInt -= 16; li(offset, offsetInt); lvx(VR25, offset, R1_SP);
4594 #ifndef VM_LITTLE_ENDIAN
4595   offsetInt -= 16; li(offset, offsetInt); lvx(VR26, offset, R1_SP);
4596 #endif
4597   offsetInt -= 8;  ld(R14, offsetInt, R1_SP);
4598   offsetInt -= 8;  ld(R15, offsetInt, R1_SP);
4599   offsetInt -= 8;  ld(R16, offsetInt, R1_SP);
4600   offsetInt -= 8;  ld(R17, offsetInt, R1_SP);
4601 }
4602 
4603 void MacroAssembler::kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp, bool invertCRC) {
4604   assert_different_registers(crc, buf, /* len,  not used!! */ table, tmp);
4605 
4606   BLOCK_COMMENT("kernel_crc32_singleByte:");
4607   if (invertCRC) {
4608     nand(crc, crc, crc);                // 1s complement of crc
4609   }
4610 
4611   lbz(tmp, 0, buf);                     // Byte from buffer, zero-extended.
4612   update_byte_crc32(crc, tmp, table);
4613 
4614   if (invertCRC) {
4615     nand(crc, crc, crc);                // 1s complement of crc
4616   }
4617 }
4618 
4619 void MacroAssembler::kernel_crc32_singleByteReg(Register crc, Register val, Register table, bool invertCRC) {
4620   assert_different_registers(crc, val, table);
4621 
4622   BLOCK_COMMENT("kernel_crc32_singleByteReg:");
4623   if (invertCRC) {
4624     nand(crc, crc, crc);                // 1s complement of crc
4625   }
4626 
4627   update_byte_crc32(crc, val, table);
4628 
4629   if (invertCRC) {
4630     nand(crc, crc, crc);                // 1s complement of crc
4631   }
4632 }
4633 
4634 // dest_lo += src1 + src2
4635 // dest_hi += carry1 + carry2
4636 void MacroAssembler::add2_with_carry(Register dest_hi,
4637                                      Register dest_lo,
4638                                      Register src1, Register src2) {
4639   li(R0, 0);
4640   addc(dest_lo, dest_lo, src1);
4641   adde(dest_hi, dest_hi, R0);
4642   addc(dest_lo, dest_lo, src2);
4643   adde(dest_hi, dest_hi, R0);
4644 }
4645 
4646 // Multiply 64 bit by 64 bit first loop.
4647 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
4648                                            Register x_xstart,
4649                                            Register y, Register y_idx,
4650                                            Register z,
4651                                            Register carry,
4652                                            Register product_high, Register product,
4653                                            Register idx, Register kdx,
4654                                            Register tmp) {
4655   //  jlong carry, x[], y[], z[];
4656   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
4657   //    huge_128 product = y[idx] * x[xstart] + carry;
4658   //    z[kdx] = (jlong)product;
4659   //    carry  = (jlong)(product >>> 64);
4660   //  }
4661   //  z[xstart] = carry;
4662 
4663   Label L_first_loop, L_first_loop_exit;
4664   Label L_one_x, L_one_y, L_multiply;
4665 
4666   addic_(xstart, xstart, -1);
4667   blt(CCR0, L_one_x);   // Special case: length of x is 1.
4668 
4669   // Load next two integers of x.
4670   sldi(tmp, xstart, LogBytesPerInt);
4671   ldx(x_xstart, x, tmp);
4672 #ifdef VM_LITTLE_ENDIAN
4673   rldicl(x_xstart, x_xstart, 32, 0);
4674 #endif
4675 
4676   align(32, 16);
4677   bind(L_first_loop);
4678 
4679   cmpdi(CCR0, idx, 1);
4680   blt(CCR0, L_first_loop_exit);
4681   addi(idx, idx, -2);
4682   beq(CCR0, L_one_y);
4683 
4684   // Load next two integers of y.
4685   sldi(tmp, idx, LogBytesPerInt);
4686   ldx(y_idx, y, tmp);
4687 #ifdef VM_LITTLE_ENDIAN
4688   rldicl(y_idx, y_idx, 32, 0);
4689 #endif
4690 
4691 
4692   bind(L_multiply);
4693   multiply64(product_high, product, x_xstart, y_idx);
4694 
4695   li(tmp, 0);
4696   addc(product, product, carry);         // Add carry to result.
4697   adde(product_high, product_high, tmp); // Add carry of the last addition.
4698   addi(kdx, kdx, -2);
4699 
4700   // Store result.
4701 #ifdef VM_LITTLE_ENDIAN
4702   rldicl(product, product, 32, 0);
4703 #endif
4704   sldi(tmp, kdx, LogBytesPerInt);
4705   stdx(product, z, tmp);
4706   mr_if_needed(carry, product_high);
4707   b(L_first_loop);
4708 
4709 
4710   bind(L_one_y); // Load one 32 bit portion of y as (0,value).
4711 
4712   lwz(y_idx, 0, y);
4713   b(L_multiply);
4714 
4715 
4716   bind(L_one_x); // Load one 32 bit portion of x as (0,value).
4717 
4718   lwz(x_xstart, 0, x);
4719   b(L_first_loop);
4720 
4721   bind(L_first_loop_exit);
4722 }
4723 
4724 // Multiply 64 bit by 64 bit and add 128 bit.
4725 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
4726                                             Register z, Register yz_idx,
4727                                             Register idx, Register carry,
4728                                             Register product_high, Register product,
4729                                             Register tmp, int offset) {
4730 
4731   //  huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
4732   //  z[kdx] = (jlong)product;
4733 
4734   sldi(tmp, idx, LogBytesPerInt);
4735   if (offset) {
4736     addi(tmp, tmp, offset);
4737   }
4738   ldx(yz_idx, y, tmp);
4739 #ifdef VM_LITTLE_ENDIAN
4740   rldicl(yz_idx, yz_idx, 32, 0);
4741 #endif
4742 
4743   multiply64(product_high, product, x_xstart, yz_idx);
4744   ldx(yz_idx, z, tmp);
4745 #ifdef VM_LITTLE_ENDIAN
4746   rldicl(yz_idx, yz_idx, 32, 0);
4747 #endif
4748 
4749   add2_with_carry(product_high, product, carry, yz_idx);
4750 
4751   sldi(tmp, idx, LogBytesPerInt);
4752   if (offset) {
4753     addi(tmp, tmp, offset);
4754   }
4755 #ifdef VM_LITTLE_ENDIAN
4756   rldicl(product, product, 32, 0);
4757 #endif
4758   stdx(product, z, tmp);
4759 }
4760 
4761 // Multiply 128 bit by 128 bit. Unrolled inner loop.
4762 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
4763                                              Register y, Register z,
4764                                              Register yz_idx, Register idx, Register carry,
4765                                              Register product_high, Register product,
4766                                              Register carry2, Register tmp) {
4767 
4768   //  jlong carry, x[], y[], z[];
4769   //  int kdx = ystart+1;
4770   //  for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
4771   //    huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
4772   //    z[kdx+idx+1] = (jlong)product;
4773   //    jlong carry2 = (jlong)(product >>> 64);
4774   //    product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
4775   //    z[kdx+idx] = (jlong)product;
4776   //    carry = (jlong)(product >>> 64);
4777   //  }
4778   //  idx += 2;
4779   //  if (idx > 0) {
4780   //    product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
4781   //    z[kdx+idx] = (jlong)product;
4782   //    carry = (jlong)(product >>> 64);
4783   //  }
4784 
4785   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
4786   const Register jdx = R0;
4787 
4788   // Scale the index.
4789   srdi_(jdx, idx, 2);
4790   beq(CCR0, L_third_loop_exit);
4791   mtctr(jdx);
4792 
4793   align(32, 16);
4794   bind(L_third_loop);
4795 
4796   addi(idx, idx, -4);
4797 
4798   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 8);
4799   mr_if_needed(carry2, product_high);
4800 
4801   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product_high, product, tmp, 0);
4802   mr_if_needed(carry, product_high);
4803   bdnz(L_third_loop);
4804 
4805   bind(L_third_loop_exit);  // Handle any left-over operand parts.
4806 
4807   andi_(idx, idx, 0x3);
4808   beq(CCR0, L_post_third_loop_done);
4809 
4810   Label L_check_1;
4811 
4812   addic_(idx, idx, -2);
4813   blt(CCR0, L_check_1);
4814 
4815   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product_high, product, tmp, 0);
4816   mr_if_needed(carry, product_high);
4817 
4818   bind(L_check_1);
4819 
4820   addi(idx, idx, 0x2);
4821   andi_(idx, idx, 0x1);
4822   addic_(idx, idx, -1);
4823   blt(CCR0, L_post_third_loop_done);
4824 
4825   sldi(tmp, idx, LogBytesPerInt);
4826   lwzx(yz_idx, y, tmp);
4827   multiply64(product_high, product, x_xstart, yz_idx);
4828   lwzx(yz_idx, z, tmp);
4829 
4830   add2_with_carry(product_high, product, yz_idx, carry);
4831 
4832   sldi(tmp, idx, LogBytesPerInt);
4833   stwx(product, z, tmp);
4834   srdi(product, product, 32);
4835 
4836   sldi(product_high, product_high, 32);
4837   orr(product, product, product_high);
4838   mr_if_needed(carry, product);
4839 
4840   bind(L_post_third_loop_done);
4841 }   // multiply_128_x_128_loop
4842 
4843 void MacroAssembler::muladd(Register out, Register in,
4844                             Register offset, Register len, Register k,
4845                             Register tmp1, Register tmp2, Register carry) {
4846 
4847   // Labels
4848   Label LOOP, SKIP;
4849 
4850   // Make sure length is positive.
4851   cmpdi  (CCR0,    len,     0);
4852 
4853   // Prepare variables
4854   subi   (offset,  offset,  4);
4855   li     (carry,   0);
4856   ble    (CCR0,    SKIP);
4857 
4858   mtctr  (len);
4859   subi   (len,     len,     1    );
4860   sldi   (len,     len,     2    );
4861 
4862   // Main loop
4863   bind(LOOP);
4864   lwzx   (tmp1,    len,     in   );
4865   lwzx   (tmp2,    offset,  out  );
4866   mulld  (tmp1,    tmp1,    k    );
4867   add    (tmp2,    carry,   tmp2 );
4868   add    (tmp2,    tmp1,    tmp2 );
4869   stwx   (tmp2,    offset,  out  );
4870   srdi   (carry,   tmp2,    32   );
4871   subi   (offset,  offset,  4    );
4872   subi   (len,     len,     4    );
4873   bdnz   (LOOP);
4874   bind(SKIP);
4875 }
4876 
4877 void MacroAssembler::multiply_to_len(Register x, Register xlen,
4878                                      Register y, Register ylen,
4879                                      Register z, Register zlen,
4880                                      Register tmp1, Register tmp2,
4881                                      Register tmp3, Register tmp4,
4882                                      Register tmp5, Register tmp6,
4883                                      Register tmp7, Register tmp8,
4884                                      Register tmp9, Register tmp10,
4885                                      Register tmp11, Register tmp12,
4886                                      Register tmp13) {
4887 
4888   ShortBranchVerifier sbv(this);
4889 
4890   assert_different_registers(x, xlen, y, ylen, z, zlen,
4891                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
4892   assert_different_registers(x, xlen, y, ylen, z, zlen,
4893                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp7);
4894   assert_different_registers(x, xlen, y, ylen, z, zlen,
4895                              tmp1, tmp2, tmp3, tmp4, tmp5, tmp8);
4896 
4897   const Register idx = tmp1;
4898   const Register kdx = tmp2;
4899   const Register xstart = tmp3;
4900 
4901   const Register y_idx = tmp4;
4902   const Register carry = tmp5;
4903   const Register product = tmp6;
4904   const Register product_high = tmp7;
4905   const Register x_xstart = tmp8;
4906   const Register tmp = tmp9;
4907 
4908   // First Loop.
4909   //
4910   //  final static long LONG_MASK = 0xffffffffL;
4911   //  int xstart = xlen - 1;
4912   //  int ystart = ylen - 1;
4913   //  long carry = 0;
4914   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
4915   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
4916   //    z[kdx] = (int)product;
4917   //    carry = product >>> 32;
4918   //  }
4919   //  z[xstart] = (int)carry;
4920 
4921   mr_if_needed(idx, ylen);        // idx = ylen
4922   mr_if_needed(kdx, zlen);        // kdx = xlen + ylen
4923   li(carry, 0);                   // carry = 0
4924 
4925   Label L_done;
4926 
4927   addic_(xstart, xlen, -1);
4928   blt(CCR0, L_done);
4929 
4930   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z,
4931                         carry, product_high, product, idx, kdx, tmp);
4932 
4933   Label L_second_loop;
4934 
4935   cmpdi(CCR0, kdx, 0);
4936   beq(CCR0, L_second_loop);
4937 
4938   Label L_carry;
4939 
4940   addic_(kdx, kdx, -1);
4941   beq(CCR0, L_carry);
4942 
4943   // Store lower 32 bits of carry.
4944   sldi(tmp, kdx, LogBytesPerInt);
4945   stwx(carry, z, tmp);
4946   srdi(carry, carry, 32);
4947   addi(kdx, kdx, -1);
4948 
4949 
4950   bind(L_carry);
4951 
4952   // Store upper 32 bits of carry.
4953   sldi(tmp, kdx, LogBytesPerInt);
4954   stwx(carry, z, tmp);
4955 
4956   // Second and third (nested) loops.
4957   //
4958   //  for (int i = xstart-1; i >= 0; i--) { // Second loop
4959   //    carry = 0;
4960   //    for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
4961   //      long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
4962   //                     (z[k] & LONG_MASK) + carry;
4963   //      z[k] = (int)product;
4964   //      carry = product >>> 32;
4965   //    }
4966   //    z[i] = (int)carry;
4967   //  }
4968   //
4969   //  i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
4970 
4971   bind(L_second_loop);
4972 
4973   li(carry, 0);                   // carry = 0;
4974 
4975   addic_(xstart, xstart, -1);     // i = xstart-1;
4976   blt(CCR0, L_done);
4977 
4978   Register zsave = tmp10;
4979 
4980   mr(zsave, z);
4981 
4982 
4983   Label L_last_x;
4984 
4985   sldi(tmp, xstart, LogBytesPerInt);
4986   add(z, z, tmp);                 // z = z + k - j
4987   addi(z, z, 4);
4988   addic_(xstart, xstart, -1);     // i = xstart-1;
4989   blt(CCR0, L_last_x);
4990 
4991   sldi(tmp, xstart, LogBytesPerInt);
4992   ldx(x_xstart, x, tmp);
4993 #ifdef VM_LITTLE_ENDIAN
4994   rldicl(x_xstart, x_xstart, 32, 0);
4995 #endif
4996 
4997 
4998   Label L_third_loop_prologue;
4999 
5000   bind(L_third_loop_prologue);
5001 
5002   Register xsave = tmp11;
5003   Register xlensave = tmp12;
5004   Register ylensave = tmp13;
5005 
5006   mr(xsave, x);
5007   mr(xlensave, xstart);
5008   mr(ylensave, ylen);
5009 
5010 
5011   multiply_128_x_128_loop(x_xstart, y, z, y_idx, ylen,
5012                           carry, product_high, product, x, tmp);
5013 
5014   mr(z, zsave);
5015   mr(x, xsave);
5016   mr(xlen, xlensave);   // This is the decrement of the loop counter!
5017   mr(ylen, ylensave);
5018 
5019   addi(tmp3, xlen, 1);
5020   sldi(tmp, tmp3, LogBytesPerInt);
5021   stwx(carry, z, tmp);
5022   addic_(tmp3, tmp3, -1);
5023   blt(CCR0, L_done);
5024 
5025   srdi(carry, carry, 32);
5026   sldi(tmp, tmp3, LogBytesPerInt);
5027   stwx(carry, z, tmp);
5028   b(L_second_loop);
5029 
5030   // Next infrequent code is moved outside loops.
5031   bind(L_last_x);
5032 
5033   lwz(x_xstart, 0, x);
5034   b(L_third_loop_prologue);
5035 
5036   bind(L_done);
5037 }   // multiply_to_len
5038 
5039 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
5040 #ifdef ASSERT
5041   Label ok;
5042   if (check_equal) {
5043     beq(CCR0, ok);
5044   } else {
5045     bne(CCR0, ok);
5046   }
5047   stop(msg, id);
5048   bind(ok);
5049 #endif
5050 }
5051 
5052 void MacroAssembler::asm_assert_mems_zero(bool check_equal, int size, int mem_offset,
5053                                           Register mem_base, const char* msg, int id) {
5054 #ifdef ASSERT
5055   switch (size) {
5056     case 4:
5057       lwz(R0, mem_offset, mem_base);
5058       cmpwi(CCR0, R0, 0);
5059       break;
5060     case 8:
5061       ld(R0, mem_offset, mem_base);
5062       cmpdi(CCR0, R0, 0);
5063       break;
5064     default:
5065       ShouldNotReachHere();
5066   }
5067   asm_assert(check_equal, msg, id);
5068 #endif // ASSERT
5069 }
5070 
5071 void MacroAssembler::verify_thread() {
5072   if (VerifyThread) {
5073     unimplemented("'VerifyThread' currently not implemented on PPC");
5074   }
5075 }
5076 
5077 // READ: oop. KILL: R0. Volatile floats perhaps.
5078 void MacroAssembler::verify_oop(Register oop, const char* msg) {
5079   if (!VerifyOops) {
5080     return;
5081   }
5082 
5083   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
5084   const Register tmp = R11; // Will be preserved.
5085   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
5086   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
5087 
5088   mr_if_needed(R4_ARG2, oop);
5089   save_LR_CR(tmp); // save in old frame
5090   push_frame_reg_args(nbytes_save, tmp);
5091   // load FunctionDescriptor** / entry_address *
5092   load_const_optimized(tmp, fd, R0);
5093   // load FunctionDescriptor* / entry_address
5094   ld(tmp, 0, tmp);
5095   load_const_optimized(R3_ARG1, (address)msg, R0);
5096   // Call destination for its side effect.
5097   call_c(tmp);
5098 
5099   pop_frame();
5100   restore_LR_CR(tmp);
5101   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
5102 }
5103 
5104 void MacroAssembler::verify_oop_addr(RegisterOrConstant offs, Register base, const char* msg) {
5105   if (!VerifyOops) {
5106     return;
5107   }
5108 
5109   address/* FunctionDescriptor** */fd = StubRoutines::verify_oop_subroutine_entry_address();
5110   const Register tmp = R11; // Will be preserved.
5111   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
5112   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
5113 
5114   ld(R4_ARG2, offs, base);
5115   save_LR_CR(tmp); // save in old frame
5116   push_frame_reg_args(nbytes_save, tmp);
5117   // load FunctionDescriptor** / entry_address *
5118   load_const_optimized(tmp, fd, R0);
5119   // load FunctionDescriptor* / entry_address
5120   ld(tmp, 0, tmp);
5121   load_const_optimized(R3_ARG1, (address)msg, R0);
5122   // Call destination for its side effect.
5123   call_c(tmp);
5124 
5125   pop_frame();
5126   restore_LR_CR(tmp);
5127   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
5128 }
5129 
5130 const char* stop_types[] = {
5131   "stop",
5132   "untested",
5133   "unimplemented",
5134   "shouldnotreachhere"
5135 };
5136 
5137 static void stop_on_request(int tp, const char* msg) {
5138   tty->print("PPC assembly code requires stop: (%s) %s\n", stop_types[tp%/*stop_end*/4], msg);
5139   guarantee(false, "PPC assembly code requires stop: %s", msg);
5140 }
5141 
5142 // Call a C-function that prints output.
5143 void MacroAssembler::stop(int type, const char* msg, int id) {
5144 #ifndef PRODUCT
5145   block_comment(err_msg("stop: %s %s {", stop_types[type%stop_end], msg));
5146 #else
5147   block_comment("stop {");
5148 #endif
5149 
5150   // setup arguments
5151   load_const_optimized(R3_ARG1, type);
5152   load_const_optimized(R4_ARG2, (void *)msg, /*tmp=*/R0);
5153   call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), R3_ARG1, R4_ARG2);
5154   illtrap();
5155   emit_int32(id);
5156   block_comment("} stop;");
5157 }
5158 
5159 #ifndef PRODUCT
5160 // Write pattern 0x0101010101010101 in memory region [low-before, high+after].
5161 // Val, addr are temp registers.
5162 // If low == addr, addr is killed.
5163 // High is preserved.
5164 void MacroAssembler::zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) {
5165   if (!ZapMemory) return;
5166 
5167   assert_different_registers(low, val);
5168 
5169   BLOCK_COMMENT("zap memory region {");
5170   load_const_optimized(val, 0x0101010101010101);
5171   int size = before + after;
5172   if (low == high && size < 5 && size > 0) {
5173     int offset = -before*BytesPerWord;
5174     for (int i = 0; i < size; ++i) {
5175       std(val, offset, low);
5176       offset += (1*BytesPerWord);
5177     }
5178   } else {
5179     addi(addr, low, -before*BytesPerWord);
5180     assert_different_registers(high, val);
5181     if (after) addi(high, high, after * BytesPerWord);
5182     Label loop;
5183     bind(loop);
5184     std(val, 0, addr);
5185     addi(addr, addr, 8);
5186     cmpd(CCR6, addr, high);
5187     ble(CCR6, loop);
5188     if (after) addi(high, high, -after * BytesPerWord);  // Correct back to old value.
5189   }
5190   BLOCK_COMMENT("} zap memory region");
5191 }
5192 
5193 #endif // !PRODUCT
5194 
5195 void SkipIfEqualZero::skip_to_label_if_equal_zero(MacroAssembler* masm, Register temp,
5196                                                   const bool* flag_addr, Label& label) {
5197   int simm16_offset = masm->load_const_optimized(temp, (address)flag_addr, R0, true);
5198   assert(sizeof(bool) == 1, "PowerPC ABI");
5199   masm->lbz(temp, simm16_offset, temp);
5200   masm->cmpwi(CCR0, temp, 0);
5201   masm->beq(CCR0, label);
5202 }
5203 
5204 SkipIfEqualZero::SkipIfEqualZero(MacroAssembler* masm, Register temp, const bool* flag_addr) : _masm(masm), _label() {
5205   skip_to_label_if_equal_zero(masm, temp, flag_addr, _label);
5206 }
5207 
5208 SkipIfEqualZero::~SkipIfEqualZero() {
5209   _masm->bind(_label);
5210 }