/* * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "aot/aotLoader.hpp" #include "classfile/classLoader.hpp" #include "classfile/classLoaderData.hpp" #include "classfile/javaClasses.hpp" #include "classfile/stringTable.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "code/codeCache.hpp" #include "code/dependencies.hpp" #include "gc/shared/cardTableModRefBS.hpp" #include "gc/shared/collectedHeap.inline.hpp" #include "gc/shared/gcLocker.inline.hpp" #include "gc/shared/genCollectedHeap.hpp" #include "gc/shared/generation.hpp" #include "gc/shared/gcTraceTime.inline.hpp" #include "gc/shared/space.hpp" #include "interpreter/interpreter.hpp" #include "logging/log.hpp" #include "memory/filemap.hpp" #include "memory/metadataFactory.hpp" #include "memory/metaspaceShared.hpp" #include "memory/oopFactory.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "memory/universe.inline.hpp" #include "oops/constantPool.hpp" #include "oops/instanceClassLoaderKlass.hpp" #include "oops/instanceKlass.hpp" #include "oops/instanceMirrorKlass.hpp" #include "oops/instanceRefKlass.hpp" #include "oops/objArrayOop.inline.hpp" #include "oops/oop.inline.hpp" #include "oops/typeArrayKlass.hpp" #include "prims/resolvedMethodTable.hpp" #include "runtime/arguments.hpp" #include "runtime/atomic.hpp" #include "runtime/commandLineFlagConstraintList.hpp" #include "runtime/deoptimization.hpp" #include "runtime/handles.inline.hpp" #include "runtime/init.hpp" #include "runtime/java.hpp" #include "runtime/javaCalls.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/synchronizer.hpp" #include "runtime/thread.inline.hpp" #include "runtime/timerTrace.hpp" #include "runtime/vm_operations.hpp" #include "services/memoryService.hpp" #include "utilities/align.hpp" #include "utilities/copy.hpp" #include "utilities/debug.hpp" #include "utilities/events.hpp" #include "utilities/formatBuffer.hpp" #include "utilities/hashtable.inline.hpp" #include "utilities/macros.hpp" #include "utilities/ostream.hpp" #include "utilities/preserveException.hpp" #if INCLUDE_ALL_GCS #include "gc/cms/cmsCollectorPolicy.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1CollectorPolicy.hpp" #include "gc/parallel/parallelScavengeHeap.hpp" #include "gc/shared/adaptiveSizePolicy.hpp" #endif // INCLUDE_ALL_GCS #if INCLUDE_CDS #include "classfile/sharedClassUtil.hpp" #endif // Known objects Klass* Universe::_boolArrayKlassObj = NULL; Klass* Universe::_byteArrayKlassObj = NULL; Klass* Universe::_charArrayKlassObj = NULL; Klass* Universe::_intArrayKlassObj = NULL; Klass* Universe::_shortArrayKlassObj = NULL; Klass* Universe::_longArrayKlassObj = NULL; Klass* Universe::_singleArrayKlassObj = NULL; Klass* Universe::_doubleArrayKlassObj = NULL; Klass* Universe::_typeArrayKlassObjs[T_VOID+1] = { NULL /*, NULL...*/ }; Klass* Universe::_objectArrayKlassObj = NULL; oop Universe::_int_mirror = NULL; oop Universe::_float_mirror = NULL; oop Universe::_double_mirror = NULL; oop Universe::_byte_mirror = NULL; oop Universe::_bool_mirror = NULL; oop Universe::_char_mirror = NULL; oop Universe::_long_mirror = NULL; oop Universe::_short_mirror = NULL; oop Universe::_void_mirror = NULL; oop Universe::_mirrors[T_VOID+1] = { NULL /*, NULL...*/ }; oop Universe::_main_thread_group = NULL; oop Universe::_system_thread_group = NULL; objArrayOop Universe::_the_empty_class_klass_array = NULL; Array* Universe::_the_array_interfaces_array = NULL; oop Universe::_the_null_string = NULL; oop Universe::_the_min_jint_string = NULL; LatestMethodCache* Universe::_finalizer_register_cache = NULL; LatestMethodCache* Universe::_loader_addClass_cache = NULL; LatestMethodCache* Universe::_pd_implies_cache = NULL; LatestMethodCache* Universe::_throw_illegal_access_error_cache = NULL; LatestMethodCache* Universe::_do_stack_walk_cache = NULL; oop Universe::_out_of_memory_error_java_heap = NULL; oop Universe::_out_of_memory_error_metaspace = NULL; oop Universe::_out_of_memory_error_class_metaspace = NULL; oop Universe::_out_of_memory_error_array_size = NULL; oop Universe::_out_of_memory_error_gc_overhead_limit = NULL; oop Universe::_out_of_memory_error_realloc_objects = NULL; oop Universe::_delayed_stack_overflow_error_message = NULL; objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL; volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0; bool Universe::_verify_in_progress = false; long Universe::verify_flags = Universe::Verify_All; oop Universe::_null_ptr_exception_instance = NULL; oop Universe::_arithmetic_exception_instance = NULL; oop Universe::_virtual_machine_error_instance = NULL; oop Universe::_vm_exception = NULL; oop Universe::_allocation_context_notification_obj = NULL; oop Universe::_reference_pending_list = NULL; Array* Universe::_the_empty_int_array = NULL; Array* Universe::_the_empty_short_array = NULL; Array* Universe::_the_empty_klass_array = NULL; Array* Universe::_the_empty_method_array = NULL; // These variables are guarded by FullGCALot_lock. debug_only(objArrayOop Universe::_fullgc_alot_dummy_array = NULL;) debug_only(int Universe::_fullgc_alot_dummy_next = 0;) // Heap int Universe::_verify_count = 0; // Oop verification (see MacroAssembler::verify_oop) uintptr_t Universe::_verify_oop_mask = 0; uintptr_t Universe::_verify_oop_bits = (uintptr_t) -1; int Universe::_base_vtable_size = 0; bool Universe::_bootstrapping = false; bool Universe::_module_initialized = false; bool Universe::_fully_initialized = false; size_t Universe::_heap_capacity_at_last_gc; size_t Universe::_heap_used_at_last_gc = 0; CollectedHeap* Universe::_collectedHeap = NULL; NarrowPtrStruct Universe::_narrow_oop = { NULL, 0, true }; NarrowPtrStruct Universe::_narrow_klass = { NULL, 0, true }; address Universe::_narrow_ptrs_base; void Universe::basic_type_classes_do(void f(Klass*)) { f(boolArrayKlassObj()); f(byteArrayKlassObj()); f(charArrayKlassObj()); f(intArrayKlassObj()); f(shortArrayKlassObj()); f(longArrayKlassObj()); f(singleArrayKlassObj()); f(doubleArrayKlassObj()); } void Universe::oops_do(OopClosure* f, bool do_all) { f->do_oop((oop*) &_int_mirror); f->do_oop((oop*) &_float_mirror); f->do_oop((oop*) &_double_mirror); f->do_oop((oop*) &_byte_mirror); f->do_oop((oop*) &_bool_mirror); f->do_oop((oop*) &_char_mirror); f->do_oop((oop*) &_long_mirror); f->do_oop((oop*) &_short_mirror); f->do_oop((oop*) &_void_mirror); for (int i = T_BOOLEAN; i < T_VOID+1; i++) { f->do_oop((oop*) &_mirrors[i]); } assert(_mirrors[0] == NULL && _mirrors[T_BOOLEAN - 1] == NULL, "checking"); f->do_oop((oop*)&_the_empty_class_klass_array); f->do_oop((oop*)&_the_null_string); f->do_oop((oop*)&_the_min_jint_string); f->do_oop((oop*)&_out_of_memory_error_java_heap); f->do_oop((oop*)&_out_of_memory_error_metaspace); f->do_oop((oop*)&_out_of_memory_error_class_metaspace); f->do_oop((oop*)&_out_of_memory_error_array_size); f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit); f->do_oop((oop*)&_out_of_memory_error_realloc_objects); f->do_oop((oop*)&_delayed_stack_overflow_error_message); f->do_oop((oop*)&_preallocated_out_of_memory_error_array); f->do_oop((oop*)&_null_ptr_exception_instance); f->do_oop((oop*)&_arithmetic_exception_instance); f->do_oop((oop*)&_virtual_machine_error_instance); f->do_oop((oop*)&_main_thread_group); f->do_oop((oop*)&_system_thread_group); f->do_oop((oop*)&_vm_exception); f->do_oop((oop*)&_allocation_context_notification_obj); f->do_oop((oop*)&_reference_pending_list); debug_only(f->do_oop((oop*)&_fullgc_alot_dummy_array);) } // Serialize metadata in and out of CDS archive, not oops. void Universe::serialize(SerializeClosure* f, bool do_all) { f->do_ptr((void**)&_boolArrayKlassObj); f->do_ptr((void**)&_byteArrayKlassObj); f->do_ptr((void**)&_charArrayKlassObj); f->do_ptr((void**)&_intArrayKlassObj); f->do_ptr((void**)&_shortArrayKlassObj); f->do_ptr((void**)&_longArrayKlassObj); f->do_ptr((void**)&_singleArrayKlassObj); f->do_ptr((void**)&_doubleArrayKlassObj); f->do_ptr((void**)&_objectArrayKlassObj); { for (int i = 0; i < T_VOID+1; i++) { if (_typeArrayKlassObjs[i] != NULL) { assert(i >= T_BOOLEAN, "checking"); f->do_ptr((void**)&_typeArrayKlassObjs[i]); } else if (do_all) { f->do_ptr((void**)&_typeArrayKlassObjs[i]); } } } f->do_ptr((void**)&_the_array_interfaces_array); f->do_ptr((void**)&_the_empty_int_array); f->do_ptr((void**)&_the_empty_short_array); f->do_ptr((void**)&_the_empty_method_array); f->do_ptr((void**)&_the_empty_klass_array); _finalizer_register_cache->serialize(f); _loader_addClass_cache->serialize(f); _pd_implies_cache->serialize(f); _throw_illegal_access_error_cache->serialize(f); _do_stack_walk_cache->serialize(f); } void Universe::check_alignment(uintx size, uintx alignment, const char* name) { if (size < alignment || size % alignment != 0) { vm_exit_during_initialization( err_msg("Size of %s (" UINTX_FORMAT " bytes) must be aligned to " UINTX_FORMAT " bytes", name, size, alignment)); } } void initialize_basic_type_klass(Klass* k, TRAPS) { Klass* ok = SystemDictionary::Object_klass(); if (UseSharedSpaces) { ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data(); assert(k->super() == ok, "u3"); k->restore_unshareable_info(loader_data, Handle(), CHECK); } else { k->initialize_supers(ok, CHECK); } k->append_to_sibling_list(); } void Universe::genesis(TRAPS) { ResourceMark rm; { FlagSetting fs(_bootstrapping, true); { MutexLocker mc(Compile_lock); // determine base vtable size; without that we cannot create the array klasses compute_base_vtable_size(); if (!UseSharedSpaces) { _boolArrayKlassObj = TypeArrayKlass::create_klass(T_BOOLEAN, sizeof(jboolean), CHECK); _charArrayKlassObj = TypeArrayKlass::create_klass(T_CHAR, sizeof(jchar), CHECK); _singleArrayKlassObj = TypeArrayKlass::create_klass(T_FLOAT, sizeof(jfloat), CHECK); _doubleArrayKlassObj = TypeArrayKlass::create_klass(T_DOUBLE, sizeof(jdouble), CHECK); _byteArrayKlassObj = TypeArrayKlass::create_klass(T_BYTE, sizeof(jbyte), CHECK); _shortArrayKlassObj = TypeArrayKlass::create_klass(T_SHORT, sizeof(jshort), CHECK); _intArrayKlassObj = TypeArrayKlass::create_klass(T_INT, sizeof(jint), CHECK); _longArrayKlassObj = TypeArrayKlass::create_klass(T_LONG, sizeof(jlong), CHECK); _typeArrayKlassObjs[T_BOOLEAN] = _boolArrayKlassObj; _typeArrayKlassObjs[T_CHAR] = _charArrayKlassObj; _typeArrayKlassObjs[T_FLOAT] = _singleArrayKlassObj; _typeArrayKlassObjs[T_DOUBLE] = _doubleArrayKlassObj; _typeArrayKlassObjs[T_BYTE] = _byteArrayKlassObj; _typeArrayKlassObjs[T_SHORT] = _shortArrayKlassObj; _typeArrayKlassObjs[T_INT] = _intArrayKlassObj; _typeArrayKlassObjs[T_LONG] = _longArrayKlassObj; ClassLoaderData* null_cld = ClassLoaderData::the_null_class_loader_data(); _the_array_interfaces_array = MetadataFactory::new_array(null_cld, 2, NULL, CHECK); _the_empty_int_array = MetadataFactory::new_array(null_cld, 0, CHECK); _the_empty_short_array = MetadataFactory::new_array(null_cld, 0, CHECK); _the_empty_method_array = MetadataFactory::new_array(null_cld, 0, CHECK); _the_empty_klass_array = MetadataFactory::new_array(null_cld, 0, CHECK); } } vmSymbols::initialize(CHECK); SystemDictionary::initialize(CHECK); Klass* ok = SystemDictionary::Object_klass(); _the_null_string = StringTable::intern("null", CHECK); _the_min_jint_string = StringTable::intern("-2147483648", CHECK); if (UseSharedSpaces) { // Verify shared interfaces array. assert(_the_array_interfaces_array->at(0) == SystemDictionary::Cloneable_klass(), "u3"); assert(_the_array_interfaces_array->at(1) == SystemDictionary::Serializable_klass(), "u3"); MetaspaceShared::fixup_shared_string_regions(); } else { // Set up shared interfaces array. (Do this before supers are set up.) _the_array_interfaces_array->at_put(0, SystemDictionary::Cloneable_klass()); _the_array_interfaces_array->at_put(1, SystemDictionary::Serializable_klass()); } initialize_basic_type_klass(boolArrayKlassObj(), CHECK); initialize_basic_type_klass(charArrayKlassObj(), CHECK); initialize_basic_type_klass(singleArrayKlassObj(), CHECK); initialize_basic_type_klass(doubleArrayKlassObj(), CHECK); initialize_basic_type_klass(byteArrayKlassObj(), CHECK); initialize_basic_type_klass(shortArrayKlassObj(), CHECK); initialize_basic_type_klass(intArrayKlassObj(), CHECK); initialize_basic_type_klass(longArrayKlassObj(), CHECK); } // end of core bootstrapping // Maybe this could be lifted up now that object array can be initialized // during the bootstrapping. // OLD // Initialize _objectArrayKlass after core bootstraping to make // sure the super class is set up properly for _objectArrayKlass. // --- // NEW // Since some of the old system object arrays have been converted to // ordinary object arrays, _objectArrayKlass will be loaded when // SystemDictionary::initialize(CHECK); is run. See the extra check // for Object_klass_loaded in objArrayKlassKlass::allocate_objArray_klass_impl. _objectArrayKlassObj = InstanceKlass:: cast(SystemDictionary::Object_klass())->array_klass(1, CHECK); // OLD // Add the class to the class hierarchy manually to make sure that // its vtable is initialized after core bootstrapping is completed. // --- // New // Have already been initialized. _objectArrayKlassObj->append_to_sibling_list(); #ifdef ASSERT if (FullGCALot) { // Allocate an array of dummy objects. // We'd like these to be at the bottom of the old generation, // so that when we free one and then collect, // (almost) the whole heap moves // and we find out if we actually update all the oops correctly. // But we can't allocate directly in the old generation, // so we allocate wherever, and hope that the first collection // moves these objects to the bottom of the old generation. // We can allocate directly in the permanent generation, so we do. int size; if (UseConcMarkSweepGC) { log_warning(gc)("Using +FullGCALot with concurrent mark sweep gc will not force all objects to relocate"); size = FullGCALotDummies; } else { size = FullGCALotDummies * 2; } objArrayOop naked_array = oopFactory::new_objArray(SystemDictionary::Object_klass(), size, CHECK); objArrayHandle dummy_array(THREAD, naked_array); int i = 0; while (i < size) { // Allocate dummy in old generation oop dummy = SystemDictionary::Object_klass()->allocate_instance(CHECK); dummy_array->obj_at_put(i++, dummy); } { // Only modify the global variable inside the mutex. // If we had a race to here, the other dummy_array instances // and their elements just get dropped on the floor, which is fine. MutexLocker ml(FullGCALot_lock); if (_fullgc_alot_dummy_array == NULL) { _fullgc_alot_dummy_array = dummy_array(); } } assert(i == _fullgc_alot_dummy_array->length(), "just checking"); } #endif // Initialize dependency array for null class loader ClassLoaderData::the_null_class_loader_data()->init_dependencies(CHECK); } void Universe::initialize_basic_type_mirrors(TRAPS) { assert(_int_mirror==NULL, "basic type mirrors already initialized"); _int_mirror = java_lang_Class::create_basic_type_mirror("int", T_INT, CHECK); _float_mirror = java_lang_Class::create_basic_type_mirror("float", T_FLOAT, CHECK); _double_mirror = java_lang_Class::create_basic_type_mirror("double", T_DOUBLE, CHECK); _byte_mirror = java_lang_Class::create_basic_type_mirror("byte", T_BYTE, CHECK); _bool_mirror = java_lang_Class::create_basic_type_mirror("boolean",T_BOOLEAN, CHECK); _char_mirror = java_lang_Class::create_basic_type_mirror("char", T_CHAR, CHECK); _long_mirror = java_lang_Class::create_basic_type_mirror("long", T_LONG, CHECK); _short_mirror = java_lang_Class::create_basic_type_mirror("short", T_SHORT, CHECK); _void_mirror = java_lang_Class::create_basic_type_mirror("void", T_VOID, CHECK); _mirrors[T_INT] = _int_mirror; _mirrors[T_FLOAT] = _float_mirror; _mirrors[T_DOUBLE] = _double_mirror; _mirrors[T_BYTE] = _byte_mirror; _mirrors[T_BOOLEAN] = _bool_mirror; _mirrors[T_CHAR] = _char_mirror; _mirrors[T_LONG] = _long_mirror; _mirrors[T_SHORT] = _short_mirror; _mirrors[T_VOID] = _void_mirror; //_mirrors[T_OBJECT] = _object_klass->java_mirror(); //_mirrors[T_ARRAY] = _object_klass->java_mirror(); } void Universe::fixup_mirrors(TRAPS) { // Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly, // but we cannot do that for classes created before java.lang.Class is loaded. Here we simply // walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note // that the number of objects allocated at this point is very small. assert(SystemDictionary::Class_klass_loaded(), "java.lang.Class should be loaded"); HandleMark hm(THREAD); // Cache the start of the static fields InstanceMirrorKlass::init_offset_of_static_fields(); GrowableArray * list = java_lang_Class::fixup_mirror_list(); int list_length = list->length(); for (int i = 0; i < list_length; i++) { Klass* k = list->at(i); assert(k->is_klass(), "List should only hold classes"); EXCEPTION_MARK; java_lang_Class::fixup_mirror(k, CATCH); } delete java_lang_Class::fixup_mirror_list(); java_lang_Class::set_fixup_mirror_list(NULL); } #define assert_pll_locked(test) \ assert(Heap_lock->test(), "Reference pending list access requires lock") #define assert_pll_ownership() assert_pll_locked(owned_by_self) oop Universe::reference_pending_list() { assert_pll_ownership(); return _reference_pending_list; } void Universe::set_reference_pending_list(oop list) { assert_pll_ownership(); _reference_pending_list = list; } bool Universe::has_reference_pending_list() { assert_pll_ownership(); return _reference_pending_list != NULL; } oop Universe::swap_reference_pending_list(oop list) { assert_pll_locked(is_locked); return (oop)Atomic::xchg_ptr(list, &_reference_pending_list); } #undef assert_pll_locked #undef assert_pll_ownership static bool has_run_finalizers_on_exit = false; void Universe::run_finalizers_on_exit() { if (has_run_finalizers_on_exit) return; has_run_finalizers_on_exit = true; // Called on VM exit. This ought to be run in a separate thread. log_trace(ref)("Callback to run finalizers on exit"); { PRESERVE_EXCEPTION_MARK; Klass* finalizer_klass = SystemDictionary::Finalizer_klass(); JavaValue result(T_VOID); JavaCalls::call_static( &result, finalizer_klass, vmSymbols::run_finalizers_on_exit_name(), vmSymbols::void_method_signature(), THREAD ); // Ignore any pending exceptions CLEAR_PENDING_EXCEPTION; } } // initialize_vtable could cause gc if // 1) we specified true to initialize_vtable and // 2) this ran after gc was enabled // In case those ever change we use handles for oops void Universe::reinitialize_vtable_of(Klass* ko, TRAPS) { // init vtable of k and all subclasses ko->vtable().initialize_vtable(false, CHECK); if (ko->is_instance_klass()) { for (Klass* sk = ko->subklass(); sk != NULL; sk = sk->next_sibling()) { reinitialize_vtable_of(sk, CHECK); } } } void initialize_itable_for_klass(Klass* k, TRAPS) { InstanceKlass::cast(k)->itable().initialize_itable(false, CHECK); } void Universe::reinitialize_itables(TRAPS) { SystemDictionary::classes_do(initialize_itable_for_klass, CHECK); } bool Universe::on_page_boundary(void* addr) { return is_aligned(addr, os::vm_page_size()); } bool Universe::should_fill_in_stack_trace(Handle throwable) { // never attempt to fill in the stack trace of preallocated errors that do not have // backtrace. These errors are kept alive forever and may be "re-used" when all // preallocated errors with backtrace have been consumed. Also need to avoid // a potential loop which could happen if an out of memory occurs when attempting // to allocate the backtrace. return ((throwable() != Universe::_out_of_memory_error_java_heap) && (throwable() != Universe::_out_of_memory_error_metaspace) && (throwable() != Universe::_out_of_memory_error_class_metaspace) && (throwable() != Universe::_out_of_memory_error_array_size) && (throwable() != Universe::_out_of_memory_error_gc_overhead_limit) && (throwable() != Universe::_out_of_memory_error_realloc_objects)); } oop Universe::gen_out_of_memory_error(oop default_err) { // generate an out of memory error: // - if there is a preallocated error and stack traces are available // (j.l.Throwable is initialized), then return the preallocated // error with a filled in stack trace, and with the message // provided by the default error. // - otherwise, return the default error, without a stack trace. int next; if ((_preallocated_out_of_memory_error_avail_count > 0) && SystemDictionary::Throwable_klass()->is_initialized()) { next = (int)Atomic::add(-1, &_preallocated_out_of_memory_error_avail_count); assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt"); } else { next = -1; } if (next < 0) { // all preallocated errors have been used. // return default return default_err; } else { Thread* THREAD = Thread::current(); Handle default_err_h(THREAD, default_err); // get the error object at the slot and set set it to NULL so that the // array isn't keeping it alive anymore. Handle exc(THREAD, preallocated_out_of_memory_errors()->obj_at(next)); assert(exc() != NULL, "slot has been used already"); preallocated_out_of_memory_errors()->obj_at_put(next, NULL); // use the message from the default error oop msg = java_lang_Throwable::message(default_err_h()); assert(msg != NULL, "no message"); java_lang_Throwable::set_message(exc(), msg); // populate the stack trace and return it. java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc); return exc(); } } intptr_t Universe::_non_oop_bits = 0; void* Universe::non_oop_word() { // Neither the high bits nor the low bits of this value is allowed // to look like (respectively) the high or low bits of a real oop. // // High and low are CPU-specific notions, but low always includes // the low-order bit. Since oops are always aligned at least mod 4, // setting the low-order bit will ensure that the low half of the // word will never look like that of a real oop. // // Using the OS-supplied non-memory-address word (usually 0 or -1) // will take care of the high bits, however many there are. if (_non_oop_bits == 0) { _non_oop_bits = (intptr_t)os::non_memory_address_word() | 1; } return (void*)_non_oop_bits; } jint universe_init() { assert(!Universe::_fully_initialized, "called after initialize_vtables"); guarantee(1 << LogHeapWordSize == sizeof(HeapWord), "LogHeapWordSize is incorrect."); guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?"); guarantee(sizeof(oop) % sizeof(HeapWord) == 0, "oop size is not not a multiple of HeapWord size"); TraceTime timer("Genesis", TRACETIME_LOG(Info, startuptime)); JavaClasses::compute_hard_coded_offsets(); jint status = Universe::initialize_heap(); if (status != JNI_OK) { return status; } Metaspace::global_initialize(); AOTLoader::universe_init(); // Checks 'AfterMemoryInit' constraints. if (!CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterMemoryInit)) { return JNI_EINVAL; } // Create memory for metadata. Must be after initializing heap for // DumpSharedSpaces. ClassLoaderData::init_null_class_loader_data(); // We have a heap so create the Method* caches before // Metaspace::initialize_shared_spaces() tries to populate them. Universe::_finalizer_register_cache = new LatestMethodCache(); Universe::_loader_addClass_cache = new LatestMethodCache(); Universe::_pd_implies_cache = new LatestMethodCache(); Universe::_throw_illegal_access_error_cache = new LatestMethodCache(); Universe::_do_stack_walk_cache = new LatestMethodCache(); if (UseSharedSpaces) { // Read the data structures supporting the shared spaces (shared // system dictionary, symbol table, etc.). After that, access to // the file (other than the mapped regions) is no longer needed, and // the file is closed. Closing the file does not affect the // currently mapped regions. MetaspaceShared::initialize_shared_spaces(); StringTable::create_table(); } else { SymbolTable::create_table(); StringTable::create_table(); if (DumpSharedSpaces) { MetaspaceShared::prepare_for_dumping(); } } if (strlen(VerifySubSet) > 0) { Universe::initialize_verify_flags(); } ResolvedMethodTable::create_table(); return JNI_OK; } CollectedHeap* Universe::create_heap() { assert(_collectedHeap == NULL, "Heap already created"); #if !INCLUDE_ALL_GCS if (UseParallelGC) { fatal("UseParallelGC not supported in this VM."); } else if (UseG1GC) { fatal("UseG1GC not supported in this VM."); } else if (UseConcMarkSweepGC) { fatal("UseConcMarkSweepGC not supported in this VM."); #else if (UseParallelGC) { return Universe::create_heap_with_policy(); } else if (UseG1GC) { return Universe::create_heap_with_policy(); } else if (UseConcMarkSweepGC) { return Universe::create_heap_with_policy(); #endif } else if (UseSerialGC) { return Universe::create_heap_with_policy(); } ShouldNotReachHere(); return NULL; } // Choose the heap base address and oop encoding mode // when compressed oops are used: // Unscaled - Use 32-bits oops without encoding when // NarrowOopHeapBaseMin + heap_size < 4Gb // ZeroBased - Use zero based compressed oops with encoding when // NarrowOopHeapBaseMin + heap_size < 32Gb // HeapBased - Use compressed oops with heap base + encoding. jint Universe::initialize_heap() { jint status = JNI_ERR; _collectedHeap = create_heap_ext(); if (_collectedHeap == NULL) { _collectedHeap = create_heap(); } status = _collectedHeap->initialize(); if (status != JNI_OK) { return status; } log_info(gc)("Using %s", _collectedHeap->name()); ThreadLocalAllocBuffer::set_max_size(Universe::heap()->max_tlab_size()); #ifdef _LP64 if (UseCompressedOops) { // Subtract a page because something can get allocated at heap base. // This also makes implicit null checking work, because the // memory+1 page below heap_base needs to cause a signal. // See needs_explicit_null_check. // Only set the heap base for compressed oops because it indicates // compressed oops for pstack code. if ((uint64_t)Universe::heap()->reserved_region().end() > UnscaledOopHeapMax) { // Didn't reserve heap below 4Gb. Must shift. Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes); } if ((uint64_t)Universe::heap()->reserved_region().end() <= OopEncodingHeapMax) { // Did reserve heap below 32Gb. Can use base == 0; Universe::set_narrow_oop_base(0); } Universe::set_narrow_ptrs_base(Universe::narrow_oop_base()); if (log_is_enabled(Info, gc, heap, coops)) { ResourceMark rm; outputStream* logst = Log(gc, heap, coops)::info_stream(); Universe::print_compressed_oops_mode(logst); } // Tell tests in which mode we run. Arguments::PropertyList_add(new SystemProperty("java.vm.compressedOopsMode", narrow_oop_mode_to_string(narrow_oop_mode()), false)); } // Universe::narrow_oop_base() is one page below the heap. assert((intptr_t)Universe::narrow_oop_base() <= (intptr_t)(Universe::heap()->base() - os::vm_page_size()) || Universe::narrow_oop_base() == NULL, "invalid value"); assert(Universe::narrow_oop_shift() == LogMinObjAlignmentInBytes || Universe::narrow_oop_shift() == 0, "invalid value"); #endif // We will never reach the CATCH below since Exceptions::_throw will cause // the VM to exit if an exception is thrown during initialization if (UseTLAB) { assert(Universe::heap()->supports_tlab_allocation(), "Should support thread-local allocation buffers"); ThreadLocalAllocBuffer::startup_initialization(); } return JNI_OK; } void Universe::print_compressed_oops_mode(outputStream* st) { st->print("Heap address: " PTR_FORMAT ", size: " SIZE_FORMAT " MB", p2i(Universe::heap()->base()), Universe::heap()->reserved_region().byte_size()/M); st->print(", Compressed Oops mode: %s", narrow_oop_mode_to_string(narrow_oop_mode())); if (Universe::narrow_oop_base() != 0) { st->print(": " PTR_FORMAT, p2i(Universe::narrow_oop_base())); } if (Universe::narrow_oop_shift() != 0) { st->print(", Oop shift amount: %d", Universe::narrow_oop_shift()); } if (!Universe::narrow_oop_use_implicit_null_checks()) { st->print(", no protected page in front of the heap"); } st->cr(); } ReservedSpace Universe::reserve_heap(size_t heap_size, size_t alignment) { assert(alignment <= Arguments::conservative_max_heap_alignment(), "actual alignment " SIZE_FORMAT " must be within maximum heap alignment " SIZE_FORMAT, alignment, Arguments::conservative_max_heap_alignment()); size_t total_reserved = align_up(heap_size, alignment); assert(!UseCompressedOops || (total_reserved <= (OopEncodingHeapMax - os::vm_page_size())), "heap size is too big for compressed oops"); bool use_large_pages = UseLargePages && is_aligned(alignment, os::large_page_size()); assert(!UseLargePages || UseParallelGC || use_large_pages, "Wrong alignment to use large pages"); // Now create the space. ReservedHeapSpace total_rs(total_reserved, alignment, use_large_pages); if (total_rs.is_reserved()) { assert((total_reserved == total_rs.size()) && ((uintptr_t)total_rs.base() % alignment == 0), "must be exactly of required size and alignment"); // We are good. if (UseCompressedOops) { // Universe::initialize_heap() will reset this to NULL if unscaled // or zero-based narrow oops are actually used. // Else heap start and base MUST differ, so that NULL can be encoded nonambigous. Universe::set_narrow_oop_base((address)total_rs.compressed_oop_base()); } return total_rs; } vm_exit_during_initialization( err_msg("Could not reserve enough space for " SIZE_FORMAT "KB object heap", total_reserved/K)); // satisfy compiler ShouldNotReachHere(); return ReservedHeapSpace(0, 0, false); } // It's the caller's responsibility to ensure glitch-freedom // (if required). void Universe::update_heap_info_at_gc() { _heap_capacity_at_last_gc = heap()->capacity(); _heap_used_at_last_gc = heap()->used(); } const char* Universe::narrow_oop_mode_to_string(Universe::NARROW_OOP_MODE mode) { switch (mode) { case UnscaledNarrowOop: return "32-bit"; case ZeroBasedNarrowOop: return "Zero based"; case DisjointBaseNarrowOop: return "Non-zero disjoint base"; case HeapBasedNarrowOop: return "Non-zero based"; default: ShouldNotReachHere(); return ""; } } Universe::NARROW_OOP_MODE Universe::narrow_oop_mode() { if (narrow_oop_base_disjoint()) { return DisjointBaseNarrowOop; } if (narrow_oop_base() != 0) { return HeapBasedNarrowOop; } if (narrow_oop_shift() != 0) { return ZeroBasedNarrowOop; } return UnscaledNarrowOop; } void initialize_known_method(LatestMethodCache* method_cache, InstanceKlass* ik, const char* method, Symbol* signature, bool is_static, TRAPS) { TempNewSymbol name = SymbolTable::new_symbol(method, CHECK); Method* m = NULL; // The klass must be linked before looking up the method. if (!ik->link_class_or_fail(THREAD) || ((m = ik->find_method(name, signature)) == NULL) || is_static != m->is_static()) { ResourceMark rm(THREAD); // NoSuchMethodException doesn't actually work because it tries to run the // function before java_lang_Class is linked. Print error and exit. vm_exit_during_initialization(err_msg("Unable to link/verify %s.%s method", ik->name()->as_C_string(), method)); } method_cache->init(ik, m); } void Universe::initialize_known_methods(TRAPS) { // Set up static method for registering finalizers initialize_known_method(_finalizer_register_cache, SystemDictionary::Finalizer_klass(), "register", vmSymbols::object_void_signature(), true, CHECK); initialize_known_method(_throw_illegal_access_error_cache, SystemDictionary::internal_Unsafe_klass(), "throwIllegalAccessError", vmSymbols::void_method_signature(), true, CHECK); // Set up method for registering loaded classes in class loader vector initialize_known_method(_loader_addClass_cache, SystemDictionary::ClassLoader_klass(), "addClass", vmSymbols::class_void_signature(), false, CHECK); // Set up method for checking protection domain initialize_known_method(_pd_implies_cache, SystemDictionary::ProtectionDomain_klass(), "impliesCreateAccessControlContext", vmSymbols::void_boolean_signature(), false, CHECK); // Set up method for stack walking initialize_known_method(_do_stack_walk_cache, SystemDictionary::AbstractStackWalker_klass(), "doStackWalk", vmSymbols::doStackWalk_signature(), false, CHECK); } void universe2_init() { EXCEPTION_MARK; Universe::genesis(CATCH); } // Set after initialization of the module runtime, call_initModuleRuntime void universe_post_module_init() { Universe::_module_initialized = true; } bool universe_post_init() { assert(!is_init_completed(), "Error: initialization not yet completed!"); Universe::_fully_initialized = true; EXCEPTION_MARK; { ResourceMark rm; Interpreter::initialize(); // needed for interpreter entry points if (!UseSharedSpaces) { HandleMark hm(THREAD); Klass* ok = SystemDictionary::Object_klass(); Universe::reinitialize_vtable_of(ok, CHECK_false); Universe::reinitialize_itables(CHECK_false); } } HandleMark hm(THREAD); // Setup preallocated empty java.lang.Class array Universe::_the_empty_class_klass_array = oopFactory::new_objArray(SystemDictionary::Class_klass(), 0, CHECK_false); // Setup preallocated OutOfMemoryError errors Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_OutOfMemoryError(), true, CHECK_false); InstanceKlass* ik = InstanceKlass::cast(k); Universe::_out_of_memory_error_java_heap = ik->allocate_instance(CHECK_false); Universe::_out_of_memory_error_metaspace = ik->allocate_instance(CHECK_false); Universe::_out_of_memory_error_class_metaspace = ik->allocate_instance(CHECK_false); Universe::_out_of_memory_error_array_size = ik->allocate_instance(CHECK_false); Universe::_out_of_memory_error_gc_overhead_limit = ik->allocate_instance(CHECK_false); Universe::_out_of_memory_error_realloc_objects = ik->allocate_instance(CHECK_false); // Setup preallocated cause message for delayed StackOverflowError if (StackReservedPages > 0) { Universe::_delayed_stack_overflow_error_message = java_lang_String::create_oop_from_str("Delayed StackOverflowError due to ReservedStackAccess annotated method", CHECK_false); } // Setup preallocated NullPointerException // (this is currently used for a cheap & dirty solution in compiler exception handling) k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_NullPointerException(), true, CHECK_false); Universe::_null_ptr_exception_instance = InstanceKlass::cast(k)->allocate_instance(CHECK_false); // Setup preallocated ArithmeticException // (this is currently used for a cheap & dirty solution in compiler exception handling) k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ArithmeticException(), true, CHECK_false); Universe::_arithmetic_exception_instance = InstanceKlass::cast(k)->allocate_instance(CHECK_false); // Virtual Machine Error for when we get into a situation we can't resolve k = SystemDictionary::resolve_or_fail( vmSymbols::java_lang_VirtualMachineError(), true, CHECK_false); bool linked = InstanceKlass::cast(k)->link_class_or_fail(CHECK_false); if (!linked) { tty->print_cr("Unable to link/verify VirtualMachineError class"); return false; // initialization failed } Universe::_virtual_machine_error_instance = InstanceKlass::cast(k)->allocate_instance(CHECK_false); Universe::_vm_exception = InstanceKlass::cast(k)->allocate_instance(CHECK_false); if (!DumpSharedSpaces) { // These are the only Java fields that are currently set during shared space dumping. // We prefer to not handle this generally, so we always reinitialize these detail messages. Handle msg = java_lang_String::create_from_str("Java heap space", CHECK_false); java_lang_Throwable::set_message(Universe::_out_of_memory_error_java_heap, msg()); msg = java_lang_String::create_from_str("Metaspace", CHECK_false); java_lang_Throwable::set_message(Universe::_out_of_memory_error_metaspace, msg()); msg = java_lang_String::create_from_str("Compressed class space", CHECK_false); java_lang_Throwable::set_message(Universe::_out_of_memory_error_class_metaspace, msg()); msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK_false); java_lang_Throwable::set_message(Universe::_out_of_memory_error_array_size, msg()); msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false); java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg()); msg = java_lang_String::create_from_str("Java heap space: failed reallocation of scalar replaced objects", CHECK_false); java_lang_Throwable::set_message(Universe::_out_of_memory_error_realloc_objects, msg()); msg = java_lang_String::create_from_str("/ by zero", CHECK_false); java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg()); // Setup the array of errors that have preallocated backtrace k = Universe::_out_of_memory_error_java_heap->klass(); assert(k->name() == vmSymbols::java_lang_OutOfMemoryError(), "should be out of memory error"); ik = InstanceKlass::cast(k); int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0; Universe::_preallocated_out_of_memory_error_array = oopFactory::new_objArray(ik, len, CHECK_false); for (int i=0; iallocate_instance(CHECK_false); Handle err_h = Handle(THREAD, err); java_lang_Throwable::allocate_backtrace(err_h, CHECK_false); Universe::preallocated_out_of_memory_errors()->obj_at_put(i, err_h()); } Universe::_preallocated_out_of_memory_error_avail_count = (jint)len; } Universe::initialize_known_methods(CHECK_false); // This needs to be done before the first scavenge/gc, since // it's an input to soft ref clearing policy. { MutexLocker x(Heap_lock); Universe::update_heap_info_at_gc(); } // ("weak") refs processing infrastructure initialization Universe::heap()->post_initialize(); // Initialize performance counters for metaspaces MetaspaceCounters::initialize_performance_counters(); CompressedClassSpaceCounters::initialize_performance_counters(); MemoryService::add_metaspace_memory_pools(); MemoryService::set_universe_heap(Universe::heap()); #if INCLUDE_CDS SharedClassUtil::initialize(CHECK_false); #endif return true; } void Universe::compute_base_vtable_size() { _base_vtable_size = ClassLoader::compute_Object_vtable(); } void Universe::print_on(outputStream* st) { GCMutexLocker hl(Heap_lock); // Heap_lock might be locked by caller thread. st->print_cr("Heap"); heap()->print_on(st); } void Universe::print_heap_at_SIGBREAK() { if (PrintHeapAtSIGBREAK) { print_on(tty); tty->cr(); tty->flush(); } } void Universe::print_heap_before_gc() { Log(gc, heap) log; if (log.is_debug()) { log.debug("Heap before GC invocations=%u (full %u):", heap()->total_collections(), heap()->total_full_collections()); ResourceMark rm; heap()->print_on(log.debug_stream()); } } void Universe::print_heap_after_gc() { Log(gc, heap) log; if (log.is_debug()) { log.debug("Heap after GC invocations=%u (full %u):", heap()->total_collections(), heap()->total_full_collections()); ResourceMark rm; heap()->print_on(log.debug_stream()); } } void Universe::initialize_verify_flags() { verify_flags = 0; const char delimiter[] = " ,"; size_t length = strlen(VerifySubSet); char* subset_list = NEW_C_HEAP_ARRAY(char, length + 1, mtInternal); strncpy(subset_list, VerifySubSet, length + 1); char* token = strtok(subset_list, delimiter); while (token != NULL) { if (strcmp(token, "threads") == 0) { verify_flags |= Verify_Threads; } else if (strcmp(token, "heap") == 0) { verify_flags |= Verify_Heap; } else if (strcmp(token, "symbol_table") == 0) { verify_flags |= Verify_SymbolTable; } else if (strcmp(token, "string_table") == 0) { verify_flags |= Verify_StringTable; } else if (strcmp(token, "codecache") == 0) { verify_flags |= Verify_CodeCache; } else if (strcmp(token, "dictionary") == 0) { verify_flags |= Verify_SystemDictionary; } else if (strcmp(token, "classloader_data_graph") == 0) { verify_flags |= Verify_ClassLoaderDataGraph; } else if (strcmp(token, "metaspace") == 0) { verify_flags |= Verify_MetaspaceAux; } else if (strcmp(token, "jni_handles") == 0) { verify_flags |= Verify_JNIHandles; } else if (strcmp(token, "codecache_oops") == 0) { verify_flags |= Verify_CodeCacheOops; } else { vm_exit_during_initialization(err_msg("VerifySubSet: \'%s\' memory sub-system is unknown, please correct it", token)); } token = strtok(NULL, delimiter); } FREE_C_HEAP_ARRAY(char, subset_list); } bool Universe::should_verify_subset(uint subset) { if (verify_flags & subset) { return true; } return false; } void Universe::verify(VerifyOption option, const char* prefix) { // The use of _verify_in_progress is a temporary work around for // 6320749. Don't bother with a creating a class to set and clear // it since it is only used in this method and the control flow is // straight forward. _verify_in_progress = true; COMPILER2_PRESENT( assert(!DerivedPointerTable::is_active(), "DPT should not be active during verification " "(of thread stacks below)"); ) ResourceMark rm; HandleMark hm; // Handles created during verification can be zapped _verify_count++; FormatBuffer<> title("Verifying %s", prefix); GCTraceTime(Info, gc, verify) tm(title.buffer()); if (should_verify_subset(Verify_Threads)) { log_debug(gc, verify)("Threads"); Threads::verify(); } if (should_verify_subset(Verify_Heap)) { log_debug(gc, verify)("Heap"); heap()->verify(option); } if (should_verify_subset(Verify_SymbolTable)) { log_debug(gc, verify)("SymbolTable"); SymbolTable::verify(); } if (should_verify_subset(Verify_StringTable)) { log_debug(gc, verify)("StringTable"); StringTable::verify(); } if (should_verify_subset(Verify_CodeCache)) { { MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); log_debug(gc, verify)("CodeCache"); CodeCache::verify(); } } if (should_verify_subset(Verify_SystemDictionary)) { log_debug(gc, verify)("SystemDictionary"); SystemDictionary::verify(); } #ifndef PRODUCT if (should_verify_subset(Verify_ClassLoaderDataGraph)) { log_debug(gc, verify)("ClassLoaderDataGraph"); ClassLoaderDataGraph::verify(); } #endif if (should_verify_subset(Verify_MetaspaceAux)) { log_debug(gc, verify)("MetaspaceAux"); MetaspaceAux::verify_free_chunks(); } if (should_verify_subset(Verify_JNIHandles)) { log_debug(gc, verify)("JNIHandles"); JNIHandles::verify(); } if (should_verify_subset(Verify_CodeCacheOops)) { log_debug(gc, verify)("CodeCache Oops"); CodeCache::verify_oops(); } _verify_in_progress = false; } #ifndef PRODUCT void Universe::calculate_verify_data(HeapWord* low_boundary, HeapWord* high_boundary) { assert(low_boundary < high_boundary, "bad interval"); // decide which low-order bits we require to be clear: size_t alignSize = MinObjAlignmentInBytes; size_t min_object_size = CollectedHeap::min_fill_size(); // make an inclusive limit: uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize; uintptr_t min = (uintptr_t)low_boundary; assert(min < max, "bad interval"); uintptr_t diff = max ^ min; // throw away enough low-order bits to make the diff vanish uintptr_t mask = (uintptr_t)(-1); while ((mask & diff) != 0) mask <<= 1; uintptr_t bits = (min & mask); assert(bits == (max & mask), "correct mask"); // check an intermediate value between min and max, just to make sure: assert(bits == ((min + (max-min)/2) & mask), "correct mask"); // require address alignment, too: mask |= (alignSize - 1); if (!(_verify_oop_mask == 0 && _verify_oop_bits == (uintptr_t)-1)) { assert(_verify_oop_mask == mask && _verify_oop_bits == bits, "mask stability"); } _verify_oop_mask = mask; _verify_oop_bits = bits; } // Oop verification (see MacroAssembler::verify_oop) uintptr_t Universe::verify_oop_mask() { MemRegion m = heap()->reserved_region(); calculate_verify_data(m.start(), m.end()); return _verify_oop_mask; } uintptr_t Universe::verify_oop_bits() { MemRegion m = heap()->reserved_region(); calculate_verify_data(m.start(), m.end()); return _verify_oop_bits; } uintptr_t Universe::verify_mark_mask() { return markOopDesc::lock_mask_in_place; } uintptr_t Universe::verify_mark_bits() { intptr_t mask = verify_mark_mask(); intptr_t bits = (intptr_t)markOopDesc::prototype(); assert((bits & ~mask) == 0, "no stray header bits"); return bits; } #endif // PRODUCT void Universe::compute_verify_oop_data() { verify_oop_mask(); verify_oop_bits(); verify_mark_mask(); verify_mark_bits(); } void LatestMethodCache::init(Klass* k, Method* m) { if (!UseSharedSpaces) { _klass = k; } #ifndef PRODUCT else { // sharing initilization should have already set up _klass assert(_klass != NULL, "just checking"); } #endif _method_idnum = m->method_idnum(); assert(_method_idnum >= 0, "sanity check"); } Method* LatestMethodCache::get_method() { if (klass() == NULL) return NULL; InstanceKlass* ik = InstanceKlass::cast(klass()); Method* m = ik->method_with_idnum(method_idnum()); assert(m != NULL, "sanity check"); return m; } #ifdef ASSERT // Release dummy object(s) at bottom of heap bool Universe::release_fullgc_alot_dummy() { MutexLocker ml(FullGCALot_lock); if (_fullgc_alot_dummy_array != NULL) { if (_fullgc_alot_dummy_next >= _fullgc_alot_dummy_array->length()) { // No more dummies to release, release entire array instead _fullgc_alot_dummy_array = NULL; return false; } if (!UseConcMarkSweepGC) { // Release dummy at bottom of old generation _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL); } // Release dummy at bottom of permanent generation _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL); } return true; } #endif // ASSERT