1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/countbitsnode.hpp"
  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/mathexactnode.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/mulnode.hpp"
  45 #include "opto/narrowptrnode.hpp"
  46 #include "opto/opaquenode.hpp"
  47 #include "opto/parse.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "prims/unsafe.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #ifdef TRACE_HAVE_INTRINSICS
  54 #include "trace/traceMacros.hpp"
  55 #endif
  56 
  57 class LibraryIntrinsic : public InlineCallGenerator {
  58   // Extend the set of intrinsics known to the runtime:
  59  public:
  60  private:
  61   bool             _is_virtual;
  62   bool             _does_virtual_dispatch;
  63   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  64   int8_t           _last_predicate; // Last generated predicate
  65   vmIntrinsics::ID _intrinsic_id;
  66 
  67  public:
  68   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  69     : InlineCallGenerator(m),
  70       _is_virtual(is_virtual),
  71       _does_virtual_dispatch(does_virtual_dispatch),
  72       _predicates_count((int8_t)predicates_count),
  73       _last_predicate((int8_t)-1),
  74       _intrinsic_id(id)
  75   {
  76   }
  77   virtual bool is_intrinsic() const { return true; }
  78   virtual bool is_virtual()   const { return _is_virtual; }
  79   virtual bool is_predicated() const { return _predicates_count > 0; }
  80   virtual int  predicates_count() const { return _predicates_count; }
  81   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  82   virtual JVMState* generate(JVMState* jvms);
  83   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  84   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  85 };
  86 
  87 
  88 // Local helper class for LibraryIntrinsic:
  89 class LibraryCallKit : public GraphKit {
  90  private:
  91   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  92   Node*             _result;        // the result node, if any
  93   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  94 
  95   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  96 
  97  public:
  98   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  99     : GraphKit(jvms),
 100       _intrinsic(intrinsic),
 101       _result(NULL)
 102   {
 103     // Check if this is a root compile.  In that case we don't have a caller.
 104     if (!jvms->has_method()) {
 105       _reexecute_sp = sp();
 106     } else {
 107       // Find out how many arguments the interpreter needs when deoptimizing
 108       // and save the stack pointer value so it can used by uncommon_trap.
 109       // We find the argument count by looking at the declared signature.
 110       bool ignored_will_link;
 111       ciSignature* declared_signature = NULL;
 112       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 113       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 114       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 115     }
 116   }
 117 
 118   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 119 
 120   ciMethod*         caller()    const    { return jvms()->method(); }
 121   int               bci()       const    { return jvms()->bci(); }
 122   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 123   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 124   ciMethod*         callee()    const    { return _intrinsic->method(); }
 125 
 126   bool  try_to_inline(int predicate);
 127   Node* try_to_predicate(int predicate);
 128 
 129   void push_result() {
 130     // Push the result onto the stack.
 131     if (!stopped() && result() != NULL) {
 132       BasicType bt = result()->bottom_type()->basic_type();
 133       push_node(bt, result());
 134     }
 135   }
 136 
 137  private:
 138   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 139     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 140   }
 141 
 142   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 143   void  set_result(RegionNode* region, PhiNode* value);
 144   Node*     result() { return _result; }
 145 
 146   virtual int reexecute_sp() { return _reexecute_sp; }
 147 
 148   // Helper functions to inline natives
 149   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 150   Node* generate_slow_guard(Node* test, RegionNode* region);
 151   Node* generate_fair_guard(Node* test, RegionNode* region);
 152   Node* generate_negative_guard(Node* index, RegionNode* region,
 153                                 // resulting CastII of index:
 154                                 Node* *pos_index = NULL);
 155   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 156                              Node* array_length,
 157                              RegionNode* region);
 158   void  generate_string_range_check(Node* array, Node* offset,
 159                                     Node* length, bool char_count);
 160   Node* generate_current_thread(Node* &tls_output);
 161   Node* load_mirror_from_klass(Node* klass);
 162   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 163                                       RegionNode* region, int null_path,
 164                                       int offset);
 165   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 166                                RegionNode* region, int null_path) {
 167     int offset = java_lang_Class::klass_offset_in_bytes();
 168     return load_klass_from_mirror_common(mirror, never_see_null,
 169                                          region, null_path,
 170                                          offset);
 171   }
 172   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 173                                      RegionNode* region, int null_path) {
 174     int offset = java_lang_Class::array_klass_offset_in_bytes();
 175     return load_klass_from_mirror_common(mirror, never_see_null,
 176                                          region, null_path,
 177                                          offset);
 178   }
 179   Node* generate_access_flags_guard(Node* kls,
 180                                     int modifier_mask, int modifier_bits,
 181                                     RegionNode* region);
 182   Node* generate_interface_guard(Node* kls, RegionNode* region);
 183   Node* generate_array_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, false, false);
 185   }
 186   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, false, true);
 188   }
 189   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 190     return generate_array_guard_common(kls, region, true, false);
 191   }
 192   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 193     return generate_array_guard_common(kls, region, true, true);
 194   }
 195   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 196                                     bool obj_array, bool not_array);
 197   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 198   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 199                                      bool is_virtual = false, bool is_static = false);
 200   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 201     return generate_method_call(method_id, false, true);
 202   }
 203   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 204     return generate_method_call(method_id, true, false);
 205   }
 206   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 207   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 208 
 209   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 210   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 211   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 212   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 213   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 214                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 215   bool inline_string_indexOfChar();
 216   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 217   bool inline_string_toBytesU();
 218   bool inline_string_getCharsU();
 219   bool inline_string_copy(bool compress);
 220   bool inline_string_char_access(bool is_store);
 221   Node* round_double_node(Node* n);
 222   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 223   bool inline_math_native(vmIntrinsics::ID id);
 224   bool inline_trig(vmIntrinsics::ID id);
 225   bool inline_math(vmIntrinsics::ID id);
 226   template <typename OverflowOp>
 227   bool inline_math_overflow(Node* arg1, Node* arg2);
 228   void inline_math_mathExact(Node* math, Node* test);
 229   bool inline_math_addExactI(bool is_increment);
 230   bool inline_math_addExactL(bool is_increment);
 231   bool inline_math_multiplyExactI();
 232   bool inline_math_multiplyExactL();
 233   bool inline_math_negateExactI();
 234   bool inline_math_negateExactL();
 235   bool inline_math_subtractExactI(bool is_decrement);
 236   bool inline_math_subtractExactL(bool is_decrement);
 237   bool inline_min_max(vmIntrinsics::ID id);
 238   bool inline_notify(vmIntrinsics::ID id);
 239   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 240   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 241   int classify_unsafe_addr(Node* &base, Node* &offset);
 242   Node* make_unsafe_address(Node* base, Node* offset);
 243   // Helper for inline_unsafe_access.
 244   // Generates the guards that check whether the result of
 245   // Unsafe.getObject should be recorded in an SATB log buffer.
 246   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 247 
 248   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 249   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 250   static bool klass_needs_init_guard(Node* kls);
 251   bool inline_unsafe_allocate();
 252   bool inline_unsafe_newArray(bool uninitialized);
 253   bool inline_unsafe_copyMemory();
 254   bool inline_native_currentThread();
 255 
 256   bool inline_native_time_funcs(address method, const char* funcName);
 257   bool inline_native_isInterrupted();
 258   bool inline_native_Class_query(vmIntrinsics::ID id);
 259   bool inline_native_subtype_check();
 260   bool inline_native_getLength();
 261   bool inline_array_copyOf(bool is_copyOfRange);
 262   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 263   bool inline_objects_checkIndex();
 264   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 265   bool inline_native_clone(bool is_virtual);
 266   bool inline_native_Reflection_getCallerClass();
 267   // Helper function for inlining native object hash method
 268   bool inline_native_hashcode(bool is_virtual, bool is_static);
 269   bool inline_native_getClass();
 270 
 271   // Helper functions for inlining arraycopy
 272   bool inline_arraycopy();
 273   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 274                                                 RegionNode* slow_region);
 275   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 276   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 277 
 278   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 279   MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
 280   MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
 281   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 282   bool inline_unsafe_fence(vmIntrinsics::ID id);
 283   bool inline_fp_conversions(vmIntrinsics::ID id);
 284   bool inline_number_methods(vmIntrinsics::ID id);
 285   bool inline_reference_get();
 286   bool inline_Class_cast();
 287   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 288   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 289   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 290   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 291   Node* inline_counterMode_AESCrypt_predicate();
 292   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 293   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 294   bool inline_ghash_processBlocks();
 295   bool inline_sha_implCompress(vmIntrinsics::ID id);
 296   bool inline_digestBase_implCompressMB(int predicate);
 297   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 298                                  bool long_state, address stubAddr, const char *stubName,
 299                                  Node* src_start, Node* ofs, Node* limit);
 300   Node* get_state_from_sha_object(Node *sha_object);
 301   Node* get_state_from_sha5_object(Node *sha_object);
 302   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 303   bool inline_encodeISOArray();
 304   bool inline_updateCRC32();
 305   bool inline_updateBytesCRC32();
 306   bool inline_updateByteBufferCRC32();
 307   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 308   bool inline_updateBytesCRC32C();
 309   bool inline_updateDirectByteBufferCRC32C();
 310   bool inline_updateBytesAdler32();
 311   bool inline_updateByteBufferAdler32();
 312   bool inline_multiplyToLen();
 313   bool inline_hasNegatives();
 314   bool inline_squareToLen();
 315   bool inline_mulAdd();
 316   bool inline_montgomeryMultiply();
 317   bool inline_montgomerySquare();
 318   bool inline_vectorizedMismatch();
 319 
 320   bool inline_profileBoolean();
 321   bool inline_isCompileConstant();
 322 };
 323 
 324 //---------------------------make_vm_intrinsic----------------------------
 325 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 326   vmIntrinsics::ID id = m->intrinsic_id();
 327   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 328 
 329   if (!m->is_loaded()) {
 330     // Do not attempt to inline unloaded methods.
 331     return NULL;
 332   }
 333 
 334   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 335   bool is_available = false;
 336 
 337   {
 338     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 339     // the compiler must transition to '_thread_in_vm' state because both
 340     // methods access VM-internal data.
 341     VM_ENTRY_MARK;
 342     methodHandle mh(THREAD, m->get_Method());
 343     is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
 344                    !C->directive()->is_intrinsic_disabled(mh) &&
 345                    !vmIntrinsics::is_disabled_by_flags(mh);
 346 
 347   }
 348 
 349   if (is_available) {
 350     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 351     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 352     return new LibraryIntrinsic(m, is_virtual,
 353                                 vmIntrinsics::predicates_needed(id),
 354                                 vmIntrinsics::does_virtual_dispatch(id),
 355                                 (vmIntrinsics::ID) id);
 356   } else {
 357     return NULL;
 358   }
 359 }
 360 
 361 //----------------------register_library_intrinsics-----------------------
 362 // Initialize this file's data structures, for each Compile instance.
 363 void Compile::register_library_intrinsics() {
 364   // Nothing to do here.
 365 }
 366 
 367 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 368   LibraryCallKit kit(jvms, this);
 369   Compile* C = kit.C;
 370   int nodes = C->unique();
 371 #ifndef PRODUCT
 372   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 373     char buf[1000];
 374     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 375     tty->print_cr("Intrinsic %s", str);
 376   }
 377 #endif
 378   ciMethod* callee = kit.callee();
 379   const int bci    = kit.bci();
 380 
 381   // Try to inline the intrinsic.
 382   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 383       kit.try_to_inline(_last_predicate)) {
 384     if (C->print_intrinsics() || C->print_inlining()) {
 385       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 386     }
 387     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 388     if (C->log()) {
 389       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 390                      vmIntrinsics::name_at(intrinsic_id()),
 391                      (is_virtual() ? " virtual='1'" : ""),
 392                      C->unique() - nodes);
 393     }
 394     // Push the result from the inlined method onto the stack.
 395     kit.push_result();
 396     C->print_inlining_update(this);
 397     return kit.transfer_exceptions_into_jvms();
 398   }
 399 
 400   // The intrinsic bailed out
 401   if (C->print_intrinsics() || C->print_inlining()) {
 402     if (jvms->has_method()) {
 403       // Not a root compile.
 404       const char* msg;
 405       if (callee->intrinsic_candidate()) {
 406         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 407       } else {
 408         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 409                            : "failed to inline (intrinsic), method not annotated";
 410       }
 411       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 412     } else {
 413       // Root compile
 414       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 415                vmIntrinsics::name_at(intrinsic_id()),
 416                (is_virtual() ? " (virtual)" : ""), bci);
 417     }
 418   }
 419   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 420   C->print_inlining_update(this);
 421   return NULL;
 422 }
 423 
 424 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 425   LibraryCallKit kit(jvms, this);
 426   Compile* C = kit.C;
 427   int nodes = C->unique();
 428   _last_predicate = predicate;
 429 #ifndef PRODUCT
 430   assert(is_predicated() && predicate < predicates_count(), "sanity");
 431   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 432     char buf[1000];
 433     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 434     tty->print_cr("Predicate for intrinsic %s", str);
 435   }
 436 #endif
 437   ciMethod* callee = kit.callee();
 438   const int bci    = kit.bci();
 439 
 440   Node* slow_ctl = kit.try_to_predicate(predicate);
 441   if (!kit.failing()) {
 442     if (C->print_intrinsics() || C->print_inlining()) {
 443       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 444     }
 445     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 446     if (C->log()) {
 447       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 448                      vmIntrinsics::name_at(intrinsic_id()),
 449                      (is_virtual() ? " virtual='1'" : ""),
 450                      C->unique() - nodes);
 451     }
 452     return slow_ctl; // Could be NULL if the check folds.
 453   }
 454 
 455   // The intrinsic bailed out
 456   if (C->print_intrinsics() || C->print_inlining()) {
 457     if (jvms->has_method()) {
 458       // Not a root compile.
 459       const char* msg = "failed to generate predicate for intrinsic";
 460       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 461     } else {
 462       // Root compile
 463       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 464                                         vmIntrinsics::name_at(intrinsic_id()),
 465                                         (is_virtual() ? " (virtual)" : ""), bci);
 466     }
 467   }
 468   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 469   return NULL;
 470 }
 471 
 472 bool LibraryCallKit::try_to_inline(int predicate) {
 473   // Handle symbolic names for otherwise undistinguished boolean switches:
 474   const bool is_store       = true;
 475   const bool is_compress    = true;
 476   const bool is_native_ptr  = true;
 477   const bool is_static      = true;
 478   const bool is_volatile    = true;
 479 
 480   if (!jvms()->has_method()) {
 481     // Root JVMState has a null method.
 482     assert(map()->memory()->Opcode() == Op_Parm, "");
 483     // Insert the memory aliasing node
 484     set_all_memory(reset_memory());
 485   }
 486   assert(merged_memory(), "");
 487 
 488 
 489   switch (intrinsic_id()) {
 490   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 491   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 492   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 493 
 494   case vmIntrinsics::_dsin:
 495   case vmIntrinsics::_dcos:
 496   case vmIntrinsics::_dtan:
 497   case vmIntrinsics::_dabs:
 498   case vmIntrinsics::_datan2:
 499   case vmIntrinsics::_dsqrt:
 500   case vmIntrinsics::_dexp:
 501   case vmIntrinsics::_dlog:
 502   case vmIntrinsics::_dlog10:
 503   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 504 
 505   case vmIntrinsics::_min:
 506   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 507 
 508   case vmIntrinsics::_notify:
 509   case vmIntrinsics::_notifyAll:
 510     if (InlineNotify) {
 511       return inline_notify(intrinsic_id());
 512     }
 513     return false;
 514 
 515   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 516   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 517   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 518   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 519   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 520   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 521   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 522   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 523   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 524   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 525   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 526   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 527 
 528   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 529 
 530   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 531   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 532   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 533   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 534 
 535   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 536   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 537   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 538   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 539   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 540   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 541   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 542 
 543   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 544   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 545 
 546   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 547   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 548   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 549   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 550 
 551   case vmIntrinsics::_compressStringC:
 552   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 553   case vmIntrinsics::_inflateStringC:
 554   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 555 
 556   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Relaxed, false);
 557   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Relaxed, false);
 558   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Relaxed, false);
 559   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Relaxed, false);
 560   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Relaxed, false);
 561   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Relaxed, false);
 562   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Relaxed, false);
 563   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Relaxed, false);
 564   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Relaxed, false);
 565 
 566   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Relaxed, false);
 567   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Relaxed, false);
 568   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Relaxed, false);
 569   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Relaxed, false);
 570   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Relaxed, false);
 571   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Relaxed, false);
 572   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Relaxed, false);
 573   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Relaxed, false);
 574   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Relaxed, false);
 575 
 576   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,     Relaxed, false);
 577   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,    Relaxed, false);
 578   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,     Relaxed, false);
 579   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,      Relaxed, false);
 580   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,     Relaxed, false);
 581   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,    Relaxed, false);
 582   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,   Relaxed, false);
 583   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS,  Relaxed, false);
 584 
 585   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,     Relaxed, false);
 586   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,    Relaxed, false);
 587   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,     Relaxed, false);
 588   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,      Relaxed, false);
 589   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,     Relaxed, false);
 590   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,    Relaxed, false);
 591   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,   Relaxed, false);
 592   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS,  Relaxed, false);
 593 
 594   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Volatile, false);
 595   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Volatile, false);
 596   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Volatile, false);
 597   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Volatile, false);
 598   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Volatile, false);
 599   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Volatile, false);
 600   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Volatile, false);
 601   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Volatile, false);
 602   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Volatile, false);
 603 
 604   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Volatile, false);
 605   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Volatile, false);
 606   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Volatile, false);
 607   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Volatile, false);
 608   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Volatile, false);
 609   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Volatile, false);
 610   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Volatile, false);
 611   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Volatile, false);
 612   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Volatile, false);
 613 
 614   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Relaxed, true);
 615   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Relaxed, true);
 616   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Relaxed, true);
 617   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Relaxed, true);
 618 
 619   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Relaxed, true);
 620   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Relaxed, true);
 621   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Relaxed, true);
 622   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Relaxed, true);
 623 
 624   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Release, false);
 625   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Release, false);
 626   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Release, false);
 627 
 628   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Acquire, false);
 629   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Acquire, false);
 630   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Acquire, false);
 631   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Acquire, false);
 632   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Acquire, false);
 633   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Acquire, false);
 634   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Acquire, false);
 635   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Acquire, false);
 636   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Acquire, false);
 637 
 638   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Release, false);
 639   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Release, false);
 640   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Release, false);
 641   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Release, false);
 642   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Release, false);
 643   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Release, false);
 644   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Release, false);
 645   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Release, false);
 646   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Release, false);
 647 
 648   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Opaque, false);
 649   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Opaque, false);
 650   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Opaque, false);
 651   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Opaque, false);
 652   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Opaque, false);
 653   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Opaque, false);
 654   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Opaque, false);
 655   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Opaque, false);
 656   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Opaque, false);
 657 
 658   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Opaque, false);
 659   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Opaque, false);
 660   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Opaque, false);
 661   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Opaque, false);
 662   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Opaque, false);
 663   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Opaque, false);
 664   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Opaque, false);
 665   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Opaque, false);
 666   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Opaque, false);
 667 
 668   case vmIntrinsics::_compareAndSwapObject:             return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 669   case vmIntrinsics::_compareAndSwapInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 670   case vmIntrinsics::_compareAndSwapLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 671 
 672   case vmIntrinsics::_weakCompareAndSwapObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 673   case vmIntrinsics::_weakCompareAndSwapObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 674   case vmIntrinsics::_weakCompareAndSwapObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 675   case vmIntrinsics::_weakCompareAndSwapInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 676   case vmIntrinsics::_weakCompareAndSwapIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 677   case vmIntrinsics::_weakCompareAndSwapIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 678   case vmIntrinsics::_weakCompareAndSwapLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 679   case vmIntrinsics::_weakCompareAndSwapLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 680   case vmIntrinsics::_weakCompareAndSwapLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 681 
 682   case vmIntrinsics::_compareAndExchangeObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 683   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 684   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 685   case vmIntrinsics::_compareAndExchangeIntVolatile:    return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 686   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 687   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 688   case vmIntrinsics::_compareAndExchangeLongVolatile:   return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 689   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 690   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 691 
 692   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 693   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 694   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 695   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 696   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 697 
 698   case vmIntrinsics::_loadFence:
 699   case vmIntrinsics::_storeFence:
 700   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 701 
 702   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 703   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 704 
 705 #ifdef TRACE_HAVE_INTRINSICS
 706   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 707 #endif
 708   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 709   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 710   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 711   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 712   case vmIntrinsics::_getLength:                return inline_native_getLength();
 713   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 714   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 715   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 716   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 717   case vmIntrinsics::_Objects_checkIndex:       return inline_objects_checkIndex();
 718   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 719 
 720   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 721   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 722 
 723   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 724 
 725   case vmIntrinsics::_isInstance:
 726   case vmIntrinsics::_getModifiers:
 727   case vmIntrinsics::_isInterface:
 728   case vmIntrinsics::_isArray:
 729   case vmIntrinsics::_isPrimitive:
 730   case vmIntrinsics::_getSuperclass:
 731   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 732 
 733   case vmIntrinsics::_floatToRawIntBits:
 734   case vmIntrinsics::_floatToIntBits:
 735   case vmIntrinsics::_intBitsToFloat:
 736   case vmIntrinsics::_doubleToRawLongBits:
 737   case vmIntrinsics::_doubleToLongBits:
 738   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 739 
 740   case vmIntrinsics::_numberOfLeadingZeros_i:
 741   case vmIntrinsics::_numberOfLeadingZeros_l:
 742   case vmIntrinsics::_numberOfTrailingZeros_i:
 743   case vmIntrinsics::_numberOfTrailingZeros_l:
 744   case vmIntrinsics::_bitCount_i:
 745   case vmIntrinsics::_bitCount_l:
 746   case vmIntrinsics::_reverseBytes_i:
 747   case vmIntrinsics::_reverseBytes_l:
 748   case vmIntrinsics::_reverseBytes_s:
 749   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 750 
 751   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 752 
 753   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 754 
 755   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 756 
 757   case vmIntrinsics::_aescrypt_encryptBlock:
 758   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 759 
 760   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 761   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 762     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 763 
 764   case vmIntrinsics::_counterMode_AESCrypt:
 765     return inline_counterMode_AESCrypt(intrinsic_id());
 766 
 767   case vmIntrinsics::_sha_implCompress:
 768   case vmIntrinsics::_sha2_implCompress:
 769   case vmIntrinsics::_sha5_implCompress:
 770     return inline_sha_implCompress(intrinsic_id());
 771 
 772   case vmIntrinsics::_digestBase_implCompressMB:
 773     return inline_digestBase_implCompressMB(predicate);
 774 
 775   case vmIntrinsics::_multiplyToLen:
 776     return inline_multiplyToLen();
 777 
 778   case vmIntrinsics::_squareToLen:
 779     return inline_squareToLen();
 780 
 781   case vmIntrinsics::_mulAdd:
 782     return inline_mulAdd();
 783 
 784   case vmIntrinsics::_montgomeryMultiply:
 785     return inline_montgomeryMultiply();
 786   case vmIntrinsics::_montgomerySquare:
 787     return inline_montgomerySquare();
 788 
 789   case vmIntrinsics::_vectorizedMismatch:
 790     return inline_vectorizedMismatch();
 791 
 792   case vmIntrinsics::_ghash_processBlocks:
 793     return inline_ghash_processBlocks();
 794 
 795   case vmIntrinsics::_encodeISOArray:
 796   case vmIntrinsics::_encodeByteISOArray:
 797     return inline_encodeISOArray();
 798 
 799   case vmIntrinsics::_updateCRC32:
 800     return inline_updateCRC32();
 801   case vmIntrinsics::_updateBytesCRC32:
 802     return inline_updateBytesCRC32();
 803   case vmIntrinsics::_updateByteBufferCRC32:
 804     return inline_updateByteBufferCRC32();
 805 
 806   case vmIntrinsics::_updateBytesCRC32C:
 807     return inline_updateBytesCRC32C();
 808   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 809     return inline_updateDirectByteBufferCRC32C();
 810 
 811   case vmIntrinsics::_updateBytesAdler32:
 812     return inline_updateBytesAdler32();
 813   case vmIntrinsics::_updateByteBufferAdler32:
 814     return inline_updateByteBufferAdler32();
 815 
 816   case vmIntrinsics::_profileBoolean:
 817     return inline_profileBoolean();
 818   case vmIntrinsics::_isCompileConstant:
 819     return inline_isCompileConstant();
 820 
 821   case vmIntrinsics::_hasNegatives:
 822     return inline_hasNegatives();
 823 
 824   default:
 825     // If you get here, it may be that someone has added a new intrinsic
 826     // to the list in vmSymbols.hpp without implementing it here.
 827 #ifndef PRODUCT
 828     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 829       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 830                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 831     }
 832 #endif
 833     return false;
 834   }
 835 }
 836 
 837 Node* LibraryCallKit::try_to_predicate(int predicate) {
 838   if (!jvms()->has_method()) {
 839     // Root JVMState has a null method.
 840     assert(map()->memory()->Opcode() == Op_Parm, "");
 841     // Insert the memory aliasing node
 842     set_all_memory(reset_memory());
 843   }
 844   assert(merged_memory(), "");
 845 
 846   switch (intrinsic_id()) {
 847   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 848     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 849   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 850     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 851   case vmIntrinsics::_counterMode_AESCrypt:
 852     return inline_counterMode_AESCrypt_predicate();
 853   case vmIntrinsics::_digestBase_implCompressMB:
 854     return inline_digestBase_implCompressMB_predicate(predicate);
 855 
 856   default:
 857     // If you get here, it may be that someone has added a new intrinsic
 858     // to the list in vmSymbols.hpp without implementing it here.
 859 #ifndef PRODUCT
 860     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 861       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 862                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 863     }
 864 #endif
 865     Node* slow_ctl = control();
 866     set_control(top()); // No fast path instrinsic
 867     return slow_ctl;
 868   }
 869 }
 870 
 871 //------------------------------set_result-------------------------------
 872 // Helper function for finishing intrinsics.
 873 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 874   record_for_igvn(region);
 875   set_control(_gvn.transform(region));
 876   set_result( _gvn.transform(value));
 877   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 878 }
 879 
 880 //------------------------------generate_guard---------------------------
 881 // Helper function for generating guarded fast-slow graph structures.
 882 // The given 'test', if true, guards a slow path.  If the test fails
 883 // then a fast path can be taken.  (We generally hope it fails.)
 884 // In all cases, GraphKit::control() is updated to the fast path.
 885 // The returned value represents the control for the slow path.
 886 // The return value is never 'top'; it is either a valid control
 887 // or NULL if it is obvious that the slow path can never be taken.
 888 // Also, if region and the slow control are not NULL, the slow edge
 889 // is appended to the region.
 890 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 891   if (stopped()) {
 892     // Already short circuited.
 893     return NULL;
 894   }
 895 
 896   // Build an if node and its projections.
 897   // If test is true we take the slow path, which we assume is uncommon.
 898   if (_gvn.type(test) == TypeInt::ZERO) {
 899     // The slow branch is never taken.  No need to build this guard.
 900     return NULL;
 901   }
 902 
 903   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 904 
 905   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 906   if (if_slow == top()) {
 907     // The slow branch is never taken.  No need to build this guard.
 908     return NULL;
 909   }
 910 
 911   if (region != NULL)
 912     region->add_req(if_slow);
 913 
 914   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 915   set_control(if_fast);
 916 
 917   return if_slow;
 918 }
 919 
 920 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 921   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 922 }
 923 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 924   return generate_guard(test, region, PROB_FAIR);
 925 }
 926 
 927 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 928                                                      Node* *pos_index) {
 929   if (stopped())
 930     return NULL;                // already stopped
 931   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 932     return NULL;                // index is already adequately typed
 933   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 934   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 935   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 936   if (is_neg != NULL && pos_index != NULL) {
 937     // Emulate effect of Parse::adjust_map_after_if.
 938     Node* ccast = new CastIINode(index, TypeInt::POS);
 939     ccast->set_req(0, control());
 940     (*pos_index) = _gvn.transform(ccast);
 941   }
 942   return is_neg;
 943 }
 944 
 945 // Make sure that 'position' is a valid limit index, in [0..length].
 946 // There are two equivalent plans for checking this:
 947 //   A. (offset + copyLength)  unsigned<=  arrayLength
 948 //   B. offset  <=  (arrayLength - copyLength)
 949 // We require that all of the values above, except for the sum and
 950 // difference, are already known to be non-negative.
 951 // Plan A is robust in the face of overflow, if offset and copyLength
 952 // are both hugely positive.
 953 //
 954 // Plan B is less direct and intuitive, but it does not overflow at
 955 // all, since the difference of two non-negatives is always
 956 // representable.  Whenever Java methods must perform the equivalent
 957 // check they generally use Plan B instead of Plan A.
 958 // For the moment we use Plan A.
 959 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 960                                                   Node* subseq_length,
 961                                                   Node* array_length,
 962                                                   RegionNode* region) {
 963   if (stopped())
 964     return NULL;                // already stopped
 965   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 966   if (zero_offset && subseq_length->eqv_uncast(array_length))
 967     return NULL;                // common case of whole-array copy
 968   Node* last = subseq_length;
 969   if (!zero_offset)             // last += offset
 970     last = _gvn.transform(new AddINode(last, offset));
 971   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 972   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 973   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 974   return is_over;
 975 }
 976 
 977 // Emit range checks for the given String.value byte array
 978 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 979   if (stopped()) {
 980     return; // already stopped
 981   }
 982   RegionNode* bailout = new RegionNode(1);
 983   record_for_igvn(bailout);
 984   if (char_count) {
 985     // Convert char count to byte count
 986     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 987   }
 988 
 989   // Offset and count must not be negative
 990   generate_negative_guard(offset, bailout);
 991   generate_negative_guard(count, bailout);
 992   // Offset + count must not exceed length of array
 993   generate_limit_guard(offset, count, load_array_length(array), bailout);
 994 
 995   if (bailout->req() > 1) {
 996     PreserveJVMState pjvms(this);
 997     set_control(_gvn.transform(bailout));
 998     uncommon_trap(Deoptimization::Reason_intrinsic,
 999                   Deoptimization::Action_maybe_recompile);
1000   }
1001 }
1002 
1003 //--------------------------generate_current_thread--------------------
1004 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1005   ciKlass*    thread_klass = env()->Thread_klass();
1006   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1007   Node* thread = _gvn.transform(new ThreadLocalNode());
1008   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1009   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1010   tls_output = thread;
1011   return threadObj;
1012 }
1013 
1014 
1015 //------------------------------make_string_method_node------------------------
1016 // Helper method for String intrinsic functions. This version is called with
1017 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1018 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1019 // containing the lengths of str1 and str2.
1020 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1021   Node* result = NULL;
1022   switch (opcode) {
1023   case Op_StrIndexOf:
1024     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1025                                 str1_start, cnt1, str2_start, cnt2, ae);
1026     break;
1027   case Op_StrComp:
1028     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1029                              str1_start, cnt1, str2_start, cnt2, ae);
1030     break;
1031   case Op_StrEquals:
1032     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1033     // Use the constant length if there is one because optimized match rule may exist.
1034     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1035                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1036     break;
1037   default:
1038     ShouldNotReachHere();
1039     return NULL;
1040   }
1041 
1042   // All these intrinsics have checks.
1043   C->set_has_split_ifs(true); // Has chance for split-if optimization
1044 
1045   return _gvn.transform(result);
1046 }
1047 
1048 //------------------------------inline_string_compareTo------------------------
1049 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1050   Node* arg1 = argument(0);
1051   Node* arg2 = argument(1);
1052 
1053   // Get start addr and length of first argument
1054   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1055   Node* arg1_cnt    = load_array_length(arg1);
1056 
1057   // Get start addr and length of second argument
1058   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1059   Node* arg2_cnt    = load_array_length(arg2);
1060 
1061   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1062   set_result(result);
1063   return true;
1064 }
1065 
1066 //------------------------------inline_string_equals------------------------
1067 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1068   Node* arg1 = argument(0);
1069   Node* arg2 = argument(1);
1070 
1071   // paths (plus control) merge
1072   RegionNode* region = new RegionNode(3);
1073   Node* phi = new PhiNode(region, TypeInt::BOOL);
1074 
1075   if (!stopped()) {
1076     // Get start addr and length of first argument
1077     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1078     Node* arg1_cnt    = load_array_length(arg1);
1079 
1080     // Get start addr and length of second argument
1081     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1082     Node* arg2_cnt    = load_array_length(arg2);
1083 
1084     // Check for arg1_cnt != arg2_cnt
1085     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1086     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1087     Node* if_ne = generate_slow_guard(bol, NULL);
1088     if (if_ne != NULL) {
1089       phi->init_req(2, intcon(0));
1090       region->init_req(2, if_ne);
1091     }
1092 
1093     // Check for count == 0 is done by assembler code for StrEquals.
1094 
1095     if (!stopped()) {
1096       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1097       phi->init_req(1, equals);
1098       region->init_req(1, control());
1099     }
1100   }
1101 
1102   // post merge
1103   set_control(_gvn.transform(region));
1104   record_for_igvn(region);
1105 
1106   set_result(_gvn.transform(phi));
1107   return true;
1108 }
1109 
1110 //------------------------------inline_array_equals----------------------------
1111 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1112   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1113   Node* arg1 = argument(0);
1114   Node* arg2 = argument(1);
1115 
1116   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1117   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1118   return true;
1119 }
1120 
1121 //------------------------------inline_hasNegatives------------------------------
1122 bool LibraryCallKit::inline_hasNegatives() {
1123   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1124     return false;
1125   }
1126 
1127   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1128   // no receiver since it is static method
1129   Node* ba         = argument(0);
1130   Node* offset     = argument(1);
1131   Node* len        = argument(2);
1132 
1133   // Range checks
1134   generate_string_range_check(ba, offset, len, false);
1135   if (stopped()) {
1136     return true;
1137   }
1138   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1139   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1140   set_result(_gvn.transform(result));
1141   return true;
1142 }
1143 
1144 bool LibraryCallKit::inline_objects_checkIndex() {
1145   Node* index = argument(0);
1146   Node* length = argument(1);
1147   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1148     return false;
1149   }
1150 
1151   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1152   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1153 
1154   {
1155     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1156     uncommon_trap(Deoptimization::Reason_intrinsic,
1157                   Deoptimization::Action_make_not_entrant);
1158   }
1159 
1160   if (stopped()) {
1161     return false;
1162   }
1163 
1164   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1165   BoolTest::mask btest = BoolTest::lt;
1166   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1167   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1168   _gvn.set_type(rc, rc->Value(&_gvn));
1169   if (!rc_bool->is_Con()) {
1170     record_for_igvn(rc);
1171   }
1172   set_control(_gvn.transform(new IfTrueNode(rc)));
1173   {
1174     PreserveJVMState pjvms(this);
1175     set_control(_gvn.transform(new IfFalseNode(rc)));
1176     uncommon_trap(Deoptimization::Reason_range_check,
1177                   Deoptimization::Action_make_not_entrant);
1178   }
1179 
1180   if (stopped()) {
1181     return false;
1182   }
1183 
1184   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1185   result->set_req(0, control());
1186   result = _gvn.transform(result);
1187   set_result(result);
1188   replace_in_map(index, result);
1189   return true;
1190 }
1191 
1192 //------------------------------inline_string_indexOf------------------------
1193 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1194   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1195     return false;
1196   }
1197   Node* src = argument(0);
1198   Node* tgt = argument(1);
1199 
1200   // Make the merge point
1201   RegionNode* result_rgn = new RegionNode(4);
1202   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1203 
1204   // Get start addr and length of source string
1205   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1206   Node* src_count = load_array_length(src);
1207 
1208   // Get start addr and length of substring
1209   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1210   Node* tgt_count = load_array_length(tgt);
1211 
1212   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1213     // Divide src size by 2 if String is UTF16 encoded
1214     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1215   }
1216   if (ae == StrIntrinsicNode::UU) {
1217     // Divide substring size by 2 if String is UTF16 encoded
1218     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1219   }
1220 
1221   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1222   if (result != NULL) {
1223     result_phi->init_req(3, result);
1224     result_rgn->init_req(3, control());
1225   }
1226   set_control(_gvn.transform(result_rgn));
1227   record_for_igvn(result_rgn);
1228   set_result(_gvn.transform(result_phi));
1229 
1230   return true;
1231 }
1232 
1233 //-----------------------------inline_string_indexOf-----------------------
1234 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1235   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1236     return false;
1237   }
1238   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1239     return false;
1240   }
1241   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1242   Node* src         = argument(0); // byte[]
1243   Node* src_count   = argument(1); // char count
1244   Node* tgt         = argument(2); // byte[]
1245   Node* tgt_count   = argument(3); // char count
1246   Node* from_index  = argument(4); // char index
1247 
1248   // Multiply byte array index by 2 if String is UTF16 encoded
1249   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1250   src_count = _gvn.transform(new SubINode(src_count, from_index));
1251   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1252   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1253 
1254   // Range checks
1255   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1256   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1257   if (stopped()) {
1258     return true;
1259   }
1260 
1261   RegionNode* region = new RegionNode(5);
1262   Node* phi = new PhiNode(region, TypeInt::INT);
1263 
1264   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1265   if (result != NULL) {
1266     // The result is index relative to from_index if substring was found, -1 otherwise.
1267     // Generate code which will fold into cmove.
1268     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1269     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1270 
1271     Node* if_lt = generate_slow_guard(bol, NULL);
1272     if (if_lt != NULL) {
1273       // result == -1
1274       phi->init_req(3, result);
1275       region->init_req(3, if_lt);
1276     }
1277     if (!stopped()) {
1278       result = _gvn.transform(new AddINode(result, from_index));
1279       phi->init_req(4, result);
1280       region->init_req(4, control());
1281     }
1282   }
1283 
1284   set_control(_gvn.transform(region));
1285   record_for_igvn(region);
1286   set_result(_gvn.transform(phi));
1287 
1288   return true;
1289 }
1290 
1291 // Create StrIndexOfNode with fast path checks
1292 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1293                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1294   // Check for substr count > string count
1295   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1296   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1297   Node* if_gt = generate_slow_guard(bol, NULL);
1298   if (if_gt != NULL) {
1299     phi->init_req(1, intcon(-1));
1300     region->init_req(1, if_gt);
1301   }
1302   if (!stopped()) {
1303     // Check for substr count == 0
1304     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1305     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1306     Node* if_zero = generate_slow_guard(bol, NULL);
1307     if (if_zero != NULL) {
1308       phi->init_req(2, intcon(0));
1309       region->init_req(2, if_zero);
1310     }
1311   }
1312   if (!stopped()) {
1313     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1314   }
1315   return NULL;
1316 }
1317 
1318 //-----------------------------inline_string_indexOfChar-----------------------
1319 bool LibraryCallKit::inline_string_indexOfChar() {
1320   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1321     return false;
1322   }
1323   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1324     return false;
1325   }
1326   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1327   Node* src         = argument(0); // byte[]
1328   Node* tgt         = argument(1); // tgt is int ch
1329   Node* from_index  = argument(2);
1330   Node* max         = argument(3);
1331 
1332   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1333   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1334   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1335 
1336   // Range checks
1337   generate_string_range_check(src, src_offset, src_count, true);
1338   if (stopped()) {
1339     return true;
1340   }
1341 
1342   RegionNode* region = new RegionNode(3);
1343   Node* phi = new PhiNode(region, TypeInt::INT);
1344 
1345   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1346   C->set_has_split_ifs(true); // Has chance for split-if optimization
1347   _gvn.transform(result);
1348 
1349   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1350   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1351 
1352   Node* if_lt = generate_slow_guard(bol, NULL);
1353   if (if_lt != NULL) {
1354     // result == -1
1355     phi->init_req(2, result);
1356     region->init_req(2, if_lt);
1357   }
1358   if (!stopped()) {
1359     result = _gvn.transform(new AddINode(result, from_index));
1360     phi->init_req(1, result);
1361     region->init_req(1, control());
1362   }
1363   set_control(_gvn.transform(region));
1364   record_for_igvn(region);
1365   set_result(_gvn.transform(phi));
1366 
1367   return true;
1368 }
1369 //---------------------------inline_string_copy---------------------
1370 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1371 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1372 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1373 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1374 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1375 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1376 bool LibraryCallKit::inline_string_copy(bool compress) {
1377   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1378     return false;
1379   }
1380   int nargs = 5;  // 2 oops, 3 ints
1381   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1382 
1383   Node* src         = argument(0);
1384   Node* src_offset  = argument(1);
1385   Node* dst         = argument(2);
1386   Node* dst_offset  = argument(3);
1387   Node* length      = argument(4);
1388 
1389   // Check for allocation before we add nodes that would confuse
1390   // tightly_coupled_allocation()
1391   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1392 
1393   // Figure out the size and type of the elements we will be copying.
1394   const Type* src_type = src->Value(&_gvn);
1395   const Type* dst_type = dst->Value(&_gvn);
1396   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1397   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1398   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1399          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1400          "Unsupported array types for inline_string_copy");
1401 
1402   // Range checks
1403   generate_string_range_check(src, src_offset, length, compress && src_elem == T_BYTE);
1404   generate_string_range_check(dst, dst_offset, length, !compress && dst_elem == T_BYTE);
1405   if (stopped()) {
1406     return true;
1407   }
1408 
1409   // Convert char[] offsets to byte[] offsets
1410   if (compress && src_elem == T_BYTE) {
1411     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1412   } else if (!compress && dst_elem == T_BYTE) {
1413     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1414   }
1415 
1416   Node* src_start = array_element_address(src, src_offset, src_elem);
1417   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1418   // 'src_start' points to src array + scaled offset
1419   // 'dst_start' points to dst array + scaled offset
1420   Node* count = NULL;
1421   if (compress) {
1422     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1423   } else {
1424     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1425   }
1426 
1427   if (alloc != NULL) {
1428     if (alloc->maybe_set_complete(&_gvn)) {
1429       // "You break it, you buy it."
1430       InitializeNode* init = alloc->initialization();
1431       assert(init->is_complete(), "we just did this");
1432       init->set_complete_with_arraycopy();
1433       assert(dst->is_CheckCastPP(), "sanity");
1434       assert(dst->in(0)->in(0) == init, "dest pinned");
1435     }
1436     // Do not let stores that initialize this object be reordered with
1437     // a subsequent store that would make this object accessible by
1438     // other threads.
1439     // Record what AllocateNode this StoreStore protects so that
1440     // escape analysis can go from the MemBarStoreStoreNode to the
1441     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1442     // based on the escape status of the AllocateNode.
1443     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1444   }
1445   if (compress) {
1446     set_result(_gvn.transform(count));
1447   }
1448   return true;
1449 }
1450 
1451 #ifdef _LP64
1452 #define XTOP ,top() /*additional argument*/
1453 #else  //_LP64
1454 #define XTOP        /*no additional argument*/
1455 #endif //_LP64
1456 
1457 //------------------------inline_string_toBytesU--------------------------
1458 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1459 bool LibraryCallKit::inline_string_toBytesU() {
1460   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1461     return false;
1462   }
1463   // Get the arguments.
1464   Node* value     = argument(0);
1465   Node* offset    = argument(1);
1466   Node* length    = argument(2);
1467 
1468   Node* newcopy = NULL;
1469 
1470   // Set the original stack and the reexecute bit for the interpreter to reexecute
1471   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1472   { PreserveReexecuteState preexecs(this);
1473     jvms()->set_should_reexecute(true);
1474 
1475     // Check if a null path was taken unconditionally.
1476     value = null_check(value);
1477 
1478     RegionNode* bailout = new RegionNode(1);
1479     record_for_igvn(bailout);
1480 
1481     // Range checks
1482     generate_negative_guard(offset, bailout);
1483     generate_negative_guard(length, bailout);
1484     generate_limit_guard(offset, length, load_array_length(value), bailout);
1485     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1486     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1487 
1488     if (bailout->req() > 1) {
1489       PreserveJVMState pjvms(this);
1490       set_control(_gvn.transform(bailout));
1491       uncommon_trap(Deoptimization::Reason_intrinsic,
1492                     Deoptimization::Action_maybe_recompile);
1493     }
1494     if (stopped()) {
1495       return true;
1496     }
1497 
1498     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1499     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1500     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1501     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1502 
1503     // Calculate starting addresses.
1504     Node* src_start = array_element_address(value, offset, T_CHAR);
1505     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1506 
1507     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1508     const TypeInt* toffset = gvn().type(offset)->is_int();
1509     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1510 
1511     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1512     const char* copyfunc_name = "arraycopy";
1513     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1514     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1515                       OptoRuntime::fast_arraycopy_Type(),
1516                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1517                       src_start, dst_start, ConvI2X(length) XTOP);
1518     // Do not let reads from the cloned object float above the arraycopy.
1519     if (alloc != NULL) {
1520       if (alloc->maybe_set_complete(&_gvn)) {
1521         // "You break it, you buy it."
1522         InitializeNode* init = alloc->initialization();
1523         assert(init->is_complete(), "we just did this");
1524         init->set_complete_with_arraycopy();
1525         assert(newcopy->is_CheckCastPP(), "sanity");
1526         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1527       }
1528       // Do not let stores that initialize this object be reordered with
1529       // a subsequent store that would make this object accessible by
1530       // other threads.
1531       // Record what AllocateNode this StoreStore protects so that
1532       // escape analysis can go from the MemBarStoreStoreNode to the
1533       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1534       // based on the escape status of the AllocateNode.
1535       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1536     } else {
1537       insert_mem_bar(Op_MemBarCPUOrder);
1538     }
1539   } // original reexecute is set back here
1540 
1541   C->set_has_split_ifs(true); // Has chance for split-if optimization
1542   if (!stopped()) {
1543     set_result(newcopy);
1544   }
1545   return true;
1546 }
1547 
1548 //------------------------inline_string_getCharsU--------------------------
1549 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1550 bool LibraryCallKit::inline_string_getCharsU() {
1551   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1552     return false;
1553   }
1554 
1555   // Get the arguments.
1556   Node* src       = argument(0);
1557   Node* src_begin = argument(1);
1558   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1559   Node* dst       = argument(3);
1560   Node* dst_begin = argument(4);
1561 
1562   // Check for allocation before we add nodes that would confuse
1563   // tightly_coupled_allocation()
1564   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1565 
1566   // Check if a null path was taken unconditionally.
1567   src = null_check(src);
1568   dst = null_check(dst);
1569   if (stopped()) {
1570     return true;
1571   }
1572 
1573   // Get length and convert char[] offset to byte[] offset
1574   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1575   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1576 
1577   // Range checks
1578   generate_string_range_check(src, src_begin, length, true);
1579   generate_string_range_check(dst, dst_begin, length, false);
1580   if (stopped()) {
1581     return true;
1582   }
1583 
1584   if (!stopped()) {
1585     // Calculate starting addresses.
1586     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1587     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1588 
1589     // Check if array addresses are aligned to HeapWordSize
1590     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1591     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1592     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1593                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1594 
1595     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1596     const char* copyfunc_name = "arraycopy";
1597     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1598     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1599                       OptoRuntime::fast_arraycopy_Type(),
1600                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1601                       src_start, dst_start, ConvI2X(length) XTOP);
1602     // Do not let reads from the cloned object float above the arraycopy.
1603     if (alloc != NULL) {
1604       if (alloc->maybe_set_complete(&_gvn)) {
1605         // "You break it, you buy it."
1606         InitializeNode* init = alloc->initialization();
1607         assert(init->is_complete(), "we just did this");
1608         init->set_complete_with_arraycopy();
1609         assert(dst->is_CheckCastPP(), "sanity");
1610         assert(dst->in(0)->in(0) == init, "dest pinned");
1611       }
1612       // Do not let stores that initialize this object be reordered with
1613       // a subsequent store that would make this object accessible by
1614       // other threads.
1615       // Record what AllocateNode this StoreStore protects so that
1616       // escape analysis can go from the MemBarStoreStoreNode to the
1617       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1618       // based on the escape status of the AllocateNode.
1619       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1620     } else {
1621       insert_mem_bar(Op_MemBarCPUOrder);
1622     }
1623   }
1624 
1625   C->set_has_split_ifs(true); // Has chance for split-if optimization
1626   return true;
1627 }
1628 
1629 //----------------------inline_string_char_access----------------------------
1630 // Store/Load char to/from byte[] array.
1631 // static void StringUTF16.putChar(byte[] val, int index, int c)
1632 // static char StringUTF16.getChar(byte[] val, int index)
1633 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1634   Node* value  = argument(0);
1635   Node* index  = argument(1);
1636   Node* ch = is_store ? argument(2) : NULL;
1637 
1638   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1639   // correctly requires matched array shapes.
1640   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1641           "sanity: byte[] and char[] bases agree");
1642   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1643           "sanity: byte[] and char[] scales agree");
1644 
1645   // Bail when getChar over constants is requested: constant folding would
1646   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1647   // Java method would constant fold nicely instead.
1648   if (!is_store && value->is_Con() && index->is_Con()) {
1649     return false;
1650   }
1651 
1652   Node* adr = array_element_address(value, index, T_CHAR);
1653   if (is_store) {
1654     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1655                            false, false, true /* mismatched */);
1656   } else {
1657     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1658                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1659     set_result(ch);
1660   }
1661   return true;
1662 }
1663 
1664 //--------------------------round_double_node--------------------------------
1665 // Round a double node if necessary.
1666 Node* LibraryCallKit::round_double_node(Node* n) {
1667   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1668     n = _gvn.transform(new RoundDoubleNode(0, n));
1669   return n;
1670 }
1671 
1672 //------------------------------inline_math-----------------------------------
1673 // public static double Math.abs(double)
1674 // public static double Math.sqrt(double)
1675 // public static double Math.log(double)
1676 // public static double Math.log10(double)
1677 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1678   Node* arg = round_double_node(argument(0));
1679   Node* n = NULL;
1680   switch (id) {
1681   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1682   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1683   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1684   default:  fatal_unexpected_iid(id);  break;
1685   }
1686   set_result(_gvn.transform(n));
1687   return true;
1688 }
1689 
1690 //------------------------------inline_trig----------------------------------
1691 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1692 // argument reduction which will turn into a fast/slow diamond.
1693 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1694   Node* arg = round_double_node(argument(0));
1695   Node* n = NULL;
1696 
1697   switch (id) {
1698   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1699   default:  fatal_unexpected_iid(id);  break;
1700   }
1701   n = _gvn.transform(n);
1702 
1703   // Rounding required?  Check for argument reduction!
1704   if (Matcher::strict_fp_requires_explicit_rounding) {
1705     static const double     pi_4 =  0.7853981633974483;
1706     static const double neg_pi_4 = -0.7853981633974483;
1707     // pi/2 in 80-bit extended precision
1708     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1709     // -pi/2 in 80-bit extended precision
1710     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1711     // Cutoff value for using this argument reduction technique
1712     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1713     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1714 
1715     // Pseudocode for sin:
1716     // if (x <= Math.PI / 4.0) {
1717     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1718     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1719     // } else {
1720     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1721     // }
1722     // return StrictMath.sin(x);
1723 
1724     // Pseudocode for cos:
1725     // if (x <= Math.PI / 4.0) {
1726     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1727     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1728     // } else {
1729     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1730     // }
1731     // return StrictMath.cos(x);
1732 
1733     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1734     // requires a special machine instruction to load it.  Instead we'll try
1735     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1736     // probably do the math inside the SIN encoding.
1737 
1738     // Make the merge point
1739     RegionNode* r = new RegionNode(3);
1740     Node* phi = new PhiNode(r, Type::DOUBLE);
1741 
1742     // Flatten arg so we need only 1 test
1743     Node *abs = _gvn.transform(new AbsDNode(arg));
1744     // Node for PI/4 constant
1745     Node *pi4 = makecon(TypeD::make(pi_4));
1746     // Check PI/4 : abs(arg)
1747     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1748     // Check: If PI/4 < abs(arg) then go slow
1749     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1750     // Branch either way
1751     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1752     set_control(opt_iff(r,iff));
1753 
1754     // Set fast path result
1755     phi->init_req(2, n);
1756 
1757     // Slow path - non-blocking leaf call
1758     Node* call = NULL;
1759     switch (id) {
1760     case vmIntrinsics::_dtan:
1761       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1762                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1763                                "Tan", NULL, arg, top());
1764       break;
1765     }
1766     assert(control()->in(0) == call, "");
1767     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1768     r->init_req(1, control());
1769     phi->init_req(1, slow_result);
1770 
1771     // Post-merge
1772     set_control(_gvn.transform(r));
1773     record_for_igvn(r);
1774     n = _gvn.transform(phi);
1775 
1776     C->set_has_split_ifs(true); // Has chance for split-if optimization
1777   }
1778   set_result(n);
1779   return true;
1780 }
1781 
1782 //------------------------------runtime_math-----------------------------
1783 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1784   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1785          "must be (DD)D or (D)D type");
1786 
1787   // Inputs
1788   Node* a = round_double_node(argument(0));
1789   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1790 
1791   const TypePtr* no_memory_effects = NULL;
1792   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1793                                  no_memory_effects,
1794                                  a, top(), b, b ? top() : NULL);
1795   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1796 #ifdef ASSERT
1797   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1798   assert(value_top == top(), "second value must be top");
1799 #endif
1800 
1801   set_result(value);
1802   return true;
1803 }
1804 
1805 //------------------------------inline_math_native-----------------------------
1806 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1807 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1808   switch (id) {
1809     // These intrinsics are not properly supported on all hardware
1810   case vmIntrinsics::_dsin:
1811     return StubRoutines::dsin() != NULL ?
1812       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1813       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1814   case vmIntrinsics::_dcos:
1815     return StubRoutines::dcos() != NULL ?
1816       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1817       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1818   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1819     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1820 
1821   case vmIntrinsics::_dlog:
1822     return StubRoutines::dlog() != NULL ?
1823       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1824       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1825   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1826     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1827 
1828     // These intrinsics are supported on all hardware
1829   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1830   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1831 
1832   case vmIntrinsics::_dexp:
1833     return StubRoutines::dexp() != NULL ?
1834       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1835       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1836   case vmIntrinsics::_dpow:
1837     return StubRoutines::dpow() != NULL ?
1838       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1839       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1840 #undef FN_PTR
1841 
1842    // These intrinsics are not yet correctly implemented
1843   case vmIntrinsics::_datan2:
1844     return false;
1845 
1846   default:
1847     fatal_unexpected_iid(id);
1848     return false;
1849   }
1850 }
1851 
1852 static bool is_simple_name(Node* n) {
1853   return (n->req() == 1         // constant
1854           || (n->is_Type() && n->as_Type()->type()->singleton())
1855           || n->is_Proj()       // parameter or return value
1856           || n->is_Phi()        // local of some sort
1857           );
1858 }
1859 
1860 //----------------------------inline_notify-----------------------------------*
1861 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1862   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1863   address func;
1864   if (id == vmIntrinsics::_notify) {
1865     func = OptoRuntime::monitor_notify_Java();
1866   } else {
1867     func = OptoRuntime::monitor_notifyAll_Java();
1868   }
1869   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1870   make_slow_call_ex(call, env()->Throwable_klass(), false);
1871   return true;
1872 }
1873 
1874 
1875 //----------------------------inline_min_max-----------------------------------
1876 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1877   set_result(generate_min_max(id, argument(0), argument(1)));
1878   return true;
1879 }
1880 
1881 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1882   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1883   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1884   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1885   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1886 
1887   {
1888     PreserveJVMState pjvms(this);
1889     PreserveReexecuteState preexecs(this);
1890     jvms()->set_should_reexecute(true);
1891 
1892     set_control(slow_path);
1893     set_i_o(i_o());
1894 
1895     uncommon_trap(Deoptimization::Reason_intrinsic,
1896                   Deoptimization::Action_none);
1897   }
1898 
1899   set_control(fast_path);
1900   set_result(math);
1901 }
1902 
1903 template <typename OverflowOp>
1904 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1905   typedef typename OverflowOp::MathOp MathOp;
1906 
1907   MathOp* mathOp = new MathOp(arg1, arg2);
1908   Node* operation = _gvn.transform( mathOp );
1909   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1910   inline_math_mathExact(operation, ofcheck);
1911   return true;
1912 }
1913 
1914 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1915   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1916 }
1917 
1918 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1919   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1920 }
1921 
1922 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1923   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1924 }
1925 
1926 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1927   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1928 }
1929 
1930 bool LibraryCallKit::inline_math_negateExactI() {
1931   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1932 }
1933 
1934 bool LibraryCallKit::inline_math_negateExactL() {
1935   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1936 }
1937 
1938 bool LibraryCallKit::inline_math_multiplyExactI() {
1939   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1940 }
1941 
1942 bool LibraryCallKit::inline_math_multiplyExactL() {
1943   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1944 }
1945 
1946 Node*
1947 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1948   // These are the candidate return value:
1949   Node* xvalue = x0;
1950   Node* yvalue = y0;
1951 
1952   if (xvalue == yvalue) {
1953     return xvalue;
1954   }
1955 
1956   bool want_max = (id == vmIntrinsics::_max);
1957 
1958   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1959   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1960   if (txvalue == NULL || tyvalue == NULL)  return top();
1961   // This is not really necessary, but it is consistent with a
1962   // hypothetical MaxINode::Value method:
1963   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1964 
1965   // %%% This folding logic should (ideally) be in a different place.
1966   // Some should be inside IfNode, and there to be a more reliable
1967   // transformation of ?: style patterns into cmoves.  We also want
1968   // more powerful optimizations around cmove and min/max.
1969 
1970   // Try to find a dominating comparison of these guys.
1971   // It can simplify the index computation for Arrays.copyOf
1972   // and similar uses of System.arraycopy.
1973   // First, compute the normalized version of CmpI(x, y).
1974   int   cmp_op = Op_CmpI;
1975   Node* xkey = xvalue;
1976   Node* ykey = yvalue;
1977   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1978   if (ideal_cmpxy->is_Cmp()) {
1979     // E.g., if we have CmpI(length - offset, count),
1980     // it might idealize to CmpI(length, count + offset)
1981     cmp_op = ideal_cmpxy->Opcode();
1982     xkey = ideal_cmpxy->in(1);
1983     ykey = ideal_cmpxy->in(2);
1984   }
1985 
1986   // Start by locating any relevant comparisons.
1987   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1988   Node* cmpxy = NULL;
1989   Node* cmpyx = NULL;
1990   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1991     Node* cmp = start_from->fast_out(k);
1992     if (cmp->outcnt() > 0 &&            // must have prior uses
1993         cmp->in(0) == NULL &&           // must be context-independent
1994         cmp->Opcode() == cmp_op) {      // right kind of compare
1995       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1996       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1997     }
1998   }
1999 
2000   const int NCMPS = 2;
2001   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2002   int cmpn;
2003   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2004     if (cmps[cmpn] != NULL)  break;     // find a result
2005   }
2006   if (cmpn < NCMPS) {
2007     // Look for a dominating test that tells us the min and max.
2008     int depth = 0;                // Limit search depth for speed
2009     Node* dom = control();
2010     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2011       if (++depth >= 100)  break;
2012       Node* ifproj = dom;
2013       if (!ifproj->is_Proj())  continue;
2014       Node* iff = ifproj->in(0);
2015       if (!iff->is_If())  continue;
2016       Node* bol = iff->in(1);
2017       if (!bol->is_Bool())  continue;
2018       Node* cmp = bol->in(1);
2019       if (cmp == NULL)  continue;
2020       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2021         if (cmps[cmpn] == cmp)  break;
2022       if (cmpn == NCMPS)  continue;
2023       BoolTest::mask btest = bol->as_Bool()->_test._test;
2024       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2025       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2026       // At this point, we know that 'x btest y' is true.
2027       switch (btest) {
2028       case BoolTest::eq:
2029         // They are proven equal, so we can collapse the min/max.
2030         // Either value is the answer.  Choose the simpler.
2031         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2032           return yvalue;
2033         return xvalue;
2034       case BoolTest::lt:          // x < y
2035       case BoolTest::le:          // x <= y
2036         return (want_max ? yvalue : xvalue);
2037       case BoolTest::gt:          // x > y
2038       case BoolTest::ge:          // x >= y
2039         return (want_max ? xvalue : yvalue);
2040       }
2041     }
2042   }
2043 
2044   // We failed to find a dominating test.
2045   // Let's pick a test that might GVN with prior tests.
2046   Node*          best_bol   = NULL;
2047   BoolTest::mask best_btest = BoolTest::illegal;
2048   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2049     Node* cmp = cmps[cmpn];
2050     if (cmp == NULL)  continue;
2051     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2052       Node* bol = cmp->fast_out(j);
2053       if (!bol->is_Bool())  continue;
2054       BoolTest::mask btest = bol->as_Bool()->_test._test;
2055       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2056       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2057       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2058         best_bol   = bol->as_Bool();
2059         best_btest = btest;
2060       }
2061     }
2062   }
2063 
2064   Node* answer_if_true  = NULL;
2065   Node* answer_if_false = NULL;
2066   switch (best_btest) {
2067   default:
2068     if (cmpxy == NULL)
2069       cmpxy = ideal_cmpxy;
2070     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2071     // and fall through:
2072   case BoolTest::lt:          // x < y
2073   case BoolTest::le:          // x <= y
2074     answer_if_true  = (want_max ? yvalue : xvalue);
2075     answer_if_false = (want_max ? xvalue : yvalue);
2076     break;
2077   case BoolTest::gt:          // x > y
2078   case BoolTest::ge:          // x >= y
2079     answer_if_true  = (want_max ? xvalue : yvalue);
2080     answer_if_false = (want_max ? yvalue : xvalue);
2081     break;
2082   }
2083 
2084   jint hi, lo;
2085   if (want_max) {
2086     // We can sharpen the minimum.
2087     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2088     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2089   } else {
2090     // We can sharpen the maximum.
2091     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2092     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2093   }
2094 
2095   // Use a flow-free graph structure, to avoid creating excess control edges
2096   // which could hinder other optimizations.
2097   // Since Math.min/max is often used with arraycopy, we want
2098   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2099   Node* cmov = CMoveNode::make(NULL, best_bol,
2100                                answer_if_false, answer_if_true,
2101                                TypeInt::make(lo, hi, widen));
2102 
2103   return _gvn.transform(cmov);
2104 
2105   /*
2106   // This is not as desirable as it may seem, since Min and Max
2107   // nodes do not have a full set of optimizations.
2108   // And they would interfere, anyway, with 'if' optimizations
2109   // and with CMoveI canonical forms.
2110   switch (id) {
2111   case vmIntrinsics::_min:
2112     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2113   case vmIntrinsics::_max:
2114     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2115   default:
2116     ShouldNotReachHere();
2117   }
2118   */
2119 }
2120 
2121 inline int
2122 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2123   const TypePtr* base_type = TypePtr::NULL_PTR;
2124   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2125   if (base_type == NULL) {
2126     // Unknown type.
2127     return Type::AnyPtr;
2128   } else if (base_type == TypePtr::NULL_PTR) {
2129     // Since this is a NULL+long form, we have to switch to a rawptr.
2130     base   = _gvn.transform(new CastX2PNode(offset));
2131     offset = MakeConX(0);
2132     return Type::RawPtr;
2133   } else if (base_type->base() == Type::RawPtr) {
2134     return Type::RawPtr;
2135   } else if (base_type->isa_oopptr()) {
2136     // Base is never null => always a heap address.
2137     if (base_type->ptr() == TypePtr::NotNull) {
2138       return Type::OopPtr;
2139     }
2140     // Offset is small => always a heap address.
2141     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2142     if (offset_type != NULL &&
2143         base_type->offset() == 0 &&     // (should always be?)
2144         offset_type->_lo >= 0 &&
2145         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2146       return Type::OopPtr;
2147     }
2148     // Otherwise, it might either be oop+off or NULL+addr.
2149     return Type::AnyPtr;
2150   } else {
2151     // No information:
2152     return Type::AnyPtr;
2153   }
2154 }
2155 
2156 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2157   int kind = classify_unsafe_addr(base, offset);
2158   if (kind == Type::RawPtr) {
2159     return basic_plus_adr(top(), base, offset);
2160   } else {
2161     return basic_plus_adr(base, offset);
2162   }
2163 }
2164 
2165 //--------------------------inline_number_methods-----------------------------
2166 // inline int     Integer.numberOfLeadingZeros(int)
2167 // inline int        Long.numberOfLeadingZeros(long)
2168 //
2169 // inline int     Integer.numberOfTrailingZeros(int)
2170 // inline int        Long.numberOfTrailingZeros(long)
2171 //
2172 // inline int     Integer.bitCount(int)
2173 // inline int        Long.bitCount(long)
2174 //
2175 // inline char  Character.reverseBytes(char)
2176 // inline short     Short.reverseBytes(short)
2177 // inline int     Integer.reverseBytes(int)
2178 // inline long       Long.reverseBytes(long)
2179 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2180   Node* arg = argument(0);
2181   Node* n = NULL;
2182   switch (id) {
2183   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2184   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2185   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2186   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2187   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2188   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2189   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2190   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2191   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2192   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2193   default:  fatal_unexpected_iid(id);  break;
2194   }
2195   set_result(_gvn.transform(n));
2196   return true;
2197 }
2198 
2199 //----------------------------inline_unsafe_access----------------------------
2200 
2201 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2202 
2203 // Helper that guards and inserts a pre-barrier.
2204 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2205                                         Node* pre_val, bool need_mem_bar) {
2206   // We could be accessing the referent field of a reference object. If so, when G1
2207   // is enabled, we need to log the value in the referent field in an SATB buffer.
2208   // This routine performs some compile time filters and generates suitable
2209   // runtime filters that guard the pre-barrier code.
2210   // Also add memory barrier for non volatile load from the referent field
2211   // to prevent commoning of loads across safepoint.
2212   if (!UseG1GC && !need_mem_bar)
2213     return;
2214 
2215   // Some compile time checks.
2216 
2217   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2218   const TypeX* otype = offset->find_intptr_t_type();
2219   if (otype != NULL && otype->is_con() &&
2220       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2221     // Constant offset but not the reference_offset so just return
2222     return;
2223   }
2224 
2225   // We only need to generate the runtime guards for instances.
2226   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2227   if (btype != NULL) {
2228     if (btype->isa_aryptr()) {
2229       // Array type so nothing to do
2230       return;
2231     }
2232 
2233     const TypeInstPtr* itype = btype->isa_instptr();
2234     if (itype != NULL) {
2235       // Can the klass of base_oop be statically determined to be
2236       // _not_ a sub-class of Reference and _not_ Object?
2237       ciKlass* klass = itype->klass();
2238       if ( klass->is_loaded() &&
2239           !klass->is_subtype_of(env()->Reference_klass()) &&
2240           !env()->Object_klass()->is_subtype_of(klass)) {
2241         return;
2242       }
2243     }
2244   }
2245 
2246   // The compile time filters did not reject base_oop/offset so
2247   // we need to generate the following runtime filters
2248   //
2249   // if (offset == java_lang_ref_Reference::_reference_offset) {
2250   //   if (instance_of(base, java.lang.ref.Reference)) {
2251   //     pre_barrier(_, pre_val, ...);
2252   //   }
2253   // }
2254 
2255   float likely   = PROB_LIKELY(  0.999);
2256   float unlikely = PROB_UNLIKELY(0.999);
2257 
2258   IdealKit ideal(this);
2259 #define __ ideal.
2260 
2261   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2262 
2263   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2264       // Update graphKit memory and control from IdealKit.
2265       sync_kit(ideal);
2266 
2267       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2268       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2269 
2270       // Update IdealKit memory and control from graphKit.
2271       __ sync_kit(this);
2272 
2273       Node* one = __ ConI(1);
2274       // is_instof == 0 if base_oop == NULL
2275       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2276 
2277         // Update graphKit from IdeakKit.
2278         sync_kit(ideal);
2279 
2280         // Use the pre-barrier to record the value in the referent field
2281         pre_barrier(false /* do_load */,
2282                     __ ctrl(),
2283                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2284                     pre_val /* pre_val */,
2285                     T_OBJECT);
2286         if (need_mem_bar) {
2287           // Add memory barrier to prevent commoning reads from this field
2288           // across safepoint since GC can change its value.
2289           insert_mem_bar(Op_MemBarCPUOrder);
2290         }
2291         // Update IdealKit from graphKit.
2292         __ sync_kit(this);
2293 
2294       } __ end_if(); // _ref_type != ref_none
2295   } __ end_if(); // offset == referent_offset
2296 
2297   // Final sync IdealKit and GraphKit.
2298   final_sync(ideal);
2299 #undef __
2300 }
2301 
2302 
2303 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2304   // Attempt to infer a sharper value type from the offset and base type.
2305   ciKlass* sharpened_klass = NULL;
2306 
2307   // See if it is an instance field, with an object type.
2308   if (alias_type->field() != NULL) {
2309     assert(!is_native_ptr, "native pointer op cannot use a java address");
2310     if (alias_type->field()->type()->is_klass()) {
2311       sharpened_klass = alias_type->field()->type()->as_klass();
2312     }
2313   }
2314 
2315   // See if it is a narrow oop array.
2316   if (adr_type->isa_aryptr()) {
2317     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2318       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2319       if (elem_type != NULL) {
2320         sharpened_klass = elem_type->klass();
2321       }
2322     }
2323   }
2324 
2325   // The sharpened class might be unloaded if there is no class loader
2326   // contraint in place.
2327   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2328     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2329 
2330 #ifndef PRODUCT
2331     if (C->print_intrinsics() || C->print_inlining()) {
2332       tty->print("  from base type: ");  adr_type->dump();
2333       tty->print("  sharpened value: ");  tjp->dump();
2334     }
2335 #endif
2336     // Sharpen the value type.
2337     return tjp;
2338   }
2339   return NULL;
2340 }
2341 
2342 bool LibraryCallKit::inline_unsafe_access(const bool is_native_ptr, bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2343   if (callee()->is_static())  return false;  // caller must have the capability!
2344   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2345   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2346 
2347 #ifndef PRODUCT
2348   {
2349     ResourceMark rm;
2350     // Check the signatures.
2351     ciSignature* sig = callee()->signature();
2352 #ifdef ASSERT
2353     if (!is_store) {
2354       // Object getObject(Object base, int/long offset), etc.
2355       BasicType rtype = sig->return_type()->basic_type();
2356       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2357           rtype = T_ADDRESS;  // it is really a C void*
2358       assert(rtype == type, "getter must return the expected value");
2359       if (!is_native_ptr) {
2360         assert(sig->count() == 2, "oop getter has 2 arguments");
2361         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2362         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2363       } else {
2364         assert(sig->count() == 1, "native getter has 1 argument");
2365         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2366       }
2367     } else {
2368       // void putObject(Object base, int/long offset, Object x), etc.
2369       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2370       if (!is_native_ptr) {
2371         assert(sig->count() == 3, "oop putter has 3 arguments");
2372         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2373         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2374       } else {
2375         assert(sig->count() == 2, "native putter has 2 arguments");
2376         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2377       }
2378       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2379       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2380         vtype = T_ADDRESS;  // it is really a C void*
2381       assert(vtype == type, "putter must accept the expected value");
2382     }
2383 #endif // ASSERT
2384  }
2385 #endif //PRODUCT
2386 
2387   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2388 
2389   Node* receiver = argument(0);  // type: oop
2390 
2391   // Build address expression.
2392   Node* adr;
2393   Node* heap_base_oop = top();
2394   Node* offset = top();
2395   Node* val;
2396 
2397   if (!is_native_ptr) {
2398     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2399     Node* base = argument(1);  // type: oop
2400     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2401     offset = argument(2);  // type: long
2402     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2403     // to be plain byte offsets, which are also the same as those accepted
2404     // by oopDesc::field_base.
2405     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2406            "fieldOffset must be byte-scaled");
2407     // 32-bit machines ignore the high half!
2408     offset = ConvL2X(offset);
2409     adr = make_unsafe_address(base, offset);
2410     heap_base_oop = base;
2411     val = is_store ? argument(4) : NULL;
2412   } else {
2413     Node* ptr = argument(1);  // type: long
2414     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2415     adr = make_unsafe_address(NULL, ptr);
2416     val = is_store ? argument(3) : NULL;
2417   }
2418 
2419   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2420 
2421   // First guess at the value type.
2422   const Type *value_type = Type::get_const_basic_type(type);
2423 
2424   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2425   // there was not enough information to nail it down.
2426   Compile::AliasType* alias_type = C->alias_type(adr_type);
2427   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2428 
2429   // We will need memory barriers unless we can determine a unique
2430   // alias category for this reference.  (Note:  If for some reason
2431   // the barriers get omitted and the unsafe reference begins to "pollute"
2432   // the alias analysis of the rest of the graph, either Compile::can_alias
2433   // or Compile::must_alias will throw a diagnostic assert.)
2434   bool need_mem_bar;
2435   switch (kind) {
2436       case Relaxed:
2437           need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2438           break;
2439       case Opaque:
2440           // Opaque uses CPUOrder membars for protection against code movement.
2441       case Acquire:
2442       case Release:
2443       case Volatile:
2444           need_mem_bar = true;
2445           break;
2446       default:
2447           ShouldNotReachHere();
2448   }
2449 
2450   // Some accesses require access atomicity for all types, notably longs and doubles.
2451   // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2452   bool requires_atomic_access = false;
2453   switch (kind) {
2454       case Relaxed:
2455       case Opaque:
2456           requires_atomic_access = AlwaysAtomicAccesses;
2457           break;
2458       case Acquire:
2459       case Release:
2460       case Volatile:
2461           requires_atomic_access = true;
2462           break;
2463       default:
2464           ShouldNotReachHere();
2465   }
2466 
2467   // Figure out the memory ordering.
2468   // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2469   MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2470 
2471   // If we are reading the value of the referent field of a Reference
2472   // object (either by using Unsafe directly or through reflection)
2473   // then, if G1 is enabled, we need to record the referent in an
2474   // SATB log buffer using the pre-barrier mechanism.
2475   // Also we need to add memory barrier to prevent commoning reads
2476   // from this field across safepoint since GC can change its value.
2477   bool need_read_barrier = !is_native_ptr && !is_store &&
2478                            offset != top() && heap_base_oop != top();
2479 
2480   if (!is_store && type == T_OBJECT) {
2481     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2482     if (tjp != NULL) {
2483       value_type = tjp;
2484     }
2485   }
2486 
2487   receiver = null_check(receiver);
2488   if (stopped()) {
2489     return true;
2490   }
2491   // Heap pointers get a null-check from the interpreter,
2492   // as a courtesy.  However, this is not guaranteed by Unsafe,
2493   // and it is not possible to fully distinguish unintended nulls
2494   // from intended ones in this API.
2495 
2496   // We need to emit leading and trailing CPU membars (see below) in
2497   // addition to memory membars for special access modes. This is a little
2498   // too strong, but avoids the need to insert per-alias-type
2499   // volatile membars (for stores; compare Parse::do_put_xxx), which
2500   // we cannot do effectively here because we probably only have a
2501   // rough approximation of type.
2502 
2503   switch(kind) {
2504     case Relaxed:
2505     case Opaque:
2506     case Acquire:
2507       break;
2508     case Release:
2509     case Volatile:
2510       if (is_store) {
2511         insert_mem_bar(Op_MemBarRelease);
2512       } else {
2513         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2514           insert_mem_bar(Op_MemBarVolatile);
2515         }
2516       }
2517       break;
2518     default:
2519       ShouldNotReachHere();
2520   }
2521 
2522   // Memory barrier to prevent normal and 'unsafe' accesses from
2523   // bypassing each other.  Happens after null checks, so the
2524   // exception paths do not take memory state from the memory barrier,
2525   // so there's no problems making a strong assert about mixing users
2526   // of safe & unsafe memory.
2527   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2528 
2529   assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2530          alias_type->field() != NULL || alias_type->element() != NULL, "field, array element or unknown");
2531   bool mismatched = false;
2532   if (alias_type->element() != NULL || alias_type->field() != NULL) {
2533     BasicType bt;
2534     if (alias_type->element() != NULL) {
2535       // Use address type to get the element type. Alias type doesn't provide
2536       // enough information (e.g., doesn't differentiate between byte[] and boolean[]).
2537       const Type* element = adr_type->is_aryptr()->elem();
2538       bt = element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
2539     } else {
2540       bt = alias_type->field()->layout_type();
2541     }
2542     if (bt == T_ARRAY) {
2543       // accessing an array field with getObject is not a mismatch
2544       bt = T_OBJECT;
2545     }
2546     if (bt != type) {
2547       mismatched = true;
2548     }
2549   }
2550   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2551 
2552   if (!is_store) {
2553     Node* p = NULL;
2554     // Try to constant fold a load from a constant field
2555     ciField* field = alias_type->field();
2556     if (heap_base_oop != top() &&
2557         field != NULL && field->is_constant() && !mismatched) {
2558       // final or stable field
2559       const Type* con_type = Type::make_constant(alias_type->field(), heap_base_oop);
2560       if (con_type != NULL) {
2561         p = makecon(con_type);
2562       }
2563     }
2564     if (p == NULL) {
2565       // To be valid, unsafe loads may depend on other conditions than
2566       // the one that guards them: pin the Load node
2567       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, requires_atomic_access, unaligned, mismatched);
2568       // load value
2569       switch (type) {
2570       case T_BOOLEAN:
2571       case T_CHAR:
2572       case T_BYTE:
2573       case T_SHORT:
2574       case T_INT:
2575       case T_LONG:
2576       case T_FLOAT:
2577       case T_DOUBLE:
2578         break;
2579       case T_OBJECT:
2580         if (need_read_barrier) {
2581           // We do not require a mem bar inside pre_barrier if need_mem_bar
2582           // is set: the barriers would be emitted by us.
2583           insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2584         }
2585         break;
2586       case T_ADDRESS:
2587         // Cast to an int type.
2588         p = _gvn.transform(new CastP2XNode(NULL, p));
2589         p = ConvX2UL(p);
2590         break;
2591       default:
2592         fatal("unexpected type %d: %s", type, type2name(type));
2593         break;
2594       }
2595     }
2596     // The load node has the control of the preceding MemBarCPUOrder.  All
2597     // following nodes will have the control of the MemBarCPUOrder inserted at
2598     // the end of this method.  So, pushing the load onto the stack at a later
2599     // point is fine.
2600     set_result(p);
2601   } else {
2602     // place effect of store into memory
2603     switch (type) {
2604     case T_DOUBLE:
2605       val = dstore_rounding(val);
2606       break;
2607     case T_ADDRESS:
2608       // Repackage the long as a pointer.
2609       val = ConvL2X(val);
2610       val = _gvn.transform(new CastX2PNode(val));
2611       break;
2612     }
2613 
2614     if (type != T_OBJECT) {
2615       (void) store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2616     } else {
2617       // Possibly an oop being stored to Java heap or native memory
2618       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2619         // oop to Java heap.
2620         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2621       } else {
2622         // We can't tell at compile time if we are storing in the Java heap or outside
2623         // of it. So we need to emit code to conditionally do the proper type of
2624         // store.
2625 
2626         IdealKit ideal(this);
2627 #define __ ideal.
2628         // QQQ who knows what probability is here??
2629         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2630           // Sync IdealKit and graphKit.
2631           sync_kit(ideal);
2632           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2633           // Update IdealKit memory.
2634           __ sync_kit(this);
2635         } __ else_(); {
2636           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, requires_atomic_access, mismatched);
2637         } __ end_if();
2638         // Final sync IdealKit and GraphKit.
2639         final_sync(ideal);
2640 #undef __
2641       }
2642     }
2643   }
2644 
2645   switch(kind) {
2646     case Relaxed:
2647     case Opaque:
2648     case Release:
2649       break;
2650     case Acquire:
2651     case Volatile:
2652       if (!is_store) {
2653         insert_mem_bar(Op_MemBarAcquire);
2654       } else {
2655         if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2656           insert_mem_bar(Op_MemBarVolatile);
2657         }
2658       }
2659       break;
2660     default:
2661       ShouldNotReachHere();
2662   }
2663 
2664   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2665 
2666   return true;
2667 }
2668 
2669 //----------------------------inline_unsafe_load_store----------------------------
2670 // This method serves a couple of different customers (depending on LoadStoreKind):
2671 //
2672 // LS_cmp_swap:
2673 //
2674 //   boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2675 //   boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2676 //   boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2677 //
2678 // LS_cmp_swap_weak:
2679 //
2680 //   boolean weakCompareAndSwapObject(       Object o, long offset, Object expected, Object x);
2681 //   boolean weakCompareAndSwapObjectAcquire(Object o, long offset, Object expected, Object x);
2682 //   boolean weakCompareAndSwapObjectRelease(Object o, long offset, Object expected, Object x);
2683 //
2684 //   boolean weakCompareAndSwapInt(          Object o, long offset, int    expected, int    x);
2685 //   boolean weakCompareAndSwapIntAcquire(   Object o, long offset, int    expected, int    x);
2686 //   boolean weakCompareAndSwapIntRelease(   Object o, long offset, int    expected, int    x);
2687 //
2688 //   boolean weakCompareAndSwapLong(         Object o, long offset, long   expected, long   x);
2689 //   boolean weakCompareAndSwapLongAcquire(  Object o, long offset, long   expected, long   x);
2690 //   boolean weakCompareAndSwapLongRelease(  Object o, long offset, long   expected, long   x);
2691 //
2692 // LS_cmp_exchange:
2693 //
2694 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2695 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2696 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2697 //
2698 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2699 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2700 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2701 //
2702 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2703 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2704 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2705 //
2706 // LS_get_add:
2707 //
2708 //   int  getAndAddInt( Object o, long offset, int  delta)
2709 //   long getAndAddLong(Object o, long offset, long delta)
2710 //
2711 // LS_get_set:
2712 //
2713 //   int    getAndSet(Object o, long offset, int    newValue)
2714 //   long   getAndSet(Object o, long offset, long   newValue)
2715 //   Object getAndSet(Object o, long offset, Object newValue)
2716 //
2717 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2718   // This basic scheme here is the same as inline_unsafe_access, but
2719   // differs in enough details that combining them would make the code
2720   // overly confusing.  (This is a true fact! I originally combined
2721   // them, but even I was confused by it!) As much code/comments as
2722   // possible are retained from inline_unsafe_access though to make
2723   // the correspondences clearer. - dl
2724 
2725   if (callee()->is_static())  return false;  // caller must have the capability!
2726 
2727 #ifndef PRODUCT
2728   BasicType rtype;
2729   {
2730     ResourceMark rm;
2731     // Check the signatures.
2732     ciSignature* sig = callee()->signature();
2733     rtype = sig->return_type()->basic_type();
2734     switch(kind) {
2735       case LS_get_add:
2736       case LS_get_set: {
2737       // Check the signatures.
2738 #ifdef ASSERT
2739       assert(rtype == type, "get and set must return the expected type");
2740       assert(sig->count() == 3, "get and set has 3 arguments");
2741       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2742       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2743       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2744 #endif // ASSERT
2745         break;
2746       }
2747       case LS_cmp_swap:
2748       case LS_cmp_swap_weak: {
2749       // Check the signatures.
2750 #ifdef ASSERT
2751       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2752       assert(sig->count() == 4, "CAS has 4 arguments");
2753       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2754       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2755 #endif // ASSERT
2756         break;
2757       }
2758       case LS_cmp_exchange: {
2759       // Check the signatures.
2760 #ifdef ASSERT
2761       assert(rtype == type, "CAS must return the expected type");
2762       assert(sig->count() == 4, "CAS has 4 arguments");
2763       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2764       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2765 #endif // ASSERT
2766         break;
2767       }
2768       default:
2769         ShouldNotReachHere();
2770     }
2771   }
2772 #endif //PRODUCT
2773 
2774   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2775 
2776   // Get arguments:
2777   Node* receiver = NULL;
2778   Node* base     = NULL;
2779   Node* offset   = NULL;
2780   Node* oldval   = NULL;
2781   Node* newval   = NULL;
2782   switch(kind) {
2783     case LS_cmp_swap:
2784     case LS_cmp_swap_weak:
2785     case LS_cmp_exchange: {
2786       const bool two_slot_type = type2size[type] == 2;
2787       receiver = argument(0);  // type: oop
2788       base     = argument(1);  // type: oop
2789       offset   = argument(2);  // type: long
2790       oldval   = argument(4);  // type: oop, int, or long
2791       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2792       break;
2793     }
2794     case LS_get_add:
2795     case LS_get_set: {
2796       receiver = argument(0);  // type: oop
2797       base     = argument(1);  // type: oop
2798       offset   = argument(2);  // type: long
2799       oldval   = NULL;
2800       newval   = argument(4);  // type: oop, int, or long
2801       break;
2802     }
2803     default:
2804       ShouldNotReachHere();
2805   }
2806 
2807   // Null check receiver.
2808   receiver = null_check(receiver);
2809   if (stopped()) {
2810     return true;
2811   }
2812 
2813   // Build field offset expression.
2814   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2815   // to be plain byte offsets, which are also the same as those accepted
2816   // by oopDesc::field_base.
2817   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2818   // 32-bit machines ignore the high half of long offsets
2819   offset = ConvL2X(offset);
2820   Node* adr = make_unsafe_address(base, offset);
2821   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2822 
2823   // For CAS, unlike inline_unsafe_access, there seems no point in
2824   // trying to refine types. Just use the coarse types here.
2825   const Type *value_type = Type::get_const_basic_type(type);
2826   Compile::AliasType* alias_type = C->alias_type(adr_type);
2827   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2828 
2829   switch (kind) {
2830     case LS_get_set:
2831     case LS_cmp_exchange: {
2832       if (type == T_OBJECT) {
2833         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2834         if (tjp != NULL) {
2835           value_type = tjp;
2836         }
2837       }
2838       break;
2839     }
2840     case LS_cmp_swap:
2841     case LS_cmp_swap_weak:
2842     case LS_get_add:
2843       break;
2844     default:
2845       ShouldNotReachHere();
2846   }
2847 
2848   int alias_idx = C->get_alias_index(adr_type);
2849 
2850   // Memory-model-wise, a LoadStore acts like a little synchronized
2851   // block, so needs barriers on each side.  These don't translate
2852   // into actual barriers on most machines, but we still need rest of
2853   // compiler to respect ordering.
2854 
2855   switch (access_kind) {
2856     case Relaxed:
2857     case Acquire:
2858       break;
2859     case Release:
2860     case Volatile:
2861       insert_mem_bar(Op_MemBarRelease);
2862       break;
2863     default:
2864       ShouldNotReachHere();
2865   }
2866   insert_mem_bar(Op_MemBarCPUOrder);
2867 
2868   // Figure out the memory ordering.
2869   MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2870 
2871   // 4984716: MemBars must be inserted before this
2872   //          memory node in order to avoid a false
2873   //          dependency which will confuse the scheduler.
2874   Node *mem = memory(alias_idx);
2875 
2876   // For now, we handle only those cases that actually exist: ints,
2877   // longs, and Object. Adding others should be straightforward.
2878   Node* load_store = NULL;
2879   switch(type) {
2880   case T_INT:
2881     switch(kind) {
2882       case LS_get_add:
2883         load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2884         break;
2885       case LS_get_set:
2886         load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2887         break;
2888       case LS_cmp_swap_weak:
2889         load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2890         break;
2891       case LS_cmp_swap:
2892         load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2893         break;
2894       case LS_cmp_exchange:
2895         load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2896         break;
2897       default:
2898         ShouldNotReachHere();
2899     }
2900     break;
2901   case T_LONG:
2902     switch(kind) {
2903       case LS_get_add:
2904         load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2905         break;
2906       case LS_get_set:
2907         load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2908         break;
2909       case LS_cmp_swap_weak:
2910         load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2911         break;
2912       case LS_cmp_swap:
2913         load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2914         break;
2915       case LS_cmp_exchange:
2916         load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
2917         break;
2918       default:
2919         ShouldNotReachHere();
2920     }
2921     break;
2922   case T_OBJECT:
2923     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2924     // could be delayed during Parse (for example, in adjust_map_after_if()).
2925     // Execute transformation here to avoid barrier generation in such case.
2926     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2927       newval = _gvn.makecon(TypePtr::NULL_PTR);
2928 
2929     // Reference stores need a store barrier.
2930     switch(kind) {
2931       case LS_get_set: {
2932         // If pre-barrier must execute before the oop store, old value will require do_load here.
2933         if (!can_move_pre_barrier()) {
2934           pre_barrier(true /* do_load*/,
2935                       control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2936                       NULL /* pre_val*/,
2937                       T_OBJECT);
2938         } // Else move pre_barrier to use load_store value, see below.
2939         break;
2940       }
2941       case LS_cmp_swap_weak:
2942       case LS_cmp_swap:
2943       case LS_cmp_exchange: {
2944         // Same as for newval above:
2945         if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2946           oldval = _gvn.makecon(TypePtr::NULL_PTR);
2947         }
2948         // The only known value which might get overwritten is oldval.
2949         pre_barrier(false /* do_load */,
2950                     control(), NULL, NULL, max_juint, NULL, NULL,
2951                     oldval /* pre_val */,
2952                     T_OBJECT);
2953         break;
2954       }
2955       default:
2956         ShouldNotReachHere();
2957     }
2958 
2959 #ifdef _LP64
2960     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2961       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2962 
2963       switch(kind) {
2964         case LS_get_set:
2965           load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
2966           break;
2967         case LS_cmp_swap_weak: {
2968           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2969           load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2970           break;
2971         }
2972         case LS_cmp_swap: {
2973           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2974           load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2975           break;
2976         }
2977         case LS_cmp_exchange: {
2978           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2979           load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
2980           break;
2981         }
2982         default:
2983           ShouldNotReachHere();
2984       }
2985     } else
2986 #endif
2987     switch (kind) {
2988       case LS_get_set:
2989         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2990         break;
2991       case LS_cmp_swap_weak:
2992         load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2993         break;
2994       case LS_cmp_swap:
2995         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2996         break;
2997       case LS_cmp_exchange:
2998         load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
2999         break;
3000       default:
3001         ShouldNotReachHere();
3002     }
3003 
3004     // Emit the post barrier only when the actual store happened. This makes sense
3005     // to check only for LS_cmp_* that can fail to set the value.
3006     // LS_cmp_exchange does not produce any branches by default, so there is no
3007     // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
3008     // CompareAndExchange and move branches here, it would make sense to conditionalize
3009     // post_barriers for LS_cmp_exchange as well.
3010     //
3011     // CAS success path is marked more likely since we anticipate this is a performance
3012     // critical path, while CAS failure path can use the penalty for going through unlikely
3013     // path as backoff. Which is still better than doing a store barrier there.
3014     switch (kind) {
3015       case LS_get_set:
3016       case LS_cmp_exchange: {
3017         post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3018         break;
3019       }
3020       case LS_cmp_swap_weak:
3021       case LS_cmp_swap: {
3022         IdealKit ideal(this);
3023         ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
3024           sync_kit(ideal);
3025           post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3026           ideal.sync_kit(this);
3027         } ideal.end_if();
3028         final_sync(ideal);
3029         break;
3030       }
3031       default:
3032         ShouldNotReachHere();
3033     }
3034     break;
3035   default:
3036     fatal("unexpected type %d: %s", type, type2name(type));
3037     break;
3038   }
3039 
3040   // SCMemProjNodes represent the memory state of a LoadStore. Their
3041   // main role is to prevent LoadStore nodes from being optimized away
3042   // when their results aren't used.
3043   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3044   set_memory(proj, alias_idx);
3045 
3046   if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3047 #ifdef _LP64
3048     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3049       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3050     }
3051 #endif
3052     if (can_move_pre_barrier()) {
3053       // Don't need to load pre_val. The old value is returned by load_store.
3054       // The pre_barrier can execute after the xchg as long as no safepoint
3055       // gets inserted between them.
3056       pre_barrier(false /* do_load */,
3057                   control(), NULL, NULL, max_juint, NULL, NULL,
3058                   load_store /* pre_val */,
3059                   T_OBJECT);
3060     }
3061   }
3062 
3063   // Add the trailing membar surrounding the access
3064   insert_mem_bar(Op_MemBarCPUOrder);
3065 
3066   switch (access_kind) {
3067     case Relaxed:
3068     case Release:
3069       break; // do nothing
3070     case Acquire:
3071     case Volatile:
3072       insert_mem_bar(Op_MemBarAcquire);
3073       break;
3074     default:
3075       ShouldNotReachHere();
3076   }
3077 
3078   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3079   set_result(load_store);
3080   return true;
3081 }
3082 
3083 MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3084   MemNode::MemOrd mo = MemNode::unset;
3085   switch(kind) {
3086     case Opaque:
3087     case Relaxed:  mo = MemNode::unordered; break;
3088     case Acquire:  mo = MemNode::acquire;   break;
3089     case Release:  mo = MemNode::release;   break;
3090     case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3091     default:
3092       ShouldNotReachHere();
3093   }
3094   guarantee(mo != MemNode::unset, "Should select memory ordering");
3095   return mo;
3096 }
3097 
3098 MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3099   MemNode::MemOrd mo = MemNode::unset;
3100   switch(kind) {
3101     case Opaque:
3102     case Relaxed:  mo = MemNode::unordered; break;
3103     case Acquire:  mo = MemNode::acquire;   break;
3104     case Release:  mo = MemNode::release;   break;
3105     case Volatile: mo = MemNode::seqcst;    break;
3106     default:
3107       ShouldNotReachHere();
3108   }
3109   guarantee(mo != MemNode::unset, "Should select memory ordering");
3110   return mo;
3111 }
3112 
3113 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3114   // Regardless of form, don't allow previous ld/st to move down,
3115   // then issue acquire, release, or volatile mem_bar.
3116   insert_mem_bar(Op_MemBarCPUOrder);
3117   switch(id) {
3118     case vmIntrinsics::_loadFence:
3119       insert_mem_bar(Op_LoadFence);
3120       return true;
3121     case vmIntrinsics::_storeFence:
3122       insert_mem_bar(Op_StoreFence);
3123       return true;
3124     case vmIntrinsics::_fullFence:
3125       insert_mem_bar(Op_MemBarVolatile);
3126       return true;
3127     default:
3128       fatal_unexpected_iid(id);
3129       return false;
3130   }
3131 }
3132 
3133 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3134   if (!kls->is_Con()) {
3135     return true;
3136   }
3137   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3138   if (klsptr == NULL) {
3139     return true;
3140   }
3141   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3142   // don't need a guard for a klass that is already initialized
3143   return !ik->is_initialized();
3144 }
3145 
3146 //----------------------------inline_unsafe_allocate---------------------------
3147 // public native Object Unsafe.allocateInstance(Class<?> cls);
3148 bool LibraryCallKit::inline_unsafe_allocate() {
3149   if (callee()->is_static())  return false;  // caller must have the capability!
3150 
3151   null_check_receiver();  // null-check, then ignore
3152   Node* cls = null_check(argument(1));
3153   if (stopped())  return true;
3154 
3155   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3156   kls = null_check(kls);
3157   if (stopped())  return true;  // argument was like int.class
3158 
3159   Node* test = NULL;
3160   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3161     // Note:  The argument might still be an illegal value like
3162     // Serializable.class or Object[].class.   The runtime will handle it.
3163     // But we must make an explicit check for initialization.
3164     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3165     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3166     // can generate code to load it as unsigned byte.
3167     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3168     Node* bits = intcon(InstanceKlass::fully_initialized);
3169     test = _gvn.transform(new SubINode(inst, bits));
3170     // The 'test' is non-zero if we need to take a slow path.
3171   }
3172 
3173   Node* obj = new_instance(kls, test);
3174   set_result(obj);
3175   return true;
3176 }
3177 
3178 //------------------------inline_native_time_funcs--------------
3179 // inline code for System.currentTimeMillis() and System.nanoTime()
3180 // these have the same type and signature
3181 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3182   const TypeFunc* tf = OptoRuntime::void_long_Type();
3183   const TypePtr* no_memory_effects = NULL;
3184   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3185   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3186 #ifdef ASSERT
3187   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3188   assert(value_top == top(), "second value must be top");
3189 #endif
3190   set_result(value);
3191   return true;
3192 }
3193 
3194 //------------------------inline_native_currentThread------------------
3195 bool LibraryCallKit::inline_native_currentThread() {
3196   Node* junk = NULL;
3197   set_result(generate_current_thread(junk));
3198   return true;
3199 }
3200 
3201 //------------------------inline_native_isInterrupted------------------
3202 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3203 bool LibraryCallKit::inline_native_isInterrupted() {
3204   // Add a fast path to t.isInterrupted(clear_int):
3205   //   (t == Thread.current() &&
3206   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3207   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3208   // So, in the common case that the interrupt bit is false,
3209   // we avoid making a call into the VM.  Even if the interrupt bit
3210   // is true, if the clear_int argument is false, we avoid the VM call.
3211   // However, if the receiver is not currentThread, we must call the VM,
3212   // because there must be some locking done around the operation.
3213 
3214   // We only go to the fast case code if we pass two guards.
3215   // Paths which do not pass are accumulated in the slow_region.
3216 
3217   enum {
3218     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3219     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3220     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3221     PATH_LIMIT
3222   };
3223 
3224   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3225   // out of the function.
3226   insert_mem_bar(Op_MemBarCPUOrder);
3227 
3228   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3229   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3230 
3231   RegionNode* slow_region = new RegionNode(1);
3232   record_for_igvn(slow_region);
3233 
3234   // (a) Receiving thread must be the current thread.
3235   Node* rec_thr = argument(0);
3236   Node* tls_ptr = NULL;
3237   Node* cur_thr = generate_current_thread(tls_ptr);
3238   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3239   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3240 
3241   generate_slow_guard(bol_thr, slow_region);
3242 
3243   // (b) Interrupt bit on TLS must be false.
3244   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3245   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3246   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3247 
3248   // Set the control input on the field _interrupted read to prevent it floating up.
3249   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3250   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3251   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3252 
3253   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3254 
3255   // First fast path:  if (!TLS._interrupted) return false;
3256   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3257   result_rgn->init_req(no_int_result_path, false_bit);
3258   result_val->init_req(no_int_result_path, intcon(0));
3259 
3260   // drop through to next case
3261   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3262 
3263 #ifndef TARGET_OS_FAMILY_windows
3264   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3265   Node* clr_arg = argument(1);
3266   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3267   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3268   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3269 
3270   // Second fast path:  ... else if (!clear_int) return true;
3271   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3272   result_rgn->init_req(no_clear_result_path, false_arg);
3273   result_val->init_req(no_clear_result_path, intcon(1));
3274 
3275   // drop through to next case
3276   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3277 #else
3278   // To return true on Windows you must read the _interrupted field
3279   // and check the event state i.e. take the slow path.
3280 #endif // TARGET_OS_FAMILY_windows
3281 
3282   // (d) Otherwise, go to the slow path.
3283   slow_region->add_req(control());
3284   set_control( _gvn.transform(slow_region));
3285 
3286   if (stopped()) {
3287     // There is no slow path.
3288     result_rgn->init_req(slow_result_path, top());
3289     result_val->init_req(slow_result_path, top());
3290   } else {
3291     // non-virtual because it is a private non-static
3292     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3293 
3294     Node* slow_val = set_results_for_java_call(slow_call);
3295     // this->control() comes from set_results_for_java_call
3296 
3297     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3298     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3299 
3300     // These two phis are pre-filled with copies of of the fast IO and Memory
3301     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3302     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3303 
3304     result_rgn->init_req(slow_result_path, control());
3305     result_io ->init_req(slow_result_path, i_o());
3306     result_mem->init_req(slow_result_path, reset_memory());
3307     result_val->init_req(slow_result_path, slow_val);
3308 
3309     set_all_memory(_gvn.transform(result_mem));
3310     set_i_o(       _gvn.transform(result_io));
3311   }
3312 
3313   C->set_has_split_ifs(true); // Has chance for split-if optimization
3314   set_result(result_rgn, result_val);
3315   return true;
3316 }
3317 
3318 //---------------------------load_mirror_from_klass----------------------------
3319 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3320 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3321   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3322   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3323 }
3324 
3325 //-----------------------load_klass_from_mirror_common-------------------------
3326 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3327 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3328 // and branch to the given path on the region.
3329 // If never_see_null, take an uncommon trap on null, so we can optimistically
3330 // compile for the non-null case.
3331 // If the region is NULL, force never_see_null = true.
3332 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3333                                                     bool never_see_null,
3334                                                     RegionNode* region,
3335                                                     int null_path,
3336                                                     int offset) {
3337   if (region == NULL)  never_see_null = true;
3338   Node* p = basic_plus_adr(mirror, offset);
3339   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3340   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3341   Node* null_ctl = top();
3342   kls = null_check_oop(kls, &null_ctl, never_see_null);
3343   if (region != NULL) {
3344     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3345     region->init_req(null_path, null_ctl);
3346   } else {
3347     assert(null_ctl == top(), "no loose ends");
3348   }
3349   return kls;
3350 }
3351 
3352 //--------------------(inline_native_Class_query helpers)---------------------
3353 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3354 // Fall through if (mods & mask) == bits, take the guard otherwise.
3355 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3356   // Branch around if the given klass has the given modifier bit set.
3357   // Like generate_guard, adds a new path onto the region.
3358   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3359   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3360   Node* mask = intcon(modifier_mask);
3361   Node* bits = intcon(modifier_bits);
3362   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3363   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3364   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3365   return generate_fair_guard(bol, region);
3366 }
3367 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3368   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3369 }
3370 
3371 //-------------------------inline_native_Class_query-------------------
3372 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3373   const Type* return_type = TypeInt::BOOL;
3374   Node* prim_return_value = top();  // what happens if it's a primitive class?
3375   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3376   bool expect_prim = false;     // most of these guys expect to work on refs
3377 
3378   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3379 
3380   Node* mirror = argument(0);
3381   Node* obj    = top();
3382 
3383   switch (id) {
3384   case vmIntrinsics::_isInstance:
3385     // nothing is an instance of a primitive type
3386     prim_return_value = intcon(0);
3387     obj = argument(1);
3388     break;
3389   case vmIntrinsics::_getModifiers:
3390     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3391     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3392     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3393     break;
3394   case vmIntrinsics::_isInterface:
3395     prim_return_value = intcon(0);
3396     break;
3397   case vmIntrinsics::_isArray:
3398     prim_return_value = intcon(0);
3399     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3400     break;
3401   case vmIntrinsics::_isPrimitive:
3402     prim_return_value = intcon(1);
3403     expect_prim = true;  // obviously
3404     break;
3405   case vmIntrinsics::_getSuperclass:
3406     prim_return_value = null();
3407     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3408     break;
3409   case vmIntrinsics::_getClassAccessFlags:
3410     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3411     return_type = TypeInt::INT;  // not bool!  6297094
3412     break;
3413   default:
3414     fatal_unexpected_iid(id);
3415     break;
3416   }
3417 
3418   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3419   if (mirror_con == NULL)  return false;  // cannot happen?
3420 
3421 #ifndef PRODUCT
3422   if (C->print_intrinsics() || C->print_inlining()) {
3423     ciType* k = mirror_con->java_mirror_type();
3424     if (k) {
3425       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3426       k->print_name();
3427       tty->cr();
3428     }
3429   }
3430 #endif
3431 
3432   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3433   RegionNode* region = new RegionNode(PATH_LIMIT);
3434   record_for_igvn(region);
3435   PhiNode* phi = new PhiNode(region, return_type);
3436 
3437   // The mirror will never be null of Reflection.getClassAccessFlags, however
3438   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3439   // if it is. See bug 4774291.
3440 
3441   // For Reflection.getClassAccessFlags(), the null check occurs in
3442   // the wrong place; see inline_unsafe_access(), above, for a similar
3443   // situation.
3444   mirror = null_check(mirror);
3445   // If mirror or obj is dead, only null-path is taken.
3446   if (stopped())  return true;
3447 
3448   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3449 
3450   // Now load the mirror's klass metaobject, and null-check it.
3451   // Side-effects region with the control path if the klass is null.
3452   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3453   // If kls is null, we have a primitive mirror.
3454   phi->init_req(_prim_path, prim_return_value);
3455   if (stopped()) { set_result(region, phi); return true; }
3456   bool safe_for_replace = (region->in(_prim_path) == top());
3457 
3458   Node* p;  // handy temp
3459   Node* null_ctl;
3460 
3461   // Now that we have the non-null klass, we can perform the real query.
3462   // For constant classes, the query will constant-fold in LoadNode::Value.
3463   Node* query_value = top();
3464   switch (id) {
3465   case vmIntrinsics::_isInstance:
3466     // nothing is an instance of a primitive type
3467     query_value = gen_instanceof(obj, kls, safe_for_replace);
3468     break;
3469 
3470   case vmIntrinsics::_getModifiers:
3471     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3472     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3473     break;
3474 
3475   case vmIntrinsics::_isInterface:
3476     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3477     if (generate_interface_guard(kls, region) != NULL)
3478       // A guard was added.  If the guard is taken, it was an interface.
3479       phi->add_req(intcon(1));
3480     // If we fall through, it's a plain class.
3481     query_value = intcon(0);
3482     break;
3483 
3484   case vmIntrinsics::_isArray:
3485     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3486     if (generate_array_guard(kls, region) != NULL)
3487       // A guard was added.  If the guard is taken, it was an array.
3488       phi->add_req(intcon(1));
3489     // If we fall through, it's a plain class.
3490     query_value = intcon(0);
3491     break;
3492 
3493   case vmIntrinsics::_isPrimitive:
3494     query_value = intcon(0); // "normal" path produces false
3495     break;
3496 
3497   case vmIntrinsics::_getSuperclass:
3498     // The rules here are somewhat unfortunate, but we can still do better
3499     // with random logic than with a JNI call.
3500     // Interfaces store null or Object as _super, but must report null.
3501     // Arrays store an intermediate super as _super, but must report Object.
3502     // Other types can report the actual _super.
3503     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3504     if (generate_interface_guard(kls, region) != NULL)
3505       // A guard was added.  If the guard is taken, it was an interface.
3506       phi->add_req(null());
3507     if (generate_array_guard(kls, region) != NULL)
3508       // A guard was added.  If the guard is taken, it was an array.
3509       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3510     // If we fall through, it's a plain class.  Get its _super.
3511     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3512     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3513     null_ctl = top();
3514     kls = null_check_oop(kls, &null_ctl);
3515     if (null_ctl != top()) {
3516       // If the guard is taken, Object.superClass is null (both klass and mirror).
3517       region->add_req(null_ctl);
3518       phi   ->add_req(null());
3519     }
3520     if (!stopped()) {
3521       query_value = load_mirror_from_klass(kls);
3522     }
3523     break;
3524 
3525   case vmIntrinsics::_getClassAccessFlags:
3526     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3527     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3528     break;
3529 
3530   default:
3531     fatal_unexpected_iid(id);
3532     break;
3533   }
3534 
3535   // Fall-through is the normal case of a query to a real class.
3536   phi->init_req(1, query_value);
3537   region->init_req(1, control());
3538 
3539   C->set_has_split_ifs(true); // Has chance for split-if optimization
3540   set_result(region, phi);
3541   return true;
3542 }
3543 
3544 //-------------------------inline_Class_cast-------------------
3545 bool LibraryCallKit::inline_Class_cast() {
3546   Node* mirror = argument(0); // Class
3547   Node* obj    = argument(1);
3548   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3549   if (mirror_con == NULL) {
3550     return false;  // dead path (mirror->is_top()).
3551   }
3552   if (obj == NULL || obj->is_top()) {
3553     return false;  // dead path
3554   }
3555   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3556 
3557   // First, see if Class.cast() can be folded statically.
3558   // java_mirror_type() returns non-null for compile-time Class constants.
3559   ciType* tm = mirror_con->java_mirror_type();
3560   if (tm != NULL && tm->is_klass() &&
3561       tp != NULL && tp->klass() != NULL) {
3562     if (!tp->klass()->is_loaded()) {
3563       // Don't use intrinsic when class is not loaded.
3564       return false;
3565     } else {
3566       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3567       if (static_res == Compile::SSC_always_true) {
3568         // isInstance() is true - fold the code.
3569         set_result(obj);
3570         return true;
3571       } else if (static_res == Compile::SSC_always_false) {
3572         // Don't use intrinsic, have to throw ClassCastException.
3573         // If the reference is null, the non-intrinsic bytecode will
3574         // be optimized appropriately.
3575         return false;
3576       }
3577     }
3578   }
3579 
3580   // Bailout intrinsic and do normal inlining if exception path is frequent.
3581   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3582     return false;
3583   }
3584 
3585   // Generate dynamic checks.
3586   // Class.cast() is java implementation of _checkcast bytecode.
3587   // Do checkcast (Parse::do_checkcast()) optimizations here.
3588 
3589   mirror = null_check(mirror);
3590   // If mirror is dead, only null-path is taken.
3591   if (stopped()) {
3592     return true;
3593   }
3594 
3595   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3596   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3597   RegionNode* region = new RegionNode(PATH_LIMIT);
3598   record_for_igvn(region);
3599 
3600   // Now load the mirror's klass metaobject, and null-check it.
3601   // If kls is null, we have a primitive mirror and
3602   // nothing is an instance of a primitive type.
3603   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3604 
3605   Node* res = top();
3606   if (!stopped()) {
3607     Node* bad_type_ctrl = top();
3608     // Do checkcast optimizations.
3609     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3610     region->init_req(_bad_type_path, bad_type_ctrl);
3611   }
3612   if (region->in(_prim_path) != top() ||
3613       region->in(_bad_type_path) != top()) {
3614     // Let Interpreter throw ClassCastException.
3615     PreserveJVMState pjvms(this);
3616     set_control(_gvn.transform(region));
3617     uncommon_trap(Deoptimization::Reason_intrinsic,
3618                   Deoptimization::Action_maybe_recompile);
3619   }
3620   if (!stopped()) {
3621     set_result(res);
3622   }
3623   return true;
3624 }
3625 
3626 
3627 //--------------------------inline_native_subtype_check------------------------
3628 // This intrinsic takes the JNI calls out of the heart of
3629 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3630 bool LibraryCallKit::inline_native_subtype_check() {
3631   // Pull both arguments off the stack.
3632   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3633   args[0] = argument(0);
3634   args[1] = argument(1);
3635   Node* klasses[2];             // corresponding Klasses: superk, subk
3636   klasses[0] = klasses[1] = top();
3637 
3638   enum {
3639     // A full decision tree on {superc is prim, subc is prim}:
3640     _prim_0_path = 1,           // {P,N} => false
3641                                 // {P,P} & superc!=subc => false
3642     _prim_same_path,            // {P,P} & superc==subc => true
3643     _prim_1_path,               // {N,P} => false
3644     _ref_subtype_path,          // {N,N} & subtype check wins => true
3645     _both_ref_path,             // {N,N} & subtype check loses => false
3646     PATH_LIMIT
3647   };
3648 
3649   RegionNode* region = new RegionNode(PATH_LIMIT);
3650   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3651   record_for_igvn(region);
3652 
3653   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3654   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3655   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3656 
3657   // First null-check both mirrors and load each mirror's klass metaobject.
3658   int which_arg;
3659   for (which_arg = 0; which_arg <= 1; which_arg++) {
3660     Node* arg = args[which_arg];
3661     arg = null_check(arg);
3662     if (stopped())  break;
3663     args[which_arg] = arg;
3664 
3665     Node* p = basic_plus_adr(arg, class_klass_offset);
3666     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3667     klasses[which_arg] = _gvn.transform(kls);
3668   }
3669 
3670   // Having loaded both klasses, test each for null.
3671   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3672   for (which_arg = 0; which_arg <= 1; which_arg++) {
3673     Node* kls = klasses[which_arg];
3674     Node* null_ctl = top();
3675     kls = null_check_oop(kls, &null_ctl, never_see_null);
3676     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3677     region->init_req(prim_path, null_ctl);
3678     if (stopped())  break;
3679     klasses[which_arg] = kls;
3680   }
3681 
3682   if (!stopped()) {
3683     // now we have two reference types, in klasses[0..1]
3684     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3685     Node* superk = klasses[0];  // the receiver
3686     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3687     // now we have a successful reference subtype check
3688     region->set_req(_ref_subtype_path, control());
3689   }
3690 
3691   // If both operands are primitive (both klasses null), then
3692   // we must return true when they are identical primitives.
3693   // It is convenient to test this after the first null klass check.
3694   set_control(region->in(_prim_0_path)); // go back to first null check
3695   if (!stopped()) {
3696     // Since superc is primitive, make a guard for the superc==subc case.
3697     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3698     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3699     generate_guard(bol_eq, region, PROB_FAIR);
3700     if (region->req() == PATH_LIMIT+1) {
3701       // A guard was added.  If the added guard is taken, superc==subc.
3702       region->swap_edges(PATH_LIMIT, _prim_same_path);
3703       region->del_req(PATH_LIMIT);
3704     }
3705     region->set_req(_prim_0_path, control()); // Not equal after all.
3706   }
3707 
3708   // these are the only paths that produce 'true':
3709   phi->set_req(_prim_same_path,   intcon(1));
3710   phi->set_req(_ref_subtype_path, intcon(1));
3711 
3712   // pull together the cases:
3713   assert(region->req() == PATH_LIMIT, "sane region");
3714   for (uint i = 1; i < region->req(); i++) {
3715     Node* ctl = region->in(i);
3716     if (ctl == NULL || ctl == top()) {
3717       region->set_req(i, top());
3718       phi   ->set_req(i, top());
3719     } else if (phi->in(i) == NULL) {
3720       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3721     }
3722   }
3723 
3724   set_control(_gvn.transform(region));
3725   set_result(_gvn.transform(phi));
3726   return true;
3727 }
3728 
3729 //---------------------generate_array_guard_common------------------------
3730 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3731                                                   bool obj_array, bool not_array) {
3732 
3733   if (stopped()) {
3734     return NULL;
3735   }
3736 
3737   // If obj_array/non_array==false/false:
3738   // Branch around if the given klass is in fact an array (either obj or prim).
3739   // If obj_array/non_array==false/true:
3740   // Branch around if the given klass is not an array klass of any kind.
3741   // If obj_array/non_array==true/true:
3742   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3743   // If obj_array/non_array==true/false:
3744   // Branch around if the kls is an oop array (Object[] or subtype)
3745   //
3746   // Like generate_guard, adds a new path onto the region.
3747   jint  layout_con = 0;
3748   Node* layout_val = get_layout_helper(kls, layout_con);
3749   if (layout_val == NULL) {
3750     bool query = (obj_array
3751                   ? Klass::layout_helper_is_objArray(layout_con)
3752                   : Klass::layout_helper_is_array(layout_con));
3753     if (query == not_array) {
3754       return NULL;                       // never a branch
3755     } else {                             // always a branch
3756       Node* always_branch = control();
3757       if (region != NULL)
3758         region->add_req(always_branch);
3759       set_control(top());
3760       return always_branch;
3761     }
3762   }
3763   // Now test the correct condition.
3764   jint  nval = (obj_array
3765                 ? ((jint)Klass::_lh_array_tag_type_value
3766                    <<    Klass::_lh_array_tag_shift)
3767                 : Klass::_lh_neutral_value);
3768   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3769   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3770   // invert the test if we are looking for a non-array
3771   if (not_array)  btest = BoolTest(btest).negate();
3772   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3773   return generate_fair_guard(bol, region);
3774 }
3775 
3776 
3777 //-----------------------inline_native_newArray--------------------------
3778 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3779 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3780 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3781   Node* mirror;
3782   Node* count_val;
3783   if (uninitialized) {
3784     mirror    = argument(1);
3785     count_val = argument(2);
3786   } else {
3787     mirror    = argument(0);
3788     count_val = argument(1);
3789   }
3790 
3791   mirror = null_check(mirror);
3792   // If mirror or obj is dead, only null-path is taken.
3793   if (stopped())  return true;
3794 
3795   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3796   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3797   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3798   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3799   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3800 
3801   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3802   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3803                                                   result_reg, _slow_path);
3804   Node* normal_ctl   = control();
3805   Node* no_array_ctl = result_reg->in(_slow_path);
3806 
3807   // Generate code for the slow case.  We make a call to newArray().
3808   set_control(no_array_ctl);
3809   if (!stopped()) {
3810     // Either the input type is void.class, or else the
3811     // array klass has not yet been cached.  Either the
3812     // ensuing call will throw an exception, or else it
3813     // will cache the array klass for next time.
3814     PreserveJVMState pjvms(this);
3815     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3816     Node* slow_result = set_results_for_java_call(slow_call);
3817     // this->control() comes from set_results_for_java_call
3818     result_reg->set_req(_slow_path, control());
3819     result_val->set_req(_slow_path, slow_result);
3820     result_io ->set_req(_slow_path, i_o());
3821     result_mem->set_req(_slow_path, reset_memory());
3822   }
3823 
3824   set_control(normal_ctl);
3825   if (!stopped()) {
3826     // Normal case:  The array type has been cached in the java.lang.Class.
3827     // The following call works fine even if the array type is polymorphic.
3828     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3829     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3830     result_reg->init_req(_normal_path, control());
3831     result_val->init_req(_normal_path, obj);
3832     result_io ->init_req(_normal_path, i_o());
3833     result_mem->init_req(_normal_path, reset_memory());
3834 
3835     if (uninitialized) {
3836       // Mark the allocation so that zeroing is skipped
3837       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3838       alloc->maybe_set_complete(&_gvn);
3839     }
3840   }
3841 
3842   // Return the combined state.
3843   set_i_o(        _gvn.transform(result_io)  );
3844   set_all_memory( _gvn.transform(result_mem));
3845 
3846   C->set_has_split_ifs(true); // Has chance for split-if optimization
3847   set_result(result_reg, result_val);
3848   return true;
3849 }
3850 
3851 //----------------------inline_native_getLength--------------------------
3852 // public static native int java.lang.reflect.Array.getLength(Object array);
3853 bool LibraryCallKit::inline_native_getLength() {
3854   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3855 
3856   Node* array = null_check(argument(0));
3857   // If array is dead, only null-path is taken.
3858   if (stopped())  return true;
3859 
3860   // Deoptimize if it is a non-array.
3861   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3862 
3863   if (non_array != NULL) {
3864     PreserveJVMState pjvms(this);
3865     set_control(non_array);
3866     uncommon_trap(Deoptimization::Reason_intrinsic,
3867                   Deoptimization::Action_maybe_recompile);
3868   }
3869 
3870   // If control is dead, only non-array-path is taken.
3871   if (stopped())  return true;
3872 
3873   // The works fine even if the array type is polymorphic.
3874   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3875   Node* result = load_array_length(array);
3876 
3877   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3878   set_result(result);
3879   return true;
3880 }
3881 
3882 //------------------------inline_array_copyOf----------------------------
3883 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3884 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3885 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3886   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3887 
3888   // Get the arguments.
3889   Node* original          = argument(0);
3890   Node* start             = is_copyOfRange? argument(1): intcon(0);
3891   Node* end               = is_copyOfRange? argument(2): argument(1);
3892   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3893 
3894   Node* newcopy = NULL;
3895 
3896   // Set the original stack and the reexecute bit for the interpreter to reexecute
3897   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3898   { PreserveReexecuteState preexecs(this);
3899     jvms()->set_should_reexecute(true);
3900 
3901     array_type_mirror = null_check(array_type_mirror);
3902     original          = null_check(original);
3903 
3904     // Check if a null path was taken unconditionally.
3905     if (stopped())  return true;
3906 
3907     Node* orig_length = load_array_length(original);
3908 
3909     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3910     klass_node = null_check(klass_node);
3911 
3912     RegionNode* bailout = new RegionNode(1);
3913     record_for_igvn(bailout);
3914 
3915     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3916     // Bail out if that is so.
3917     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3918     if (not_objArray != NULL) {
3919       // Improve the klass node's type from the new optimistic assumption:
3920       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3921       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3922       Node* cast = new CastPPNode(klass_node, akls);
3923       cast->init_req(0, control());
3924       klass_node = _gvn.transform(cast);
3925     }
3926 
3927     // Bail out if either start or end is negative.
3928     generate_negative_guard(start, bailout, &start);
3929     generate_negative_guard(end,   bailout, &end);
3930 
3931     Node* length = end;
3932     if (_gvn.type(start) != TypeInt::ZERO) {
3933       length = _gvn.transform(new SubINode(end, start));
3934     }
3935 
3936     // Bail out if length is negative.
3937     // Without this the new_array would throw
3938     // NegativeArraySizeException but IllegalArgumentException is what
3939     // should be thrown
3940     generate_negative_guard(length, bailout, &length);
3941 
3942     if (bailout->req() > 1) {
3943       PreserveJVMState pjvms(this);
3944       set_control(_gvn.transform(bailout));
3945       uncommon_trap(Deoptimization::Reason_intrinsic,
3946                     Deoptimization::Action_maybe_recompile);
3947     }
3948 
3949     if (!stopped()) {
3950       // How many elements will we copy from the original?
3951       // The answer is MinI(orig_length - start, length).
3952       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3953       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3954 
3955       // Generate a direct call to the right arraycopy function(s).
3956       // We know the copy is disjoint but we might not know if the
3957       // oop stores need checking.
3958       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3959       // This will fail a store-check if x contains any non-nulls.
3960 
3961       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3962       // loads/stores but it is legal only if we're sure the
3963       // Arrays.copyOf would succeed. So we need all input arguments
3964       // to the copyOf to be validated, including that the copy to the
3965       // new array won't trigger an ArrayStoreException. That subtype
3966       // check can be optimized if we know something on the type of
3967       // the input array from type speculation.
3968       if (_gvn.type(klass_node)->singleton()) {
3969         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3970         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3971 
3972         int test = C->static_subtype_check(superk, subk);
3973         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3974           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3975           if (t_original->speculative_type() != NULL) {
3976             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3977           }
3978         }
3979       }
3980 
3981       bool validated = false;
3982       // Reason_class_check rather than Reason_intrinsic because we
3983       // want to intrinsify even if this traps.
3984       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3985         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3986                                                    klass_node);
3987 
3988         if (not_subtype_ctrl != top()) {
3989           PreserveJVMState pjvms(this);
3990           set_control(not_subtype_ctrl);
3991           uncommon_trap(Deoptimization::Reason_class_check,
3992                         Deoptimization::Action_make_not_entrant);
3993           assert(stopped(), "Should be stopped");
3994         }
3995         validated = true;
3996       }
3997 
3998       if (!stopped()) {
3999         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4000 
4001         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
4002                                                 load_object_klass(original), klass_node);
4003         if (!is_copyOfRange) {
4004           ac->set_copyof(validated);
4005         } else {
4006           ac->set_copyofrange(validated);
4007         }
4008         Node* n = _gvn.transform(ac);
4009         if (n == ac) {
4010           ac->connect_outputs(this);
4011         } else {
4012           assert(validated, "shouldn't transform if all arguments not validated");
4013           set_all_memory(n);
4014         }
4015       }
4016     }
4017   } // original reexecute is set back here
4018 
4019   C->set_has_split_ifs(true); // Has chance for split-if optimization
4020   if (!stopped()) {
4021     set_result(newcopy);
4022   }
4023   return true;
4024 }
4025 
4026 
4027 //----------------------generate_virtual_guard---------------------------
4028 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4029 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4030                                              RegionNode* slow_region) {
4031   ciMethod* method = callee();
4032   int vtable_index = method->vtable_index();
4033   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4034          "bad index %d", vtable_index);
4035   // Get the Method* out of the appropriate vtable entry.
4036   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4037                      vtable_index*vtableEntry::size_in_bytes() +
4038                      vtableEntry::method_offset_in_bytes();
4039   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4040   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4041 
4042   // Compare the target method with the expected method (e.g., Object.hashCode).
4043   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4044 
4045   Node* native_call = makecon(native_call_addr);
4046   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4047   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4048 
4049   return generate_slow_guard(test_native, slow_region);
4050 }
4051 
4052 //-----------------------generate_method_call----------------------------
4053 // Use generate_method_call to make a slow-call to the real
4054 // method if the fast path fails.  An alternative would be to
4055 // use a stub like OptoRuntime::slow_arraycopy_Java.
4056 // This only works for expanding the current library call,
4057 // not another intrinsic.  (E.g., don't use this for making an
4058 // arraycopy call inside of the copyOf intrinsic.)
4059 CallJavaNode*
4060 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4061   // When compiling the intrinsic method itself, do not use this technique.
4062   guarantee(callee() != C->method(), "cannot make slow-call to self");
4063 
4064   ciMethod* method = callee();
4065   // ensure the JVMS we have will be correct for this call
4066   guarantee(method_id == method->intrinsic_id(), "must match");
4067 
4068   const TypeFunc* tf = TypeFunc::make(method);
4069   CallJavaNode* slow_call;
4070   if (is_static) {
4071     assert(!is_virtual, "");
4072     slow_call = new CallStaticJavaNode(C, tf,
4073                            SharedRuntime::get_resolve_static_call_stub(),
4074                            method, bci());
4075   } else if (is_virtual) {
4076     null_check_receiver();
4077     int vtable_index = Method::invalid_vtable_index;
4078     if (UseInlineCaches) {
4079       // Suppress the vtable call
4080     } else {
4081       // hashCode and clone are not a miranda methods,
4082       // so the vtable index is fixed.
4083       // No need to use the linkResolver to get it.
4084        vtable_index = method->vtable_index();
4085        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4086               "bad index %d", vtable_index);
4087     }
4088     slow_call = new CallDynamicJavaNode(tf,
4089                           SharedRuntime::get_resolve_virtual_call_stub(),
4090                           method, vtable_index, bci());
4091   } else {  // neither virtual nor static:  opt_virtual
4092     null_check_receiver();
4093     slow_call = new CallStaticJavaNode(C, tf,
4094                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4095                                 method, bci());
4096     slow_call->set_optimized_virtual(true);
4097   }
4098   set_arguments_for_java_call(slow_call);
4099   set_edges_for_java_call(slow_call);
4100   return slow_call;
4101 }
4102 
4103 
4104 /**
4105  * Build special case code for calls to hashCode on an object. This call may
4106  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4107  * slightly different code.
4108  */
4109 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4110   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4111   assert(!(is_virtual && is_static), "either virtual, special, or static");
4112 
4113   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4114 
4115   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4116   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4117   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4118   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4119   Node* obj = NULL;
4120   if (!is_static) {
4121     // Check for hashing null object
4122     obj = null_check_receiver();
4123     if (stopped())  return true;        // unconditionally null
4124     result_reg->init_req(_null_path, top());
4125     result_val->init_req(_null_path, top());
4126   } else {
4127     // Do a null check, and return zero if null.
4128     // System.identityHashCode(null) == 0
4129     obj = argument(0);
4130     Node* null_ctl = top();
4131     obj = null_check_oop(obj, &null_ctl);
4132     result_reg->init_req(_null_path, null_ctl);
4133     result_val->init_req(_null_path, _gvn.intcon(0));
4134   }
4135 
4136   // Unconditionally null?  Then return right away.
4137   if (stopped()) {
4138     set_control( result_reg->in(_null_path));
4139     if (!stopped())
4140       set_result(result_val->in(_null_path));
4141     return true;
4142   }
4143 
4144   // We only go to the fast case code if we pass a number of guards.  The
4145   // paths which do not pass are accumulated in the slow_region.
4146   RegionNode* slow_region = new RegionNode(1);
4147   record_for_igvn(slow_region);
4148 
4149   // If this is a virtual call, we generate a funny guard.  We pull out
4150   // the vtable entry corresponding to hashCode() from the target object.
4151   // If the target method which we are calling happens to be the native
4152   // Object hashCode() method, we pass the guard.  We do not need this
4153   // guard for non-virtual calls -- the caller is known to be the native
4154   // Object hashCode().
4155   if (is_virtual) {
4156     // After null check, get the object's klass.
4157     Node* obj_klass = load_object_klass(obj);
4158     generate_virtual_guard(obj_klass, slow_region);
4159   }
4160 
4161   // Get the header out of the object, use LoadMarkNode when available
4162   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4163   // The control of the load must be NULL. Otherwise, the load can move before
4164   // the null check after castPP removal.
4165   Node* no_ctrl = NULL;
4166   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4167 
4168   // Test the header to see if it is unlocked.
4169   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4170   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4171   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4172   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4173   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4174 
4175   generate_slow_guard(test_unlocked, slow_region);
4176 
4177   // Get the hash value and check to see that it has been properly assigned.
4178   // We depend on hash_mask being at most 32 bits and avoid the use of
4179   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4180   // vm: see markOop.hpp.
4181   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4182   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4183   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4184   // This hack lets the hash bits live anywhere in the mark object now, as long
4185   // as the shift drops the relevant bits into the low 32 bits.  Note that
4186   // Java spec says that HashCode is an int so there's no point in capturing
4187   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4188   hshifted_header      = ConvX2I(hshifted_header);
4189   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4190 
4191   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4192   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4193   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4194 
4195   generate_slow_guard(test_assigned, slow_region);
4196 
4197   Node* init_mem = reset_memory();
4198   // fill in the rest of the null path:
4199   result_io ->init_req(_null_path, i_o());
4200   result_mem->init_req(_null_path, init_mem);
4201 
4202   result_val->init_req(_fast_path, hash_val);
4203   result_reg->init_req(_fast_path, control());
4204   result_io ->init_req(_fast_path, i_o());
4205   result_mem->init_req(_fast_path, init_mem);
4206 
4207   // Generate code for the slow case.  We make a call to hashCode().
4208   set_control(_gvn.transform(slow_region));
4209   if (!stopped()) {
4210     // No need for PreserveJVMState, because we're using up the present state.
4211     set_all_memory(init_mem);
4212     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4213     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4214     Node* slow_result = set_results_for_java_call(slow_call);
4215     // this->control() comes from set_results_for_java_call
4216     result_reg->init_req(_slow_path, control());
4217     result_val->init_req(_slow_path, slow_result);
4218     result_io  ->set_req(_slow_path, i_o());
4219     result_mem ->set_req(_slow_path, reset_memory());
4220   }
4221 
4222   // Return the combined state.
4223   set_i_o(        _gvn.transform(result_io)  );
4224   set_all_memory( _gvn.transform(result_mem));
4225 
4226   set_result(result_reg, result_val);
4227   return true;
4228 }
4229 
4230 //---------------------------inline_native_getClass----------------------------
4231 // public final native Class<?> java.lang.Object.getClass();
4232 //
4233 // Build special case code for calls to getClass on an object.
4234 bool LibraryCallKit::inline_native_getClass() {
4235   Node* obj = null_check_receiver();
4236   if (stopped())  return true;
4237   set_result(load_mirror_from_klass(load_object_klass(obj)));
4238   return true;
4239 }
4240 
4241 //-----------------inline_native_Reflection_getCallerClass---------------------
4242 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4243 //
4244 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4245 //
4246 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4247 // in that it must skip particular security frames and checks for
4248 // caller sensitive methods.
4249 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4250 #ifndef PRODUCT
4251   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4252     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4253   }
4254 #endif
4255 
4256   if (!jvms()->has_method()) {
4257 #ifndef PRODUCT
4258     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4259       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4260     }
4261 #endif
4262     return false;
4263   }
4264 
4265   // Walk back up the JVM state to find the caller at the required
4266   // depth.
4267   JVMState* caller_jvms = jvms();
4268 
4269   // Cf. JVM_GetCallerClass
4270   // NOTE: Start the loop at depth 1 because the current JVM state does
4271   // not include the Reflection.getCallerClass() frame.
4272   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4273     ciMethod* m = caller_jvms->method();
4274     switch (n) {
4275     case 0:
4276       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4277       break;
4278     case 1:
4279       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4280       if (!m->caller_sensitive()) {
4281 #ifndef PRODUCT
4282         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4283           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4284         }
4285 #endif
4286         return false;  // bail-out; let JVM_GetCallerClass do the work
4287       }
4288       break;
4289     default:
4290       if (!m->is_ignored_by_security_stack_walk()) {
4291         // We have reached the desired frame; return the holder class.
4292         // Acquire method holder as java.lang.Class and push as constant.
4293         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4294         ciInstance* caller_mirror = caller_klass->java_mirror();
4295         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4296 
4297 #ifndef PRODUCT
4298         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4299           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4300           tty->print_cr("  JVM state at this point:");
4301           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4302             ciMethod* m = jvms()->of_depth(i)->method();
4303             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4304           }
4305         }
4306 #endif
4307         return true;
4308       }
4309       break;
4310     }
4311   }
4312 
4313 #ifndef PRODUCT
4314   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4315     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4316     tty->print_cr("  JVM state at this point:");
4317     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4318       ciMethod* m = jvms()->of_depth(i)->method();
4319       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4320     }
4321   }
4322 #endif
4323 
4324   return false;  // bail-out; let JVM_GetCallerClass do the work
4325 }
4326 
4327 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4328   Node* arg = argument(0);
4329   Node* result = NULL;
4330 
4331   switch (id) {
4332   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4333   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4334   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4335   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4336 
4337   case vmIntrinsics::_doubleToLongBits: {
4338     // two paths (plus control) merge in a wood
4339     RegionNode *r = new RegionNode(3);
4340     Node *phi = new PhiNode(r, TypeLong::LONG);
4341 
4342     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4343     // Build the boolean node
4344     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4345 
4346     // Branch either way.
4347     // NaN case is less traveled, which makes all the difference.
4348     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4349     Node *opt_isnan = _gvn.transform(ifisnan);
4350     assert( opt_isnan->is_If(), "Expect an IfNode");
4351     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4352     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4353 
4354     set_control(iftrue);
4355 
4356     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4357     Node *slow_result = longcon(nan_bits); // return NaN
4358     phi->init_req(1, _gvn.transform( slow_result ));
4359     r->init_req(1, iftrue);
4360 
4361     // Else fall through
4362     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4363     set_control(iffalse);
4364 
4365     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4366     r->init_req(2, iffalse);
4367 
4368     // Post merge
4369     set_control(_gvn.transform(r));
4370     record_for_igvn(r);
4371 
4372     C->set_has_split_ifs(true); // Has chance for split-if optimization
4373     result = phi;
4374     assert(result->bottom_type()->isa_long(), "must be");
4375     break;
4376   }
4377 
4378   case vmIntrinsics::_floatToIntBits: {
4379     // two paths (plus control) merge in a wood
4380     RegionNode *r = new RegionNode(3);
4381     Node *phi = new PhiNode(r, TypeInt::INT);
4382 
4383     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4384     // Build the boolean node
4385     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4386 
4387     // Branch either way.
4388     // NaN case is less traveled, which makes all the difference.
4389     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4390     Node *opt_isnan = _gvn.transform(ifisnan);
4391     assert( opt_isnan->is_If(), "Expect an IfNode");
4392     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4393     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4394 
4395     set_control(iftrue);
4396 
4397     static const jint nan_bits = 0x7fc00000;
4398     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4399     phi->init_req(1, _gvn.transform( slow_result ));
4400     r->init_req(1, iftrue);
4401 
4402     // Else fall through
4403     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4404     set_control(iffalse);
4405 
4406     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4407     r->init_req(2, iffalse);
4408 
4409     // Post merge
4410     set_control(_gvn.transform(r));
4411     record_for_igvn(r);
4412 
4413     C->set_has_split_ifs(true); // Has chance for split-if optimization
4414     result = phi;
4415     assert(result->bottom_type()->isa_int(), "must be");
4416     break;
4417   }
4418 
4419   default:
4420     fatal_unexpected_iid(id);
4421     break;
4422   }
4423   set_result(_gvn.transform(result));
4424   return true;
4425 }
4426 
4427 //----------------------inline_unsafe_copyMemory-------------------------
4428 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4429 bool LibraryCallKit::inline_unsafe_copyMemory() {
4430   if (callee()->is_static())  return false;  // caller must have the capability!
4431   null_check_receiver();  // null-check receiver
4432   if (stopped())  return true;
4433 
4434   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4435 
4436   Node* src_ptr =         argument(1);   // type: oop
4437   Node* src_off = ConvL2X(argument(2));  // type: long
4438   Node* dst_ptr =         argument(4);   // type: oop
4439   Node* dst_off = ConvL2X(argument(5));  // type: long
4440   Node* size    = ConvL2X(argument(7));  // type: long
4441 
4442   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4443          "fieldOffset must be byte-scaled");
4444 
4445   Node* src = make_unsafe_address(src_ptr, src_off);
4446   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4447 
4448   // Conservatively insert a memory barrier on all memory slices.
4449   // Do not let writes of the copy source or destination float below the copy.
4450   insert_mem_bar(Op_MemBarCPUOrder);
4451 
4452   // Call it.  Note that the length argument is not scaled.
4453   make_runtime_call(RC_LEAF|RC_NO_FP,
4454                     OptoRuntime::fast_arraycopy_Type(),
4455                     StubRoutines::unsafe_arraycopy(),
4456                     "unsafe_arraycopy",
4457                     TypeRawPtr::BOTTOM,
4458                     src, dst, size XTOP);
4459 
4460   // Do not let reads of the copy destination float above the copy.
4461   insert_mem_bar(Op_MemBarCPUOrder);
4462 
4463   return true;
4464 }
4465 
4466 //------------------------clone_coping-----------------------------------
4467 // Helper function for inline_native_clone.
4468 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4469   assert(obj_size != NULL, "");
4470   Node* raw_obj = alloc_obj->in(1);
4471   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4472 
4473   AllocateNode* alloc = NULL;
4474   if (ReduceBulkZeroing) {
4475     // We will be completely responsible for initializing this object -
4476     // mark Initialize node as complete.
4477     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4478     // The object was just allocated - there should be no any stores!
4479     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4480     // Mark as complete_with_arraycopy so that on AllocateNode
4481     // expansion, we know this AllocateNode is initialized by an array
4482     // copy and a StoreStore barrier exists after the array copy.
4483     alloc->initialization()->set_complete_with_arraycopy();
4484   }
4485 
4486   // Copy the fastest available way.
4487   // TODO: generate fields copies for small objects instead.
4488   Node* src  = obj;
4489   Node* dest = alloc_obj;
4490   Node* size = _gvn.transform(obj_size);
4491 
4492   // Exclude the header but include array length to copy by 8 bytes words.
4493   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4494   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4495                             instanceOopDesc::base_offset_in_bytes();
4496   // base_off:
4497   // 8  - 32-bit VM
4498   // 12 - 64-bit VM, compressed klass
4499   // 16 - 64-bit VM, normal klass
4500   if (base_off % BytesPerLong != 0) {
4501     assert(UseCompressedClassPointers, "");
4502     if (is_array) {
4503       // Exclude length to copy by 8 bytes words.
4504       base_off += sizeof(int);
4505     } else {
4506       // Include klass to copy by 8 bytes words.
4507       base_off = instanceOopDesc::klass_offset_in_bytes();
4508     }
4509     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4510   }
4511   src  = basic_plus_adr(src,  base_off);
4512   dest = basic_plus_adr(dest, base_off);
4513 
4514   // Compute the length also, if needed:
4515   Node* countx = size;
4516   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4517   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4518 
4519   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4520 
4521   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4522   ac->set_clonebasic();
4523   Node* n = _gvn.transform(ac);
4524   if (n == ac) {
4525     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4526   } else {
4527     set_all_memory(n);
4528   }
4529 
4530   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4531   if (card_mark) {
4532     assert(!is_array, "");
4533     // Put in store barrier for any and all oops we are sticking
4534     // into this object.  (We could avoid this if we could prove
4535     // that the object type contains no oop fields at all.)
4536     Node* no_particular_value = NULL;
4537     Node* no_particular_field = NULL;
4538     int raw_adr_idx = Compile::AliasIdxRaw;
4539     post_barrier(control(),
4540                  memory(raw_adr_type),
4541                  alloc_obj,
4542                  no_particular_field,
4543                  raw_adr_idx,
4544                  no_particular_value,
4545                  T_OBJECT,
4546                  false);
4547   }
4548 
4549   // Do not let reads from the cloned object float above the arraycopy.
4550   if (alloc != NULL) {
4551     // Do not let stores that initialize this object be reordered with
4552     // a subsequent store that would make this object accessible by
4553     // other threads.
4554     // Record what AllocateNode this StoreStore protects so that
4555     // escape analysis can go from the MemBarStoreStoreNode to the
4556     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4557     // based on the escape status of the AllocateNode.
4558     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4559   } else {
4560     insert_mem_bar(Op_MemBarCPUOrder);
4561   }
4562 }
4563 
4564 //------------------------inline_native_clone----------------------------
4565 // protected native Object java.lang.Object.clone();
4566 //
4567 // Here are the simple edge cases:
4568 //  null receiver => normal trap
4569 //  virtual and clone was overridden => slow path to out-of-line clone
4570 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4571 //
4572 // The general case has two steps, allocation and copying.
4573 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4574 //
4575 // Copying also has two cases, oop arrays and everything else.
4576 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4577 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4578 //
4579 // These steps fold up nicely if and when the cloned object's klass
4580 // can be sharply typed as an object array, a type array, or an instance.
4581 //
4582 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4583   PhiNode* result_val;
4584 
4585   // Set the reexecute bit for the interpreter to reexecute
4586   // the bytecode that invokes Object.clone if deoptimization happens.
4587   { PreserveReexecuteState preexecs(this);
4588     jvms()->set_should_reexecute(true);
4589 
4590     Node* obj = null_check_receiver();
4591     if (stopped())  return true;
4592 
4593     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4594 
4595     // If we are going to clone an instance, we need its exact type to
4596     // know the number and types of fields to convert the clone to
4597     // loads/stores. Maybe a speculative type can help us.
4598     if (!obj_type->klass_is_exact() &&
4599         obj_type->speculative_type() != NULL &&
4600         obj_type->speculative_type()->is_instance_klass()) {
4601       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4602       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4603           !spec_ik->has_injected_fields()) {
4604         ciKlass* k = obj_type->klass();
4605         if (!k->is_instance_klass() ||
4606             k->as_instance_klass()->is_interface() ||
4607             k->as_instance_klass()->has_subklass()) {
4608           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4609         }
4610       }
4611     }
4612 
4613     Node* obj_klass = load_object_klass(obj);
4614     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4615     const TypeOopPtr*   toop   = ((tklass != NULL)
4616                                 ? tklass->as_instance_type()
4617                                 : TypeInstPtr::NOTNULL);
4618 
4619     // Conservatively insert a memory barrier on all memory slices.
4620     // Do not let writes into the original float below the clone.
4621     insert_mem_bar(Op_MemBarCPUOrder);
4622 
4623     // paths into result_reg:
4624     enum {
4625       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4626       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4627       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4628       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4629       PATH_LIMIT
4630     };
4631     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4632     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4633     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4634     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4635     record_for_igvn(result_reg);
4636 
4637     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4638     int raw_adr_idx = Compile::AliasIdxRaw;
4639 
4640     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4641     if (array_ctl != NULL) {
4642       // It's an array.
4643       PreserveJVMState pjvms(this);
4644       set_control(array_ctl);
4645       Node* obj_length = load_array_length(obj);
4646       Node* obj_size  = NULL;
4647       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4648 
4649       if (!use_ReduceInitialCardMarks()) {
4650         // If it is an oop array, it requires very special treatment,
4651         // because card marking is required on each card of the array.
4652         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4653         if (is_obja != NULL) {
4654           PreserveJVMState pjvms2(this);
4655           set_control(is_obja);
4656           // Generate a direct call to the right arraycopy function(s).
4657           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4658           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4659           ac->set_cloneoop();
4660           Node* n = _gvn.transform(ac);
4661           assert(n == ac, "cannot disappear");
4662           ac->connect_outputs(this);
4663 
4664           result_reg->init_req(_objArray_path, control());
4665           result_val->init_req(_objArray_path, alloc_obj);
4666           result_i_o ->set_req(_objArray_path, i_o());
4667           result_mem ->set_req(_objArray_path, reset_memory());
4668         }
4669       }
4670       // Otherwise, there are no card marks to worry about.
4671       // (We can dispense with card marks if we know the allocation
4672       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4673       //  causes the non-eden paths to take compensating steps to
4674       //  simulate a fresh allocation, so that no further
4675       //  card marks are required in compiled code to initialize
4676       //  the object.)
4677 
4678       if (!stopped()) {
4679         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4680 
4681         // Present the results of the copy.
4682         result_reg->init_req(_array_path, control());
4683         result_val->init_req(_array_path, alloc_obj);
4684         result_i_o ->set_req(_array_path, i_o());
4685         result_mem ->set_req(_array_path, reset_memory());
4686       }
4687     }
4688 
4689     // We only go to the instance fast case code if we pass a number of guards.
4690     // The paths which do not pass are accumulated in the slow_region.
4691     RegionNode* slow_region = new RegionNode(1);
4692     record_for_igvn(slow_region);
4693     if (!stopped()) {
4694       // It's an instance (we did array above).  Make the slow-path tests.
4695       // If this is a virtual call, we generate a funny guard.  We grab
4696       // the vtable entry corresponding to clone() from the target object.
4697       // If the target method which we are calling happens to be the
4698       // Object clone() method, we pass the guard.  We do not need this
4699       // guard for non-virtual calls; the caller is known to be the native
4700       // Object clone().
4701       if (is_virtual) {
4702         generate_virtual_guard(obj_klass, slow_region);
4703       }
4704 
4705       // The object must be easily cloneable and must not have a finalizer.
4706       // Both of these conditions may be checked in a single test.
4707       // We could optimize the test further, but we don't care.
4708       generate_access_flags_guard(obj_klass,
4709                                   // Test both conditions:
4710                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4711                                   // Must be cloneable but not finalizer:
4712                                   JVM_ACC_IS_CLONEABLE_FAST,
4713                                   slow_region);
4714     }
4715 
4716     if (!stopped()) {
4717       // It's an instance, and it passed the slow-path tests.
4718       PreserveJVMState pjvms(this);
4719       Node* obj_size  = NULL;
4720       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4721       // is reexecuted if deoptimization occurs and there could be problems when merging
4722       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4723       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4724 
4725       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4726 
4727       // Present the results of the slow call.
4728       result_reg->init_req(_instance_path, control());
4729       result_val->init_req(_instance_path, alloc_obj);
4730       result_i_o ->set_req(_instance_path, i_o());
4731       result_mem ->set_req(_instance_path, reset_memory());
4732     }
4733 
4734     // Generate code for the slow case.  We make a call to clone().
4735     set_control(_gvn.transform(slow_region));
4736     if (!stopped()) {
4737       PreserveJVMState pjvms(this);
4738       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4739       Node* slow_result = set_results_for_java_call(slow_call);
4740       // this->control() comes from set_results_for_java_call
4741       result_reg->init_req(_slow_path, control());
4742       result_val->init_req(_slow_path, slow_result);
4743       result_i_o ->set_req(_slow_path, i_o());
4744       result_mem ->set_req(_slow_path, reset_memory());
4745     }
4746 
4747     // Return the combined state.
4748     set_control(    _gvn.transform(result_reg));
4749     set_i_o(        _gvn.transform(result_i_o));
4750     set_all_memory( _gvn.transform(result_mem));
4751   } // original reexecute is set back here
4752 
4753   set_result(_gvn.transform(result_val));
4754   return true;
4755 }
4756 
4757 // If we have a tighly coupled allocation, the arraycopy may take care
4758 // of the array initialization. If one of the guards we insert between
4759 // the allocation and the arraycopy causes a deoptimization, an
4760 // unitialized array will escape the compiled method. To prevent that
4761 // we set the JVM state for uncommon traps between the allocation and
4762 // the arraycopy to the state before the allocation so, in case of
4763 // deoptimization, we'll reexecute the allocation and the
4764 // initialization.
4765 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4766   if (alloc != NULL) {
4767     ciMethod* trap_method = alloc->jvms()->method();
4768     int trap_bci = alloc->jvms()->bci();
4769 
4770     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4771           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4772       // Make sure there's no store between the allocation and the
4773       // arraycopy otherwise visible side effects could be rexecuted
4774       // in case of deoptimization and cause incorrect execution.
4775       bool no_interfering_store = true;
4776       Node* mem = alloc->in(TypeFunc::Memory);
4777       if (mem->is_MergeMem()) {
4778         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4779           Node* n = mms.memory();
4780           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4781             assert(n->is_Store(), "what else?");
4782             no_interfering_store = false;
4783             break;
4784           }
4785         }
4786       } else {
4787         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4788           Node* n = mms.memory();
4789           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4790             assert(n->is_Store(), "what else?");
4791             no_interfering_store = false;
4792             break;
4793           }
4794         }
4795       }
4796 
4797       if (no_interfering_store) {
4798         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4799         uint size = alloc->req();
4800         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4801         old_jvms->set_map(sfpt);
4802         for (uint i = 0; i < size; i++) {
4803           sfpt->init_req(i, alloc->in(i));
4804         }
4805         // re-push array length for deoptimization
4806         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4807         old_jvms->set_sp(old_jvms->sp()+1);
4808         old_jvms->set_monoff(old_jvms->monoff()+1);
4809         old_jvms->set_scloff(old_jvms->scloff()+1);
4810         old_jvms->set_endoff(old_jvms->endoff()+1);
4811         old_jvms->set_should_reexecute(true);
4812 
4813         sfpt->set_i_o(map()->i_o());
4814         sfpt->set_memory(map()->memory());
4815         sfpt->set_control(map()->control());
4816 
4817         JVMState* saved_jvms = jvms();
4818         saved_reexecute_sp = _reexecute_sp;
4819 
4820         set_jvms(sfpt->jvms());
4821         _reexecute_sp = jvms()->sp();
4822 
4823         return saved_jvms;
4824       }
4825     }
4826   }
4827   return NULL;
4828 }
4829 
4830 // In case of a deoptimization, we restart execution at the
4831 // allocation, allocating a new array. We would leave an uninitialized
4832 // array in the heap that GCs wouldn't expect. Move the allocation
4833 // after the traps so we don't allocate the array if we
4834 // deoptimize. This is possible because tightly_coupled_allocation()
4835 // guarantees there's no observer of the allocated array at this point
4836 // and the control flow is simple enough.
4837 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4838   if (saved_jvms != NULL && !stopped()) {
4839     assert(alloc != NULL, "only with a tightly coupled allocation");
4840     // restore JVM state to the state at the arraycopy
4841     saved_jvms->map()->set_control(map()->control());
4842     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4843     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4844     // If we've improved the types of some nodes (null check) while
4845     // emitting the guards, propagate them to the current state
4846     map()->replaced_nodes().apply(saved_jvms->map());
4847     set_jvms(saved_jvms);
4848     _reexecute_sp = saved_reexecute_sp;
4849 
4850     // Remove the allocation from above the guards
4851     CallProjections callprojs;
4852     alloc->extract_projections(&callprojs, true);
4853     InitializeNode* init = alloc->initialization();
4854     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4855     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4856     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4857     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4858 
4859     // move the allocation here (after the guards)
4860     _gvn.hash_delete(alloc);
4861     alloc->set_req(TypeFunc::Control, control());
4862     alloc->set_req(TypeFunc::I_O, i_o());
4863     Node *mem = reset_memory();
4864     set_all_memory(mem);
4865     alloc->set_req(TypeFunc::Memory, mem);
4866     set_control(init->proj_out(TypeFunc::Control));
4867     set_i_o(callprojs.fallthrough_ioproj);
4868 
4869     // Update memory as done in GraphKit::set_output_for_allocation()
4870     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4871     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4872     if (ary_type->isa_aryptr() && length_type != NULL) {
4873       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4874     }
4875     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4876     int            elemidx  = C->get_alias_index(telemref);
4877     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4878     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4879 
4880     Node* allocx = _gvn.transform(alloc);
4881     assert(allocx == alloc, "where has the allocation gone?");
4882     assert(dest->is_CheckCastPP(), "not an allocation result?");
4883 
4884     _gvn.hash_delete(dest);
4885     dest->set_req(0, control());
4886     Node* destx = _gvn.transform(dest);
4887     assert(destx == dest, "where has the allocation result gone?");
4888   }
4889 }
4890 
4891 
4892 //------------------------------inline_arraycopy-----------------------
4893 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4894 //                                                      Object dest, int destPos,
4895 //                                                      int length);
4896 bool LibraryCallKit::inline_arraycopy() {
4897   // Get the arguments.
4898   Node* src         = argument(0);  // type: oop
4899   Node* src_offset  = argument(1);  // type: int
4900   Node* dest        = argument(2);  // type: oop
4901   Node* dest_offset = argument(3);  // type: int
4902   Node* length      = argument(4);  // type: int
4903 
4904 
4905   // Check for allocation before we add nodes that would confuse
4906   // tightly_coupled_allocation()
4907   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4908 
4909   int saved_reexecute_sp = -1;
4910   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4911   // See arraycopy_restore_alloc_state() comment
4912   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4913   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4914   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4915   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4916 
4917   // The following tests must be performed
4918   // (1) src and dest are arrays.
4919   // (2) src and dest arrays must have elements of the same BasicType
4920   // (3) src and dest must not be null.
4921   // (4) src_offset must not be negative.
4922   // (5) dest_offset must not be negative.
4923   // (6) length must not be negative.
4924   // (7) src_offset + length must not exceed length of src.
4925   // (8) dest_offset + length must not exceed length of dest.
4926   // (9) each element of an oop array must be assignable
4927 
4928   // (3) src and dest must not be null.
4929   // always do this here because we need the JVM state for uncommon traps
4930   Node* null_ctl = top();
4931   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4932   assert(null_ctl->is_top(), "no null control here");
4933   dest = null_check(dest, T_ARRAY);
4934 
4935   if (!can_emit_guards) {
4936     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4937     // guards but the arraycopy node could still take advantage of a
4938     // tightly allocated allocation. tightly_coupled_allocation() is
4939     // called again to make sure it takes the null check above into
4940     // account: the null check is mandatory and if it caused an
4941     // uncommon trap to be emitted then the allocation can't be
4942     // considered tightly coupled in this context.
4943     alloc = tightly_coupled_allocation(dest, NULL);
4944   }
4945 
4946   bool validated = false;
4947 
4948   const Type* src_type  = _gvn.type(src);
4949   const Type* dest_type = _gvn.type(dest);
4950   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4951   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4952 
4953   // Do we have the type of src?
4954   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4955   // Do we have the type of dest?
4956   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4957   // Is the type for src from speculation?
4958   bool src_spec = false;
4959   // Is the type for dest from speculation?
4960   bool dest_spec = false;
4961 
4962   if ((!has_src || !has_dest) && can_emit_guards) {
4963     // We don't have sufficient type information, let's see if
4964     // speculative types can help. We need to have types for both src
4965     // and dest so that it pays off.
4966 
4967     // Do we already have or could we have type information for src
4968     bool could_have_src = has_src;
4969     // Do we already have or could we have type information for dest
4970     bool could_have_dest = has_dest;
4971 
4972     ciKlass* src_k = NULL;
4973     if (!has_src) {
4974       src_k = src_type->speculative_type_not_null();
4975       if (src_k != NULL && src_k->is_array_klass()) {
4976         could_have_src = true;
4977       }
4978     }
4979 
4980     ciKlass* dest_k = NULL;
4981     if (!has_dest) {
4982       dest_k = dest_type->speculative_type_not_null();
4983       if (dest_k != NULL && dest_k->is_array_klass()) {
4984         could_have_dest = true;
4985       }
4986     }
4987 
4988     if (could_have_src && could_have_dest) {
4989       // This is going to pay off so emit the required guards
4990       if (!has_src) {
4991         src = maybe_cast_profiled_obj(src, src_k, true);
4992         src_type  = _gvn.type(src);
4993         top_src  = src_type->isa_aryptr();
4994         has_src = (top_src != NULL && top_src->klass() != NULL);
4995         src_spec = true;
4996       }
4997       if (!has_dest) {
4998         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4999         dest_type  = _gvn.type(dest);
5000         top_dest  = dest_type->isa_aryptr();
5001         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5002         dest_spec = true;
5003       }
5004     }
5005   }
5006 
5007   if (has_src && has_dest && can_emit_guards) {
5008     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5009     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5010     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5011     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5012 
5013     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5014       // If both arrays are object arrays then having the exact types
5015       // for both will remove the need for a subtype check at runtime
5016       // before the call and may make it possible to pick a faster copy
5017       // routine (without a subtype check on every element)
5018       // Do we have the exact type of src?
5019       bool could_have_src = src_spec;
5020       // Do we have the exact type of dest?
5021       bool could_have_dest = dest_spec;
5022       ciKlass* src_k = top_src->klass();
5023       ciKlass* dest_k = top_dest->klass();
5024       if (!src_spec) {
5025         src_k = src_type->speculative_type_not_null();
5026         if (src_k != NULL && src_k->is_array_klass()) {
5027           could_have_src = true;
5028         }
5029       }
5030       if (!dest_spec) {
5031         dest_k = dest_type->speculative_type_not_null();
5032         if (dest_k != NULL && dest_k->is_array_klass()) {
5033           could_have_dest = true;
5034         }
5035       }
5036       if (could_have_src && could_have_dest) {
5037         // If we can have both exact types, emit the missing guards
5038         if (could_have_src && !src_spec) {
5039           src = maybe_cast_profiled_obj(src, src_k, true);
5040         }
5041         if (could_have_dest && !dest_spec) {
5042           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5043         }
5044       }
5045     }
5046   }
5047 
5048   ciMethod* trap_method = method();
5049   int trap_bci = bci();
5050   if (saved_jvms != NULL) {
5051     trap_method = alloc->jvms()->method();
5052     trap_bci = alloc->jvms()->bci();
5053   }
5054 
5055   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5056       can_emit_guards &&
5057       !src->is_top() && !dest->is_top()) {
5058     // validate arguments: enables transformation the ArrayCopyNode
5059     validated = true;
5060 
5061     RegionNode* slow_region = new RegionNode(1);
5062     record_for_igvn(slow_region);
5063 
5064     // (1) src and dest are arrays.
5065     generate_non_array_guard(load_object_klass(src), slow_region);
5066     generate_non_array_guard(load_object_klass(dest), slow_region);
5067 
5068     // (2) src and dest arrays must have elements of the same BasicType
5069     // done at macro expansion or at Ideal transformation time
5070 
5071     // (4) src_offset must not be negative.
5072     generate_negative_guard(src_offset, slow_region);
5073 
5074     // (5) dest_offset must not be negative.
5075     generate_negative_guard(dest_offset, slow_region);
5076 
5077     // (7) src_offset + length must not exceed length of src.
5078     generate_limit_guard(src_offset, length,
5079                          load_array_length(src),
5080                          slow_region);
5081 
5082     // (8) dest_offset + length must not exceed length of dest.
5083     generate_limit_guard(dest_offset, length,
5084                          load_array_length(dest),
5085                          slow_region);
5086 
5087     // (9) each element of an oop array must be assignable
5088     Node* src_klass  = load_object_klass(src);
5089     Node* dest_klass = load_object_klass(dest);
5090     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5091 
5092     if (not_subtype_ctrl != top()) {
5093       PreserveJVMState pjvms(this);
5094       set_control(not_subtype_ctrl);
5095       uncommon_trap(Deoptimization::Reason_intrinsic,
5096                     Deoptimization::Action_make_not_entrant);
5097       assert(stopped(), "Should be stopped");
5098     }
5099     {
5100       PreserveJVMState pjvms(this);
5101       set_control(_gvn.transform(slow_region));
5102       uncommon_trap(Deoptimization::Reason_intrinsic,
5103                     Deoptimization::Action_make_not_entrant);
5104       assert(stopped(), "Should be stopped");
5105     }
5106   }
5107 
5108   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5109 
5110   if (stopped()) {
5111     return true;
5112   }
5113 
5114   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5115                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5116                                           // so the compiler has a chance to eliminate them: during macro expansion,
5117                                           // we have to set their control (CastPP nodes are eliminated).
5118                                           load_object_klass(src), load_object_klass(dest),
5119                                           load_array_length(src), load_array_length(dest));
5120 
5121   ac->set_arraycopy(validated);
5122 
5123   Node* n = _gvn.transform(ac);
5124   if (n == ac) {
5125     ac->connect_outputs(this);
5126   } else {
5127     assert(validated, "shouldn't transform if all arguments not validated");
5128     set_all_memory(n);
5129   }
5130 
5131   return true;
5132 }
5133 
5134 
5135 // Helper function which determines if an arraycopy immediately follows
5136 // an allocation, with no intervening tests or other escapes for the object.
5137 AllocateArrayNode*
5138 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5139                                            RegionNode* slow_region) {
5140   if (stopped())             return NULL;  // no fast path
5141   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5142 
5143   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5144   if (alloc == NULL)  return NULL;
5145 
5146   Node* rawmem = memory(Compile::AliasIdxRaw);
5147   // Is the allocation's memory state untouched?
5148   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5149     // Bail out if there have been raw-memory effects since the allocation.
5150     // (Example:  There might have been a call or safepoint.)
5151     return NULL;
5152   }
5153   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5154   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5155     return NULL;
5156   }
5157 
5158   // There must be no unexpected observers of this allocation.
5159   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5160     Node* obs = ptr->fast_out(i);
5161     if (obs != this->map()) {
5162       return NULL;
5163     }
5164   }
5165 
5166   // This arraycopy must unconditionally follow the allocation of the ptr.
5167   Node* alloc_ctl = ptr->in(0);
5168   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5169 
5170   Node* ctl = control();
5171   while (ctl != alloc_ctl) {
5172     // There may be guards which feed into the slow_region.
5173     // Any other control flow means that we might not get a chance
5174     // to finish initializing the allocated object.
5175     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5176       IfNode* iff = ctl->in(0)->as_If();
5177       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5178       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5179       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5180         ctl = iff->in(0);       // This test feeds the known slow_region.
5181         continue;
5182       }
5183       // One more try:  Various low-level checks bottom out in
5184       // uncommon traps.  If the debug-info of the trap omits
5185       // any reference to the allocation, as we've already
5186       // observed, then there can be no objection to the trap.
5187       bool found_trap = false;
5188       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5189         Node* obs = not_ctl->fast_out(j);
5190         if (obs->in(0) == not_ctl && obs->is_Call() &&
5191             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5192           found_trap = true; break;
5193         }
5194       }
5195       if (found_trap) {
5196         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5197         continue;
5198       }
5199     }
5200     return NULL;
5201   }
5202 
5203   // If we get this far, we have an allocation which immediately
5204   // precedes the arraycopy, and we can take over zeroing the new object.
5205   // The arraycopy will finish the initialization, and provide
5206   // a new control state to which we will anchor the destination pointer.
5207 
5208   return alloc;
5209 }
5210 
5211 //-------------inline_encodeISOArray-----------------------------------
5212 // encode char[] to byte[] in ISO_8859_1
5213 bool LibraryCallKit::inline_encodeISOArray() {
5214   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5215   // no receiver since it is static method
5216   Node *src         = argument(0);
5217   Node *src_offset  = argument(1);
5218   Node *dst         = argument(2);
5219   Node *dst_offset  = argument(3);
5220   Node *length      = argument(4);
5221 
5222   const Type* src_type = src->Value(&_gvn);
5223   const Type* dst_type = dst->Value(&_gvn);
5224   const TypeAryPtr* top_src = src_type->isa_aryptr();
5225   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5226   if (top_src  == NULL || top_src->klass()  == NULL ||
5227       top_dest == NULL || top_dest->klass() == NULL) {
5228     // failed array check
5229     return false;
5230   }
5231 
5232   // Figure out the size and type of the elements we will be copying.
5233   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5234   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5235   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5236     return false;
5237   }
5238 
5239   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5240   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5241   // 'src_start' points to src array + scaled offset
5242   // 'dst_start' points to dst array + scaled offset
5243 
5244   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5245   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5246   enc = _gvn.transform(enc);
5247   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5248   set_memory(res_mem, mtype);
5249   set_result(enc);
5250   return true;
5251 }
5252 
5253 //-------------inline_multiplyToLen-----------------------------------
5254 bool LibraryCallKit::inline_multiplyToLen() {
5255   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5256 
5257   address stubAddr = StubRoutines::multiplyToLen();
5258   if (stubAddr == NULL) {
5259     return false; // Intrinsic's stub is not implemented on this platform
5260   }
5261   const char* stubName = "multiplyToLen";
5262 
5263   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5264 
5265   // no receiver because it is a static method
5266   Node* x    = argument(0);
5267   Node* xlen = argument(1);
5268   Node* y    = argument(2);
5269   Node* ylen = argument(3);
5270   Node* z    = argument(4);
5271 
5272   const Type* x_type = x->Value(&_gvn);
5273   const Type* y_type = y->Value(&_gvn);
5274   const TypeAryPtr* top_x = x_type->isa_aryptr();
5275   const TypeAryPtr* top_y = y_type->isa_aryptr();
5276   if (top_x  == NULL || top_x->klass()  == NULL ||
5277       top_y == NULL || top_y->klass() == NULL) {
5278     // failed array check
5279     return false;
5280   }
5281 
5282   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5283   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5284   if (x_elem != T_INT || y_elem != T_INT) {
5285     return false;
5286   }
5287 
5288   // Set the original stack and the reexecute bit for the interpreter to reexecute
5289   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5290   // on the return from z array allocation in runtime.
5291   { PreserveReexecuteState preexecs(this);
5292     jvms()->set_should_reexecute(true);
5293 
5294     Node* x_start = array_element_address(x, intcon(0), x_elem);
5295     Node* y_start = array_element_address(y, intcon(0), y_elem);
5296     // 'x_start' points to x array + scaled xlen
5297     // 'y_start' points to y array + scaled ylen
5298 
5299     // Allocate the result array
5300     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5301     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5302     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5303 
5304     IdealKit ideal(this);
5305 
5306 #define __ ideal.
5307      Node* one = __ ConI(1);
5308      Node* zero = __ ConI(0);
5309      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5310      __ set(need_alloc, zero);
5311      __ set(z_alloc, z);
5312      __ if_then(z, BoolTest::eq, null()); {
5313        __ increment (need_alloc, one);
5314      } __ else_(); {
5315        // Update graphKit memory and control from IdealKit.
5316        sync_kit(ideal);
5317        Node* zlen_arg = load_array_length(z);
5318        // Update IdealKit memory and control from graphKit.
5319        __ sync_kit(this);
5320        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5321          __ increment (need_alloc, one);
5322        } __ end_if();
5323      } __ end_if();
5324 
5325      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5326        // Update graphKit memory and control from IdealKit.
5327        sync_kit(ideal);
5328        Node * narr = new_array(klass_node, zlen, 1);
5329        // Update IdealKit memory and control from graphKit.
5330        __ sync_kit(this);
5331        __ set(z_alloc, narr);
5332      } __ end_if();
5333 
5334      sync_kit(ideal);
5335      z = __ value(z_alloc);
5336      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5337      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5338      // Final sync IdealKit and GraphKit.
5339      final_sync(ideal);
5340 #undef __
5341 
5342     Node* z_start = array_element_address(z, intcon(0), T_INT);
5343 
5344     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5345                                    OptoRuntime::multiplyToLen_Type(),
5346                                    stubAddr, stubName, TypePtr::BOTTOM,
5347                                    x_start, xlen, y_start, ylen, z_start, zlen);
5348   } // original reexecute is set back here
5349 
5350   C->set_has_split_ifs(true); // Has chance for split-if optimization
5351   set_result(z);
5352   return true;
5353 }
5354 
5355 //-------------inline_squareToLen------------------------------------
5356 bool LibraryCallKit::inline_squareToLen() {
5357   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5358 
5359   address stubAddr = StubRoutines::squareToLen();
5360   if (stubAddr == NULL) {
5361     return false; // Intrinsic's stub is not implemented on this platform
5362   }
5363   const char* stubName = "squareToLen";
5364 
5365   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5366 
5367   Node* x    = argument(0);
5368   Node* len  = argument(1);
5369   Node* z    = argument(2);
5370   Node* zlen = argument(3);
5371 
5372   const Type* x_type = x->Value(&_gvn);
5373   const Type* z_type = z->Value(&_gvn);
5374   const TypeAryPtr* top_x = x_type->isa_aryptr();
5375   const TypeAryPtr* top_z = z_type->isa_aryptr();
5376   if (top_x  == NULL || top_x->klass()  == NULL ||
5377       top_z  == NULL || top_z->klass()  == NULL) {
5378     // failed array check
5379     return false;
5380   }
5381 
5382   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5383   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5384   if (x_elem != T_INT || z_elem != T_INT) {
5385     return false;
5386   }
5387 
5388 
5389   Node* x_start = array_element_address(x, intcon(0), x_elem);
5390   Node* z_start = array_element_address(z, intcon(0), z_elem);
5391 
5392   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5393                                   OptoRuntime::squareToLen_Type(),
5394                                   stubAddr, stubName, TypePtr::BOTTOM,
5395                                   x_start, len, z_start, zlen);
5396 
5397   set_result(z);
5398   return true;
5399 }
5400 
5401 //-------------inline_mulAdd------------------------------------------
5402 bool LibraryCallKit::inline_mulAdd() {
5403   assert(UseMulAddIntrinsic, "not implemented on this platform");
5404 
5405   address stubAddr = StubRoutines::mulAdd();
5406   if (stubAddr == NULL) {
5407     return false; // Intrinsic's stub is not implemented on this platform
5408   }
5409   const char* stubName = "mulAdd";
5410 
5411   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5412 
5413   Node* out      = argument(0);
5414   Node* in       = argument(1);
5415   Node* offset   = argument(2);
5416   Node* len      = argument(3);
5417   Node* k        = argument(4);
5418 
5419   const Type* out_type = out->Value(&_gvn);
5420   const Type* in_type = in->Value(&_gvn);
5421   const TypeAryPtr* top_out = out_type->isa_aryptr();
5422   const TypeAryPtr* top_in = in_type->isa_aryptr();
5423   if (top_out  == NULL || top_out->klass()  == NULL ||
5424       top_in == NULL || top_in->klass() == NULL) {
5425     // failed array check
5426     return false;
5427   }
5428 
5429   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5430   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5431   if (out_elem != T_INT || in_elem != T_INT) {
5432     return false;
5433   }
5434 
5435   Node* outlen = load_array_length(out);
5436   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5437   Node* out_start = array_element_address(out, intcon(0), out_elem);
5438   Node* in_start = array_element_address(in, intcon(0), in_elem);
5439 
5440   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5441                                   OptoRuntime::mulAdd_Type(),
5442                                   stubAddr, stubName, TypePtr::BOTTOM,
5443                                   out_start,in_start, new_offset, len, k);
5444   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5445   set_result(result);
5446   return true;
5447 }
5448 
5449 //-------------inline_montgomeryMultiply-----------------------------------
5450 bool LibraryCallKit::inline_montgomeryMultiply() {
5451   address stubAddr = StubRoutines::montgomeryMultiply();
5452   if (stubAddr == NULL) {
5453     return false; // Intrinsic's stub is not implemented on this platform
5454   }
5455 
5456   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5457   const char* stubName = "montgomery_square";
5458 
5459   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5460 
5461   Node* a    = argument(0);
5462   Node* b    = argument(1);
5463   Node* n    = argument(2);
5464   Node* len  = argument(3);
5465   Node* inv  = argument(4);
5466   Node* m    = argument(6);
5467 
5468   const Type* a_type = a->Value(&_gvn);
5469   const TypeAryPtr* top_a = a_type->isa_aryptr();
5470   const Type* b_type = b->Value(&_gvn);
5471   const TypeAryPtr* top_b = b_type->isa_aryptr();
5472   const Type* n_type = a->Value(&_gvn);
5473   const TypeAryPtr* top_n = n_type->isa_aryptr();
5474   const Type* m_type = a->Value(&_gvn);
5475   const TypeAryPtr* top_m = m_type->isa_aryptr();
5476   if (top_a  == NULL || top_a->klass()  == NULL ||
5477       top_b == NULL || top_b->klass()  == NULL ||
5478       top_n == NULL || top_n->klass()  == NULL ||
5479       top_m == NULL || top_m->klass()  == NULL) {
5480     // failed array check
5481     return false;
5482   }
5483 
5484   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5485   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5486   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5487   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5488   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5489     return false;
5490   }
5491 
5492   // Make the call
5493   {
5494     Node* a_start = array_element_address(a, intcon(0), a_elem);
5495     Node* b_start = array_element_address(b, intcon(0), b_elem);
5496     Node* n_start = array_element_address(n, intcon(0), n_elem);
5497     Node* m_start = array_element_address(m, intcon(0), m_elem);
5498 
5499     Node* call = make_runtime_call(RC_LEAF,
5500                                    OptoRuntime::montgomeryMultiply_Type(),
5501                                    stubAddr, stubName, TypePtr::BOTTOM,
5502                                    a_start, b_start, n_start, len, inv, top(),
5503                                    m_start);
5504     set_result(m);
5505   }
5506 
5507   return true;
5508 }
5509 
5510 bool LibraryCallKit::inline_montgomerySquare() {
5511   address stubAddr = StubRoutines::montgomerySquare();
5512   if (stubAddr == NULL) {
5513     return false; // Intrinsic's stub is not implemented on this platform
5514   }
5515 
5516   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5517   const char* stubName = "montgomery_square";
5518 
5519   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5520 
5521   Node* a    = argument(0);
5522   Node* n    = argument(1);
5523   Node* len  = argument(2);
5524   Node* inv  = argument(3);
5525   Node* m    = argument(5);
5526 
5527   const Type* a_type = a->Value(&_gvn);
5528   const TypeAryPtr* top_a = a_type->isa_aryptr();
5529   const Type* n_type = a->Value(&_gvn);
5530   const TypeAryPtr* top_n = n_type->isa_aryptr();
5531   const Type* m_type = a->Value(&_gvn);
5532   const TypeAryPtr* top_m = m_type->isa_aryptr();
5533   if (top_a  == NULL || top_a->klass()  == NULL ||
5534       top_n == NULL || top_n->klass()  == NULL ||
5535       top_m == NULL || top_m->klass()  == NULL) {
5536     // failed array check
5537     return false;
5538   }
5539 
5540   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5541   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5542   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5543   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5544     return false;
5545   }
5546 
5547   // Make the call
5548   {
5549     Node* a_start = array_element_address(a, intcon(0), a_elem);
5550     Node* n_start = array_element_address(n, intcon(0), n_elem);
5551     Node* m_start = array_element_address(m, intcon(0), m_elem);
5552 
5553     Node* call = make_runtime_call(RC_LEAF,
5554                                    OptoRuntime::montgomerySquare_Type(),
5555                                    stubAddr, stubName, TypePtr::BOTTOM,
5556                                    a_start, n_start, len, inv, top(),
5557                                    m_start);
5558     set_result(m);
5559   }
5560 
5561   return true;
5562 }
5563 
5564 //-------------inline_vectorizedMismatch------------------------------
5565 bool LibraryCallKit::inline_vectorizedMismatch() {
5566   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5567 
5568   address stubAddr = StubRoutines::vectorizedMismatch();
5569   if (stubAddr == NULL) {
5570     return false; // Intrinsic's stub is not implemented on this platform
5571   }
5572   const char* stubName = "vectorizedMismatch";
5573   int size_l = callee()->signature()->size();
5574   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5575 
5576   Node* obja = argument(0);
5577   Node* aoffset = argument(1);
5578   Node* objb = argument(3);
5579   Node* boffset = argument(4);
5580   Node* length = argument(6);
5581   Node* scale = argument(7);
5582 
5583   const Type* a_type = obja->Value(&_gvn);
5584   const Type* b_type = objb->Value(&_gvn);
5585   const TypeAryPtr* top_a = a_type->isa_aryptr();
5586   const TypeAryPtr* top_b = b_type->isa_aryptr();
5587   if (top_a == NULL || top_a->klass() == NULL ||
5588     top_b == NULL || top_b->klass() == NULL) {
5589     // failed array check
5590     return false;
5591   }
5592 
5593   Node* call;
5594   jvms()->set_should_reexecute(true);
5595 
5596   Node* obja_adr = make_unsafe_address(obja, aoffset);
5597   Node* objb_adr = make_unsafe_address(objb, boffset);
5598 
5599   call = make_runtime_call(RC_LEAF,
5600     OptoRuntime::vectorizedMismatch_Type(),
5601     stubAddr, stubName, TypePtr::BOTTOM,
5602     obja_adr, objb_adr, length, scale);
5603 
5604   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5605   set_result(result);
5606   return true;
5607 }
5608 
5609 /**
5610  * Calculate CRC32 for byte.
5611  * int java.util.zip.CRC32.update(int crc, int b)
5612  */
5613 bool LibraryCallKit::inline_updateCRC32() {
5614   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5615   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5616   // no receiver since it is static method
5617   Node* crc  = argument(0); // type: int
5618   Node* b    = argument(1); // type: int
5619 
5620   /*
5621    *    int c = ~ crc;
5622    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5623    *    b = b ^ (c >>> 8);
5624    *    crc = ~b;
5625    */
5626 
5627   Node* M1 = intcon(-1);
5628   crc = _gvn.transform(new XorINode(crc, M1));
5629   Node* result = _gvn.transform(new XorINode(crc, b));
5630   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5631 
5632   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5633   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5634   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5635   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5636 
5637   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5638   result = _gvn.transform(new XorINode(crc, result));
5639   result = _gvn.transform(new XorINode(result, M1));
5640   set_result(result);
5641   return true;
5642 }
5643 
5644 /**
5645  * Calculate CRC32 for byte[] array.
5646  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5647  */
5648 bool LibraryCallKit::inline_updateBytesCRC32() {
5649   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5650   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5651   // no receiver since it is static method
5652   Node* crc     = argument(0); // type: int
5653   Node* src     = argument(1); // type: oop
5654   Node* offset  = argument(2); // type: int
5655   Node* length  = argument(3); // type: int
5656 
5657   const Type* src_type = src->Value(&_gvn);
5658   const TypeAryPtr* top_src = src_type->isa_aryptr();
5659   if (top_src  == NULL || top_src->klass()  == NULL) {
5660     // failed array check
5661     return false;
5662   }
5663 
5664   // Figure out the size and type of the elements we will be copying.
5665   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5666   if (src_elem != T_BYTE) {
5667     return false;
5668   }
5669 
5670   // 'src_start' points to src array + scaled offset
5671   Node* src_start = array_element_address(src, offset, src_elem);
5672 
5673   // We assume that range check is done by caller.
5674   // TODO: generate range check (offset+length < src.length) in debug VM.
5675 
5676   // Call the stub.
5677   address stubAddr = StubRoutines::updateBytesCRC32();
5678   const char *stubName = "updateBytesCRC32";
5679 
5680   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5681                                  stubAddr, stubName, TypePtr::BOTTOM,
5682                                  crc, src_start, length);
5683   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5684   set_result(result);
5685   return true;
5686 }
5687 
5688 /**
5689  * Calculate CRC32 for ByteBuffer.
5690  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5691  */
5692 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5693   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5694   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5695   // no receiver since it is static method
5696   Node* crc     = argument(0); // type: int
5697   Node* src     = argument(1); // type: long
5698   Node* offset  = argument(3); // type: int
5699   Node* length  = argument(4); // type: int
5700 
5701   src = ConvL2X(src);  // adjust Java long to machine word
5702   Node* base = _gvn.transform(new CastX2PNode(src));
5703   offset = ConvI2X(offset);
5704 
5705   // 'src_start' points to src array + scaled offset
5706   Node* src_start = basic_plus_adr(top(), base, offset);
5707 
5708   // Call the stub.
5709   address stubAddr = StubRoutines::updateBytesCRC32();
5710   const char *stubName = "updateBytesCRC32";
5711 
5712   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5713                                  stubAddr, stubName, TypePtr::BOTTOM,
5714                                  crc, src_start, length);
5715   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5716   set_result(result);
5717   return true;
5718 }
5719 
5720 //------------------------------get_table_from_crc32c_class-----------------------
5721 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5722   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5723   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5724 
5725   return table;
5726 }
5727 
5728 //------------------------------inline_updateBytesCRC32C-----------------------
5729 //
5730 // Calculate CRC32C for byte[] array.
5731 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5732 //
5733 bool LibraryCallKit::inline_updateBytesCRC32C() {
5734   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5735   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5736   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5737   // no receiver since it is a static method
5738   Node* crc     = argument(0); // type: int
5739   Node* src     = argument(1); // type: oop
5740   Node* offset  = argument(2); // type: int
5741   Node* end     = argument(3); // type: int
5742 
5743   Node* length = _gvn.transform(new SubINode(end, offset));
5744 
5745   const Type* src_type = src->Value(&_gvn);
5746   const TypeAryPtr* top_src = src_type->isa_aryptr();
5747   if (top_src  == NULL || top_src->klass()  == NULL) {
5748     // failed array check
5749     return false;
5750   }
5751 
5752   // Figure out the size and type of the elements we will be copying.
5753   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5754   if (src_elem != T_BYTE) {
5755     return false;
5756   }
5757 
5758   // 'src_start' points to src array + scaled offset
5759   Node* src_start = array_element_address(src, offset, src_elem);
5760 
5761   // static final int[] byteTable in class CRC32C
5762   Node* table = get_table_from_crc32c_class(callee()->holder());
5763   Node* table_start = array_element_address(table, intcon(0), T_INT);
5764 
5765   // We assume that range check is done by caller.
5766   // TODO: generate range check (offset+length < src.length) in debug VM.
5767 
5768   // Call the stub.
5769   address stubAddr = StubRoutines::updateBytesCRC32C();
5770   const char *stubName = "updateBytesCRC32C";
5771 
5772   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5773                                  stubAddr, stubName, TypePtr::BOTTOM,
5774                                  crc, src_start, length, table_start);
5775   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5776   set_result(result);
5777   return true;
5778 }
5779 
5780 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5781 //
5782 // Calculate CRC32C for DirectByteBuffer.
5783 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5784 //
5785 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5786   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5787   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5788   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5789   // no receiver since it is a static method
5790   Node* crc     = argument(0); // type: int
5791   Node* src     = argument(1); // type: long
5792   Node* offset  = argument(3); // type: int
5793   Node* end     = argument(4); // type: int
5794 
5795   Node* length = _gvn.transform(new SubINode(end, offset));
5796 
5797   src = ConvL2X(src);  // adjust Java long to machine word
5798   Node* base = _gvn.transform(new CastX2PNode(src));
5799   offset = ConvI2X(offset);
5800 
5801   // 'src_start' points to src array + scaled offset
5802   Node* src_start = basic_plus_adr(top(), base, offset);
5803 
5804   // static final int[] byteTable in class CRC32C
5805   Node* table = get_table_from_crc32c_class(callee()->holder());
5806   Node* table_start = array_element_address(table, intcon(0), T_INT);
5807 
5808   // Call the stub.
5809   address stubAddr = StubRoutines::updateBytesCRC32C();
5810   const char *stubName = "updateBytesCRC32C";
5811 
5812   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5813                                  stubAddr, stubName, TypePtr::BOTTOM,
5814                                  crc, src_start, length, table_start);
5815   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5816   set_result(result);
5817   return true;
5818 }
5819 
5820 //------------------------------inline_updateBytesAdler32----------------------
5821 //
5822 // Calculate Adler32 checksum for byte[] array.
5823 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5824 //
5825 bool LibraryCallKit::inline_updateBytesAdler32() {
5826   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5827   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5828   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5829   // no receiver since it is static method
5830   Node* crc     = argument(0); // type: int
5831   Node* src     = argument(1); // type: oop
5832   Node* offset  = argument(2); // type: int
5833   Node* length  = argument(3); // type: int
5834 
5835   const Type* src_type = src->Value(&_gvn);
5836   const TypeAryPtr* top_src = src_type->isa_aryptr();
5837   if (top_src  == NULL || top_src->klass()  == NULL) {
5838     // failed array check
5839     return false;
5840   }
5841 
5842   // Figure out the size and type of the elements we will be copying.
5843   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5844   if (src_elem != T_BYTE) {
5845     return false;
5846   }
5847 
5848   // 'src_start' points to src array + scaled offset
5849   Node* src_start = array_element_address(src, offset, src_elem);
5850 
5851   // We assume that range check is done by caller.
5852   // TODO: generate range check (offset+length < src.length) in debug VM.
5853 
5854   // Call the stub.
5855   address stubAddr = StubRoutines::updateBytesAdler32();
5856   const char *stubName = "updateBytesAdler32";
5857 
5858   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5859                                  stubAddr, stubName, TypePtr::BOTTOM,
5860                                  crc, src_start, length);
5861   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5862   set_result(result);
5863   return true;
5864 }
5865 
5866 //------------------------------inline_updateByteBufferAdler32---------------
5867 //
5868 // Calculate Adler32 checksum for DirectByteBuffer.
5869 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5870 //
5871 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5872   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5873   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5874   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5875   // no receiver since it is static method
5876   Node* crc     = argument(0); // type: int
5877   Node* src     = argument(1); // type: long
5878   Node* offset  = argument(3); // type: int
5879   Node* length  = argument(4); // type: int
5880 
5881   src = ConvL2X(src);  // adjust Java long to machine word
5882   Node* base = _gvn.transform(new CastX2PNode(src));
5883   offset = ConvI2X(offset);
5884 
5885   // 'src_start' points to src array + scaled offset
5886   Node* src_start = basic_plus_adr(top(), base, offset);
5887 
5888   // Call the stub.
5889   address stubAddr = StubRoutines::updateBytesAdler32();
5890   const char *stubName = "updateBytesAdler32";
5891 
5892   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5893                                  stubAddr, stubName, TypePtr::BOTTOM,
5894                                  crc, src_start, length);
5895 
5896   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5897   set_result(result);
5898   return true;
5899 }
5900 
5901 //----------------------------inline_reference_get----------------------------
5902 // public T java.lang.ref.Reference.get();
5903 bool LibraryCallKit::inline_reference_get() {
5904   const int referent_offset = java_lang_ref_Reference::referent_offset;
5905   guarantee(referent_offset > 0, "should have already been set");
5906 
5907   // Get the argument:
5908   Node* reference_obj = null_check_receiver();
5909   if (stopped()) return true;
5910 
5911   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5912 
5913   ciInstanceKlass* klass = env()->Object_klass();
5914   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5915 
5916   Node* no_ctrl = NULL;
5917   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5918 
5919   // Use the pre-barrier to record the value in the referent field
5920   pre_barrier(false /* do_load */,
5921               control(),
5922               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5923               result /* pre_val */,
5924               T_OBJECT);
5925 
5926   // Add memory barrier to prevent commoning reads from this field
5927   // across safepoint since GC can change its value.
5928   insert_mem_bar(Op_MemBarCPUOrder);
5929 
5930   set_result(result);
5931   return true;
5932 }
5933 
5934 
5935 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5936                                               bool is_exact=true, bool is_static=false,
5937                                               ciInstanceKlass * fromKls=NULL) {
5938   if (fromKls == NULL) {
5939     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5940     assert(tinst != NULL, "obj is null");
5941     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5942     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5943     fromKls = tinst->klass()->as_instance_klass();
5944   } else {
5945     assert(is_static, "only for static field access");
5946   }
5947   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5948                                               ciSymbol::make(fieldTypeString),
5949                                               is_static);
5950 
5951   assert (field != NULL, "undefined field");
5952   if (field == NULL) return (Node *) NULL;
5953 
5954   if (is_static) {
5955     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5956     fromObj = makecon(tip);
5957   }
5958 
5959   // Next code  copied from Parse::do_get_xxx():
5960 
5961   // Compute address and memory type.
5962   int offset  = field->offset_in_bytes();
5963   bool is_vol = field->is_volatile();
5964   ciType* field_klass = field->type();
5965   assert(field_klass->is_loaded(), "should be loaded");
5966   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5967   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5968   BasicType bt = field->layout_type();
5969 
5970   // Build the resultant type of the load
5971   const Type *type;
5972   if (bt == T_OBJECT) {
5973     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5974   } else {
5975     type = Type::get_const_basic_type(bt);
5976   }
5977 
5978   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5979     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5980   }
5981   // Build the load.
5982   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5983   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5984   // If reference is volatile, prevent following memory ops from
5985   // floating up past the volatile read.  Also prevents commoning
5986   // another volatile read.
5987   if (is_vol) {
5988     // Memory barrier includes bogus read of value to force load BEFORE membar
5989     insert_mem_bar(Op_MemBarAcquire, loadedField);
5990   }
5991   return loadedField;
5992 }
5993 
5994 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5995                                                  bool is_exact = true, bool is_static = false,
5996                                                  ciInstanceKlass * fromKls = NULL) {
5997   if (fromKls == NULL) {
5998     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5999     assert(tinst != NULL, "obj is null");
6000     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6001     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6002     fromKls = tinst->klass()->as_instance_klass();
6003   }
6004   else {
6005     assert(is_static, "only for static field access");
6006   }
6007   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6008     ciSymbol::make(fieldTypeString),
6009     is_static);
6010 
6011   assert(field != NULL, "undefined field");
6012   assert(!field->is_volatile(), "not defined for volatile fields");
6013 
6014   if (is_static) {
6015     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6016     fromObj = makecon(tip);
6017   }
6018 
6019   // Next code  copied from Parse::do_get_xxx():
6020 
6021   // Compute address and memory type.
6022   int offset = field->offset_in_bytes();
6023   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6024 
6025   return adr;
6026 }
6027 
6028 //------------------------------inline_aescrypt_Block-----------------------
6029 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6030   address stubAddr = NULL;
6031   const char *stubName;
6032   assert(UseAES, "need AES instruction support");
6033 
6034   switch(id) {
6035   case vmIntrinsics::_aescrypt_encryptBlock:
6036     stubAddr = StubRoutines::aescrypt_encryptBlock();
6037     stubName = "aescrypt_encryptBlock";
6038     break;
6039   case vmIntrinsics::_aescrypt_decryptBlock:
6040     stubAddr = StubRoutines::aescrypt_decryptBlock();
6041     stubName = "aescrypt_decryptBlock";
6042     break;
6043   }
6044   if (stubAddr == NULL) return false;
6045 
6046   Node* aescrypt_object = argument(0);
6047   Node* src             = argument(1);
6048   Node* src_offset      = argument(2);
6049   Node* dest            = argument(3);
6050   Node* dest_offset     = argument(4);
6051 
6052   // (1) src and dest are arrays.
6053   const Type* src_type = src->Value(&_gvn);
6054   const Type* dest_type = dest->Value(&_gvn);
6055   const TypeAryPtr* top_src = src_type->isa_aryptr();
6056   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6057   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6058 
6059   // for the quick and dirty code we will skip all the checks.
6060   // we are just trying to get the call to be generated.
6061   Node* src_start  = src;
6062   Node* dest_start = dest;
6063   if (src_offset != NULL || dest_offset != NULL) {
6064     assert(src_offset != NULL && dest_offset != NULL, "");
6065     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6066     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6067   }
6068 
6069   // now need to get the start of its expanded key array
6070   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6071   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6072   if (k_start == NULL) return false;
6073 
6074   if (Matcher::pass_original_key_for_aes()) {
6075     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6076     // compatibility issues between Java key expansion and SPARC crypto instructions
6077     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6078     if (original_k_start == NULL) return false;
6079 
6080     // Call the stub.
6081     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6082                       stubAddr, stubName, TypePtr::BOTTOM,
6083                       src_start, dest_start, k_start, original_k_start);
6084   } else {
6085     // Call the stub.
6086     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6087                       stubAddr, stubName, TypePtr::BOTTOM,
6088                       src_start, dest_start, k_start);
6089   }
6090 
6091   return true;
6092 }
6093 
6094 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6095 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6096   address stubAddr = NULL;
6097   const char *stubName = NULL;
6098 
6099   assert(UseAES, "need AES instruction support");
6100 
6101   switch(id) {
6102   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6103     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6104     stubName = "cipherBlockChaining_encryptAESCrypt";
6105     break;
6106   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6107     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6108     stubName = "cipherBlockChaining_decryptAESCrypt";
6109     break;
6110   }
6111   if (stubAddr == NULL) return false;
6112 
6113   Node* cipherBlockChaining_object = argument(0);
6114   Node* src                        = argument(1);
6115   Node* src_offset                 = argument(2);
6116   Node* len                        = argument(3);
6117   Node* dest                       = argument(4);
6118   Node* dest_offset                = argument(5);
6119 
6120   // (1) src and dest are arrays.
6121   const Type* src_type = src->Value(&_gvn);
6122   const Type* dest_type = dest->Value(&_gvn);
6123   const TypeAryPtr* top_src = src_type->isa_aryptr();
6124   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6125   assert (top_src  != NULL && top_src->klass()  != NULL
6126           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6127 
6128   // checks are the responsibility of the caller
6129   Node* src_start  = src;
6130   Node* dest_start = dest;
6131   if (src_offset != NULL || dest_offset != NULL) {
6132     assert(src_offset != NULL && dest_offset != NULL, "");
6133     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6134     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6135   }
6136 
6137   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6138   // (because of the predicated logic executed earlier).
6139   // so we cast it here safely.
6140   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6141 
6142   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6143   if (embeddedCipherObj == NULL) return false;
6144 
6145   // cast it to what we know it will be at runtime
6146   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6147   assert(tinst != NULL, "CBC obj is null");
6148   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6149   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6150   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6151 
6152   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6153   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6154   const TypeOopPtr* xtype = aklass->as_instance_type();
6155   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6156   aescrypt_object = _gvn.transform(aescrypt_object);
6157 
6158   // we need to get the start of the aescrypt_object's expanded key array
6159   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6160   if (k_start == NULL) return false;
6161 
6162   // similarly, get the start address of the r vector
6163   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6164   if (objRvec == NULL) return false;
6165   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6166 
6167   Node* cbcCrypt;
6168   if (Matcher::pass_original_key_for_aes()) {
6169     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6170     // compatibility issues between Java key expansion and SPARC crypto instructions
6171     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6172     if (original_k_start == NULL) return false;
6173 
6174     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6175     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6176                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6177                                  stubAddr, stubName, TypePtr::BOTTOM,
6178                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6179   } else {
6180     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6181     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6182                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6183                                  stubAddr, stubName, TypePtr::BOTTOM,
6184                                  src_start, dest_start, k_start, r_start, len);
6185   }
6186 
6187   // return cipher length (int)
6188   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6189   set_result(retvalue);
6190   return true;
6191 }
6192 
6193 //------------------------------inline_counterMode_AESCrypt-----------------------
6194 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6195   assert(UseAES, "need AES instruction support");
6196   if (!UseAESCTRIntrinsics) return false;
6197 
6198   address stubAddr = NULL;
6199   const char *stubName = NULL;
6200   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6201     stubAddr = StubRoutines::counterMode_AESCrypt();
6202     stubName = "counterMode_AESCrypt";
6203   }
6204   if (stubAddr == NULL) return false;
6205 
6206   Node* counterMode_object = argument(0);
6207   Node* src = argument(1);
6208   Node* src_offset = argument(2);
6209   Node* len = argument(3);
6210   Node* dest = argument(4);
6211   Node* dest_offset = argument(5);
6212 
6213   // (1) src and dest are arrays.
6214   const Type* src_type = src->Value(&_gvn);
6215   const Type* dest_type = dest->Value(&_gvn);
6216   const TypeAryPtr* top_src = src_type->isa_aryptr();
6217   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6218   assert(top_src != NULL && top_src->klass() != NULL &&
6219          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6220 
6221   // checks are the responsibility of the caller
6222   Node* src_start = src;
6223   Node* dest_start = dest;
6224   if (src_offset != NULL || dest_offset != NULL) {
6225     assert(src_offset != NULL && dest_offset != NULL, "");
6226     src_start = array_element_address(src, src_offset, T_BYTE);
6227     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6228   }
6229 
6230   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6231   // (because of the predicated logic executed earlier).
6232   // so we cast it here safely.
6233   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6234   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6235   if (embeddedCipherObj == NULL) return false;
6236   // cast it to what we know it will be at runtime
6237   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6238   assert(tinst != NULL, "CTR obj is null");
6239   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6240   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6241   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6242   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6243   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6244   const TypeOopPtr* xtype = aklass->as_instance_type();
6245   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6246   aescrypt_object = _gvn.transform(aescrypt_object);
6247   // we need to get the start of the aescrypt_object's expanded key array
6248   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6249   if (k_start == NULL) return false;
6250   // similarly, get the start address of the r vector
6251   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6252   if (obj_counter == NULL) return false;
6253   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6254 
6255   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6256   if (saved_encCounter == NULL) return false;
6257   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6258   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6259 
6260   Node* ctrCrypt;
6261   if (Matcher::pass_original_key_for_aes()) {
6262     // no SPARC version for AES/CTR intrinsics now.
6263     return false;
6264   }
6265   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6266   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6267                                OptoRuntime::counterMode_aescrypt_Type(),
6268                                stubAddr, stubName, TypePtr::BOTTOM,
6269                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6270 
6271   // return cipher length (int)
6272   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6273   set_result(retvalue);
6274   return true;
6275 }
6276 
6277 //------------------------------get_key_start_from_aescrypt_object-----------------------
6278 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6279   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6280   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6281   if (objAESCryptKey == NULL) return (Node *) NULL;
6282 
6283   // now have the array, need to get the start address of the K array
6284   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6285   return k_start;
6286 }
6287 
6288 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6289 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6290   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6291   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6292   if (objAESCryptKey == NULL) return (Node *) NULL;
6293 
6294   // now have the array, need to get the start address of the lastKey array
6295   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6296   return original_k_start;
6297 }
6298 
6299 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6300 // Return node representing slow path of predicate check.
6301 // the pseudo code we want to emulate with this predicate is:
6302 // for encryption:
6303 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6304 // for decryption:
6305 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6306 //    note cipher==plain is more conservative than the original java code but that's OK
6307 //
6308 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6309   // The receiver was checked for NULL already.
6310   Node* objCBC = argument(0);
6311 
6312   // Load embeddedCipher field of CipherBlockChaining object.
6313   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6314 
6315   // get AESCrypt klass for instanceOf check
6316   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6317   // will have same classloader as CipherBlockChaining object
6318   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6319   assert(tinst != NULL, "CBCobj is null");
6320   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6321 
6322   // we want to do an instanceof comparison against the AESCrypt class
6323   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6324   if (!klass_AESCrypt->is_loaded()) {
6325     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6326     Node* ctrl = control();
6327     set_control(top()); // no regular fast path
6328     return ctrl;
6329   }
6330   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6331 
6332   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6333   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6334   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6335 
6336   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6337 
6338   // for encryption, we are done
6339   if (!decrypting)
6340     return instof_false;  // even if it is NULL
6341 
6342   // for decryption, we need to add a further check to avoid
6343   // taking the intrinsic path when cipher and plain are the same
6344   // see the original java code for why.
6345   RegionNode* region = new RegionNode(3);
6346   region->init_req(1, instof_false);
6347   Node* src = argument(1);
6348   Node* dest = argument(4);
6349   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6350   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6351   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6352   region->init_req(2, src_dest_conjoint);
6353 
6354   record_for_igvn(region);
6355   return _gvn.transform(region);
6356 }
6357 
6358 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6359 // Return node representing slow path of predicate check.
6360 // the pseudo code we want to emulate with this predicate is:
6361 // for encryption:
6362 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6363 // for decryption:
6364 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6365 //    note cipher==plain is more conservative than the original java code but that's OK
6366 //
6367 
6368 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6369   // The receiver was checked for NULL already.
6370   Node* objCTR = argument(0);
6371 
6372   // Load embeddedCipher field of CipherBlockChaining object.
6373   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6374 
6375   // get AESCrypt klass for instanceOf check
6376   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6377   // will have same classloader as CipherBlockChaining object
6378   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6379   assert(tinst != NULL, "CTRobj is null");
6380   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6381 
6382   // we want to do an instanceof comparison against the AESCrypt class
6383   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6384   if (!klass_AESCrypt->is_loaded()) {
6385     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6386     Node* ctrl = control();
6387     set_control(top()); // no regular fast path
6388     return ctrl;
6389   }
6390 
6391   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6392   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6393   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6394   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6395   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6396 
6397   return instof_false; // even if it is NULL
6398 }
6399 
6400 //------------------------------inline_ghash_processBlocks
6401 bool LibraryCallKit::inline_ghash_processBlocks() {
6402   address stubAddr;
6403   const char *stubName;
6404   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6405 
6406   stubAddr = StubRoutines::ghash_processBlocks();
6407   stubName = "ghash_processBlocks";
6408 
6409   Node* data           = argument(0);
6410   Node* offset         = argument(1);
6411   Node* len            = argument(2);
6412   Node* state          = argument(3);
6413   Node* subkeyH        = argument(4);
6414 
6415   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6416   assert(state_start, "state is NULL");
6417   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6418   assert(subkeyH_start, "subkeyH is NULL");
6419   Node* data_start  = array_element_address(data, offset, T_BYTE);
6420   assert(data_start, "data is NULL");
6421 
6422   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6423                                   OptoRuntime::ghash_processBlocks_Type(),
6424                                   stubAddr, stubName, TypePtr::BOTTOM,
6425                                   state_start, subkeyH_start, data_start, len);
6426   return true;
6427 }
6428 
6429 //------------------------------inline_sha_implCompress-----------------------
6430 //
6431 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6432 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6433 //
6434 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6435 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6436 //
6437 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6438 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6439 //
6440 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6441   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6442 
6443   Node* sha_obj = argument(0);
6444   Node* src     = argument(1); // type oop
6445   Node* ofs     = argument(2); // type int
6446 
6447   const Type* src_type = src->Value(&_gvn);
6448   const TypeAryPtr* top_src = src_type->isa_aryptr();
6449   if (top_src  == NULL || top_src->klass()  == NULL) {
6450     // failed array check
6451     return false;
6452   }
6453   // Figure out the size and type of the elements we will be copying.
6454   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6455   if (src_elem != T_BYTE) {
6456     return false;
6457   }
6458   // 'src_start' points to src array + offset
6459   Node* src_start = array_element_address(src, ofs, src_elem);
6460   Node* state = NULL;
6461   address stubAddr;
6462   const char *stubName;
6463 
6464   switch(id) {
6465   case vmIntrinsics::_sha_implCompress:
6466     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6467     state = get_state_from_sha_object(sha_obj);
6468     stubAddr = StubRoutines::sha1_implCompress();
6469     stubName = "sha1_implCompress";
6470     break;
6471   case vmIntrinsics::_sha2_implCompress:
6472     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6473     state = get_state_from_sha_object(sha_obj);
6474     stubAddr = StubRoutines::sha256_implCompress();
6475     stubName = "sha256_implCompress";
6476     break;
6477   case vmIntrinsics::_sha5_implCompress:
6478     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6479     state = get_state_from_sha5_object(sha_obj);
6480     stubAddr = StubRoutines::sha512_implCompress();
6481     stubName = "sha512_implCompress";
6482     break;
6483   default:
6484     fatal_unexpected_iid(id);
6485     return false;
6486   }
6487   if (state == NULL) return false;
6488 
6489   // Call the stub.
6490   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6491                                  stubAddr, stubName, TypePtr::BOTTOM,
6492                                  src_start, state);
6493 
6494   return true;
6495 }
6496 
6497 //------------------------------inline_digestBase_implCompressMB-----------------------
6498 //
6499 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6500 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6501 //
6502 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6503   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6504          "need SHA1/SHA256/SHA512 instruction support");
6505   assert((uint)predicate < 3, "sanity");
6506   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6507 
6508   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6509   Node* src            = argument(1); // byte[] array
6510   Node* ofs            = argument(2); // type int
6511   Node* limit          = argument(3); // type int
6512 
6513   const Type* src_type = src->Value(&_gvn);
6514   const TypeAryPtr* top_src = src_type->isa_aryptr();
6515   if (top_src  == NULL || top_src->klass()  == NULL) {
6516     // failed array check
6517     return false;
6518   }
6519   // Figure out the size and type of the elements we will be copying.
6520   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6521   if (src_elem != T_BYTE) {
6522     return false;
6523   }
6524   // 'src_start' points to src array + offset
6525   Node* src_start = array_element_address(src, ofs, src_elem);
6526 
6527   const char* klass_SHA_name = NULL;
6528   const char* stub_name = NULL;
6529   address     stub_addr = NULL;
6530   bool        long_state = false;
6531 
6532   switch (predicate) {
6533   case 0:
6534     if (UseSHA1Intrinsics) {
6535       klass_SHA_name = "sun/security/provider/SHA";
6536       stub_name = "sha1_implCompressMB";
6537       stub_addr = StubRoutines::sha1_implCompressMB();
6538     }
6539     break;
6540   case 1:
6541     if (UseSHA256Intrinsics) {
6542       klass_SHA_name = "sun/security/provider/SHA2";
6543       stub_name = "sha256_implCompressMB";
6544       stub_addr = StubRoutines::sha256_implCompressMB();
6545     }
6546     break;
6547   case 2:
6548     if (UseSHA512Intrinsics) {
6549       klass_SHA_name = "sun/security/provider/SHA5";
6550       stub_name = "sha512_implCompressMB";
6551       stub_addr = StubRoutines::sha512_implCompressMB();
6552       long_state = true;
6553     }
6554     break;
6555   default:
6556     fatal("unknown SHA intrinsic predicate: %d", predicate);
6557   }
6558   if (klass_SHA_name != NULL) {
6559     // get DigestBase klass to lookup for SHA klass
6560     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6561     assert(tinst != NULL, "digestBase_obj is not instance???");
6562     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6563 
6564     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6565     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6566     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6567     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6568   }
6569   return false;
6570 }
6571 //------------------------------inline_sha_implCompressMB-----------------------
6572 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6573                                                bool long_state, address stubAddr, const char *stubName,
6574                                                Node* src_start, Node* ofs, Node* limit) {
6575   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6576   const TypeOopPtr* xtype = aklass->as_instance_type();
6577   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6578   sha_obj = _gvn.transform(sha_obj);
6579 
6580   Node* state;
6581   if (long_state) {
6582     state = get_state_from_sha5_object(sha_obj);
6583   } else {
6584     state = get_state_from_sha_object(sha_obj);
6585   }
6586   if (state == NULL) return false;
6587 
6588   // Call the stub.
6589   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6590                                  OptoRuntime::digestBase_implCompressMB_Type(),
6591                                  stubAddr, stubName, TypePtr::BOTTOM,
6592                                  src_start, state, ofs, limit);
6593   // return ofs (int)
6594   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6595   set_result(result);
6596 
6597   return true;
6598 }
6599 
6600 //------------------------------get_state_from_sha_object-----------------------
6601 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6602   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6603   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6604   if (sha_state == NULL) return (Node *) NULL;
6605 
6606   // now have the array, need to get the start address of the state array
6607   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6608   return state;
6609 }
6610 
6611 //------------------------------get_state_from_sha5_object-----------------------
6612 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6613   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6614   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6615   if (sha_state == NULL) return (Node *) NULL;
6616 
6617   // now have the array, need to get the start address of the state array
6618   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6619   return state;
6620 }
6621 
6622 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6623 // Return node representing slow path of predicate check.
6624 // the pseudo code we want to emulate with this predicate is:
6625 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6626 //
6627 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6628   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6629          "need SHA1/SHA256/SHA512 instruction support");
6630   assert((uint)predicate < 3, "sanity");
6631 
6632   // The receiver was checked for NULL already.
6633   Node* digestBaseObj = argument(0);
6634 
6635   // get DigestBase klass for instanceOf check
6636   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6637   assert(tinst != NULL, "digestBaseObj is null");
6638   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6639 
6640   const char* klass_SHA_name = NULL;
6641   switch (predicate) {
6642   case 0:
6643     if (UseSHA1Intrinsics) {
6644       // we want to do an instanceof comparison against the SHA class
6645       klass_SHA_name = "sun/security/provider/SHA";
6646     }
6647     break;
6648   case 1:
6649     if (UseSHA256Intrinsics) {
6650       // we want to do an instanceof comparison against the SHA2 class
6651       klass_SHA_name = "sun/security/provider/SHA2";
6652     }
6653     break;
6654   case 2:
6655     if (UseSHA512Intrinsics) {
6656       // we want to do an instanceof comparison against the SHA5 class
6657       klass_SHA_name = "sun/security/provider/SHA5";
6658     }
6659     break;
6660   default:
6661     fatal("unknown SHA intrinsic predicate: %d", predicate);
6662   }
6663 
6664   ciKlass* klass_SHA = NULL;
6665   if (klass_SHA_name != NULL) {
6666     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6667   }
6668   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6669     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6670     Node* ctrl = control();
6671     set_control(top()); // no intrinsic path
6672     return ctrl;
6673   }
6674   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6675 
6676   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6677   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6678   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6679   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6680 
6681   return instof_false;  // even if it is NULL
6682 }
6683 
6684 bool LibraryCallKit::inline_profileBoolean() {
6685   Node* counts = argument(1);
6686   const TypeAryPtr* ary = NULL;
6687   ciArray* aobj = NULL;
6688   if (counts->is_Con()
6689       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6690       && (aobj = ary->const_oop()->as_array()) != NULL
6691       && (aobj->length() == 2)) {
6692     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6693     jint false_cnt = aobj->element_value(0).as_int();
6694     jint  true_cnt = aobj->element_value(1).as_int();
6695 
6696     if (C->log() != NULL) {
6697       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6698                      false_cnt, true_cnt);
6699     }
6700 
6701     if (false_cnt + true_cnt == 0) {
6702       // According to profile, never executed.
6703       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6704                           Deoptimization::Action_reinterpret);
6705       return true;
6706     }
6707 
6708     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6709     // is a number of each value occurrences.
6710     Node* result = argument(0);
6711     if (false_cnt == 0 || true_cnt == 0) {
6712       // According to profile, one value has been never seen.
6713       int expected_val = (false_cnt == 0) ? 1 : 0;
6714 
6715       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6716       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6717 
6718       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6719       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6720       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6721 
6722       { // Slow path: uncommon trap for never seen value and then reexecute
6723         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6724         // the value has been seen at least once.
6725         PreserveJVMState pjvms(this);
6726         PreserveReexecuteState preexecs(this);
6727         jvms()->set_should_reexecute(true);
6728 
6729         set_control(slow_path);
6730         set_i_o(i_o());
6731 
6732         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6733                             Deoptimization::Action_reinterpret);
6734       }
6735       // The guard for never seen value enables sharpening of the result and
6736       // returning a constant. It allows to eliminate branches on the same value
6737       // later on.
6738       set_control(fast_path);
6739       result = intcon(expected_val);
6740     }
6741     // Stop profiling.
6742     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6743     // By replacing method body with profile data (represented as ProfileBooleanNode
6744     // on IR level) we effectively disable profiling.
6745     // It enables full speed execution once optimized code is generated.
6746     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6747     C->record_for_igvn(profile);
6748     set_result(profile);
6749     return true;
6750   } else {
6751     // Continue profiling.
6752     // Profile data isn't available at the moment. So, execute method's bytecode version.
6753     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6754     // is compiled and counters aren't available since corresponding MethodHandle
6755     // isn't a compile-time constant.
6756     return false;
6757   }
6758 }
6759 
6760 bool LibraryCallKit::inline_isCompileConstant() {
6761   Node* n = argument(0);
6762   set_result(n->is_Con() ? intcon(1) : intcon(0));
6763   return true;
6764 }