1 /*
   2  * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/altHashing.hpp"
  27 #include "classfile/dictionary.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/packageEntry.hpp"
  31 #include "classfile/placeholders.hpp"
  32 #include "classfile/protectionDomainCache.hpp"
  33 #include "classfile/stringTable.hpp"
  34 #include "code/nmethod.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "oops/weakHandle.inline.hpp"
  40 #include "runtime/safepoint.hpp"
  41 #include "utilities/dtrace.hpp"
  42 #include "utilities/hashtable.hpp"
  43 #include "utilities/hashtable.inline.hpp"
  44 #include "utilities/numberSeq.hpp"
  45 
  46 
  47 // This hashtable is implemented as an open hash table with a fixed number of buckets.
  48 
  49 template <MEMFLAGS F> BasicHashtableEntry<F>* BasicHashtable<F>::new_entry_free_list() {
  50   BasicHashtableEntry<F>* entry = NULL;
  51   if (_free_list != NULL) {
  52     entry = _free_list;
  53     _free_list = _free_list->next();
  54   }
  55   return entry;
  56 }
  57 
  58 // HashtableEntrys are allocated in blocks to reduce the space overhead.
  59 template <MEMFLAGS F> BasicHashtableEntry<F>* BasicHashtable<F>::new_entry(unsigned int hashValue) {
  60   BasicHashtableEntry<F>* entry = new_entry_free_list();
  61 
  62   if (entry == NULL) {
  63     if (_first_free_entry + _entry_size >= _end_block) {
  64       int block_size = MIN2(512, MAX2((int)_table_size / 2, (int)_number_of_entries));
  65       int len = _entry_size * block_size;
  66       len = 1 << log2_int(len); // round down to power of 2
  67       assert(len >= _entry_size, "");
  68       _first_free_entry = NEW_C_HEAP_ARRAY2(char, len, F, CURRENT_PC);
  69       _entry_blocks->append(_first_free_entry);
  70       _end_block = _first_free_entry + len;
  71     }
  72     entry = (BasicHashtableEntry<F>*)_first_free_entry;
  73     _first_free_entry += _entry_size;
  74   }
  75 
  76   assert(_entry_size % HeapWordSize == 0, "");
  77   entry->set_hash(hashValue);
  78   return entry;
  79 }
  80 
  81 
  82 template <class T, MEMFLAGS F> HashtableEntry<T, F>* Hashtable<T, F>::new_entry(unsigned int hashValue, T obj) {
  83   HashtableEntry<T, F>* entry;
  84 
  85   entry = (HashtableEntry<T, F>*)BasicHashtable<F>::new_entry(hashValue);
  86   entry->set_literal(obj);
  87   return entry;
  88 }
  89 
  90 // Version of hashtable entry allocation that allocates in the C heap directly.
  91 // The block allocator in BasicHashtable has less fragmentation, but the memory is not freed until
  92 // the whole table is freed. Use allocate_new_entry() if you want to individually free the memory
  93 // used by each entry
  94 template <class T, MEMFLAGS F> HashtableEntry<T, F>* Hashtable<T, F>::allocate_new_entry(unsigned int hashValue, T obj) {
  95   HashtableEntry<T, F>* entry = (HashtableEntry<T, F>*) NEW_C_HEAP_ARRAY(char, this->entry_size(), F);
  96 
  97   entry->set_hash(hashValue);
  98   entry->set_literal(obj);
  99   entry->set_next(NULL);
 100   return entry;
 101 }
 102 
 103 template <MEMFLAGS F> void BasicHashtable<F>::free_buckets() {
 104   if (NULL != _buckets) {
 105     FREE_C_HEAP_ARRAY(HashtableBucket, _buckets);
 106     _buckets = NULL;
 107   }
 108 }
 109 
 110 // For oops and Strings the size of the literal is interesting. For other types, nobody cares.
 111 static int literal_size(ConstantPool*) { return 0; }
 112 static int literal_size(Klass*)        { return 0; }
 113 static int literal_size(nmethod*)      { return 0; }
 114 
 115 static int literal_size(Symbol *symbol) {
 116   return symbol->size() * HeapWordSize;
 117 }
 118 
 119 static int literal_size(oop obj) {
 120   // NOTE: this would over-count if (pre-JDK8) java_lang_Class::has_offset_field() is true,
 121   // and the String.value array is shared by several Strings. However, starting from JDK8,
 122   // the String.value array is not shared anymore.
 123   if (obj == NULL) {
 124     return 0;
 125   } else if (obj->klass() == SystemDictionary::String_klass()) {
 126     return (obj->size() + java_lang_String::value(obj)->size()) * HeapWordSize;
 127   } else {
 128     return obj->size();
 129   }
 130 }
 131 
 132 static int literal_size(WeakHandle<vm_class_loader_data> v) {
 133   return literal_size(v.peek());
 134 }
 135 
 136 template <MEMFLAGS F> bool BasicHashtable<F>::resize(int new_size) {
 137   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 138 
 139   // Allocate new buckets
 140   HashtableBucket<F>* buckets_new = NEW_C_HEAP_ARRAY2_RETURN_NULL(HashtableBucket<F>, new_size, F, CURRENT_PC);
 141   if (buckets_new == NULL) {
 142     return false;
 143   }
 144 
 145   // Clear the new buckets
 146   for (int i = 0; i < new_size; i++) {
 147     buckets_new[i].clear();
 148   }
 149 
 150   int table_size_old = _table_size;
 151   // hash_to_index() uses _table_size, so switch the sizes now
 152   _table_size = new_size;
 153 
 154   // Move entries from the old table to a new table
 155   for (int index_old = 0; index_old < table_size_old; index_old++) {
 156     for (BasicHashtableEntry<F>* p = _buckets[index_old].get_entry(); p != NULL; ) {
 157       BasicHashtableEntry<F>* next = p->next();
 158       bool keep_shared = p->is_shared();
 159       int index_new = hash_to_index(p->hash());
 160 
 161       p->set_next(buckets_new[index_new].get_entry());
 162       buckets_new[index_new].set_entry(p);
 163 
 164       if (keep_shared) {
 165         p->set_shared();
 166       }
 167       p = next;
 168     }
 169   }
 170 
 171   // The old backets now can be released
 172   BasicHashtable<F>::free_buckets();
 173 
 174   // Switch to the new storage
 175   _buckets = buckets_new;
 176 
 177   return true;
 178 }
 179 
 180 template <MEMFLAGS F> bool BasicHashtable<F>::maybe_grow(int max_size, int load_factor) {
 181   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 182 
 183   if (table_size() >= max_size) {
 184     return false;
 185   }
 186   if (number_of_entries() / table_size() > load_factor) {
 187     resize(MIN2<int>(table_size() * 2, max_size));
 188     return true;
 189   } else {
 190     return false;
 191   }
 192 }
 193 
 194 // Dump footprint and bucket length statistics
 195 //
 196 // Note: if you create a new subclass of Hashtable<MyNewType, F>, you will need to
 197 // add a new function static int literal_size(MyNewType lit)
 198 // because I can't get template <class T> int literal_size(T) to pick the specializations for Symbol and oop.
 199 //
 200 // The StringTable and SymbolTable dumping print how much footprint is used by the String and Symbol
 201 // literals.
 202 
 203 template <class T, MEMFLAGS F> void Hashtable<T, F>::print_table_statistics(outputStream* st,
 204                                                                             const char *table_name,
 205                                                                             T (*literal_load_barrier)(HashtableEntry<T, F>*)) {
 206   NumberSeq summary;
 207   int literal_bytes = 0;
 208   for (int i = 0; i < this->table_size(); ++i) {
 209     int count = 0;
 210     for (HashtableEntry<T, F>* e = this->bucket(i);
 211          e != NULL; e = e->next()) {
 212       count++;
 213       T l = (literal_load_barrier != NULL) ? literal_load_barrier(e) : e->literal();
 214       literal_bytes += literal_size(l);
 215     }
 216     summary.add((double)count);
 217   }
 218   double num_buckets = summary.num();
 219   double num_entries = summary.sum();
 220 
 221   int bucket_bytes = (int)num_buckets * sizeof(HashtableBucket<F>);
 222   int entry_bytes  = (int)num_entries * sizeof(HashtableEntry<T, F>);
 223   int total_bytes = literal_bytes +  bucket_bytes + entry_bytes;
 224 
 225   int bucket_size  = (num_buckets <= 0) ? 0 : (bucket_bytes  / num_buckets);
 226   int entry_size   = (num_entries <= 0) ? 0 : (entry_bytes   / num_entries);
 227 
 228   st->print_cr("%s statistics:", table_name);
 229   st->print_cr("Number of buckets       : %9d = %9d bytes, each %d", (int)num_buckets, bucket_bytes,  bucket_size);
 230   st->print_cr("Number of entries       : %9d = %9d bytes, each %d", (int)num_entries, entry_bytes,   entry_size);
 231   if (literal_bytes != 0) {
 232     double literal_avg = (num_entries <= 0) ? 0 : (literal_bytes / num_entries);
 233     st->print_cr("Number of literals      : %9d = %9d bytes, avg %7.3f", (int)num_entries, literal_bytes, literal_avg);
 234   }
 235   st->print_cr("Total footprint         : %9s = %9d bytes", "", total_bytes);
 236   st->print_cr("Average bucket size     : %9.3f", summary.avg());
 237   st->print_cr("Variance of bucket size : %9.3f", summary.variance());
 238   st->print_cr("Std. dev. of bucket size: %9.3f", summary.sd());
 239   st->print_cr("Maximum bucket size     : %9d", (int)summary.maximum());
 240 }
 241 
 242 #ifndef PRODUCT
 243 template <class T> void print_literal(T l) {
 244   l->print();
 245 }
 246 
 247 static void print_literal(WeakHandle<vm_class_loader_data> l) {
 248   l.print();
 249 }
 250 
 251 template <class T, MEMFLAGS F> void Hashtable<T, F>::print() {
 252   ResourceMark rm;
 253 
 254   for (int i = 0; i < BasicHashtable<F>::table_size(); i++) {
 255     HashtableEntry<T, F>* entry = bucket(i);
 256     while(entry != NULL) {
 257       tty->print("%d : ", i);
 258       print_literal(entry->literal());
 259       tty->cr();
 260       entry = entry->next();
 261     }
 262   }
 263 }
 264 
 265 template <MEMFLAGS F>
 266 template <class T> void BasicHashtable<F>::verify_table(const char* table_name) {
 267   int element_count = 0;
 268   int max_bucket_count = 0;
 269   int max_bucket_number = 0;
 270   for (int index = 0; index < table_size(); index++) {
 271     int bucket_count = 0;
 272     for (T* probe = (T*)bucket(index); probe != NULL; probe = probe->next()) {
 273       probe->verify();
 274       bucket_count++;
 275     }
 276     element_count += bucket_count;
 277     if (bucket_count > max_bucket_count) {
 278       max_bucket_count = bucket_count;
 279       max_bucket_number = index;
 280     }
 281   }
 282   guarantee(number_of_entries() == element_count,
 283             "Verify of %s failed", table_name);
 284 
 285   // Log some statistics about the hashtable
 286   log_info(hashtables)("%s max bucket size %d bucket %d element count %d table size %d", table_name,
 287                        max_bucket_count, max_bucket_number, _number_of_entries, _table_size);
 288   if (_number_of_entries > 0 && log_is_enabled(Debug, hashtables)) {
 289     for (int index = 0; index < table_size(); index++) {
 290       int bucket_count = 0;
 291       for (T* probe = (T*)bucket(index); probe != NULL; probe = probe->next()) {
 292         log_debug(hashtables)("bucket %d hash " INTPTR_FORMAT, index, (intptr_t)probe->hash());
 293         bucket_count++;
 294       }
 295       if (bucket_count > 0) {
 296         log_debug(hashtables)("bucket %d count %d", index, bucket_count);
 297       }
 298     }
 299   }
 300 }
 301 #endif // PRODUCT
 302 
 303 // Explicitly instantiate these types
 304 template class Hashtable<nmethod*, mtGC>;
 305 template class HashtableEntry<nmethod*, mtGC>;
 306 template class BasicHashtable<mtGC>;
 307 template class Hashtable<ConstantPool*, mtClass>;
 308 template class Hashtable<Symbol*, mtSymbol>;
 309 template class Hashtable<Klass*, mtClass>;
 310 template class Hashtable<InstanceKlass*, mtClass>;
 311 template class Hashtable<WeakHandle<vm_class_loader_data>, mtClass>;
 312 template class Hashtable<Symbol*, mtModule>;
 313 template class Hashtable<oop, mtSymbol>;
 314 template class Hashtable<Symbol*, mtClass>;
 315 template class HashtableEntry<Symbol*, mtSymbol>;
 316 template class HashtableEntry<Symbol*, mtClass>;
 317 template class HashtableEntry<oop, mtSymbol>;
 318 template class HashtableEntry<WeakHandle<vm_class_loader_data>, mtClass>;
 319 template class HashtableBucket<mtClass>;
 320 template class BasicHashtableEntry<mtSymbol>;
 321 template class BasicHashtableEntry<mtCode>;
 322 template class BasicHashtable<mtClass>;
 323 template class BasicHashtable<mtClassShared>;
 324 template class BasicHashtable<mtSymbol>;
 325 template class BasicHashtable<mtCode>;
 326 template class BasicHashtable<mtInternal>;
 327 template class BasicHashtable<mtModule>;
 328 template class BasicHashtable<mtCompiler>;
 329 
 330 template void BasicHashtable<mtClass>::verify_table<DictionaryEntry>(char const*);
 331 template void BasicHashtable<mtModule>::verify_table<ModuleEntry>(char const*);
 332 template void BasicHashtable<mtModule>::verify_table<PackageEntry>(char const*);
 333 template void BasicHashtable<mtClass>::verify_table<ProtectionDomainCacheEntry>(char const*);
 334 template void BasicHashtable<mtClass>::verify_table<PlaceholderEntry>(char const*);