1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_MEMORY_ALLOCATION_HPP
  26 #define SHARE_MEMORY_ALLOCATION_HPP
  27 
  28 #include "runtime/globals.hpp"
  29 #include "utilities/globalDefinitions.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include <new>
  33 
  34 class Thread;
  35 
  36 class AllocFailStrategy {
  37 public:
  38   enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
  39 };
  40 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
  41 
  42 // The virtual machine must never call one of the implicitly declared
  43 // global allocation or deletion functions.  (Such calls may result in
  44 // link-time or run-time errors.)  For convenience and documentation of
  45 // intended use, classes in the virtual machine may be derived from one
  46 // of the following allocation classes, some of which define allocation
  47 // and deletion functions.
  48 // Note: std::malloc and std::free should never called directly.
  49 
  50 //
  51 // For objects allocated in the resource area (see resourceArea.hpp).
  52 // - ResourceObj
  53 //
  54 // For objects allocated in the C-heap (managed by: free & malloc and tracked with NMT)
  55 // - CHeapObj
  56 //
  57 // For objects allocated on the stack.
  58 // - StackObj
  59 //
  60 // For classes used as name spaces.
  61 // - AllStatic
  62 //
  63 // For classes in Metaspace (class data)
  64 // - MetaspaceObj
  65 //
  66 // The printable subclasses are used for debugging and define virtual
  67 // member functions for printing. Classes that avoid allocating the
  68 // vtbl entries in the objects should therefore not be the printable
  69 // subclasses.
  70 //
  71 // The following macros and function should be used to allocate memory
  72 // directly in the resource area or in the C-heap, The _OBJ variants
  73 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
  74 // objects which are not inherited from CHeapObj, note constructor and
  75 // destructor are not called. The preferable way to allocate objects
  76 // is using the new operator.
  77 //
  78 // WARNING: The array variant must only be used for a homogenous array
  79 // where all objects are of the exact type specified. If subtypes are
  80 // stored in the array then must pay attention to calling destructors
  81 // at needed.
  82 //
  83 //   NEW_RESOURCE_ARRAY(type, size)
  84 //   NEW_RESOURCE_OBJ(type)
  85 //   NEW_C_HEAP_ARRAY(type, size)
  86 //   NEW_C_HEAP_OBJ(type, memflags)
  87 //   FREE_C_HEAP_ARRAY(type, old)
  88 //   FREE_C_HEAP_OBJ(objname, type, memflags)
  89 //   char* AllocateHeap(size_t size, const char* name);
  90 //   void  FreeHeap(void* p);
  91 //
  92 
  93 // In non product mode we introduce a super class for all allocation classes
  94 // that supports printing.
  95 // We avoid the superclass in product mode to save space.
  96 
  97 #ifdef PRODUCT
  98 #define ALLOCATION_SUPER_CLASS_SPEC
  99 #else
 100 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
 101 class AllocatedObj {
 102  public:
 103   // Printing support
 104   void print() const;
 105   void print_value() const;
 106 
 107   virtual void print_on(outputStream* st) const;
 108   virtual void print_value_on(outputStream* st) const;
 109 };
 110 #endif
 111 
 112 #define MEMORY_TYPES_DO(f) \
 113   /* Memory type by sub systems. It occupies lower byte. */  \
 114   f(mtJavaHeap,      "Java Heap")   /* Java heap                                 */ \
 115   f(mtClass,         "Class")       /* Java classes                              */ \
 116   f(mtThread,        "Thread")      /* thread objects                            */ \
 117   f(mtThreadStack,   "Thread Stack")                                                \
 118   f(mtCode,          "Code")        /* generated code                            */ \
 119   f(mtGC,            "GC")                                                          \
 120   f(mtCompiler,      "Compiler")                                                    \
 121   f(mtInternal,      "Internal")    /* memory used by VM, but does not belong to */ \
 122                                     /* any of above categories, and not used by  */ \
 123                                     /* NMT                                       */ \
 124   f(mtOther,         "Other")       /* memory not used by VM                     */ \
 125   f(mtSymbol,        "Symbol")                                                      \
 126   f(mtNMT,           "Native Memory Tracking")  /* memory used by NMT            */ \
 127   f(mtClassShared,   "Shared class space")      /* class data sharing            */ \
 128   f(mtChunk,         "Arena Chunk") /* chunk that holds content of arenas        */ \
 129   f(mtTest,          "Test")        /* Test type for verifying NMT               */ \
 130   f(mtTracing,       "Tracing")                                                     \
 131   f(mtLogging,       "Logging")                                                     \
 132   f(mtStatistics,    "Statistics")                                                  \
 133   f(mtArguments,     "Arguments")                                                   \
 134   f(mtModule,        "Module")                                                      \
 135   f(mtSafepoint,     "Safepoint")                                                   \
 136   f(mtSynchronizer,  "Synchronization")                                             \
 137   f(mtNone,          "Unknown")                                                     \
 138   //end
 139 
 140 #define MEMORY_TYPE_DECLARE_ENUM(type, human_readable) \
 141   type,
 142 
 143 /*
 144  * Memory types
 145  */
 146 enum MemoryType {
 147   MEMORY_TYPES_DO(MEMORY_TYPE_DECLARE_ENUM)
 148   mt_number_of_types   // number of memory types (mtDontTrack
 149                        // is not included as validate type)
 150 };
 151 
 152 typedef MemoryType MEMFLAGS;
 153 
 154 
 155 #if INCLUDE_NMT
 156 
 157 extern bool NMT_track_callsite;
 158 
 159 #else
 160 
 161 const bool NMT_track_callsite = false;
 162 
 163 #endif // INCLUDE_NMT
 164 
 165 class NativeCallStack;
 166 
 167 
 168 char* AllocateHeap(size_t size,
 169                    MEMFLAGS flags,
 170                    const NativeCallStack& stack,
 171                    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 172 char* AllocateHeap(size_t size,
 173                    MEMFLAGS flags,
 174                    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 175 
 176 char* ReallocateHeap(char *old,
 177                      size_t size,
 178                      MEMFLAGS flag,
 179                      AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 180 
 181 void FreeHeap(void* p);
 182 
 183 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
 184  public:
 185   ALWAYSINLINE void* operator new(size_t size) throw() {
 186     return (void*)AllocateHeap(size, F);
 187   }
 188 
 189   ALWAYSINLINE void* operator new(size_t size,
 190                                   const NativeCallStack& stack) throw() {
 191     return (void*)AllocateHeap(size, F, stack);
 192   }
 193 
 194   ALWAYSINLINE void* operator new(size_t size, const std::nothrow_t&,
 195                                   const NativeCallStack& stack) throw() {
 196     return (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL);
 197   }
 198 
 199   ALWAYSINLINE void* operator new(size_t size, const std::nothrow_t&) throw() {
 200     return (void*)AllocateHeap(size, F, AllocFailStrategy::RETURN_NULL);
 201   }
 202 
 203   ALWAYSINLINE void* operator new[](size_t size) throw() {
 204     return (void*)AllocateHeap(size, F);
 205   }
 206 
 207   ALWAYSINLINE void* operator new[](size_t size,
 208                                   const NativeCallStack& stack) throw() {
 209     return (void*)AllocateHeap(size, F, stack);
 210   }
 211 
 212   ALWAYSINLINE void* operator new[](size_t size, const std::nothrow_t&,
 213                                     const NativeCallStack& stack) throw() {
 214     return (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL);
 215   }
 216 
 217   ALWAYSINLINE void* operator new[](size_t size, const std::nothrow_t&) throw() {
 218     return (void*)AllocateHeap(size, F, AllocFailStrategy::RETURN_NULL);
 219   }
 220 
 221   void  operator delete(void* p)     { FreeHeap(p); }
 222   void  operator delete [] (void* p) { FreeHeap(p); }
 223 };
 224 
 225 // Base class for objects allocated on the stack only.
 226 // Calling new or delete will result in fatal error.
 227 
 228 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
 229  private:
 230   void* operator new(size_t size) throw();
 231   void* operator new [](size_t size) throw();
 232 #ifdef __IBMCPP__
 233  public:
 234 #endif
 235   void  operator delete(void* p);
 236   void  operator delete [](void* p);
 237 };
 238 
 239 // Base class for objects stored in Metaspace.
 240 // Calling delete will result in fatal error.
 241 //
 242 // Do not inherit from something with a vptr because this class does
 243 // not introduce one.  This class is used to allocate both shared read-only
 244 // and shared read-write classes.
 245 //
 246 
 247 class ClassLoaderData;
 248 class MetaspaceClosure;
 249 
 250 class MetaspaceObj {
 251   friend class VMStructs;
 252   // When CDS is enabled, all shared metaspace objects are mapped
 253   // into a single contiguous memory block, so we can use these
 254   // two pointers to quickly determine if something is in the
 255   // shared metaspace.
 256   //
 257   // When CDS is not enabled, both pointers are set to NULL.
 258   static void* _shared_metaspace_base; // (inclusive) low address
 259   static void* _shared_metaspace_top;  // (exclusive) high address
 260 
 261  public:
 262   bool is_metaspace_object() const;
 263   bool is_shared() const {
 264     // If no shared metaspace regions are mapped, _shared_metaspace_{base,top} will
 265     // both be NULL and all values of p will be rejected quickly.
 266     return (((void*)this) < _shared_metaspace_top && ((void*)this) >= _shared_metaspace_base);
 267   }
 268   void print_address_on(outputStream* st) const;  // nonvirtual address printing
 269 
 270   static void set_shared_metaspace_range(void* base, void* top) {
 271     _shared_metaspace_base = base;
 272     _shared_metaspace_top = top;
 273   }
 274   static void* shared_metaspace_base() { return _shared_metaspace_base; }
 275   static void* shared_metaspace_top()  { return _shared_metaspace_top;  }
 276 
 277 #define METASPACE_OBJ_TYPES_DO(f) \
 278   f(Class) \
 279   f(Symbol) \
 280   f(TypeArrayU1) \
 281   f(TypeArrayU2) \
 282   f(TypeArrayU4) \
 283   f(TypeArrayU8) \
 284   f(TypeArrayOther) \
 285   f(Method) \
 286   f(ConstMethod) \
 287   f(MethodData) \
 288   f(ConstantPool) \
 289   f(ConstantPoolCache) \
 290   f(Annotations) \
 291   f(MethodCounters)
 292 
 293 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
 294 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
 295 
 296   enum Type {
 297     // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
 298     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
 299     _number_of_types
 300   };
 301 
 302   static const char * type_name(Type type) {
 303     switch(type) {
 304     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
 305     default:
 306       ShouldNotReachHere();
 307       return NULL;
 308     }
 309   }
 310 
 311   static MetaspaceObj::Type array_type(size_t elem_size) {
 312     switch (elem_size) {
 313     case 1: return TypeArrayU1Type;
 314     case 2: return TypeArrayU2Type;
 315     case 4: return TypeArrayU4Type;
 316     case 8: return TypeArrayU8Type;
 317     default:
 318       return TypeArrayOtherType;
 319     }
 320   }
 321 
 322   void* operator new(size_t size, ClassLoaderData* loader_data,
 323                      size_t word_size,
 324                      Type type, Thread* thread) throw();
 325                      // can't use TRAPS from this header file.
 326   void operator delete(void* p) { ShouldNotCallThis(); }
 327 
 328   // Declare a *static* method with the same signature in any subclass of MetaspaceObj
 329   // that should be read-only by default. See symbol.hpp for an example. This function
 330   // is used by the templates in metaspaceClosure.hpp
 331   static bool is_read_only_by_default() { return false; }
 332 };
 333 
 334 // Base class for classes that constitute name spaces.
 335 
 336 class Arena;
 337 
 338 class AllStatic {
 339  public:
 340   AllStatic()  { ShouldNotCallThis(); }
 341   ~AllStatic() { ShouldNotCallThis(); }
 342 };
 343 
 344 
 345 extern char* resource_allocate_bytes(size_t size,
 346     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 347 extern char* resource_allocate_bytes(Thread* thread, size_t size,
 348     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 349 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
 350     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 351 extern void resource_free_bytes( char *old, size_t size );
 352 
 353 //----------------------------------------------------------------------
 354 // Base class for objects allocated in the resource area per default.
 355 // Optionally, objects may be allocated on the C heap with
 356 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
 357 // ResourceObj's can be allocated within other objects, but don't use
 358 // new or delete (allocation_type is unknown).  If new is used to allocate,
 359 // use delete to deallocate.
 360 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
 361  public:
 362   enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
 363   static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
 364 #ifdef ASSERT
 365  private:
 366   // When this object is allocated on stack the new() operator is not
 367   // called but garbage on stack may look like a valid allocation_type.
 368   // Store negated 'this' pointer when new() is called to distinguish cases.
 369   // Use second array's element for verification value to distinguish garbage.
 370   uintptr_t _allocation_t[2];
 371   bool is_type_set() const;
 372   void initialize_allocation_info();
 373  public:
 374   allocation_type get_allocation_type() const;
 375   bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
 376   bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
 377   bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
 378   bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
 379 protected:
 380   ResourceObj(); // default constructor
 381   ResourceObj(const ResourceObj& r); // default copy constructor
 382   ResourceObj& operator=(const ResourceObj& r); // default copy assignment
 383   ~ResourceObj();
 384 #endif // ASSERT
 385 
 386  public:
 387   void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
 388   void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
 389   void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
 390       allocation_type type, MEMFLAGS flags) throw();
 391   void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 392       allocation_type type, MEMFLAGS flags) throw();
 393 
 394   void* operator new(size_t size, Arena *arena) throw();
 395 
 396   void* operator new [](size_t size, Arena *arena) throw();
 397 
 398   void* operator new(size_t size) throw() {
 399       address res = (address)resource_allocate_bytes(size);
 400       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 401       return res;
 402   }
 403 
 404   void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
 405       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 406       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 407       return res;
 408   }
 409 
 410   void* operator new [](size_t size) throw() {
 411       address res = (address)resource_allocate_bytes(size);
 412       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 413       return res;
 414   }
 415 
 416   void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
 417       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 418       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 419       return res;
 420   }
 421 
 422   void  operator delete(void* p);
 423   void  operator delete [](void* p);
 424 };
 425 
 426 // One of the following macros must be used when allocating an array
 427 // or object to determine whether it should reside in the C heap on in
 428 // the resource area.
 429 
 430 #define NEW_RESOURCE_ARRAY(type, size)\
 431   (type*) resource_allocate_bytes((size) * sizeof(type))
 432 
 433 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
 434   (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 435 
 436 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
 437   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
 438 
 439 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
 440   (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 441 
 442 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
 443   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
 444 
 445 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
 446   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
 447                                     (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 448 
 449 #define FREE_RESOURCE_ARRAY(type, old, size)\
 450   resource_free_bytes((char*)(old), (size) * sizeof(type))
 451 
 452 #define FREE_FAST(old)\
 453     /* nop */
 454 
 455 #define NEW_RESOURCE_OBJ(type)\
 456   NEW_RESOURCE_ARRAY(type, 1)
 457 
 458 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
 459   NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
 460 
 461 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
 462   (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
 463 
 464 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
 465   (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
 466 
 467 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
 468   (type*) (AllocateHeap((size) * sizeof(type), memflags))
 469 
 470 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
 471   NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
 472 
 473 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
 474   NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
 475 
 476 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
 477   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
 478 
 479 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
 480   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
 481 
 482 #define FREE_C_HEAP_ARRAY(type, old) \
 483   FreeHeap((char*)(old))
 484 
 485 // allocate type in heap without calling ctor
 486 #define NEW_C_HEAP_OBJ(type, memflags)\
 487   NEW_C_HEAP_ARRAY(type, 1, memflags)
 488 
 489 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
 490   NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
 491 
 492 // deallocate obj of type in heap without calling dtor
 493 #define FREE_C_HEAP_OBJ(objname)\
 494   FreeHeap((char*)objname);
 495 
 496 // for statistics
 497 #ifndef PRODUCT
 498 class AllocStats : StackObj {
 499   julong start_mallocs, start_frees;
 500   julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
 501  public:
 502   AllocStats();
 503 
 504   julong num_mallocs();    // since creation of receiver
 505   julong alloc_bytes();
 506   julong num_frees();
 507   julong free_bytes();
 508   julong resource_bytes();
 509   void   print();
 510 };
 511 #endif
 512 
 513 
 514 //------------------------------ReallocMark---------------------------------
 515 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
 516 // ReallocMark, which is declared in the same scope as the reallocated
 517 // pointer.  Any operation that could __potentially__ cause a reallocation
 518 // should check the ReallocMark.
 519 class ReallocMark: public StackObj {
 520 protected:
 521   NOT_PRODUCT(int _nesting;)
 522 
 523 public:
 524   ReallocMark()   PRODUCT_RETURN;
 525   void check()    PRODUCT_RETURN;
 526 };
 527 
 528 // Helper class to allocate arrays that may become large.
 529 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
 530 // and uses mapped memory for larger allocations.
 531 // Most OS mallocs do something similar but Solaris malloc does not revert
 532 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
 533 // is set so that we always use malloc except for Solaris where we set the
 534 // limit to get mapped memory.
 535 template <class E>
 536 class ArrayAllocator : public AllStatic {
 537  private:
 538   static bool should_use_malloc(size_t length);
 539 
 540   static E* allocate_malloc(size_t length, MEMFLAGS flags);
 541   static E* allocate_mmap(size_t length, MEMFLAGS flags);
 542 
 543   static void free_malloc(E* addr, size_t length);
 544   static void free_mmap(E* addr, size_t length);
 545 
 546  public:
 547   static E* allocate(size_t length, MEMFLAGS flags);
 548   static E* reallocate(E* old_addr, size_t old_length, size_t new_length, MEMFLAGS flags);
 549   static void free(E* addr, size_t length);
 550 };
 551 
 552 // Uses mmaped memory for all allocations. All allocations are initially
 553 // zero-filled. No pre-touching.
 554 template <class E>
 555 class MmapArrayAllocator : public AllStatic {
 556  private:
 557   static size_t size_for(size_t length);
 558 
 559  public:
 560   static E* allocate_or_null(size_t length, MEMFLAGS flags);
 561   static E* allocate(size_t length, MEMFLAGS flags);
 562   static void free(E* addr, size_t length);
 563 };
 564 
 565 // Uses malloc:ed memory for all allocations.
 566 template <class E>
 567 class MallocArrayAllocator : public AllStatic {
 568  public:
 569   static size_t size_for(size_t length);
 570 
 571   static E* allocate(size_t length, MEMFLAGS flags);
 572   static void free(E* addr);
 573 };
 574 
 575 #endif // SHARE_MEMORY_ALLOCATION_HPP