/* * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "runtime/arguments.hpp" #include "runtime/flags/jvmFlag.hpp" #include "runtime/flags/jvmFlagConstraintList.hpp" #include "runtime/flags/jvmFlagWriteableList.hpp" #include "runtime/flags/jvmFlagRangeList.hpp" #include "runtime/globals_extension.hpp" #include "trace/tracing.hpp" #include "utilities/defaultStream.hpp" #include "utilities/stringUtils.hpp" #define DEFAULT_RANGE_STR_CHUNK_SIZE 64 static char* create_range_str(const char *fmt, ...) { static size_t string_length = DEFAULT_RANGE_STR_CHUNK_SIZE; static char* range_string = NEW_C_HEAP_ARRAY(char, string_length, mtLogging); int size_needed = 0; do { va_list args; va_start(args, fmt); size_needed = jio_vsnprintf(range_string, string_length, fmt, args); va_end(args); if (size_needed < 0) { string_length += DEFAULT_RANGE_STR_CHUNK_SIZE; range_string = REALLOC_C_HEAP_ARRAY(char, range_string, string_length, mtLogging); guarantee(range_string != NULL, "create_range_str string should not be NULL"); } } while (size_needed < 0); return range_string; } const char* JVMFlag::get_int_default_range_str() { return create_range_str("[ " INT32_FORMAT_W(-25) " ... " INT32_FORMAT_W(25) " ]", INT_MIN, INT_MAX); } const char* JVMFlag::get_uint_default_range_str() { return create_range_str("[ " UINT32_FORMAT_W(-25) " ... " UINT32_FORMAT_W(25) " ]", 0, UINT_MAX); } const char* JVMFlag::get_intx_default_range_str() { return create_range_str("[ " INTX_FORMAT_W(-25) " ... " INTX_FORMAT_W(25) " ]", min_intx, max_intx); } const char* JVMFlag::get_uintx_default_range_str() { return create_range_str("[ " UINTX_FORMAT_W(-25) " ... " UINTX_FORMAT_W(25) " ]", 0, max_uintx); } const char* JVMFlag::get_uint64_t_default_range_str() { return create_range_str("[ " UINT64_FORMAT_W(-25) " ... " UINT64_FORMAT_W(25) " ]", 0, uint64_t(max_juint)); } const char* JVMFlag::get_size_t_default_range_str() { return create_range_str("[ " SIZE_FORMAT_W(-25) " ... " SIZE_FORMAT_W(25) " ]", 0, SIZE_MAX); } const char* JVMFlag::get_double_default_range_str() { return create_range_str("[ %-25.3f ... %25.3f ]", DBL_MIN, DBL_MAX); } static bool is_product_build() { #ifdef PRODUCT return true; #else return false; #endif } JVMFlag::Error JVMFlag::check_writable(bool changed) { if (is_constant_in_binary()) { fatal("flag is constant: %s", _name); } JVMFlag::Error error = JVMFlag::SUCCESS; if (changed) { JVMFlagWriteable* writeable = JVMFlagWriteableList::find(_name); if (writeable) { if (writeable->is_writeable() == false) { switch (writeable->type()) { case JVMFlagWriteable::Once: error = JVMFlag::SET_ONLY_ONCE; jio_fprintf(defaultStream::error_stream(), "Error: %s may not be set more than once\n", _name); break; case JVMFlagWriteable::CommandLineOnly: error = JVMFlag::COMMAND_LINE_ONLY; jio_fprintf(defaultStream::error_stream(), "Error: %s may be modified only from commad line\n", _name); break; default: ShouldNotReachHere(); break; } } writeable->mark_once(); } } return error; } bool JVMFlag::is_bool() const { return strcmp(_type, "bool") == 0; } bool JVMFlag::get_bool() const { return *((bool*) _addr); } JVMFlag::Error JVMFlag::set_bool(bool value) { JVMFlag::Error error = check_writable(value!=get_bool()); if (error == JVMFlag::SUCCESS) { *((bool*) _addr) = value; } return error; } bool JVMFlag::is_int() const { return strcmp(_type, "int") == 0; } int JVMFlag::get_int() const { return *((int*) _addr); } JVMFlag::Error JVMFlag::set_int(int value) { JVMFlag::Error error = check_writable(value!=get_int()); if (error == JVMFlag::SUCCESS) { *((int*) _addr) = value; } return error; } bool JVMFlag::is_uint() const { return strcmp(_type, "uint") == 0; } uint JVMFlag::get_uint() const { return *((uint*) _addr); } JVMFlag::Error JVMFlag::set_uint(uint value) { JVMFlag::Error error = check_writable(value!=get_uint()); if (error == JVMFlag::SUCCESS) { *((uint*) _addr) = value; } return error; } bool JVMFlag::is_intx() const { return strcmp(_type, "intx") == 0; } intx JVMFlag::get_intx() const { return *((intx*) _addr); } JVMFlag::Error JVMFlag::set_intx(intx value) { JVMFlag::Error error = check_writable(value!=get_intx()); if (error == JVMFlag::SUCCESS) { *((intx*) _addr) = value; } return error; } bool JVMFlag::is_uintx() const { return strcmp(_type, "uintx") == 0; } uintx JVMFlag::get_uintx() const { return *((uintx*) _addr); } JVMFlag::Error JVMFlag::set_uintx(uintx value) { JVMFlag::Error error = check_writable(value!=get_uintx()); if (error == JVMFlag::SUCCESS) { *((uintx*) _addr) = value; } return error; } bool JVMFlag::is_uint64_t() const { return strcmp(_type, "uint64_t") == 0; } uint64_t JVMFlag::get_uint64_t() const { return *((uint64_t*) _addr); } JVMFlag::Error JVMFlag::set_uint64_t(uint64_t value) { JVMFlag::Error error = check_writable(value!=get_uint64_t()); if (error == JVMFlag::SUCCESS) { *((uint64_t*) _addr) = value; } return error; } bool JVMFlag::is_size_t() const { return strcmp(_type, "size_t") == 0; } size_t JVMFlag::get_size_t() const { return *((size_t*) _addr); } JVMFlag::Error JVMFlag::set_size_t(size_t value) { JVMFlag::Error error = check_writable(value!=get_size_t()); if (error == JVMFlag::SUCCESS) { *((size_t*) _addr) = value; } return error; } bool JVMFlag::is_double() const { return strcmp(_type, "double") == 0; } double JVMFlag::get_double() const { return *((double*) _addr); } JVMFlag::Error JVMFlag::set_double(double value) { JVMFlag::Error error = check_writable(value!=get_double()); if (error == JVMFlag::SUCCESS) { *((double*) _addr) = value; } return error; } bool JVMFlag::is_ccstr() const { return strcmp(_type, "ccstr") == 0 || strcmp(_type, "ccstrlist") == 0; } bool JVMFlag::ccstr_accumulates() const { return strcmp(_type, "ccstrlist") == 0; } ccstr JVMFlag::get_ccstr() const { return *((ccstr*) _addr); } JVMFlag::Error JVMFlag::set_ccstr(ccstr value) { JVMFlag::Error error = check_writable(value!=get_ccstr()); if (error == JVMFlag::SUCCESS) { *((ccstr*) _addr) = value; } return error; } JVMFlag::Flags JVMFlag::get_origin() { return Flags(_flags & VALUE_ORIGIN_MASK); } void JVMFlag::set_origin(Flags origin) { assert((origin & VALUE_ORIGIN_MASK) == origin, "sanity"); Flags new_origin = Flags((origin == COMMAND_LINE) ? Flags(origin | ORIG_COMMAND_LINE) : origin); _flags = Flags((_flags & ~VALUE_ORIGIN_MASK) | new_origin); } bool JVMFlag::is_default() { return (get_origin() == DEFAULT); } bool JVMFlag::is_ergonomic() { return (get_origin() == ERGONOMIC); } bool JVMFlag::is_command_line() { return (_flags & ORIG_COMMAND_LINE) != 0; } void JVMFlag::set_command_line() { _flags = Flags(_flags | ORIG_COMMAND_LINE); } bool JVMFlag::is_product() const { return (_flags & KIND_PRODUCT) != 0; } bool JVMFlag::is_manageable() const { return (_flags & KIND_MANAGEABLE) != 0; } bool JVMFlag::is_diagnostic() const { return (_flags & KIND_DIAGNOSTIC) != 0; } bool JVMFlag::is_experimental() const { return (_flags & KIND_EXPERIMENTAL) != 0; } bool JVMFlag::is_notproduct() const { return (_flags & KIND_NOT_PRODUCT) != 0; } bool JVMFlag::is_develop() const { return (_flags & KIND_DEVELOP) != 0; } bool JVMFlag::is_read_write() const { return (_flags & KIND_READ_WRITE) != 0; } bool JVMFlag::is_commercial() const { return (_flags & KIND_COMMERCIAL) != 0; } /** * Returns if this flag is a constant in the binary. Right now this is * true for notproduct and develop flags in product builds. */ bool JVMFlag::is_constant_in_binary() const { #ifdef PRODUCT return is_notproduct() || is_develop(); #else return false; #endif } bool JVMFlag::is_unlocker() const { return strcmp(_name, "UnlockDiagnosticVMOptions") == 0 || strcmp(_name, "UnlockExperimentalVMOptions") == 0 || is_unlocker_ext(); } bool JVMFlag::is_unlocked() const { if (is_diagnostic()) { return UnlockDiagnosticVMOptions; } if (is_experimental()) { return UnlockExperimentalVMOptions; } return is_unlocked_ext(); } void JVMFlag::clear_diagnostic() { assert(is_diagnostic(), "sanity"); _flags = Flags(_flags & ~KIND_DIAGNOSTIC); assert(!is_diagnostic(), "sanity"); } // Get custom message for this locked flag, or NULL if // none is available. Returns message type produced. JVMFlag::MsgType JVMFlag::get_locked_message(char* buf, int buflen) const { buf[0] = '\0'; if (is_diagnostic() && !is_unlocked()) { jio_snprintf(buf, buflen, "Error: VM option '%s' is diagnostic and must be enabled via -XX:+UnlockDiagnosticVMOptions.\n" "Error: The unlock option must precede '%s'.\n", _name, _name); return JVMFlag::DIAGNOSTIC_FLAG_BUT_LOCKED; } if (is_experimental() && !is_unlocked()) { jio_snprintf(buf, buflen, "Error: VM option '%s' is experimental and must be enabled via -XX:+UnlockExperimentalVMOptions.\n" "Error: The unlock option must precede '%s'.\n", _name, _name); return JVMFlag::EXPERIMENTAL_FLAG_BUT_LOCKED; } if (is_develop() && is_product_build()) { jio_snprintf(buf, buflen, "Error: VM option '%s' is develop and is available only in debug version of VM.\n", _name); return JVMFlag::DEVELOPER_FLAG_BUT_PRODUCT_BUILD; } if (is_notproduct() && is_product_build()) { jio_snprintf(buf, buflen, "Error: VM option '%s' is notproduct and is available only in debug version of VM.\n", _name); return JVMFlag::NOTPRODUCT_FLAG_BUT_PRODUCT_BUILD; } return get_locked_message_ext(buf, buflen); } bool JVMFlag::is_writeable() const { return is_manageable() || (is_product() && is_read_write()) || is_writeable_ext(); } // All flags except "manageable" are assumed to be internal flags. // Long term, we need to define a mechanism to specify which flags // are external/stable and change this function accordingly. bool JVMFlag::is_external() const { return is_manageable() || is_external_ext(); } // Helper function for JVMFlag::print_on(). // Fills current line up to requested position. // Should the current position already be past the requested position, // one separator blank is enforced. void fill_to_pos(outputStream* st, unsigned int req_pos) { if ((unsigned int)st->position() < req_pos) { st->fill_to(req_pos); // need to fill with blanks to reach req_pos } else { st->print(" "); // enforce blank separation. Previous field too long. } } void JVMFlag::print_on(outputStream* st, bool withComments, bool printRanges) { // Don't print notproduct and develop flags in a product build. if (is_constant_in_binary()) { return; } if (!printRanges) { // The command line options -XX:+PrintFlags* cause this function to be called // for each existing flag to print information pertinent to this flag. The data // is displayed in columnar form, with the following layout: // col1 - data type, right-justified // col2 - name, left-justified // col3 - ' =' double-char, leading space to align with possible '+=' // col4 - value left-justified // col5 - kind right-justified // col6 - origin left-justified // col7 - comments left-justified // // The column widths are fixed. They are defined such that, for most cases, // an eye-pleasing tabular output is created. // // Sample output: // bool CMSScavengeBeforeRemark = false {product} {default} // uintx CMSScheduleRemarkEdenPenetration = 50 {product} {default} // size_t CMSScheduleRemarkEdenSizeThreshold = 2097152 {product} {default} // uintx CMSScheduleRemarkSamplingRatio = 5 {product} {default} // double CMSSmallCoalSurplusPercent = 1.050000 {product} {default} // ccstr CompileCommandFile = MyFile.cmd {product} {command line} // ccstrlist CompileOnly = Method1 // CompileOnly += Method2 {product} {command line} // | | | | | | | // | | | | | | +-- col7 // | | | | | +-- col6 // | | | | +-- col5 // | | | +-- col4 // | | +-- col3 // | +-- col2 // +-- col1 const unsigned int col_spacing = 1; const unsigned int col1_pos = 0; const unsigned int col1_width = 9; const unsigned int col2_pos = col1_pos + col1_width + col_spacing; const unsigned int col2_width = 39; const unsigned int col3_pos = col2_pos + col2_width + col_spacing; const unsigned int col3_width = 2; const unsigned int col4_pos = col3_pos + col3_width + col_spacing; const unsigned int col4_width = 30; const unsigned int col5_pos = col4_pos + col4_width + col_spacing; const unsigned int col5_width = 20; const unsigned int col6_pos = col5_pos + col5_width + col_spacing; const unsigned int col6_width = 15; const unsigned int col7_pos = col6_pos + col6_width + col_spacing; const unsigned int col7_width = 1; st->fill_to(col1_pos); st->print("%*s", col1_width, _type); // right-justified, therefore width is required. fill_to_pos(st, col2_pos); st->print("%s", _name); fill_to_pos(st, col3_pos); st->print(" ="); // use " =" for proper alignment with multiline ccstr output. fill_to_pos(st, col4_pos); if (is_bool()) { st->print("%s", get_bool() ? "true" : "false"); } else if (is_int()) { st->print("%d", get_int()); } else if (is_uint()) { st->print("%u", get_uint()); } else if (is_intx()) { st->print(INTX_FORMAT, get_intx()); } else if (is_uintx()) { st->print(UINTX_FORMAT, get_uintx()); } else if (is_uint64_t()) { st->print(UINT64_FORMAT, get_uint64_t()); } else if (is_size_t()) { st->print(SIZE_FORMAT, get_size_t()); } else if (is_double()) { st->print("%f", get_double()); } else if (is_ccstr()) { // Honor characters in ccstr: print multiple lines. const char* cp = get_ccstr(); if (cp != NULL) { const char* eol; while ((eol = strchr(cp, '\n')) != NULL) { size_t llen = pointer_delta(eol, cp, sizeof(char)); st->print("%.*s", (int)llen, cp); st->cr(); cp = eol+1; fill_to_pos(st, col2_pos); st->print("%s", _name); fill_to_pos(st, col3_pos); st->print("+="); fill_to_pos(st, col4_pos); } st->print("%s", cp); } } else { st->print("unhandled type %s", _type); st->cr(); return; } fill_to_pos(st, col5_pos); print_kind(st, col5_width); fill_to_pos(st, col6_pos); print_origin(st, col6_width); #ifndef PRODUCT if (withComments) { fill_to_pos(st, col7_pos); st->print("%s", _doc); } #endif st->cr(); } else if (!is_bool() && !is_ccstr()) { // The command line options -XX:+PrintFlags* cause this function to be called // for each existing flag to print information pertinent to this flag. The data // is displayed in columnar form, with the following layout: // col1 - data type, right-justified // col2 - name, left-justified // col4 - range [ min ... max] // col5 - kind right-justified // col6 - origin left-justified // col7 - comments left-justified // // The column widths are fixed. They are defined such that, for most cases, // an eye-pleasing tabular output is created. // // Sample output: // intx MinPassesBeforeFlush [ 0 ... 9223372036854775807 ] {diagnostic} {default} // uintx MinRAMFraction [ 1 ... 18446744073709551615 ] {product} {default} // double MinRAMPercentage [ 0.000 ... 100.000 ] {product} {default} // uintx MinSurvivorRatio [ 3 ... 18446744073709551615 ] {product} {default} // size_t MinTLABSize [ 1 ... 9223372036854775807 ] {product} {default} // intx MonitorBound [ 0 ... 2147483647 ] {product} {default} // | | | | | | // | | | | | +-- col7 // | | | | +-- col6 // | | | +-- col5 // | | +-- col4 // | +-- col2 // +-- col1 const unsigned int col_spacing = 1; const unsigned int col1_pos = 0; const unsigned int col1_width = 9; const unsigned int col2_pos = col1_pos + col1_width + col_spacing; const unsigned int col2_width = 49; const unsigned int col3_pos = col2_pos + col2_width + col_spacing; const unsigned int col3_width = 0; const unsigned int col4_pos = col3_pos + col3_width + col_spacing; const unsigned int col4_width = 60; const unsigned int col5_pos = col4_pos + col4_width + col_spacing; const unsigned int col5_width = 35; const unsigned int col6_pos = col5_pos + col5_width + col_spacing; const unsigned int col6_width = 15; const unsigned int col7_pos = col6_pos + col6_width + col_spacing; const unsigned int col7_width = 1; st->fill_to(col1_pos); st->print("%*s", col1_width, _type); // right-justified, therefore width is required. fill_to_pos(st, col2_pos); st->print("%s", _name); fill_to_pos(st, col4_pos); RangeStrFunc func = NULL; if (is_int()) { func = JVMFlag::get_int_default_range_str; } else if (is_uint()) { func = JVMFlag::get_uint_default_range_str; } else if (is_intx()) { func = JVMFlag::get_intx_default_range_str; } else if (is_uintx()) { func = JVMFlag::get_uintx_default_range_str; } else if (is_uint64_t()) { func = JVMFlag::get_uint64_t_default_range_str; } else if (is_size_t()) { func = JVMFlag::get_size_t_default_range_str; } else if (is_double()) { func = JVMFlag::get_double_default_range_str; } else { st->print("unhandled type %s", _type); st->cr(); return; } JVMFlagRangeList::print(st, _name, func); fill_to_pos(st, col5_pos); print_kind(st, col5_width); fill_to_pos(st, col6_pos); print_origin(st, col6_width); #ifndef PRODUCT if (withComments) { fill_to_pos(st, col7_pos); st->print("%s", _doc); } #endif st->cr(); } } void JVMFlag::print_kind(outputStream* st, unsigned int width) { struct Data { int flag; const char* name; }; Data data[] = { { KIND_JVMCI, "JVMCI" }, { KIND_C1, "C1" }, { KIND_C2, "C2" }, { KIND_ARCH, "ARCH" }, { KIND_PLATFORM_DEPENDENT, "pd" }, { KIND_PRODUCT, "product" }, { KIND_MANAGEABLE, "manageable" }, { KIND_DIAGNOSTIC, "diagnostic" }, { KIND_EXPERIMENTAL, "experimental" }, { KIND_COMMERCIAL, "commercial" }, { KIND_NOT_PRODUCT, "notproduct" }, { KIND_DEVELOP, "develop" }, { KIND_LP64_PRODUCT, "lp64_product" }, { KIND_READ_WRITE, "rw" }, { -1, "" } }; if ((_flags & KIND_MASK) != 0) { bool is_first = true; const size_t buffer_size = 64; size_t buffer_used = 0; char kind[buffer_size]; jio_snprintf(kind, buffer_size, "{"); buffer_used++; for (int i = 0; data[i].flag != -1; i++) { Data d = data[i]; if ((_flags & d.flag) != 0) { if (is_first) { is_first = false; } else { assert(buffer_used + 1 < buffer_size, "Too small buffer"); jio_snprintf(kind + buffer_used, buffer_size - buffer_used, " "); buffer_used++; } size_t length = strlen(d.name); assert(buffer_used + length < buffer_size, "Too small buffer"); jio_snprintf(kind + buffer_used, buffer_size - buffer_used, "%s", d.name); buffer_used += length; } } assert(buffer_used + 2 <= buffer_size, "Too small buffer"); jio_snprintf(kind + buffer_used, buffer_size - buffer_used, "}"); st->print("%*s", width, kind); } } void JVMFlag::print_origin(outputStream* st, unsigned int width) { int origin = _flags & VALUE_ORIGIN_MASK; st->print("{"); switch(origin) { case DEFAULT: st->print("default"); break; case COMMAND_LINE: st->print("command line"); break; case ENVIRON_VAR: st->print("environment"); break; case CONFIG_FILE: st->print("config file"); break; case MANAGEMENT: st->print("management"); break; case ERGONOMIC: if (_flags & ORIG_COMMAND_LINE) { st->print("command line, "); } st->print("ergonomic"); break; case ATTACH_ON_DEMAND: st->print("attach"); break; case INTERNAL: st->print("internal"); break; } st->print("}"); } void JVMFlag::print_as_flag(outputStream* st) { if (is_bool()) { st->print("-XX:%s%s", get_bool() ? "+" : "-", _name); } else if (is_int()) { st->print("-XX:%s=%d", _name, get_int()); } else if (is_uint()) { st->print("-XX:%s=%u", _name, get_uint()); } else if (is_intx()) { st->print("-XX:%s=" INTX_FORMAT, _name, get_intx()); } else if (is_uintx()) { st->print("-XX:%s=" UINTX_FORMAT, _name, get_uintx()); } else if (is_uint64_t()) { st->print("-XX:%s=" UINT64_FORMAT, _name, get_uint64_t()); } else if (is_size_t()) { st->print("-XX:%s=" SIZE_FORMAT, _name, get_size_t()); } else if (is_double()) { st->print("-XX:%s=%f", _name, get_double()); } else if (is_ccstr()) { st->print("-XX:%s=", _name); const char* cp = get_ccstr(); if (cp != NULL) { // Need to turn embedded '\n's back into separate arguments // Not so efficient to print one character at a time, // but the choice is to do the transformation to a buffer // and print that. And this need not be efficient. for (; *cp != '\0'; cp += 1) { switch (*cp) { default: st->print("%c", *cp); break; case '\n': st->print(" -XX:%s=", _name); break; } } } } else { ShouldNotReachHere(); } } const char* JVMFlag::flag_error_str(JVMFlag::Error error) { switch (error) { case JVMFlag::MISSING_NAME: return "MISSING_NAME"; case JVMFlag::MISSING_VALUE: return "MISSING_VALUE"; case JVMFlag::NON_WRITABLE: return "NON_WRITABLE"; case JVMFlag::OUT_OF_BOUNDS: return "OUT_OF_BOUNDS"; case JVMFlag::VIOLATES_CONSTRAINT: return "VIOLATES_CONSTRAINT"; case JVMFlag::INVALID_FLAG: return "INVALID_FLAG"; case JVMFlag::ERR_OTHER: return "ERR_OTHER"; case JVMFlag::SUCCESS: return "SUCCESS"; default: ShouldNotReachHere(); return "NULL"; } } // 4991491 do not "optimize out" the was_set false values: omitting them // tickles a Microsoft compiler bug causing flagTable to be malformed #define RUNTIME_PRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_PRODUCT) }, #define RUNTIME_PD_PRODUCT_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_PRODUCT | JVMFlag::KIND_PLATFORM_DEPENDENT) }, #define RUNTIME_DIAGNOSTIC_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_DIAGNOSTIC) }, #define RUNTIME_PD_DIAGNOSTIC_FLAG_STRUCT(type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_DIAGNOSTIC | JVMFlag::KIND_PLATFORM_DEPENDENT) }, #define RUNTIME_EXPERIMENTAL_FLAG_STRUCT(type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_EXPERIMENTAL) }, #define RUNTIME_MANAGEABLE_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_MANAGEABLE) }, #define RUNTIME_PRODUCT_RW_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_PRODUCT | JVMFlag::KIND_READ_WRITE) }, #define RUNTIME_DEVELOP_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_DEVELOP) }, #define RUNTIME_PD_DEVELOP_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_DEVELOP | JVMFlag::KIND_PLATFORM_DEPENDENT) }, #define RUNTIME_NOTPRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_NOT_PRODUCT) }, #define JVMCI_PRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_PRODUCT) }, #define JVMCI_PD_PRODUCT_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_PRODUCT | JVMFlag::KIND_PLATFORM_DEPENDENT) }, #define JVMCI_DIAGNOSTIC_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_DIAGNOSTIC) }, #define JVMCI_PD_DIAGNOSTIC_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_DIAGNOSTIC | JVMFlag::KIND_PLATFORM_DEPENDENT) }, #define JVMCI_EXPERIMENTAL_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_EXPERIMENTAL) }, #define JVMCI_DEVELOP_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_DEVELOP) }, #define JVMCI_PD_DEVELOP_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_DEVELOP | JVMFlag::KIND_PLATFORM_DEPENDENT) }, #define JVMCI_NOTPRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_JVMCI | JVMFlag::KIND_NOT_PRODUCT) }, #ifdef _LP64 #define RUNTIME_LP64_PRODUCT_FLAG_STRUCT(type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_LP64_PRODUCT) }, #else #define RUNTIME_LP64_PRODUCT_FLAG_STRUCT(type, name, value, doc) /* flag is constant */ #endif // _LP64 #define C1_PRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_PRODUCT) }, #define C1_PD_PRODUCT_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_PRODUCT | JVMFlag::KIND_PLATFORM_DEPENDENT) }, #define C1_DIAGNOSTIC_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_DIAGNOSTIC) }, #define C1_PD_DIAGNOSTIC_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_DIAGNOSTIC | JVMFlag::KIND_PLATFORM_DEPENDENT) }, #define C1_DEVELOP_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_DEVELOP) }, #define C1_PD_DEVELOP_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_DEVELOP | JVMFlag::KIND_PLATFORM_DEPENDENT) }, #define C1_NOTPRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C1 | JVMFlag::KIND_NOT_PRODUCT) }, #define C2_PRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_PRODUCT) }, #define C2_PD_PRODUCT_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_PRODUCT | JVMFlag::KIND_PLATFORM_DEPENDENT) }, #define C2_DIAGNOSTIC_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_DIAGNOSTIC) }, #define C2_PD_DIAGNOSTIC_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_DIAGNOSTIC | JVMFlag::KIND_PLATFORM_DEPENDENT) }, #define C2_EXPERIMENTAL_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_EXPERIMENTAL) }, #define C2_DEVELOP_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_DEVELOP) }, #define C2_PD_DEVELOP_FLAG_STRUCT( type, name, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_DEVELOP | JVMFlag::KIND_PLATFORM_DEPENDENT) }, #define C2_NOTPRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_C2 | JVMFlag::KIND_NOT_PRODUCT) }, #define ARCH_PRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_ARCH | JVMFlag::KIND_PRODUCT) }, #define ARCH_DIAGNOSTIC_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_ARCH | JVMFlag::KIND_DIAGNOSTIC) }, #define ARCH_EXPERIMENTAL_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_ARCH | JVMFlag::KIND_EXPERIMENTAL) }, #define ARCH_DEVELOP_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_ARCH | JVMFlag::KIND_DEVELOP) }, #define ARCH_NOTPRODUCT_FLAG_STRUCT( type, name, value, doc) { #type, XSTR(name), (void*) &name, NOT_PRODUCT_ARG(doc) JVMFlag::Flags(JVMFlag::DEFAULT | JVMFlag::KIND_ARCH | JVMFlag::KIND_NOT_PRODUCT) }, static JVMFlag flagTable[] = { VM_FLAGS(RUNTIME_DEVELOP_FLAG_STRUCT, \ RUNTIME_PD_DEVELOP_FLAG_STRUCT, \ RUNTIME_PRODUCT_FLAG_STRUCT, \ RUNTIME_PD_PRODUCT_FLAG_STRUCT, \ RUNTIME_DIAGNOSTIC_FLAG_STRUCT, \ RUNTIME_PD_DIAGNOSTIC_FLAG_STRUCT, \ RUNTIME_EXPERIMENTAL_FLAG_STRUCT, \ RUNTIME_NOTPRODUCT_FLAG_STRUCT, \ RUNTIME_MANAGEABLE_FLAG_STRUCT, \ RUNTIME_PRODUCT_RW_FLAG_STRUCT, \ RUNTIME_LP64_PRODUCT_FLAG_STRUCT, \ IGNORE_RANGE, \ IGNORE_CONSTRAINT, \ IGNORE_WRITEABLE) RUNTIME_OS_FLAGS(RUNTIME_DEVELOP_FLAG_STRUCT, \ RUNTIME_PD_DEVELOP_FLAG_STRUCT, \ RUNTIME_PRODUCT_FLAG_STRUCT, \ RUNTIME_PD_PRODUCT_FLAG_STRUCT, \ RUNTIME_DIAGNOSTIC_FLAG_STRUCT, \ RUNTIME_PD_DIAGNOSTIC_FLAG_STRUCT, \ RUNTIME_NOTPRODUCT_FLAG_STRUCT, \ IGNORE_RANGE, \ IGNORE_CONSTRAINT, \ IGNORE_WRITEABLE) #if INCLUDE_JVMCI JVMCI_FLAGS(JVMCI_DEVELOP_FLAG_STRUCT, \ JVMCI_PD_DEVELOP_FLAG_STRUCT, \ JVMCI_PRODUCT_FLAG_STRUCT, \ JVMCI_PD_PRODUCT_FLAG_STRUCT, \ JVMCI_DIAGNOSTIC_FLAG_STRUCT, \ JVMCI_PD_DIAGNOSTIC_FLAG_STRUCT, \ JVMCI_EXPERIMENTAL_FLAG_STRUCT, \ JVMCI_NOTPRODUCT_FLAG_STRUCT, \ IGNORE_RANGE, \ IGNORE_CONSTRAINT, \ IGNORE_WRITEABLE) #endif // INCLUDE_JVMCI #ifdef COMPILER1 C1_FLAGS(C1_DEVELOP_FLAG_STRUCT, \ C1_PD_DEVELOP_FLAG_STRUCT, \ C1_PRODUCT_FLAG_STRUCT, \ C1_PD_PRODUCT_FLAG_STRUCT, \ C1_DIAGNOSTIC_FLAG_STRUCT, \ C1_PD_DIAGNOSTIC_FLAG_STRUCT, \ C1_NOTPRODUCT_FLAG_STRUCT, \ IGNORE_RANGE, \ IGNORE_CONSTRAINT, \ IGNORE_WRITEABLE) #endif // COMPILER1 #ifdef COMPILER2 C2_FLAGS(C2_DEVELOP_FLAG_STRUCT, \ C2_PD_DEVELOP_FLAG_STRUCT, \ C2_PRODUCT_FLAG_STRUCT, \ C2_PD_PRODUCT_FLAG_STRUCT, \ C2_DIAGNOSTIC_FLAG_STRUCT, \ C2_PD_DIAGNOSTIC_FLAG_STRUCT, \ C2_EXPERIMENTAL_FLAG_STRUCT, \ C2_NOTPRODUCT_FLAG_STRUCT, \ IGNORE_RANGE, \ IGNORE_CONSTRAINT, \ IGNORE_WRITEABLE) #endif // COMPILER2 ARCH_FLAGS(ARCH_DEVELOP_FLAG_STRUCT, \ ARCH_PRODUCT_FLAG_STRUCT, \ ARCH_DIAGNOSTIC_FLAG_STRUCT, \ ARCH_EXPERIMENTAL_FLAG_STRUCT, \ ARCH_NOTPRODUCT_FLAG_STRUCT, \ IGNORE_RANGE, \ IGNORE_CONSTRAINT, \ IGNORE_WRITEABLE) FLAGTABLE_EXT {0, NULL, NULL} }; JVMFlag* JVMFlag::flags = flagTable; size_t JVMFlag::numFlags = (sizeof(flagTable) / sizeof(JVMFlag)); inline bool str_equal(const char* s, size_t s_len, const char* q, size_t q_len) { if (s_len != q_len) return false; return memcmp(s, q, q_len) == 0; } // Search the flag table for a named flag JVMFlag* JVMFlag::find_flag(const char* name, size_t length, bool allow_locked, bool return_flag) { for (JVMFlag* current = &flagTable[0]; current->_name != NULL; current++) { if (str_equal(current->_name, current->get_name_length(), name, length)) { // Found a matching entry. // Don't report notproduct and develop flags in product builds. if (current->is_constant_in_binary()) { return (return_flag ? current : NULL); } // Report locked flags only if allowed. if (!(current->is_unlocked() || current->is_unlocker())) { if (!allow_locked) { // disable use of locked flags, e.g. diagnostic, experimental, // commercial... until they are explicitly unlocked return NULL; } } return current; } } // JVMFlag name is not in the flag table return NULL; } // Get or compute the flag name length size_t JVMFlag::get_name_length() { if (_name_len == 0) { _name_len = strlen(_name); } return _name_len; } JVMFlag* JVMFlag::fuzzy_match(const char* name, size_t length, bool allow_locked) { float VMOptionsFuzzyMatchSimilarity = 0.7f; JVMFlag* match = NULL; float score; float max_score = -1; for (JVMFlag* current = &flagTable[0]; current->_name != NULL; current++) { score = StringUtils::similarity(current->_name, strlen(current->_name), name, length); if (score > max_score) { max_score = score; match = current; } } if (!(match->is_unlocked() || match->is_unlocker())) { if (!allow_locked) { return NULL; } } if (max_score < VMOptionsFuzzyMatchSimilarity) { return NULL; } return match; } // Returns the address of the index'th element static JVMFlag* address_of_flag(JVMFlagsWithType flag) { assert((size_t)flag < JVMFlag::numFlags, "bad command line flag index"); return &JVMFlag::flags[flag]; } bool JVMFlagEx::is_default(JVMFlags flag) { assert((size_t)flag < JVMFlag::numFlags, "bad command line flag index"); JVMFlag* f = &JVMFlag::flags[flag]; return f->is_default(); } bool JVMFlagEx::is_ergo(JVMFlags flag) { assert((size_t)flag < JVMFlag::numFlags, "bad command line flag index"); JVMFlag* f = &JVMFlag::flags[flag]; return f->is_ergonomic(); } bool JVMFlagEx::is_cmdline(JVMFlags flag) { assert((size_t)flag < JVMFlag::numFlags, "bad command line flag index"); JVMFlag* f = &JVMFlag::flags[flag]; return f->is_command_line(); } bool JVMFlag::wasSetOnCmdline(const char* name, bool* value) { JVMFlag* result = JVMFlag::find_flag((char*)name, strlen(name)); if (result == NULL) return false; *value = result->is_command_line(); return true; } void JVMFlagEx::setOnCmdLine(JVMFlagsWithType flag) { JVMFlag* faddr = address_of_flag(flag); assert(faddr != NULL, "Unknown flag"); faddr->set_command_line(); } template static void trace_flag_changed(const char* name, const T old_value, const T new_value, const JVMFlag::Flags origin) { E e; e.set_name(name); e.set_oldValue(old_value); e.set_newValue(new_value); e.set_origin(origin); e.commit(); } static JVMFlag::Error apply_constraint_and_check_range_bool(const char* name, bool new_value, bool verbose) { JVMFlag::Error status = JVMFlag::SUCCESS; JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name); if (constraint != NULL) { status = constraint->apply_bool(new_value, verbose); } return status; } JVMFlag::Error JVMFlag::boolAt(const char* name, size_t len, bool* value, bool allow_locked, bool return_flag) { JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag); if (result == NULL) return JVMFlag::INVALID_FLAG; if (!result->is_bool()) return JVMFlag::WRONG_FORMAT; *value = result->get_bool(); return JVMFlag::SUCCESS; } JVMFlag::Error JVMFlag::boolAtPut(JVMFlag* flag, bool* value, JVMFlag::Flags origin) { const char* name; if (flag == NULL) return JVMFlag::INVALID_FLAG; if (!flag->is_bool()) return JVMFlag::WRONG_FORMAT; name = flag->_name; JVMFlag::Error check = apply_constraint_and_check_range_bool(name, *value, !JVMFlagConstraintList::validated_after_ergo()); if (check != JVMFlag::SUCCESS) return check; bool old_value = flag->get_bool(); trace_flag_changed(name, old_value, *value, origin); check = flag->set_bool(*value); *value = old_value; flag->set_origin(origin); return check; } JVMFlag::Error JVMFlag::boolAtPut(const char* name, size_t len, bool* value, JVMFlag::Flags origin) { JVMFlag* result = JVMFlag::find_flag(name, len); return boolAtPut(result, value, origin); } JVMFlag::Error JVMFlagEx::boolAtPut(JVMFlagsWithType flag, bool value, JVMFlag::Flags origin) { JVMFlag* faddr = address_of_flag(flag); guarantee(faddr != NULL && faddr->is_bool(), "wrong flag type"); return JVMFlag::boolAtPut(faddr, &value, origin); } static JVMFlag::Error apply_constraint_and_check_range_int(const char* name, int new_value, bool verbose) { JVMFlag::Error status = JVMFlag::SUCCESS; JVMFlagRange* range = JVMFlagRangeList::find(name); if (range != NULL) { status = range->check_int(new_value, verbose); } if (status == JVMFlag::SUCCESS) { JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name); if (constraint != NULL) { status = constraint->apply_int(new_value, verbose); } } return status; } JVMFlag::Error JVMFlag::intAt(const char* name, size_t len, int* value, bool allow_locked, bool return_flag) { JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag); if (result == NULL) return JVMFlag::INVALID_FLAG; if (!result->is_int()) return JVMFlag::WRONG_FORMAT; *value = result->get_int(); return JVMFlag::SUCCESS; } JVMFlag::Error JVMFlag::intAtPut(JVMFlag* flag, int* value, JVMFlag::Flags origin) { const char* name; if (flag == NULL) return JVMFlag::INVALID_FLAG; if (!flag->is_int()) return JVMFlag::WRONG_FORMAT; name = flag->_name; JVMFlag::Error check = apply_constraint_and_check_range_int(name, *value, !JVMFlagConstraintList::validated_after_ergo()); if (check != JVMFlag::SUCCESS) return check; int old_value = flag->get_int(); trace_flag_changed(name, old_value, *value, origin); check = flag->set_int(*value); *value = old_value; flag->set_origin(origin); return check; } JVMFlag::Error JVMFlag::intAtPut(const char* name, size_t len, int* value, JVMFlag::Flags origin) { JVMFlag* result = JVMFlag::find_flag(name, len); return intAtPut(result, value, origin); } JVMFlag::Error JVMFlagEx::intAtPut(JVMFlagsWithType flag, int value, JVMFlag::Flags origin) { JVMFlag* faddr = address_of_flag(flag); guarantee(faddr != NULL && faddr->is_int(), "wrong flag type"); return JVMFlag::intAtPut(faddr, &value, origin); } static JVMFlag::Error apply_constraint_and_check_range_uint(const char* name, uint new_value, bool verbose) { JVMFlag::Error status = JVMFlag::SUCCESS; JVMFlagRange* range = JVMFlagRangeList::find(name); if (range != NULL) { status = range->check_uint(new_value, verbose); } if (status == JVMFlag::SUCCESS) { JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name); if (constraint != NULL) { status = constraint->apply_uint(new_value, verbose); } } return status; } JVMFlag::Error JVMFlag::uintAt(const char* name, size_t len, uint* value, bool allow_locked, bool return_flag) { JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag); if (result == NULL) return JVMFlag::INVALID_FLAG; if (!result->is_uint()) return JVMFlag::WRONG_FORMAT; *value = result->get_uint(); return JVMFlag::SUCCESS; } JVMFlag::Error JVMFlag::uintAtPut(JVMFlag* flag, uint* value, JVMFlag::Flags origin) { const char* name; if (flag == NULL) return JVMFlag::INVALID_FLAG; if (!flag->is_uint()) return JVMFlag::WRONG_FORMAT; name = flag->_name; JVMFlag::Error check = apply_constraint_and_check_range_uint(name, *value, !JVMFlagConstraintList::validated_after_ergo()); if (check != JVMFlag::SUCCESS) return check; uint old_value = flag->get_uint(); trace_flag_changed(name, old_value, *value, origin); check = flag->set_uint(*value); *value = old_value; flag->set_origin(origin); return check; } JVMFlag::Error JVMFlag::uintAtPut(const char* name, size_t len, uint* value, JVMFlag::Flags origin) { JVMFlag* result = JVMFlag::find_flag(name, len); return uintAtPut(result, value, origin); } JVMFlag::Error JVMFlagEx::uintAtPut(JVMFlagsWithType flag, uint value, JVMFlag::Flags origin) { JVMFlag* faddr = address_of_flag(flag); guarantee(faddr != NULL && faddr->is_uint(), "wrong flag type"); return JVMFlag::uintAtPut(faddr, &value, origin); } JVMFlag::Error JVMFlag::intxAt(const char* name, size_t len, intx* value, bool allow_locked, bool return_flag) { JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag); if (result == NULL) return JVMFlag::INVALID_FLAG; if (!result->is_intx()) return JVMFlag::WRONG_FORMAT; *value = result->get_intx(); return JVMFlag::SUCCESS; } static JVMFlag::Error apply_constraint_and_check_range_intx(const char* name, intx new_value, bool verbose) { JVMFlag::Error status = JVMFlag::SUCCESS; JVMFlagRange* range = JVMFlagRangeList::find(name); if (range != NULL) { status = range->check_intx(new_value, verbose); } if (status == JVMFlag::SUCCESS) { JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name); if (constraint != NULL) { status = constraint->apply_intx(new_value, verbose); } } return status; } JVMFlag::Error JVMFlag::intxAtPut(JVMFlag* flag, intx* value, JVMFlag::Flags origin) { const char* name; if (flag == NULL) return JVMFlag::INVALID_FLAG; if (!flag->is_intx()) return JVMFlag::WRONG_FORMAT; name = flag->_name; JVMFlag::Error check = apply_constraint_and_check_range_intx(name, *value, !JVMFlagConstraintList::validated_after_ergo()); if (check != JVMFlag::SUCCESS) return check; intx old_value = flag->get_intx(); trace_flag_changed(name, old_value, *value, origin); check = flag->set_intx(*value); *value = old_value; flag->set_origin(origin); return check; } JVMFlag::Error JVMFlag::intxAtPut(const char* name, size_t len, intx* value, JVMFlag::Flags origin) { JVMFlag* result = JVMFlag::find_flag(name, len); return intxAtPut(result, value, origin); } JVMFlag::Error JVMFlagEx::intxAtPut(JVMFlagsWithType flag, intx value, JVMFlag::Flags origin) { JVMFlag* faddr = address_of_flag(flag); guarantee(faddr != NULL && faddr->is_intx(), "wrong flag type"); return JVMFlag::intxAtPut(faddr, &value, origin); } JVMFlag::Error JVMFlag::uintxAt(const char* name, size_t len, uintx* value, bool allow_locked, bool return_flag) { JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag); if (result == NULL) return JVMFlag::INVALID_FLAG; if (!result->is_uintx()) return JVMFlag::WRONG_FORMAT; *value = result->get_uintx(); return JVMFlag::SUCCESS; } static JVMFlag::Error apply_constraint_and_check_range_uintx(const char* name, uintx new_value, bool verbose) { JVMFlag::Error status = JVMFlag::SUCCESS; JVMFlagRange* range = JVMFlagRangeList::find(name); if (range != NULL) { status = range->check_uintx(new_value, verbose); } if (status == JVMFlag::SUCCESS) { JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name); if (constraint != NULL) { status = constraint->apply_uintx(new_value, verbose); } } return status; } JVMFlag::Error JVMFlag::uintxAtPut(JVMFlag* flag, uintx* value, JVMFlag::Flags origin) { const char* name; if (flag == NULL) return JVMFlag::INVALID_FLAG; if (!flag->is_uintx()) return JVMFlag::WRONG_FORMAT; name = flag->_name; JVMFlag::Error check = apply_constraint_and_check_range_uintx(name, *value, !JVMFlagConstraintList::validated_after_ergo()); if (check != JVMFlag::SUCCESS) return check; uintx old_value = flag->get_uintx(); trace_flag_changed(name, old_value, *value, origin); check = flag->set_uintx(*value); *value = old_value; flag->set_origin(origin); return check; } JVMFlag::Error JVMFlag::uintxAtPut(const char* name, size_t len, uintx* value, JVMFlag::Flags origin) { JVMFlag* result = JVMFlag::find_flag(name, len); return uintxAtPut(result, value, origin); } JVMFlag::Error JVMFlagEx::uintxAtPut(JVMFlagsWithType flag, uintx value, JVMFlag::Flags origin) { JVMFlag* faddr = address_of_flag(flag); guarantee(faddr != NULL && faddr->is_uintx(), "wrong flag type"); return JVMFlag::uintxAtPut(faddr, &value, origin); } JVMFlag::Error JVMFlag::uint64_tAt(const char* name, size_t len, uint64_t* value, bool allow_locked, bool return_flag) { JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag); if (result == NULL) return JVMFlag::INVALID_FLAG; if (!result->is_uint64_t()) return JVMFlag::WRONG_FORMAT; *value = result->get_uint64_t(); return JVMFlag::SUCCESS; } static JVMFlag::Error apply_constraint_and_check_range_uint64_t(const char* name, uint64_t new_value, bool verbose) { JVMFlag::Error status = JVMFlag::SUCCESS; JVMFlagRange* range = JVMFlagRangeList::find(name); if (range != NULL) { status = range->check_uint64_t(new_value, verbose); } if (status == JVMFlag::SUCCESS) { JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name); if (constraint != NULL) { status = constraint->apply_uint64_t(new_value, verbose); } } return status; } JVMFlag::Error JVMFlag::uint64_tAtPut(JVMFlag* flag, uint64_t* value, JVMFlag::Flags origin) { const char* name; if (flag == NULL) return JVMFlag::INVALID_FLAG; if (!flag->is_uint64_t()) return JVMFlag::WRONG_FORMAT; name = flag->_name; JVMFlag::Error check = apply_constraint_and_check_range_uint64_t(name, *value, !JVMFlagConstraintList::validated_after_ergo()); if (check != JVMFlag::SUCCESS) return check; uint64_t old_value = flag->get_uint64_t(); trace_flag_changed(name, old_value, *value, origin); check = flag->set_uint64_t(*value); *value = old_value; flag->set_origin(origin); return check; } JVMFlag::Error JVMFlag::uint64_tAtPut(const char* name, size_t len, uint64_t* value, JVMFlag::Flags origin) { JVMFlag* result = JVMFlag::find_flag(name, len); return uint64_tAtPut(result, value, origin); } JVMFlag::Error JVMFlagEx::uint64_tAtPut(JVMFlagsWithType flag, uint64_t value, JVMFlag::Flags origin) { JVMFlag* faddr = address_of_flag(flag); guarantee(faddr != NULL && faddr->is_uint64_t(), "wrong flag type"); return JVMFlag::uint64_tAtPut(faddr, &value, origin); } JVMFlag::Error JVMFlag::size_tAt(const char* name, size_t len, size_t* value, bool allow_locked, bool return_flag) { JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag); if (result == NULL) return JVMFlag::INVALID_FLAG; if (!result->is_size_t()) return JVMFlag::WRONG_FORMAT; *value = result->get_size_t(); return JVMFlag::SUCCESS; } static JVMFlag::Error apply_constraint_and_check_range_size_t(const char* name, size_t new_value, bool verbose) { JVMFlag::Error status = JVMFlag::SUCCESS; JVMFlagRange* range = JVMFlagRangeList::find(name); if (range != NULL) { status = range->check_size_t(new_value, verbose); } if (status == JVMFlag::SUCCESS) { JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name); if (constraint != NULL) { status = constraint->apply_size_t(new_value, verbose); } } return status; } JVMFlag::Error JVMFlag::size_tAtPut(JVMFlag* flag, size_t* value, JVMFlag::Flags origin) { const char* name; if (flag == NULL) return JVMFlag::INVALID_FLAG; if (!flag->is_size_t()) return JVMFlag::WRONG_FORMAT; name = flag->_name; JVMFlag::Error check = apply_constraint_and_check_range_size_t(name, *value, !JVMFlagConstraintList::validated_after_ergo()); if (check != JVMFlag::SUCCESS) return check; size_t old_value = flag->get_size_t(); trace_flag_changed(name, old_value, *value, origin); check = flag->set_size_t(*value); *value = old_value; flag->set_origin(origin); return check; } JVMFlag::Error JVMFlag::size_tAtPut(const char* name, size_t len, size_t* value, JVMFlag::Flags origin) { JVMFlag* result = JVMFlag::find_flag(name, len); return size_tAtPut(result, value, origin); } JVMFlag::Error JVMFlagEx::size_tAtPut(JVMFlagsWithType flag, size_t value, JVMFlag::Flags origin) { JVMFlag* faddr = address_of_flag(flag); guarantee(faddr != NULL && faddr->is_size_t(), "wrong flag type"); return JVMFlag::size_tAtPut(faddr, &value, origin); } JVMFlag::Error JVMFlag::doubleAt(const char* name, size_t len, double* value, bool allow_locked, bool return_flag) { JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag); if (result == NULL) return JVMFlag::INVALID_FLAG; if (!result->is_double()) return JVMFlag::WRONG_FORMAT; *value = result->get_double(); return JVMFlag::SUCCESS; } static JVMFlag::Error apply_constraint_and_check_range_double(const char* name, double new_value, bool verbose) { JVMFlag::Error status = JVMFlag::SUCCESS; JVMFlagRange* range = JVMFlagRangeList::find(name); if (range != NULL) { status = range->check_double(new_value, verbose); } if (status == JVMFlag::SUCCESS) { JVMFlagConstraint* constraint = JVMFlagConstraintList::find_if_needs_check(name); if (constraint != NULL) { status = constraint->apply_double(new_value, verbose); } } return status; } JVMFlag::Error JVMFlag::doubleAtPut(JVMFlag* flag, double* value, JVMFlag::Flags origin) { const char* name; if (flag == NULL) return JVMFlag::INVALID_FLAG; if (!flag->is_double()) return JVMFlag::WRONG_FORMAT; name = flag->_name; JVMFlag::Error check = apply_constraint_and_check_range_double(name, *value, !JVMFlagConstraintList::validated_after_ergo()); if (check != JVMFlag::SUCCESS) return check; double old_value = flag->get_double(); trace_flag_changed(name, old_value, *value, origin); check = flag->set_double(*value); *value = old_value; flag->set_origin(origin); return check; } JVMFlag::Error JVMFlag::doubleAtPut(const char* name, size_t len, double* value, JVMFlag::Flags origin) { JVMFlag* result = JVMFlag::find_flag(name, len); return doubleAtPut(result, value, origin); } JVMFlag::Error JVMFlagEx::doubleAtPut(JVMFlagsWithType flag, double value, JVMFlag::Flags origin) { JVMFlag* faddr = address_of_flag(flag); guarantee(faddr != NULL && faddr->is_double(), "wrong flag type"); return JVMFlag::doubleAtPut(faddr, &value, origin); } JVMFlag::Error JVMFlag::ccstrAt(const char* name, size_t len, ccstr* value, bool allow_locked, bool return_flag) { JVMFlag* result = JVMFlag::find_flag(name, len, allow_locked, return_flag); if (result == NULL) return JVMFlag::INVALID_FLAG; if (!result->is_ccstr()) return JVMFlag::WRONG_FORMAT; *value = result->get_ccstr(); return JVMFlag::SUCCESS; } JVMFlag::Error JVMFlag::ccstrAtPut(const char* name, size_t len, ccstr* value, JVMFlag::Flags origin) { JVMFlag* result = JVMFlag::find_flag(name, len); if (result == NULL) return JVMFlag::INVALID_FLAG; if (!result->is_ccstr()) return JVMFlag::WRONG_FORMAT; ccstr old_value = result->get_ccstr(); trace_flag_changed(name, old_value, *value, origin); char* new_value = NULL; if (*value != NULL) { new_value = os::strdup_check_oom(*value); } JVMFlag::Error check = result->set_ccstr(new_value); if (result->is_default() && old_value != NULL) { // Prior value is NOT heap allocated, but was a literal constant. old_value = os::strdup_check_oom(old_value); } *value = old_value; result->set_origin(origin); return check; } JVMFlag::Error JVMFlagEx::ccstrAtPut(JVMFlagsWithType flag, ccstr value, JVMFlag::Flags origin) { JVMFlag* faddr = address_of_flag(flag); guarantee(faddr != NULL && faddr->is_ccstr(), "wrong flag type"); ccstr old_value = faddr->get_ccstr(); trace_flag_changed(faddr->_name, old_value, value, origin); char* new_value = os::strdup_check_oom(value); JVMFlag::Error check = faddr->set_ccstr(new_value); if (!faddr->is_default() && old_value != NULL) { // Prior value is heap allocated so free it. FREE_C_HEAP_ARRAY(char, old_value); } faddr->set_origin(origin); return check; } extern "C" { static int compare_flags(const void* void_a, const void* void_b) { return strcmp((*((JVMFlag**) void_a))->_name, (*((JVMFlag**) void_b))->_name); } } void JVMFlag::printSetFlags(outputStream* out) { // Print which flags were set on the command line // note: this method is called before the thread structure is in place // which means resource allocation cannot be used. // The last entry is the null entry. const size_t length = JVMFlag::numFlags - 1; // Sort JVMFlag** array = NEW_C_HEAP_ARRAY(JVMFlag*, length, mtArguments); for (size_t i = 0; i < length; i++) { array[i] = &flagTable[i]; } qsort(array, length, sizeof(JVMFlag*), compare_flags); // Print for (size_t i = 0; i < length; i++) { if (array[i]->get_origin() /* naked field! */) { array[i]->print_as_flag(out); out->print(" "); } } out->cr(); FREE_C_HEAP_ARRAY(JVMFlag*, array); } #ifndef PRODUCT void JVMFlag::verify() { assert(Arguments::check_vm_args_consistency(), "Some flag settings conflict"); } #endif // PRODUCT void JVMFlag::printFlags(outputStream* out, bool withComments, bool printRanges) { // Print the flags sorted by name // note: this method is called before the thread structure is in place // which means resource allocation cannot be used. // The last entry is the null entry. const size_t length = JVMFlag::numFlags - 1; // Sort JVMFlag** array = NEW_C_HEAP_ARRAY(JVMFlag*, length, mtArguments); for (size_t i = 0; i < length; i++) { array[i] = &flagTable[i]; } qsort(array, length, sizeof(JVMFlag*), compare_flags); // Print if (!printRanges) { out->print_cr("[Global flags]"); } else { out->print_cr("[Global flags ranges]"); } for (size_t i = 0; i < length; i++) { if (array[i]->is_unlocked()) { array[i]->print_on(out, withComments, printRanges); } } FREE_C_HEAP_ARRAY(JVMFlag*, array); } void JVMFlag::printError(bool verbose, const char* msg, ...) { if (verbose) { va_list listPointer; va_start(listPointer, msg); jio_vfprintf(defaultStream::error_stream(), msg, listPointer); va_end(listPointer); } }