1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/align.hpp"
  68 #include "utilities/decoder.hpp"
  69 #include "utilities/defaultStream.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/elfFile.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 // put OS-includes here
  77 # include <sys/types.h>
  78 # include <sys/mman.h>
  79 # include <sys/stat.h>
  80 # include <sys/select.h>
  81 # include <pthread.h>
  82 # include <signal.h>
  83 # include <errno.h>
  84 # include <dlfcn.h>
  85 # include <stdio.h>
  86 # include <unistd.h>
  87 # include <sys/resource.h>
  88 # include <pthread.h>
  89 # include <sys/stat.h>
  90 # include <sys/time.h>
  91 # include <sys/times.h>
  92 # include <sys/utsname.h>
  93 # include <sys/socket.h>
  94 # include <sys/wait.h>
  95 # include <pwd.h>
  96 # include <poll.h>
  97 # include <semaphore.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 ////////////////////////////////////////////////////////////////////////////////
 133 // global variables
 134 julong os::Linux::_physical_memory = 0;
 135 
 136 address   os::Linux::_initial_thread_stack_bottom = NULL;
 137 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 138 
 139 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 140 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 141 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 142 Mutex* os::Linux::_createThread_lock = NULL;
 143 pthread_t os::Linux::_main_thread;
 144 int os::Linux::_page_size = -1;
 145 bool os::Linux::_supports_fast_thread_cpu_time = false;
 146 uint32_t os::Linux::_os_version = 0;
 147 const char * os::Linux::_glibc_version = NULL;
 148 const char * os::Linux::_libpthread_version = NULL;
 149 
 150 static jlong initial_time_count=0;
 151 
 152 static int clock_tics_per_sec = 100;
 153 
 154 // For diagnostics to print a message once. see run_periodic_checks
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 // Signal number used to suspend/resume a thread
 159 
 160 // do not use any signal number less than SIGSEGV, see 4355769
 161 static int SR_signum = SIGUSR2;
 162 sigset_t SR_sigset;
 163 
 164 // utility functions
 165 
 166 static int SR_initialize();
 167 
 168 julong os::available_memory() {
 169   return Linux::available_memory();
 170 }
 171 
 172 julong os::Linux::available_memory() {
 173   // values in struct sysinfo are "unsigned long"
 174   struct sysinfo si;
 175   sysinfo(&si);
 176 
 177   return (julong)si.freeram * si.mem_unit;
 178 }
 179 
 180 julong os::physical_memory() {
 181   return Linux::physical_memory();
 182 }
 183 
 184 // Return true if user is running as root.
 185 
 186 bool os::have_special_privileges() {
 187   static bool init = false;
 188   static bool privileges = false;
 189   if (!init) {
 190     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 191     init = true;
 192   }
 193   return privileges;
 194 }
 195 
 196 
 197 #ifndef SYS_gettid
 198 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 199   #ifdef __ia64__
 200     #define SYS_gettid 1105
 201   #else
 202     #ifdef __i386__
 203       #define SYS_gettid 224
 204     #else
 205       #ifdef __amd64__
 206         #define SYS_gettid 186
 207       #else
 208         #ifdef __sparc__
 209           #define SYS_gettid 143
 210         #else
 211           #error define gettid for the arch
 212         #endif
 213       #endif
 214     #endif
 215   #endif
 216 #endif
 217 
 218 
 219 // pid_t gettid()
 220 //
 221 // Returns the kernel thread id of the currently running thread. Kernel
 222 // thread id is used to access /proc.
 223 pid_t os::Linux::gettid() {
 224   int rslt = syscall(SYS_gettid);
 225   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 226   return (pid_t)rslt;
 227 }
 228 
 229 // Most versions of linux have a bug where the number of processors are
 230 // determined by looking at the /proc file system.  In a chroot environment,
 231 // the system call returns 1.  This causes the VM to act as if it is
 232 // a single processor and elide locking (see is_MP() call).
 233 static bool unsafe_chroot_detected = false;
 234 static const char *unstable_chroot_error = "/proc file system not found.\n"
 235                      "Java may be unstable running multithreaded in a chroot "
 236                      "environment on Linux when /proc filesystem is not mounted.";
 237 
 238 void os::Linux::initialize_system_info() {
 239   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 240   if (processor_count() == 1) {
 241     pid_t pid = os::Linux::gettid();
 242     char fname[32];
 243     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 244     FILE *fp = fopen(fname, "r");
 245     if (fp == NULL) {
 246       unsafe_chroot_detected = true;
 247     } else {
 248       fclose(fp);
 249     }
 250   }
 251   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 252   assert(processor_count() > 0, "linux error");
 253 }
 254 
 255 void os::init_system_properties_values() {
 256   // The next steps are taken in the product version:
 257   //
 258   // Obtain the JAVA_HOME value from the location of libjvm.so.
 259   // This library should be located at:
 260   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 261   //
 262   // If "/jre/lib/" appears at the right place in the path, then we
 263   // assume libjvm.so is installed in a JDK and we use this path.
 264   //
 265   // Otherwise exit with message: "Could not create the Java virtual machine."
 266   //
 267   // The following extra steps are taken in the debugging version:
 268   //
 269   // If "/jre/lib/" does NOT appear at the right place in the path
 270   // instead of exit check for $JAVA_HOME environment variable.
 271   //
 272   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 273   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 274   // it looks like libjvm.so is installed there
 275   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 276   //
 277   // Otherwise exit.
 278   //
 279   // Important note: if the location of libjvm.so changes this
 280   // code needs to be changed accordingly.
 281 
 282   // See ld(1):
 283   //      The linker uses the following search paths to locate required
 284   //      shared libraries:
 285   //        1: ...
 286   //        ...
 287   //        7: The default directories, normally /lib and /usr/lib.
 288 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 289   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 290 #else
 291   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 292 #endif
 293 
 294 // Base path of extensions installed on the system.
 295 #define SYS_EXT_DIR     "/usr/java/packages"
 296 #define EXTENSIONS_DIR  "/lib/ext"
 297 
 298   // Buffer that fits several sprintfs.
 299   // Note that the space for the colon and the trailing null are provided
 300   // by the nulls included by the sizeof operator.
 301   const size_t bufsize =
 302     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 303          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 304   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 305 
 306   // sysclasspath, java_home, dll_dir
 307   {
 308     char *pslash;
 309     os::jvm_path(buf, bufsize);
 310 
 311     // Found the full path to libjvm.so.
 312     // Now cut the path to <java_home>/jre if we can.
 313     pslash = strrchr(buf, '/');
 314     if (pslash != NULL) {
 315       *pslash = '\0';            // Get rid of /libjvm.so.
 316     }
 317     pslash = strrchr(buf, '/');
 318     if (pslash != NULL) {
 319       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 320     }
 321     Arguments::set_dll_dir(buf);
 322 
 323     if (pslash != NULL) {
 324       pslash = strrchr(buf, '/');
 325       if (pslash != NULL) {
 326         *pslash = '\0';        // Get rid of /lib.
 327       }
 328     }
 329     Arguments::set_java_home(buf);
 330     set_boot_path('/', ':');
 331   }
 332 
 333   // Where to look for native libraries.
 334   //
 335   // Note: Due to a legacy implementation, most of the library path
 336   // is set in the launcher. This was to accomodate linking restrictions
 337   // on legacy Linux implementations (which are no longer supported).
 338   // Eventually, all the library path setting will be done here.
 339   //
 340   // However, to prevent the proliferation of improperly built native
 341   // libraries, the new path component /usr/java/packages is added here.
 342   // Eventually, all the library path setting will be done here.
 343   {
 344     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 345     // should always exist (until the legacy problem cited above is
 346     // addressed).
 347     const char *v = ::getenv("LD_LIBRARY_PATH");
 348     const char *v_colon = ":";
 349     if (v == NULL) { v = ""; v_colon = ""; }
 350     // That's +1 for the colon and +1 for the trailing '\0'.
 351     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 352                                                      strlen(v) + 1 +
 353                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 354                                                      mtInternal);
 355     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 356     Arguments::set_library_path(ld_library_path);
 357     FREE_C_HEAP_ARRAY(char, ld_library_path);
 358   }
 359 
 360   // Extensions directories.
 361   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 362   Arguments::set_ext_dirs(buf);
 363 
 364   FREE_C_HEAP_ARRAY(char, buf);
 365 
 366 #undef DEFAULT_LIBPATH
 367 #undef SYS_EXT_DIR
 368 #undef EXTENSIONS_DIR
 369 }
 370 
 371 ////////////////////////////////////////////////////////////////////////////////
 372 // breakpoint support
 373 
 374 void os::breakpoint() {
 375   BREAKPOINT;
 376 }
 377 
 378 extern "C" void breakpoint() {
 379   // use debugger to set breakpoint here
 380 }
 381 
 382 ////////////////////////////////////////////////////////////////////////////////
 383 // signal support
 384 
 385 debug_only(static bool signal_sets_initialized = false);
 386 static sigset_t unblocked_sigs, vm_sigs;
 387 
 388 bool os::Linux::is_sig_ignored(int sig) {
 389   struct sigaction oact;
 390   sigaction(sig, (struct sigaction*)NULL, &oact);
 391   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 392                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 393   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 394     return true;
 395   } else {
 396     return false;
 397   }
 398 }
 399 
 400 void os::Linux::signal_sets_init() {
 401   // Should also have an assertion stating we are still single-threaded.
 402   assert(!signal_sets_initialized, "Already initialized");
 403   // Fill in signals that are necessarily unblocked for all threads in
 404   // the VM. Currently, we unblock the following signals:
 405   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 406   //                         by -Xrs (=ReduceSignalUsage));
 407   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 408   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 409   // the dispositions or masks wrt these signals.
 410   // Programs embedding the VM that want to use the above signals for their
 411   // own purposes must, at this time, use the "-Xrs" option to prevent
 412   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 413   // (See bug 4345157, and other related bugs).
 414   // In reality, though, unblocking these signals is really a nop, since
 415   // these signals are not blocked by default.
 416   sigemptyset(&unblocked_sigs);
 417   sigaddset(&unblocked_sigs, SIGILL);
 418   sigaddset(&unblocked_sigs, SIGSEGV);
 419   sigaddset(&unblocked_sigs, SIGBUS);
 420   sigaddset(&unblocked_sigs, SIGFPE);
 421 #if defined(PPC64)
 422   sigaddset(&unblocked_sigs, SIGTRAP);
 423 #endif
 424   sigaddset(&unblocked_sigs, SR_signum);
 425 
 426   if (!ReduceSignalUsage) {
 427     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 428       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 429     }
 430     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 431       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 432     }
 433     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 434       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 435     }
 436   }
 437   // Fill in signals that are blocked by all but the VM thread.
 438   sigemptyset(&vm_sigs);
 439   if (!ReduceSignalUsage) {
 440     sigaddset(&vm_sigs, BREAK_SIGNAL);
 441   }
 442   debug_only(signal_sets_initialized = true);
 443 
 444 }
 445 
 446 // These are signals that are unblocked while a thread is running Java.
 447 // (For some reason, they get blocked by default.)
 448 sigset_t* os::Linux::unblocked_signals() {
 449   assert(signal_sets_initialized, "Not initialized");
 450   return &unblocked_sigs;
 451 }
 452 
 453 // These are the signals that are blocked while a (non-VM) thread is
 454 // running Java. Only the VM thread handles these signals.
 455 sigset_t* os::Linux::vm_signals() {
 456   assert(signal_sets_initialized, "Not initialized");
 457   return &vm_sigs;
 458 }
 459 
 460 void os::Linux::hotspot_sigmask(Thread* thread) {
 461 
 462   //Save caller's signal mask before setting VM signal mask
 463   sigset_t caller_sigmask;
 464   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 465 
 466   OSThread* osthread = thread->osthread();
 467   osthread->set_caller_sigmask(caller_sigmask);
 468 
 469   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 470 
 471   if (!ReduceSignalUsage) {
 472     if (thread->is_VM_thread()) {
 473       // Only the VM thread handles BREAK_SIGNAL ...
 474       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 475     } else {
 476       // ... all other threads block BREAK_SIGNAL
 477       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 478     }
 479   }
 480 }
 481 
 482 //////////////////////////////////////////////////////////////////////////////
 483 // detecting pthread library
 484 
 485 void os::Linux::libpthread_init() {
 486   // Save glibc and pthread version strings.
 487 #if !defined(_CS_GNU_LIBC_VERSION) || \
 488     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 489   #error "glibc too old (< 2.3.2)"
 490 #endif
 491 
 492   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 493   assert(n > 0, "cannot retrieve glibc version");
 494   char *str = (char *)malloc(n, mtInternal);
 495   confstr(_CS_GNU_LIBC_VERSION, str, n);
 496   os::Linux::set_glibc_version(str);
 497 
 498   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 499   assert(n > 0, "cannot retrieve pthread version");
 500   str = (char *)malloc(n, mtInternal);
 501   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 502   os::Linux::set_libpthread_version(str);
 503 }
 504 
 505 /////////////////////////////////////////////////////////////////////////////
 506 // thread stack expansion
 507 
 508 // os::Linux::manually_expand_stack() takes care of expanding the thread
 509 // stack. Note that this is normally not needed: pthread stacks allocate
 510 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 511 // committed. Therefore it is not necessary to expand the stack manually.
 512 //
 513 // Manually expanding the stack was historically needed on LinuxThreads
 514 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 515 // it is kept to deal with very rare corner cases:
 516 //
 517 // For one, user may run the VM on an own implementation of threads
 518 // whose stacks are - like the old LinuxThreads - implemented using
 519 // mmap(MAP_GROWSDOWN).
 520 //
 521 // Also, this coding may be needed if the VM is running on the primordial
 522 // thread. Normally we avoid running on the primordial thread; however,
 523 // user may still invoke the VM on the primordial thread.
 524 //
 525 // The following historical comment describes the details about running
 526 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 527 
 528 
 529 // Force Linux kernel to expand current thread stack. If "bottom" is close
 530 // to the stack guard, caller should block all signals.
 531 //
 532 // MAP_GROWSDOWN:
 533 //   A special mmap() flag that is used to implement thread stacks. It tells
 534 //   kernel that the memory region should extend downwards when needed. This
 535 //   allows early versions of LinuxThreads to only mmap the first few pages
 536 //   when creating a new thread. Linux kernel will automatically expand thread
 537 //   stack as needed (on page faults).
 538 //
 539 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 540 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 541 //   region, it's hard to tell if the fault is due to a legitimate stack
 542 //   access or because of reading/writing non-exist memory (e.g. buffer
 543 //   overrun). As a rule, if the fault happens below current stack pointer,
 544 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 545 //   application (see Linux kernel fault.c).
 546 //
 547 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 548 //   stack overflow detection.
 549 //
 550 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 551 //   not use MAP_GROWSDOWN.
 552 //
 553 // To get around the problem and allow stack banging on Linux, we need to
 554 // manually expand thread stack after receiving the SIGSEGV.
 555 //
 556 // There are two ways to expand thread stack to address "bottom", we used
 557 // both of them in JVM before 1.5:
 558 //   1. adjust stack pointer first so that it is below "bottom", and then
 559 //      touch "bottom"
 560 //   2. mmap() the page in question
 561 //
 562 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 563 // if current sp is already near the lower end of page 101, and we need to
 564 // call mmap() to map page 100, it is possible that part of the mmap() frame
 565 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 566 // That will destroy the mmap() frame and cause VM to crash.
 567 //
 568 // The following code works by adjusting sp first, then accessing the "bottom"
 569 // page to force a page fault. Linux kernel will then automatically expand the
 570 // stack mapping.
 571 //
 572 // _expand_stack_to() assumes its frame size is less than page size, which
 573 // should always be true if the function is not inlined.
 574 
 575 static void NOINLINE _expand_stack_to(address bottom) {
 576   address sp;
 577   size_t size;
 578   volatile char *p;
 579 
 580   // Adjust bottom to point to the largest address within the same page, it
 581   // gives us a one-page buffer if alloca() allocates slightly more memory.
 582   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 583   bottom += os::Linux::page_size() - 1;
 584 
 585   // sp might be slightly above current stack pointer; if that's the case, we
 586   // will alloca() a little more space than necessary, which is OK. Don't use
 587   // os::current_stack_pointer(), as its result can be slightly below current
 588   // stack pointer, causing us to not alloca enough to reach "bottom".
 589   sp = (address)&sp;
 590 
 591   if (sp > bottom) {
 592     size = sp - bottom;
 593     p = (volatile char *)alloca(size);
 594     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 595     p[0] = '\0';
 596   }
 597 }
 598 
 599 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 600   assert(t!=NULL, "just checking");
 601   assert(t->osthread()->expanding_stack(), "expand should be set");
 602   assert(t->stack_base() != NULL, "stack_base was not initialized");
 603 
 604   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 605     sigset_t mask_all, old_sigset;
 606     sigfillset(&mask_all);
 607     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 608     _expand_stack_to(addr);
 609     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 610     return true;
 611   }
 612   return false;
 613 }
 614 
 615 //////////////////////////////////////////////////////////////////////////////
 616 // create new thread
 617 
 618 // Thread start routine for all newly created threads
 619 static void *thread_native_entry(Thread *thread) {
 620   // Try to randomize the cache line index of hot stack frames.
 621   // This helps when threads of the same stack traces evict each other's
 622   // cache lines. The threads can be either from the same JVM instance, or
 623   // from different JVM instances. The benefit is especially true for
 624   // processors with hyperthreading technology.
 625   static int counter = 0;
 626   int pid = os::current_process_id();
 627   alloca(((pid ^ counter++) & 7) * 128);
 628 
 629   thread->initialize_thread_current();
 630 
 631   OSThread* osthread = thread->osthread();
 632   Monitor* sync = osthread->startThread_lock();
 633 
 634   osthread->set_thread_id(os::current_thread_id());
 635 
 636   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 637     os::current_thread_id(), (uintx) pthread_self());
 638 
 639   if (UseNUMA) {
 640     int lgrp_id = os::numa_get_group_id();
 641     if (lgrp_id != -1) {
 642       thread->set_lgrp_id(lgrp_id);
 643     }
 644   }
 645   // initialize signal mask for this thread
 646   os::Linux::hotspot_sigmask(thread);
 647 
 648   // initialize floating point control register
 649   os::Linux::init_thread_fpu_state();
 650 
 651   // handshaking with parent thread
 652   {
 653     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 654 
 655     // notify parent thread
 656     osthread->set_state(INITIALIZED);
 657     sync->notify_all();
 658 
 659     // wait until os::start_thread()
 660     while (osthread->get_state() == INITIALIZED) {
 661       sync->wait(Mutex::_no_safepoint_check_flag);
 662     }
 663   }
 664 
 665   // call one more level start routine
 666   thread->run();
 667 
 668   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 669     os::current_thread_id(), (uintx) pthread_self());
 670 
 671   // If a thread has not deleted itself ("delete this") as part of its
 672   // termination sequence, we have to ensure thread-local-storage is
 673   // cleared before we actually terminate. No threads should ever be
 674   // deleted asynchronously with respect to their termination.
 675   if (Thread::current_or_null_safe() != NULL) {
 676     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 677     thread->clear_thread_current();
 678   }
 679 
 680   return 0;
 681 }
 682 
 683 bool os::create_thread(Thread* thread, ThreadType thr_type,
 684                        size_t req_stack_size) {
 685   assert(thread->osthread() == NULL, "caller responsible");
 686 
 687   // Allocate the OSThread object
 688   OSThread* osthread = new OSThread(NULL, NULL);
 689   if (osthread == NULL) {
 690     return false;
 691   }
 692 
 693   // set the correct thread state
 694   osthread->set_thread_type(thr_type);
 695 
 696   // Initial state is ALLOCATED but not INITIALIZED
 697   osthread->set_state(ALLOCATED);
 698 
 699   thread->set_osthread(osthread);
 700 
 701   // init thread attributes
 702   pthread_attr_t attr;
 703   pthread_attr_init(&attr);
 704   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 705 
 706   // Calculate stack size if it's not specified by caller.
 707   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 708   // In the Linux NPTL pthread implementation the guard size mechanism
 709   // is not implemented properly. The posix standard requires adding
 710   // the size of the guard pages to the stack size, instead Linux
 711   // takes the space out of 'stacksize'. Thus we adapt the requested
 712   // stack_size by the size of the guard pages to mimick proper
 713   // behaviour. However, be careful not to end up with a size
 714   // of zero due to overflow. Don't add the guard page in that case.
 715   size_t guard_size = os::Linux::default_guard_size(thr_type);
 716   if (stack_size <= SIZE_MAX - guard_size) {
 717     stack_size += guard_size;
 718   }
 719   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 720 
 721   int status = pthread_attr_setstacksize(&attr, stack_size);
 722   assert_status(status == 0, status, "pthread_attr_setstacksize");
 723 
 724   // Configure glibc guard page.
 725   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 726 
 727   ThreadState state;
 728 
 729   {
 730     pthread_t tid;
 731     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 732 
 733     char buf[64];
 734     if (ret == 0) {
 735       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 736         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 737     } else {
 738       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 739         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 740     }
 741 
 742     pthread_attr_destroy(&attr);
 743 
 744     if (ret != 0) {
 745       // Need to clean up stuff we've allocated so far
 746       thread->set_osthread(NULL);
 747       delete osthread;
 748       return false;
 749     }
 750 
 751     // Store pthread info into the OSThread
 752     osthread->set_pthread_id(tid);
 753 
 754     // Wait until child thread is either initialized or aborted
 755     {
 756       Monitor* sync_with_child = osthread->startThread_lock();
 757       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 758       while ((state = osthread->get_state()) == ALLOCATED) {
 759         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 760       }
 761     }
 762   }
 763 
 764   // Aborted due to thread limit being reached
 765   if (state == ZOMBIE) {
 766     thread->set_osthread(NULL);
 767     delete osthread;
 768     return false;
 769   }
 770 
 771   // The thread is returned suspended (in state INITIALIZED),
 772   // and is started higher up in the call chain
 773   assert(state == INITIALIZED, "race condition");
 774   return true;
 775 }
 776 
 777 /////////////////////////////////////////////////////////////////////////////
 778 // attach existing thread
 779 
 780 // bootstrap the main thread
 781 bool os::create_main_thread(JavaThread* thread) {
 782   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 783   return create_attached_thread(thread);
 784 }
 785 
 786 bool os::create_attached_thread(JavaThread* thread) {
 787 #ifdef ASSERT
 788   thread->verify_not_published();
 789 #endif
 790 
 791   // Allocate the OSThread object
 792   OSThread* osthread = new OSThread(NULL, NULL);
 793 
 794   if (osthread == NULL) {
 795     return false;
 796   }
 797 
 798   // Store pthread info into the OSThread
 799   osthread->set_thread_id(os::Linux::gettid());
 800   osthread->set_pthread_id(::pthread_self());
 801 
 802   // initialize floating point control register
 803   os::Linux::init_thread_fpu_state();
 804 
 805   // Initial thread state is RUNNABLE
 806   osthread->set_state(RUNNABLE);
 807 
 808   thread->set_osthread(osthread);
 809 
 810   if (UseNUMA) {
 811     int lgrp_id = os::numa_get_group_id();
 812     if (lgrp_id != -1) {
 813       thread->set_lgrp_id(lgrp_id);
 814     }
 815   }
 816 
 817   if (os::Linux::is_initial_thread()) {
 818     // If current thread is initial thread, its stack is mapped on demand,
 819     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 820     // the entire stack region to avoid SEGV in stack banging.
 821     // It is also useful to get around the heap-stack-gap problem on SuSE
 822     // kernel (see 4821821 for details). We first expand stack to the top
 823     // of yellow zone, then enable stack yellow zone (order is significant,
 824     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 825     // is no gap between the last two virtual memory regions.
 826 
 827     JavaThread *jt = (JavaThread *)thread;
 828     address addr = jt->stack_reserved_zone_base();
 829     assert(addr != NULL, "initialization problem?");
 830     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 831 
 832     osthread->set_expanding_stack();
 833     os::Linux::manually_expand_stack(jt, addr);
 834     osthread->clear_expanding_stack();
 835   }
 836 
 837   // initialize signal mask for this thread
 838   // and save the caller's signal mask
 839   os::Linux::hotspot_sigmask(thread);
 840 
 841   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 842     os::current_thread_id(), (uintx) pthread_self());
 843 
 844   return true;
 845 }
 846 
 847 void os::pd_start_thread(Thread* thread) {
 848   OSThread * osthread = thread->osthread();
 849   assert(osthread->get_state() != INITIALIZED, "just checking");
 850   Monitor* sync_with_child = osthread->startThread_lock();
 851   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 852   sync_with_child->notify();
 853 }
 854 
 855 // Free Linux resources related to the OSThread
 856 void os::free_thread(OSThread* osthread) {
 857   assert(osthread != NULL, "osthread not set");
 858 
 859   // We are told to free resources of the argument thread,
 860   // but we can only really operate on the current thread.
 861   assert(Thread::current()->osthread() == osthread,
 862          "os::free_thread but not current thread");
 863 
 864 #ifdef ASSERT
 865   sigset_t current;
 866   sigemptyset(&current);
 867   pthread_sigmask(SIG_SETMASK, NULL, &current);
 868   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 869 #endif
 870 
 871   // Restore caller's signal mask
 872   sigset_t sigmask = osthread->caller_sigmask();
 873   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 874 
 875   delete osthread;
 876 }
 877 
 878 //////////////////////////////////////////////////////////////////////////////
 879 // initial thread
 880 
 881 // Check if current thread is the initial thread, similar to Solaris thr_main.
 882 bool os::Linux::is_initial_thread(void) {
 883   char dummy;
 884   // If called before init complete, thread stack bottom will be null.
 885   // Can be called if fatal error occurs before initialization.
 886   if (initial_thread_stack_bottom() == NULL) return false;
 887   assert(initial_thread_stack_bottom() != NULL &&
 888          initial_thread_stack_size()   != 0,
 889          "os::init did not locate initial thread's stack region");
 890   if ((address)&dummy >= initial_thread_stack_bottom() &&
 891       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 892     return true;
 893   } else {
 894     return false;
 895   }
 896 }
 897 
 898 // Find the virtual memory area that contains addr
 899 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 900   FILE *fp = fopen("/proc/self/maps", "r");
 901   if (fp) {
 902     address low, high;
 903     while (!feof(fp)) {
 904       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 905         if (low <= addr && addr < high) {
 906           if (vma_low)  *vma_low  = low;
 907           if (vma_high) *vma_high = high;
 908           fclose(fp);
 909           return true;
 910         }
 911       }
 912       for (;;) {
 913         int ch = fgetc(fp);
 914         if (ch == EOF || ch == (int)'\n') break;
 915       }
 916     }
 917     fclose(fp);
 918   }
 919   return false;
 920 }
 921 
 922 // Locate initial thread stack. This special handling of initial thread stack
 923 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 924 // bogus value for the primordial process thread. While the launcher has created
 925 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 926 // JNI invocation API from a primordial thread.
 927 void os::Linux::capture_initial_stack(size_t max_size) {
 928 
 929   // max_size is either 0 (which means accept OS default for thread stacks) or
 930   // a user-specified value known to be at least the minimum needed. If we
 931   // are actually on the primordial thread we can make it appear that we have a
 932   // smaller max_size stack by inserting the guard pages at that location. But we
 933   // cannot do anything to emulate a larger stack than what has been provided by
 934   // the OS or threading library. In fact if we try to use a stack greater than
 935   // what is set by rlimit then we will crash the hosting process.
 936 
 937   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 938   // If this is "unlimited" then it will be a huge value.
 939   struct rlimit rlim;
 940   getrlimit(RLIMIT_STACK, &rlim);
 941   size_t stack_size = rlim.rlim_cur;
 942 
 943   // 6308388: a bug in ld.so will relocate its own .data section to the
 944   //   lower end of primordial stack; reduce ulimit -s value a little bit
 945   //   so we won't install guard page on ld.so's data section.
 946   stack_size -= 2 * page_size();
 947 
 948   // Try to figure out where the stack base (top) is. This is harder.
 949   //
 950   // When an application is started, glibc saves the initial stack pointer in
 951   // a global variable "__libc_stack_end", which is then used by system
 952   // libraries. __libc_stack_end should be pretty close to stack top. The
 953   // variable is available since the very early days. However, because it is
 954   // a private interface, it could disappear in the future.
 955   //
 956   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 957   // to __libc_stack_end, it is very close to stack top, but isn't the real
 958   // stack top. Note that /proc may not exist if VM is running as a chroot
 959   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 960   // /proc/<pid>/stat could change in the future (though unlikely).
 961   //
 962   // We try __libc_stack_end first. If that doesn't work, look for
 963   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 964   // as a hint, which should work well in most cases.
 965 
 966   uintptr_t stack_start;
 967 
 968   // try __libc_stack_end first
 969   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 970   if (p && *p) {
 971     stack_start = *p;
 972   } else {
 973     // see if we can get the start_stack field from /proc/self/stat
 974     FILE *fp;
 975     int pid;
 976     char state;
 977     int ppid;
 978     int pgrp;
 979     int session;
 980     int nr;
 981     int tpgrp;
 982     unsigned long flags;
 983     unsigned long minflt;
 984     unsigned long cminflt;
 985     unsigned long majflt;
 986     unsigned long cmajflt;
 987     unsigned long utime;
 988     unsigned long stime;
 989     long cutime;
 990     long cstime;
 991     long prio;
 992     long nice;
 993     long junk;
 994     long it_real;
 995     uintptr_t start;
 996     uintptr_t vsize;
 997     intptr_t rss;
 998     uintptr_t rsslim;
 999     uintptr_t scodes;
1000     uintptr_t ecode;
1001     int i;
1002 
1003     // Figure what the primordial thread stack base is. Code is inspired
1004     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1005     // followed by command name surrounded by parentheses, state, etc.
1006     char stat[2048];
1007     int statlen;
1008 
1009     fp = fopen("/proc/self/stat", "r");
1010     if (fp) {
1011       statlen = fread(stat, 1, 2047, fp);
1012       stat[statlen] = '\0';
1013       fclose(fp);
1014 
1015       // Skip pid and the command string. Note that we could be dealing with
1016       // weird command names, e.g. user could decide to rename java launcher
1017       // to "java 1.4.2 :)", then the stat file would look like
1018       //                1234 (java 1.4.2 :)) R ... ...
1019       // We don't really need to know the command string, just find the last
1020       // occurrence of ")" and then start parsing from there. See bug 4726580.
1021       char * s = strrchr(stat, ')');
1022 
1023       i = 0;
1024       if (s) {
1025         // Skip blank chars
1026         do { s++; } while (s && isspace(*s));
1027 
1028 #define _UFM UINTX_FORMAT
1029 #define _DFM INTX_FORMAT
1030 
1031         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1032         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1033         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1034                    &state,          // 3  %c
1035                    &ppid,           // 4  %d
1036                    &pgrp,           // 5  %d
1037                    &session,        // 6  %d
1038                    &nr,             // 7  %d
1039                    &tpgrp,          // 8  %d
1040                    &flags,          // 9  %lu
1041                    &minflt,         // 10 %lu
1042                    &cminflt,        // 11 %lu
1043                    &majflt,         // 12 %lu
1044                    &cmajflt,        // 13 %lu
1045                    &utime,          // 14 %lu
1046                    &stime,          // 15 %lu
1047                    &cutime,         // 16 %ld
1048                    &cstime,         // 17 %ld
1049                    &prio,           // 18 %ld
1050                    &nice,           // 19 %ld
1051                    &junk,           // 20 %ld
1052                    &it_real,        // 21 %ld
1053                    &start,          // 22 UINTX_FORMAT
1054                    &vsize,          // 23 UINTX_FORMAT
1055                    &rss,            // 24 INTX_FORMAT
1056                    &rsslim,         // 25 UINTX_FORMAT
1057                    &scodes,         // 26 UINTX_FORMAT
1058                    &ecode,          // 27 UINTX_FORMAT
1059                    &stack_start);   // 28 UINTX_FORMAT
1060       }
1061 
1062 #undef _UFM
1063 #undef _DFM
1064 
1065       if (i != 28 - 2) {
1066         assert(false, "Bad conversion from /proc/self/stat");
1067         // product mode - assume we are the initial thread, good luck in the
1068         // embedded case.
1069         warning("Can't detect initial thread stack location - bad conversion");
1070         stack_start = (uintptr_t) &rlim;
1071       }
1072     } else {
1073       // For some reason we can't open /proc/self/stat (for example, running on
1074       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1075       // most cases, so don't abort:
1076       warning("Can't detect initial thread stack location - no /proc/self/stat");
1077       stack_start = (uintptr_t) &rlim;
1078     }
1079   }
1080 
1081   // Now we have a pointer (stack_start) very close to the stack top, the
1082   // next thing to do is to figure out the exact location of stack top. We
1083   // can find out the virtual memory area that contains stack_start by
1084   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1085   // and its upper limit is the real stack top. (again, this would fail if
1086   // running inside chroot, because /proc may not exist.)
1087 
1088   uintptr_t stack_top;
1089   address low, high;
1090   if (find_vma((address)stack_start, &low, &high)) {
1091     // success, "high" is the true stack top. (ignore "low", because initial
1092     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1093     stack_top = (uintptr_t)high;
1094   } else {
1095     // failed, likely because /proc/self/maps does not exist
1096     warning("Can't detect initial thread stack location - find_vma failed");
1097     // best effort: stack_start is normally within a few pages below the real
1098     // stack top, use it as stack top, and reduce stack size so we won't put
1099     // guard page outside stack.
1100     stack_top = stack_start;
1101     stack_size -= 16 * page_size();
1102   }
1103 
1104   // stack_top could be partially down the page so align it
1105   stack_top = align_up(stack_top, page_size());
1106 
1107   // Allowed stack value is minimum of max_size and what we derived from rlimit
1108   if (max_size > 0) {
1109     _initial_thread_stack_size = MIN2(max_size, stack_size);
1110   } else {
1111     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1112     // clamp it at 8MB as we do on Solaris
1113     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1114   }
1115   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1116   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1117 
1118   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1119 
1120   if (log_is_enabled(Info, os, thread)) {
1121     // See if we seem to be on primordial process thread
1122     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1123                       uintptr_t(&rlim) < stack_top;
1124 
1125     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1126                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1127                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1128                          stack_top, intptr_t(_initial_thread_stack_bottom));
1129   }
1130 }
1131 
1132 ////////////////////////////////////////////////////////////////////////////////
1133 // time support
1134 
1135 // Time since start-up in seconds to a fine granularity.
1136 // Used by VMSelfDestructTimer and the MemProfiler.
1137 double os::elapsedTime() {
1138 
1139   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1140 }
1141 
1142 jlong os::elapsed_counter() {
1143   return javaTimeNanos() - initial_time_count;
1144 }
1145 
1146 jlong os::elapsed_frequency() {
1147   return NANOSECS_PER_SEC; // nanosecond resolution
1148 }
1149 
1150 bool os::supports_vtime() { return true; }
1151 bool os::enable_vtime()   { return false; }
1152 bool os::vtime_enabled()  { return false; }
1153 
1154 double os::elapsedVTime() {
1155   struct rusage usage;
1156   int retval = getrusage(RUSAGE_THREAD, &usage);
1157   if (retval == 0) {
1158     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1159   } else {
1160     // better than nothing, but not much
1161     return elapsedTime();
1162   }
1163 }
1164 
1165 jlong os::javaTimeMillis() {
1166   timeval time;
1167   int status = gettimeofday(&time, NULL);
1168   assert(status != -1, "linux error");
1169   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1170 }
1171 
1172 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1173   timeval time;
1174   int status = gettimeofday(&time, NULL);
1175   assert(status != -1, "linux error");
1176   seconds = jlong(time.tv_sec);
1177   nanos = jlong(time.tv_usec) * 1000;
1178 }
1179 
1180 
1181 #ifndef CLOCK_MONOTONIC
1182   #define CLOCK_MONOTONIC (1)
1183 #endif
1184 
1185 void os::Linux::clock_init() {
1186   // we do dlopen's in this particular order due to bug in linux
1187   // dynamical loader (see 6348968) leading to crash on exit
1188   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1189   if (handle == NULL) {
1190     handle = dlopen("librt.so", RTLD_LAZY);
1191   }
1192 
1193   if (handle) {
1194     int (*clock_getres_func)(clockid_t, struct timespec*) =
1195            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1196     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1197            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1198     if (clock_getres_func && clock_gettime_func) {
1199       // See if monotonic clock is supported by the kernel. Note that some
1200       // early implementations simply return kernel jiffies (updated every
1201       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1202       // for nano time (though the monotonic property is still nice to have).
1203       // It's fixed in newer kernels, however clock_getres() still returns
1204       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1205       // resolution for now. Hopefully as people move to new kernels, this
1206       // won't be a problem.
1207       struct timespec res;
1208       struct timespec tp;
1209       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1210           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1211         // yes, monotonic clock is supported
1212         _clock_gettime = clock_gettime_func;
1213         return;
1214       } else {
1215         // close librt if there is no monotonic clock
1216         dlclose(handle);
1217       }
1218     }
1219   }
1220   warning("No monotonic clock was available - timed services may " \
1221           "be adversely affected if the time-of-day clock changes");
1222 }
1223 
1224 #ifndef SYS_clock_getres
1225   #if defined(X86) || defined(PPC64) || defined(S390)
1226     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1227     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1228   #else
1229     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1230     #define sys_clock_getres(x,y)  -1
1231   #endif
1232 #else
1233   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1234 #endif
1235 
1236 void os::Linux::fast_thread_clock_init() {
1237   if (!UseLinuxPosixThreadCPUClocks) {
1238     return;
1239   }
1240   clockid_t clockid;
1241   struct timespec tp;
1242   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1243       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1244 
1245   // Switch to using fast clocks for thread cpu time if
1246   // the sys_clock_getres() returns 0 error code.
1247   // Note, that some kernels may support the current thread
1248   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1249   // returned by the pthread_getcpuclockid().
1250   // If the fast Posix clocks are supported then the sys_clock_getres()
1251   // must return at least tp.tv_sec == 0 which means a resolution
1252   // better than 1 sec. This is extra check for reliability.
1253 
1254   if (pthread_getcpuclockid_func &&
1255       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1256       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1257     _supports_fast_thread_cpu_time = true;
1258     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1259   }
1260 }
1261 
1262 jlong os::javaTimeNanos() {
1263   if (os::supports_monotonic_clock()) {
1264     struct timespec tp;
1265     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1266     assert(status == 0, "gettime error");
1267     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1268     return result;
1269   } else {
1270     timeval time;
1271     int status = gettimeofday(&time, NULL);
1272     assert(status != -1, "linux error");
1273     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1274     return 1000 * usecs;
1275   }
1276 }
1277 
1278 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1279   if (os::supports_monotonic_clock()) {
1280     info_ptr->max_value = ALL_64_BITS;
1281 
1282     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1283     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1284     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1285   } else {
1286     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1287     info_ptr->max_value = ALL_64_BITS;
1288 
1289     // gettimeofday is a real time clock so it skips
1290     info_ptr->may_skip_backward = true;
1291     info_ptr->may_skip_forward = true;
1292   }
1293 
1294   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1295 }
1296 
1297 // Return the real, user, and system times in seconds from an
1298 // arbitrary fixed point in the past.
1299 bool os::getTimesSecs(double* process_real_time,
1300                       double* process_user_time,
1301                       double* process_system_time) {
1302   struct tms ticks;
1303   clock_t real_ticks = times(&ticks);
1304 
1305   if (real_ticks == (clock_t) (-1)) {
1306     return false;
1307   } else {
1308     double ticks_per_second = (double) clock_tics_per_sec;
1309     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1310     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1311     *process_real_time = ((double) real_ticks) / ticks_per_second;
1312 
1313     return true;
1314   }
1315 }
1316 
1317 
1318 char * os::local_time_string(char *buf, size_t buflen) {
1319   struct tm t;
1320   time_t long_time;
1321   time(&long_time);
1322   localtime_r(&long_time, &t);
1323   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1324                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1325                t.tm_hour, t.tm_min, t.tm_sec);
1326   return buf;
1327 }
1328 
1329 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1330   return localtime_r(clock, res);
1331 }
1332 
1333 ////////////////////////////////////////////////////////////////////////////////
1334 // runtime exit support
1335 
1336 // Note: os::shutdown() might be called very early during initialization, or
1337 // called from signal handler. Before adding something to os::shutdown(), make
1338 // sure it is async-safe and can handle partially initialized VM.
1339 void os::shutdown() {
1340 
1341   // allow PerfMemory to attempt cleanup of any persistent resources
1342   perfMemory_exit();
1343 
1344   // needs to remove object in file system
1345   AttachListener::abort();
1346 
1347   // flush buffered output, finish log files
1348   ostream_abort();
1349 
1350   // Check for abort hook
1351   abort_hook_t abort_hook = Arguments::abort_hook();
1352   if (abort_hook != NULL) {
1353     abort_hook();
1354   }
1355 
1356 }
1357 
1358 // Note: os::abort() might be called very early during initialization, or
1359 // called from signal handler. Before adding something to os::abort(), make
1360 // sure it is async-safe and can handle partially initialized VM.
1361 void os::abort(bool dump_core, void* siginfo, const void* context) {
1362   os::shutdown();
1363   if (dump_core) {
1364 #ifndef PRODUCT
1365     fdStream out(defaultStream::output_fd());
1366     out.print_raw("Current thread is ");
1367     char buf[16];
1368     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1369     out.print_raw_cr(buf);
1370     out.print_raw_cr("Dumping core ...");
1371 #endif
1372     ::abort(); // dump core
1373   }
1374 
1375   ::exit(1);
1376 }
1377 
1378 // Die immediately, no exit hook, no abort hook, no cleanup.
1379 void os::die() {
1380   ::abort();
1381 }
1382 
1383 
1384 // This method is a copy of JDK's sysGetLastErrorString
1385 // from src/solaris/hpi/src/system_md.c
1386 
1387 size_t os::lasterror(char *buf, size_t len) {
1388   if (errno == 0)  return 0;
1389 
1390   const char *s = os::strerror(errno);
1391   size_t n = ::strlen(s);
1392   if (n >= len) {
1393     n = len - 1;
1394   }
1395   ::strncpy(buf, s, n);
1396   buf[n] = '\0';
1397   return n;
1398 }
1399 
1400 // thread_id is kernel thread id (similar to Solaris LWP id)
1401 intx os::current_thread_id() { return os::Linux::gettid(); }
1402 int os::current_process_id() {
1403   return ::getpid();
1404 }
1405 
1406 // DLL functions
1407 
1408 const char* os::dll_file_extension() { return ".so"; }
1409 
1410 // This must be hard coded because it's the system's temporary
1411 // directory not the java application's temp directory, ala java.io.tmpdir.
1412 const char* os::get_temp_directory() { return "/tmp"; }
1413 
1414 static bool file_exists(const char* filename) {
1415   struct stat statbuf;
1416   if (filename == NULL || strlen(filename) == 0) {
1417     return false;
1418   }
1419   return os::stat(filename, &statbuf) == 0;
1420 }
1421 
1422 bool os::dll_build_name(char* buffer, size_t buflen,
1423                         const char* pname, const char* fname) {
1424   bool retval = false;
1425   // Copied from libhpi
1426   const size_t pnamelen = pname ? strlen(pname) : 0;
1427 
1428   // Return error on buffer overflow.
1429   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1430     return retval;
1431   }
1432 
1433   if (pnamelen == 0) {
1434     snprintf(buffer, buflen, "lib%s.so", fname);
1435     retval = true;
1436   } else if (strchr(pname, *os::path_separator()) != NULL) {
1437     int n;
1438     char** pelements = split_path(pname, &n);
1439     if (pelements == NULL) {
1440       return false;
1441     }
1442     for (int i = 0; i < n; i++) {
1443       // Really shouldn't be NULL, but check can't hurt
1444       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1445         continue; // skip the empty path values
1446       }
1447       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1448       if (file_exists(buffer)) {
1449         retval = true;
1450         break;
1451       }
1452     }
1453     // release the storage
1454     for (int i = 0; i < n; i++) {
1455       if (pelements[i] != NULL) {
1456         FREE_C_HEAP_ARRAY(char, pelements[i]);
1457       }
1458     }
1459     if (pelements != NULL) {
1460       FREE_C_HEAP_ARRAY(char*, pelements);
1461     }
1462   } else {
1463     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1464     retval = true;
1465   }
1466   return retval;
1467 }
1468 
1469 // check if addr is inside libjvm.so
1470 bool os::address_is_in_vm(address addr) {
1471   static address libjvm_base_addr;
1472   Dl_info dlinfo;
1473 
1474   if (libjvm_base_addr == NULL) {
1475     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1476       libjvm_base_addr = (address)dlinfo.dli_fbase;
1477     }
1478     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1479   }
1480 
1481   if (dladdr((void *)addr, &dlinfo) != 0) {
1482     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1483   }
1484 
1485   return false;
1486 }
1487 
1488 bool os::dll_address_to_function_name(address addr, char *buf,
1489                                       int buflen, int *offset,
1490                                       bool demangle) {
1491   // buf is not optional, but offset is optional
1492   assert(buf != NULL, "sanity check");
1493 
1494   Dl_info dlinfo;
1495 
1496   if (dladdr((void*)addr, &dlinfo) != 0) {
1497     // see if we have a matching symbol
1498     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1499       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1500         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1501       }
1502       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1503       return true;
1504     }
1505     // no matching symbol so try for just file info
1506     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1507       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1508                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1509         return true;
1510       }
1511     }
1512   }
1513 
1514   buf[0] = '\0';
1515   if (offset != NULL) *offset = -1;
1516   return false;
1517 }
1518 
1519 struct _address_to_library_name {
1520   address addr;          // input : memory address
1521   size_t  buflen;        //         size of fname
1522   char*   fname;         // output: library name
1523   address base;          //         library base addr
1524 };
1525 
1526 static int address_to_library_name_callback(struct dl_phdr_info *info,
1527                                             size_t size, void *data) {
1528   int i;
1529   bool found = false;
1530   address libbase = NULL;
1531   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1532 
1533   // iterate through all loadable segments
1534   for (i = 0; i < info->dlpi_phnum; i++) {
1535     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1536     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1537       // base address of a library is the lowest address of its loaded
1538       // segments.
1539       if (libbase == NULL || libbase > segbase) {
1540         libbase = segbase;
1541       }
1542       // see if 'addr' is within current segment
1543       if (segbase <= d->addr &&
1544           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1545         found = true;
1546       }
1547     }
1548   }
1549 
1550   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1551   // so dll_address_to_library_name() can fall through to use dladdr() which
1552   // can figure out executable name from argv[0].
1553   if (found && info->dlpi_name && info->dlpi_name[0]) {
1554     d->base = libbase;
1555     if (d->fname) {
1556       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1557     }
1558     return 1;
1559   }
1560   return 0;
1561 }
1562 
1563 bool os::dll_address_to_library_name(address addr, char* buf,
1564                                      int buflen, int* offset) {
1565   // buf is not optional, but offset is optional
1566   assert(buf != NULL, "sanity check");
1567 
1568   Dl_info dlinfo;
1569   struct _address_to_library_name data;
1570 
1571   // There is a bug in old glibc dladdr() implementation that it could resolve
1572   // to wrong library name if the .so file has a base address != NULL. Here
1573   // we iterate through the program headers of all loaded libraries to find
1574   // out which library 'addr' really belongs to. This workaround can be
1575   // removed once the minimum requirement for glibc is moved to 2.3.x.
1576   data.addr = addr;
1577   data.fname = buf;
1578   data.buflen = buflen;
1579   data.base = NULL;
1580   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1581 
1582   if (rslt) {
1583     // buf already contains library name
1584     if (offset) *offset = addr - data.base;
1585     return true;
1586   }
1587   if (dladdr((void*)addr, &dlinfo) != 0) {
1588     if (dlinfo.dli_fname != NULL) {
1589       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1590     }
1591     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1592       *offset = addr - (address)dlinfo.dli_fbase;
1593     }
1594     return true;
1595   }
1596 
1597   buf[0] = '\0';
1598   if (offset) *offset = -1;
1599   return false;
1600 }
1601 
1602 // Loads .dll/.so and
1603 // in case of error it checks if .dll/.so was built for the
1604 // same architecture as Hotspot is running on
1605 
1606 
1607 // Remember the stack's state. The Linux dynamic linker will change
1608 // the stack to 'executable' at most once, so we must safepoint only once.
1609 bool os::Linux::_stack_is_executable = false;
1610 
1611 // VM operation that loads a library.  This is necessary if stack protection
1612 // of the Java stacks can be lost during loading the library.  If we
1613 // do not stop the Java threads, they can stack overflow before the stacks
1614 // are protected again.
1615 class VM_LinuxDllLoad: public VM_Operation {
1616  private:
1617   const char *_filename;
1618   char *_ebuf;
1619   int _ebuflen;
1620   void *_lib;
1621  public:
1622   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1623     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1624   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1625   void doit() {
1626     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1627     os::Linux::_stack_is_executable = true;
1628   }
1629   void* loaded_library() { return _lib; }
1630 };
1631 
1632 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1633   void * result = NULL;
1634   bool load_attempted = false;
1635 
1636   // Check whether the library to load might change execution rights
1637   // of the stack. If they are changed, the protection of the stack
1638   // guard pages will be lost. We need a safepoint to fix this.
1639   //
1640   // See Linux man page execstack(8) for more info.
1641   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1642     if (!ElfFile::specifies_noexecstack(filename)) {
1643       if (!is_init_completed()) {
1644         os::Linux::_stack_is_executable = true;
1645         // This is OK - No Java threads have been created yet, and hence no
1646         // stack guard pages to fix.
1647         //
1648         // This should happen only when you are building JDK7 using a very
1649         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1650         //
1651         // Dynamic loader will make all stacks executable after
1652         // this function returns, and will not do that again.
1653         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1654       } else {
1655         warning("You have loaded library %s which might have disabled stack guard. "
1656                 "The VM will try to fix the stack guard now.\n"
1657                 "It's highly recommended that you fix the library with "
1658                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1659                 filename);
1660 
1661         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1662         JavaThread *jt = JavaThread::current();
1663         if (jt->thread_state() != _thread_in_native) {
1664           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1665           // that requires ExecStack. Cannot enter safe point. Let's give up.
1666           warning("Unable to fix stack guard. Giving up.");
1667         } else {
1668           if (!LoadExecStackDllInVMThread) {
1669             // This is for the case where the DLL has an static
1670             // constructor function that executes JNI code. We cannot
1671             // load such DLLs in the VMThread.
1672             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1673           }
1674 
1675           ThreadInVMfromNative tiv(jt);
1676           debug_only(VMNativeEntryWrapper vew;)
1677 
1678           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1679           VMThread::execute(&op);
1680           if (LoadExecStackDllInVMThread) {
1681             result = op.loaded_library();
1682           }
1683           load_attempted = true;
1684         }
1685       }
1686     }
1687   }
1688 
1689   if (!load_attempted) {
1690     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1691   }
1692 
1693   if (result != NULL) {
1694     // Successful loading
1695     return result;
1696   }
1697 
1698   Elf32_Ehdr elf_head;
1699   int diag_msg_max_length=ebuflen-strlen(ebuf);
1700   char* diag_msg_buf=ebuf+strlen(ebuf);
1701 
1702   if (diag_msg_max_length==0) {
1703     // No more space in ebuf for additional diagnostics message
1704     return NULL;
1705   }
1706 
1707 
1708   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1709 
1710   if (file_descriptor < 0) {
1711     // Can't open library, report dlerror() message
1712     return NULL;
1713   }
1714 
1715   bool failed_to_read_elf_head=
1716     (sizeof(elf_head)!=
1717      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1718 
1719   ::close(file_descriptor);
1720   if (failed_to_read_elf_head) {
1721     // file i/o error - report dlerror() msg
1722     return NULL;
1723   }
1724 
1725   typedef struct {
1726     Elf32_Half    code;         // Actual value as defined in elf.h
1727     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1728     unsigned char elf_class;    // 32 or 64 bit
1729     unsigned char endianess;    // MSB or LSB
1730     char*         name;         // String representation
1731   } arch_t;
1732 
1733 #ifndef EM_486
1734   #define EM_486          6               /* Intel 80486 */
1735 #endif
1736 #ifndef EM_AARCH64
1737   #define EM_AARCH64    183               /* ARM AARCH64 */
1738 #endif
1739 
1740   static const arch_t arch_array[]={
1741     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1742     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1743     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1744     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1745     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1746     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1747     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1748     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1749 #if defined(VM_LITTLE_ENDIAN)
1750     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1751 #else
1752     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1753 #endif
1754     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1755     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1756     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1757     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1758     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1759     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1760     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1761     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1762   };
1763 
1764 #if  (defined IA32)
1765   static  Elf32_Half running_arch_code=EM_386;
1766 #elif   (defined AMD64)
1767   static  Elf32_Half running_arch_code=EM_X86_64;
1768 #elif  (defined IA64)
1769   static  Elf32_Half running_arch_code=EM_IA_64;
1770 #elif  (defined __sparc) && (defined _LP64)
1771   static  Elf32_Half running_arch_code=EM_SPARCV9;
1772 #elif  (defined __sparc) && (!defined _LP64)
1773   static  Elf32_Half running_arch_code=EM_SPARC;
1774 #elif  (defined __powerpc64__)
1775   static  Elf32_Half running_arch_code=EM_PPC64;
1776 #elif  (defined __powerpc__)
1777   static  Elf32_Half running_arch_code=EM_PPC;
1778 #elif  (defined AARCH64)
1779   static  Elf32_Half running_arch_code=EM_AARCH64;
1780 #elif  (defined ARM)
1781   static  Elf32_Half running_arch_code=EM_ARM;
1782 #elif  (defined S390)
1783   static  Elf32_Half running_arch_code=EM_S390;
1784 #elif  (defined ALPHA)
1785   static  Elf32_Half running_arch_code=EM_ALPHA;
1786 #elif  (defined MIPSEL)
1787   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1788 #elif  (defined PARISC)
1789   static  Elf32_Half running_arch_code=EM_PARISC;
1790 #elif  (defined MIPS)
1791   static  Elf32_Half running_arch_code=EM_MIPS;
1792 #elif  (defined M68K)
1793   static  Elf32_Half running_arch_code=EM_68K;
1794 #else
1795     #error Method os::dll_load requires that one of following is defined:\
1796         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, __sparc
1797 #endif
1798 
1799   // Identify compatability class for VM's architecture and library's architecture
1800   // Obtain string descriptions for architectures
1801 
1802   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1803   int running_arch_index=-1;
1804 
1805   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1806     if (running_arch_code == arch_array[i].code) {
1807       running_arch_index    = i;
1808     }
1809     if (lib_arch.code == arch_array[i].code) {
1810       lib_arch.compat_class = arch_array[i].compat_class;
1811       lib_arch.name         = arch_array[i].name;
1812     }
1813   }
1814 
1815   assert(running_arch_index != -1,
1816          "Didn't find running architecture code (running_arch_code) in arch_array");
1817   if (running_arch_index == -1) {
1818     // Even though running architecture detection failed
1819     // we may still continue with reporting dlerror() message
1820     return NULL;
1821   }
1822 
1823   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1824     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1825     return NULL;
1826   }
1827 
1828 #ifndef S390
1829   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1830     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1831     return NULL;
1832   }
1833 #endif // !S390
1834 
1835   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1836     if (lib_arch.name!=NULL) {
1837       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1838                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1839                  lib_arch.name, arch_array[running_arch_index].name);
1840     } else {
1841       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1842                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1843                  lib_arch.code,
1844                  arch_array[running_arch_index].name);
1845     }
1846   }
1847 
1848   return NULL;
1849 }
1850 
1851 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1852                                 int ebuflen) {
1853   void * result = ::dlopen(filename, RTLD_LAZY);
1854   if (result == NULL) {
1855     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1856     ebuf[ebuflen-1] = '\0';
1857   }
1858   return result;
1859 }
1860 
1861 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1862                                        int ebuflen) {
1863   void * result = NULL;
1864   if (LoadExecStackDllInVMThread) {
1865     result = dlopen_helper(filename, ebuf, ebuflen);
1866   }
1867 
1868   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1869   // library that requires an executable stack, or which does not have this
1870   // stack attribute set, dlopen changes the stack attribute to executable. The
1871   // read protection of the guard pages gets lost.
1872   //
1873   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1874   // may have been queued at the same time.
1875 
1876   if (!_stack_is_executable) {
1877     JavaThread *jt = Threads::first();
1878 
1879     while (jt) {
1880       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1881           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1882         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1883           warning("Attempt to reguard stack yellow zone failed.");
1884         }
1885       }
1886       jt = jt->next();
1887     }
1888   }
1889 
1890   return result;
1891 }
1892 
1893 void* os::dll_lookup(void* handle, const char* name) {
1894   void* res = dlsym(handle, name);
1895   return res;
1896 }
1897 
1898 void* os::get_default_process_handle() {
1899   return (void*)::dlopen(NULL, RTLD_LAZY);
1900 }
1901 
1902 static bool _print_ascii_file(const char* filename, outputStream* st) {
1903   int fd = ::open(filename, O_RDONLY);
1904   if (fd == -1) {
1905     return false;
1906   }
1907 
1908   char buf[33];
1909   int bytes;
1910   buf[32] = '\0';
1911   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1912     st->print_raw(buf, bytes);
1913   }
1914 
1915   ::close(fd);
1916 
1917   return true;
1918 }
1919 
1920 void os::print_dll_info(outputStream *st) {
1921   st->print_cr("Dynamic libraries:");
1922 
1923   char fname[32];
1924   pid_t pid = os::Linux::gettid();
1925 
1926   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1927 
1928   if (!_print_ascii_file(fname, st)) {
1929     st->print("Can not get library information for pid = %d\n", pid);
1930   }
1931 }
1932 
1933 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1934   FILE *procmapsFile = NULL;
1935 
1936   // Open the procfs maps file for the current process
1937   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1938     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1939     char line[PATH_MAX + 100];
1940 
1941     // Read line by line from 'file'
1942     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1943       u8 base, top, offset, inode;
1944       char permissions[5];
1945       char device[6];
1946       char name[PATH_MAX + 1];
1947 
1948       // Parse fields from line
1949       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1950              &base, &top, permissions, &offset, device, &inode, name);
1951 
1952       // Filter by device id '00:00' so that we only get file system mapped files.
1953       if (strcmp(device, "00:00") != 0) {
1954 
1955         // Call callback with the fields of interest
1956         if(callback(name, (address)base, (address)top, param)) {
1957           // Oops abort, callback aborted
1958           fclose(procmapsFile);
1959           return 1;
1960         }
1961       }
1962     }
1963     fclose(procmapsFile);
1964   }
1965   return 0;
1966 }
1967 
1968 void os::print_os_info_brief(outputStream* st) {
1969   os::Linux::print_distro_info(st);
1970 
1971   os::Posix::print_uname_info(st);
1972 
1973   os::Linux::print_libversion_info(st);
1974 
1975 }
1976 
1977 void os::print_os_info(outputStream* st) {
1978   st->print("OS:");
1979 
1980   os::Linux::print_distro_info(st);
1981 
1982   os::Posix::print_uname_info(st);
1983 
1984   // Print warning if unsafe chroot environment detected
1985   if (unsafe_chroot_detected) {
1986     st->print("WARNING!! ");
1987     st->print_cr("%s", unstable_chroot_error);
1988   }
1989 
1990   os::Linux::print_libversion_info(st);
1991 
1992   os::Posix::print_rlimit_info(st);
1993 
1994   os::Posix::print_load_average(st);
1995 
1996   os::Linux::print_full_memory_info(st);
1997 }
1998 
1999 // Try to identify popular distros.
2000 // Most Linux distributions have a /etc/XXX-release file, which contains
2001 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2002 // file that also contains the OS version string. Some have more than one
2003 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2004 // /etc/redhat-release.), so the order is important.
2005 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2006 // their own specific XXX-release file as well as a redhat-release file.
2007 // Because of this the XXX-release file needs to be searched for before the
2008 // redhat-release file.
2009 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2010 // search for redhat-release / SuSE-release needs to be before lsb-release.
2011 // Since the lsb-release file is the new standard it needs to be searched
2012 // before the older style release files.
2013 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2014 // next to last resort.  The os-release file is a new standard that contains
2015 // distribution information and the system-release file seems to be an old
2016 // standard that has been replaced by the lsb-release and os-release files.
2017 // Searching for the debian_version file is the last resort.  It contains
2018 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2019 // "Debian " is printed before the contents of the debian_version file.
2020 
2021 const char* distro_files[] = {
2022   "/etc/oracle-release",
2023   "/etc/mandriva-release",
2024   "/etc/mandrake-release",
2025   "/etc/sun-release",
2026   "/etc/redhat-release",
2027   "/etc/SuSE-release",
2028   "/etc/lsb-release",
2029   "/etc/turbolinux-release",
2030   "/etc/gentoo-release",
2031   "/etc/ltib-release",
2032   "/etc/angstrom-version",
2033   "/etc/system-release",
2034   "/etc/os-release",
2035   NULL };
2036 
2037 void os::Linux::print_distro_info(outputStream* st) {
2038   for (int i = 0;; i++) {
2039     const char* file = distro_files[i];
2040     if (file == NULL) {
2041       break;  // done
2042     }
2043     // If file prints, we found it.
2044     if (_print_ascii_file(file, st)) {
2045       return;
2046     }
2047   }
2048 
2049   if (file_exists("/etc/debian_version")) {
2050     st->print("Debian ");
2051     _print_ascii_file("/etc/debian_version", st);
2052   } else {
2053     st->print("Linux");
2054   }
2055   st->cr();
2056 }
2057 
2058 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2059   char buf[256];
2060   while (fgets(buf, sizeof(buf), fp)) {
2061     // Edit out extra stuff in expected format
2062     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2063       char* ptr = strstr(buf, "\"");  // the name is in quotes
2064       if (ptr != NULL) {
2065         ptr++; // go beyond first quote
2066         char* nl = strchr(ptr, '\"');
2067         if (nl != NULL) *nl = '\0';
2068         strncpy(distro, ptr, length);
2069       } else {
2070         ptr = strstr(buf, "=");
2071         ptr++; // go beyond equals then
2072         char* nl = strchr(ptr, '\n');
2073         if (nl != NULL) *nl = '\0';
2074         strncpy(distro, ptr, length);
2075       }
2076       return;
2077     } else if (get_first_line) {
2078       char* nl = strchr(buf, '\n');
2079       if (nl != NULL) *nl = '\0';
2080       strncpy(distro, buf, length);
2081       return;
2082     }
2083   }
2084   // print last line and close
2085   char* nl = strchr(buf, '\n');
2086   if (nl != NULL) *nl = '\0';
2087   strncpy(distro, buf, length);
2088 }
2089 
2090 static void parse_os_info(char* distro, size_t length, const char* file) {
2091   FILE* fp = fopen(file, "r");
2092   if (fp != NULL) {
2093     // if suse format, print out first line
2094     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2095     parse_os_info_helper(fp, distro, length, get_first_line);
2096     fclose(fp);
2097   }
2098 }
2099 
2100 void os::get_summary_os_info(char* buf, size_t buflen) {
2101   for (int i = 0;; i++) {
2102     const char* file = distro_files[i];
2103     if (file == NULL) {
2104       break; // ran out of distro_files
2105     }
2106     if (file_exists(file)) {
2107       parse_os_info(buf, buflen, file);
2108       return;
2109     }
2110   }
2111   // special case for debian
2112   if (file_exists("/etc/debian_version")) {
2113     strncpy(buf, "Debian ", buflen);
2114     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2115   } else {
2116     strncpy(buf, "Linux", buflen);
2117   }
2118 }
2119 
2120 void os::Linux::print_libversion_info(outputStream* st) {
2121   // libc, pthread
2122   st->print("libc:");
2123   st->print("%s ", os::Linux::glibc_version());
2124   st->print("%s ", os::Linux::libpthread_version());
2125   st->cr();
2126 }
2127 
2128 void os::Linux::print_full_memory_info(outputStream* st) {
2129   st->print("\n/proc/meminfo:\n");
2130   _print_ascii_file("/proc/meminfo", st);
2131   st->cr();
2132 }
2133 
2134 void os::print_memory_info(outputStream* st) {
2135 
2136   st->print("Memory:");
2137   st->print(" %dk page", os::vm_page_size()>>10);
2138 
2139   // values in struct sysinfo are "unsigned long"
2140   struct sysinfo si;
2141   sysinfo(&si);
2142 
2143   st->print(", physical " UINT64_FORMAT "k",
2144             os::physical_memory() >> 10);
2145   st->print("(" UINT64_FORMAT "k free)",
2146             os::available_memory() >> 10);
2147   st->print(", swap " UINT64_FORMAT "k",
2148             ((jlong)si.totalswap * si.mem_unit) >> 10);
2149   st->print("(" UINT64_FORMAT "k free)",
2150             ((jlong)si.freeswap * si.mem_unit) >> 10);
2151   st->cr();
2152 }
2153 
2154 // Print the first "model name" line and the first "flags" line
2155 // that we find and nothing more. We assume "model name" comes
2156 // before "flags" so if we find a second "model name", then the
2157 // "flags" field is considered missing.
2158 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2159 #if defined(IA32) || defined(AMD64)
2160   // Other platforms have less repetitive cpuinfo files
2161   FILE *fp = fopen("/proc/cpuinfo", "r");
2162   if (fp) {
2163     while (!feof(fp)) {
2164       if (fgets(buf, buflen, fp)) {
2165         // Assume model name comes before flags
2166         bool model_name_printed = false;
2167         if (strstr(buf, "model name") != NULL) {
2168           if (!model_name_printed) {
2169             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2170             st->print_raw(buf);
2171             model_name_printed = true;
2172           } else {
2173             // model name printed but not flags?  Odd, just return
2174             fclose(fp);
2175             return true;
2176           }
2177         }
2178         // print the flags line too
2179         if (strstr(buf, "flags") != NULL) {
2180           st->print_raw(buf);
2181           fclose(fp);
2182           return true;
2183         }
2184       }
2185     }
2186     fclose(fp);
2187   }
2188 #endif // x86 platforms
2189   return false;
2190 }
2191 
2192 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2193   // Only print the model name if the platform provides this as a summary
2194   if (!print_model_name_and_flags(st, buf, buflen)) {
2195     st->print("\n/proc/cpuinfo:\n");
2196     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2197       st->print_cr("  <Not Available>");
2198     }
2199   }
2200 }
2201 
2202 #if defined(AMD64) || defined(IA32) || defined(X32)
2203 const char* search_string = "model name";
2204 #elif defined(PPC64)
2205 const char* search_string = "cpu";
2206 #elif defined(S390)
2207 const char* search_string = "processor";
2208 #elif defined(SPARC)
2209 const char* search_string = "cpu";
2210 #else
2211 const char* search_string = "Processor";
2212 #endif
2213 
2214 // Parses the cpuinfo file for string representing the model name.
2215 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2216   FILE* fp = fopen("/proc/cpuinfo", "r");
2217   if (fp != NULL) {
2218     while (!feof(fp)) {
2219       char buf[256];
2220       if (fgets(buf, sizeof(buf), fp)) {
2221         char* start = strstr(buf, search_string);
2222         if (start != NULL) {
2223           char *ptr = start + strlen(search_string);
2224           char *end = buf + strlen(buf);
2225           while (ptr != end) {
2226              // skip whitespace and colon for the rest of the name.
2227              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2228                break;
2229              }
2230              ptr++;
2231           }
2232           if (ptr != end) {
2233             // reasonable string, get rid of newline and keep the rest
2234             char* nl = strchr(buf, '\n');
2235             if (nl != NULL) *nl = '\0';
2236             strncpy(cpuinfo, ptr, length);
2237             fclose(fp);
2238             return;
2239           }
2240         }
2241       }
2242     }
2243     fclose(fp);
2244   }
2245   // cpuinfo not found or parsing failed, just print generic string.  The entire
2246   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2247 #if   defined(AARCH64)
2248   strncpy(cpuinfo, "AArch64", length);
2249 #elif defined(AMD64)
2250   strncpy(cpuinfo, "x86_64", length);
2251 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2252   strncpy(cpuinfo, "ARM", length);
2253 #elif defined(IA32)
2254   strncpy(cpuinfo, "x86_32", length);
2255 #elif defined(IA64)
2256   strncpy(cpuinfo, "IA64", length);
2257 #elif defined(PPC)
2258   strncpy(cpuinfo, "PPC64", length);
2259 #elif defined(S390)
2260   strncpy(cpuinfo, "S390", length);
2261 #elif defined(SPARC)
2262   strncpy(cpuinfo, "sparcv9", length);
2263 #elif defined(ZERO_LIBARCH)
2264   strncpy(cpuinfo, ZERO_LIBARCH, length);
2265 #else
2266   strncpy(cpuinfo, "unknown", length);
2267 #endif
2268 }
2269 
2270 static void print_signal_handler(outputStream* st, int sig,
2271                                  char* buf, size_t buflen);
2272 
2273 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2274   st->print_cr("Signal Handlers:");
2275   print_signal_handler(st, SIGSEGV, buf, buflen);
2276   print_signal_handler(st, SIGBUS , buf, buflen);
2277   print_signal_handler(st, SIGFPE , buf, buflen);
2278   print_signal_handler(st, SIGPIPE, buf, buflen);
2279   print_signal_handler(st, SIGXFSZ, buf, buflen);
2280   print_signal_handler(st, SIGILL , buf, buflen);
2281   print_signal_handler(st, SR_signum, buf, buflen);
2282   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2283   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2284   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2285   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2286 #if defined(PPC64)
2287   print_signal_handler(st, SIGTRAP, buf, buflen);
2288 #endif
2289 }
2290 
2291 static char saved_jvm_path[MAXPATHLEN] = {0};
2292 
2293 // Find the full path to the current module, libjvm.so
2294 void os::jvm_path(char *buf, jint buflen) {
2295   // Error checking.
2296   if (buflen < MAXPATHLEN) {
2297     assert(false, "must use a large-enough buffer");
2298     buf[0] = '\0';
2299     return;
2300   }
2301   // Lazy resolve the path to current module.
2302   if (saved_jvm_path[0] != 0) {
2303     strcpy(buf, saved_jvm_path);
2304     return;
2305   }
2306 
2307   char dli_fname[MAXPATHLEN];
2308   bool ret = dll_address_to_library_name(
2309                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2310                                          dli_fname, sizeof(dli_fname), NULL);
2311   assert(ret, "cannot locate libjvm");
2312   char *rp = NULL;
2313   if (ret && dli_fname[0] != '\0') {
2314     rp = os::Posix::realpath(dli_fname, buf, buflen);
2315   }
2316   if (rp == NULL) {
2317     return;
2318   }
2319 
2320   if (Arguments::sun_java_launcher_is_altjvm()) {
2321     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2322     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2323     // If "/jre/lib/" appears at the right place in the string, then
2324     // assume we are installed in a JDK and we're done. Otherwise, check
2325     // for a JAVA_HOME environment variable and fix up the path so it
2326     // looks like libjvm.so is installed there (append a fake suffix
2327     // hotspot/libjvm.so).
2328     const char *p = buf + strlen(buf) - 1;
2329     for (int count = 0; p > buf && count < 5; ++count) {
2330       for (--p; p > buf && *p != '/'; --p)
2331         /* empty */ ;
2332     }
2333 
2334     if (strncmp(p, "/jre/lib/", 9) != 0) {
2335       // Look for JAVA_HOME in the environment.
2336       char* java_home_var = ::getenv("JAVA_HOME");
2337       if (java_home_var != NULL && java_home_var[0] != 0) {
2338         char* jrelib_p;
2339         int len;
2340 
2341         // Check the current module name "libjvm.so".
2342         p = strrchr(buf, '/');
2343         if (p == NULL) {
2344           return;
2345         }
2346         assert(strstr(p, "/libjvm") == p, "invalid library name");
2347 
2348         rp = os::Posix::realpath(java_home_var, buf, buflen);
2349         if (rp == NULL) {
2350           return;
2351         }
2352 
2353         // determine if this is a legacy image or modules image
2354         // modules image doesn't have "jre" subdirectory
2355         len = strlen(buf);
2356         assert(len < buflen, "Ran out of buffer room");
2357         jrelib_p = buf + len;
2358         snprintf(jrelib_p, buflen-len, "/jre/lib");
2359         if (0 != access(buf, F_OK)) {
2360           snprintf(jrelib_p, buflen-len, "/lib");
2361         }
2362 
2363         if (0 == access(buf, F_OK)) {
2364           // Use current module name "libjvm.so"
2365           len = strlen(buf);
2366           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2367         } else {
2368           // Go back to path of .so
2369           rp = os::Posix::realpath(dli_fname, buf, buflen);
2370           if (rp == NULL) {
2371             return;
2372           }
2373         }
2374       }
2375     }
2376   }
2377 
2378   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2379   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2380 }
2381 
2382 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2383   // no prefix required, not even "_"
2384 }
2385 
2386 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2387   // no suffix required
2388 }
2389 
2390 ////////////////////////////////////////////////////////////////////////////////
2391 // sun.misc.Signal support
2392 
2393 static volatile jint sigint_count = 0;
2394 
2395 static void UserHandler(int sig, void *siginfo, void *context) {
2396   // 4511530 - sem_post is serialized and handled by the manager thread. When
2397   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2398   // don't want to flood the manager thread with sem_post requests.
2399   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2400     return;
2401   }
2402 
2403   // Ctrl-C is pressed during error reporting, likely because the error
2404   // handler fails to abort. Let VM die immediately.
2405   if (sig == SIGINT && VMError::is_error_reported()) {
2406     os::die();
2407   }
2408 
2409   os::signal_notify(sig);
2410 }
2411 
2412 void* os::user_handler() {
2413   return CAST_FROM_FN_PTR(void*, UserHandler);
2414 }
2415 
2416 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2417   struct timespec ts;
2418   // Semaphore's are always associated with CLOCK_REALTIME
2419   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2420   // see unpackTime for discussion on overflow checking
2421   if (sec >= MAX_SECS) {
2422     ts.tv_sec += MAX_SECS;
2423     ts.tv_nsec = 0;
2424   } else {
2425     ts.tv_sec += sec;
2426     ts.tv_nsec += nsec;
2427     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2428       ts.tv_nsec -= NANOSECS_PER_SEC;
2429       ++ts.tv_sec; // note: this must be <= max_secs
2430     }
2431   }
2432 
2433   return ts;
2434 }
2435 
2436 extern "C" {
2437   typedef void (*sa_handler_t)(int);
2438   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2439 }
2440 
2441 void* os::signal(int signal_number, void* handler) {
2442   struct sigaction sigAct, oldSigAct;
2443 
2444   sigfillset(&(sigAct.sa_mask));
2445   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2446   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2447 
2448   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2449     // -1 means registration failed
2450     return (void *)-1;
2451   }
2452 
2453   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2454 }
2455 
2456 void os::signal_raise(int signal_number) {
2457   ::raise(signal_number);
2458 }
2459 
2460 // The following code is moved from os.cpp for making this
2461 // code platform specific, which it is by its very nature.
2462 
2463 // Will be modified when max signal is changed to be dynamic
2464 int os::sigexitnum_pd() {
2465   return NSIG;
2466 }
2467 
2468 // a counter for each possible signal value
2469 static volatile jint pending_signals[NSIG+1] = { 0 };
2470 
2471 // Linux(POSIX) specific hand shaking semaphore.
2472 static sem_t sig_sem;
2473 static PosixSemaphore sr_semaphore;
2474 
2475 void os::signal_init_pd() {
2476   // Initialize signal structures
2477   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2478 
2479   // Initialize signal semaphore
2480   ::sem_init(&sig_sem, 0, 0);
2481 }
2482 
2483 void os::signal_notify(int sig) {
2484   Atomic::inc(&pending_signals[sig]);
2485   ::sem_post(&sig_sem);
2486 }
2487 
2488 static int check_pending_signals(bool wait) {
2489   Atomic::store(0, &sigint_count);
2490   for (;;) {
2491     for (int i = 0; i < NSIG + 1; i++) {
2492       jint n = pending_signals[i];
2493       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2494         return i;
2495       }
2496     }
2497     if (!wait) {
2498       return -1;
2499     }
2500     JavaThread *thread = JavaThread::current();
2501     ThreadBlockInVM tbivm(thread);
2502 
2503     bool threadIsSuspended;
2504     do {
2505       thread->set_suspend_equivalent();
2506       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2507       ::sem_wait(&sig_sem);
2508 
2509       // were we externally suspended while we were waiting?
2510       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2511       if (threadIsSuspended) {
2512         // The semaphore has been incremented, but while we were waiting
2513         // another thread suspended us. We don't want to continue running
2514         // while suspended because that would surprise the thread that
2515         // suspended us.
2516         ::sem_post(&sig_sem);
2517 
2518         thread->java_suspend_self();
2519       }
2520     } while (threadIsSuspended);
2521   }
2522 }
2523 
2524 int os::signal_lookup() {
2525   return check_pending_signals(false);
2526 }
2527 
2528 int os::signal_wait() {
2529   return check_pending_signals(true);
2530 }
2531 
2532 ////////////////////////////////////////////////////////////////////////////////
2533 // Virtual Memory
2534 
2535 int os::vm_page_size() {
2536   // Seems redundant as all get out
2537   assert(os::Linux::page_size() != -1, "must call os::init");
2538   return os::Linux::page_size();
2539 }
2540 
2541 // Solaris allocates memory by pages.
2542 int os::vm_allocation_granularity() {
2543   assert(os::Linux::page_size() != -1, "must call os::init");
2544   return os::Linux::page_size();
2545 }
2546 
2547 // Rationale behind this function:
2548 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2549 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2550 //  samples for JITted code. Here we create private executable mapping over the code cache
2551 //  and then we can use standard (well, almost, as mapping can change) way to provide
2552 //  info for the reporting script by storing timestamp and location of symbol
2553 void linux_wrap_code(char* base, size_t size) {
2554   static volatile jint cnt = 0;
2555 
2556   if (!UseOprofile) {
2557     return;
2558   }
2559 
2560   char buf[PATH_MAX+1];
2561   int num = Atomic::add(1, &cnt);
2562 
2563   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2564            os::get_temp_directory(), os::current_process_id(), num);
2565   unlink(buf);
2566 
2567   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2568 
2569   if (fd != -1) {
2570     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2571     if (rv != (off_t)-1) {
2572       if (::write(fd, "", 1) == 1) {
2573         mmap(base, size,
2574              PROT_READ|PROT_WRITE|PROT_EXEC,
2575              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2576       }
2577     }
2578     ::close(fd);
2579     unlink(buf);
2580   }
2581 }
2582 
2583 static bool recoverable_mmap_error(int err) {
2584   // See if the error is one we can let the caller handle. This
2585   // list of errno values comes from JBS-6843484. I can't find a
2586   // Linux man page that documents this specific set of errno
2587   // values so while this list currently matches Solaris, it may
2588   // change as we gain experience with this failure mode.
2589   switch (err) {
2590   case EBADF:
2591   case EINVAL:
2592   case ENOTSUP:
2593     // let the caller deal with these errors
2594     return true;
2595 
2596   default:
2597     // Any remaining errors on this OS can cause our reserved mapping
2598     // to be lost. That can cause confusion where different data
2599     // structures think they have the same memory mapped. The worst
2600     // scenario is if both the VM and a library think they have the
2601     // same memory mapped.
2602     return false;
2603   }
2604 }
2605 
2606 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2607                                     int err) {
2608   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2609           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2610           os::strerror(err), err);
2611 }
2612 
2613 static void warn_fail_commit_memory(char* addr, size_t size,
2614                                     size_t alignment_hint, bool exec,
2615                                     int err) {
2616   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2617           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2618           alignment_hint, exec, os::strerror(err), err);
2619 }
2620 
2621 // NOTE: Linux kernel does not really reserve the pages for us.
2622 //       All it does is to check if there are enough free pages
2623 //       left at the time of mmap(). This could be a potential
2624 //       problem.
2625 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2626   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2627   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2628                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2629   if (res != (uintptr_t) MAP_FAILED) {
2630     if (UseNUMAInterleaving) {
2631       numa_make_global(addr, size);
2632     }
2633     return 0;
2634   }
2635 
2636   int err = errno;  // save errno from mmap() call above
2637 
2638   if (!recoverable_mmap_error(err)) {
2639     warn_fail_commit_memory(addr, size, exec, err);
2640     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2641   }
2642 
2643   return err;
2644 }
2645 
2646 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2647   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2648 }
2649 
2650 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2651                                   const char* mesg) {
2652   assert(mesg != NULL, "mesg must be specified");
2653   int err = os::Linux::commit_memory_impl(addr, size, exec);
2654   if (err != 0) {
2655     // the caller wants all commit errors to exit with the specified mesg:
2656     warn_fail_commit_memory(addr, size, exec, err);
2657     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2658   }
2659 }
2660 
2661 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2662 #ifndef MAP_HUGETLB
2663   #define MAP_HUGETLB 0x40000
2664 #endif
2665 
2666 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2667 #ifndef MADV_HUGEPAGE
2668   #define MADV_HUGEPAGE 14
2669 #endif
2670 
2671 int os::Linux::commit_memory_impl(char* addr, size_t size,
2672                                   size_t alignment_hint, bool exec) {
2673   int err = os::Linux::commit_memory_impl(addr, size, exec);
2674   if (err == 0) {
2675     realign_memory(addr, size, alignment_hint);
2676   }
2677   return err;
2678 }
2679 
2680 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2681                           bool exec) {
2682   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2683 }
2684 
2685 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2686                                   size_t alignment_hint, bool exec,
2687                                   const char* mesg) {
2688   assert(mesg != NULL, "mesg must be specified");
2689   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2690   if (err != 0) {
2691     // the caller wants all commit errors to exit with the specified mesg:
2692     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2693     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2694   }
2695 }
2696 
2697 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2698   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2699     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2700     // be supported or the memory may already be backed by huge pages.
2701     ::madvise(addr, bytes, MADV_HUGEPAGE);
2702   }
2703 }
2704 
2705 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2706   // This method works by doing an mmap over an existing mmaping and effectively discarding
2707   // the existing pages. However it won't work for SHM-based large pages that cannot be
2708   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2709   // small pages on top of the SHM segment. This method always works for small pages, so we
2710   // allow that in any case.
2711   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2712     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2713   }
2714 }
2715 
2716 void os::numa_make_global(char *addr, size_t bytes) {
2717   Linux::numa_interleave_memory(addr, bytes);
2718 }
2719 
2720 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2721 // bind policy to MPOL_PREFERRED for the current thread.
2722 #define USE_MPOL_PREFERRED 0
2723 
2724 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2725   // To make NUMA and large pages more robust when both enabled, we need to ease
2726   // the requirements on where the memory should be allocated. MPOL_BIND is the
2727   // default policy and it will force memory to be allocated on the specified
2728   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2729   // the specified node, but will not force it. Using this policy will prevent
2730   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2731   // free large pages.
2732   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2733   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2734 }
2735 
2736 bool os::numa_topology_changed() { return false; }
2737 
2738 size_t os::numa_get_groups_num() {
2739   // Return just the number of nodes in which it's possible to allocate memory
2740   // (in numa terminology, configured nodes).
2741   return Linux::numa_num_configured_nodes();
2742 }
2743 
2744 int os::numa_get_group_id() {
2745   int cpu_id = Linux::sched_getcpu();
2746   if (cpu_id != -1) {
2747     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2748     if (lgrp_id != -1) {
2749       return lgrp_id;
2750     }
2751   }
2752   return 0;
2753 }
2754 
2755 int os::Linux::get_existing_num_nodes() {
2756   size_t node;
2757   size_t highest_node_number = Linux::numa_max_node();
2758   int num_nodes = 0;
2759 
2760   // Get the total number of nodes in the system including nodes without memory.
2761   for (node = 0; node <= highest_node_number; node++) {
2762     if (isnode_in_existing_nodes(node)) {
2763       num_nodes++;
2764     }
2765   }
2766   return num_nodes;
2767 }
2768 
2769 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2770   size_t highest_node_number = Linux::numa_max_node();
2771   size_t i = 0;
2772 
2773   // Map all node ids in which is possible to allocate memory. Also nodes are
2774   // not always consecutively available, i.e. available from 0 to the highest
2775   // node number.
2776   for (size_t node = 0; node <= highest_node_number; node++) {
2777     if (Linux::isnode_in_configured_nodes(node)) {
2778       ids[i++] = node;
2779     }
2780   }
2781   return i;
2782 }
2783 
2784 bool os::get_page_info(char *start, page_info* info) {
2785   return false;
2786 }
2787 
2788 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2789                      page_info* page_found) {
2790   return end;
2791 }
2792 
2793 
2794 int os::Linux::sched_getcpu_syscall(void) {
2795   unsigned int cpu = 0;
2796   int retval = -1;
2797 
2798 #if defined(IA32)
2799   #ifndef SYS_getcpu
2800     #define SYS_getcpu 318
2801   #endif
2802   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2803 #elif defined(AMD64)
2804 // Unfortunately we have to bring all these macros here from vsyscall.h
2805 // to be able to compile on old linuxes.
2806   #define __NR_vgetcpu 2
2807   #define VSYSCALL_START (-10UL << 20)
2808   #define VSYSCALL_SIZE 1024
2809   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2810   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2811   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2812   retval = vgetcpu(&cpu, NULL, NULL);
2813 #endif
2814 
2815   return (retval == -1) ? retval : cpu;
2816 }
2817 
2818 void os::Linux::sched_getcpu_init() {
2819   // sched_getcpu() should be in libc.
2820   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2821                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2822 
2823   // If it's not, try a direct syscall.
2824   if (sched_getcpu() == -1) {
2825     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2826                                     (void*)&sched_getcpu_syscall));
2827   }
2828 }
2829 
2830 // Something to do with the numa-aware allocator needs these symbols
2831 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2832 extern "C" JNIEXPORT void numa_error(char *where) { }
2833 
2834 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2835 // load symbol from base version instead.
2836 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2837   void *f = dlvsym(handle, name, "libnuma_1.1");
2838   if (f == NULL) {
2839     f = dlsym(handle, name);
2840   }
2841   return f;
2842 }
2843 
2844 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2845 // Return NULL if the symbol is not defined in this particular version.
2846 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2847   return dlvsym(handle, name, "libnuma_1.2");
2848 }
2849 
2850 bool os::Linux::libnuma_init() {
2851   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2852     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2853     if (handle != NULL) {
2854       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2855                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2856       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2857                                        libnuma_dlsym(handle, "numa_max_node")));
2858       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2859                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2860       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2861                                         libnuma_dlsym(handle, "numa_available")));
2862       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2863                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2864       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2865                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2866       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2867                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2868       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2869                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2870       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2871                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2872       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2873                                        libnuma_dlsym(handle, "numa_distance")));
2874 
2875       if (numa_available() != -1) {
2876         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2877         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2878         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2879         // Create an index -> node mapping, since nodes are not always consecutive
2880         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2881         rebuild_nindex_to_node_map();
2882         // Create a cpu -> node mapping
2883         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2884         rebuild_cpu_to_node_map();
2885         return true;
2886       }
2887     }
2888   }
2889   return false;
2890 }
2891 
2892 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2893   // Creating guard page is very expensive. Java thread has HotSpot
2894   // guard pages, only enable glibc guard page for non-Java threads.
2895   // (Remember: compiler thread is a Java thread, too!)
2896   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2897 }
2898 
2899 void os::Linux::rebuild_nindex_to_node_map() {
2900   int highest_node_number = Linux::numa_max_node();
2901 
2902   nindex_to_node()->clear();
2903   for (int node = 0; node <= highest_node_number; node++) {
2904     if (Linux::isnode_in_existing_nodes(node)) {
2905       nindex_to_node()->append(node);
2906     }
2907   }
2908 }
2909 
2910 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2911 // The table is later used in get_node_by_cpu().
2912 void os::Linux::rebuild_cpu_to_node_map() {
2913   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2914                               // in libnuma (possible values are starting from 16,
2915                               // and continuing up with every other power of 2, but less
2916                               // than the maximum number of CPUs supported by kernel), and
2917                               // is a subject to change (in libnuma version 2 the requirements
2918                               // are more reasonable) we'll just hardcode the number they use
2919                               // in the library.
2920   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2921 
2922   size_t cpu_num = processor_count();
2923   size_t cpu_map_size = NCPUS / BitsPerCLong;
2924   size_t cpu_map_valid_size =
2925     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2926 
2927   cpu_to_node()->clear();
2928   cpu_to_node()->at_grow(cpu_num - 1);
2929 
2930   size_t node_num = get_existing_num_nodes();
2931 
2932   int distance = 0;
2933   int closest_distance = INT_MAX;
2934   int closest_node = 0;
2935   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2936   for (size_t i = 0; i < node_num; i++) {
2937     // Check if node is configured (not a memory-less node). If it is not, find
2938     // the closest configured node.
2939     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2940       closest_distance = INT_MAX;
2941       // Check distance from all remaining nodes in the system. Ignore distance
2942       // from itself and from another non-configured node.
2943       for (size_t m = 0; m < node_num; m++) {
2944         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2945           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2946           // If a closest node is found, update. There is always at least one
2947           // configured node in the system so there is always at least one node
2948           // close.
2949           if (distance != 0 && distance < closest_distance) {
2950             closest_distance = distance;
2951             closest_node = nindex_to_node()->at(m);
2952           }
2953         }
2954       }
2955      } else {
2956        // Current node is already a configured node.
2957        closest_node = nindex_to_node()->at(i);
2958      }
2959 
2960     // Get cpus from the original node and map them to the closest node. If node
2961     // is a configured node (not a memory-less node), then original node and
2962     // closest node are the same.
2963     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2964       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2965         if (cpu_map[j] != 0) {
2966           for (size_t k = 0; k < BitsPerCLong; k++) {
2967             if (cpu_map[j] & (1UL << k)) {
2968               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2969             }
2970           }
2971         }
2972       }
2973     }
2974   }
2975   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2976 }
2977 
2978 int os::Linux::get_node_by_cpu(int cpu_id) {
2979   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2980     return cpu_to_node()->at(cpu_id);
2981   }
2982   return -1;
2983 }
2984 
2985 GrowableArray<int>* os::Linux::_cpu_to_node;
2986 GrowableArray<int>* os::Linux::_nindex_to_node;
2987 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2988 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2989 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2990 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2991 os::Linux::numa_available_func_t os::Linux::_numa_available;
2992 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2993 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2994 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
2995 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2996 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
2997 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
2998 unsigned long* os::Linux::_numa_all_nodes;
2999 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3000 struct bitmask* os::Linux::_numa_nodes_ptr;
3001 
3002 bool os::pd_uncommit_memory(char* addr, size_t size) {
3003   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3004                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3005   return res  != (uintptr_t) MAP_FAILED;
3006 }
3007 
3008 static address get_stack_commited_bottom(address bottom, size_t size) {
3009   address nbot = bottom;
3010   address ntop = bottom + size;
3011 
3012   size_t page_sz = os::vm_page_size();
3013   unsigned pages = size / page_sz;
3014 
3015   unsigned char vec[1];
3016   unsigned imin = 1, imax = pages + 1, imid;
3017   int mincore_return_value = 0;
3018 
3019   assert(imin <= imax, "Unexpected page size");
3020 
3021   while (imin < imax) {
3022     imid = (imax + imin) / 2;
3023     nbot = ntop - (imid * page_sz);
3024 
3025     // Use a trick with mincore to check whether the page is mapped or not.
3026     // mincore sets vec to 1 if page resides in memory and to 0 if page
3027     // is swapped output but if page we are asking for is unmapped
3028     // it returns -1,ENOMEM
3029     mincore_return_value = mincore(nbot, page_sz, vec);
3030 
3031     if (mincore_return_value == -1) {
3032       // Page is not mapped go up
3033       // to find first mapped page
3034       if (errno != EAGAIN) {
3035         assert(errno == ENOMEM, "Unexpected mincore errno");
3036         imax = imid;
3037       }
3038     } else {
3039       // Page is mapped go down
3040       // to find first not mapped page
3041       imin = imid + 1;
3042     }
3043   }
3044 
3045   nbot = nbot + page_sz;
3046 
3047   // Adjust stack bottom one page up if last checked page is not mapped
3048   if (mincore_return_value == -1) {
3049     nbot = nbot + page_sz;
3050   }
3051 
3052   return nbot;
3053 }
3054 
3055 
3056 // Linux uses a growable mapping for the stack, and if the mapping for
3057 // the stack guard pages is not removed when we detach a thread the
3058 // stack cannot grow beyond the pages where the stack guard was
3059 // mapped.  If at some point later in the process the stack expands to
3060 // that point, the Linux kernel cannot expand the stack any further
3061 // because the guard pages are in the way, and a segfault occurs.
3062 //
3063 // However, it's essential not to split the stack region by unmapping
3064 // a region (leaving a hole) that's already part of the stack mapping,
3065 // so if the stack mapping has already grown beyond the guard pages at
3066 // the time we create them, we have to truncate the stack mapping.
3067 // So, we need to know the extent of the stack mapping when
3068 // create_stack_guard_pages() is called.
3069 
3070 // We only need this for stacks that are growable: at the time of
3071 // writing thread stacks don't use growable mappings (i.e. those
3072 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3073 // only applies to the main thread.
3074 
3075 // If the (growable) stack mapping already extends beyond the point
3076 // where we're going to put our guard pages, truncate the mapping at
3077 // that point by munmap()ping it.  This ensures that when we later
3078 // munmap() the guard pages we don't leave a hole in the stack
3079 // mapping. This only affects the main/initial thread
3080 
3081 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3082   if (os::Linux::is_initial_thread()) {
3083     // As we manually grow stack up to bottom inside create_attached_thread(),
3084     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3085     // we don't need to do anything special.
3086     // Check it first, before calling heavy function.
3087     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3088     unsigned char vec[1];
3089 
3090     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3091       // Fallback to slow path on all errors, including EAGAIN
3092       stack_extent = (uintptr_t) get_stack_commited_bottom(
3093                                                            os::Linux::initial_thread_stack_bottom(),
3094                                                            (size_t)addr - stack_extent);
3095     }
3096 
3097     if (stack_extent < (uintptr_t)addr) {
3098       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3099     }
3100   }
3101 
3102   return os::commit_memory(addr, size, !ExecMem);
3103 }
3104 
3105 // If this is a growable mapping, remove the guard pages entirely by
3106 // munmap()ping them.  If not, just call uncommit_memory(). This only
3107 // affects the main/initial thread, but guard against future OS changes
3108 // It's safe to always unmap guard pages for initial thread because we
3109 // always place it right after end of the mapped region
3110 
3111 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3112   uintptr_t stack_extent, stack_base;
3113 
3114   if (os::Linux::is_initial_thread()) {
3115     return ::munmap(addr, size) == 0;
3116   }
3117 
3118   return os::uncommit_memory(addr, size);
3119 }
3120 
3121 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3122 // at 'requested_addr'. If there are existing memory mappings at the same
3123 // location, however, they will be overwritten. If 'fixed' is false,
3124 // 'requested_addr' is only treated as a hint, the return value may or
3125 // may not start from the requested address. Unlike Linux mmap(), this
3126 // function returns NULL to indicate failure.
3127 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3128   char * addr;
3129   int flags;
3130 
3131   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3132   if (fixed) {
3133     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3134     flags |= MAP_FIXED;
3135   }
3136 
3137   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3138   // touch an uncommitted page. Otherwise, the read/write might
3139   // succeed if we have enough swap space to back the physical page.
3140   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3141                        flags, -1, 0);
3142 
3143   return addr == MAP_FAILED ? NULL : addr;
3144 }
3145 
3146 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3147 //   (req_addr != NULL) or with a given alignment.
3148 //  - bytes shall be a multiple of alignment.
3149 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3150 //  - alignment sets the alignment at which memory shall be allocated.
3151 //     It must be a multiple of allocation granularity.
3152 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3153 //  req_addr or NULL.
3154 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3155 
3156   size_t extra_size = bytes;
3157   if (req_addr == NULL && alignment > 0) {
3158     extra_size += alignment;
3159   }
3160 
3161   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3162     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3163     -1, 0);
3164   if (start == MAP_FAILED) {
3165     start = NULL;
3166   } else {
3167     if (req_addr != NULL) {
3168       if (start != req_addr) {
3169         ::munmap(start, extra_size);
3170         start = NULL;
3171       }
3172     } else {
3173       char* const start_aligned = align_up(start, alignment);
3174       char* const end_aligned = start_aligned + bytes;
3175       char* const end = start + extra_size;
3176       if (start_aligned > start) {
3177         ::munmap(start, start_aligned - start);
3178       }
3179       if (end_aligned < end) {
3180         ::munmap(end_aligned, end - end_aligned);
3181       }
3182       start = start_aligned;
3183     }
3184   }
3185   return start;
3186 }
3187 
3188 static int anon_munmap(char * addr, size_t size) {
3189   return ::munmap(addr, size) == 0;
3190 }
3191 
3192 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3193                             size_t alignment_hint) {
3194   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3195 }
3196 
3197 bool os::pd_release_memory(char* addr, size_t size) {
3198   return anon_munmap(addr, size);
3199 }
3200 
3201 static bool linux_mprotect(char* addr, size_t size, int prot) {
3202   // Linux wants the mprotect address argument to be page aligned.
3203   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3204 
3205   // According to SUSv3, mprotect() should only be used with mappings
3206   // established by mmap(), and mmap() always maps whole pages. Unaligned
3207   // 'addr' likely indicates problem in the VM (e.g. trying to change
3208   // protection of malloc'ed or statically allocated memory). Check the
3209   // caller if you hit this assert.
3210   assert(addr == bottom, "sanity check");
3211 
3212   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3213   return ::mprotect(bottom, size, prot) == 0;
3214 }
3215 
3216 // Set protections specified
3217 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3218                         bool is_committed) {
3219   unsigned int p = 0;
3220   switch (prot) {
3221   case MEM_PROT_NONE: p = PROT_NONE; break;
3222   case MEM_PROT_READ: p = PROT_READ; break;
3223   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3224   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3225   default:
3226     ShouldNotReachHere();
3227   }
3228   // is_committed is unused.
3229   return linux_mprotect(addr, bytes, p);
3230 }
3231 
3232 bool os::guard_memory(char* addr, size_t size) {
3233   return linux_mprotect(addr, size, PROT_NONE);
3234 }
3235 
3236 bool os::unguard_memory(char* addr, size_t size) {
3237   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3238 }
3239 
3240 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3241                                                     size_t page_size) {
3242   bool result = false;
3243   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3244                  MAP_ANONYMOUS|MAP_PRIVATE,
3245                  -1, 0);
3246   if (p != MAP_FAILED) {
3247     void *aligned_p = align_up(p, page_size);
3248 
3249     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3250 
3251     munmap(p, page_size * 2);
3252   }
3253 
3254   if (warn && !result) {
3255     warning("TransparentHugePages is not supported by the operating system.");
3256   }
3257 
3258   return result;
3259 }
3260 
3261 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3262   bool result = false;
3263   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3264                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3265                  -1, 0);
3266 
3267   if (p != MAP_FAILED) {
3268     // We don't know if this really is a huge page or not.
3269     FILE *fp = fopen("/proc/self/maps", "r");
3270     if (fp) {
3271       while (!feof(fp)) {
3272         char chars[257];
3273         long x = 0;
3274         if (fgets(chars, sizeof(chars), fp)) {
3275           if (sscanf(chars, "%lx-%*x", &x) == 1
3276               && x == (long)p) {
3277             if (strstr (chars, "hugepage")) {
3278               result = true;
3279               break;
3280             }
3281           }
3282         }
3283       }
3284       fclose(fp);
3285     }
3286     munmap(p, page_size);
3287   }
3288 
3289   if (warn && !result) {
3290     warning("HugeTLBFS is not supported by the operating system.");
3291   }
3292 
3293   return result;
3294 }
3295 
3296 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3297 //
3298 // From the coredump_filter documentation:
3299 //
3300 // - (bit 0) anonymous private memory
3301 // - (bit 1) anonymous shared memory
3302 // - (bit 2) file-backed private memory
3303 // - (bit 3) file-backed shared memory
3304 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3305 //           effective only if the bit 2 is cleared)
3306 // - (bit 5) hugetlb private memory
3307 // - (bit 6) hugetlb shared memory
3308 //
3309 static void set_coredump_filter(void) {
3310   FILE *f;
3311   long cdm;
3312 
3313   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3314     return;
3315   }
3316 
3317   if (fscanf(f, "%lx", &cdm) != 1) {
3318     fclose(f);
3319     return;
3320   }
3321 
3322   rewind(f);
3323 
3324   if ((cdm & LARGEPAGES_BIT) == 0) {
3325     cdm |= LARGEPAGES_BIT;
3326     fprintf(f, "%#lx", cdm);
3327   }
3328 
3329   fclose(f);
3330 }
3331 
3332 // Large page support
3333 
3334 static size_t _large_page_size = 0;
3335 
3336 size_t os::Linux::find_large_page_size() {
3337   size_t large_page_size = 0;
3338 
3339   // large_page_size on Linux is used to round up heap size. x86 uses either
3340   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3341   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3342   // page as large as 256M.
3343   //
3344   // Here we try to figure out page size by parsing /proc/meminfo and looking
3345   // for a line with the following format:
3346   //    Hugepagesize:     2048 kB
3347   //
3348   // If we can't determine the value (e.g. /proc is not mounted, or the text
3349   // format has been changed), we'll use the largest page size supported by
3350   // the processor.
3351 
3352 #ifndef ZERO
3353   large_page_size =
3354     AARCH64_ONLY(2 * M)
3355     AMD64_ONLY(2 * M)
3356     ARM32_ONLY(2 * M)
3357     IA32_ONLY(4 * M)
3358     IA64_ONLY(256 * M)
3359     PPC_ONLY(4 * M)
3360     S390_ONLY(1 * M)
3361     SPARC_ONLY(4 * M);
3362 #endif // ZERO
3363 
3364   FILE *fp = fopen("/proc/meminfo", "r");
3365   if (fp) {
3366     while (!feof(fp)) {
3367       int x = 0;
3368       char buf[16];
3369       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3370         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3371           large_page_size = x * K;
3372           break;
3373         }
3374       } else {
3375         // skip to next line
3376         for (;;) {
3377           int ch = fgetc(fp);
3378           if (ch == EOF || ch == (int)'\n') break;
3379         }
3380       }
3381     }
3382     fclose(fp);
3383   }
3384 
3385   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3386     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3387             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3388             proper_unit_for_byte_size(large_page_size));
3389   }
3390 
3391   return large_page_size;
3392 }
3393 
3394 size_t os::Linux::setup_large_page_size() {
3395   _large_page_size = Linux::find_large_page_size();
3396   const size_t default_page_size = (size_t)Linux::page_size();
3397   if (_large_page_size > default_page_size) {
3398     _page_sizes[0] = _large_page_size;
3399     _page_sizes[1] = default_page_size;
3400     _page_sizes[2] = 0;
3401   }
3402 
3403   return _large_page_size;
3404 }
3405 
3406 bool os::Linux::setup_large_page_type(size_t page_size) {
3407   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3408       FLAG_IS_DEFAULT(UseSHM) &&
3409       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3410 
3411     // The type of large pages has not been specified by the user.
3412 
3413     // Try UseHugeTLBFS and then UseSHM.
3414     UseHugeTLBFS = UseSHM = true;
3415 
3416     // Don't try UseTransparentHugePages since there are known
3417     // performance issues with it turned on. This might change in the future.
3418     UseTransparentHugePages = false;
3419   }
3420 
3421   if (UseTransparentHugePages) {
3422     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3423     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3424       UseHugeTLBFS = false;
3425       UseSHM = false;
3426       return true;
3427     }
3428     UseTransparentHugePages = false;
3429   }
3430 
3431   if (UseHugeTLBFS) {
3432     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3433     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3434       UseSHM = false;
3435       return true;
3436     }
3437     UseHugeTLBFS = false;
3438   }
3439 
3440   return UseSHM;
3441 }
3442 
3443 void os::large_page_init() {
3444   if (!UseLargePages &&
3445       !UseTransparentHugePages &&
3446       !UseHugeTLBFS &&
3447       !UseSHM) {
3448     // Not using large pages.
3449     return;
3450   }
3451 
3452   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3453     // The user explicitly turned off large pages.
3454     // Ignore the rest of the large pages flags.
3455     UseTransparentHugePages = false;
3456     UseHugeTLBFS = false;
3457     UseSHM = false;
3458     return;
3459   }
3460 
3461   size_t large_page_size = Linux::setup_large_page_size();
3462   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3463 
3464   set_coredump_filter();
3465 }
3466 
3467 #ifndef SHM_HUGETLB
3468   #define SHM_HUGETLB 04000
3469 #endif
3470 
3471 #define shm_warning_format(format, ...)              \
3472   do {                                               \
3473     if (UseLargePages &&                             \
3474         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3475          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3476          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3477       warning(format, __VA_ARGS__);                  \
3478     }                                                \
3479   } while (0)
3480 
3481 #define shm_warning(str) shm_warning_format("%s", str)
3482 
3483 #define shm_warning_with_errno(str)                \
3484   do {                                             \
3485     int err = errno;                               \
3486     shm_warning_format(str " (error = %d)", err);  \
3487   } while (0)
3488 
3489 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3490   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3491 
3492   if (!is_aligned(alignment, SHMLBA)) {
3493     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3494     return NULL;
3495   }
3496 
3497   // To ensure that we get 'alignment' aligned memory from shmat,
3498   // we pre-reserve aligned virtual memory and then attach to that.
3499 
3500   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3501   if (pre_reserved_addr == NULL) {
3502     // Couldn't pre-reserve aligned memory.
3503     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3504     return NULL;
3505   }
3506 
3507   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3508   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3509 
3510   if ((intptr_t)addr == -1) {
3511     int err = errno;
3512     shm_warning_with_errno("Failed to attach shared memory.");
3513 
3514     assert(err != EACCES, "Unexpected error");
3515     assert(err != EIDRM,  "Unexpected error");
3516     assert(err != EINVAL, "Unexpected error");
3517 
3518     // Since we don't know if the kernel unmapped the pre-reserved memory area
3519     // we can't unmap it, since that would potentially unmap memory that was
3520     // mapped from other threads.
3521     return NULL;
3522   }
3523 
3524   return addr;
3525 }
3526 
3527 static char* shmat_at_address(int shmid, char* req_addr) {
3528   if (!is_aligned(req_addr, SHMLBA)) {
3529     assert(false, "Requested address needs to be SHMLBA aligned");
3530     return NULL;
3531   }
3532 
3533   char* addr = (char*)shmat(shmid, req_addr, 0);
3534 
3535   if ((intptr_t)addr == -1) {
3536     shm_warning_with_errno("Failed to attach shared memory.");
3537     return NULL;
3538   }
3539 
3540   return addr;
3541 }
3542 
3543 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3544   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3545   if (req_addr != NULL) {
3546     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3547     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3548     return shmat_at_address(shmid, req_addr);
3549   }
3550 
3551   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3552   // return large page size aligned memory addresses when req_addr == NULL.
3553   // However, if the alignment is larger than the large page size, we have
3554   // to manually ensure that the memory returned is 'alignment' aligned.
3555   if (alignment > os::large_page_size()) {
3556     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3557     return shmat_with_alignment(shmid, bytes, alignment);
3558   } else {
3559     return shmat_at_address(shmid, NULL);
3560   }
3561 }
3562 
3563 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3564                                             char* req_addr, bool exec) {
3565   // "exec" is passed in but not used.  Creating the shared image for
3566   // the code cache doesn't have an SHM_X executable permission to check.
3567   assert(UseLargePages && UseSHM, "only for SHM large pages");
3568   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3569   assert(is_aligned(req_addr, alignment), "Unaligned address");
3570 
3571   if (!is_aligned(bytes, os::large_page_size())) {
3572     return NULL; // Fallback to small pages.
3573   }
3574 
3575   // Create a large shared memory region to attach to based on size.
3576   // Currently, size is the total size of the heap.
3577   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3578   if (shmid == -1) {
3579     // Possible reasons for shmget failure:
3580     // 1. shmmax is too small for Java heap.
3581     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3582     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3583     // 2. not enough large page memory.
3584     //    > check available large pages: cat /proc/meminfo
3585     //    > increase amount of large pages:
3586     //          echo new_value > /proc/sys/vm/nr_hugepages
3587     //      Note 1: different Linux may use different name for this property,
3588     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3589     //      Note 2: it's possible there's enough physical memory available but
3590     //            they are so fragmented after a long run that they can't
3591     //            coalesce into large pages. Try to reserve large pages when
3592     //            the system is still "fresh".
3593     shm_warning_with_errno("Failed to reserve shared memory.");
3594     return NULL;
3595   }
3596 
3597   // Attach to the region.
3598   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3599 
3600   // Remove shmid. If shmat() is successful, the actual shared memory segment
3601   // will be deleted when it's detached by shmdt() or when the process
3602   // terminates. If shmat() is not successful this will remove the shared
3603   // segment immediately.
3604   shmctl(shmid, IPC_RMID, NULL);
3605 
3606   return addr;
3607 }
3608 
3609 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3610                                         int error) {
3611   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3612 
3613   bool warn_on_failure = UseLargePages &&
3614       (!FLAG_IS_DEFAULT(UseLargePages) ||
3615        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3616        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3617 
3618   if (warn_on_failure) {
3619     char msg[128];
3620     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3621                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3622     warning("%s", msg);
3623   }
3624 }
3625 
3626 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3627                                                         char* req_addr,
3628                                                         bool exec) {
3629   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3630   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3631   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3632 
3633   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3634   char* addr = (char*)::mmap(req_addr, bytes, prot,
3635                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3636                              -1, 0);
3637 
3638   if (addr == MAP_FAILED) {
3639     warn_on_large_pages_failure(req_addr, bytes, errno);
3640     return NULL;
3641   }
3642 
3643   assert(is_aligned(addr, os::large_page_size()), "Must be");
3644 
3645   return addr;
3646 }
3647 
3648 // Reserve memory using mmap(MAP_HUGETLB).
3649 //  - bytes shall be a multiple of alignment.
3650 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3651 //  - alignment sets the alignment at which memory shall be allocated.
3652 //     It must be a multiple of allocation granularity.
3653 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3654 //  req_addr or NULL.
3655 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3656                                                          size_t alignment,
3657                                                          char* req_addr,
3658                                                          bool exec) {
3659   size_t large_page_size = os::large_page_size();
3660   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3661 
3662   assert(is_aligned(req_addr, alignment), "Must be");
3663   assert(is_aligned(bytes, alignment), "Must be");
3664 
3665   // First reserve - but not commit - the address range in small pages.
3666   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3667 
3668   if (start == NULL) {
3669     return NULL;
3670   }
3671 
3672   assert(is_aligned(start, alignment), "Must be");
3673 
3674   char* end = start + bytes;
3675 
3676   // Find the regions of the allocated chunk that can be promoted to large pages.
3677   char* lp_start = align_up(start, large_page_size);
3678   char* lp_end   = align_down(end, large_page_size);
3679 
3680   size_t lp_bytes = lp_end - lp_start;
3681 
3682   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3683 
3684   if (lp_bytes == 0) {
3685     // The mapped region doesn't even span the start and the end of a large page.
3686     // Fall back to allocate a non-special area.
3687     ::munmap(start, end - start);
3688     return NULL;
3689   }
3690 
3691   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3692 
3693   void* result;
3694 
3695   // Commit small-paged leading area.
3696   if (start != lp_start) {
3697     result = ::mmap(start, lp_start - start, prot,
3698                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3699                     -1, 0);
3700     if (result == MAP_FAILED) {
3701       ::munmap(lp_start, end - lp_start);
3702       return NULL;
3703     }
3704   }
3705 
3706   // Commit large-paged area.
3707   result = ::mmap(lp_start, lp_bytes, prot,
3708                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3709                   -1, 0);
3710   if (result == MAP_FAILED) {
3711     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3712     // If the mmap above fails, the large pages region will be unmapped and we
3713     // have regions before and after with small pages. Release these regions.
3714     //
3715     // |  mapped  |  unmapped  |  mapped  |
3716     // ^          ^            ^          ^
3717     // start      lp_start     lp_end     end
3718     //
3719     ::munmap(start, lp_start - start);
3720     ::munmap(lp_end, end - lp_end);
3721     return NULL;
3722   }
3723 
3724   // Commit small-paged trailing area.
3725   if (lp_end != end) {
3726     result = ::mmap(lp_end, end - lp_end, prot,
3727                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3728                     -1, 0);
3729     if (result == MAP_FAILED) {
3730       ::munmap(start, lp_end - start);
3731       return NULL;
3732     }
3733   }
3734 
3735   return start;
3736 }
3737 
3738 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3739                                                    size_t alignment,
3740                                                    char* req_addr,
3741                                                    bool exec) {
3742   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3743   assert(is_aligned(req_addr, alignment), "Must be");
3744   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3745   assert(is_power_of_2(os::large_page_size()), "Must be");
3746   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3747 
3748   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3749     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3750   } else {
3751     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3752   }
3753 }
3754 
3755 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3756                                  char* req_addr, bool exec) {
3757   assert(UseLargePages, "only for large pages");
3758 
3759   char* addr;
3760   if (UseSHM) {
3761     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3762   } else {
3763     assert(UseHugeTLBFS, "must be");
3764     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3765   }
3766 
3767   if (addr != NULL) {
3768     if (UseNUMAInterleaving) {
3769       numa_make_global(addr, bytes);
3770     }
3771 
3772     // The memory is committed
3773     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3774   }
3775 
3776   return addr;
3777 }
3778 
3779 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3780   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3781   return shmdt(base) == 0;
3782 }
3783 
3784 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3785   return pd_release_memory(base, bytes);
3786 }
3787 
3788 bool os::release_memory_special(char* base, size_t bytes) {
3789   bool res;
3790   if (MemTracker::tracking_level() > NMT_minimal) {
3791     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3792     res = os::Linux::release_memory_special_impl(base, bytes);
3793     if (res) {
3794       tkr.record((address)base, bytes);
3795     }
3796 
3797   } else {
3798     res = os::Linux::release_memory_special_impl(base, bytes);
3799   }
3800   return res;
3801 }
3802 
3803 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3804   assert(UseLargePages, "only for large pages");
3805   bool res;
3806 
3807   if (UseSHM) {
3808     res = os::Linux::release_memory_special_shm(base, bytes);
3809   } else {
3810     assert(UseHugeTLBFS, "must be");
3811     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3812   }
3813   return res;
3814 }
3815 
3816 size_t os::large_page_size() {
3817   return _large_page_size;
3818 }
3819 
3820 // With SysV SHM the entire memory region must be allocated as shared
3821 // memory.
3822 // HugeTLBFS allows application to commit large page memory on demand.
3823 // However, when committing memory with HugeTLBFS fails, the region
3824 // that was supposed to be committed will lose the old reservation
3825 // and allow other threads to steal that memory region. Because of this
3826 // behavior we can't commit HugeTLBFS memory.
3827 bool os::can_commit_large_page_memory() {
3828   return UseTransparentHugePages;
3829 }
3830 
3831 bool os::can_execute_large_page_memory() {
3832   return UseTransparentHugePages || UseHugeTLBFS;
3833 }
3834 
3835 // Reserve memory at an arbitrary address, only if that area is
3836 // available (and not reserved for something else).
3837 
3838 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3839   const int max_tries = 10;
3840   char* base[max_tries];
3841   size_t size[max_tries];
3842   const size_t gap = 0x000000;
3843 
3844   // Assert only that the size is a multiple of the page size, since
3845   // that's all that mmap requires, and since that's all we really know
3846   // about at this low abstraction level.  If we need higher alignment,
3847   // we can either pass an alignment to this method or verify alignment
3848   // in one of the methods further up the call chain.  See bug 5044738.
3849   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3850 
3851   // Repeatedly allocate blocks until the block is allocated at the
3852   // right spot.
3853 
3854   // Linux mmap allows caller to pass an address as hint; give it a try first,
3855   // if kernel honors the hint then we can return immediately.
3856   char * addr = anon_mmap(requested_addr, bytes, false);
3857   if (addr == requested_addr) {
3858     return requested_addr;
3859   }
3860 
3861   if (addr != NULL) {
3862     // mmap() is successful but it fails to reserve at the requested address
3863     anon_munmap(addr, bytes);
3864   }
3865 
3866   int i;
3867   for (i = 0; i < max_tries; ++i) {
3868     base[i] = reserve_memory(bytes);
3869 
3870     if (base[i] != NULL) {
3871       // Is this the block we wanted?
3872       if (base[i] == requested_addr) {
3873         size[i] = bytes;
3874         break;
3875       }
3876 
3877       // Does this overlap the block we wanted? Give back the overlapped
3878       // parts and try again.
3879 
3880       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3881       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3882         unmap_memory(base[i], top_overlap);
3883         base[i] += top_overlap;
3884         size[i] = bytes - top_overlap;
3885       } else {
3886         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3887         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3888           unmap_memory(requested_addr, bottom_overlap);
3889           size[i] = bytes - bottom_overlap;
3890         } else {
3891           size[i] = bytes;
3892         }
3893       }
3894     }
3895   }
3896 
3897   // Give back the unused reserved pieces.
3898 
3899   for (int j = 0; j < i; ++j) {
3900     if (base[j] != NULL) {
3901       unmap_memory(base[j], size[j]);
3902     }
3903   }
3904 
3905   if (i < max_tries) {
3906     return requested_addr;
3907   } else {
3908     return NULL;
3909   }
3910 }
3911 
3912 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3913   return ::read(fd, buf, nBytes);
3914 }
3915 
3916 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3917   return ::pread(fd, buf, nBytes, offset);
3918 }
3919 
3920 // Short sleep, direct OS call.
3921 //
3922 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3923 // sched_yield(2) will actually give up the CPU:
3924 //
3925 //   * Alone on this pariticular CPU, keeps running.
3926 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3927 //     (pre 2.6.39).
3928 //
3929 // So calling this with 0 is an alternative.
3930 //
3931 void os::naked_short_sleep(jlong ms) {
3932   struct timespec req;
3933 
3934   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3935   req.tv_sec = 0;
3936   if (ms > 0) {
3937     req.tv_nsec = (ms % 1000) * 1000000;
3938   } else {
3939     req.tv_nsec = 1;
3940   }
3941 
3942   nanosleep(&req, NULL);
3943 
3944   return;
3945 }
3946 
3947 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3948 void os::infinite_sleep() {
3949   while (true) {    // sleep forever ...
3950     ::sleep(100);   // ... 100 seconds at a time
3951   }
3952 }
3953 
3954 // Used to convert frequent JVM_Yield() to nops
3955 bool os::dont_yield() {
3956   return DontYieldALot;
3957 }
3958 
3959 void os::naked_yield() {
3960   sched_yield();
3961 }
3962 
3963 ////////////////////////////////////////////////////////////////////////////////
3964 // thread priority support
3965 
3966 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3967 // only supports dynamic priority, static priority must be zero. For real-time
3968 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3969 // However, for large multi-threaded applications, SCHED_RR is not only slower
3970 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3971 // of 5 runs - Sep 2005).
3972 //
3973 // The following code actually changes the niceness of kernel-thread/LWP. It
3974 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3975 // not the entire user process, and user level threads are 1:1 mapped to kernel
3976 // threads. It has always been the case, but could change in the future. For
3977 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3978 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3979 
3980 int os::java_to_os_priority[CriticalPriority + 1] = {
3981   19,              // 0 Entry should never be used
3982 
3983    4,              // 1 MinPriority
3984    3,              // 2
3985    2,              // 3
3986 
3987    1,              // 4
3988    0,              // 5 NormPriority
3989   -1,              // 6
3990 
3991   -2,              // 7
3992   -3,              // 8
3993   -4,              // 9 NearMaxPriority
3994 
3995   -5,              // 10 MaxPriority
3996 
3997   -5               // 11 CriticalPriority
3998 };
3999 
4000 static int prio_init() {
4001   if (ThreadPriorityPolicy == 1) {
4002     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4003     // if effective uid is not root. Perhaps, a more elegant way of doing
4004     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4005     if (geteuid() != 0) {
4006       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4007         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4008       }
4009       ThreadPriorityPolicy = 0;
4010     }
4011   }
4012   if (UseCriticalJavaThreadPriority) {
4013     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4014   }
4015   return 0;
4016 }
4017 
4018 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4019   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4020 
4021   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4022   return (ret == 0) ? OS_OK : OS_ERR;
4023 }
4024 
4025 OSReturn os::get_native_priority(const Thread* const thread,
4026                                  int *priority_ptr) {
4027   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4028     *priority_ptr = java_to_os_priority[NormPriority];
4029     return OS_OK;
4030   }
4031 
4032   errno = 0;
4033   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4034   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4035 }
4036 
4037 // Hint to the underlying OS that a task switch would not be good.
4038 // Void return because it's a hint and can fail.
4039 void os::hint_no_preempt() {}
4040 
4041 ////////////////////////////////////////////////////////////////////////////////
4042 // suspend/resume support
4043 
4044 //  The low-level signal-based suspend/resume support is a remnant from the
4045 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4046 //  within hotspot. Needed for fetch_frame_from_ucontext(), which is used by:
4047 //    - Forte Analyzer: AsyncGetCallTrace()
4048 //    - StackBanging: get_frame_at_stack_banging_point()
4049 //
4050 //  The remaining code is greatly simplified from the more general suspension
4051 //  code that used to be used.
4052 //
4053 //  The protocol is quite simple:
4054 //  - suspend:
4055 //      - sends a signal to the target thread
4056 //      - polls the suspend state of the osthread using a yield loop
4057 //      - target thread signal handler (SR_handler) sets suspend state
4058 //        and blocks in sigsuspend until continued
4059 //  - resume:
4060 //      - sets target osthread state to continue
4061 //      - sends signal to end the sigsuspend loop in the SR_handler
4062 //
4063 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4064 //  but is checked for NULL in SR_handler as a thread termination indicator.
4065 
4066 static void resume_clear_context(OSThread *osthread) {
4067   osthread->set_ucontext(NULL);
4068   osthread->set_siginfo(NULL);
4069 }
4070 
4071 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4072                                  ucontext_t* context) {
4073   osthread->set_ucontext(context);
4074   osthread->set_siginfo(siginfo);
4075 }
4076 
4077 // Handler function invoked when a thread's execution is suspended or
4078 // resumed. We have to be careful that only async-safe functions are
4079 // called here (Note: most pthread functions are not async safe and
4080 // should be avoided.)
4081 //
4082 // Note: sigwait() is a more natural fit than sigsuspend() from an
4083 // interface point of view, but sigwait() prevents the signal hander
4084 // from being run. libpthread would get very confused by not having
4085 // its signal handlers run and prevents sigwait()'s use with the
4086 // mutex granting granting signal.
4087 //
4088 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4089 //
4090 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4091   // Save and restore errno to avoid confusing native code with EINTR
4092   // after sigsuspend.
4093   int old_errno = errno;
4094 
4095   Thread* thread = Thread::current_or_null_safe();
4096   assert(thread != NULL, "Missing current thread in SR_handler");
4097 
4098   // On some systems we have seen signal delivery get "stuck" until the signal
4099   // mask is changed as part of thread termination. Check that the current thread
4100   // has not already terminated (via SR_lock()) - else the following assertion
4101   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4102   // destructor has completed.
4103 
4104   if (thread->SR_lock() == NULL) {
4105     return;
4106   }
4107 
4108   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4109 
4110   OSThread* osthread = thread->osthread();
4111 
4112   os::SuspendResume::State current = osthread->sr.state();
4113   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4114     suspend_save_context(osthread, siginfo, context);
4115 
4116     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4117     os::SuspendResume::State state = osthread->sr.suspended();
4118     if (state == os::SuspendResume::SR_SUSPENDED) {
4119       sigset_t suspend_set;  // signals for sigsuspend()
4120       sigemptyset(&suspend_set);
4121       // get current set of blocked signals and unblock resume signal
4122       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4123       sigdelset(&suspend_set, SR_signum);
4124 
4125       sr_semaphore.signal();
4126       // wait here until we are resumed
4127       while (1) {
4128         sigsuspend(&suspend_set);
4129 
4130         os::SuspendResume::State result = osthread->sr.running();
4131         if (result == os::SuspendResume::SR_RUNNING) {
4132           sr_semaphore.signal();
4133           break;
4134         }
4135       }
4136 
4137     } else if (state == os::SuspendResume::SR_RUNNING) {
4138       // request was cancelled, continue
4139     } else {
4140       ShouldNotReachHere();
4141     }
4142 
4143     resume_clear_context(osthread);
4144   } else if (current == os::SuspendResume::SR_RUNNING) {
4145     // request was cancelled, continue
4146   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4147     // ignore
4148   } else {
4149     // ignore
4150   }
4151 
4152   errno = old_errno;
4153 }
4154 
4155 static int SR_initialize() {
4156   struct sigaction act;
4157   char *s;
4158 
4159   // Get signal number to use for suspend/resume
4160   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4161     int sig = ::strtol(s, 0, 10);
4162     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4163         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4164       SR_signum = sig;
4165     } else {
4166       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4167               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4168     }
4169   }
4170 
4171   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4172          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4173 
4174   sigemptyset(&SR_sigset);
4175   sigaddset(&SR_sigset, SR_signum);
4176 
4177   // Set up signal handler for suspend/resume
4178   act.sa_flags = SA_RESTART|SA_SIGINFO;
4179   act.sa_handler = (void (*)(int)) SR_handler;
4180 
4181   // SR_signum is blocked by default.
4182   // 4528190 - We also need to block pthread restart signal (32 on all
4183   // supported Linux platforms). Note that LinuxThreads need to block
4184   // this signal for all threads to work properly. So we don't have
4185   // to use hard-coded signal number when setting up the mask.
4186   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4187 
4188   if (sigaction(SR_signum, &act, 0) == -1) {
4189     return -1;
4190   }
4191 
4192   // Save signal flag
4193   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4194   return 0;
4195 }
4196 
4197 static int sr_notify(OSThread* osthread) {
4198   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4199   assert_status(status == 0, status, "pthread_kill");
4200   return status;
4201 }
4202 
4203 // "Randomly" selected value for how long we want to spin
4204 // before bailing out on suspending a thread, also how often
4205 // we send a signal to a thread we want to resume
4206 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4207 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4208 
4209 // returns true on success and false on error - really an error is fatal
4210 // but this seems the normal response to library errors
4211 static bool do_suspend(OSThread* osthread) {
4212   assert(osthread->sr.is_running(), "thread should be running");
4213   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4214 
4215   // mark as suspended and send signal
4216   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4217     // failed to switch, state wasn't running?
4218     ShouldNotReachHere();
4219     return false;
4220   }
4221 
4222   if (sr_notify(osthread) != 0) {
4223     ShouldNotReachHere();
4224   }
4225 
4226   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4227   while (true) {
4228     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4229       break;
4230     } else {
4231       // timeout
4232       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4233       if (cancelled == os::SuspendResume::SR_RUNNING) {
4234         return false;
4235       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4236         // make sure that we consume the signal on the semaphore as well
4237         sr_semaphore.wait();
4238         break;
4239       } else {
4240         ShouldNotReachHere();
4241         return false;
4242       }
4243     }
4244   }
4245 
4246   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4247   return true;
4248 }
4249 
4250 static void do_resume(OSThread* osthread) {
4251   assert(osthread->sr.is_suspended(), "thread should be suspended");
4252   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4253 
4254   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4255     // failed to switch to WAKEUP_REQUEST
4256     ShouldNotReachHere();
4257     return;
4258   }
4259 
4260   while (true) {
4261     if (sr_notify(osthread) == 0) {
4262       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4263         if (osthread->sr.is_running()) {
4264           return;
4265         }
4266       }
4267     } else {
4268       ShouldNotReachHere();
4269     }
4270   }
4271 
4272   guarantee(osthread->sr.is_running(), "Must be running!");
4273 }
4274 
4275 ///////////////////////////////////////////////////////////////////////////////////
4276 // signal handling (except suspend/resume)
4277 
4278 // This routine may be used by user applications as a "hook" to catch signals.
4279 // The user-defined signal handler must pass unrecognized signals to this
4280 // routine, and if it returns true (non-zero), then the signal handler must
4281 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4282 // routine will never retun false (zero), but instead will execute a VM panic
4283 // routine kill the process.
4284 //
4285 // If this routine returns false, it is OK to call it again.  This allows
4286 // the user-defined signal handler to perform checks either before or after
4287 // the VM performs its own checks.  Naturally, the user code would be making
4288 // a serious error if it tried to handle an exception (such as a null check
4289 // or breakpoint) that the VM was generating for its own correct operation.
4290 //
4291 // This routine may recognize any of the following kinds of signals:
4292 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4293 // It should be consulted by handlers for any of those signals.
4294 //
4295 // The caller of this routine must pass in the three arguments supplied
4296 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4297 // field of the structure passed to sigaction().  This routine assumes that
4298 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4299 //
4300 // Note that the VM will print warnings if it detects conflicting signal
4301 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4302 //
4303 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4304                                                  siginfo_t* siginfo,
4305                                                  void* ucontext,
4306                                                  int abort_if_unrecognized);
4307 
4308 void signalHandler(int sig, siginfo_t* info, void* uc) {
4309   assert(info != NULL && uc != NULL, "it must be old kernel");
4310   int orig_errno = errno;  // Preserve errno value over signal handler.
4311   JVM_handle_linux_signal(sig, info, uc, true);
4312   errno = orig_errno;
4313 }
4314 
4315 
4316 // This boolean allows users to forward their own non-matching signals
4317 // to JVM_handle_linux_signal, harmlessly.
4318 bool os::Linux::signal_handlers_are_installed = false;
4319 
4320 // For signal-chaining
4321 struct sigaction sigact[NSIG];
4322 uint64_t sigs = 0;
4323 #if (64 < NSIG-1)
4324 #error "Not all signals can be encoded in sigs. Adapt its type!"
4325 #endif
4326 bool os::Linux::libjsig_is_loaded = false;
4327 typedef struct sigaction *(*get_signal_t)(int);
4328 get_signal_t os::Linux::get_signal_action = NULL;
4329 
4330 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4331   struct sigaction *actp = NULL;
4332 
4333   if (libjsig_is_loaded) {
4334     // Retrieve the old signal handler from libjsig
4335     actp = (*get_signal_action)(sig);
4336   }
4337   if (actp == NULL) {
4338     // Retrieve the preinstalled signal handler from jvm
4339     actp = get_preinstalled_handler(sig);
4340   }
4341 
4342   return actp;
4343 }
4344 
4345 static bool call_chained_handler(struct sigaction *actp, int sig,
4346                                  siginfo_t *siginfo, void *context) {
4347   // Call the old signal handler
4348   if (actp->sa_handler == SIG_DFL) {
4349     // It's more reasonable to let jvm treat it as an unexpected exception
4350     // instead of taking the default action.
4351     return false;
4352   } else if (actp->sa_handler != SIG_IGN) {
4353     if ((actp->sa_flags & SA_NODEFER) == 0) {
4354       // automaticlly block the signal
4355       sigaddset(&(actp->sa_mask), sig);
4356     }
4357 
4358     sa_handler_t hand = NULL;
4359     sa_sigaction_t sa = NULL;
4360     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4361     // retrieve the chained handler
4362     if (siginfo_flag_set) {
4363       sa = actp->sa_sigaction;
4364     } else {
4365       hand = actp->sa_handler;
4366     }
4367 
4368     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4369       actp->sa_handler = SIG_DFL;
4370     }
4371 
4372     // try to honor the signal mask
4373     sigset_t oset;
4374     sigemptyset(&oset);
4375     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4376 
4377     // call into the chained handler
4378     if (siginfo_flag_set) {
4379       (*sa)(sig, siginfo, context);
4380     } else {
4381       (*hand)(sig);
4382     }
4383 
4384     // restore the signal mask
4385     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4386   }
4387   // Tell jvm's signal handler the signal is taken care of.
4388   return true;
4389 }
4390 
4391 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4392   bool chained = false;
4393   // signal-chaining
4394   if (UseSignalChaining) {
4395     struct sigaction *actp = get_chained_signal_action(sig);
4396     if (actp != NULL) {
4397       chained = call_chained_handler(actp, sig, siginfo, context);
4398     }
4399   }
4400   return chained;
4401 }
4402 
4403 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4404   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4405     return &sigact[sig];
4406   }
4407   return NULL;
4408 }
4409 
4410 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4411   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4412   sigact[sig] = oldAct;
4413   sigs |= (uint64_t)1 << (sig-1);
4414 }
4415 
4416 // for diagnostic
4417 int sigflags[NSIG];
4418 
4419 int os::Linux::get_our_sigflags(int sig) {
4420   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4421   return sigflags[sig];
4422 }
4423 
4424 void os::Linux::set_our_sigflags(int sig, int flags) {
4425   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4426   if (sig > 0 && sig < NSIG) {
4427     sigflags[sig] = flags;
4428   }
4429 }
4430 
4431 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4432   // Check for overwrite.
4433   struct sigaction oldAct;
4434   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4435 
4436   void* oldhand = oldAct.sa_sigaction
4437                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4438                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4439   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4440       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4441       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4442     if (AllowUserSignalHandlers || !set_installed) {
4443       // Do not overwrite; user takes responsibility to forward to us.
4444       return;
4445     } else if (UseSignalChaining) {
4446       // save the old handler in jvm
4447       save_preinstalled_handler(sig, oldAct);
4448       // libjsig also interposes the sigaction() call below and saves the
4449       // old sigaction on it own.
4450     } else {
4451       fatal("Encountered unexpected pre-existing sigaction handler "
4452             "%#lx for signal %d.", (long)oldhand, sig);
4453     }
4454   }
4455 
4456   struct sigaction sigAct;
4457   sigfillset(&(sigAct.sa_mask));
4458   sigAct.sa_handler = SIG_DFL;
4459   if (!set_installed) {
4460     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4461   } else {
4462     sigAct.sa_sigaction = signalHandler;
4463     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4464   }
4465   // Save flags, which are set by ours
4466   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4467   sigflags[sig] = sigAct.sa_flags;
4468 
4469   int ret = sigaction(sig, &sigAct, &oldAct);
4470   assert(ret == 0, "check");
4471 
4472   void* oldhand2  = oldAct.sa_sigaction
4473                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4474                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4475   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4476 }
4477 
4478 // install signal handlers for signals that HotSpot needs to
4479 // handle in order to support Java-level exception handling.
4480 
4481 void os::Linux::install_signal_handlers() {
4482   if (!signal_handlers_are_installed) {
4483     signal_handlers_are_installed = true;
4484 
4485     // signal-chaining
4486     typedef void (*signal_setting_t)();
4487     signal_setting_t begin_signal_setting = NULL;
4488     signal_setting_t end_signal_setting = NULL;
4489     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4490                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4491     if (begin_signal_setting != NULL) {
4492       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4493                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4494       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4495                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4496       libjsig_is_loaded = true;
4497       assert(UseSignalChaining, "should enable signal-chaining");
4498     }
4499     if (libjsig_is_loaded) {
4500       // Tell libjsig jvm is setting signal handlers
4501       (*begin_signal_setting)();
4502     }
4503 
4504     set_signal_handler(SIGSEGV, true);
4505     set_signal_handler(SIGPIPE, true);
4506     set_signal_handler(SIGBUS, true);
4507     set_signal_handler(SIGILL, true);
4508     set_signal_handler(SIGFPE, true);
4509 #if defined(PPC64)
4510     set_signal_handler(SIGTRAP, true);
4511 #endif
4512     set_signal_handler(SIGXFSZ, true);
4513 
4514     if (libjsig_is_loaded) {
4515       // Tell libjsig jvm finishes setting signal handlers
4516       (*end_signal_setting)();
4517     }
4518 
4519     // We don't activate signal checker if libjsig is in place, we trust ourselves
4520     // and if UserSignalHandler is installed all bets are off.
4521     // Log that signal checking is off only if -verbose:jni is specified.
4522     if (CheckJNICalls) {
4523       if (libjsig_is_loaded) {
4524         if (PrintJNIResolving) {
4525           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4526         }
4527         check_signals = false;
4528       }
4529       if (AllowUserSignalHandlers) {
4530         if (PrintJNIResolving) {
4531           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4532         }
4533         check_signals = false;
4534       }
4535     }
4536   }
4537 }
4538 
4539 // This is the fastest way to get thread cpu time on Linux.
4540 // Returns cpu time (user+sys) for any thread, not only for current.
4541 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4542 // It might work on 2.6.10+ with a special kernel/glibc patch.
4543 // For reference, please, see IEEE Std 1003.1-2004:
4544 //   http://www.unix.org/single_unix_specification
4545 
4546 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4547   struct timespec tp;
4548   int rc = os::Linux::clock_gettime(clockid, &tp);
4549   assert(rc == 0, "clock_gettime is expected to return 0 code");
4550 
4551   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4552 }
4553 
4554 void os::Linux::initialize_os_info() {
4555   assert(_os_version == 0, "OS info already initialized");
4556 
4557   struct utsname _uname;
4558 
4559   uint32_t major;
4560   uint32_t minor;
4561   uint32_t fix;
4562 
4563   int rc;
4564 
4565   // Kernel version is unknown if
4566   // verification below fails.
4567   _os_version = 0x01000000;
4568 
4569   rc = uname(&_uname);
4570   if (rc != -1) {
4571 
4572     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4573     if (rc == 3) {
4574 
4575       if (major < 256 && minor < 256 && fix < 256) {
4576         // Kernel version format is as expected,
4577         // set it overriding unknown state.
4578         _os_version = (major << 16) |
4579                       (minor << 8 ) |
4580                       (fix   << 0 ) ;
4581       }
4582     }
4583   }
4584 }
4585 
4586 uint32_t os::Linux::os_version() {
4587   assert(_os_version != 0, "not initialized");
4588   return _os_version & 0x00FFFFFF;
4589 }
4590 
4591 bool os::Linux::os_version_is_known() {
4592   assert(_os_version != 0, "not initialized");
4593   return _os_version & 0x01000000 ? false : true;
4594 }
4595 
4596 /////
4597 // glibc on Linux platform uses non-documented flag
4598 // to indicate, that some special sort of signal
4599 // trampoline is used.
4600 // We will never set this flag, and we should
4601 // ignore this flag in our diagnostic
4602 #ifdef SIGNIFICANT_SIGNAL_MASK
4603   #undef SIGNIFICANT_SIGNAL_MASK
4604 #endif
4605 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4606 
4607 static const char* get_signal_handler_name(address handler,
4608                                            char* buf, int buflen) {
4609   int offset = 0;
4610   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4611   if (found) {
4612     // skip directory names
4613     const char *p1, *p2;
4614     p1 = buf;
4615     size_t len = strlen(os::file_separator());
4616     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4617     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4618   } else {
4619     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4620   }
4621   return buf;
4622 }
4623 
4624 static void print_signal_handler(outputStream* st, int sig,
4625                                  char* buf, size_t buflen) {
4626   struct sigaction sa;
4627 
4628   sigaction(sig, NULL, &sa);
4629 
4630   // See comment for SIGNIFICANT_SIGNAL_MASK define
4631   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4632 
4633   st->print("%s: ", os::exception_name(sig, buf, buflen));
4634 
4635   address handler = (sa.sa_flags & SA_SIGINFO)
4636     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4637     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4638 
4639   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4640     st->print("SIG_DFL");
4641   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4642     st->print("SIG_IGN");
4643   } else {
4644     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4645   }
4646 
4647   st->print(", sa_mask[0]=");
4648   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4649 
4650   address rh = VMError::get_resetted_sighandler(sig);
4651   // May be, handler was resetted by VMError?
4652   if (rh != NULL) {
4653     handler = rh;
4654     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4655   }
4656 
4657   st->print(", sa_flags=");
4658   os::Posix::print_sa_flags(st, sa.sa_flags);
4659 
4660   // Check: is it our handler?
4661   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4662       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4663     // It is our signal handler
4664     // check for flags, reset system-used one!
4665     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4666       st->print(
4667                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4668                 os::Linux::get_our_sigflags(sig));
4669     }
4670   }
4671   st->cr();
4672 }
4673 
4674 
4675 #define DO_SIGNAL_CHECK(sig)                      \
4676   do {                                            \
4677     if (!sigismember(&check_signal_done, sig)) {  \
4678       os::Linux::check_signal_handler(sig);       \
4679     }                                             \
4680   } while (0)
4681 
4682 // This method is a periodic task to check for misbehaving JNI applications
4683 // under CheckJNI, we can add any periodic checks here
4684 
4685 void os::run_periodic_checks() {
4686   if (check_signals == false) return;
4687 
4688   // SEGV and BUS if overridden could potentially prevent
4689   // generation of hs*.log in the event of a crash, debugging
4690   // such a case can be very challenging, so we absolutely
4691   // check the following for a good measure:
4692   DO_SIGNAL_CHECK(SIGSEGV);
4693   DO_SIGNAL_CHECK(SIGILL);
4694   DO_SIGNAL_CHECK(SIGFPE);
4695   DO_SIGNAL_CHECK(SIGBUS);
4696   DO_SIGNAL_CHECK(SIGPIPE);
4697   DO_SIGNAL_CHECK(SIGXFSZ);
4698 #if defined(PPC64)
4699   DO_SIGNAL_CHECK(SIGTRAP);
4700 #endif
4701 
4702   // ReduceSignalUsage allows the user to override these handlers
4703   // see comments at the very top and jvm_solaris.h
4704   if (!ReduceSignalUsage) {
4705     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4706     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4707     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4708     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4709   }
4710 
4711   DO_SIGNAL_CHECK(SR_signum);
4712 }
4713 
4714 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4715 
4716 static os_sigaction_t os_sigaction = NULL;
4717 
4718 void os::Linux::check_signal_handler(int sig) {
4719   char buf[O_BUFLEN];
4720   address jvmHandler = NULL;
4721 
4722 
4723   struct sigaction act;
4724   if (os_sigaction == NULL) {
4725     // only trust the default sigaction, in case it has been interposed
4726     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4727     if (os_sigaction == NULL) return;
4728   }
4729 
4730   os_sigaction(sig, (struct sigaction*)NULL, &act);
4731 
4732 
4733   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4734 
4735   address thisHandler = (act.sa_flags & SA_SIGINFO)
4736     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4737     : CAST_FROM_FN_PTR(address, act.sa_handler);
4738 
4739 
4740   switch (sig) {
4741   case SIGSEGV:
4742   case SIGBUS:
4743   case SIGFPE:
4744   case SIGPIPE:
4745   case SIGILL:
4746   case SIGXFSZ:
4747     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4748     break;
4749 
4750   case SHUTDOWN1_SIGNAL:
4751   case SHUTDOWN2_SIGNAL:
4752   case SHUTDOWN3_SIGNAL:
4753   case BREAK_SIGNAL:
4754     jvmHandler = (address)user_handler();
4755     break;
4756 
4757   default:
4758     if (sig == SR_signum) {
4759       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4760     } else {
4761       return;
4762     }
4763     break;
4764   }
4765 
4766   if (thisHandler != jvmHandler) {
4767     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4768     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4769     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4770     // No need to check this sig any longer
4771     sigaddset(&check_signal_done, sig);
4772     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4773     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4774       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4775                     exception_name(sig, buf, O_BUFLEN));
4776     }
4777   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4778     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4779     tty->print("expected:");
4780     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4781     tty->cr();
4782     tty->print("  found:");
4783     os::Posix::print_sa_flags(tty, act.sa_flags);
4784     tty->cr();
4785     // No need to check this sig any longer
4786     sigaddset(&check_signal_done, sig);
4787   }
4788 
4789   // Dump all the signal
4790   if (sigismember(&check_signal_done, sig)) {
4791     print_signal_handlers(tty, buf, O_BUFLEN);
4792   }
4793 }
4794 
4795 extern void report_error(char* file_name, int line_no, char* title,
4796                          char* format, ...);
4797 
4798 // this is called _before_ the most of global arguments have been parsed
4799 void os::init(void) {
4800   char dummy;   // used to get a guess on initial stack address
4801 //  first_hrtime = gethrtime();
4802 
4803   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4804 
4805   init_random(1234567);
4806 
4807   ThreadCritical::initialize();
4808 
4809   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4810   if (Linux::page_size() == -1) {
4811     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4812           os::strerror(errno));
4813   }
4814   init_page_sizes((size_t) Linux::page_size());
4815 
4816   Linux::initialize_system_info();
4817 
4818   Linux::initialize_os_info();
4819 
4820   // main_thread points to the aboriginal thread
4821   Linux::_main_thread = pthread_self();
4822 
4823   Linux::clock_init();
4824   initial_time_count = javaTimeNanos();
4825 
4826   // retrieve entry point for pthread_setname_np
4827   Linux::_pthread_setname_np =
4828     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4829 
4830   os::Posix::init();
4831 }
4832 
4833 // To install functions for atexit system call
4834 extern "C" {
4835   static void perfMemory_exit_helper() {
4836     perfMemory_exit();
4837   }
4838 }
4839 
4840 // this is called _after_ the global arguments have been parsed
4841 jint os::init_2(void) {
4842 
4843   os::Posix::init_2();
4844 
4845   Linux::fast_thread_clock_init();
4846 
4847   // Allocate a single page and mark it as readable for safepoint polling
4848   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4849   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4850 
4851   os::set_polling_page(polling_page);
4852   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4853 
4854   if (!UseMembar) {
4855     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4856     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4857     os::set_memory_serialize_page(mem_serialize_page);
4858     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4859   }
4860 
4861   // initialize suspend/resume support - must do this before signal_sets_init()
4862   if (SR_initialize() != 0) {
4863     perror("SR_initialize failed");
4864     return JNI_ERR;
4865   }
4866 
4867   Linux::signal_sets_init();
4868   Linux::install_signal_handlers();
4869 
4870   // Check and sets minimum stack sizes against command line options
4871   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4872     return JNI_ERR;
4873   }
4874   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4875 
4876 #if defined(IA32)
4877   workaround_expand_exec_shield_cs_limit();
4878 #endif
4879 
4880   Linux::libpthread_init();
4881   Linux::sched_getcpu_init();
4882   log_info(os)("HotSpot is running with %s, %s",
4883                Linux::glibc_version(), Linux::libpthread_version());
4884 
4885   if (UseNUMA) {
4886     if (!Linux::libnuma_init()) {
4887       UseNUMA = false;
4888     } else {
4889       if ((Linux::numa_max_node() < 1)) {
4890         // There's only one node(they start from 0), disable NUMA.
4891         UseNUMA = false;
4892       }
4893     }
4894     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4895     // we can make the adaptive lgrp chunk resizing work. If the user specified
4896     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4897     // disable adaptive resizing.
4898     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4899       if (FLAG_IS_DEFAULT(UseNUMA)) {
4900         UseNUMA = false;
4901       } else {
4902         if (FLAG_IS_DEFAULT(UseLargePages) &&
4903             FLAG_IS_DEFAULT(UseSHM) &&
4904             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4905           UseLargePages = false;
4906         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4907           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4908           UseAdaptiveSizePolicy = false;
4909           UseAdaptiveNUMAChunkSizing = false;
4910         }
4911       }
4912     }
4913     if (!UseNUMA && ForceNUMA) {
4914       UseNUMA = true;
4915     }
4916   }
4917 
4918   if (MaxFDLimit) {
4919     // set the number of file descriptors to max. print out error
4920     // if getrlimit/setrlimit fails but continue regardless.
4921     struct rlimit nbr_files;
4922     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4923     if (status != 0) {
4924       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4925     } else {
4926       nbr_files.rlim_cur = nbr_files.rlim_max;
4927       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4928       if (status != 0) {
4929         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4930       }
4931     }
4932   }
4933 
4934   // Initialize lock used to serialize thread creation (see os::create_thread)
4935   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4936 
4937   // at-exit methods are called in the reverse order of their registration.
4938   // atexit functions are called on return from main or as a result of a
4939   // call to exit(3C). There can be only 32 of these functions registered
4940   // and atexit() does not set errno.
4941 
4942   if (PerfAllowAtExitRegistration) {
4943     // only register atexit functions if PerfAllowAtExitRegistration is set.
4944     // atexit functions can be delayed until process exit time, which
4945     // can be problematic for embedded VM situations. Embedded VMs should
4946     // call DestroyJavaVM() to assure that VM resources are released.
4947 
4948     // note: perfMemory_exit_helper atexit function may be removed in
4949     // the future if the appropriate cleanup code can be added to the
4950     // VM_Exit VMOperation's doit method.
4951     if (atexit(perfMemory_exit_helper) != 0) {
4952       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4953     }
4954   }
4955 
4956   // initialize thread priority policy
4957   prio_init();
4958 
4959   return JNI_OK;
4960 }
4961 
4962 // Mark the polling page as unreadable
4963 void os::make_polling_page_unreadable(void) {
4964   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4965     fatal("Could not disable polling page");
4966   }
4967 }
4968 
4969 // Mark the polling page as readable
4970 void os::make_polling_page_readable(void) {
4971   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4972     fatal("Could not enable polling page");
4973   }
4974 }
4975 
4976 // older glibc versions don't have this macro (which expands to
4977 // an optimized bit-counting function) so we have to roll our own
4978 #ifndef CPU_COUNT
4979 
4980 static int _cpu_count(const cpu_set_t* cpus) {
4981   int count = 0;
4982   // only look up to the number of configured processors
4983   for (int i = 0; i < os::processor_count(); i++) {
4984     if (CPU_ISSET(i, cpus)) {
4985       count++;
4986     }
4987   }
4988   return count;
4989 }
4990 
4991 #define CPU_COUNT(cpus) _cpu_count(cpus)
4992 
4993 #endif // CPU_COUNT
4994 
4995 // Get the current number of available processors for this process.
4996 // This value can change at any time during a process's lifetime.
4997 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4998 // If it appears there may be more than 1024 processors then we do a
4999 // dynamic check - see 6515172 for details.
5000 // If anything goes wrong we fallback to returning the number of online
5001 // processors - which can be greater than the number available to the process.
5002 int os::active_processor_count() {
5003   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5004   cpu_set_t* cpus_p = &cpus;
5005   int cpus_size = sizeof(cpu_set_t);
5006 
5007   int configured_cpus = processor_count();  // upper bound on available cpus
5008   int cpu_count = 0;
5009 
5010 // old build platforms may not support dynamic cpu sets
5011 #ifdef CPU_ALLOC
5012 
5013   // To enable easy testing of the dynamic path on different platforms we
5014   // introduce a diagnostic flag: UseCpuAllocPath
5015   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5016     // kernel may use a mask bigger than cpu_set_t
5017     log_trace(os)("active_processor_count: using dynamic path %s"
5018                   "- configured processors: %d",
5019                   UseCpuAllocPath ? "(forced) " : "",
5020                   configured_cpus);
5021     cpus_p = CPU_ALLOC(configured_cpus);
5022     if (cpus_p != NULL) {
5023       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5024       // zero it just to be safe
5025       CPU_ZERO_S(cpus_size, cpus_p);
5026     }
5027     else {
5028        // failed to allocate so fallback to online cpus
5029        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5030        log_trace(os)("active_processor_count: "
5031                      "CPU_ALLOC failed (%s) - using "
5032                      "online processor count: %d",
5033                      os::strerror(errno), online_cpus);
5034        return online_cpus;
5035     }
5036   }
5037   else {
5038     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5039                   configured_cpus);
5040   }
5041 #else // CPU_ALLOC
5042 // these stubs won't be executed
5043 #define CPU_COUNT_S(size, cpus) -1
5044 #define CPU_FREE(cpus)
5045 
5046   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5047                 configured_cpus);
5048 #endif // CPU_ALLOC
5049 
5050   // pid 0 means the current thread - which we have to assume represents the process
5051   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5052     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5053       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5054     }
5055     else {
5056       cpu_count = CPU_COUNT(cpus_p);
5057     }
5058     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5059   }
5060   else {
5061     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5062     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5063             "which may exceed available processors", os::strerror(errno), cpu_count);
5064   }
5065 
5066   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5067     CPU_FREE(cpus_p);
5068   }
5069 
5070   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5071   return cpu_count;
5072 }
5073 
5074 void os::set_native_thread_name(const char *name) {
5075   if (Linux::_pthread_setname_np) {
5076     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5077     snprintf(buf, sizeof(buf), "%s", name);
5078     buf[sizeof(buf) - 1] = '\0';
5079     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5080     // ERANGE should not happen; all other errors should just be ignored.
5081     assert(rc != ERANGE, "pthread_setname_np failed");
5082   }
5083 }
5084 
5085 bool os::distribute_processes(uint length, uint* distribution) {
5086   // Not yet implemented.
5087   return false;
5088 }
5089 
5090 bool os::bind_to_processor(uint processor_id) {
5091   // Not yet implemented.
5092   return false;
5093 }
5094 
5095 ///
5096 
5097 void os::SuspendedThreadTask::internal_do_task() {
5098   if (do_suspend(_thread->osthread())) {
5099     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5100     do_task(context);
5101     do_resume(_thread->osthread());
5102   }
5103 }
5104 
5105 ////////////////////////////////////////////////////////////////////////////////
5106 // debug support
5107 
5108 bool os::find(address addr, outputStream* st) {
5109   Dl_info dlinfo;
5110   memset(&dlinfo, 0, sizeof(dlinfo));
5111   if (dladdr(addr, &dlinfo) != 0) {
5112     st->print(PTR_FORMAT ": ", p2i(addr));
5113     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5114       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5115                 p2i(addr) - p2i(dlinfo.dli_saddr));
5116     } else if (dlinfo.dli_fbase != NULL) {
5117       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5118     } else {
5119       st->print("<absolute address>");
5120     }
5121     if (dlinfo.dli_fname != NULL) {
5122       st->print(" in %s", dlinfo.dli_fname);
5123     }
5124     if (dlinfo.dli_fbase != NULL) {
5125       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5126     }
5127     st->cr();
5128 
5129     if (Verbose) {
5130       // decode some bytes around the PC
5131       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5132       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5133       address       lowest = (address) dlinfo.dli_sname;
5134       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5135       if (begin < lowest)  begin = lowest;
5136       Dl_info dlinfo2;
5137       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5138           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5139         end = (address) dlinfo2.dli_saddr;
5140       }
5141       Disassembler::decode(begin, end, st);
5142     }
5143     return true;
5144   }
5145   return false;
5146 }
5147 
5148 ////////////////////////////////////////////////////////////////////////////////
5149 // misc
5150 
5151 // This does not do anything on Linux. This is basically a hook for being
5152 // able to use structured exception handling (thread-local exception filters)
5153 // on, e.g., Win32.
5154 void
5155 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5156                          JavaCallArguments* args, Thread* thread) {
5157   f(value, method, args, thread);
5158 }
5159 
5160 void os::print_statistics() {
5161 }
5162 
5163 bool os::message_box(const char* title, const char* message) {
5164   int i;
5165   fdStream err(defaultStream::error_fd());
5166   for (i = 0; i < 78; i++) err.print_raw("=");
5167   err.cr();
5168   err.print_raw_cr(title);
5169   for (i = 0; i < 78; i++) err.print_raw("-");
5170   err.cr();
5171   err.print_raw_cr(message);
5172   for (i = 0; i < 78; i++) err.print_raw("=");
5173   err.cr();
5174 
5175   char buf[16];
5176   // Prevent process from exiting upon "read error" without consuming all CPU
5177   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5178 
5179   return buf[0] == 'y' || buf[0] == 'Y';
5180 }
5181 
5182 int os::stat(const char *path, struct stat *sbuf) {
5183   char pathbuf[MAX_PATH];
5184   if (strlen(path) > MAX_PATH - 1) {
5185     errno = ENAMETOOLONG;
5186     return -1;
5187   }
5188   os::native_path(strcpy(pathbuf, path));
5189   return ::stat(pathbuf, sbuf);
5190 }
5191 
5192 // Is a (classpath) directory empty?
5193 bool os::dir_is_empty(const char* path) {
5194   DIR *dir = NULL;
5195   struct dirent *ptr;
5196 
5197   dir = opendir(path);
5198   if (dir == NULL) return true;
5199 
5200   // Scan the directory
5201   bool result = true;
5202   char buf[sizeof(struct dirent) + MAX_PATH];
5203   while (result && (ptr = ::readdir(dir)) != NULL) {
5204     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5205       result = false;
5206     }
5207   }
5208   closedir(dir);
5209   return result;
5210 }
5211 
5212 // This code originates from JDK's sysOpen and open64_w
5213 // from src/solaris/hpi/src/system_md.c
5214 
5215 int os::open(const char *path, int oflag, int mode) {
5216   if (strlen(path) > MAX_PATH - 1) {
5217     errno = ENAMETOOLONG;
5218     return -1;
5219   }
5220 
5221   // All file descriptors that are opened in the Java process and not
5222   // specifically destined for a subprocess should have the close-on-exec
5223   // flag set.  If we don't set it, then careless 3rd party native code
5224   // might fork and exec without closing all appropriate file descriptors
5225   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5226   // turn might:
5227   //
5228   // - cause end-of-file to fail to be detected on some file
5229   //   descriptors, resulting in mysterious hangs, or
5230   //
5231   // - might cause an fopen in the subprocess to fail on a system
5232   //   suffering from bug 1085341.
5233   //
5234   // (Yes, the default setting of the close-on-exec flag is a Unix
5235   // design flaw)
5236   //
5237   // See:
5238   // 1085341: 32-bit stdio routines should support file descriptors >255
5239   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5240   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5241   //
5242   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5243   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5244   // because it saves a system call and removes a small window where the flag
5245   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5246   // and we fall back to using FD_CLOEXEC (see below).
5247 #ifdef O_CLOEXEC
5248   oflag |= O_CLOEXEC;
5249 #endif
5250 
5251   int fd = ::open64(path, oflag, mode);
5252   if (fd == -1) return -1;
5253 
5254   //If the open succeeded, the file might still be a directory
5255   {
5256     struct stat64 buf64;
5257     int ret = ::fstat64(fd, &buf64);
5258     int st_mode = buf64.st_mode;
5259 
5260     if (ret != -1) {
5261       if ((st_mode & S_IFMT) == S_IFDIR) {
5262         errno = EISDIR;
5263         ::close(fd);
5264         return -1;
5265       }
5266     } else {
5267       ::close(fd);
5268       return -1;
5269     }
5270   }
5271 
5272 #ifdef FD_CLOEXEC
5273   // Validate that the use of the O_CLOEXEC flag on open above worked.
5274   // With recent kernels, we will perform this check exactly once.
5275   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5276   if (!O_CLOEXEC_is_known_to_work) {
5277     int flags = ::fcntl(fd, F_GETFD);
5278     if (flags != -1) {
5279       if ((flags & FD_CLOEXEC) != 0)
5280         O_CLOEXEC_is_known_to_work = 1;
5281       else
5282         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5283     }
5284   }
5285 #endif
5286 
5287   return fd;
5288 }
5289 
5290 
5291 // create binary file, rewriting existing file if required
5292 int os::create_binary_file(const char* path, bool rewrite_existing) {
5293   int oflags = O_WRONLY | O_CREAT;
5294   if (!rewrite_existing) {
5295     oflags |= O_EXCL;
5296   }
5297   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5298 }
5299 
5300 // return current position of file pointer
5301 jlong os::current_file_offset(int fd) {
5302   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5303 }
5304 
5305 // move file pointer to the specified offset
5306 jlong os::seek_to_file_offset(int fd, jlong offset) {
5307   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5308 }
5309 
5310 // This code originates from JDK's sysAvailable
5311 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5312 
5313 int os::available(int fd, jlong *bytes) {
5314   jlong cur, end;
5315   int mode;
5316   struct stat64 buf64;
5317 
5318   if (::fstat64(fd, &buf64) >= 0) {
5319     mode = buf64.st_mode;
5320     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5321       int n;
5322       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5323         *bytes = n;
5324         return 1;
5325       }
5326     }
5327   }
5328   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5329     return 0;
5330   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5331     return 0;
5332   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5333     return 0;
5334   }
5335   *bytes = end - cur;
5336   return 1;
5337 }
5338 
5339 // Map a block of memory.
5340 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5341                         char *addr, size_t bytes, bool read_only,
5342                         bool allow_exec) {
5343   int prot;
5344   int flags = MAP_PRIVATE;
5345 
5346   if (read_only) {
5347     prot = PROT_READ;
5348   } else {
5349     prot = PROT_READ | PROT_WRITE;
5350   }
5351 
5352   if (allow_exec) {
5353     prot |= PROT_EXEC;
5354   }
5355 
5356   if (addr != NULL) {
5357     flags |= MAP_FIXED;
5358   }
5359 
5360   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5361                                      fd, file_offset);
5362   if (mapped_address == MAP_FAILED) {
5363     return NULL;
5364   }
5365   return mapped_address;
5366 }
5367 
5368 
5369 // Remap a block of memory.
5370 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5371                           char *addr, size_t bytes, bool read_only,
5372                           bool allow_exec) {
5373   // same as map_memory() on this OS
5374   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5375                         allow_exec);
5376 }
5377 
5378 
5379 // Unmap a block of memory.
5380 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5381   return munmap(addr, bytes) == 0;
5382 }
5383 
5384 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5385 
5386 static clockid_t thread_cpu_clockid(Thread* thread) {
5387   pthread_t tid = thread->osthread()->pthread_id();
5388   clockid_t clockid;
5389 
5390   // Get thread clockid
5391   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5392   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5393   return clockid;
5394 }
5395 
5396 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5397 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5398 // of a thread.
5399 //
5400 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5401 // the fast estimate available on the platform.
5402 
5403 jlong os::current_thread_cpu_time() {
5404   if (os::Linux::supports_fast_thread_cpu_time()) {
5405     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5406   } else {
5407     // return user + sys since the cost is the same
5408     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5409   }
5410 }
5411 
5412 jlong os::thread_cpu_time(Thread* thread) {
5413   // consistent with what current_thread_cpu_time() returns
5414   if (os::Linux::supports_fast_thread_cpu_time()) {
5415     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5416   } else {
5417     return slow_thread_cpu_time(thread, true /* user + sys */);
5418   }
5419 }
5420 
5421 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5422   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5423     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5424   } else {
5425     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5426   }
5427 }
5428 
5429 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5430   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5431     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5432   } else {
5433     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5434   }
5435 }
5436 
5437 //  -1 on error.
5438 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5439   pid_t  tid = thread->osthread()->thread_id();
5440   char *s;
5441   char stat[2048];
5442   int statlen;
5443   char proc_name[64];
5444   int count;
5445   long sys_time, user_time;
5446   char cdummy;
5447   int idummy;
5448   long ldummy;
5449   FILE *fp;
5450 
5451   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5452   fp = fopen(proc_name, "r");
5453   if (fp == NULL) return -1;
5454   statlen = fread(stat, 1, 2047, fp);
5455   stat[statlen] = '\0';
5456   fclose(fp);
5457 
5458   // Skip pid and the command string. Note that we could be dealing with
5459   // weird command names, e.g. user could decide to rename java launcher
5460   // to "java 1.4.2 :)", then the stat file would look like
5461   //                1234 (java 1.4.2 :)) R ... ...
5462   // We don't really need to know the command string, just find the last
5463   // occurrence of ")" and then start parsing from there. See bug 4726580.
5464   s = strrchr(stat, ')');
5465   if (s == NULL) return -1;
5466 
5467   // Skip blank chars
5468   do { s++; } while (s && isspace(*s));
5469 
5470   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5471                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5472                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5473                  &user_time, &sys_time);
5474   if (count != 13) return -1;
5475   if (user_sys_cpu_time) {
5476     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5477   } else {
5478     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5479   }
5480 }
5481 
5482 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5483   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5484   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5485   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5486   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5487 }
5488 
5489 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5490   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5491   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5492   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5493   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5494 }
5495 
5496 bool os::is_thread_cpu_time_supported() {
5497   return true;
5498 }
5499 
5500 // System loadavg support.  Returns -1 if load average cannot be obtained.
5501 // Linux doesn't yet have a (official) notion of processor sets,
5502 // so just return the system wide load average.
5503 int os::loadavg(double loadavg[], int nelem) {
5504   return ::getloadavg(loadavg, nelem);
5505 }
5506 
5507 void os::pause() {
5508   char filename[MAX_PATH];
5509   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5510     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5511   } else {
5512     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5513   }
5514 
5515   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5516   if (fd != -1) {
5517     struct stat buf;
5518     ::close(fd);
5519     while (::stat(filename, &buf) == 0) {
5520       (void)::poll(NULL, 0, 100);
5521     }
5522   } else {
5523     jio_fprintf(stderr,
5524                 "Could not open pause file '%s', continuing immediately.\n", filename);
5525   }
5526 }
5527 
5528 extern char** environ;
5529 
5530 // Run the specified command in a separate process. Return its exit value,
5531 // or -1 on failure (e.g. can't fork a new process).
5532 // Unlike system(), this function can be called from signal handler. It
5533 // doesn't block SIGINT et al.
5534 int os::fork_and_exec(char* cmd) {
5535   const char * argv[4] = {"sh", "-c", cmd, NULL};
5536 
5537   pid_t pid = fork();
5538 
5539   if (pid < 0) {
5540     // fork failed
5541     return -1;
5542 
5543   } else if (pid == 0) {
5544     // child process
5545 
5546     execve("/bin/sh", (char* const*)argv, environ);
5547 
5548     // execve failed
5549     _exit(-1);
5550 
5551   } else  {
5552     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5553     // care about the actual exit code, for now.
5554 
5555     int status;
5556 
5557     // Wait for the child process to exit.  This returns immediately if
5558     // the child has already exited. */
5559     while (waitpid(pid, &status, 0) < 0) {
5560       switch (errno) {
5561       case ECHILD: return 0;
5562       case EINTR: break;
5563       default: return -1;
5564       }
5565     }
5566 
5567     if (WIFEXITED(status)) {
5568       // The child exited normally; get its exit code.
5569       return WEXITSTATUS(status);
5570     } else if (WIFSIGNALED(status)) {
5571       // The child exited because of a signal
5572       // The best value to return is 0x80 + signal number,
5573       // because that is what all Unix shells do, and because
5574       // it allows callers to distinguish between process exit and
5575       // process death by signal.
5576       return 0x80 + WTERMSIG(status);
5577     } else {
5578       // Unknown exit code; pass it through
5579       return status;
5580     }
5581   }
5582 }
5583 
5584 // is_headless_jre()
5585 //
5586 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5587 // in order to report if we are running in a headless jre
5588 //
5589 // Since JDK8 xawt/libmawt.so was moved into the same directory
5590 // as libawt.so, and renamed libawt_xawt.so
5591 //
5592 bool os::is_headless_jre() {
5593   struct stat statbuf;
5594   char buf[MAXPATHLEN];
5595   char libmawtpath[MAXPATHLEN];
5596   const char *xawtstr  = "/xawt/libmawt.so";
5597   const char *new_xawtstr = "/libawt_xawt.so";
5598   char *p;
5599 
5600   // Get path to libjvm.so
5601   os::jvm_path(buf, sizeof(buf));
5602 
5603   // Get rid of libjvm.so
5604   p = strrchr(buf, '/');
5605   if (p == NULL) {
5606     return false;
5607   } else {
5608     *p = '\0';
5609   }
5610 
5611   // Get rid of client or server
5612   p = strrchr(buf, '/');
5613   if (p == NULL) {
5614     return false;
5615   } else {
5616     *p = '\0';
5617   }
5618 
5619   // check xawt/libmawt.so
5620   strcpy(libmawtpath, buf);
5621   strcat(libmawtpath, xawtstr);
5622   if (::stat(libmawtpath, &statbuf) == 0) return false;
5623 
5624   // check libawt_xawt.so
5625   strcpy(libmawtpath, buf);
5626   strcat(libmawtpath, new_xawtstr);
5627   if (::stat(libmawtpath, &statbuf) == 0) return false;
5628 
5629   return true;
5630 }
5631 
5632 // Get the default path to the core file
5633 // Returns the length of the string
5634 int os::get_core_path(char* buffer, size_t bufferSize) {
5635   /*
5636    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5637    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5638    */
5639   const int core_pattern_len = 129;
5640   char core_pattern[core_pattern_len] = {0};
5641 
5642   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5643   if (core_pattern_file == -1) {
5644     return -1;
5645   }
5646 
5647   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5648   ::close(core_pattern_file);
5649   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5650     return -1;
5651   }
5652   if (core_pattern[ret-1] == '\n') {
5653     core_pattern[ret-1] = '\0';
5654   } else {
5655     core_pattern[ret] = '\0';
5656   }
5657 
5658   char *pid_pos = strstr(core_pattern, "%p");
5659   int written;
5660 
5661   if (core_pattern[0] == '/') {
5662     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5663   } else {
5664     char cwd[PATH_MAX];
5665 
5666     const char* p = get_current_directory(cwd, PATH_MAX);
5667     if (p == NULL) {
5668       return -1;
5669     }
5670 
5671     if (core_pattern[0] == '|') {
5672       written = jio_snprintf(buffer, bufferSize,
5673                              "\"%s\" (or dumping to %s/core.%d)",
5674                              &core_pattern[1], p, current_process_id());
5675     } else {
5676       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5677     }
5678   }
5679 
5680   if (written < 0) {
5681     return -1;
5682   }
5683 
5684   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5685     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5686 
5687     if (core_uses_pid_file != -1) {
5688       char core_uses_pid = 0;
5689       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5690       ::close(core_uses_pid_file);
5691 
5692       if (core_uses_pid == '1') {
5693         jio_snprintf(buffer + written, bufferSize - written,
5694                                           ".%d", current_process_id());
5695       }
5696     }
5697   }
5698 
5699   return strlen(buffer);
5700 }
5701 
5702 bool os::start_debugging(char *buf, int buflen) {
5703   int len = (int)strlen(buf);
5704   char *p = &buf[len];
5705 
5706   jio_snprintf(p, buflen-len,
5707                "\n\n"
5708                "Do you want to debug the problem?\n\n"
5709                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5710                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5711                "Otherwise, press RETURN to abort...",
5712                os::current_process_id(), os::current_process_id(),
5713                os::current_thread_id(), os::current_thread_id());
5714 
5715   bool yes = os::message_box("Unexpected Error", buf);
5716 
5717   if (yes) {
5718     // yes, user asked VM to launch debugger
5719     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5720                  os::current_process_id(), os::current_process_id());
5721 
5722     os::fork_and_exec(buf);
5723     yes = false;
5724   }
5725   return yes;
5726 }
5727 
5728 
5729 // Java/Compiler thread:
5730 //
5731 //   Low memory addresses
5732 // P0 +------------------------+
5733 //    |                        |\  Java thread created by VM does not have glibc
5734 //    |    glibc guard page    | - guard page, attached Java thread usually has
5735 //    |                        |/  1 glibc guard page.
5736 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5737 //    |                        |\
5738 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5739 //    |                        |/
5740 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5741 //    |                        |\
5742 //    |      Normal Stack      | -
5743 //    |                        |/
5744 // P2 +------------------------+ Thread::stack_base()
5745 //
5746 // Non-Java thread:
5747 //
5748 //   Low memory addresses
5749 // P0 +------------------------+
5750 //    |                        |\
5751 //    |  glibc guard page      | - usually 1 page
5752 //    |                        |/
5753 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5754 //    |                        |\
5755 //    |      Normal Stack      | -
5756 //    |                        |/
5757 // P2 +------------------------+ Thread::stack_base()
5758 //
5759 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5760 //    returned from pthread_attr_getstack().
5761 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5762 //    of the stack size given in pthread_attr. We work around this for
5763 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5764 //
5765 #ifndef ZERO
5766 static void current_stack_region(address * bottom, size_t * size) {
5767   if (os::Linux::is_initial_thread()) {
5768     // initial thread needs special handling because pthread_getattr_np()
5769     // may return bogus value.
5770     *bottom = os::Linux::initial_thread_stack_bottom();
5771     *size   = os::Linux::initial_thread_stack_size();
5772   } else {
5773     pthread_attr_t attr;
5774 
5775     int rslt = pthread_getattr_np(pthread_self(), &attr);
5776 
5777     // JVM needs to know exact stack location, abort if it fails
5778     if (rslt != 0) {
5779       if (rslt == ENOMEM) {
5780         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5781       } else {
5782         fatal("pthread_getattr_np failed with error = %d", rslt);
5783       }
5784     }
5785 
5786     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5787       fatal("Cannot locate current stack attributes!");
5788     }
5789 
5790     // Work around NPTL stack guard error.
5791     size_t guard_size = 0;
5792     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5793     if (rslt != 0) {
5794       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5795     }
5796     *bottom += guard_size;
5797     *size   -= guard_size;
5798 
5799     pthread_attr_destroy(&attr);
5800 
5801   }
5802   assert(os::current_stack_pointer() >= *bottom &&
5803          os::current_stack_pointer() < *bottom + *size, "just checking");
5804 }
5805 
5806 address os::current_stack_base() {
5807   address bottom;
5808   size_t size;
5809   current_stack_region(&bottom, &size);
5810   return (bottom + size);
5811 }
5812 
5813 size_t os::current_stack_size() {
5814   // This stack size includes the usable stack and HotSpot guard pages
5815   // (for the threads that have Hotspot guard pages).
5816   address bottom;
5817   size_t size;
5818   current_stack_region(&bottom, &size);
5819   return size;
5820 }
5821 #endif
5822 
5823 static inline struct timespec get_mtime(const char* filename) {
5824   struct stat st;
5825   int ret = os::stat(filename, &st);
5826   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5827   return st.st_mtim;
5828 }
5829 
5830 int os::compare_file_modified_times(const char* file1, const char* file2) {
5831   struct timespec filetime1 = get_mtime(file1);
5832   struct timespec filetime2 = get_mtime(file2);
5833   int diff = filetime1.tv_sec - filetime2.tv_sec;
5834   if (diff == 0) {
5835     return filetime1.tv_nsec - filetime2.tv_nsec;
5836   }
5837   return diff;
5838 }
5839 
5840 /////////////// Unit tests ///////////////
5841 
5842 #ifndef PRODUCT
5843 
5844 #define test_log(...)              \
5845   do {                             \
5846     if (VerboseInternalVMTests) {  \
5847       tty->print_cr(__VA_ARGS__);  \
5848       tty->flush();                \
5849     }                              \
5850   } while (false)
5851 
5852 class TestReserveMemorySpecial : AllStatic {
5853  public:
5854   static void small_page_write(void* addr, size_t size) {
5855     size_t page_size = os::vm_page_size();
5856 
5857     char* end = (char*)addr + size;
5858     for (char* p = (char*)addr; p < end; p += page_size) {
5859       *p = 1;
5860     }
5861   }
5862 
5863   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5864     if (!UseHugeTLBFS) {
5865       return;
5866     }
5867 
5868     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5869 
5870     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5871 
5872     if (addr != NULL) {
5873       small_page_write(addr, size);
5874 
5875       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5876     }
5877   }
5878 
5879   static void test_reserve_memory_special_huge_tlbfs_only() {
5880     if (!UseHugeTLBFS) {
5881       return;
5882     }
5883 
5884     size_t lp = os::large_page_size();
5885 
5886     for (size_t size = lp; size <= lp * 10; size += lp) {
5887       test_reserve_memory_special_huge_tlbfs_only(size);
5888     }
5889   }
5890 
5891   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5892     size_t lp = os::large_page_size();
5893     size_t ag = os::vm_allocation_granularity();
5894 
5895     // sizes to test
5896     const size_t sizes[] = {
5897       lp, lp + ag, lp + lp / 2, lp * 2,
5898       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5899       lp * 10, lp * 10 + lp / 2
5900     };
5901     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5902 
5903     // For each size/alignment combination, we test three scenarios:
5904     // 1) with req_addr == NULL
5905     // 2) with a non-null req_addr at which we expect to successfully allocate
5906     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5907     //    expect the allocation to either fail or to ignore req_addr
5908 
5909     // Pre-allocate two areas; they shall be as large as the largest allocation
5910     //  and aligned to the largest alignment we will be testing.
5911     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5912     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5913       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5914       -1, 0);
5915     assert(mapping1 != MAP_FAILED, "should work");
5916 
5917     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5918       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5919       -1, 0);
5920     assert(mapping2 != MAP_FAILED, "should work");
5921 
5922     // Unmap the first mapping, but leave the second mapping intact: the first
5923     // mapping will serve as a value for a "good" req_addr (case 2). The second
5924     // mapping, still intact, as "bad" req_addr (case 3).
5925     ::munmap(mapping1, mapping_size);
5926 
5927     // Case 1
5928     test_log("%s, req_addr NULL:", __FUNCTION__);
5929     test_log("size            align           result");
5930 
5931     for (int i = 0; i < num_sizes; i++) {
5932       const size_t size = sizes[i];
5933       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5934         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5935         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5936                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5937         if (p != NULL) {
5938           assert(is_aligned(p, alignment), "must be");
5939           small_page_write(p, size);
5940           os::Linux::release_memory_special_huge_tlbfs(p, size);
5941         }
5942       }
5943     }
5944 
5945     // Case 2
5946     test_log("%s, req_addr non-NULL:", __FUNCTION__);
5947     test_log("size            align           req_addr         result");
5948 
5949     for (int i = 0; i < num_sizes; i++) {
5950       const size_t size = sizes[i];
5951       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5952         char* const req_addr = align_up(mapping1, alignment);
5953         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5954         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5955                  size, alignment, p2i(req_addr), p2i(p),
5956                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
5957         if (p != NULL) {
5958           assert(p == req_addr, "must be");
5959           small_page_write(p, size);
5960           os::Linux::release_memory_special_huge_tlbfs(p, size);
5961         }
5962       }
5963     }
5964 
5965     // Case 3
5966     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
5967     test_log("size            align           req_addr         result");
5968 
5969     for (int i = 0; i < num_sizes; i++) {
5970       const size_t size = sizes[i];
5971       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5972         char* const req_addr = align_up(mapping2, alignment);
5973         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5974         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5975                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
5976         // as the area around req_addr contains already existing mappings, the API should always
5977         // return NULL (as per contract, it cannot return another address)
5978         assert(p == NULL, "must be");
5979       }
5980     }
5981 
5982     ::munmap(mapping2, mapping_size);
5983 
5984   }
5985 
5986   static void test_reserve_memory_special_huge_tlbfs() {
5987     if (!UseHugeTLBFS) {
5988       return;
5989     }
5990 
5991     test_reserve_memory_special_huge_tlbfs_only();
5992     test_reserve_memory_special_huge_tlbfs_mixed();
5993   }
5994 
5995   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
5996     if (!UseSHM) {
5997       return;
5998     }
5999 
6000     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6001 
6002     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6003 
6004     if (addr != NULL) {
6005       assert(is_aligned(addr, alignment), "Check");
6006       assert(is_aligned(addr, os::large_page_size()), "Check");
6007 
6008       small_page_write(addr, size);
6009 
6010       os::Linux::release_memory_special_shm(addr, size);
6011     }
6012   }
6013 
6014   static void test_reserve_memory_special_shm() {
6015     size_t lp = os::large_page_size();
6016     size_t ag = os::vm_allocation_granularity();
6017 
6018     for (size_t size = ag; size < lp * 3; size += ag) {
6019       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6020         test_reserve_memory_special_shm(size, alignment);
6021       }
6022     }
6023   }
6024 
6025   static void test() {
6026     test_reserve_memory_special_huge_tlbfs();
6027     test_reserve_memory_special_shm();
6028   }
6029 };
6030 
6031 void TestReserveMemorySpecial_test() {
6032   TestReserveMemorySpecial::test();
6033 }
6034 
6035 #endif