1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "memory/metaspaceShared.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.inline.hpp"
  48 #include "oops/instanceKlass.hpp"
  49 #include "oops/objArrayOop.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/symbol.hpp"
  52 #include "oops/verifyOopClosure.hpp"
  53 #include "prims/jvm.h"
  54 #include "prims/jvm_misc.hpp"
  55 #include "prims/jvmtiExport.hpp"
  56 #include "prims/jvmtiThreadState.hpp"
  57 #include "prims/privilegedStack.hpp"
  58 #include "runtime/arguments.hpp"
  59 #include "runtime/atomic.hpp"
  60 #include "runtime/biasedLocking.hpp"
  61 #include "runtime/commandLineFlagConstraintList.hpp"
  62 #include "runtime/commandLineFlagWriteableList.hpp"
  63 #include "runtime/commandLineFlagRangeList.hpp"
  64 #include "runtime/deoptimization.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/globals.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/jniPeriodicChecker.hpp"
  72 #include "runtime/timerTrace.hpp"
  73 #include "runtime/memprofiler.hpp"
  74 #include "runtime/mutexLocker.hpp"
  75 #include "runtime/objectMonitor.hpp"
  76 #include "runtime/orderAccess.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepoint.hpp"
  79 #include "runtime/sharedRuntime.hpp"
  80 #include "runtime/statSampler.hpp"
  81 #include "runtime/stubRoutines.hpp"
  82 #include "runtime/sweeper.hpp"
  83 #include "runtime/task.hpp"
  84 #include "runtime/thread.inline.hpp"
  85 #include "runtime/threadCritical.hpp"
  86 #include "runtime/vframe.hpp"
  87 #include "runtime/vframeArray.hpp"
  88 #include "runtime/vframe_hp.hpp"
  89 #include "runtime/vmThread.hpp"
  90 #include "runtime/vm_operations.hpp"
  91 #include "runtime/vm_version.hpp"
  92 #include "services/attachListener.hpp"
  93 #include "services/management.hpp"
  94 #include "services/memTracker.hpp"
  95 #include "services/threadService.hpp"
  96 #include "trace/traceMacros.hpp"
  97 #include "trace/tracing.hpp"
  98 #include "utilities/align.hpp"
  99 #include "utilities/defaultStream.hpp"
 100 #include "utilities/dtrace.hpp"
 101 #include "utilities/events.hpp"
 102 #include "utilities/macros.hpp"
 103 #include "utilities/preserveException.hpp"
 104 #include "utilities/vmError.hpp"
 105 #if INCLUDE_ALL_GCS
 106 #include "gc/cms/concurrentMarkSweepThread.hpp"
 107 #include "gc/g1/concurrentMarkThread.inline.hpp"
 108 #include "gc/parallel/pcTasks.hpp"
 109 #endif // INCLUDE_ALL_GCS
 110 #if INCLUDE_JVMCI
 111 #include "jvmci/jvmciCompiler.hpp"
 112 #include "jvmci/jvmciRuntime.hpp"
 113 #endif
 114 #ifdef COMPILER1
 115 #include "c1/c1_Compiler.hpp"
 116 #endif
 117 #ifdef COMPILER2
 118 #include "opto/c2compiler.hpp"
 119 #include "opto/idealGraphPrinter.hpp"
 120 #endif
 121 #if INCLUDE_RTM_OPT
 122 #include "runtime/rtmLocking.hpp"
 123 #endif
 124 
 125 // Initialization after module runtime initialization
 126 void universe_post_module_init();  // must happen after call_initPhase2
 127 
 128 #ifdef DTRACE_ENABLED
 129 
 130 // Only bother with this argument setup if dtrace is available
 131 
 132   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 133   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 134 
 135   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 136     {                                                                      \
 137       ResourceMark rm(this);                                               \
 138       int len = 0;                                                         \
 139       const char* name = (javathread)->get_thread_name();                  \
 140       len = strlen(name);                                                  \
 141       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 142         (char *) name, len,                                                \
 143         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 144         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 145         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 146     }
 147 
 148 #else //  ndef DTRACE_ENABLED
 149 
 150   #define DTRACE_THREAD_PROBE(probe, javathread)
 151 
 152 #endif // ndef DTRACE_ENABLED
 153 
 154 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 155 // Current thread is maintained as a thread-local variable
 156 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 157 #endif
 158 // Class hierarchy
 159 // - Thread
 160 //   - VMThread
 161 //   - WatcherThread
 162 //   - ConcurrentMarkSweepThread
 163 //   - JavaThread
 164 //     - CompilerThread
 165 
 166 // ======= Thread ========
 167 // Support for forcing alignment of thread objects for biased locking
 168 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 169   if (UseBiasedLocking) {
 170     const int alignment = markOopDesc::biased_lock_alignment;
 171     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 172     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 173                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 174                                                          AllocFailStrategy::RETURN_NULL);
 175     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 176     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 177            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 178            "JavaThread alignment code overflowed allocated storage");
 179     if (aligned_addr != real_malloc_addr) {
 180       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 181                               p2i(real_malloc_addr),
 182                               p2i(aligned_addr));
 183     }
 184     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 185     return aligned_addr;
 186   } else {
 187     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 188                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 189   }
 190 }
 191 
 192 void Thread::operator delete(void* p) {
 193   if (UseBiasedLocking) {
 194     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 195     FreeHeap(real_malloc_addr);
 196   } else {
 197     FreeHeap(p);
 198   }
 199 }
 200 
 201 
 202 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 203 // JavaThread
 204 
 205 
 206 Thread::Thread() {
 207   // stack and get_thread
 208   set_stack_base(NULL);
 209   set_stack_size(0);
 210   set_self_raw_id(0);
 211   set_lgrp_id(-1);
 212   DEBUG_ONLY(clear_suspendible_thread();)
 213 
 214   // allocated data structures
 215   set_osthread(NULL);
 216   set_resource_area(new (mtThread)ResourceArea());
 217   DEBUG_ONLY(_current_resource_mark = NULL;)
 218   set_handle_area(new (mtThread) HandleArea(NULL));
 219   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 220   set_active_handles(NULL);
 221   set_free_handle_block(NULL);
 222   set_last_handle_mark(NULL);
 223 
 224   // This initial value ==> never claimed.
 225   _oops_do_parity = 0;
 226 
 227   // the handle mark links itself to last_handle_mark
 228   new HandleMark(this);
 229 
 230   // plain initialization
 231   debug_only(_owned_locks = NULL;)
 232   debug_only(_allow_allocation_count = 0;)
 233   NOT_PRODUCT(_allow_safepoint_count = 0;)
 234   NOT_PRODUCT(_skip_gcalot = false;)
 235   _jvmti_env_iteration_count = 0;
 236   set_allocated_bytes(0);
 237   _vm_operation_started_count = 0;
 238   _vm_operation_completed_count = 0;
 239   _current_pending_monitor = NULL;
 240   _current_pending_monitor_is_from_java = true;
 241   _current_waiting_monitor = NULL;
 242   _num_nested_signal = 0;
 243   omFreeList = NULL;
 244   omFreeCount = 0;
 245   omFreeProvision = 32;
 246   omInUseList = NULL;
 247   omInUseCount = 0;
 248 
 249 #ifdef ASSERT
 250   _visited_for_critical_count = false;
 251 #endif
 252 
 253   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 254                          Monitor::_safepoint_check_sometimes);
 255   _suspend_flags = 0;
 256 
 257   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 258   _hashStateX = os::random();
 259   _hashStateY = 842502087;
 260   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 261   _hashStateW = 273326509;
 262 
 263   _OnTrap   = 0;
 264   _schedctl = NULL;
 265   _Stalled  = 0;
 266   _TypeTag  = 0x2BAD;
 267 
 268   // Many of the following fields are effectively final - immutable
 269   // Note that nascent threads can't use the Native Monitor-Mutex
 270   // construct until the _MutexEvent is initialized ...
 271   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 272   // we might instead use a stack of ParkEvents that we could provision on-demand.
 273   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 274   // and ::Release()
 275   _ParkEvent   = ParkEvent::Allocate(this);
 276   _SleepEvent  = ParkEvent::Allocate(this);
 277   _MutexEvent  = ParkEvent::Allocate(this);
 278   _MuxEvent    = ParkEvent::Allocate(this);
 279 
 280 #ifdef CHECK_UNHANDLED_OOPS
 281   if (CheckUnhandledOops) {
 282     _unhandled_oops = new UnhandledOops(this);
 283   }
 284 #endif // CHECK_UNHANDLED_OOPS
 285 #ifdef ASSERT
 286   if (UseBiasedLocking) {
 287     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 288     assert(this == _real_malloc_address ||
 289            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 290            "bug in forced alignment of thread objects");
 291   }
 292 #endif // ASSERT
 293 }
 294 
 295 void Thread::initialize_thread_current() {
 296 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 297   assert(_thr_current == NULL, "Thread::current already initialized");
 298   _thr_current = this;
 299 #endif
 300   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 301   ThreadLocalStorage::set_thread(this);
 302   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 303 }
 304 
 305 void Thread::clear_thread_current() {
 306   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 307 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 308   _thr_current = NULL;
 309 #endif
 310   ThreadLocalStorage::set_thread(NULL);
 311 }
 312 
 313 void Thread::record_stack_base_and_size() {
 314   set_stack_base(os::current_stack_base());
 315   set_stack_size(os::current_stack_size());
 316   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 317   // in initialize_thread(). Without the adjustment, stack size is
 318   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 319   // So far, only Solaris has real implementation of initialize_thread().
 320   //
 321   // set up any platform-specific state.
 322   os::initialize_thread(this);
 323 
 324   // Set stack limits after thread is initialized.
 325   if (is_Java_thread()) {
 326     ((JavaThread*) this)->set_stack_overflow_limit();
 327     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 328   }
 329 #if INCLUDE_NMT
 330   // record thread's native stack, stack grows downward
 331   MemTracker::record_thread_stack(stack_end(), stack_size());
 332 #endif // INCLUDE_NMT
 333   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 334     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 335     os::current_thread_id(), p2i(stack_base() - stack_size()),
 336     p2i(stack_base()), stack_size()/1024);
 337 }
 338 
 339 
 340 Thread::~Thread() {
 341   EVENT_THREAD_DESTRUCT(this);
 342 
 343   // stack_base can be NULL if the thread is never started or exited before
 344   // record_stack_base_and_size called. Although, we would like to ensure
 345   // that all started threads do call record_stack_base_and_size(), there is
 346   // not proper way to enforce that.
 347 #if INCLUDE_NMT
 348   if (_stack_base != NULL) {
 349     MemTracker::release_thread_stack(stack_end(), stack_size());
 350 #ifdef ASSERT
 351     set_stack_base(NULL);
 352 #endif
 353   }
 354 #endif // INCLUDE_NMT
 355 
 356   // deallocate data structures
 357   delete resource_area();
 358   // since the handle marks are using the handle area, we have to deallocated the root
 359   // handle mark before deallocating the thread's handle area,
 360   assert(last_handle_mark() != NULL, "check we have an element");
 361   delete last_handle_mark();
 362   assert(last_handle_mark() == NULL, "check we have reached the end");
 363 
 364   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 365   // We NULL out the fields for good hygiene.
 366   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 367   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 368   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 369   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 370 
 371   delete handle_area();
 372   delete metadata_handles();
 373 
 374   // SR_handler uses this as a termination indicator -
 375   // needs to happen before os::free_thread()
 376   delete _SR_lock;
 377   _SR_lock = NULL;
 378 
 379   // osthread() can be NULL, if creation of thread failed.
 380   if (osthread() != NULL) os::free_thread(osthread());
 381 
 382   // clear Thread::current if thread is deleting itself.
 383   // Needed to ensure JNI correctly detects non-attached threads.
 384   if (this == Thread::current()) {
 385     clear_thread_current();
 386   }
 387 
 388   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 389 }
 390 
 391 // NOTE: dummy function for assertion purpose.
 392 void Thread::run() {
 393   ShouldNotReachHere();
 394 }
 395 
 396 #ifdef ASSERT
 397 // Private method to check for dangling thread pointer
 398 void check_for_dangling_thread_pointer(Thread *thread) {
 399   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 400          "possibility of dangling Thread pointer");
 401 }
 402 #endif
 403 
 404 ThreadPriority Thread::get_priority(const Thread* const thread) {
 405   ThreadPriority priority;
 406   // Can return an error!
 407   (void)os::get_priority(thread, priority);
 408   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 409   return priority;
 410 }
 411 
 412 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 413   debug_only(check_for_dangling_thread_pointer(thread);)
 414   // Can return an error!
 415   (void)os::set_priority(thread, priority);
 416 }
 417 
 418 
 419 void Thread::start(Thread* thread) {
 420   // Start is different from resume in that its safety is guaranteed by context or
 421   // being called from a Java method synchronized on the Thread object.
 422   if (!DisableStartThread) {
 423     if (thread->is_Java_thread()) {
 424       // Initialize the thread state to RUNNABLE before starting this thread.
 425       // Can not set it after the thread started because we do not know the
 426       // exact thread state at that time. It could be in MONITOR_WAIT or
 427       // in SLEEPING or some other state.
 428       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 429                                           java_lang_Thread::RUNNABLE);
 430     }
 431     os::start_thread(thread);
 432   }
 433 }
 434 
 435 // Enqueue a VM_Operation to do the job for us - sometime later
 436 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 437   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 438   VMThread::execute(vm_stop);
 439 }
 440 
 441 
 442 // Check if an external suspend request has completed (or has been
 443 // cancelled). Returns true if the thread is externally suspended and
 444 // false otherwise.
 445 //
 446 // The bits parameter returns information about the code path through
 447 // the routine. Useful for debugging:
 448 //
 449 // set in is_ext_suspend_completed():
 450 // 0x00000001 - routine was entered
 451 // 0x00000010 - routine return false at end
 452 // 0x00000100 - thread exited (return false)
 453 // 0x00000200 - suspend request cancelled (return false)
 454 // 0x00000400 - thread suspended (return true)
 455 // 0x00001000 - thread is in a suspend equivalent state (return true)
 456 // 0x00002000 - thread is native and walkable (return true)
 457 // 0x00004000 - thread is native_trans and walkable (needed retry)
 458 //
 459 // set in wait_for_ext_suspend_completion():
 460 // 0x00010000 - routine was entered
 461 // 0x00020000 - suspend request cancelled before loop (return false)
 462 // 0x00040000 - thread suspended before loop (return true)
 463 // 0x00080000 - suspend request cancelled in loop (return false)
 464 // 0x00100000 - thread suspended in loop (return true)
 465 // 0x00200000 - suspend not completed during retry loop (return false)
 466 
 467 // Helper class for tracing suspend wait debug bits.
 468 //
 469 // 0x00000100 indicates that the target thread exited before it could
 470 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 471 // 0x00080000 each indicate a cancelled suspend request so they don't
 472 // count as wait failures either.
 473 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 474 
 475 class TraceSuspendDebugBits : public StackObj {
 476  private:
 477   JavaThread * jt;
 478   bool         is_wait;
 479   bool         called_by_wait;  // meaningful when !is_wait
 480   uint32_t *   bits;
 481 
 482  public:
 483   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 484                         uint32_t *_bits) {
 485     jt             = _jt;
 486     is_wait        = _is_wait;
 487     called_by_wait = _called_by_wait;
 488     bits           = _bits;
 489   }
 490 
 491   ~TraceSuspendDebugBits() {
 492     if (!is_wait) {
 493 #if 1
 494       // By default, don't trace bits for is_ext_suspend_completed() calls.
 495       // That trace is very chatty.
 496       return;
 497 #else
 498       if (!called_by_wait) {
 499         // If tracing for is_ext_suspend_completed() is enabled, then only
 500         // trace calls to it from wait_for_ext_suspend_completion()
 501         return;
 502       }
 503 #endif
 504     }
 505 
 506     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 507       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 508         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 509         ResourceMark rm;
 510 
 511         tty->print_cr(
 512                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 513                       jt->get_thread_name(), *bits);
 514 
 515         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 516       }
 517     }
 518   }
 519 };
 520 #undef DEBUG_FALSE_BITS
 521 
 522 
 523 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 524                                           uint32_t *bits) {
 525   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 526 
 527   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 528   bool do_trans_retry;           // flag to force the retry
 529 
 530   *bits |= 0x00000001;
 531 
 532   do {
 533     do_trans_retry = false;
 534 
 535     if (is_exiting()) {
 536       // Thread is in the process of exiting. This is always checked
 537       // first to reduce the risk of dereferencing a freed JavaThread.
 538       *bits |= 0x00000100;
 539       return false;
 540     }
 541 
 542     if (!is_external_suspend()) {
 543       // Suspend request is cancelled. This is always checked before
 544       // is_ext_suspended() to reduce the risk of a rogue resume
 545       // confusing the thread that made the suspend request.
 546       *bits |= 0x00000200;
 547       return false;
 548     }
 549 
 550     if (is_ext_suspended()) {
 551       // thread is suspended
 552       *bits |= 0x00000400;
 553       return true;
 554     }
 555 
 556     // Now that we no longer do hard suspends of threads running
 557     // native code, the target thread can be changing thread state
 558     // while we are in this routine:
 559     //
 560     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 561     //
 562     // We save a copy of the thread state as observed at this moment
 563     // and make our decision about suspend completeness based on the
 564     // copy. This closes the race where the thread state is seen as
 565     // _thread_in_native_trans in the if-thread_blocked check, but is
 566     // seen as _thread_blocked in if-thread_in_native_trans check.
 567     JavaThreadState save_state = thread_state();
 568 
 569     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 570       // If the thread's state is _thread_blocked and this blocking
 571       // condition is known to be equivalent to a suspend, then we can
 572       // consider the thread to be externally suspended. This means that
 573       // the code that sets _thread_blocked has been modified to do
 574       // self-suspension if the blocking condition releases. We also
 575       // used to check for CONDVAR_WAIT here, but that is now covered by
 576       // the _thread_blocked with self-suspension check.
 577       //
 578       // Return true since we wouldn't be here unless there was still an
 579       // external suspend request.
 580       *bits |= 0x00001000;
 581       return true;
 582     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 583       // Threads running native code will self-suspend on native==>VM/Java
 584       // transitions. If its stack is walkable (should always be the case
 585       // unless this function is called before the actual java_suspend()
 586       // call), then the wait is done.
 587       *bits |= 0x00002000;
 588       return true;
 589     } else if (!called_by_wait && !did_trans_retry &&
 590                save_state == _thread_in_native_trans &&
 591                frame_anchor()->walkable()) {
 592       // The thread is transitioning from thread_in_native to another
 593       // thread state. check_safepoint_and_suspend_for_native_trans()
 594       // will force the thread to self-suspend. If it hasn't gotten
 595       // there yet we may have caught the thread in-between the native
 596       // code check above and the self-suspend. Lucky us. If we were
 597       // called by wait_for_ext_suspend_completion(), then it
 598       // will be doing the retries so we don't have to.
 599       //
 600       // Since we use the saved thread state in the if-statement above,
 601       // there is a chance that the thread has already transitioned to
 602       // _thread_blocked by the time we get here. In that case, we will
 603       // make a single unnecessary pass through the logic below. This
 604       // doesn't hurt anything since we still do the trans retry.
 605 
 606       *bits |= 0x00004000;
 607 
 608       // Once the thread leaves thread_in_native_trans for another
 609       // thread state, we break out of this retry loop. We shouldn't
 610       // need this flag to prevent us from getting back here, but
 611       // sometimes paranoia is good.
 612       did_trans_retry = true;
 613 
 614       // We wait for the thread to transition to a more usable state.
 615       for (int i = 1; i <= SuspendRetryCount; i++) {
 616         // We used to do an "os::yield_all(i)" call here with the intention
 617         // that yielding would increase on each retry. However, the parameter
 618         // is ignored on Linux which means the yield didn't scale up. Waiting
 619         // on the SR_lock below provides a much more predictable scale up for
 620         // the delay. It also provides a simple/direct point to check for any
 621         // safepoint requests from the VMThread
 622 
 623         // temporarily drops SR_lock while doing wait with safepoint check
 624         // (if we're a JavaThread - the WatcherThread can also call this)
 625         // and increase delay with each retry
 626         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 627 
 628         // check the actual thread state instead of what we saved above
 629         if (thread_state() != _thread_in_native_trans) {
 630           // the thread has transitioned to another thread state so
 631           // try all the checks (except this one) one more time.
 632           do_trans_retry = true;
 633           break;
 634         }
 635       } // end retry loop
 636 
 637 
 638     }
 639   } while (do_trans_retry);
 640 
 641   *bits |= 0x00000010;
 642   return false;
 643 }
 644 
 645 // Wait for an external suspend request to complete (or be cancelled).
 646 // Returns true if the thread is externally suspended and false otherwise.
 647 //
 648 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 649                                                  uint32_t *bits) {
 650   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 651                              false /* !called_by_wait */, bits);
 652 
 653   // local flag copies to minimize SR_lock hold time
 654   bool is_suspended;
 655   bool pending;
 656   uint32_t reset_bits;
 657 
 658   // set a marker so is_ext_suspend_completed() knows we are the caller
 659   *bits |= 0x00010000;
 660 
 661   // We use reset_bits to reinitialize the bits value at the top of
 662   // each retry loop. This allows the caller to make use of any
 663   // unused bits for their own marking purposes.
 664   reset_bits = *bits;
 665 
 666   {
 667     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 668     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 669                                             delay, bits);
 670     pending = is_external_suspend();
 671   }
 672   // must release SR_lock to allow suspension to complete
 673 
 674   if (!pending) {
 675     // A cancelled suspend request is the only false return from
 676     // is_ext_suspend_completed() that keeps us from entering the
 677     // retry loop.
 678     *bits |= 0x00020000;
 679     return false;
 680   }
 681 
 682   if (is_suspended) {
 683     *bits |= 0x00040000;
 684     return true;
 685   }
 686 
 687   for (int i = 1; i <= retries; i++) {
 688     *bits = reset_bits;  // reinit to only track last retry
 689 
 690     // We used to do an "os::yield_all(i)" call here with the intention
 691     // that yielding would increase on each retry. However, the parameter
 692     // is ignored on Linux which means the yield didn't scale up. Waiting
 693     // on the SR_lock below provides a much more predictable scale up for
 694     // the delay. It also provides a simple/direct point to check for any
 695     // safepoint requests from the VMThread
 696 
 697     {
 698       MutexLocker ml(SR_lock());
 699       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 700       // can also call this)  and increase delay with each retry
 701       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 702 
 703       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 704                                               delay, bits);
 705 
 706       // It is possible for the external suspend request to be cancelled
 707       // (by a resume) before the actual suspend operation is completed.
 708       // Refresh our local copy to see if we still need to wait.
 709       pending = is_external_suspend();
 710     }
 711 
 712     if (!pending) {
 713       // A cancelled suspend request is the only false return from
 714       // is_ext_suspend_completed() that keeps us from staying in the
 715       // retry loop.
 716       *bits |= 0x00080000;
 717       return false;
 718     }
 719 
 720     if (is_suspended) {
 721       *bits |= 0x00100000;
 722       return true;
 723     }
 724   } // end retry loop
 725 
 726   // thread did not suspend after all our retries
 727   *bits |= 0x00200000;
 728   return false;
 729 }
 730 
 731 #ifndef PRODUCT
 732 void JavaThread::record_jump(address target, address instr, const char* file,
 733                              int line) {
 734 
 735   // This should not need to be atomic as the only way for simultaneous
 736   // updates is via interrupts. Even then this should be rare or non-existent
 737   // and we don't care that much anyway.
 738 
 739   int index = _jmp_ring_index;
 740   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 741   _jmp_ring[index]._target = (intptr_t) target;
 742   _jmp_ring[index]._instruction = (intptr_t) instr;
 743   _jmp_ring[index]._file = file;
 744   _jmp_ring[index]._line = line;
 745 }
 746 #endif // PRODUCT
 747 
 748 void Thread::interrupt(Thread* thread) {
 749   debug_only(check_for_dangling_thread_pointer(thread);)
 750   os::interrupt(thread);
 751 }
 752 
 753 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 754   debug_only(check_for_dangling_thread_pointer(thread);)
 755   // Note:  If clear_interrupted==false, this simply fetches and
 756   // returns the value of the field osthread()->interrupted().
 757   return os::is_interrupted(thread, clear_interrupted);
 758 }
 759 
 760 
 761 // GC Support
 762 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 763   jint thread_parity = _oops_do_parity;
 764   if (thread_parity != strong_roots_parity) {
 765     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 766     if (res == thread_parity) {
 767       return true;
 768     } else {
 769       guarantee(res == strong_roots_parity, "Or else what?");
 770       return false;
 771     }
 772   }
 773   return false;
 774 }
 775 
 776 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 777   active_handles()->oops_do(f);
 778   // Do oop for ThreadShadow
 779   f->do_oop((oop*)&_pending_exception);
 780   handle_area()->oops_do(f);
 781 
 782   if (MonitorInUseLists) {
 783     // When using thread local monitor lists, we scan them here,
 784     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 785     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 786   }
 787 }
 788 
 789 void Thread::metadata_handles_do(void f(Metadata*)) {
 790   // Only walk the Handles in Thread.
 791   if (metadata_handles() != NULL) {
 792     for (int i = 0; i< metadata_handles()->length(); i++) {
 793       f(metadata_handles()->at(i));
 794     }
 795   }
 796 }
 797 
 798 void Thread::print_on(outputStream* st) const {
 799   // get_priority assumes osthread initialized
 800   if (osthread() != NULL) {
 801     int os_prio;
 802     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 803       st->print("os_prio=%d ", os_prio);
 804     }
 805     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 806     ext().print_on(st);
 807     osthread()->print_on(st);
 808   }
 809   debug_only(if (WizardMode) print_owned_locks_on(st);)
 810 }
 811 
 812 // Thread::print_on_error() is called by fatal error handler. Don't use
 813 // any lock or allocate memory.
 814 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 815   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 816 
 817   if (is_VM_thread())                 { st->print("VMThread"); }
 818   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 819   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 820   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 821   else                                { st->print("Thread"); }
 822 
 823   if (is_Named_thread()) {
 824     st->print(" \"%s\"", name());
 825   }
 826 
 827   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 828             p2i(stack_end()), p2i(stack_base()));
 829 
 830   if (osthread()) {
 831     st->print(" [id=%d]", osthread()->thread_id());
 832   }
 833 }
 834 
 835 #ifdef ASSERT
 836 void Thread::print_owned_locks_on(outputStream* st) const {
 837   Monitor *cur = _owned_locks;
 838   if (cur == NULL) {
 839     st->print(" (no locks) ");
 840   } else {
 841     st->print_cr(" Locks owned:");
 842     while (cur) {
 843       cur->print_on(st);
 844       cur = cur->next();
 845     }
 846   }
 847 }
 848 
 849 static int ref_use_count  = 0;
 850 
 851 bool Thread::owns_locks_but_compiled_lock() const {
 852   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 853     if (cur != Compile_lock) return true;
 854   }
 855   return false;
 856 }
 857 
 858 
 859 #endif
 860 
 861 #ifndef PRODUCT
 862 
 863 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 864 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 865 // no threads which allow_vm_block's are held
 866 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 867   // Check if current thread is allowed to block at a safepoint
 868   if (!(_allow_safepoint_count == 0)) {
 869     fatal("Possible safepoint reached by thread that does not allow it");
 870   }
 871   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 872     fatal("LEAF method calling lock?");
 873   }
 874 
 875 #ifdef ASSERT
 876   if (potential_vm_operation && is_Java_thread()
 877       && !Universe::is_bootstrapping()) {
 878     // Make sure we do not hold any locks that the VM thread also uses.
 879     // This could potentially lead to deadlocks
 880     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 881       // Threads_lock is special, since the safepoint synchronization will not start before this is
 882       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 883       // since it is used to transfer control between JavaThreads and the VMThread
 884       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 885       if ((cur->allow_vm_block() &&
 886            cur != Threads_lock &&
 887            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 888            cur != VMOperationRequest_lock &&
 889            cur != VMOperationQueue_lock) ||
 890            cur->rank() == Mutex::special) {
 891         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 892       }
 893     }
 894   }
 895 
 896   if (GCALotAtAllSafepoints) {
 897     // We could enter a safepoint here and thus have a gc
 898     InterfaceSupport::check_gc_alot();
 899   }
 900 #endif
 901 }
 902 #endif
 903 
 904 bool Thread::is_in_stack(address adr) const {
 905   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 906   address end = os::current_stack_pointer();
 907   // Allow non Java threads to call this without stack_base
 908   if (_stack_base == NULL) return true;
 909   if (stack_base() >= adr && adr >= end) return true;
 910 
 911   return false;
 912 }
 913 
 914 bool Thread::is_in_usable_stack(address adr) const {
 915   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 916   size_t usable_stack_size = _stack_size - stack_guard_size;
 917 
 918   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 919 }
 920 
 921 
 922 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 923 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 924 // used for compilation in the future. If that change is made, the need for these methods
 925 // should be revisited, and they should be removed if possible.
 926 
 927 bool Thread::is_lock_owned(address adr) const {
 928   return on_local_stack(adr);
 929 }
 930 
 931 bool Thread::set_as_starting_thread() {
 932   // NOTE: this must be called inside the main thread.
 933   return os::create_main_thread((JavaThread*)this);
 934 }
 935 
 936 static void initialize_class(Symbol* class_name, TRAPS) {
 937   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 938   InstanceKlass::cast(klass)->initialize(CHECK);
 939 }
 940 
 941 
 942 // Creates the initial ThreadGroup
 943 static Handle create_initial_thread_group(TRAPS) {
 944   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 945   InstanceKlass* ik = InstanceKlass::cast(k);
 946 
 947   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
 948   {
 949     JavaValue result(T_VOID);
 950     JavaCalls::call_special(&result,
 951                             system_instance,
 952                             ik,
 953                             vmSymbols::object_initializer_name(),
 954                             vmSymbols::void_method_signature(),
 955                             CHECK_NH);
 956   }
 957   Universe::set_system_thread_group(system_instance());
 958 
 959   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
 960   {
 961     JavaValue result(T_VOID);
 962     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 963     JavaCalls::call_special(&result,
 964                             main_instance,
 965                             ik,
 966                             vmSymbols::object_initializer_name(),
 967                             vmSymbols::threadgroup_string_void_signature(),
 968                             system_instance,
 969                             string,
 970                             CHECK_NH);
 971   }
 972   return main_instance;
 973 }
 974 
 975 // Creates the initial Thread
 976 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 977                                  TRAPS) {
 978   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 979   InstanceKlass* ik = InstanceKlass::cast(k);
 980   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
 981 
 982   java_lang_Thread::set_thread(thread_oop(), thread);
 983   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 984   thread->set_threadObj(thread_oop());
 985 
 986   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 987 
 988   JavaValue result(T_VOID);
 989   JavaCalls::call_special(&result, thread_oop,
 990                           ik,
 991                           vmSymbols::object_initializer_name(),
 992                           vmSymbols::threadgroup_string_void_signature(),
 993                           thread_group,
 994                           string,
 995                           CHECK_NULL);
 996   return thread_oop();
 997 }
 998 
 999 char java_runtime_name[128] = "";
1000 char java_runtime_version[128] = "";
1001 
1002 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1003 static const char* get_java_runtime_name(TRAPS) {
1004   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1005                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1006   fieldDescriptor fd;
1007   bool found = k != NULL &&
1008                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1009                                                         vmSymbols::string_signature(), &fd);
1010   if (found) {
1011     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1012     if (name_oop == NULL) {
1013       return NULL;
1014     }
1015     const char* name = java_lang_String::as_utf8_string(name_oop,
1016                                                         java_runtime_name,
1017                                                         sizeof(java_runtime_name));
1018     return name;
1019   } else {
1020     return NULL;
1021   }
1022 }
1023 
1024 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1025 static const char* get_java_runtime_version(TRAPS) {
1026   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1027                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1028   fieldDescriptor fd;
1029   bool found = k != NULL &&
1030                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1031                                                         vmSymbols::string_signature(), &fd);
1032   if (found) {
1033     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1034     if (name_oop == NULL) {
1035       return NULL;
1036     }
1037     const char* name = java_lang_String::as_utf8_string(name_oop,
1038                                                         java_runtime_version,
1039                                                         sizeof(java_runtime_version));
1040     return name;
1041   } else {
1042     return NULL;
1043   }
1044 }
1045 
1046 // General purpose hook into Java code, run once when the VM is initialized.
1047 // The Java library method itself may be changed independently from the VM.
1048 static void call_postVMInitHook(TRAPS) {
1049   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1050   if (klass != NULL) {
1051     JavaValue result(T_VOID);
1052     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1053                            vmSymbols::void_method_signature(),
1054                            CHECK);
1055   }
1056 }
1057 
1058 static void reset_vm_info_property(TRAPS) {
1059   // the vm info string
1060   ResourceMark rm(THREAD);
1061   const char *vm_info = VM_Version::vm_info_string();
1062 
1063   // java.lang.System class
1064   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1065 
1066   // setProperty arguments
1067   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1068   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1069 
1070   // return value
1071   JavaValue r(T_OBJECT);
1072 
1073   // public static String setProperty(String key, String value);
1074   JavaCalls::call_static(&r,
1075                          klass,
1076                          vmSymbols::setProperty_name(),
1077                          vmSymbols::string_string_string_signature(),
1078                          key_str,
1079                          value_str,
1080                          CHECK);
1081 }
1082 
1083 
1084 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1085                                     bool daemon, TRAPS) {
1086   assert(thread_group.not_null(), "thread group should be specified");
1087   assert(threadObj() == NULL, "should only create Java thread object once");
1088 
1089   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1090   InstanceKlass* ik = InstanceKlass::cast(k);
1091   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1092 
1093   java_lang_Thread::set_thread(thread_oop(), this);
1094   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1095   set_threadObj(thread_oop());
1096 
1097   JavaValue result(T_VOID);
1098   if (thread_name != NULL) {
1099     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1100     // Thread gets assigned specified name and null target
1101     JavaCalls::call_special(&result,
1102                             thread_oop,
1103                             ik,
1104                             vmSymbols::object_initializer_name(),
1105                             vmSymbols::threadgroup_string_void_signature(),
1106                             thread_group, // Argument 1
1107                             name,         // Argument 2
1108                             THREAD);
1109   } else {
1110     // Thread gets assigned name "Thread-nnn" and null target
1111     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1112     JavaCalls::call_special(&result,
1113                             thread_oop,
1114                             ik,
1115                             vmSymbols::object_initializer_name(),
1116                             vmSymbols::threadgroup_runnable_void_signature(),
1117                             thread_group, // Argument 1
1118                             Handle(),     // Argument 2
1119                             THREAD);
1120   }
1121 
1122 
1123   if (daemon) {
1124     java_lang_Thread::set_daemon(thread_oop());
1125   }
1126 
1127   if (HAS_PENDING_EXCEPTION) {
1128     return;
1129   }
1130 
1131   Klass* group =  SystemDictionary::ThreadGroup_klass();
1132   Handle threadObj(THREAD, this->threadObj());
1133 
1134   JavaCalls::call_special(&result,
1135                           thread_group,
1136                           group,
1137                           vmSymbols::add_method_name(),
1138                           vmSymbols::thread_void_signature(),
1139                           threadObj,          // Arg 1
1140                           THREAD);
1141 }
1142 
1143 // NamedThread --  non-JavaThread subclasses with multiple
1144 // uniquely named instances should derive from this.
1145 NamedThread::NamedThread() : Thread() {
1146   _name = NULL;
1147   _processed_thread = NULL;
1148   _gc_id = GCId::undefined();
1149 }
1150 
1151 NamedThread::~NamedThread() {
1152   if (_name != NULL) {
1153     FREE_C_HEAP_ARRAY(char, _name);
1154     _name = NULL;
1155   }
1156 }
1157 
1158 void NamedThread::set_name(const char* format, ...) {
1159   guarantee(_name == NULL, "Only get to set name once.");
1160   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1161   guarantee(_name != NULL, "alloc failure");
1162   va_list ap;
1163   va_start(ap, format);
1164   jio_vsnprintf(_name, max_name_len, format, ap);
1165   va_end(ap);
1166 }
1167 
1168 void NamedThread::initialize_named_thread() {
1169   set_native_thread_name(name());
1170 }
1171 
1172 void NamedThread::print_on(outputStream* st) const {
1173   st->print("\"%s\" ", name());
1174   Thread::print_on(st);
1175   st->cr();
1176 }
1177 
1178 
1179 // ======= WatcherThread ========
1180 
1181 // The watcher thread exists to simulate timer interrupts.  It should
1182 // be replaced by an abstraction over whatever native support for
1183 // timer interrupts exists on the platform.
1184 
1185 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1186 bool WatcherThread::_startable = false;
1187 volatile bool  WatcherThread::_should_terminate = false;
1188 
1189 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1190   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1191   if (os::create_thread(this, os::watcher_thread)) {
1192     _watcher_thread = this;
1193 
1194     // Set the watcher thread to the highest OS priority which should not be
1195     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1196     // is created. The only normal thread using this priority is the reference
1197     // handler thread, which runs for very short intervals only.
1198     // If the VMThread's priority is not lower than the WatcherThread profiling
1199     // will be inaccurate.
1200     os::set_priority(this, MaxPriority);
1201     if (!DisableStartThread) {
1202       os::start_thread(this);
1203     }
1204   }
1205 }
1206 
1207 int WatcherThread::sleep() const {
1208   // The WatcherThread does not participate in the safepoint protocol
1209   // for the PeriodicTask_lock because it is not a JavaThread.
1210   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1211 
1212   if (_should_terminate) {
1213     // check for termination before we do any housekeeping or wait
1214     return 0;  // we did not sleep.
1215   }
1216 
1217   // remaining will be zero if there are no tasks,
1218   // causing the WatcherThread to sleep until a task is
1219   // enrolled
1220   int remaining = PeriodicTask::time_to_wait();
1221   int time_slept = 0;
1222 
1223   // we expect this to timeout - we only ever get unparked when
1224   // we should terminate or when a new task has been enrolled
1225   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1226 
1227   jlong time_before_loop = os::javaTimeNanos();
1228 
1229   while (true) {
1230     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1231                                             remaining);
1232     jlong now = os::javaTimeNanos();
1233 
1234     if (remaining == 0) {
1235       // if we didn't have any tasks we could have waited for a long time
1236       // consider the time_slept zero and reset time_before_loop
1237       time_slept = 0;
1238       time_before_loop = now;
1239     } else {
1240       // need to recalculate since we might have new tasks in _tasks
1241       time_slept = (int) ((now - time_before_loop) / 1000000);
1242     }
1243 
1244     // Change to task list or spurious wakeup of some kind
1245     if (timedout || _should_terminate) {
1246       break;
1247     }
1248 
1249     remaining = PeriodicTask::time_to_wait();
1250     if (remaining == 0) {
1251       // Last task was just disenrolled so loop around and wait until
1252       // another task gets enrolled
1253       continue;
1254     }
1255 
1256     remaining -= time_slept;
1257     if (remaining <= 0) {
1258       break;
1259     }
1260   }
1261 
1262   return time_slept;
1263 }
1264 
1265 void WatcherThread::run() {
1266   assert(this == watcher_thread(), "just checking");
1267 
1268   this->record_stack_base_and_size();
1269   this->set_native_thread_name(this->name());
1270   this->set_active_handles(JNIHandleBlock::allocate_block());
1271   while (true) {
1272     assert(watcher_thread() == Thread::current(), "thread consistency check");
1273     assert(watcher_thread() == this, "thread consistency check");
1274 
1275     // Calculate how long it'll be until the next PeriodicTask work
1276     // should be done, and sleep that amount of time.
1277     int time_waited = sleep();
1278 
1279     if (VMError::is_error_reported()) {
1280       // A fatal error has happened, the error handler(VMError::report_and_die)
1281       // should abort JVM after creating an error log file. However in some
1282       // rare cases, the error handler itself might deadlock. Here periodically
1283       // check for error reporting timeouts, and if it happens, just proceed to
1284       // abort the VM.
1285 
1286       // This code is in WatcherThread because WatcherThread wakes up
1287       // periodically so the fatal error handler doesn't need to do anything;
1288       // also because the WatcherThread is less likely to crash than other
1289       // threads.
1290 
1291       for (;;) {
1292         // Note: we use naked sleep in this loop because we want to avoid using
1293         // any kind of VM infrastructure which may be broken at this point.
1294         if (VMError::check_timeout()) {
1295           // We hit error reporting timeout. Error reporting was interrupted and
1296           // will be wrapping things up now (closing files etc). Give it some more
1297           // time, then quit the VM.
1298           os::naked_short_sleep(200);
1299           // Print a message to stderr.
1300           fdStream err(defaultStream::output_fd());
1301           err.print_raw_cr("# [ timer expired, abort... ]");
1302           // skip atexit/vm_exit/vm_abort hooks
1303           os::die();
1304         }
1305 
1306         // Wait a second, then recheck for timeout.
1307         os::naked_short_sleep(999);
1308       }
1309     }
1310 
1311     if (_should_terminate) {
1312       // check for termination before posting the next tick
1313       break;
1314     }
1315 
1316     PeriodicTask::real_time_tick(time_waited);
1317   }
1318 
1319   // Signal that it is terminated
1320   {
1321     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1322     _watcher_thread = NULL;
1323     Terminator_lock->notify();
1324   }
1325 }
1326 
1327 void WatcherThread::start() {
1328   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1329 
1330   if (watcher_thread() == NULL && _startable) {
1331     _should_terminate = false;
1332     // Create the single instance of WatcherThread
1333     new WatcherThread();
1334   }
1335 }
1336 
1337 void WatcherThread::make_startable() {
1338   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1339   _startable = true;
1340 }
1341 
1342 void WatcherThread::stop() {
1343   {
1344     // Follow normal safepoint aware lock enter protocol since the
1345     // WatcherThread is stopped by another JavaThread.
1346     MutexLocker ml(PeriodicTask_lock);
1347     _should_terminate = true;
1348 
1349     WatcherThread* watcher = watcher_thread();
1350     if (watcher != NULL) {
1351       // unpark the WatcherThread so it can see that it should terminate
1352       watcher->unpark();
1353     }
1354   }
1355 
1356   MutexLocker mu(Terminator_lock);
1357 
1358   while (watcher_thread() != NULL) {
1359     // This wait should make safepoint checks, wait without a timeout,
1360     // and wait as a suspend-equivalent condition.
1361     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1362                           Mutex::_as_suspend_equivalent_flag);
1363   }
1364 }
1365 
1366 void WatcherThread::unpark() {
1367   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1368   PeriodicTask_lock->notify();
1369 }
1370 
1371 void WatcherThread::print_on(outputStream* st) const {
1372   st->print("\"%s\" ", name());
1373   Thread::print_on(st);
1374   st->cr();
1375 }
1376 
1377 // ======= JavaThread ========
1378 
1379 #if INCLUDE_JVMCI
1380 
1381 jlong* JavaThread::_jvmci_old_thread_counters;
1382 
1383 bool jvmci_counters_include(JavaThread* thread) {
1384   oop threadObj = thread->threadObj();
1385   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1386 }
1387 
1388 void JavaThread::collect_counters(typeArrayOop array) {
1389   if (JVMCICounterSize > 0) {
1390     MutexLocker tl(Threads_lock);
1391     for (int i = 0; i < array->length(); i++) {
1392       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1393     }
1394     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1395       if (jvmci_counters_include(tp)) {
1396         for (int i = 0; i < array->length(); i++) {
1397           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1398         }
1399       }
1400     }
1401   }
1402 }
1403 
1404 #endif // INCLUDE_JVMCI
1405 
1406 // A JavaThread is a normal Java thread
1407 
1408 void JavaThread::initialize() {
1409   // Initialize fields
1410 
1411   set_saved_exception_pc(NULL);
1412   set_threadObj(NULL);
1413   _anchor.clear();
1414   set_entry_point(NULL);
1415   set_jni_functions(jni_functions());
1416   set_callee_target(NULL);
1417   set_vm_result(NULL);
1418   set_vm_result_2(NULL);
1419   set_vframe_array_head(NULL);
1420   set_vframe_array_last(NULL);
1421   set_deferred_locals(NULL);
1422   set_deopt_mark(NULL);
1423   set_deopt_compiled_method(NULL);
1424   clear_must_deopt_id();
1425   set_monitor_chunks(NULL);
1426   set_next(NULL);
1427   set_thread_state(_thread_new);
1428   _terminated = _not_terminated;
1429   _privileged_stack_top = NULL;
1430   _array_for_gc = NULL;
1431   _suspend_equivalent = false;
1432   _in_deopt_handler = 0;
1433   _doing_unsafe_access = false;
1434   _stack_guard_state = stack_guard_unused;
1435 #if INCLUDE_JVMCI
1436   _pending_monitorenter = false;
1437   _pending_deoptimization = -1;
1438   _pending_failed_speculation = NULL;
1439   _pending_transfer_to_interpreter = false;
1440   _adjusting_comp_level = false;
1441   _jvmci._alternate_call_target = NULL;
1442   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1443   if (JVMCICounterSize > 0) {
1444     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1445     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1446   } else {
1447     _jvmci_counters = NULL;
1448   }
1449 #endif // INCLUDE_JVMCI
1450   _reserved_stack_activation = NULL;  // stack base not known yet
1451   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1452   _exception_pc  = 0;
1453   _exception_handler_pc = 0;
1454   _is_method_handle_return = 0;
1455   _jvmti_thread_state= NULL;
1456   _should_post_on_exceptions_flag = JNI_FALSE;
1457   _jvmti_get_loaded_classes_closure = NULL;
1458   _interp_only_mode    = 0;
1459   _special_runtime_exit_condition = _no_async_condition;
1460   _pending_async_exception = NULL;
1461   _thread_stat = NULL;
1462   _thread_stat = new ThreadStatistics();
1463   _blocked_on_compilation = false;
1464   _jni_active_critical = 0;
1465   _pending_jni_exception_check_fn = NULL;
1466   _do_not_unlock_if_synchronized = false;
1467   _cached_monitor_info = NULL;
1468   _parker = Parker::Allocate(this);
1469 
1470 #ifndef PRODUCT
1471   _jmp_ring_index = 0;
1472   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1473     record_jump(NULL, NULL, NULL, 0);
1474   }
1475 #endif // PRODUCT
1476 
1477   // Setup safepoint state info for this thread
1478   ThreadSafepointState::create(this);
1479 
1480   debug_only(_java_call_counter = 0);
1481 
1482   // JVMTI PopFrame support
1483   _popframe_condition = popframe_inactive;
1484   _popframe_preserved_args = NULL;
1485   _popframe_preserved_args_size = 0;
1486   _frames_to_pop_failed_realloc = 0;
1487 
1488   pd_initialize();
1489 }
1490 
1491 #if INCLUDE_ALL_GCS
1492 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1493 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1494 #endif // INCLUDE_ALL_GCS
1495 
1496 JavaThread::JavaThread(bool is_attaching_via_jni) :
1497                        Thread()
1498 #if INCLUDE_ALL_GCS
1499                        , _satb_mark_queue(&_satb_mark_queue_set),
1500                        _dirty_card_queue(&_dirty_card_queue_set)
1501 #endif // INCLUDE_ALL_GCS
1502 {
1503   initialize();
1504   if (is_attaching_via_jni) {
1505     _jni_attach_state = _attaching_via_jni;
1506   } else {
1507     _jni_attach_state = _not_attaching_via_jni;
1508   }
1509   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1510 }
1511 
1512 bool JavaThread::reguard_stack(address cur_sp) {
1513   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1514       && _stack_guard_state != stack_guard_reserved_disabled) {
1515     return true; // Stack already guarded or guard pages not needed.
1516   }
1517 
1518   if (register_stack_overflow()) {
1519     // For those architectures which have separate register and
1520     // memory stacks, we must check the register stack to see if
1521     // it has overflowed.
1522     return false;
1523   }
1524 
1525   // Java code never executes within the yellow zone: the latter is only
1526   // there to provoke an exception during stack banging.  If java code
1527   // is executing there, either StackShadowPages should be larger, or
1528   // some exception code in c1, c2 or the interpreter isn't unwinding
1529   // when it should.
1530   guarantee(cur_sp > stack_reserved_zone_base(),
1531             "not enough space to reguard - increase StackShadowPages");
1532   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1533     enable_stack_yellow_reserved_zone();
1534     if (reserved_stack_activation() != stack_base()) {
1535       set_reserved_stack_activation(stack_base());
1536     }
1537   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1538     set_reserved_stack_activation(stack_base());
1539     enable_stack_reserved_zone();
1540   }
1541   return true;
1542 }
1543 
1544 bool JavaThread::reguard_stack(void) {
1545   return reguard_stack(os::current_stack_pointer());
1546 }
1547 
1548 
1549 void JavaThread::block_if_vm_exited() {
1550   if (_terminated == _vm_exited) {
1551     // _vm_exited is set at safepoint, and Threads_lock is never released
1552     // we will block here forever
1553     Threads_lock->lock_without_safepoint_check();
1554     ShouldNotReachHere();
1555   }
1556 }
1557 
1558 
1559 // Remove this ifdef when C1 is ported to the compiler interface.
1560 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1561 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1562 
1563 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1564                        Thread()
1565 #if INCLUDE_ALL_GCS
1566                        , _satb_mark_queue(&_satb_mark_queue_set),
1567                        _dirty_card_queue(&_dirty_card_queue_set)
1568 #endif // INCLUDE_ALL_GCS
1569 {
1570   initialize();
1571   _jni_attach_state = _not_attaching_via_jni;
1572   set_entry_point(entry_point);
1573   // Create the native thread itself.
1574   // %note runtime_23
1575   os::ThreadType thr_type = os::java_thread;
1576   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1577                                                      os::java_thread;
1578   os::create_thread(this, thr_type, stack_sz);
1579   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1580   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1581   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1582   // the exception consists of creating the exception object & initializing it, initialization
1583   // will leave the VM via a JavaCall and then all locks must be unlocked).
1584   //
1585   // The thread is still suspended when we reach here. Thread must be explicit started
1586   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1587   // by calling Threads:add. The reason why this is not done here, is because the thread
1588   // object must be fully initialized (take a look at JVM_Start)
1589 }
1590 
1591 JavaThread::~JavaThread() {
1592 
1593   // JSR166 -- return the parker to the free list
1594   Parker::Release(_parker);
1595   _parker = NULL;
1596 
1597   // Free any remaining  previous UnrollBlock
1598   vframeArray* old_array = vframe_array_last();
1599 
1600   if (old_array != NULL) {
1601     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1602     old_array->set_unroll_block(NULL);
1603     delete old_info;
1604     delete old_array;
1605   }
1606 
1607   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1608   if (deferred != NULL) {
1609     // This can only happen if thread is destroyed before deoptimization occurs.
1610     assert(deferred->length() != 0, "empty array!");
1611     do {
1612       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1613       deferred->remove_at(0);
1614       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1615       delete dlv;
1616     } while (deferred->length() != 0);
1617     delete deferred;
1618   }
1619 
1620   // All Java related clean up happens in exit
1621   ThreadSafepointState::destroy(this);
1622   if (_thread_stat != NULL) delete _thread_stat;
1623 
1624 #if INCLUDE_JVMCI
1625   if (JVMCICounterSize > 0) {
1626     if (jvmci_counters_include(this)) {
1627       for (int i = 0; i < JVMCICounterSize; i++) {
1628         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1629       }
1630     }
1631     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1632   }
1633 #endif // INCLUDE_JVMCI
1634 }
1635 
1636 
1637 // The first routine called by a new Java thread
1638 void JavaThread::run() {
1639   // initialize thread-local alloc buffer related fields
1640   this->initialize_tlab();
1641 
1642   // used to test validity of stack trace backs
1643   this->record_base_of_stack_pointer();
1644 
1645   // Record real stack base and size.
1646   this->record_stack_base_and_size();
1647 
1648   this->create_stack_guard_pages();
1649 
1650   this->cache_global_variables();
1651 
1652   // Thread is now sufficient initialized to be handled by the safepoint code as being
1653   // in the VM. Change thread state from _thread_new to _thread_in_vm
1654   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1655 
1656   assert(JavaThread::current() == this, "sanity check");
1657   assert(!Thread::current()->owns_locks(), "sanity check");
1658 
1659   DTRACE_THREAD_PROBE(start, this);
1660 
1661   // This operation might block. We call that after all safepoint checks for a new thread has
1662   // been completed.
1663   this->set_active_handles(JNIHandleBlock::allocate_block());
1664 
1665   if (JvmtiExport::should_post_thread_life()) {
1666     JvmtiExport::post_thread_start(this);
1667   }
1668 
1669   EventThreadStart event;
1670   if (event.should_commit()) {
1671     event.set_thread(THREAD_TRACE_ID(this));
1672     event.commit();
1673   }
1674 
1675   // We call another function to do the rest so we are sure that the stack addresses used
1676   // from there will be lower than the stack base just computed
1677   thread_main_inner();
1678 
1679   // Note, thread is no longer valid at this point!
1680 }
1681 
1682 
1683 void JavaThread::thread_main_inner() {
1684   assert(JavaThread::current() == this, "sanity check");
1685   assert(this->threadObj() != NULL, "just checking");
1686 
1687   // Execute thread entry point unless this thread has a pending exception
1688   // or has been stopped before starting.
1689   // Note: Due to JVM_StopThread we can have pending exceptions already!
1690   if (!this->has_pending_exception() &&
1691       !java_lang_Thread::is_stillborn(this->threadObj())) {
1692     {
1693       ResourceMark rm(this);
1694       this->set_native_thread_name(this->get_thread_name());
1695     }
1696     HandleMark hm(this);
1697     this->entry_point()(this, this);
1698   }
1699 
1700   DTRACE_THREAD_PROBE(stop, this);
1701 
1702   this->exit(false);
1703   delete this;
1704 }
1705 
1706 
1707 static void ensure_join(JavaThread* thread) {
1708   // We do not need to grap the Threads_lock, since we are operating on ourself.
1709   Handle threadObj(thread, thread->threadObj());
1710   assert(threadObj.not_null(), "java thread object must exist");
1711   ObjectLocker lock(threadObj, thread);
1712   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1713   thread->clear_pending_exception();
1714   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1715   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1716   // Clear the native thread instance - this makes isAlive return false and allows the join()
1717   // to complete once we've done the notify_all below
1718   java_lang_Thread::set_thread(threadObj(), NULL);
1719   lock.notify_all(thread);
1720   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1721   thread->clear_pending_exception();
1722 }
1723 
1724 
1725 // For any new cleanup additions, please check to see if they need to be applied to
1726 // cleanup_failed_attach_current_thread as well.
1727 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1728   assert(this == JavaThread::current(), "thread consistency check");
1729 
1730   HandleMark hm(this);
1731   Handle uncaught_exception(this, this->pending_exception());
1732   this->clear_pending_exception();
1733   Handle threadObj(this, this->threadObj());
1734   assert(threadObj.not_null(), "Java thread object should be created");
1735 
1736   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1737   {
1738     EXCEPTION_MARK;
1739 
1740     CLEAR_PENDING_EXCEPTION;
1741   }
1742   if (!destroy_vm) {
1743     if (uncaught_exception.not_null()) {
1744       EXCEPTION_MARK;
1745       // Call method Thread.dispatchUncaughtException().
1746       Klass* thread_klass = SystemDictionary::Thread_klass();
1747       JavaValue result(T_VOID);
1748       JavaCalls::call_virtual(&result,
1749                               threadObj, thread_klass,
1750                               vmSymbols::dispatchUncaughtException_name(),
1751                               vmSymbols::throwable_void_signature(),
1752                               uncaught_exception,
1753                               THREAD);
1754       if (HAS_PENDING_EXCEPTION) {
1755         ResourceMark rm(this);
1756         jio_fprintf(defaultStream::error_stream(),
1757                     "\nException: %s thrown from the UncaughtExceptionHandler"
1758                     " in thread \"%s\"\n",
1759                     pending_exception()->klass()->external_name(),
1760                     get_thread_name());
1761         CLEAR_PENDING_EXCEPTION;
1762       }
1763     }
1764 
1765     // Called before the java thread exit since we want to read info
1766     // from java_lang_Thread object
1767     EventThreadEnd event;
1768     if (event.should_commit()) {
1769       event.set_thread(THREAD_TRACE_ID(this));
1770       event.commit();
1771     }
1772 
1773     // Call after last event on thread
1774     EVENT_THREAD_EXIT(this);
1775 
1776     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1777     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1778     // is deprecated anyhow.
1779     if (!is_Compiler_thread()) {
1780       int count = 3;
1781       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1782         EXCEPTION_MARK;
1783         JavaValue result(T_VOID);
1784         Klass* thread_klass = SystemDictionary::Thread_klass();
1785         JavaCalls::call_virtual(&result,
1786                                 threadObj, thread_klass,
1787                                 vmSymbols::exit_method_name(),
1788                                 vmSymbols::void_method_signature(),
1789                                 THREAD);
1790         CLEAR_PENDING_EXCEPTION;
1791       }
1792     }
1793     // notify JVMTI
1794     if (JvmtiExport::should_post_thread_life()) {
1795       JvmtiExport::post_thread_end(this);
1796     }
1797 
1798     // We have notified the agents that we are exiting, before we go on,
1799     // we must check for a pending external suspend request and honor it
1800     // in order to not surprise the thread that made the suspend request.
1801     while (true) {
1802       {
1803         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1804         if (!is_external_suspend()) {
1805           set_terminated(_thread_exiting);
1806           ThreadService::current_thread_exiting(this);
1807           break;
1808         }
1809         // Implied else:
1810         // Things get a little tricky here. We have a pending external
1811         // suspend request, but we are holding the SR_lock so we
1812         // can't just self-suspend. So we temporarily drop the lock
1813         // and then self-suspend.
1814       }
1815 
1816       ThreadBlockInVM tbivm(this);
1817       java_suspend_self();
1818 
1819       // We're done with this suspend request, but we have to loop around
1820       // and check again. Eventually we will get SR_lock without a pending
1821       // external suspend request and will be able to mark ourselves as
1822       // exiting.
1823     }
1824     // no more external suspends are allowed at this point
1825   } else {
1826     // before_exit() has already posted JVMTI THREAD_END events
1827   }
1828 
1829   // Notify waiters on thread object. This has to be done after exit() is called
1830   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1831   // group should have the destroyed bit set before waiters are notified).
1832   ensure_join(this);
1833   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1834 
1835   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1836   // held by this thread must be released. The spec does not distinguish
1837   // between JNI-acquired and regular Java monitors. We can only see
1838   // regular Java monitors here if monitor enter-exit matching is broken.
1839   //
1840   // Optionally release any monitors for regular JavaThread exits. This
1841   // is provided as a work around for any bugs in monitor enter-exit
1842   // matching. This can be expensive so it is not enabled by default.
1843   //
1844   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1845   // ObjectSynchronizer::release_monitors_owned_by_thread().
1846   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1847     // Sanity check even though JNI DetachCurrentThread() would have
1848     // returned JNI_ERR if there was a Java frame. JavaThread exit
1849     // should be done executing Java code by the time we get here.
1850     assert(!this->has_last_Java_frame(),
1851            "should not have a Java frame when detaching or exiting");
1852     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1853     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1854   }
1855 
1856   // These things needs to be done while we are still a Java Thread. Make sure that thread
1857   // is in a consistent state, in case GC happens
1858   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1859 
1860   if (active_handles() != NULL) {
1861     JNIHandleBlock* block = active_handles();
1862     set_active_handles(NULL);
1863     JNIHandleBlock::release_block(block);
1864   }
1865 
1866   if (free_handle_block() != NULL) {
1867     JNIHandleBlock* block = free_handle_block();
1868     set_free_handle_block(NULL);
1869     JNIHandleBlock::release_block(block);
1870   }
1871 
1872   // These have to be removed while this is still a valid thread.
1873   remove_stack_guard_pages();
1874 
1875   if (UseTLAB) {
1876     tlab().make_parsable(true);  // retire TLAB
1877   }
1878 
1879   if (JvmtiEnv::environments_might_exist()) {
1880     JvmtiExport::cleanup_thread(this);
1881   }
1882 
1883   // We must flush any deferred card marks before removing a thread from
1884   // the list of active threads.
1885   Universe::heap()->flush_deferred_store_barrier(this);
1886   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1887 
1888 #if INCLUDE_ALL_GCS
1889   // We must flush the G1-related buffers before removing a thread
1890   // from the list of active threads. We must do this after any deferred
1891   // card marks have been flushed (above) so that any entries that are
1892   // added to the thread's dirty card queue as a result are not lost.
1893   if (UseG1GC) {
1894     flush_barrier_queues();
1895   }
1896 #endif // INCLUDE_ALL_GCS
1897 
1898   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1899     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1900     os::current_thread_id());
1901 
1902   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1903   Threads::remove(this);
1904 }
1905 
1906 #if INCLUDE_ALL_GCS
1907 // Flush G1-related queues.
1908 void JavaThread::flush_barrier_queues() {
1909   satb_mark_queue().flush();
1910   dirty_card_queue().flush();
1911 }
1912 
1913 void JavaThread::initialize_queues() {
1914   assert(!SafepointSynchronize::is_at_safepoint(),
1915          "we should not be at a safepoint");
1916 
1917   SATBMarkQueue& satb_queue = satb_mark_queue();
1918   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1919   // The SATB queue should have been constructed with its active
1920   // field set to false.
1921   assert(!satb_queue.is_active(), "SATB queue should not be active");
1922   assert(satb_queue.is_empty(), "SATB queue should be empty");
1923   // If we are creating the thread during a marking cycle, we should
1924   // set the active field of the SATB queue to true.
1925   if (satb_queue_set.is_active()) {
1926     satb_queue.set_active(true);
1927   }
1928 
1929   DirtyCardQueue& dirty_queue = dirty_card_queue();
1930   // The dirty card queue should have been constructed with its
1931   // active field set to true.
1932   assert(dirty_queue.is_active(), "dirty card queue should be active");
1933 }
1934 #endif // INCLUDE_ALL_GCS
1935 
1936 void JavaThread::cleanup_failed_attach_current_thread() {
1937   if (active_handles() != NULL) {
1938     JNIHandleBlock* block = active_handles();
1939     set_active_handles(NULL);
1940     JNIHandleBlock::release_block(block);
1941   }
1942 
1943   if (free_handle_block() != NULL) {
1944     JNIHandleBlock* block = free_handle_block();
1945     set_free_handle_block(NULL);
1946     JNIHandleBlock::release_block(block);
1947   }
1948 
1949   // These have to be removed while this is still a valid thread.
1950   remove_stack_guard_pages();
1951 
1952   if (UseTLAB) {
1953     tlab().make_parsable(true);  // retire TLAB, if any
1954   }
1955 
1956 #if INCLUDE_ALL_GCS
1957   if (UseG1GC) {
1958     flush_barrier_queues();
1959   }
1960 #endif // INCLUDE_ALL_GCS
1961 
1962   Threads::remove(this);
1963   delete this;
1964 }
1965 
1966 
1967 
1968 
1969 JavaThread* JavaThread::active() {
1970   Thread* thread = Thread::current();
1971   if (thread->is_Java_thread()) {
1972     return (JavaThread*) thread;
1973   } else {
1974     assert(thread->is_VM_thread(), "this must be a vm thread");
1975     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1976     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1977     assert(ret->is_Java_thread(), "must be a Java thread");
1978     return ret;
1979   }
1980 }
1981 
1982 bool JavaThread::is_lock_owned(address adr) const {
1983   if (Thread::is_lock_owned(adr)) return true;
1984 
1985   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1986     if (chunk->contains(adr)) return true;
1987   }
1988 
1989   return false;
1990 }
1991 
1992 
1993 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1994   chunk->set_next(monitor_chunks());
1995   set_monitor_chunks(chunk);
1996 }
1997 
1998 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1999   guarantee(monitor_chunks() != NULL, "must be non empty");
2000   if (monitor_chunks() == chunk) {
2001     set_monitor_chunks(chunk->next());
2002   } else {
2003     MonitorChunk* prev = monitor_chunks();
2004     while (prev->next() != chunk) prev = prev->next();
2005     prev->set_next(chunk->next());
2006   }
2007 }
2008 
2009 // JVM support.
2010 
2011 // Note: this function shouldn't block if it's called in
2012 // _thread_in_native_trans state (such as from
2013 // check_special_condition_for_native_trans()).
2014 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2015 
2016   if (has_last_Java_frame() && has_async_condition()) {
2017     // If we are at a polling page safepoint (not a poll return)
2018     // then we must defer async exception because live registers
2019     // will be clobbered by the exception path. Poll return is
2020     // ok because the call we a returning from already collides
2021     // with exception handling registers and so there is no issue.
2022     // (The exception handling path kills call result registers but
2023     //  this is ok since the exception kills the result anyway).
2024 
2025     if (is_at_poll_safepoint()) {
2026       // if the code we are returning to has deoptimized we must defer
2027       // the exception otherwise live registers get clobbered on the
2028       // exception path before deoptimization is able to retrieve them.
2029       //
2030       RegisterMap map(this, false);
2031       frame caller_fr = last_frame().sender(&map);
2032       assert(caller_fr.is_compiled_frame(), "what?");
2033       if (caller_fr.is_deoptimized_frame()) {
2034         log_info(exceptions)("deferred async exception at compiled safepoint");
2035         return;
2036       }
2037     }
2038   }
2039 
2040   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2041   if (condition == _no_async_condition) {
2042     // Conditions have changed since has_special_runtime_exit_condition()
2043     // was called:
2044     // - if we were here only because of an external suspend request,
2045     //   then that was taken care of above (or cancelled) so we are done
2046     // - if we were here because of another async request, then it has
2047     //   been cleared between the has_special_runtime_exit_condition()
2048     //   and now so again we are done
2049     return;
2050   }
2051 
2052   // Check for pending async. exception
2053   if (_pending_async_exception != NULL) {
2054     // Only overwrite an already pending exception, if it is not a threadDeath.
2055     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2056 
2057       // We cannot call Exceptions::_throw(...) here because we cannot block
2058       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2059 
2060       if (log_is_enabled(Info, exceptions)) {
2061         ResourceMark rm;
2062         outputStream* logstream = Log(exceptions)::info_stream();
2063         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2064           if (has_last_Java_frame()) {
2065             frame f = last_frame();
2066            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2067           }
2068         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2069       }
2070       _pending_async_exception = NULL;
2071       clear_has_async_exception();
2072     }
2073   }
2074 
2075   if (check_unsafe_error &&
2076       condition == _async_unsafe_access_error && !has_pending_exception()) {
2077     condition = _no_async_condition;  // done
2078     switch (thread_state()) {
2079     case _thread_in_vm: {
2080       JavaThread* THREAD = this;
2081       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2082     }
2083     case _thread_in_native: {
2084       ThreadInVMfromNative tiv(this);
2085       JavaThread* THREAD = this;
2086       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2087     }
2088     case _thread_in_Java: {
2089       ThreadInVMfromJava tiv(this);
2090       JavaThread* THREAD = this;
2091       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2092     }
2093     default:
2094       ShouldNotReachHere();
2095     }
2096   }
2097 
2098   assert(condition == _no_async_condition || has_pending_exception() ||
2099          (!check_unsafe_error && condition == _async_unsafe_access_error),
2100          "must have handled the async condition, if no exception");
2101 }
2102 
2103 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2104   //
2105   // Check for pending external suspend. Internal suspend requests do
2106   // not use handle_special_runtime_exit_condition().
2107   // If JNIEnv proxies are allowed, don't self-suspend if the target
2108   // thread is not the current thread. In older versions of jdbx, jdbx
2109   // threads could call into the VM with another thread's JNIEnv so we
2110   // can be here operating on behalf of a suspended thread (4432884).
2111   bool do_self_suspend = is_external_suspend_with_lock();
2112   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2113     //
2114     // Because thread is external suspended the safepoint code will count
2115     // thread as at a safepoint. This can be odd because we can be here
2116     // as _thread_in_Java which would normally transition to _thread_blocked
2117     // at a safepoint. We would like to mark the thread as _thread_blocked
2118     // before calling java_suspend_self like all other callers of it but
2119     // we must then observe proper safepoint protocol. (We can't leave
2120     // _thread_blocked with a safepoint in progress). However we can be
2121     // here as _thread_in_native_trans so we can't use a normal transition
2122     // constructor/destructor pair because they assert on that type of
2123     // transition. We could do something like:
2124     //
2125     // JavaThreadState state = thread_state();
2126     // set_thread_state(_thread_in_vm);
2127     // {
2128     //   ThreadBlockInVM tbivm(this);
2129     //   java_suspend_self()
2130     // }
2131     // set_thread_state(_thread_in_vm_trans);
2132     // if (safepoint) block;
2133     // set_thread_state(state);
2134     //
2135     // but that is pretty messy. Instead we just go with the way the
2136     // code has worked before and note that this is the only path to
2137     // java_suspend_self that doesn't put the thread in _thread_blocked
2138     // mode.
2139 
2140     frame_anchor()->make_walkable(this);
2141     java_suspend_self();
2142 
2143     // We might be here for reasons in addition to the self-suspend request
2144     // so check for other async requests.
2145   }
2146 
2147   if (check_asyncs) {
2148     check_and_handle_async_exceptions();
2149   }
2150 }
2151 
2152 void JavaThread::send_thread_stop(oop java_throwable)  {
2153   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2154   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2155   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2156 
2157   // Do not throw asynchronous exceptions against the compiler thread
2158   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2159   if (!can_call_java()) return;
2160 
2161   {
2162     // Actually throw the Throwable against the target Thread - however
2163     // only if there is no thread death exception installed already.
2164     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2165       // If the topmost frame is a runtime stub, then we are calling into
2166       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2167       // must deoptimize the caller before continuing, as the compiled  exception handler table
2168       // may not be valid
2169       if (has_last_Java_frame()) {
2170         frame f = last_frame();
2171         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2172           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2173           RegisterMap reg_map(this, UseBiasedLocking);
2174           frame compiled_frame = f.sender(&reg_map);
2175           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2176             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2177           }
2178         }
2179       }
2180 
2181       // Set async. pending exception in thread.
2182       set_pending_async_exception(java_throwable);
2183 
2184       if (log_is_enabled(Info, exceptions)) {
2185          ResourceMark rm;
2186         log_info(exceptions)("Pending Async. exception installed of type: %s",
2187                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2188       }
2189       // for AbortVMOnException flag
2190       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2191     }
2192   }
2193 
2194 
2195   // Interrupt thread so it will wake up from a potential wait()
2196   Thread::interrupt(this);
2197 }
2198 
2199 // External suspension mechanism.
2200 //
2201 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2202 // to any VM_locks and it is at a transition
2203 // Self-suspension will happen on the transition out of the vm.
2204 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2205 //
2206 // Guarantees on return:
2207 //   + Target thread will not execute any new bytecode (that's why we need to
2208 //     force a safepoint)
2209 //   + Target thread will not enter any new monitors
2210 //
2211 void JavaThread::java_suspend() {
2212   { MutexLocker mu(Threads_lock);
2213     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2214       return;
2215     }
2216   }
2217 
2218   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2219     if (!is_external_suspend()) {
2220       // a racing resume has cancelled us; bail out now
2221       return;
2222     }
2223 
2224     // suspend is done
2225     uint32_t debug_bits = 0;
2226     // Warning: is_ext_suspend_completed() may temporarily drop the
2227     // SR_lock to allow the thread to reach a stable thread state if
2228     // it is currently in a transient thread state.
2229     if (is_ext_suspend_completed(false /* !called_by_wait */,
2230                                  SuspendRetryDelay, &debug_bits)) {
2231       return;
2232     }
2233   }
2234 
2235   VM_ThreadSuspend vm_suspend;
2236   VMThread::execute(&vm_suspend);
2237 }
2238 
2239 // Part II of external suspension.
2240 // A JavaThread self suspends when it detects a pending external suspend
2241 // request. This is usually on transitions. It is also done in places
2242 // where continuing to the next transition would surprise the caller,
2243 // e.g., monitor entry.
2244 //
2245 // Returns the number of times that the thread self-suspended.
2246 //
2247 // Note: DO NOT call java_suspend_self() when you just want to block current
2248 //       thread. java_suspend_self() is the second stage of cooperative
2249 //       suspension for external suspend requests and should only be used
2250 //       to complete an external suspend request.
2251 //
2252 int JavaThread::java_suspend_self() {
2253   int ret = 0;
2254 
2255   // we are in the process of exiting so don't suspend
2256   if (is_exiting()) {
2257     clear_external_suspend();
2258     return ret;
2259   }
2260 
2261   assert(_anchor.walkable() ||
2262          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2263          "must have walkable stack");
2264 
2265   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2266 
2267   assert(!this->is_ext_suspended(),
2268          "a thread trying to self-suspend should not already be suspended");
2269 
2270   if (this->is_suspend_equivalent()) {
2271     // If we are self-suspending as a result of the lifting of a
2272     // suspend equivalent condition, then the suspend_equivalent
2273     // flag is not cleared until we set the ext_suspended flag so
2274     // that wait_for_ext_suspend_completion() returns consistent
2275     // results.
2276     this->clear_suspend_equivalent();
2277   }
2278 
2279   // A racing resume may have cancelled us before we grabbed SR_lock
2280   // above. Or another external suspend request could be waiting for us
2281   // by the time we return from SR_lock()->wait(). The thread
2282   // that requested the suspension may already be trying to walk our
2283   // stack and if we return now, we can change the stack out from under
2284   // it. This would be a "bad thing (TM)" and cause the stack walker
2285   // to crash. We stay self-suspended until there are no more pending
2286   // external suspend requests.
2287   while (is_external_suspend()) {
2288     ret++;
2289     this->set_ext_suspended();
2290 
2291     // _ext_suspended flag is cleared by java_resume()
2292     while (is_ext_suspended()) {
2293       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2294     }
2295   }
2296 
2297   return ret;
2298 }
2299 
2300 #ifdef ASSERT
2301 // verify the JavaThread has not yet been published in the Threads::list, and
2302 // hence doesn't need protection from concurrent access at this stage
2303 void JavaThread::verify_not_published() {
2304   if (!Threads_lock->owned_by_self()) {
2305     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2306     assert(!Threads::includes(this),
2307            "java thread shouldn't have been published yet!");
2308   } else {
2309     assert(!Threads::includes(this),
2310            "java thread shouldn't have been published yet!");
2311   }
2312 }
2313 #endif
2314 
2315 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2316 // progress or when _suspend_flags is non-zero.
2317 // Current thread needs to self-suspend if there is a suspend request and/or
2318 // block if a safepoint is in progress.
2319 // Async exception ISN'T checked.
2320 // Note only the ThreadInVMfromNative transition can call this function
2321 // directly and when thread state is _thread_in_native_trans
2322 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2323   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2324 
2325   JavaThread *curJT = JavaThread::current();
2326   bool do_self_suspend = thread->is_external_suspend();
2327 
2328   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2329 
2330   // If JNIEnv proxies are allowed, don't self-suspend if the target
2331   // thread is not the current thread. In older versions of jdbx, jdbx
2332   // threads could call into the VM with another thread's JNIEnv so we
2333   // can be here operating on behalf of a suspended thread (4432884).
2334   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2335     JavaThreadState state = thread->thread_state();
2336 
2337     // We mark this thread_blocked state as a suspend-equivalent so
2338     // that a caller to is_ext_suspend_completed() won't be confused.
2339     // The suspend-equivalent state is cleared by java_suspend_self().
2340     thread->set_suspend_equivalent();
2341 
2342     // If the safepoint code sees the _thread_in_native_trans state, it will
2343     // wait until the thread changes to other thread state. There is no
2344     // guarantee on how soon we can obtain the SR_lock and complete the
2345     // self-suspend request. It would be a bad idea to let safepoint wait for
2346     // too long. Temporarily change the state to _thread_blocked to
2347     // let the VM thread know that this thread is ready for GC. The problem
2348     // of changing thread state is that safepoint could happen just after
2349     // java_suspend_self() returns after being resumed, and VM thread will
2350     // see the _thread_blocked state. We must check for safepoint
2351     // after restoring the state and make sure we won't leave while a safepoint
2352     // is in progress.
2353     thread->set_thread_state(_thread_blocked);
2354     thread->java_suspend_self();
2355     thread->set_thread_state(state);
2356 
2357     InterfaceSupport::serialize_thread_state_with_handler(thread);
2358   }
2359 
2360   if (SafepointSynchronize::do_call_back()) {
2361     // If we are safepointing, then block the caller which may not be
2362     // the same as the target thread (see above).
2363     SafepointSynchronize::block(curJT);
2364   }
2365 
2366   if (thread->is_deopt_suspend()) {
2367     thread->clear_deopt_suspend();
2368     RegisterMap map(thread, false);
2369     frame f = thread->last_frame();
2370     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2371       f = f.sender(&map);
2372     }
2373     if (f.id() == thread->must_deopt_id()) {
2374       thread->clear_must_deopt_id();
2375       f.deoptimize(thread);
2376     } else {
2377       fatal("missed deoptimization!");
2378     }
2379   }
2380 }
2381 
2382 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2383 // progress or when _suspend_flags is non-zero.
2384 // Current thread needs to self-suspend if there is a suspend request and/or
2385 // block if a safepoint is in progress.
2386 // Also check for pending async exception (not including unsafe access error).
2387 // Note only the native==>VM/Java barriers can call this function and when
2388 // thread state is _thread_in_native_trans.
2389 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2390   check_safepoint_and_suspend_for_native_trans(thread);
2391 
2392   if (thread->has_async_exception()) {
2393     // We are in _thread_in_native_trans state, don't handle unsafe
2394     // access error since that may block.
2395     thread->check_and_handle_async_exceptions(false);
2396   }
2397 }
2398 
2399 // This is a variant of the normal
2400 // check_special_condition_for_native_trans with slightly different
2401 // semantics for use by critical native wrappers.  It does all the
2402 // normal checks but also performs the transition back into
2403 // thread_in_Java state.  This is required so that critical natives
2404 // can potentially block and perform a GC if they are the last thread
2405 // exiting the GCLocker.
2406 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2407   check_special_condition_for_native_trans(thread);
2408 
2409   // Finish the transition
2410   thread->set_thread_state(_thread_in_Java);
2411 
2412   if (thread->do_critical_native_unlock()) {
2413     ThreadInVMfromJavaNoAsyncException tiv(thread);
2414     GCLocker::unlock_critical(thread);
2415     thread->clear_critical_native_unlock();
2416   }
2417 }
2418 
2419 // We need to guarantee the Threads_lock here, since resumes are not
2420 // allowed during safepoint synchronization
2421 // Can only resume from an external suspension
2422 void JavaThread::java_resume() {
2423   assert_locked_or_safepoint(Threads_lock);
2424 
2425   // Sanity check: thread is gone, has started exiting or the thread
2426   // was not externally suspended.
2427   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2428     return;
2429   }
2430 
2431   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2432 
2433   clear_external_suspend();
2434 
2435   if (is_ext_suspended()) {
2436     clear_ext_suspended();
2437     SR_lock()->notify_all();
2438   }
2439 }
2440 
2441 size_t JavaThread::_stack_red_zone_size = 0;
2442 size_t JavaThread::_stack_yellow_zone_size = 0;
2443 size_t JavaThread::_stack_reserved_zone_size = 0;
2444 size_t JavaThread::_stack_shadow_zone_size = 0;
2445 
2446 void JavaThread::create_stack_guard_pages() {
2447   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2448   address low_addr = stack_end();
2449   size_t len = stack_guard_zone_size();
2450 
2451   int must_commit = os::must_commit_stack_guard_pages();
2452   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2453 
2454   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2455     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2456     return;
2457   }
2458 
2459   if (os::guard_memory((char *) low_addr, len)) {
2460     _stack_guard_state = stack_guard_enabled;
2461   } else {
2462     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2463       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2464     if (os::uncommit_memory((char *) low_addr, len)) {
2465       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2466     }
2467     return;
2468   }
2469 
2470   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2471     PTR_FORMAT "-" PTR_FORMAT ".",
2472     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2473 }
2474 
2475 void JavaThread::remove_stack_guard_pages() {
2476   assert(Thread::current() == this, "from different thread");
2477   if (_stack_guard_state == stack_guard_unused) return;
2478   address low_addr = stack_end();
2479   size_t len = stack_guard_zone_size();
2480 
2481   if (os::must_commit_stack_guard_pages()) {
2482     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2483       _stack_guard_state = stack_guard_unused;
2484     } else {
2485       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2486         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2487       return;
2488     }
2489   } else {
2490     if (_stack_guard_state == stack_guard_unused) return;
2491     if (os::unguard_memory((char *) low_addr, len)) {
2492       _stack_guard_state = stack_guard_unused;
2493     } else {
2494       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2495         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2496       return;
2497     }
2498   }
2499 
2500   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2501     PTR_FORMAT "-" PTR_FORMAT ".",
2502     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2503 }
2504 
2505 void JavaThread::enable_stack_reserved_zone() {
2506   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2507   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2508 
2509   // The base notation is from the stack's point of view, growing downward.
2510   // We need to adjust it to work correctly with guard_memory()
2511   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2512 
2513   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2514   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2515 
2516   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2517     _stack_guard_state = stack_guard_enabled;
2518   } else {
2519     warning("Attempt to guard stack reserved zone failed.");
2520   }
2521   enable_register_stack_guard();
2522 }
2523 
2524 void JavaThread::disable_stack_reserved_zone() {
2525   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2526   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2527 
2528   // Simply return if called for a thread that does not use guard pages.
2529   if (_stack_guard_state == stack_guard_unused) return;
2530 
2531   // The base notation is from the stack's point of view, growing downward.
2532   // We need to adjust it to work correctly with guard_memory()
2533   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2534 
2535   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2536     _stack_guard_state = stack_guard_reserved_disabled;
2537   } else {
2538     warning("Attempt to unguard stack reserved zone failed.");
2539   }
2540   disable_register_stack_guard();
2541 }
2542 
2543 void JavaThread::enable_stack_yellow_reserved_zone() {
2544   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2545   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2546 
2547   // The base notation is from the stacks point of view, growing downward.
2548   // We need to adjust it to work correctly with guard_memory()
2549   address base = stack_red_zone_base();
2550 
2551   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2552   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2553 
2554   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2555     _stack_guard_state = stack_guard_enabled;
2556   } else {
2557     warning("Attempt to guard stack yellow zone failed.");
2558   }
2559   enable_register_stack_guard();
2560 }
2561 
2562 void JavaThread::disable_stack_yellow_reserved_zone() {
2563   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2564   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2565 
2566   // Simply return if called for a thread that does not use guard pages.
2567   if (_stack_guard_state == stack_guard_unused) return;
2568 
2569   // The base notation is from the stacks point of view, growing downward.
2570   // We need to adjust it to work correctly with guard_memory()
2571   address base = stack_red_zone_base();
2572 
2573   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2574     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2575   } else {
2576     warning("Attempt to unguard stack yellow zone failed.");
2577   }
2578   disable_register_stack_guard();
2579 }
2580 
2581 void JavaThread::enable_stack_red_zone() {
2582   // The base notation is from the stacks point of view, growing downward.
2583   // We need to adjust it to work correctly with guard_memory()
2584   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2585   address base = stack_red_zone_base() - stack_red_zone_size();
2586 
2587   guarantee(base < stack_base(), "Error calculating stack red zone");
2588   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2589 
2590   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2591     warning("Attempt to guard stack red zone failed.");
2592   }
2593 }
2594 
2595 void JavaThread::disable_stack_red_zone() {
2596   // The base notation is from the stacks point of view, growing downward.
2597   // We need to adjust it to work correctly with guard_memory()
2598   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2599   address base = stack_red_zone_base() - stack_red_zone_size();
2600   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2601     warning("Attempt to unguard stack red zone failed.");
2602   }
2603 }
2604 
2605 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2606   // ignore is there is no stack
2607   if (!has_last_Java_frame()) return;
2608   // traverse the stack frames. Starts from top frame.
2609   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2610     frame* fr = fst.current();
2611     f(fr, fst.register_map());
2612   }
2613 }
2614 
2615 
2616 #ifndef PRODUCT
2617 // Deoptimization
2618 // Function for testing deoptimization
2619 void JavaThread::deoptimize() {
2620   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2621   StackFrameStream fst(this, UseBiasedLocking);
2622   bool deopt = false;           // Dump stack only if a deopt actually happens.
2623   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2624   // Iterate over all frames in the thread and deoptimize
2625   for (; !fst.is_done(); fst.next()) {
2626     if (fst.current()->can_be_deoptimized()) {
2627 
2628       if (only_at) {
2629         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2630         // consists of comma or carriage return separated numbers so
2631         // search for the current bci in that string.
2632         address pc = fst.current()->pc();
2633         nmethod* nm =  (nmethod*) fst.current()->cb();
2634         ScopeDesc* sd = nm->scope_desc_at(pc);
2635         char buffer[8];
2636         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2637         size_t len = strlen(buffer);
2638         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2639         while (found != NULL) {
2640           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2641               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2642             // Check that the bci found is bracketed by terminators.
2643             break;
2644           }
2645           found = strstr(found + 1, buffer);
2646         }
2647         if (!found) {
2648           continue;
2649         }
2650       }
2651 
2652       if (DebugDeoptimization && !deopt) {
2653         deopt = true; // One-time only print before deopt
2654         tty->print_cr("[BEFORE Deoptimization]");
2655         trace_frames();
2656         trace_stack();
2657       }
2658       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2659     }
2660   }
2661 
2662   if (DebugDeoptimization && deopt) {
2663     tty->print_cr("[AFTER Deoptimization]");
2664     trace_frames();
2665   }
2666 }
2667 
2668 
2669 // Make zombies
2670 void JavaThread::make_zombies() {
2671   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2672     if (fst.current()->can_be_deoptimized()) {
2673       // it is a Java nmethod
2674       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2675       nm->make_not_entrant();
2676     }
2677   }
2678 }
2679 #endif // PRODUCT
2680 
2681 
2682 void JavaThread::deoptimized_wrt_marked_nmethods() {
2683   if (!has_last_Java_frame()) return;
2684   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2685   StackFrameStream fst(this, UseBiasedLocking);
2686   for (; !fst.is_done(); fst.next()) {
2687     if (fst.current()->should_be_deoptimized()) {
2688       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2689     }
2690   }
2691 }
2692 
2693 
2694 // If the caller is a NamedThread, then remember, in the current scope,
2695 // the given JavaThread in its _processed_thread field.
2696 class RememberProcessedThread: public StackObj {
2697   NamedThread* _cur_thr;
2698  public:
2699   RememberProcessedThread(JavaThread* jthr) {
2700     Thread* thread = Thread::current();
2701     if (thread->is_Named_thread()) {
2702       _cur_thr = (NamedThread *)thread;
2703       _cur_thr->set_processed_thread(jthr);
2704     } else {
2705       _cur_thr = NULL;
2706     }
2707   }
2708 
2709   ~RememberProcessedThread() {
2710     if (_cur_thr) {
2711       _cur_thr->set_processed_thread(NULL);
2712     }
2713   }
2714 };
2715 
2716 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2717   // Verify that the deferred card marks have been flushed.
2718   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2719 
2720   // Traverse the GCHandles
2721   Thread::oops_do(f, cf);
2722 
2723   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2724 
2725   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2726          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2727 
2728   if (has_last_Java_frame()) {
2729     // Record JavaThread to GC thread
2730     RememberProcessedThread rpt(this);
2731 
2732     // Traverse the privileged stack
2733     if (_privileged_stack_top != NULL) {
2734       _privileged_stack_top->oops_do(f);
2735     }
2736 
2737     // traverse the registered growable array
2738     if (_array_for_gc != NULL) {
2739       for (int index = 0; index < _array_for_gc->length(); index++) {
2740         f->do_oop(_array_for_gc->adr_at(index));
2741       }
2742     }
2743 
2744     // Traverse the monitor chunks
2745     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2746       chunk->oops_do(f);
2747     }
2748 
2749     // Traverse the execution stack
2750     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2751       fst.current()->oops_do(f, cf, fst.register_map());
2752     }
2753   }
2754 
2755   // callee_target is never live across a gc point so NULL it here should
2756   // it still contain a methdOop.
2757 
2758   set_callee_target(NULL);
2759 
2760   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2761   // If we have deferred set_locals there might be oops waiting to be
2762   // written
2763   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2764   if (list != NULL) {
2765     for (int i = 0; i < list->length(); i++) {
2766       list->at(i)->oops_do(f);
2767     }
2768   }
2769 
2770   // Traverse instance variables at the end since the GC may be moving things
2771   // around using this function
2772   f->do_oop((oop*) &_threadObj);
2773   f->do_oop((oop*) &_vm_result);
2774   f->do_oop((oop*) &_exception_oop);
2775   f->do_oop((oop*) &_pending_async_exception);
2776 
2777   if (jvmti_thread_state() != NULL) {
2778     jvmti_thread_state()->oops_do(f);
2779   }
2780 }
2781 
2782 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2783   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2784          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2785 
2786   if (has_last_Java_frame()) {
2787     // Traverse the execution stack
2788     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2789       fst.current()->nmethods_do(cf);
2790     }
2791   }
2792 }
2793 
2794 void JavaThread::metadata_do(void f(Metadata*)) {
2795   if (has_last_Java_frame()) {
2796     // Traverse the execution stack to call f() on the methods in the stack
2797     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2798       fst.current()->metadata_do(f);
2799     }
2800   } else if (is_Compiler_thread()) {
2801     // need to walk ciMetadata in current compile tasks to keep alive.
2802     CompilerThread* ct = (CompilerThread*)this;
2803     if (ct->env() != NULL) {
2804       ct->env()->metadata_do(f);
2805     }
2806     if (ct->task() != NULL) {
2807       ct->task()->metadata_do(f);
2808     }
2809   }
2810 }
2811 
2812 // Printing
2813 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2814   switch (_thread_state) {
2815   case _thread_uninitialized:     return "_thread_uninitialized";
2816   case _thread_new:               return "_thread_new";
2817   case _thread_new_trans:         return "_thread_new_trans";
2818   case _thread_in_native:         return "_thread_in_native";
2819   case _thread_in_native_trans:   return "_thread_in_native_trans";
2820   case _thread_in_vm:             return "_thread_in_vm";
2821   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2822   case _thread_in_Java:           return "_thread_in_Java";
2823   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2824   case _thread_blocked:           return "_thread_blocked";
2825   case _thread_blocked_trans:     return "_thread_blocked_trans";
2826   default:                        return "unknown thread state";
2827   }
2828 }
2829 
2830 #ifndef PRODUCT
2831 void JavaThread::print_thread_state_on(outputStream *st) const {
2832   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2833 };
2834 void JavaThread::print_thread_state() const {
2835   print_thread_state_on(tty);
2836 }
2837 #endif // PRODUCT
2838 
2839 // Called by Threads::print() for VM_PrintThreads operation
2840 void JavaThread::print_on(outputStream *st) const {
2841   st->print_raw("\"");
2842   st->print_raw(get_thread_name());
2843   st->print_raw("\" ");
2844   oop thread_oop = threadObj();
2845   if (thread_oop != NULL) {
2846     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2847     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2848     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2849   }
2850   Thread::print_on(st);
2851   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2852   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2853   if (thread_oop != NULL) {
2854     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2855   }
2856 #ifndef PRODUCT
2857   print_thread_state_on(st);
2858   _safepoint_state->print_on(st);
2859 #endif // PRODUCT
2860   if (is_Compiler_thread()) {
2861     CompilerThread* ct = (CompilerThread*)this;
2862     if (ct->task() != NULL) {
2863       st->print("   Compiling: ");
2864       ct->task()->print(st, NULL, true, false);
2865     } else {
2866       st->print("   No compile task");
2867     }
2868     st->cr();
2869   }
2870 }
2871 
2872 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2873   st->print("%s", get_thread_name_string(buf, buflen));
2874 }
2875 
2876 // Called by fatal error handler. The difference between this and
2877 // JavaThread::print() is that we can't grab lock or allocate memory.
2878 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2879   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2880   oop thread_obj = threadObj();
2881   if (thread_obj != NULL) {
2882     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2883   }
2884   st->print(" [");
2885   st->print("%s", _get_thread_state_name(_thread_state));
2886   if (osthread()) {
2887     st->print(", id=%d", osthread()->thread_id());
2888   }
2889   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2890             p2i(stack_end()), p2i(stack_base()));
2891   st->print("]");
2892   return;
2893 }
2894 
2895 // Verification
2896 
2897 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2898 
2899 void JavaThread::verify() {
2900   // Verify oops in the thread.
2901   oops_do(&VerifyOopClosure::verify_oop, NULL);
2902 
2903   // Verify the stack frames.
2904   frames_do(frame_verify);
2905 }
2906 
2907 // CR 6300358 (sub-CR 2137150)
2908 // Most callers of this method assume that it can't return NULL but a
2909 // thread may not have a name whilst it is in the process of attaching to
2910 // the VM - see CR 6412693, and there are places where a JavaThread can be
2911 // seen prior to having it's threadObj set (eg JNI attaching threads and
2912 // if vm exit occurs during initialization). These cases can all be accounted
2913 // for such that this method never returns NULL.
2914 const char* JavaThread::get_thread_name() const {
2915 #ifdef ASSERT
2916   // early safepoints can hit while current thread does not yet have TLS
2917   if (!SafepointSynchronize::is_at_safepoint()) {
2918     Thread *cur = Thread::current();
2919     if (!(cur->is_Java_thread() && cur == this)) {
2920       // Current JavaThreads are allowed to get their own name without
2921       // the Threads_lock.
2922       assert_locked_or_safepoint(Threads_lock);
2923     }
2924   }
2925 #endif // ASSERT
2926   return get_thread_name_string();
2927 }
2928 
2929 // Returns a non-NULL representation of this thread's name, or a suitable
2930 // descriptive string if there is no set name
2931 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2932   const char* name_str;
2933   oop thread_obj = threadObj();
2934   if (thread_obj != NULL) {
2935     oop name = java_lang_Thread::name(thread_obj);
2936     if (name != NULL) {
2937       if (buf == NULL) {
2938         name_str = java_lang_String::as_utf8_string(name);
2939       } else {
2940         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2941       }
2942     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2943       name_str = "<no-name - thread is attaching>";
2944     } else {
2945       name_str = Thread::name();
2946     }
2947   } else {
2948     name_str = Thread::name();
2949   }
2950   assert(name_str != NULL, "unexpected NULL thread name");
2951   return name_str;
2952 }
2953 
2954 
2955 const char* JavaThread::get_threadgroup_name() const {
2956   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2957   oop thread_obj = threadObj();
2958   if (thread_obj != NULL) {
2959     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2960     if (thread_group != NULL) {
2961       // ThreadGroup.name can be null
2962       return java_lang_ThreadGroup::name(thread_group);
2963     }
2964   }
2965   return NULL;
2966 }
2967 
2968 const char* JavaThread::get_parent_name() const {
2969   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2970   oop thread_obj = threadObj();
2971   if (thread_obj != NULL) {
2972     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2973     if (thread_group != NULL) {
2974       oop parent = java_lang_ThreadGroup::parent(thread_group);
2975       if (parent != NULL) {
2976         // ThreadGroup.name can be null
2977         return java_lang_ThreadGroup::name(parent);
2978       }
2979     }
2980   }
2981   return NULL;
2982 }
2983 
2984 ThreadPriority JavaThread::java_priority() const {
2985   oop thr_oop = threadObj();
2986   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2987   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2988   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2989   return priority;
2990 }
2991 
2992 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2993 
2994   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2995   // Link Java Thread object <-> C++ Thread
2996 
2997   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2998   // and put it into a new Handle.  The Handle "thread_oop" can then
2999   // be used to pass the C++ thread object to other methods.
3000 
3001   // Set the Java level thread object (jthread) field of the
3002   // new thread (a JavaThread *) to C++ thread object using the
3003   // "thread_oop" handle.
3004 
3005   // Set the thread field (a JavaThread *) of the
3006   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3007 
3008   Handle thread_oop(Thread::current(),
3009                     JNIHandles::resolve_non_null(jni_thread));
3010   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3011          "must be initialized");
3012   set_threadObj(thread_oop());
3013   java_lang_Thread::set_thread(thread_oop(), this);
3014 
3015   if (prio == NoPriority) {
3016     prio = java_lang_Thread::priority(thread_oop());
3017     assert(prio != NoPriority, "A valid priority should be present");
3018   }
3019 
3020   // Push the Java priority down to the native thread; needs Threads_lock
3021   Thread::set_priority(this, prio);
3022 
3023   prepare_ext();
3024 
3025   // Add the new thread to the Threads list and set it in motion.
3026   // We must have threads lock in order to call Threads::add.
3027   // It is crucial that we do not block before the thread is
3028   // added to the Threads list for if a GC happens, then the java_thread oop
3029   // will not be visited by GC.
3030   Threads::add(this);
3031 }
3032 
3033 oop JavaThread::current_park_blocker() {
3034   // Support for JSR-166 locks
3035   oop thread_oop = threadObj();
3036   if (thread_oop != NULL &&
3037       JDK_Version::current().supports_thread_park_blocker()) {
3038     return java_lang_Thread::park_blocker(thread_oop);
3039   }
3040   return NULL;
3041 }
3042 
3043 
3044 void JavaThread::print_stack_on(outputStream* st) {
3045   if (!has_last_Java_frame()) return;
3046   ResourceMark rm;
3047   HandleMark   hm;
3048 
3049   RegisterMap reg_map(this);
3050   vframe* start_vf = last_java_vframe(&reg_map);
3051   int count = 0;
3052   for (vframe* f = start_vf; f; f = f->sender()) {
3053     if (f->is_java_frame()) {
3054       javaVFrame* jvf = javaVFrame::cast(f);
3055       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3056 
3057       // Print out lock information
3058       if (JavaMonitorsInStackTrace) {
3059         jvf->print_lock_info_on(st, count);
3060       }
3061     } else {
3062       // Ignore non-Java frames
3063     }
3064 
3065     // Bail-out case for too deep stacks
3066     count++;
3067     if (MaxJavaStackTraceDepth == count) return;
3068   }
3069 }
3070 
3071 
3072 // JVMTI PopFrame support
3073 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3074   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3075   if (in_bytes(size_in_bytes) != 0) {
3076     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3077     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3078     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3079   }
3080 }
3081 
3082 void* JavaThread::popframe_preserved_args() {
3083   return _popframe_preserved_args;
3084 }
3085 
3086 ByteSize JavaThread::popframe_preserved_args_size() {
3087   return in_ByteSize(_popframe_preserved_args_size);
3088 }
3089 
3090 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3091   int sz = in_bytes(popframe_preserved_args_size());
3092   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3093   return in_WordSize(sz / wordSize);
3094 }
3095 
3096 void JavaThread::popframe_free_preserved_args() {
3097   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3098   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3099   _popframe_preserved_args = NULL;
3100   _popframe_preserved_args_size = 0;
3101 }
3102 
3103 #ifndef PRODUCT
3104 
3105 void JavaThread::trace_frames() {
3106   tty->print_cr("[Describe stack]");
3107   int frame_no = 1;
3108   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3109     tty->print("  %d. ", frame_no++);
3110     fst.current()->print_value_on(tty, this);
3111     tty->cr();
3112   }
3113 }
3114 
3115 class PrintAndVerifyOopClosure: public OopClosure {
3116  protected:
3117   template <class T> inline void do_oop_work(T* p) {
3118     oop obj = oopDesc::load_decode_heap_oop(p);
3119     if (obj == NULL) return;
3120     tty->print(INTPTR_FORMAT ": ", p2i(p));
3121     if (obj->is_oop_or_null()) {
3122       if (obj->is_objArray()) {
3123         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3124       } else {
3125         obj->print();
3126       }
3127     } else {
3128       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3129     }
3130     tty->cr();
3131   }
3132  public:
3133   virtual void do_oop(oop* p) { do_oop_work(p); }
3134   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3135 };
3136 
3137 
3138 static void oops_print(frame* f, const RegisterMap *map) {
3139   PrintAndVerifyOopClosure print;
3140   f->print_value();
3141   f->oops_do(&print, NULL, (RegisterMap*)map);
3142 }
3143 
3144 // Print our all the locations that contain oops and whether they are
3145 // valid or not.  This useful when trying to find the oldest frame
3146 // where an oop has gone bad since the frame walk is from youngest to
3147 // oldest.
3148 void JavaThread::trace_oops() {
3149   tty->print_cr("[Trace oops]");
3150   frames_do(oops_print);
3151 }
3152 
3153 
3154 #ifdef ASSERT
3155 // Print or validate the layout of stack frames
3156 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3157   ResourceMark rm;
3158   PRESERVE_EXCEPTION_MARK;
3159   FrameValues values;
3160   int frame_no = 0;
3161   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3162     fst.current()->describe(values, ++frame_no);
3163     if (depth == frame_no) break;
3164   }
3165   if (validate_only) {
3166     values.validate();
3167   } else {
3168     tty->print_cr("[Describe stack layout]");
3169     values.print(this);
3170   }
3171 }
3172 #endif
3173 
3174 void JavaThread::trace_stack_from(vframe* start_vf) {
3175   ResourceMark rm;
3176   int vframe_no = 1;
3177   for (vframe* f = start_vf; f; f = f->sender()) {
3178     if (f->is_java_frame()) {
3179       javaVFrame::cast(f)->print_activation(vframe_no++);
3180     } else {
3181       f->print();
3182     }
3183     if (vframe_no > StackPrintLimit) {
3184       tty->print_cr("...<more frames>...");
3185       return;
3186     }
3187   }
3188 }
3189 
3190 
3191 void JavaThread::trace_stack() {
3192   if (!has_last_Java_frame()) return;
3193   ResourceMark rm;
3194   HandleMark   hm;
3195   RegisterMap reg_map(this);
3196   trace_stack_from(last_java_vframe(&reg_map));
3197 }
3198 
3199 
3200 #endif // PRODUCT
3201 
3202 
3203 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3204   assert(reg_map != NULL, "a map must be given");
3205   frame f = last_frame();
3206   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3207     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3208   }
3209   return NULL;
3210 }
3211 
3212 
3213 Klass* JavaThread::security_get_caller_class(int depth) {
3214   vframeStream vfst(this);
3215   vfst.security_get_caller_frame(depth);
3216   if (!vfst.at_end()) {
3217     return vfst.method()->method_holder();
3218   }
3219   return NULL;
3220 }
3221 
3222 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3223   assert(thread->is_Compiler_thread(), "must be compiler thread");
3224   CompileBroker::compiler_thread_loop();
3225 }
3226 
3227 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3228   NMethodSweeper::sweeper_loop();
3229 }
3230 
3231 // Create a CompilerThread
3232 CompilerThread::CompilerThread(CompileQueue* queue,
3233                                CompilerCounters* counters)
3234                                : JavaThread(&compiler_thread_entry) {
3235   _env   = NULL;
3236   _log   = NULL;
3237   _task  = NULL;
3238   _queue = queue;
3239   _counters = counters;
3240   _buffer_blob = NULL;
3241   _compiler = NULL;
3242 
3243 #ifndef PRODUCT
3244   _ideal_graph_printer = NULL;
3245 #endif
3246 }
3247 
3248 bool CompilerThread::can_call_java() const {
3249   return _compiler != NULL && _compiler->is_jvmci();
3250 }
3251 
3252 // Create sweeper thread
3253 CodeCacheSweeperThread::CodeCacheSweeperThread()
3254 : JavaThread(&sweeper_thread_entry) {
3255   _scanned_compiled_method = NULL;
3256 }
3257 
3258 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3259   JavaThread::oops_do(f, cf);
3260   if (_scanned_compiled_method != NULL && cf != NULL) {
3261     // Safepoints can occur when the sweeper is scanning an nmethod so
3262     // process it here to make sure it isn't unloaded in the middle of
3263     // a scan.
3264     cf->do_code_blob(_scanned_compiled_method);
3265   }
3266 }
3267 
3268 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3269   JavaThread::nmethods_do(cf);
3270   if (_scanned_compiled_method != NULL && cf != NULL) {
3271     // Safepoints can occur when the sweeper is scanning an nmethod so
3272     // process it here to make sure it isn't unloaded in the middle of
3273     // a scan.
3274     cf->do_code_blob(_scanned_compiled_method);
3275   }
3276 }
3277 
3278 
3279 // ======= Threads ========
3280 
3281 // The Threads class links together all active threads, and provides
3282 // operations over all threads.  It is protected by its own Mutex
3283 // lock, which is also used in other contexts to protect thread
3284 // operations from having the thread being operated on from exiting
3285 // and going away unexpectedly (e.g., safepoint synchronization)
3286 
3287 JavaThread* Threads::_thread_list = NULL;
3288 int         Threads::_number_of_threads = 0;
3289 int         Threads::_number_of_non_daemon_threads = 0;
3290 int         Threads::_return_code = 0;
3291 int         Threads::_thread_claim_parity = 0;
3292 size_t      JavaThread::_stack_size_at_create = 0;
3293 #ifdef ASSERT
3294 bool        Threads::_vm_complete = false;
3295 #endif
3296 
3297 // All JavaThreads
3298 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3299 
3300 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3301 void Threads::threads_do(ThreadClosure* tc) {
3302   assert_locked_or_safepoint(Threads_lock);
3303   // ALL_JAVA_THREADS iterates through all JavaThreads
3304   ALL_JAVA_THREADS(p) {
3305     tc->do_thread(p);
3306   }
3307   // Someday we could have a table or list of all non-JavaThreads.
3308   // For now, just manually iterate through them.
3309   tc->do_thread(VMThread::vm_thread());
3310   Universe::heap()->gc_threads_do(tc);
3311   WatcherThread *wt = WatcherThread::watcher_thread();
3312   // Strictly speaking, the following NULL check isn't sufficient to make sure
3313   // the data for WatcherThread is still valid upon being examined. However,
3314   // considering that WatchThread terminates when the VM is on the way to
3315   // exit at safepoint, the chance of the above is extremely small. The right
3316   // way to prevent termination of WatcherThread would be to acquire
3317   // Terminator_lock, but we can't do that without violating the lock rank
3318   // checking in some cases.
3319   if (wt != NULL) {
3320     tc->do_thread(wt);
3321   }
3322 
3323   // If CompilerThreads ever become non-JavaThreads, add them here
3324 }
3325 
3326 // The system initialization in the library has three phases.
3327 //
3328 // Phase 1: java.lang.System class initialization
3329 //     java.lang.System is a primordial class loaded and initialized
3330 //     by the VM early during startup.  java.lang.System.<clinit>
3331 //     only does registerNatives and keeps the rest of the class
3332 //     initialization work later until thread initialization completes.
3333 //
3334 //     System.initPhase1 initializes the system properties, the static
3335 //     fields in, out, and err. Set up java signal handlers, OS-specific
3336 //     system settings, and thread group of the main thread.
3337 static void call_initPhase1(TRAPS) {
3338   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3339   JavaValue result(T_VOID);
3340   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3341                                          vmSymbols::void_method_signature(), CHECK);
3342 }
3343 
3344 // Phase 2. Module system initialization
3345 //     This will initialize the module system.  Only java.base classes
3346 //     can be loaded until phase 2 completes.
3347 //
3348 //     Call System.initPhase2 after the compiler initialization and jsr292
3349 //     classes get initialized because module initialization runs a lot of java
3350 //     code, that for performance reasons, should be compiled.  Also, this will
3351 //     enable the startup code to use lambda and other language features in this
3352 //     phase and onward.
3353 //
3354 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3355 static void call_initPhase2(TRAPS) {
3356   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, module, startuptime));
3357 
3358   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3359 
3360   JavaValue result(T_INT);
3361   JavaCallArguments args;
3362   args.push_int(DisplayVMOutputToStderr);
3363   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3364   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3365                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3366   if (result.get_jint() != JNI_OK) {
3367     vm_exit_during_initialization(); // no message or exception
3368   }
3369 
3370   universe_post_module_init();
3371 }
3372 
3373 // Phase 3. final setup - set security manager, system class loader and TCCL
3374 //
3375 //     This will instantiate and set the security manager, set the system class
3376 //     loader as well as the thread context class loader.  The security manager
3377 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3378 //     other modules or the application's classpath.
3379 static void call_initPhase3(TRAPS) {
3380   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3381   JavaValue result(T_VOID);
3382   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3383                                          vmSymbols::void_method_signature(), CHECK);
3384 }
3385 
3386 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3387   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3388 
3389   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3390     create_vm_init_libraries();
3391   }
3392 
3393   initialize_class(vmSymbols::java_lang_String(), CHECK);
3394 
3395   // Inject CompactStrings value after the static initializers for String ran.
3396   java_lang_String::set_compact_strings(CompactStrings);
3397 
3398   // Initialize java_lang.System (needed before creating the thread)
3399   initialize_class(vmSymbols::java_lang_System(), CHECK);
3400   // The VM creates & returns objects of this class. Make sure it's initialized.
3401   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3402   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3403   Handle thread_group = create_initial_thread_group(CHECK);
3404   Universe::set_main_thread_group(thread_group());
3405   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3406   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3407   main_thread->set_threadObj(thread_object);
3408   // Set thread status to running since main thread has
3409   // been started and running.
3410   java_lang_Thread::set_thread_status(thread_object,
3411                                       java_lang_Thread::RUNNABLE);
3412 
3413   // The VM creates objects of this class.
3414   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3415 
3416   // The VM preresolves methods to these classes. Make sure that they get initialized
3417   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3418   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3419 
3420   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3421   call_initPhase1(CHECK);
3422 
3423   // get the Java runtime name after java.lang.System is initialized
3424   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3425   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3426 
3427   // an instance of OutOfMemory exception has been allocated earlier
3428   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3429   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3430   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3431   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3432   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3433   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3434   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3435   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3436 }
3437 
3438 void Threads::initialize_jsr292_core_classes(TRAPS) {
3439   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3440 
3441   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3442   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3443   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3444   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3445 }
3446 
3447 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3448   extern void JDK_Version_init();
3449 
3450   // Preinitialize version info.
3451   VM_Version::early_initialize();
3452 
3453   // Check version
3454   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3455 
3456   // Initialize library-based TLS
3457   ThreadLocalStorage::init();
3458 
3459   // Initialize the output stream module
3460   ostream_init();
3461 
3462   // Process java launcher properties.
3463   Arguments::process_sun_java_launcher_properties(args);
3464 
3465   // Initialize the os module
3466   os::init();
3467 
3468   // Record VM creation timing statistics
3469   TraceVmCreationTime create_vm_timer;
3470   create_vm_timer.start();
3471 
3472   // Initialize system properties.
3473   Arguments::init_system_properties();
3474 
3475   // So that JDK version can be used as a discriminator when parsing arguments
3476   JDK_Version_init();
3477 
3478   // Update/Initialize System properties after JDK version number is known
3479   Arguments::init_version_specific_system_properties();
3480 
3481   // Make sure to initialize log configuration *before* parsing arguments
3482   LogConfiguration::initialize(create_vm_timer.begin_time());
3483 
3484   // Parse arguments
3485   jint parse_result = Arguments::parse(args);
3486   if (parse_result != JNI_OK) return parse_result;
3487 
3488   os::init_before_ergo();
3489 
3490   jint ergo_result = Arguments::apply_ergo();
3491   if (ergo_result != JNI_OK) return ergo_result;
3492 
3493   // Final check of all ranges after ergonomics which may change values.
3494   if (!CommandLineFlagRangeList::check_ranges()) {
3495     return JNI_EINVAL;
3496   }
3497 
3498   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3499   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3500   if (!constraint_result) {
3501     return JNI_EINVAL;
3502   }
3503 
3504   CommandLineFlagWriteableList::mark_startup();
3505 
3506   if (PauseAtStartup) {
3507     os::pause();
3508   }
3509 
3510   HOTSPOT_VM_INIT_BEGIN();
3511 
3512   // Timing (must come after argument parsing)
3513   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3514 
3515   // Initialize the os module after parsing the args
3516   jint os_init_2_result = os::init_2();
3517   if (os_init_2_result != JNI_OK) return os_init_2_result;
3518 
3519   jint adjust_after_os_result = Arguments::adjust_after_os();
3520   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3521 
3522   // Initialize output stream logging
3523   ostream_init_log();
3524 
3525   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3526   // Must be before create_vm_init_agents()
3527   if (Arguments::init_libraries_at_startup()) {
3528     convert_vm_init_libraries_to_agents();
3529   }
3530 
3531   // Launch -agentlib/-agentpath and converted -Xrun agents
3532   if (Arguments::init_agents_at_startup()) {
3533     create_vm_init_agents();
3534   }
3535 
3536   // Initialize Threads state
3537   _thread_list = NULL;
3538   _number_of_threads = 0;
3539   _number_of_non_daemon_threads = 0;
3540 
3541   // Initialize global data structures and create system classes in heap
3542   vm_init_globals();
3543 
3544 #if INCLUDE_JVMCI
3545   if (JVMCICounterSize > 0) {
3546     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3547     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3548   } else {
3549     JavaThread::_jvmci_old_thread_counters = NULL;
3550   }
3551 #endif // INCLUDE_JVMCI
3552 
3553   // Attach the main thread to this os thread
3554   JavaThread* main_thread = new JavaThread();
3555   main_thread->set_thread_state(_thread_in_vm);
3556   main_thread->initialize_thread_current();
3557   // must do this before set_active_handles
3558   main_thread->record_stack_base_and_size();
3559   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3560 
3561   if (!main_thread->set_as_starting_thread()) {
3562     vm_shutdown_during_initialization(
3563                                       "Failed necessary internal allocation. Out of swap space");
3564     delete main_thread;
3565     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3566     return JNI_ENOMEM;
3567   }
3568 
3569   // Enable guard page *after* os::create_main_thread(), otherwise it would
3570   // crash Linux VM, see notes in os_linux.cpp.
3571   main_thread->create_stack_guard_pages();
3572 
3573   // Initialize Java-Level synchronization subsystem
3574   ObjectMonitor::Initialize();
3575 
3576   // Initialize global modules
3577   jint status = init_globals();
3578   if (status != JNI_OK) {
3579     delete main_thread;
3580     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3581     return status;
3582   }
3583 
3584   if (TRACE_INITIALIZE() != JNI_OK) {
3585     vm_exit_during_initialization("Failed to initialize tracing backend");
3586   }
3587 
3588   // Should be done after the heap is fully created
3589   main_thread->cache_global_variables();
3590 
3591   HandleMark hm;
3592 
3593   { MutexLocker mu(Threads_lock);
3594     Threads::add(main_thread);
3595   }
3596 
3597   // Any JVMTI raw monitors entered in onload will transition into
3598   // real raw monitor. VM is setup enough here for raw monitor enter.
3599   JvmtiExport::transition_pending_onload_raw_monitors();
3600 
3601   // Create the VMThread
3602   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3603 
3604   VMThread::create();
3605     Thread* vmthread = VMThread::vm_thread();
3606 
3607     if (!os::create_thread(vmthread, os::vm_thread)) {
3608       vm_exit_during_initialization("Cannot create VM thread. "
3609                                     "Out of system resources.");
3610     }
3611 
3612     // Wait for the VM thread to become ready, and VMThread::run to initialize
3613     // Monitors can have spurious returns, must always check another state flag
3614     {
3615       MutexLocker ml(Notify_lock);
3616       os::start_thread(vmthread);
3617       while (vmthread->active_handles() == NULL) {
3618         Notify_lock->wait();
3619       }
3620     }
3621   }
3622 
3623   assert(Universe::is_fully_initialized(), "not initialized");
3624   if (VerifyDuringStartup) {
3625     // Make sure we're starting with a clean slate.
3626     VM_Verify verify_op;
3627     VMThread::execute(&verify_op);
3628   }
3629 
3630   Thread* THREAD = Thread::current();
3631 
3632   // At this point, the Universe is initialized, but we have not executed
3633   // any byte code.  Now is a good time (the only time) to dump out the
3634   // internal state of the JVM for sharing.
3635   if (DumpSharedSpaces) {
3636     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3637     ShouldNotReachHere();
3638   }
3639 
3640   // Always call even when there are not JVMTI environments yet, since environments
3641   // may be attached late and JVMTI must track phases of VM execution
3642   JvmtiExport::enter_early_start_phase();
3643 
3644   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3645   JvmtiExport::post_early_vm_start();
3646 
3647   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3648 
3649   // We need this for ClassDataSharing - the initial vm.info property is set
3650   // with the default value of CDS "sharing" which may be reset through
3651   // command line options.
3652   reset_vm_info_property(CHECK_JNI_ERR);
3653 
3654   quicken_jni_functions();
3655 
3656   // No more stub generation allowed after that point.
3657   StubCodeDesc::freeze();
3658 
3659   // Set flag that basic initialization has completed. Used by exceptions and various
3660   // debug stuff, that does not work until all basic classes have been initialized.
3661   set_init_completed();
3662 
3663   LogConfiguration::post_initialize();
3664   Metaspace::post_initialize();
3665 
3666   HOTSPOT_VM_INIT_END();
3667 
3668   // record VM initialization completion time
3669 #if INCLUDE_MANAGEMENT
3670   Management::record_vm_init_completed();
3671 #endif // INCLUDE_MANAGEMENT
3672 
3673   // Signal Dispatcher needs to be started before VMInit event is posted
3674   os::signal_init(CHECK_JNI_ERR);
3675 
3676   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3677   if (!DisableAttachMechanism) {
3678     AttachListener::vm_start();
3679     if (StartAttachListener || AttachListener::init_at_startup()) {
3680       AttachListener::init();
3681     }
3682   }
3683 
3684   // Launch -Xrun agents
3685   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3686   // back-end can launch with -Xdebug -Xrunjdwp.
3687   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3688     create_vm_init_libraries();
3689   }
3690 
3691   if (CleanChunkPoolAsync) {
3692     Chunk::start_chunk_pool_cleaner_task();
3693   }
3694 
3695   // initialize compiler(s)
3696 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3697   CompileBroker::compilation_init(CHECK_JNI_ERR);
3698 #endif
3699 
3700   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3701   // It is done after compilers are initialized, because otherwise compilations of
3702   // signature polymorphic MH intrinsics can be missed
3703   // (see SystemDictionary::find_method_handle_intrinsic).
3704   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3705 
3706   // This will initialize the module system.  Only java.base classes can be
3707   // loaded until phase 2 completes
3708   call_initPhase2(CHECK_JNI_ERR);
3709 
3710   // Always call even when there are not JVMTI environments yet, since environments
3711   // may be attached late and JVMTI must track phases of VM execution
3712   JvmtiExport::enter_start_phase();
3713 
3714   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3715   JvmtiExport::post_vm_start();
3716 
3717   // Final system initialization including security manager and system class loader
3718   call_initPhase3(CHECK_JNI_ERR);
3719 
3720   // cache the system class loader
3721   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3722 
3723 #if INCLUDE_JVMCI
3724   if (EnableJVMCI) {
3725     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3726     // The JVMCI Java initialization code will read this flag and
3727     // do the printing if it's set.
3728     bool init = JVMCIPrintProperties;
3729 
3730     if (!init) {
3731       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3732       // compilations via JVMCI will not actually block until JVMCI is initialized.
3733       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3734     }
3735 
3736     if (init) {
3737       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3738     }
3739   }
3740 #endif
3741 
3742   // Always call even when there are not JVMTI environments yet, since environments
3743   // may be attached late and JVMTI must track phases of VM execution
3744   JvmtiExport::enter_live_phase();
3745 
3746   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3747   JvmtiExport::post_vm_initialized();
3748 
3749   if (TRACE_START() != JNI_OK) {
3750     vm_exit_during_initialization("Failed to start tracing backend.");
3751   }
3752 
3753 #if INCLUDE_MANAGEMENT
3754   Management::initialize(THREAD);
3755 
3756   if (HAS_PENDING_EXCEPTION) {
3757     // management agent fails to start possibly due to
3758     // configuration problem and is responsible for printing
3759     // stack trace if appropriate. Simply exit VM.
3760     vm_exit(1);
3761   }
3762 #endif // INCLUDE_MANAGEMENT
3763 
3764   if (MemProfiling)                   MemProfiler::engage();
3765   StatSampler::engage();
3766   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3767 
3768   BiasedLocking::init();
3769 
3770 #if INCLUDE_RTM_OPT
3771   RTMLockingCounters::init();
3772 #endif
3773 
3774   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3775     call_postVMInitHook(THREAD);
3776     // The Java side of PostVMInitHook.run must deal with all
3777     // exceptions and provide means of diagnosis.
3778     if (HAS_PENDING_EXCEPTION) {
3779       CLEAR_PENDING_EXCEPTION;
3780     }
3781   }
3782 
3783   {
3784     MutexLocker ml(PeriodicTask_lock);
3785     // Make sure the WatcherThread can be started by WatcherThread::start()
3786     // or by dynamic enrollment.
3787     WatcherThread::make_startable();
3788     // Start up the WatcherThread if there are any periodic tasks
3789     // NOTE:  All PeriodicTasks should be registered by now. If they
3790     //   aren't, late joiners might appear to start slowly (we might
3791     //   take a while to process their first tick).
3792     if (PeriodicTask::num_tasks() > 0) {
3793       WatcherThread::start();
3794     }
3795   }
3796 
3797   create_vm_timer.end();
3798 #ifdef ASSERT
3799   _vm_complete = true;
3800 #endif
3801   return JNI_OK;
3802 }
3803 
3804 // type for the Agent_OnLoad and JVM_OnLoad entry points
3805 extern "C" {
3806   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3807 }
3808 // Find a command line agent library and return its entry point for
3809 //         -agentlib:  -agentpath:   -Xrun
3810 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3811 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3812                                     const char *on_load_symbols[],
3813                                     size_t num_symbol_entries) {
3814   OnLoadEntry_t on_load_entry = NULL;
3815   void *library = NULL;
3816 
3817   if (!agent->valid()) {
3818     char buffer[JVM_MAXPATHLEN];
3819     char ebuf[1024] = "";
3820     const char *name = agent->name();
3821     const char *msg = "Could not find agent library ";
3822 
3823     // First check to see if agent is statically linked into executable
3824     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3825       library = agent->os_lib();
3826     } else if (agent->is_absolute_path()) {
3827       library = os::dll_load(name, ebuf, sizeof ebuf);
3828       if (library == NULL) {
3829         const char *sub_msg = " in absolute path, with error: ";
3830         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3831         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3832         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3833         // If we can't find the agent, exit.
3834         vm_exit_during_initialization(buf, NULL);
3835         FREE_C_HEAP_ARRAY(char, buf);
3836       }
3837     } else {
3838       // Try to load the agent from the standard dll directory
3839       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3840                              name)) {
3841         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3842       }
3843       if (library == NULL) { // Try the local directory
3844         char ns[1] = {0};
3845         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3846           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3847         }
3848         if (library == NULL) {
3849           const char *sub_msg = " on the library path, with error: ";
3850           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3851           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3852           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3853           // If we can't find the agent, exit.
3854           vm_exit_during_initialization(buf, NULL);
3855           FREE_C_HEAP_ARRAY(char, buf);
3856         }
3857       }
3858     }
3859     agent->set_os_lib(library);
3860     agent->set_valid();
3861   }
3862 
3863   // Find the OnLoad function.
3864   on_load_entry =
3865     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3866                                                           false,
3867                                                           on_load_symbols,
3868                                                           num_symbol_entries));
3869   return on_load_entry;
3870 }
3871 
3872 // Find the JVM_OnLoad entry point
3873 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3874   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3875   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3876 }
3877 
3878 // Find the Agent_OnLoad entry point
3879 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3880   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3881   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3882 }
3883 
3884 // For backwards compatibility with -Xrun
3885 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3886 // treated like -agentpath:
3887 // Must be called before agent libraries are created
3888 void Threads::convert_vm_init_libraries_to_agents() {
3889   AgentLibrary* agent;
3890   AgentLibrary* next;
3891 
3892   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3893     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3894     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3895 
3896     // If there is an JVM_OnLoad function it will get called later,
3897     // otherwise see if there is an Agent_OnLoad
3898     if (on_load_entry == NULL) {
3899       on_load_entry = lookup_agent_on_load(agent);
3900       if (on_load_entry != NULL) {
3901         // switch it to the agent list -- so that Agent_OnLoad will be called,
3902         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3903         Arguments::convert_library_to_agent(agent);
3904       } else {
3905         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3906       }
3907     }
3908   }
3909 }
3910 
3911 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3912 // Invokes Agent_OnLoad
3913 // Called very early -- before JavaThreads exist
3914 void Threads::create_vm_init_agents() {
3915   extern struct JavaVM_ main_vm;
3916   AgentLibrary* agent;
3917 
3918   JvmtiExport::enter_onload_phase();
3919 
3920   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3921     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3922 
3923     if (on_load_entry != NULL) {
3924       // Invoke the Agent_OnLoad function
3925       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3926       if (err != JNI_OK) {
3927         vm_exit_during_initialization("agent library failed to init", agent->name());
3928       }
3929     } else {
3930       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3931     }
3932   }
3933   JvmtiExport::enter_primordial_phase();
3934 }
3935 
3936 extern "C" {
3937   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3938 }
3939 
3940 void Threads::shutdown_vm_agents() {
3941   // Send any Agent_OnUnload notifications
3942   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3943   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3944   extern struct JavaVM_ main_vm;
3945   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3946 
3947     // Find the Agent_OnUnload function.
3948     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3949                                                    os::find_agent_function(agent,
3950                                                    false,
3951                                                    on_unload_symbols,
3952                                                    num_symbol_entries));
3953 
3954     // Invoke the Agent_OnUnload function
3955     if (unload_entry != NULL) {
3956       JavaThread* thread = JavaThread::current();
3957       ThreadToNativeFromVM ttn(thread);
3958       HandleMark hm(thread);
3959       (*unload_entry)(&main_vm);
3960     }
3961   }
3962 }
3963 
3964 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3965 // Invokes JVM_OnLoad
3966 void Threads::create_vm_init_libraries() {
3967   extern struct JavaVM_ main_vm;
3968   AgentLibrary* agent;
3969 
3970   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3971     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3972 
3973     if (on_load_entry != NULL) {
3974       // Invoke the JVM_OnLoad function
3975       JavaThread* thread = JavaThread::current();
3976       ThreadToNativeFromVM ttn(thread);
3977       HandleMark hm(thread);
3978       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3979       if (err != JNI_OK) {
3980         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3981       }
3982     } else {
3983       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3984     }
3985   }
3986 }
3987 
3988 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3989   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3990 
3991   JavaThread* java_thread = NULL;
3992   // Sequential search for now.  Need to do better optimization later.
3993   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3994     oop tobj = thread->threadObj();
3995     if (!thread->is_exiting() &&
3996         tobj != NULL &&
3997         java_tid == java_lang_Thread::thread_id(tobj)) {
3998       java_thread = thread;
3999       break;
4000     }
4001   }
4002   return java_thread;
4003 }
4004 
4005 
4006 // Last thread running calls java.lang.Shutdown.shutdown()
4007 void JavaThread::invoke_shutdown_hooks() {
4008   HandleMark hm(this);
4009 
4010   // We could get here with a pending exception, if so clear it now.
4011   if (this->has_pending_exception()) {
4012     this->clear_pending_exception();
4013   }
4014 
4015   EXCEPTION_MARK;
4016   Klass* shutdown_klass =
4017     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4018                                       THREAD);
4019   if (shutdown_klass != NULL) {
4020     // SystemDictionary::resolve_or_null will return null if there was
4021     // an exception.  If we cannot load the Shutdown class, just don't
4022     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4023     // and finalizers (if runFinalizersOnExit is set) won't be run.
4024     // Note that if a shutdown hook was registered or runFinalizersOnExit
4025     // was called, the Shutdown class would have already been loaded
4026     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4027     JavaValue result(T_VOID);
4028     JavaCalls::call_static(&result,
4029                            shutdown_klass,
4030                            vmSymbols::shutdown_method_name(),
4031                            vmSymbols::void_method_signature(),
4032                            THREAD);
4033   }
4034   CLEAR_PENDING_EXCEPTION;
4035 }
4036 
4037 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4038 // the program falls off the end of main(). Another VM exit path is through
4039 // vm_exit() when the program calls System.exit() to return a value or when
4040 // there is a serious error in VM. The two shutdown paths are not exactly
4041 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4042 // and VM_Exit op at VM level.
4043 //
4044 // Shutdown sequence:
4045 //   + Shutdown native memory tracking if it is on
4046 //   + Wait until we are the last non-daemon thread to execute
4047 //     <-- every thing is still working at this moment -->
4048 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4049 //        shutdown hooks, run finalizers if finalization-on-exit
4050 //   + Call before_exit(), prepare for VM exit
4051 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4052 //        currently the only user of this mechanism is File.deleteOnExit())
4053 //      > stop StatSampler, watcher thread, CMS threads,
4054 //        post thread end and vm death events to JVMTI,
4055 //        stop signal thread
4056 //   + Call JavaThread::exit(), it will:
4057 //      > release JNI handle blocks, remove stack guard pages
4058 //      > remove this thread from Threads list
4059 //     <-- no more Java code from this thread after this point -->
4060 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4061 //     the compiler threads at safepoint
4062 //     <-- do not use anything that could get blocked by Safepoint -->
4063 //   + Disable tracing at JNI/JVM barriers
4064 //   + Set _vm_exited flag for threads that are still running native code
4065 //   + Delete this thread
4066 //   + Call exit_globals()
4067 //      > deletes tty
4068 //      > deletes PerfMemory resources
4069 //   + Return to caller
4070 
4071 bool Threads::destroy_vm() {
4072   JavaThread* thread = JavaThread::current();
4073 
4074 #ifdef ASSERT
4075   _vm_complete = false;
4076 #endif
4077   // Wait until we are the last non-daemon thread to execute
4078   { MutexLocker nu(Threads_lock);
4079     while (Threads::number_of_non_daemon_threads() > 1)
4080       // This wait should make safepoint checks, wait without a timeout,
4081       // and wait as a suspend-equivalent condition.
4082       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4083                          Mutex::_as_suspend_equivalent_flag);
4084   }
4085 
4086   // Hang forever on exit if we are reporting an error.
4087   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4088     os::infinite_sleep();
4089   }
4090   os::wait_for_keypress_at_exit();
4091 
4092   // run Java level shutdown hooks
4093   thread->invoke_shutdown_hooks();
4094 
4095   before_exit(thread);
4096 
4097   thread->exit(true);
4098 
4099   // Stop VM thread.
4100   {
4101     // 4945125 The vm thread comes to a safepoint during exit.
4102     // GC vm_operations can get caught at the safepoint, and the
4103     // heap is unparseable if they are caught. Grab the Heap_lock
4104     // to prevent this. The GC vm_operations will not be able to
4105     // queue until after the vm thread is dead. After this point,
4106     // we'll never emerge out of the safepoint before the VM exits.
4107 
4108     MutexLocker ml(Heap_lock);
4109 
4110     VMThread::wait_for_vm_thread_exit();
4111     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4112     VMThread::destroy();
4113   }
4114 
4115   // clean up ideal graph printers
4116 #if defined(COMPILER2) && !defined(PRODUCT)
4117   IdealGraphPrinter::clean_up();
4118 #endif
4119 
4120   // Now, all Java threads are gone except daemon threads. Daemon threads
4121   // running Java code or in VM are stopped by the Safepoint. However,
4122   // daemon threads executing native code are still running.  But they
4123   // will be stopped at native=>Java/VM barriers. Note that we can't
4124   // simply kill or suspend them, as it is inherently deadlock-prone.
4125 
4126   VM_Exit::set_vm_exited();
4127 
4128   notify_vm_shutdown();
4129 
4130   delete thread;
4131 
4132 #if INCLUDE_JVMCI
4133   if (JVMCICounterSize > 0) {
4134     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4135   }
4136 #endif
4137 
4138   // exit_globals() will delete tty
4139   exit_globals();
4140 
4141   LogConfiguration::finalize();
4142 
4143   return true;
4144 }
4145 
4146 
4147 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4148   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4149   return is_supported_jni_version(version);
4150 }
4151 
4152 
4153 jboolean Threads::is_supported_jni_version(jint version) {
4154   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4155   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4156   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4157   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4158   if (version == JNI_VERSION_9) return JNI_TRUE;
4159   return JNI_FALSE;
4160 }
4161 
4162 
4163 void Threads::add(JavaThread* p, bool force_daemon) {
4164   // The threads lock must be owned at this point
4165   assert_locked_or_safepoint(Threads_lock);
4166 
4167   // See the comment for this method in thread.hpp for its purpose and
4168   // why it is called here.
4169   p->initialize_queues();
4170   p->set_next(_thread_list);
4171   _thread_list = p;
4172   _number_of_threads++;
4173   oop threadObj = p->threadObj();
4174   bool daemon = true;
4175   // Bootstrapping problem: threadObj can be null for initial
4176   // JavaThread (or for threads attached via JNI)
4177   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4178     _number_of_non_daemon_threads++;
4179     daemon = false;
4180   }
4181 
4182   ThreadService::add_thread(p, daemon);
4183 
4184   // Possible GC point.
4185   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4186 }
4187 
4188 void Threads::remove(JavaThread* p) {
4189 
4190   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4191   ObjectSynchronizer::omFlush(p);
4192 
4193   // Extra scope needed for Thread_lock, so we can check
4194   // that we do not remove thread without safepoint code notice
4195   { MutexLocker ml(Threads_lock);
4196 
4197     assert(includes(p), "p must be present");
4198 
4199     JavaThread* current = _thread_list;
4200     JavaThread* prev    = NULL;
4201 
4202     while (current != p) {
4203       prev    = current;
4204       current = current->next();
4205     }
4206 
4207     if (prev) {
4208       prev->set_next(current->next());
4209     } else {
4210       _thread_list = p->next();
4211     }
4212     _number_of_threads--;
4213     oop threadObj = p->threadObj();
4214     bool daemon = true;
4215     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4216       _number_of_non_daemon_threads--;
4217       daemon = false;
4218 
4219       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4220       // on destroy_vm will wake up.
4221       if (number_of_non_daemon_threads() == 1) {
4222         Threads_lock->notify_all();
4223       }
4224     }
4225     ThreadService::remove_thread(p, daemon);
4226 
4227     // Make sure that safepoint code disregard this thread. This is needed since
4228     // the thread might mess around with locks after this point. This can cause it
4229     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4230     // of this thread since it is removed from the queue.
4231     p->set_terminated_value();
4232   } // unlock Threads_lock
4233 
4234   // Since Events::log uses a lock, we grab it outside the Threads_lock
4235   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4236 }
4237 
4238 // Threads_lock must be held when this is called (or must be called during a safepoint)
4239 bool Threads::includes(JavaThread* p) {
4240   assert(Threads_lock->is_locked(), "sanity check");
4241   ALL_JAVA_THREADS(q) {
4242     if (q == p) {
4243       return true;
4244     }
4245   }
4246   return false;
4247 }
4248 
4249 // Operations on the Threads list for GC.  These are not explicitly locked,
4250 // but the garbage collector must provide a safe context for them to run.
4251 // In particular, these things should never be called when the Threads_lock
4252 // is held by some other thread. (Note: the Safepoint abstraction also
4253 // uses the Threads_lock to guarantee this property. It also makes sure that
4254 // all threads gets blocked when exiting or starting).
4255 
4256 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4257   ALL_JAVA_THREADS(p) {
4258     p->oops_do(f, cf);
4259   }
4260   VMThread::vm_thread()->oops_do(f, cf);
4261 }
4262 
4263 void Threads::change_thread_claim_parity() {
4264   // Set the new claim parity.
4265   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4266          "Not in range.");
4267   _thread_claim_parity++;
4268   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4269   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4270          "Not in range.");
4271 }
4272 
4273 #ifdef ASSERT
4274 void Threads::assert_all_threads_claimed() {
4275   ALL_JAVA_THREADS(p) {
4276     const int thread_parity = p->oops_do_parity();
4277     assert((thread_parity == _thread_claim_parity),
4278            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4279   }
4280 }
4281 #endif // ASSERT
4282 
4283 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4284   int cp = Threads::thread_claim_parity();
4285   ALL_JAVA_THREADS(p) {
4286     if (p->claim_oops_do(is_par, cp)) {
4287       p->oops_do(f, cf);
4288     }
4289   }
4290   VMThread* vmt = VMThread::vm_thread();
4291   if (vmt->claim_oops_do(is_par, cp)) {
4292     vmt->oops_do(f, cf);
4293   }
4294 }
4295 
4296 #if INCLUDE_ALL_GCS
4297 // Used by ParallelScavenge
4298 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4299   ALL_JAVA_THREADS(p) {
4300     q->enqueue(new ThreadRootsTask(p));
4301   }
4302   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4303 }
4304 
4305 // Used by Parallel Old
4306 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4307   ALL_JAVA_THREADS(p) {
4308     q->enqueue(new ThreadRootsMarkingTask(p));
4309   }
4310   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4311 }
4312 #endif // INCLUDE_ALL_GCS
4313 
4314 void Threads::nmethods_do(CodeBlobClosure* cf) {
4315   ALL_JAVA_THREADS(p) {
4316     // This is used by the code cache sweeper to mark nmethods that are active
4317     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4318     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4319     if(!p->is_Code_cache_sweeper_thread()) {
4320       p->nmethods_do(cf);
4321     }
4322   }
4323 }
4324 
4325 void Threads::metadata_do(void f(Metadata*)) {
4326   ALL_JAVA_THREADS(p) {
4327     p->metadata_do(f);
4328   }
4329 }
4330 
4331 class ThreadHandlesClosure : public ThreadClosure {
4332   void (*_f)(Metadata*);
4333  public:
4334   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4335   virtual void do_thread(Thread* thread) {
4336     thread->metadata_handles_do(_f);
4337   }
4338 };
4339 
4340 void Threads::metadata_handles_do(void f(Metadata*)) {
4341   // Only walk the Handles in Thread.
4342   ThreadHandlesClosure handles_closure(f);
4343   threads_do(&handles_closure);
4344 }
4345 
4346 void Threads::deoptimized_wrt_marked_nmethods() {
4347   ALL_JAVA_THREADS(p) {
4348     p->deoptimized_wrt_marked_nmethods();
4349   }
4350 }
4351 
4352 
4353 // Get count Java threads that are waiting to enter the specified monitor.
4354 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4355                                                          address monitor,
4356                                                          bool doLock) {
4357   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4358          "must grab Threads_lock or be at safepoint");
4359   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4360 
4361   int i = 0;
4362   {
4363     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4364     ALL_JAVA_THREADS(p) {
4365       if (!p->can_call_java()) continue;
4366 
4367       address pending = (address)p->current_pending_monitor();
4368       if (pending == monitor) {             // found a match
4369         if (i < count) result->append(p);   // save the first count matches
4370         i++;
4371       }
4372     }
4373   }
4374   return result;
4375 }
4376 
4377 
4378 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4379                                                       bool doLock) {
4380   assert(doLock ||
4381          Threads_lock->owned_by_self() ||
4382          SafepointSynchronize::is_at_safepoint(),
4383          "must grab Threads_lock or be at safepoint");
4384 
4385   // NULL owner means not locked so we can skip the search
4386   if (owner == NULL) return NULL;
4387 
4388   {
4389     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4390     ALL_JAVA_THREADS(p) {
4391       // first, see if owner is the address of a Java thread
4392       if (owner == (address)p) return p;
4393     }
4394   }
4395   // Cannot assert on lack of success here since this function may be
4396   // used by code that is trying to report useful problem information
4397   // like deadlock detection.
4398   if (UseHeavyMonitors) return NULL;
4399 
4400   // If we didn't find a matching Java thread and we didn't force use of
4401   // heavyweight monitors, then the owner is the stack address of the
4402   // Lock Word in the owning Java thread's stack.
4403   //
4404   JavaThread* the_owner = NULL;
4405   {
4406     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4407     ALL_JAVA_THREADS(q) {
4408       if (q->is_lock_owned(owner)) {
4409         the_owner = q;
4410         break;
4411       }
4412     }
4413   }
4414   // cannot assert on lack of success here; see above comment
4415   return the_owner;
4416 }
4417 
4418 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4419 void Threads::print_on(outputStream* st, bool print_stacks,
4420                        bool internal_format, bool print_concurrent_locks) {
4421   char buf[32];
4422   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4423 
4424   st->print_cr("Full thread dump %s (%s %s):",
4425                Abstract_VM_Version::vm_name(),
4426                Abstract_VM_Version::vm_release(),
4427                Abstract_VM_Version::vm_info_string());
4428   st->cr();
4429 
4430 #if INCLUDE_SERVICES
4431   // Dump concurrent locks
4432   ConcurrentLocksDump concurrent_locks;
4433   if (print_concurrent_locks) {
4434     concurrent_locks.dump_at_safepoint();
4435   }
4436 #endif // INCLUDE_SERVICES
4437 
4438   ALL_JAVA_THREADS(p) {
4439     ResourceMark rm;
4440     p->print_on(st);
4441     if (print_stacks) {
4442       if (internal_format) {
4443         p->trace_stack();
4444       } else {
4445         p->print_stack_on(st);
4446       }
4447     }
4448     st->cr();
4449 #if INCLUDE_SERVICES
4450     if (print_concurrent_locks) {
4451       concurrent_locks.print_locks_on(p, st);
4452     }
4453 #endif // INCLUDE_SERVICES
4454   }
4455 
4456   VMThread::vm_thread()->print_on(st);
4457   st->cr();
4458   Universe::heap()->print_gc_threads_on(st);
4459   WatcherThread* wt = WatcherThread::watcher_thread();
4460   if (wt != NULL) {
4461     wt->print_on(st);
4462     st->cr();
4463   }
4464   st->flush();
4465 }
4466 
4467 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4468                              int buflen, bool* found_current) {
4469   if (this_thread != NULL) {
4470     bool is_current = (current == this_thread);
4471     *found_current = *found_current || is_current;
4472     st->print("%s", is_current ? "=>" : "  ");
4473 
4474     st->print(PTR_FORMAT, p2i(this_thread));
4475     st->print(" ");
4476     this_thread->print_on_error(st, buf, buflen);
4477     st->cr();
4478   }
4479 }
4480 
4481 class PrintOnErrorClosure : public ThreadClosure {
4482   outputStream* _st;
4483   Thread* _current;
4484   char* _buf;
4485   int _buflen;
4486   bool* _found_current;
4487  public:
4488   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4489                       int buflen, bool* found_current) :
4490    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4491 
4492   virtual void do_thread(Thread* thread) {
4493     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4494   }
4495 };
4496 
4497 // Threads::print_on_error() is called by fatal error handler. It's possible
4498 // that VM is not at safepoint and/or current thread is inside signal handler.
4499 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4500 // memory (even in resource area), it might deadlock the error handler.
4501 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4502                              int buflen) {
4503   bool found_current = false;
4504   st->print_cr("Java Threads: ( => current thread )");
4505   ALL_JAVA_THREADS(thread) {
4506     print_on_error(thread, st, current, buf, buflen, &found_current);
4507   }
4508   st->cr();
4509 
4510   st->print_cr("Other Threads:");
4511   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4512   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4513 
4514   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4515   Universe::heap()->gc_threads_do(&print_closure);
4516 
4517   if (!found_current) {
4518     st->cr();
4519     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4520     current->print_on_error(st, buf, buflen);
4521     st->cr();
4522   }
4523   st->cr();
4524   st->print_cr("Threads with active compile tasks:");
4525   print_threads_compiling(st, buf, buflen);
4526 }
4527 
4528 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4529   ALL_JAVA_THREADS(thread) {
4530     if (thread->is_Compiler_thread()) {
4531       CompilerThread* ct = (CompilerThread*) thread;
4532       if (ct->task() != NULL) {
4533         thread->print_name_on_error(st, buf, buflen);
4534         ct->task()->print(st, NULL, true, true);
4535       }
4536     }
4537   }
4538 }
4539 
4540 
4541 // Internal SpinLock and Mutex
4542 // Based on ParkEvent
4543 
4544 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4545 //
4546 // We employ SpinLocks _only for low-contention, fixed-length
4547 // short-duration critical sections where we're concerned
4548 // about native mutex_t or HotSpot Mutex:: latency.
4549 // The mux construct provides a spin-then-block mutual exclusion
4550 // mechanism.
4551 //
4552 // Testing has shown that contention on the ListLock guarding gFreeList
4553 // is common.  If we implement ListLock as a simple SpinLock it's common
4554 // for the JVM to devolve to yielding with little progress.  This is true
4555 // despite the fact that the critical sections protected by ListLock are
4556 // extremely short.
4557 //
4558 // TODO-FIXME: ListLock should be of type SpinLock.
4559 // We should make this a 1st-class type, integrated into the lock
4560 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4561 // should have sufficient padding to avoid false-sharing and excessive
4562 // cache-coherency traffic.
4563 
4564 
4565 typedef volatile int SpinLockT;
4566 
4567 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4568   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4569     return;   // normal fast-path return
4570   }
4571 
4572   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4573   TEVENT(SpinAcquire - ctx);
4574   int ctr = 0;
4575   int Yields = 0;
4576   for (;;) {
4577     while (*adr != 0) {
4578       ++ctr;
4579       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4580         if (Yields > 5) {
4581           os::naked_short_sleep(1);
4582         } else {
4583           os::naked_yield();
4584           ++Yields;
4585         }
4586       } else {
4587         SpinPause();
4588       }
4589     }
4590     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4591   }
4592 }
4593 
4594 void Thread::SpinRelease(volatile int * adr) {
4595   assert(*adr != 0, "invariant");
4596   OrderAccess::fence();      // guarantee at least release consistency.
4597   // Roach-motel semantics.
4598   // It's safe if subsequent LDs and STs float "up" into the critical section,
4599   // but prior LDs and STs within the critical section can't be allowed
4600   // to reorder or float past the ST that releases the lock.
4601   // Loads and stores in the critical section - which appear in program
4602   // order before the store that releases the lock - must also appear
4603   // before the store that releases the lock in memory visibility order.
4604   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4605   // the ST of 0 into the lock-word which releases the lock, so fence
4606   // more than covers this on all platforms.
4607   *adr = 0;
4608 }
4609 
4610 // muxAcquire and muxRelease:
4611 //
4612 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4613 //    The LSB of the word is set IFF the lock is held.
4614 //    The remainder of the word points to the head of a singly-linked list
4615 //    of threads blocked on the lock.
4616 //
4617 // *  The current implementation of muxAcquire-muxRelease uses its own
4618 //    dedicated Thread._MuxEvent instance.  If we're interested in
4619 //    minimizing the peak number of extant ParkEvent instances then
4620 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4621 //    as certain invariants were satisfied.  Specifically, care would need
4622 //    to be taken with regards to consuming unpark() "permits".
4623 //    A safe rule of thumb is that a thread would never call muxAcquire()
4624 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4625 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4626 //    consume an unpark() permit intended for monitorenter, for instance.
4627 //    One way around this would be to widen the restricted-range semaphore
4628 //    implemented in park().  Another alternative would be to provide
4629 //    multiple instances of the PlatformEvent() for each thread.  One
4630 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4631 //
4632 // *  Usage:
4633 //    -- Only as leaf locks
4634 //    -- for short-term locking only as muxAcquire does not perform
4635 //       thread state transitions.
4636 //
4637 // Alternatives:
4638 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4639 //    but with parking or spin-then-park instead of pure spinning.
4640 // *  Use Taura-Oyama-Yonenzawa locks.
4641 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4642 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4643 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4644 //    acquiring threads use timers (ParkTimed) to detect and recover from
4645 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4646 //    boundaries by using placement-new.
4647 // *  Augment MCS with advisory back-link fields maintained with CAS().
4648 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4649 //    The validity of the backlinks must be ratified before we trust the value.
4650 //    If the backlinks are invalid the exiting thread must back-track through the
4651 //    the forward links, which are always trustworthy.
4652 // *  Add a successor indication.  The LockWord is currently encoded as
4653 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4654 //    to provide the usual futile-wakeup optimization.
4655 //    See RTStt for details.
4656 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4657 //
4658 
4659 
4660 typedef volatile intptr_t MutexT;      // Mux Lock-word
4661 enum MuxBits { LOCKBIT = 1 };
4662 
4663 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4664   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4665   if (w == 0) return;
4666   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4667     return;
4668   }
4669 
4670   TEVENT(muxAcquire - Contention);
4671   ParkEvent * const Self = Thread::current()->_MuxEvent;
4672   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4673   for (;;) {
4674     int its = (os::is_MP() ? 100 : 0) + 1;
4675 
4676     // Optional spin phase: spin-then-park strategy
4677     while (--its >= 0) {
4678       w = *Lock;
4679       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4680         return;
4681       }
4682     }
4683 
4684     Self->reset();
4685     Self->OnList = intptr_t(Lock);
4686     // The following fence() isn't _strictly necessary as the subsequent
4687     // CAS() both serializes execution and ratifies the fetched *Lock value.
4688     OrderAccess::fence();
4689     for (;;) {
4690       w = *Lock;
4691       if ((w & LOCKBIT) == 0) {
4692         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4693           Self->OnList = 0;   // hygiene - allows stronger asserts
4694           return;
4695         }
4696         continue;      // Interference -- *Lock changed -- Just retry
4697       }
4698       assert(w & LOCKBIT, "invariant");
4699       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4700       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4701     }
4702 
4703     while (Self->OnList != 0) {
4704       Self->park();
4705     }
4706   }
4707 }
4708 
4709 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4710   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4711   if (w == 0) return;
4712   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4713     return;
4714   }
4715 
4716   TEVENT(muxAcquire - Contention);
4717   ParkEvent * ReleaseAfter = NULL;
4718   if (ev == NULL) {
4719     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4720   }
4721   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4722   for (;;) {
4723     guarantee(ev->OnList == 0, "invariant");
4724     int its = (os::is_MP() ? 100 : 0) + 1;
4725 
4726     // Optional spin phase: spin-then-park strategy
4727     while (--its >= 0) {
4728       w = *Lock;
4729       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4730         if (ReleaseAfter != NULL) {
4731           ParkEvent::Release(ReleaseAfter);
4732         }
4733         return;
4734       }
4735     }
4736 
4737     ev->reset();
4738     ev->OnList = intptr_t(Lock);
4739     // The following fence() isn't _strictly necessary as the subsequent
4740     // CAS() both serializes execution and ratifies the fetched *Lock value.
4741     OrderAccess::fence();
4742     for (;;) {
4743       w = *Lock;
4744       if ((w & LOCKBIT) == 0) {
4745         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4746           ev->OnList = 0;
4747           // We call ::Release while holding the outer lock, thus
4748           // artificially lengthening the critical section.
4749           // Consider deferring the ::Release() until the subsequent unlock(),
4750           // after we've dropped the outer lock.
4751           if (ReleaseAfter != NULL) {
4752             ParkEvent::Release(ReleaseAfter);
4753           }
4754           return;
4755         }
4756         continue;      // Interference -- *Lock changed -- Just retry
4757       }
4758       assert(w & LOCKBIT, "invariant");
4759       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4760       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4761     }
4762 
4763     while (ev->OnList != 0) {
4764       ev->park();
4765     }
4766   }
4767 }
4768 
4769 // Release() must extract a successor from the list and then wake that thread.
4770 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4771 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4772 // Release() would :
4773 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4774 // (B) Extract a successor from the private list "in-hand"
4775 // (C) attempt to CAS() the residual back into *Lock over null.
4776 //     If there were any newly arrived threads and the CAS() would fail.
4777 //     In that case Release() would detach the RATs, re-merge the list in-hand
4778 //     with the RATs and repeat as needed.  Alternately, Release() might
4779 //     detach and extract a successor, but then pass the residual list to the wakee.
4780 //     The wakee would be responsible for reattaching and remerging before it
4781 //     competed for the lock.
4782 //
4783 // Both "pop" and DMR are immune from ABA corruption -- there can be
4784 // multiple concurrent pushers, but only one popper or detacher.
4785 // This implementation pops from the head of the list.  This is unfair,
4786 // but tends to provide excellent throughput as hot threads remain hot.
4787 // (We wake recently run threads first).
4788 //
4789 // All paths through muxRelease() will execute a CAS.
4790 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4791 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4792 // executed within the critical section are complete and globally visible before the
4793 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4794 void Thread::muxRelease(volatile intptr_t * Lock)  {
4795   for (;;) {
4796     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4797     assert(w & LOCKBIT, "invariant");
4798     if (w == LOCKBIT) return;
4799     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4800     assert(List != NULL, "invariant");
4801     assert(List->OnList == intptr_t(Lock), "invariant");
4802     ParkEvent * const nxt = List->ListNext;
4803     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4804 
4805     // The following CAS() releases the lock and pops the head element.
4806     // The CAS() also ratifies the previously fetched lock-word value.
4807     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4808       continue;
4809     }
4810     List->OnList = 0;
4811     OrderAccess::fence();
4812     List->unpark();
4813     return;
4814   }
4815 }
4816 
4817 
4818 void Threads::verify() {
4819   ALL_JAVA_THREADS(p) {
4820     p->verify();
4821   }
4822   VMThread* thread = VMThread::vm_thread();
4823   if (thread != NULL) thread->verify();
4824 }