1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/g1Allocator.inline.hpp"
  31 #include "gc/g1/g1BarrierSet.hpp"
  32 #include "gc/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc/g1/g1CollectionSet.hpp"
  34 #include "gc/g1/g1CollectorPolicy.hpp"
  35 #include "gc/g1/g1CollectorState.hpp"
  36 #include "gc/g1/g1ConcurrentRefine.hpp"
  37 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  38 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  39 #include "gc/g1/g1EvacStats.inline.hpp"
  40 #include "gc/g1/g1FullCollector.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1HotCardCache.hpp"
  46 #include "gc/g1/g1MemoryPool.hpp"
  47 #include "gc/g1/g1OopClosures.inline.hpp"
  48 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc/g1/g1Policy.hpp"
  50 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  51 #include "gc/g1/g1RemSet.hpp"
  52 #include "gc/g1/g1RootClosures.hpp"
  53 #include "gc/g1/g1RootProcessor.hpp"
  54 #include "gc/g1/g1StringDedup.hpp"
  55 #include "gc/g1/g1ThreadLocalData.hpp"
  56 #include "gc/g1/g1YCTypes.hpp"
  57 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  58 #include "gc/g1/heapRegion.inline.hpp"
  59 #include "gc/g1/heapRegionRemSet.hpp"
  60 #include "gc/g1/heapRegionSet.inline.hpp"
  61 #include "gc/g1/vm_operations_g1.hpp"
  62 #include "gc/shared/adaptiveSizePolicy.hpp"
  63 #include "gc/shared/gcHeapSummary.hpp"
  64 #include "gc/shared/gcId.hpp"
  65 #include "gc/shared/gcLocker.hpp"
  66 #include "gc/shared/gcTimer.hpp"
  67 #include "gc/shared/gcTrace.hpp"
  68 #include "gc/shared/gcTraceTime.inline.hpp"
  69 #include "gc/shared/generationSpec.hpp"
  70 #include "gc/shared/isGCActiveMark.hpp"
  71 #include "gc/shared/oopStorageParState.hpp"
  72 #include "gc/shared/preservedMarks.inline.hpp"
  73 #include "gc/shared/suspendibleThreadSet.hpp"
  74 #include "gc/shared/referenceProcessor.inline.hpp"
  75 #include "gc/shared/taskqueue.inline.hpp"
  76 #include "gc/shared/weakProcessor.hpp"
  77 #include "logging/log.hpp"
  78 #include "memory/allocation.hpp"
  79 #include "memory/iterator.hpp"
  80 #include "memory/metaspaceShared.hpp"
  81 #include "memory/resourceArea.hpp"
  82 #include "oops/access.inline.hpp"
  83 #include "oops/compressedOops.inline.hpp"
  84 #include "oops/oop.inline.hpp"
  85 #include "prims/resolvedMethodTable.hpp"
  86 #include "runtime/atomic.hpp"
  87 #include "runtime/flags/flagSetting.hpp"
  88 #include "runtime/handles.inline.hpp"
  89 #include "runtime/init.hpp"
  90 #include "runtime/orderAccess.hpp"
  91 #include "runtime/threadSMR.hpp"
  92 #include "runtime/vmThread.hpp"
  93 #include "utilities/align.hpp"
  94 #include "utilities/globalDefinitions.hpp"
  95 #include "utilities/stack.inline.hpp"
  96 
  97 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  98 
  99 // INVARIANTS/NOTES
 100 //
 101 // All allocation activity covered by the G1CollectedHeap interface is
 102 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 103 // and allocate_new_tlab, which are the "entry" points to the
 104 // allocation code from the rest of the JVM.  (Note that this does not
 105 // apply to TLAB allocation, which is not part of this interface: it
 106 // is done by clients of this interface.)
 107 
 108 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 109  private:
 110   size_t _num_dirtied;
 111   G1CollectedHeap* _g1h;
 112   G1CardTable* _g1_ct;
 113 
 114   HeapRegion* region_for_card(jbyte* card_ptr) const {
 115     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 116   }
 117 
 118   bool will_become_free(HeapRegion* hr) const {
 119     // A region will be freed by free_collection_set if the region is in the
 120     // collection set and has not had an evacuation failure.
 121     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 122   }
 123 
 124  public:
 125   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 126     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 127 
 128   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 129     HeapRegion* hr = region_for_card(card_ptr);
 130 
 131     // Should only dirty cards in regions that won't be freed.
 132     if (!will_become_free(hr)) {
 133       *card_ptr = G1CardTable::dirty_card_val();
 134       _num_dirtied++;
 135     }
 136 
 137     return true;
 138   }
 139 
 140   size_t num_dirtied()   const { return _num_dirtied; }
 141 };
 142 
 143 
 144 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 145   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 146 }
 147 
 148 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 149   // The from card cache is not the memory that is actually committed. So we cannot
 150   // take advantage of the zero_filled parameter.
 151   reset_from_card_cache(start_idx, num_regions);
 152 }
 153 
 154 
 155 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 156                                              MemRegion mr) {
 157   return new HeapRegion(hrs_index, bot(), mr);
 158 }
 159 
 160 // Private methods.
 161 
 162 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 163   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 164          "the only time we use this to allocate a humongous region is "
 165          "when we are allocating a single humongous region");
 166 
 167   HeapRegion* res = _hrm.allocate_free_region(is_old);
 168 
 169   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 170     // Currently, only attempts to allocate GC alloc regions set
 171     // do_expand to true. So, we should only reach here during a
 172     // safepoint. If this assumption changes we might have to
 173     // reconsider the use of _expand_heap_after_alloc_failure.
 174     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 175 
 176     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 177                               word_size * HeapWordSize);
 178 
 179     if (expand(word_size * HeapWordSize)) {
 180       // Given that expand() succeeded in expanding the heap, and we
 181       // always expand the heap by an amount aligned to the heap
 182       // region size, the free list should in theory not be empty.
 183       // In either case allocate_free_region() will check for NULL.
 184       res = _hrm.allocate_free_region(is_old);
 185     } else {
 186       _expand_heap_after_alloc_failure = false;
 187     }
 188   }
 189   return res;
 190 }
 191 
 192 HeapWord*
 193 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 194                                                            uint num_regions,
 195                                                            size_t word_size) {
 196   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 197   assert(is_humongous(word_size), "word_size should be humongous");
 198   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 199 
 200   // Index of last region in the series.
 201   uint last = first + num_regions - 1;
 202 
 203   // We need to initialize the region(s) we just discovered. This is
 204   // a bit tricky given that it can happen concurrently with
 205   // refinement threads refining cards on these regions and
 206   // potentially wanting to refine the BOT as they are scanning
 207   // those cards (this can happen shortly after a cleanup; see CR
 208   // 6991377). So we have to set up the region(s) carefully and in
 209   // a specific order.
 210 
 211   // The word size sum of all the regions we will allocate.
 212   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 213   assert(word_size <= word_size_sum, "sanity");
 214 
 215   // This will be the "starts humongous" region.
 216   HeapRegion* first_hr = region_at(first);
 217   // The header of the new object will be placed at the bottom of
 218   // the first region.
 219   HeapWord* new_obj = first_hr->bottom();
 220   // This will be the new top of the new object.
 221   HeapWord* obj_top = new_obj + word_size;
 222 
 223   // First, we need to zero the header of the space that we will be
 224   // allocating. When we update top further down, some refinement
 225   // threads might try to scan the region. By zeroing the header we
 226   // ensure that any thread that will try to scan the region will
 227   // come across the zero klass word and bail out.
 228   //
 229   // NOTE: It would not have been correct to have used
 230   // CollectedHeap::fill_with_object() and make the space look like
 231   // an int array. The thread that is doing the allocation will
 232   // later update the object header to a potentially different array
 233   // type and, for a very short period of time, the klass and length
 234   // fields will be inconsistent. This could cause a refinement
 235   // thread to calculate the object size incorrectly.
 236   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 237 
 238   // Next, pad out the unused tail of the last region with filler
 239   // objects, for improved usage accounting.
 240   // How many words we use for filler objects.
 241   size_t word_fill_size = word_size_sum - word_size;
 242 
 243   // How many words memory we "waste" which cannot hold a filler object.
 244   size_t words_not_fillable = 0;
 245 
 246   if (word_fill_size >= min_fill_size()) {
 247     fill_with_objects(obj_top, word_fill_size);
 248   } else if (word_fill_size > 0) {
 249     // We have space to fill, but we cannot fit an object there.
 250     words_not_fillable = word_fill_size;
 251     word_fill_size = 0;
 252   }
 253 
 254   // We will set up the first region as "starts humongous". This
 255   // will also update the BOT covering all the regions to reflect
 256   // that there is a single object that starts at the bottom of the
 257   // first region.
 258   first_hr->set_starts_humongous(obj_top, word_fill_size);
 259   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 260   // Then, if there are any, we will set up the "continues
 261   // humongous" regions.
 262   HeapRegion* hr = NULL;
 263   for (uint i = first + 1; i <= last; ++i) {
 264     hr = region_at(i);
 265     hr->set_continues_humongous(first_hr);
 266     _g1_policy->remset_tracker()->update_at_allocate(hr);
 267   }
 268 
 269   // Up to this point no concurrent thread would have been able to
 270   // do any scanning on any region in this series. All the top
 271   // fields still point to bottom, so the intersection between
 272   // [bottom,top] and [card_start,card_end] will be empty. Before we
 273   // update the top fields, we'll do a storestore to make sure that
 274   // no thread sees the update to top before the zeroing of the
 275   // object header and the BOT initialization.
 276   OrderAccess::storestore();
 277 
 278   // Now, we will update the top fields of the "continues humongous"
 279   // regions except the last one.
 280   for (uint i = first; i < last; ++i) {
 281     hr = region_at(i);
 282     hr->set_top(hr->end());
 283   }
 284 
 285   hr = region_at(last);
 286   // If we cannot fit a filler object, we must set top to the end
 287   // of the humongous object, otherwise we cannot iterate the heap
 288   // and the BOT will not be complete.
 289   hr->set_top(hr->end() - words_not_fillable);
 290 
 291   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 292          "obj_top should be in last region");
 293 
 294   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 295 
 296   assert(words_not_fillable == 0 ||
 297          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 298          "Miscalculation in humongous allocation");
 299 
 300   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 301 
 302   for (uint i = first; i <= last; ++i) {
 303     hr = region_at(i);
 304     _humongous_set.add(hr);
 305     _hr_printer.alloc(hr);
 306   }
 307 
 308   return new_obj;
 309 }
 310 
 311 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 312   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 313   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 314 }
 315 
 316 // If could fit into free regions w/o expansion, try.
 317 // Otherwise, if can expand, do so.
 318 // Otherwise, if using ex regions might help, try with ex given back.
 319 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 320   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 321 
 322   _verifier->verify_region_sets_optional();
 323 
 324   uint first = G1_NO_HRM_INDEX;
 325   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 326 
 327   if (obj_regions == 1) {
 328     // Only one region to allocate, try to use a fast path by directly allocating
 329     // from the free lists. Do not try to expand here, we will potentially do that
 330     // later.
 331     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 332     if (hr != NULL) {
 333       first = hr->hrm_index();
 334     }
 335   } else {
 336     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 337     // are lucky enough to find some.
 338     first = _hrm.find_contiguous_only_empty(obj_regions);
 339     if (first != G1_NO_HRM_INDEX) {
 340       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 341     }
 342   }
 343 
 344   if (first == G1_NO_HRM_INDEX) {
 345     // Policy: We could not find enough regions for the humongous object in the
 346     // free list. Look through the heap to find a mix of free and uncommitted regions.
 347     // If so, try expansion.
 348     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 349     if (first != G1_NO_HRM_INDEX) {
 350       // We found something. Make sure these regions are committed, i.e. expand
 351       // the heap. Alternatively we could do a defragmentation GC.
 352       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 353                                     word_size * HeapWordSize);
 354 
 355       _hrm.expand_at(first, obj_regions, workers());
 356       g1_policy()->record_new_heap_size(num_regions());
 357 
 358 #ifdef ASSERT
 359       for (uint i = first; i < first + obj_regions; ++i) {
 360         HeapRegion* hr = region_at(i);
 361         assert(hr->is_free(), "sanity");
 362         assert(hr->is_empty(), "sanity");
 363         assert(is_on_master_free_list(hr), "sanity");
 364       }
 365 #endif
 366       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 367     } else {
 368       // Policy: Potentially trigger a defragmentation GC.
 369     }
 370   }
 371 
 372   HeapWord* result = NULL;
 373   if (first != G1_NO_HRM_INDEX) {
 374     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 375     assert(result != NULL, "it should always return a valid result");
 376 
 377     // A successful humongous object allocation changes the used space
 378     // information of the old generation so we need to recalculate the
 379     // sizes and update the jstat counters here.
 380     g1mm()->update_sizes();
 381   }
 382 
 383   _verifier->verify_region_sets_optional();
 384 
 385   return result;
 386 }
 387 
 388 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 389                                              size_t requested_size,
 390                                              size_t* actual_size) {
 391   assert_heap_not_locked_and_not_at_safepoint();
 392   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 393 
 394   return attempt_allocation(min_size, requested_size, actual_size);
 395 }
 396 
 397 HeapWord*
 398 G1CollectedHeap::mem_allocate(size_t word_size,
 399                               bool*  gc_overhead_limit_was_exceeded) {
 400   assert_heap_not_locked_and_not_at_safepoint();
 401 
 402   if (is_humongous(word_size)) {
 403     return attempt_allocation_humongous(word_size);
 404   }
 405   size_t dummy = 0;
 406   return attempt_allocation(word_size, word_size, &dummy);
 407 }
 408 
 409 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 410   ResourceMark rm; // For retrieving the thread names in log messages.
 411 
 412   // Make sure you read the note in attempt_allocation_humongous().
 413 
 414   assert_heap_not_locked_and_not_at_safepoint();
 415   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 416          "be called for humongous allocation requests");
 417 
 418   // We should only get here after the first-level allocation attempt
 419   // (attempt_allocation()) failed to allocate.
 420 
 421   // We will loop until a) we manage to successfully perform the
 422   // allocation or b) we successfully schedule a collection which
 423   // fails to perform the allocation. b) is the only case when we'll
 424   // return NULL.
 425   HeapWord* result = NULL;
 426   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 427     bool should_try_gc;
 428     uint gc_count_before;
 429 
 430     {
 431       MutexLockerEx x(Heap_lock);
 432       result = _allocator->attempt_allocation_locked(word_size);
 433       if (result != NULL) {
 434         return result;
 435       }
 436 
 437       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 438       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 439       // waiting because the GCLocker is active to not wait too long.
 440       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 441         // No need for an ergo message here, can_expand_young_list() does this when
 442         // it returns true.
 443         result = _allocator->attempt_allocation_force(word_size);
 444         if (result != NULL) {
 445           return result;
 446         }
 447       }
 448       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 449       // the GCLocker initiated GC has been performed and then retry. This includes
 450       // the case when the GC Locker is not active but has not been performed.
 451       should_try_gc = !GCLocker::needs_gc();
 452       // Read the GC count while still holding the Heap_lock.
 453       gc_count_before = total_collections();
 454     }
 455 
 456     if (should_try_gc) {
 457       bool succeeded;
 458       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 459                                    GCCause::_g1_inc_collection_pause);
 460       if (result != NULL) {
 461         assert(succeeded, "only way to get back a non-NULL result");
 462         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 463                              Thread::current()->name(), p2i(result));
 464         return result;
 465       }
 466 
 467       if (succeeded) {
 468         // We successfully scheduled a collection which failed to allocate. No
 469         // point in trying to allocate further. We'll just return NULL.
 470         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 471                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 472         return NULL;
 473       }
 474       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 475                            Thread::current()->name(), word_size);
 476     } else {
 477       // Failed to schedule a collection.
 478       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 479         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 480                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 481         return NULL;
 482       }
 483       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 484       // The GCLocker is either active or the GCLocker initiated
 485       // GC has not yet been performed. Stall until it is and
 486       // then retry the allocation.
 487       GCLocker::stall_until_clear();
 488       gclocker_retry_count += 1;
 489     }
 490 
 491     // We can reach here if we were unsuccessful in scheduling a
 492     // collection (because another thread beat us to it) or if we were
 493     // stalled due to the GC locker. In either can we should retry the
 494     // allocation attempt in case another thread successfully
 495     // performed a collection and reclaimed enough space. We do the
 496     // first attempt (without holding the Heap_lock) here and the
 497     // follow-on attempt will be at the start of the next loop
 498     // iteration (after taking the Heap_lock).
 499     size_t dummy = 0;
 500     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 501     if (result != NULL) {
 502       return result;
 503     }
 504 
 505     // Give a warning if we seem to be looping forever.
 506     if ((QueuedAllocationWarningCount > 0) &&
 507         (try_count % QueuedAllocationWarningCount == 0)) {
 508       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 509                              Thread::current()->name(), try_count, word_size);
 510     }
 511   }
 512 
 513   ShouldNotReachHere();
 514   return NULL;
 515 }
 516 
 517 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 518   assert_at_safepoint_on_vm_thread();
 519   if (_archive_allocator == NULL) {
 520     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 521   }
 522 }
 523 
 524 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 525   // Allocations in archive regions cannot be of a size that would be considered
 526   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 527   // may be different at archive-restore time.
 528   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 529 }
 530 
 531 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 532   assert_at_safepoint_on_vm_thread();
 533   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 534   if (is_archive_alloc_too_large(word_size)) {
 535     return NULL;
 536   }
 537   return _archive_allocator->archive_mem_allocate(word_size);
 538 }
 539 
 540 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 541                                               size_t end_alignment_in_bytes) {
 542   assert_at_safepoint_on_vm_thread();
 543   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 544 
 545   // Call complete_archive to do the real work, filling in the MemRegion
 546   // array with the archive regions.
 547   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 548   delete _archive_allocator;
 549   _archive_allocator = NULL;
 550 }
 551 
 552 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 553   assert(ranges != NULL, "MemRegion array NULL");
 554   assert(count != 0, "No MemRegions provided");
 555   MemRegion reserved = _hrm.reserved();
 556   for (size_t i = 0; i < count; i++) {
 557     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 558       return false;
 559     }
 560   }
 561   return true;
 562 }
 563 
 564 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 565                                             size_t count,
 566                                             bool open) {
 567   assert(!is_init_completed(), "Expect to be called at JVM init time");
 568   assert(ranges != NULL, "MemRegion array NULL");
 569   assert(count != 0, "No MemRegions provided");
 570   MutexLockerEx x(Heap_lock);
 571 
 572   MemRegion reserved = _hrm.reserved();
 573   HeapWord* prev_last_addr = NULL;
 574   HeapRegion* prev_last_region = NULL;
 575 
 576   // Temporarily disable pretouching of heap pages. This interface is used
 577   // when mmap'ing archived heap data in, so pre-touching is wasted.
 578   FlagSetting fs(AlwaysPreTouch, false);
 579 
 580   // Enable archive object checking used by G1MarkSweep. We have to let it know
 581   // about each archive range, so that objects in those ranges aren't marked.
 582   G1ArchiveAllocator::enable_archive_object_check();
 583 
 584   // For each specified MemRegion range, allocate the corresponding G1
 585   // regions and mark them as archive regions. We expect the ranges
 586   // in ascending starting address order, without overlap.
 587   for (size_t i = 0; i < count; i++) {
 588     MemRegion curr_range = ranges[i];
 589     HeapWord* start_address = curr_range.start();
 590     size_t word_size = curr_range.word_size();
 591     HeapWord* last_address = curr_range.last();
 592     size_t commits = 0;
 593 
 594     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 595               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 596               p2i(start_address), p2i(last_address));
 597     guarantee(start_address > prev_last_addr,
 598               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 599               p2i(start_address), p2i(prev_last_addr));
 600     prev_last_addr = last_address;
 601 
 602     // Check for ranges that start in the same G1 region in which the previous
 603     // range ended, and adjust the start address so we don't try to allocate
 604     // the same region again. If the current range is entirely within that
 605     // region, skip it, just adjusting the recorded top.
 606     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 607     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 608       start_address = start_region->end();
 609       if (start_address > last_address) {
 610         increase_used(word_size * HeapWordSize);
 611         start_region->set_top(last_address + 1);
 612         continue;
 613       }
 614       start_region->set_top(start_address);
 615       curr_range = MemRegion(start_address, last_address + 1);
 616       start_region = _hrm.addr_to_region(start_address);
 617     }
 618 
 619     // Perform the actual region allocation, exiting if it fails.
 620     // Then note how much new space we have allocated.
 621     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 622       return false;
 623     }
 624     increase_used(word_size * HeapWordSize);
 625     if (commits != 0) {
 626       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 627                                 HeapRegion::GrainWords * HeapWordSize * commits);
 628 
 629     }
 630 
 631     // Mark each G1 region touched by the range as archive, add it to
 632     // the old set, and set top.
 633     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 634     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 635     prev_last_region = last_region;
 636 
 637     while (curr_region != NULL) {
 638       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 639              "Region already in use (index %u)", curr_region->hrm_index());
 640       if (open) {
 641         curr_region->set_open_archive();
 642       } else {
 643         curr_region->set_closed_archive();
 644       }
 645       _hr_printer.alloc(curr_region);
 646       _old_set.add(curr_region);
 647       HeapWord* top;
 648       HeapRegion* next_region;
 649       if (curr_region != last_region) {
 650         top = curr_region->end();
 651         next_region = _hrm.next_region_in_heap(curr_region);
 652       } else {
 653         top = last_address + 1;
 654         next_region = NULL;
 655       }
 656       curr_region->set_top(top);
 657       curr_region->set_first_dead(top);
 658       curr_region->set_end_of_live(top);
 659       curr_region = next_region;
 660     }
 661 
 662     // Notify mark-sweep of the archive
 663     G1ArchiveAllocator::set_range_archive(curr_range, open);
 664   }
 665   return true;
 666 }
 667 
 668 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 669   assert(!is_init_completed(), "Expect to be called at JVM init time");
 670   assert(ranges != NULL, "MemRegion array NULL");
 671   assert(count != 0, "No MemRegions provided");
 672   MemRegion reserved = _hrm.reserved();
 673   HeapWord *prev_last_addr = NULL;
 674   HeapRegion* prev_last_region = NULL;
 675 
 676   // For each MemRegion, create filler objects, if needed, in the G1 regions
 677   // that contain the address range. The address range actually within the
 678   // MemRegion will not be modified. That is assumed to have been initialized
 679   // elsewhere, probably via an mmap of archived heap data.
 680   MutexLockerEx x(Heap_lock);
 681   for (size_t i = 0; i < count; i++) {
 682     HeapWord* start_address = ranges[i].start();
 683     HeapWord* last_address = ranges[i].last();
 684 
 685     assert(reserved.contains(start_address) && reserved.contains(last_address),
 686            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 687            p2i(start_address), p2i(last_address));
 688     assert(start_address > prev_last_addr,
 689            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 690            p2i(start_address), p2i(prev_last_addr));
 691 
 692     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 693     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 694     HeapWord* bottom_address = start_region->bottom();
 695 
 696     // Check for a range beginning in the same region in which the
 697     // previous one ended.
 698     if (start_region == prev_last_region) {
 699       bottom_address = prev_last_addr + 1;
 700     }
 701 
 702     // Verify that the regions were all marked as archive regions by
 703     // alloc_archive_regions.
 704     HeapRegion* curr_region = start_region;
 705     while (curr_region != NULL) {
 706       guarantee(curr_region->is_archive(),
 707                 "Expected archive region at index %u", curr_region->hrm_index());
 708       if (curr_region != last_region) {
 709         curr_region = _hrm.next_region_in_heap(curr_region);
 710       } else {
 711         curr_region = NULL;
 712       }
 713     }
 714 
 715     prev_last_addr = last_address;
 716     prev_last_region = last_region;
 717 
 718     // Fill the memory below the allocated range with dummy object(s),
 719     // if the region bottom does not match the range start, or if the previous
 720     // range ended within the same G1 region, and there is a gap.
 721     if (start_address != bottom_address) {
 722       size_t fill_size = pointer_delta(start_address, bottom_address);
 723       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 724       increase_used(fill_size * HeapWordSize);
 725     }
 726   }
 727 }
 728 
 729 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 730                                                      size_t desired_word_size,
 731                                                      size_t* actual_word_size) {
 732   assert_heap_not_locked_and_not_at_safepoint();
 733   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 734          "be called for humongous allocation requests");
 735 
 736   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 737 
 738   if (result == NULL) {
 739     *actual_word_size = desired_word_size;
 740     result = attempt_allocation_slow(desired_word_size);
 741   }
 742 
 743   assert_heap_not_locked();
 744   if (result != NULL) {
 745     assert(*actual_word_size != 0, "Actual size must have been set here");
 746     dirty_young_block(result, *actual_word_size);
 747   } else {
 748     *actual_word_size = 0;
 749   }
 750 
 751   return result;
 752 }
 753 
 754 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 755   assert(!is_init_completed(), "Expect to be called at JVM init time");
 756   assert(ranges != NULL, "MemRegion array NULL");
 757   assert(count != 0, "No MemRegions provided");
 758   MemRegion reserved = _hrm.reserved();
 759   HeapWord* prev_last_addr = NULL;
 760   HeapRegion* prev_last_region = NULL;
 761   size_t size_used = 0;
 762   size_t uncommitted_regions = 0;
 763 
 764   // For each Memregion, free the G1 regions that constitute it, and
 765   // notify mark-sweep that the range is no longer to be considered 'archive.'
 766   MutexLockerEx x(Heap_lock);
 767   for (size_t i = 0; i < count; i++) {
 768     HeapWord* start_address = ranges[i].start();
 769     HeapWord* last_address = ranges[i].last();
 770 
 771     assert(reserved.contains(start_address) && reserved.contains(last_address),
 772            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 773            p2i(start_address), p2i(last_address));
 774     assert(start_address > prev_last_addr,
 775            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 776            p2i(start_address), p2i(prev_last_addr));
 777     size_used += ranges[i].byte_size();
 778     prev_last_addr = last_address;
 779 
 780     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 781     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 782 
 783     // Check for ranges that start in the same G1 region in which the previous
 784     // range ended, and adjust the start address so we don't try to free
 785     // the same region again. If the current range is entirely within that
 786     // region, skip it.
 787     if (start_region == prev_last_region) {
 788       start_address = start_region->end();
 789       if (start_address > last_address) {
 790         continue;
 791       }
 792       start_region = _hrm.addr_to_region(start_address);
 793     }
 794     prev_last_region = last_region;
 795 
 796     // After verifying that each region was marked as an archive region by
 797     // alloc_archive_regions, set it free and empty and uncommit it.
 798     HeapRegion* curr_region = start_region;
 799     while (curr_region != NULL) {
 800       guarantee(curr_region->is_archive(),
 801                 "Expected archive region at index %u", curr_region->hrm_index());
 802       uint curr_index = curr_region->hrm_index();
 803       _old_set.remove(curr_region);
 804       curr_region->set_free();
 805       curr_region->set_top(curr_region->bottom());
 806       if (curr_region != last_region) {
 807         curr_region = _hrm.next_region_in_heap(curr_region);
 808       } else {
 809         curr_region = NULL;
 810       }
 811       _hrm.shrink_at(curr_index, 1);
 812       uncommitted_regions++;
 813     }
 814 
 815     // Notify mark-sweep that this is no longer an archive range.
 816     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 817   }
 818 
 819   if (uncommitted_regions != 0) {
 820     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 821                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 822   }
 823   decrease_used(size_used);
 824 }
 825 
 826 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 827   assert(obj != NULL, "archived obj is NULL");
 828   assert(MetaspaceShared::is_archive_object(obj), "must be archived object");
 829 
 830   // Loading an archived object makes it strongly reachable. If it is
 831   // loaded during concurrent marking, it must be enqueued to the SATB
 832   // queue, shading the previously white object gray.
 833   G1BarrierSet::enqueue(obj);
 834 
 835   return obj;
 836 }
 837 
 838 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 839   ResourceMark rm; // For retrieving the thread names in log messages.
 840 
 841   // The structure of this method has a lot of similarities to
 842   // attempt_allocation_slow(). The reason these two were not merged
 843   // into a single one is that such a method would require several "if
 844   // allocation is not humongous do this, otherwise do that"
 845   // conditional paths which would obscure its flow. In fact, an early
 846   // version of this code did use a unified method which was harder to
 847   // follow and, as a result, it had subtle bugs that were hard to
 848   // track down. So keeping these two methods separate allows each to
 849   // be more readable. It will be good to keep these two in sync as
 850   // much as possible.
 851 
 852   assert_heap_not_locked_and_not_at_safepoint();
 853   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 854          "should only be called for humongous allocations");
 855 
 856   // Humongous objects can exhaust the heap quickly, so we should check if we
 857   // need to start a marking cycle at each humongous object allocation. We do
 858   // the check before we do the actual allocation. The reason for doing it
 859   // before the allocation is that we avoid having to keep track of the newly
 860   // allocated memory while we do a GC.
 861   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 862                                            word_size)) {
 863     collect(GCCause::_g1_humongous_allocation);
 864   }
 865 
 866   // We will loop until a) we manage to successfully perform the
 867   // allocation or b) we successfully schedule a collection which
 868   // fails to perform the allocation. b) is the only case when we'll
 869   // return NULL.
 870   HeapWord* result = NULL;
 871   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 872     bool should_try_gc;
 873     uint gc_count_before;
 874 
 875 
 876     {
 877       MutexLockerEx x(Heap_lock);
 878 
 879       // Given that humongous objects are not allocated in young
 880       // regions, we'll first try to do the allocation without doing a
 881       // collection hoping that there's enough space in the heap.
 882       result = humongous_obj_allocate(word_size);
 883       if (result != NULL) {
 884         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 885         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 886         return result;
 887       }
 888 
 889       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 890       // the GCLocker initiated GC has been performed and then retry. This includes
 891       // the case when the GC Locker is not active but has not been performed.
 892       should_try_gc = !GCLocker::needs_gc();
 893       // Read the GC count while still holding the Heap_lock.
 894       gc_count_before = total_collections();
 895     }
 896 
 897     if (should_try_gc) {
 898       bool succeeded;
 899       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 900                                    GCCause::_g1_humongous_allocation);
 901       if (result != NULL) {
 902         assert(succeeded, "only way to get back a non-NULL result");
 903         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 904                              Thread::current()->name(), p2i(result));
 905         return result;
 906       }
 907 
 908       if (succeeded) {
 909         // We successfully scheduled a collection which failed to allocate. No
 910         // point in trying to allocate further. We'll just return NULL.
 911         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 912                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 913         return NULL;
 914       }
 915       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 916                            Thread::current()->name(), word_size);
 917     } else {
 918       // Failed to schedule a collection.
 919       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 920         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 921                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 922         return NULL;
 923       }
 924       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 925       // The GCLocker is either active or the GCLocker initiated
 926       // GC has not yet been performed. Stall until it is and
 927       // then retry the allocation.
 928       GCLocker::stall_until_clear();
 929       gclocker_retry_count += 1;
 930     }
 931 
 932 
 933     // We can reach here if we were unsuccessful in scheduling a
 934     // collection (because another thread beat us to it) or if we were
 935     // stalled due to the GC locker. In either can we should retry the
 936     // allocation attempt in case another thread successfully
 937     // performed a collection and reclaimed enough space.
 938     // Humongous object allocation always needs a lock, so we wait for the retry
 939     // in the next iteration of the loop, unlike for the regular iteration case.
 940     // Give a warning if we seem to be looping forever.
 941 
 942     if ((QueuedAllocationWarningCount > 0) &&
 943         (try_count % QueuedAllocationWarningCount == 0)) {
 944       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 945                              Thread::current()->name(), try_count, word_size);
 946     }
 947   }
 948 
 949   ShouldNotReachHere();
 950   return NULL;
 951 }
 952 
 953 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 954                                                            bool expect_null_mutator_alloc_region) {
 955   assert_at_safepoint_on_vm_thread();
 956   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 957          "the current alloc region was unexpectedly found to be non-NULL");
 958 
 959   if (!is_humongous(word_size)) {
 960     return _allocator->attempt_allocation_locked(word_size);
 961   } else {
 962     HeapWord* result = humongous_obj_allocate(word_size);
 963     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 964       collector_state()->set_initiate_conc_mark_if_possible(true);
 965     }
 966     return result;
 967   }
 968 
 969   ShouldNotReachHere();
 970 }
 971 
 972 class PostCompactionPrinterClosure: public HeapRegionClosure {
 973 private:
 974   G1HRPrinter* _hr_printer;
 975 public:
 976   bool do_heap_region(HeapRegion* hr) {
 977     assert(!hr->is_young(), "not expecting to find young regions");
 978     _hr_printer->post_compaction(hr);
 979     return false;
 980   }
 981 
 982   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 983     : _hr_printer(hr_printer) { }
 984 };
 985 
 986 void G1CollectedHeap::print_hrm_post_compaction() {
 987   if (_hr_printer.is_active()) {
 988     PostCompactionPrinterClosure cl(hr_printer());
 989     heap_region_iterate(&cl);
 990   }
 991 }
 992 
 993 void G1CollectedHeap::abort_concurrent_cycle() {
 994   // If we start the compaction before the CM threads finish
 995   // scanning the root regions we might trip them over as we'll
 996   // be moving objects / updating references. So let's wait until
 997   // they are done. By telling them to abort, they should complete
 998   // early.
 999   _cm->root_regions()->abort();
1000   _cm->root_regions()->wait_until_scan_finished();
1001 
1002   // Disable discovery and empty the discovered lists
1003   // for the CM ref processor.
1004   _ref_processor_cm->disable_discovery();
1005   _ref_processor_cm->abandon_partial_discovery();
1006   _ref_processor_cm->verify_no_references_recorded();
1007 
1008   // Abandon current iterations of concurrent marking and concurrent
1009   // refinement, if any are in progress.
1010   concurrent_mark()->concurrent_cycle_abort();
1011 }
1012 
1013 void G1CollectedHeap::prepare_heap_for_full_collection() {
1014   // Make sure we'll choose a new allocation region afterwards.
1015   _allocator->release_mutator_alloc_region();
1016   _allocator->abandon_gc_alloc_regions();
1017   g1_rem_set()->cleanupHRRS();
1018 
1019   // We may have added regions to the current incremental collection
1020   // set between the last GC or pause and now. We need to clear the
1021   // incremental collection set and then start rebuilding it afresh
1022   // after this full GC.
1023   abandon_collection_set(collection_set());
1024 
1025   tear_down_region_sets(false /* free_list_only */);
1026 }
1027 
1028 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1029   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1030   assert(used() == recalculate_used(), "Should be equal");
1031   _verifier->verify_region_sets_optional();
1032   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1033   _verifier->check_bitmaps("Full GC Start");
1034 }
1035 
1036 void G1CollectedHeap::prepare_heap_for_mutators() {
1037   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1038   ClassLoaderDataGraph::purge();
1039   MetaspaceUtils::verify_metrics();
1040 
1041   // Prepare heap for normal collections.
1042   assert(num_free_regions() == 0, "we should not have added any free regions");
1043   rebuild_region_sets(false /* free_list_only */);
1044   abort_refinement();
1045   resize_if_necessary_after_full_collection();
1046 
1047   // Rebuild the strong code root lists for each region
1048   rebuild_strong_code_roots();
1049 
1050   // Start a new incremental collection set for the next pause
1051   start_new_collection_set();
1052 
1053   _allocator->init_mutator_alloc_region();
1054 
1055   // Post collection state updates.
1056   MetaspaceGC::compute_new_size();
1057 }
1058 
1059 void G1CollectedHeap::abort_refinement() {
1060   if (_hot_card_cache->use_cache()) {
1061     _hot_card_cache->reset_hot_cache();
1062   }
1063 
1064   // Discard all remembered set updates.
1065   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1066   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1067 }
1068 
1069 void G1CollectedHeap::verify_after_full_collection() {
1070   _hrm.verify_optional();
1071   _verifier->verify_region_sets_optional();
1072   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1073   // Clear the previous marking bitmap, if needed for bitmap verification.
1074   // Note we cannot do this when we clear the next marking bitmap in
1075   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1076   // objects marked during a full GC against the previous bitmap.
1077   // But we need to clear it before calling check_bitmaps below since
1078   // the full GC has compacted objects and updated TAMS but not updated
1079   // the prev bitmap.
1080   if (G1VerifyBitmaps) {
1081     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1082     _cm->clear_prev_bitmap(workers());
1083   }
1084   _verifier->check_bitmaps("Full GC End");
1085 
1086   // At this point there should be no regions in the
1087   // entire heap tagged as young.
1088   assert(check_young_list_empty(), "young list should be empty at this point");
1089 
1090   // Note: since we've just done a full GC, concurrent
1091   // marking is no longer active. Therefore we need not
1092   // re-enable reference discovery for the CM ref processor.
1093   // That will be done at the start of the next marking cycle.
1094   // We also know that the STW processor should no longer
1095   // discover any new references.
1096   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1097   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1098   _ref_processor_stw->verify_no_references_recorded();
1099   _ref_processor_cm->verify_no_references_recorded();
1100 }
1101 
1102 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1103   // Post collection logging.
1104   // We should do this after we potentially resize the heap so
1105   // that all the COMMIT / UNCOMMIT events are generated before
1106   // the compaction events.
1107   print_hrm_post_compaction();
1108   heap_transition->print();
1109   print_heap_after_gc();
1110   print_heap_regions();
1111 #ifdef TRACESPINNING
1112   ParallelTaskTerminator::print_termination_counts();
1113 #endif
1114 }
1115 
1116 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1117                                          bool clear_all_soft_refs) {
1118   assert_at_safepoint_on_vm_thread();
1119 
1120   if (GCLocker::check_active_before_gc()) {
1121     // Full GC was not completed.
1122     return false;
1123   }
1124 
1125   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1126       soft_ref_policy()->should_clear_all_soft_refs();
1127 
1128   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1129   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1130 
1131   collector.prepare_collection();
1132   collector.collect();
1133   collector.complete_collection();
1134 
1135   // Full collection was successfully completed.
1136   return true;
1137 }
1138 
1139 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1140   // Currently, there is no facility in the do_full_collection(bool) API to notify
1141   // the caller that the collection did not succeed (e.g., because it was locked
1142   // out by the GC locker). So, right now, we'll ignore the return value.
1143   bool dummy = do_full_collection(true,                /* explicit_gc */
1144                                   clear_all_soft_refs);
1145 }
1146 
1147 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1148   // Capacity, free and used after the GC counted as full regions to
1149   // include the waste in the following calculations.
1150   const size_t capacity_after_gc = capacity();
1151   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1152 
1153   // This is enforced in arguments.cpp.
1154   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1155          "otherwise the code below doesn't make sense");
1156 
1157   // We don't have floating point command-line arguments
1158   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1159   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1160   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1161   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1162 
1163   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1164   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1165 
1166   // We have to be careful here as these two calculations can overflow
1167   // 32-bit size_t's.
1168   double used_after_gc_d = (double) used_after_gc;
1169   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1170   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1171 
1172   // Let's make sure that they are both under the max heap size, which
1173   // by default will make them fit into a size_t.
1174   double desired_capacity_upper_bound = (double) max_heap_size;
1175   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1176                                     desired_capacity_upper_bound);
1177   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1178                                     desired_capacity_upper_bound);
1179 
1180   // We can now safely turn them into size_t's.
1181   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1182   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1183 
1184   // This assert only makes sense here, before we adjust them
1185   // with respect to the min and max heap size.
1186   assert(minimum_desired_capacity <= maximum_desired_capacity,
1187          "minimum_desired_capacity = " SIZE_FORMAT ", "
1188          "maximum_desired_capacity = " SIZE_FORMAT,
1189          minimum_desired_capacity, maximum_desired_capacity);
1190 
1191   // Should not be greater than the heap max size. No need to adjust
1192   // it with respect to the heap min size as it's a lower bound (i.e.,
1193   // we'll try to make the capacity larger than it, not smaller).
1194   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1195   // Should not be less than the heap min size. No need to adjust it
1196   // with respect to the heap max size as it's an upper bound (i.e.,
1197   // we'll try to make the capacity smaller than it, not greater).
1198   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1199 
1200   if (capacity_after_gc < minimum_desired_capacity) {
1201     // Don't expand unless it's significant
1202     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1203 
1204     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1205                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1206                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1207                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1208 
1209     expand(expand_bytes, _workers);
1210 
1211     // No expansion, now see if we want to shrink
1212   } else if (capacity_after_gc > maximum_desired_capacity) {
1213     // Capacity too large, compute shrinking size
1214     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1215 
1216     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1217                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1218                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1219                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1220 
1221     shrink(shrink_bytes);
1222   }
1223 }
1224 
1225 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1226                                                             bool do_gc,
1227                                                             bool clear_all_soft_refs,
1228                                                             bool expect_null_mutator_alloc_region,
1229                                                             bool* gc_succeeded) {
1230   *gc_succeeded = true;
1231   // Let's attempt the allocation first.
1232   HeapWord* result =
1233     attempt_allocation_at_safepoint(word_size,
1234                                     expect_null_mutator_alloc_region);
1235   if (result != NULL) {
1236     return result;
1237   }
1238 
1239   // In a G1 heap, we're supposed to keep allocation from failing by
1240   // incremental pauses.  Therefore, at least for now, we'll favor
1241   // expansion over collection.  (This might change in the future if we can
1242   // do something smarter than full collection to satisfy a failed alloc.)
1243   result = expand_and_allocate(word_size);
1244   if (result != NULL) {
1245     return result;
1246   }
1247 
1248   if (do_gc) {
1249     // Expansion didn't work, we'll try to do a Full GC.
1250     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1251                                        clear_all_soft_refs);
1252   }
1253 
1254   return NULL;
1255 }
1256 
1257 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1258                                                      bool* succeeded) {
1259   assert_at_safepoint_on_vm_thread();
1260 
1261   // Attempts to allocate followed by Full GC.
1262   HeapWord* result =
1263     satisfy_failed_allocation_helper(word_size,
1264                                      true,  /* do_gc */
1265                                      false, /* clear_all_soft_refs */
1266                                      false, /* expect_null_mutator_alloc_region */
1267                                      succeeded);
1268 
1269   if (result != NULL || !*succeeded) {
1270     return result;
1271   }
1272 
1273   // Attempts to allocate followed by Full GC that will collect all soft references.
1274   result = satisfy_failed_allocation_helper(word_size,
1275                                             true, /* do_gc */
1276                                             true, /* clear_all_soft_refs */
1277                                             true, /* expect_null_mutator_alloc_region */
1278                                             succeeded);
1279 
1280   if (result != NULL || !*succeeded) {
1281     return result;
1282   }
1283 
1284   // Attempts to allocate, no GC
1285   result = satisfy_failed_allocation_helper(word_size,
1286                                             false, /* do_gc */
1287                                             false, /* clear_all_soft_refs */
1288                                             true,  /* expect_null_mutator_alloc_region */
1289                                             succeeded);
1290 
1291   if (result != NULL) {
1292     return result;
1293   }
1294 
1295   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1296          "Flag should have been handled and cleared prior to this point");
1297 
1298   // What else?  We might try synchronous finalization later.  If the total
1299   // space available is large enough for the allocation, then a more
1300   // complete compaction phase than we've tried so far might be
1301   // appropriate.
1302   return NULL;
1303 }
1304 
1305 // Attempting to expand the heap sufficiently
1306 // to support an allocation of the given "word_size".  If
1307 // successful, perform the allocation and return the address of the
1308 // allocated block, or else "NULL".
1309 
1310 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1311   assert_at_safepoint_on_vm_thread();
1312 
1313   _verifier->verify_region_sets_optional();
1314 
1315   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1316   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1317                             word_size * HeapWordSize);
1318 
1319 
1320   if (expand(expand_bytes, _workers)) {
1321     _hrm.verify_optional();
1322     _verifier->verify_region_sets_optional();
1323     return attempt_allocation_at_safepoint(word_size,
1324                                            false /* expect_null_mutator_alloc_region */);
1325   }
1326   return NULL;
1327 }
1328 
1329 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1330   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1331   aligned_expand_bytes = align_up(aligned_expand_bytes,
1332                                        HeapRegion::GrainBytes);
1333 
1334   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1335                             expand_bytes, aligned_expand_bytes);
1336 
1337   if (is_maximal_no_gc()) {
1338     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1339     return false;
1340   }
1341 
1342   double expand_heap_start_time_sec = os::elapsedTime();
1343   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1344   assert(regions_to_expand > 0, "Must expand by at least one region");
1345 
1346   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1347   if (expand_time_ms != NULL) {
1348     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1349   }
1350 
1351   if (expanded_by > 0) {
1352     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1353     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1354     g1_policy()->record_new_heap_size(num_regions());
1355   } else {
1356     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1357 
1358     // The expansion of the virtual storage space was unsuccessful.
1359     // Let's see if it was because we ran out of swap.
1360     if (G1ExitOnExpansionFailure &&
1361         _hrm.available() >= regions_to_expand) {
1362       // We had head room...
1363       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1364     }
1365   }
1366   return regions_to_expand > 0;
1367 }
1368 
1369 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1370   size_t aligned_shrink_bytes =
1371     ReservedSpace::page_align_size_down(shrink_bytes);
1372   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1373                                          HeapRegion::GrainBytes);
1374   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1375 
1376   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1377   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1378 
1379 
1380   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1381                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1382   if (num_regions_removed > 0) {
1383     g1_policy()->record_new_heap_size(num_regions());
1384   } else {
1385     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1386   }
1387 }
1388 
1389 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1390   _verifier->verify_region_sets_optional();
1391 
1392   // We should only reach here at the end of a Full GC which means we
1393   // should not not be holding to any GC alloc regions. The method
1394   // below will make sure of that and do any remaining clean up.
1395   _allocator->abandon_gc_alloc_regions();
1396 
1397   // Instead of tearing down / rebuilding the free lists here, we
1398   // could instead use the remove_all_pending() method on free_list to
1399   // remove only the ones that we need to remove.
1400   tear_down_region_sets(true /* free_list_only */);
1401   shrink_helper(shrink_bytes);
1402   rebuild_region_sets(true /* free_list_only */);
1403 
1404   _hrm.verify_optional();
1405   _verifier->verify_region_sets_optional();
1406 }
1407 
1408 // Public methods.
1409 
1410 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1411   CollectedHeap(),
1412   _young_gen_sampling_thread(NULL),
1413   _collector_policy(collector_policy),
1414   _soft_ref_policy(),
1415   _card_table(NULL),
1416   _memory_manager("G1 Young Generation", "end of minor GC"),
1417   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1418   _eden_pool(NULL),
1419   _survivor_pool(NULL),
1420   _old_pool(NULL),
1421   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1422   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1423   _g1_policy(new G1Policy(_gc_timer_stw)),
1424   _collection_set(this, _g1_policy),
1425   _dirty_card_queue_set(false),
1426   _ref_processor_stw(NULL),
1427   _is_alive_closure_stw(this),
1428   _is_subject_to_discovery_stw(this),
1429   _ref_processor_cm(NULL),
1430   _is_alive_closure_cm(this),
1431   _is_subject_to_discovery_cm(this),
1432   _bot(NULL),
1433   _hot_card_cache(NULL),
1434   _g1_rem_set(NULL),
1435   _cr(NULL),
1436   _g1mm(NULL),
1437   _preserved_marks_set(true /* in_c_heap */),
1438   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1439   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1440   _humongous_reclaim_candidates(),
1441   _has_humongous_reclaim_candidates(false),
1442   _archive_allocator(NULL),
1443   _summary_bytes_used(0),
1444   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1445   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1446   _expand_heap_after_alloc_failure(true),
1447   _old_marking_cycles_started(0),
1448   _old_marking_cycles_completed(0),
1449   _in_cset_fast_test() {
1450 
1451   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1452                           /* are_GC_task_threads */true,
1453                           /* are_ConcurrentGC_threads */false);
1454   _workers->initialize_workers();
1455   _verifier = new G1HeapVerifier(this);
1456 
1457   _allocator = new G1Allocator(this);
1458 
1459   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1460 
1461   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1462 
1463   // Override the default _filler_array_max_size so that no humongous filler
1464   // objects are created.
1465   _filler_array_max_size = _humongous_object_threshold_in_words;
1466 
1467   uint n_queues = ParallelGCThreads;
1468   _task_queues = new RefToScanQueueSet(n_queues);
1469 
1470   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1471 
1472   for (uint i = 0; i < n_queues; i++) {
1473     RefToScanQueue* q = new RefToScanQueue();
1474     q->initialize();
1475     _task_queues->register_queue(i, q);
1476     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1477   }
1478 
1479   // Initialize the G1EvacuationFailureALot counters and flags.
1480   NOT_PRODUCT(reset_evacuation_should_fail();)
1481 
1482   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1483 }
1484 
1485 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1486                                                                  size_t size,
1487                                                                  size_t translation_factor) {
1488   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1489   // Allocate a new reserved space, preferring to use large pages.
1490   ReservedSpace rs(size, preferred_page_size);
1491   G1RegionToSpaceMapper* result  =
1492     G1RegionToSpaceMapper::create_mapper(rs,
1493                                          size,
1494                                          rs.alignment(),
1495                                          HeapRegion::GrainBytes,
1496                                          translation_factor,
1497                                          mtGC);
1498 
1499   os::trace_page_sizes_for_requested_size(description,
1500                                           size,
1501                                           preferred_page_size,
1502                                           rs.alignment(),
1503                                           rs.base(),
1504                                           rs.size());
1505 
1506   return result;
1507 }
1508 
1509 jint G1CollectedHeap::initialize_concurrent_refinement() {
1510   jint ecode = JNI_OK;
1511   _cr = G1ConcurrentRefine::create(&ecode);
1512   return ecode;
1513 }
1514 
1515 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1516   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1517   if (_young_gen_sampling_thread->osthread() == NULL) {
1518     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1519     return JNI_ENOMEM;
1520   }
1521   return JNI_OK;
1522 }
1523 
1524 jint G1CollectedHeap::initialize() {
1525   os::enable_vtime();
1526 
1527   // Necessary to satisfy locking discipline assertions.
1528 
1529   MutexLocker x(Heap_lock);
1530 
1531   // While there are no constraints in the GC code that HeapWordSize
1532   // be any particular value, there are multiple other areas in the
1533   // system which believe this to be true (e.g. oop->object_size in some
1534   // cases incorrectly returns the size in wordSize units rather than
1535   // HeapWordSize).
1536   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1537 
1538   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1539   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1540   size_t heap_alignment = collector_policy()->heap_alignment();
1541 
1542   // Ensure that the sizes are properly aligned.
1543   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1544   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1545   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1546 
1547   // Reserve the maximum.
1548 
1549   // When compressed oops are enabled, the preferred heap base
1550   // is calculated by subtracting the requested size from the
1551   // 32Gb boundary and using the result as the base address for
1552   // heap reservation. If the requested size is not aligned to
1553   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1554   // into the ReservedHeapSpace constructor) then the actual
1555   // base of the reserved heap may end up differing from the
1556   // address that was requested (i.e. the preferred heap base).
1557   // If this happens then we could end up using a non-optimal
1558   // compressed oops mode.
1559 
1560   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1561                                                  heap_alignment);
1562 
1563   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1564 
1565   // Create the barrier set for the entire reserved region.
1566   G1CardTable* ct = new G1CardTable(reserved_region());
1567   ct->initialize();
1568   G1BarrierSet* bs = new G1BarrierSet(ct);
1569   bs->initialize();
1570   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1571   BarrierSet::set_barrier_set(bs);
1572   _card_table = ct;
1573 
1574   // Create the hot card cache.
1575   _hot_card_cache = new G1HotCardCache(this);
1576 
1577   // Carve out the G1 part of the heap.
1578   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1579   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1580   G1RegionToSpaceMapper* heap_storage =
1581     G1RegionToSpaceMapper::create_mapper(g1_rs,
1582                                          g1_rs.size(),
1583                                          page_size,
1584                                          HeapRegion::GrainBytes,
1585                                          1,
1586                                          mtJavaHeap);
1587   os::trace_page_sizes("Heap",
1588                        collector_policy()->min_heap_byte_size(),
1589                        max_byte_size,
1590                        page_size,
1591                        heap_rs.base(),
1592                        heap_rs.size());
1593   heap_storage->set_mapping_changed_listener(&_listener);
1594 
1595   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1596   G1RegionToSpaceMapper* bot_storage =
1597     create_aux_memory_mapper("Block Offset Table",
1598                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1599                              G1BlockOffsetTable::heap_map_factor());
1600 
1601   G1RegionToSpaceMapper* cardtable_storage =
1602     create_aux_memory_mapper("Card Table",
1603                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1604                              G1CardTable::heap_map_factor());
1605 
1606   G1RegionToSpaceMapper* card_counts_storage =
1607     create_aux_memory_mapper("Card Counts Table",
1608                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1609                              G1CardCounts::heap_map_factor());
1610 
1611   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1612   G1RegionToSpaceMapper* prev_bitmap_storage =
1613     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1614   G1RegionToSpaceMapper* next_bitmap_storage =
1615     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1616 
1617   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1618   _card_table->initialize(cardtable_storage);
1619   // Do later initialization work for concurrent refinement.
1620   _hot_card_cache->initialize(card_counts_storage);
1621 
1622   // 6843694 - ensure that the maximum region index can fit
1623   // in the remembered set structures.
1624   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1625   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1626 
1627   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1628   // start within the first card.
1629   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1630   // Also create a G1 rem set.
1631   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1632   _g1_rem_set->initialize(max_capacity(), max_regions());
1633 
1634   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1635   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1636   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1637             "too many cards per region");
1638 
1639   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1640 
1641   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1642 
1643   {
1644     HeapWord* start = _hrm.reserved().start();
1645     HeapWord* end = _hrm.reserved().end();
1646     size_t granularity = HeapRegion::GrainBytes;
1647 
1648     _in_cset_fast_test.initialize(start, end, granularity);
1649     _humongous_reclaim_candidates.initialize(start, end, granularity);
1650   }
1651 
1652   // Create the G1ConcurrentMark data structure and thread.
1653   // (Must do this late, so that "max_regions" is defined.)
1654   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1655   if (_cm == NULL || !_cm->completed_initialization()) {
1656     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1657     return JNI_ENOMEM;
1658   }
1659   _cm_thread = _cm->cm_thread();
1660 
1661   // Now expand into the initial heap size.
1662   if (!expand(init_byte_size, _workers)) {
1663     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1664     return JNI_ENOMEM;
1665   }
1666 
1667   // Perform any initialization actions delegated to the policy.
1668   g1_policy()->init(this, &_collection_set);
1669 
1670   G1BarrierSet::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1671                                                  SATB_Q_FL_lock,
1672                                                  G1SATBProcessCompletedThreshold,
1673                                                  Shared_SATB_Q_lock);
1674 
1675   jint ecode = initialize_concurrent_refinement();
1676   if (ecode != JNI_OK) {
1677     return ecode;
1678   }
1679 
1680   ecode = initialize_young_gen_sampling_thread();
1681   if (ecode != JNI_OK) {
1682     return ecode;
1683   }
1684 
1685   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1686                                                   DirtyCardQ_FL_lock,
1687                                                   (int)concurrent_refine()->yellow_zone(),
1688                                                   (int)concurrent_refine()->red_zone(),
1689                                                   Shared_DirtyCardQ_lock,
1690                                                   NULL,  // fl_owner
1691                                                   true); // init_free_ids
1692 
1693   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1694                                     DirtyCardQ_FL_lock,
1695                                     -1, // never trigger processing
1696                                     -1, // no limit on length
1697                                     Shared_DirtyCardQ_lock,
1698                                     &G1BarrierSet::dirty_card_queue_set());
1699 
1700   // Here we allocate the dummy HeapRegion that is required by the
1701   // G1AllocRegion class.
1702   HeapRegion* dummy_region = _hrm.get_dummy_region();
1703 
1704   // We'll re-use the same region whether the alloc region will
1705   // require BOT updates or not and, if it doesn't, then a non-young
1706   // region will complain that it cannot support allocations without
1707   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1708   dummy_region->set_eden();
1709   // Make sure it's full.
1710   dummy_region->set_top(dummy_region->end());
1711   G1AllocRegion::setup(this, dummy_region);
1712 
1713   _allocator->init_mutator_alloc_region();
1714 
1715   // Do create of the monitoring and management support so that
1716   // values in the heap have been properly initialized.
1717   _g1mm = new G1MonitoringSupport(this);
1718 
1719   G1StringDedup::initialize();
1720 
1721   _preserved_marks_set.init(ParallelGCThreads);
1722 
1723   _collection_set.initialize(max_regions());
1724 
1725   return JNI_OK;
1726 }
1727 
1728 void G1CollectedHeap::initialize_serviceability() {
1729   _eden_pool = new G1EdenPool(this);
1730   _survivor_pool = new G1SurvivorPool(this);
1731   _old_pool = new G1OldGenPool(this);
1732 
1733   _full_gc_memory_manager.add_pool(_eden_pool);
1734   _full_gc_memory_manager.add_pool(_survivor_pool);
1735   _full_gc_memory_manager.add_pool(_old_pool);
1736 
1737   _memory_manager.add_pool(_eden_pool);
1738   _memory_manager.add_pool(_survivor_pool);
1739   _memory_manager.add_pool(_old_pool, false /* always_affected_by_gc */);
1740 }
1741 
1742 void G1CollectedHeap::stop() {
1743   // Stop all concurrent threads. We do this to make sure these threads
1744   // do not continue to execute and access resources (e.g. logging)
1745   // that are destroyed during shutdown.
1746   _cr->stop();
1747   _young_gen_sampling_thread->stop();
1748   _cm_thread->stop();
1749   if (G1StringDedup::is_enabled()) {
1750     G1StringDedup::stop();
1751   }
1752 }
1753 
1754 void G1CollectedHeap::safepoint_synchronize_begin() {
1755   SuspendibleThreadSet::synchronize();
1756 }
1757 
1758 void G1CollectedHeap::safepoint_synchronize_end() {
1759   SuspendibleThreadSet::desynchronize();
1760 }
1761 
1762 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1763   return HeapRegion::max_region_size();
1764 }
1765 
1766 void G1CollectedHeap::post_initialize() {
1767   CollectedHeap::post_initialize();
1768   ref_processing_init();
1769 }
1770 
1771 void G1CollectedHeap::ref_processing_init() {
1772   // Reference processing in G1 currently works as follows:
1773   //
1774   // * There are two reference processor instances. One is
1775   //   used to record and process discovered references
1776   //   during concurrent marking; the other is used to
1777   //   record and process references during STW pauses
1778   //   (both full and incremental).
1779   // * Both ref processors need to 'span' the entire heap as
1780   //   the regions in the collection set may be dotted around.
1781   //
1782   // * For the concurrent marking ref processor:
1783   //   * Reference discovery is enabled at initial marking.
1784   //   * Reference discovery is disabled and the discovered
1785   //     references processed etc during remarking.
1786   //   * Reference discovery is MT (see below).
1787   //   * Reference discovery requires a barrier (see below).
1788   //   * Reference processing may or may not be MT
1789   //     (depending on the value of ParallelRefProcEnabled
1790   //     and ParallelGCThreads).
1791   //   * A full GC disables reference discovery by the CM
1792   //     ref processor and abandons any entries on it's
1793   //     discovered lists.
1794   //
1795   // * For the STW processor:
1796   //   * Non MT discovery is enabled at the start of a full GC.
1797   //   * Processing and enqueueing during a full GC is non-MT.
1798   //   * During a full GC, references are processed after marking.
1799   //
1800   //   * Discovery (may or may not be MT) is enabled at the start
1801   //     of an incremental evacuation pause.
1802   //   * References are processed near the end of a STW evacuation pause.
1803   //   * For both types of GC:
1804   //     * Discovery is atomic - i.e. not concurrent.
1805   //     * Reference discovery will not need a barrier.
1806 
1807   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1808 
1809   // Concurrent Mark ref processor
1810   _ref_processor_cm =
1811     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1812                            mt_processing,                                  // mt processing
1813                            ParallelGCThreads,                              // degree of mt processing
1814                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1815                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1816                            false,                                          // Reference discovery is not atomic
1817                            &_is_alive_closure_cm,                          // is alive closure
1818                            true);                                          // allow changes to number of processing threads
1819 
1820   // STW ref processor
1821   _ref_processor_stw =
1822     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1823                            mt_processing,                        // mt processing
1824                            ParallelGCThreads,                    // degree of mt processing
1825                            (ParallelGCThreads > 1),              // mt discovery
1826                            ParallelGCThreads,                    // degree of mt discovery
1827                            true,                                 // Reference discovery is atomic
1828                            &_is_alive_closure_stw,               // is alive closure
1829                            true);                                // allow changes to number of processing threads
1830 }
1831 
1832 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1833   return _collector_policy;
1834 }
1835 
1836 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1837   return &_soft_ref_policy;
1838 }
1839 
1840 size_t G1CollectedHeap::capacity() const {
1841   return _hrm.length() * HeapRegion::GrainBytes;
1842 }
1843 
1844 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1845   return _hrm.total_free_bytes();
1846 }
1847 
1848 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1849   _hot_card_cache->drain(cl, worker_i);
1850 }
1851 
1852 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1853   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1854   size_t n_completed_buffers = 0;
1855   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1856     n_completed_buffers++;
1857   }
1858   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1859   dcqs.clear_n_completed_buffers();
1860   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1861 }
1862 
1863 // Computes the sum of the storage used by the various regions.
1864 size_t G1CollectedHeap::used() const {
1865   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1866   if (_archive_allocator != NULL) {
1867     result += _archive_allocator->used();
1868   }
1869   return result;
1870 }
1871 
1872 size_t G1CollectedHeap::used_unlocked() const {
1873   return _summary_bytes_used;
1874 }
1875 
1876 class SumUsedClosure: public HeapRegionClosure {
1877   size_t _used;
1878 public:
1879   SumUsedClosure() : _used(0) {}
1880   bool do_heap_region(HeapRegion* r) {
1881     _used += r->used();
1882     return false;
1883   }
1884   size_t result() { return _used; }
1885 };
1886 
1887 size_t G1CollectedHeap::recalculate_used() const {
1888   double recalculate_used_start = os::elapsedTime();
1889 
1890   SumUsedClosure blk;
1891   heap_region_iterate(&blk);
1892 
1893   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1894   return blk.result();
1895 }
1896 
1897 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1898   switch (cause) {
1899     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1900     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1901     case GCCause::_wb_conc_mark:                        return true;
1902     default :                                           return false;
1903   }
1904 }
1905 
1906 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1907   switch (cause) {
1908     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1909     case GCCause::_g1_humongous_allocation: return true;
1910     default:                                return is_user_requested_concurrent_full_gc(cause);
1911   }
1912 }
1913 
1914 #ifndef PRODUCT
1915 void G1CollectedHeap::allocate_dummy_regions() {
1916   // Let's fill up most of the region
1917   size_t word_size = HeapRegion::GrainWords - 1024;
1918   // And as a result the region we'll allocate will be humongous.
1919   guarantee(is_humongous(word_size), "sanity");
1920 
1921   // _filler_array_max_size is set to humongous object threshold
1922   // but temporarily change it to use CollectedHeap::fill_with_object().
1923   SizeTFlagSetting fs(_filler_array_max_size, word_size);
1924 
1925   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1926     // Let's use the existing mechanism for the allocation
1927     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1928     if (dummy_obj != NULL) {
1929       MemRegion mr(dummy_obj, word_size);
1930       CollectedHeap::fill_with_object(mr);
1931     } else {
1932       // If we can't allocate once, we probably cannot allocate
1933       // again. Let's get out of the loop.
1934       break;
1935     }
1936   }
1937 }
1938 #endif // !PRODUCT
1939 
1940 void G1CollectedHeap::increment_old_marking_cycles_started() {
1941   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1942          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1943          "Wrong marking cycle count (started: %d, completed: %d)",
1944          _old_marking_cycles_started, _old_marking_cycles_completed);
1945 
1946   _old_marking_cycles_started++;
1947 }
1948 
1949 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
1950   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
1951 
1952   // We assume that if concurrent == true, then the caller is a
1953   // concurrent thread that was joined the Suspendible Thread
1954   // Set. If there's ever a cheap way to check this, we should add an
1955   // assert here.
1956 
1957   // Given that this method is called at the end of a Full GC or of a
1958   // concurrent cycle, and those can be nested (i.e., a Full GC can
1959   // interrupt a concurrent cycle), the number of full collections
1960   // completed should be either one (in the case where there was no
1961   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1962   // behind the number of full collections started.
1963 
1964   // This is the case for the inner caller, i.e. a Full GC.
1965   assert(concurrent ||
1966          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1967          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1968          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1969          "is inconsistent with _old_marking_cycles_completed = %u",
1970          _old_marking_cycles_started, _old_marking_cycles_completed);
1971 
1972   // This is the case for the outer caller, i.e. the concurrent cycle.
1973   assert(!concurrent ||
1974          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1975          "for outer caller (concurrent cycle): "
1976          "_old_marking_cycles_started = %u "
1977          "is inconsistent with _old_marking_cycles_completed = %u",
1978          _old_marking_cycles_started, _old_marking_cycles_completed);
1979 
1980   _old_marking_cycles_completed += 1;
1981 
1982   // We need to clear the "in_progress" flag in the CM thread before
1983   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1984   // is set) so that if a waiter requests another System.gc() it doesn't
1985   // incorrectly see that a marking cycle is still in progress.
1986   if (concurrent) {
1987     _cm_thread->set_idle();
1988   }
1989 
1990   // This notify_all() will ensure that a thread that called
1991   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
1992   // and it's waiting for a full GC to finish will be woken up. It is
1993   // waiting in VM_G1CollectForAllocation::doit_epilogue().
1994   FullGCCount_lock->notify_all();
1995 }
1996 
1997 void G1CollectedHeap::collect(GCCause::Cause cause) {
1998   assert_heap_not_locked();
1999 
2000   uint gc_count_before;
2001   uint old_marking_count_before;
2002   uint full_gc_count_before;
2003   bool retry_gc;
2004 
2005   do {
2006     retry_gc = false;
2007 
2008     {
2009       MutexLocker ml(Heap_lock);
2010 
2011       // Read the GC count while holding the Heap_lock
2012       gc_count_before = total_collections();
2013       full_gc_count_before = total_full_collections();
2014       old_marking_count_before = _old_marking_cycles_started;
2015     }
2016 
2017     if (should_do_concurrent_full_gc(cause)) {
2018       // Schedule an initial-mark evacuation pause that will start a
2019       // concurrent cycle. We're setting word_size to 0 which means that
2020       // we are not requesting a post-GC allocation.
2021       VM_G1CollectForAllocation op(0,     /* word_size */
2022                                    gc_count_before,
2023                                    cause,
2024                                    true,  /* should_initiate_conc_mark */
2025                                    g1_policy()->max_pause_time_ms());
2026       VMThread::execute(&op);
2027       if (!op.pause_succeeded()) {
2028         if (old_marking_count_before == _old_marking_cycles_started) {
2029           retry_gc = op.should_retry_gc();
2030         } else {
2031           // A Full GC happened while we were trying to schedule the
2032           // initial-mark GC. No point in starting a new cycle given
2033           // that the whole heap was collected anyway.
2034         }
2035 
2036         if (retry_gc) {
2037           if (GCLocker::is_active_and_needs_gc()) {
2038             GCLocker::stall_until_clear();
2039           }
2040         }
2041       }
2042     } else {
2043       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2044           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2045 
2046         // Schedule a standard evacuation pause. We're setting word_size
2047         // to 0 which means that we are not requesting a post-GC allocation.
2048         VM_G1CollectForAllocation op(0,     /* word_size */
2049                                      gc_count_before,
2050                                      cause,
2051                                      false, /* should_initiate_conc_mark */
2052                                      g1_policy()->max_pause_time_ms());
2053         VMThread::execute(&op);
2054       } else {
2055         // Schedule a Full GC.
2056         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2057         VMThread::execute(&op);
2058       }
2059     }
2060   } while (retry_gc);
2061 }
2062 
2063 bool G1CollectedHeap::is_in(const void* p) const {
2064   if (_hrm.reserved().contains(p)) {
2065     // Given that we know that p is in the reserved space,
2066     // heap_region_containing() should successfully
2067     // return the containing region.
2068     HeapRegion* hr = heap_region_containing(p);
2069     return hr->is_in(p);
2070   } else {
2071     return false;
2072   }
2073 }
2074 
2075 #ifdef ASSERT
2076 bool G1CollectedHeap::is_in_exact(const void* p) const {
2077   bool contains = reserved_region().contains(p);
2078   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2079   if (contains && available) {
2080     return true;
2081   } else {
2082     return false;
2083   }
2084 }
2085 #endif
2086 
2087 // Iteration functions.
2088 
2089 // Iterates an ObjectClosure over all objects within a HeapRegion.
2090 
2091 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2092   ObjectClosure* _cl;
2093 public:
2094   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2095   bool do_heap_region(HeapRegion* r) {
2096     if (!r->is_continues_humongous()) {
2097       r->object_iterate(_cl);
2098     }
2099     return false;
2100   }
2101 };
2102 
2103 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2104   IterateObjectClosureRegionClosure blk(cl);
2105   heap_region_iterate(&blk);
2106 }
2107 
2108 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2109   _hrm.iterate(cl);
2110 }
2111 
2112 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2113                                                                  HeapRegionClaimer *hrclaimer,
2114                                                                  uint worker_id) const {
2115   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2116 }
2117 
2118 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2119                                                          HeapRegionClaimer *hrclaimer) const {
2120   _hrm.par_iterate(cl, hrclaimer, 0);
2121 }
2122 
2123 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2124   _collection_set.iterate(cl);
2125 }
2126 
2127 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2128   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2129 }
2130 
2131 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2132   HeapRegion* hr = heap_region_containing(addr);
2133   return hr->block_start(addr);
2134 }
2135 
2136 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2137   HeapRegion* hr = heap_region_containing(addr);
2138   return hr->block_size(addr);
2139 }
2140 
2141 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2142   HeapRegion* hr = heap_region_containing(addr);
2143   return hr->block_is_obj(addr);
2144 }
2145 
2146 bool G1CollectedHeap::supports_tlab_allocation() const {
2147   return true;
2148 }
2149 
2150 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2151   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2152 }
2153 
2154 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2155   return _eden.length() * HeapRegion::GrainBytes;
2156 }
2157 
2158 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2159 // must be equal to the humongous object limit.
2160 size_t G1CollectedHeap::max_tlab_size() const {
2161   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2162 }
2163 
2164 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2165   return _allocator->unsafe_max_tlab_alloc();
2166 }
2167 
2168 size_t G1CollectedHeap::max_capacity() const {
2169   return _hrm.reserved().byte_size();
2170 }
2171 
2172 jlong G1CollectedHeap::millis_since_last_gc() {
2173   // See the notes in GenCollectedHeap::millis_since_last_gc()
2174   // for more information about the implementation.
2175   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2176     _g1_policy->collection_pause_end_millis();
2177   if (ret_val < 0) {
2178     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2179       ". returning zero instead.", ret_val);
2180     return 0;
2181   }
2182   return ret_val;
2183 }
2184 
2185 void G1CollectedHeap::deduplicate_string(oop str) {
2186   assert(java_lang_String::is_instance(str), "invariant");
2187 
2188   if (G1StringDedup::is_enabled()) {
2189     G1StringDedup::deduplicate(str);
2190   }
2191 }
2192 
2193 void G1CollectedHeap::prepare_for_verify() {
2194   _verifier->prepare_for_verify();
2195 }
2196 
2197 void G1CollectedHeap::verify(VerifyOption vo) {
2198   _verifier->verify(vo);
2199 }
2200 
2201 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2202   return true;
2203 }
2204 
2205 const char* const* G1CollectedHeap::concurrent_phases() const {
2206   return _cm_thread->concurrent_phases();
2207 }
2208 
2209 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2210   return _cm_thread->request_concurrent_phase(phase);
2211 }
2212 
2213 class PrintRegionClosure: public HeapRegionClosure {
2214   outputStream* _st;
2215 public:
2216   PrintRegionClosure(outputStream* st) : _st(st) {}
2217   bool do_heap_region(HeapRegion* r) {
2218     r->print_on(_st);
2219     return false;
2220   }
2221 };
2222 
2223 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2224                                        const HeapRegion* hr,
2225                                        const VerifyOption vo) const {
2226   switch (vo) {
2227   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2228   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2229   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2230   default:                            ShouldNotReachHere();
2231   }
2232   return false; // keep some compilers happy
2233 }
2234 
2235 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2236                                        const VerifyOption vo) const {
2237   switch (vo) {
2238   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2239   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2240   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2241   default:                            ShouldNotReachHere();
2242   }
2243   return false; // keep some compilers happy
2244 }
2245 
2246 void G1CollectedHeap::print_heap_regions() const {
2247   LogTarget(Trace, gc, heap, region) lt;
2248   if (lt.is_enabled()) {
2249     LogStream ls(lt);
2250     print_regions_on(&ls);
2251   }
2252 }
2253 
2254 void G1CollectedHeap::print_on(outputStream* st) const {
2255   st->print(" %-20s", "garbage-first heap");
2256   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2257             capacity()/K, used_unlocked()/K);
2258   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2259             p2i(_hrm.reserved().start()),
2260             p2i(_hrm.reserved().end()));
2261   st->cr();
2262   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2263   uint young_regions = young_regions_count();
2264   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2265             (size_t) young_regions * HeapRegion::GrainBytes / K);
2266   uint survivor_regions = survivor_regions_count();
2267   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2268             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2269   st->cr();
2270   MetaspaceUtils::print_on(st);
2271 }
2272 
2273 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2274   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2275                "HS=humongous(starts), HC=humongous(continues), "
2276                "CS=collection set, F=free, A=archive, "
2277                "TAMS=top-at-mark-start (previous, next)");
2278   PrintRegionClosure blk(st);
2279   heap_region_iterate(&blk);
2280 }
2281 
2282 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2283   print_on(st);
2284 
2285   // Print the per-region information.
2286   print_regions_on(st);
2287 }
2288 
2289 void G1CollectedHeap::print_on_error(outputStream* st) const {
2290   this->CollectedHeap::print_on_error(st);
2291 
2292   if (_cm != NULL) {
2293     st->cr();
2294     _cm->print_on_error(st);
2295   }
2296 }
2297 
2298 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2299   workers()->print_worker_threads_on(st);
2300   _cm_thread->print_on(st);
2301   st->cr();
2302   _cm->print_worker_threads_on(st);
2303   _cr->print_threads_on(st);
2304   _young_gen_sampling_thread->print_on(st);
2305   if (G1StringDedup::is_enabled()) {
2306     G1StringDedup::print_worker_threads_on(st);
2307   }
2308 }
2309 
2310 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2311   workers()->threads_do(tc);
2312   tc->do_thread(_cm_thread);
2313   _cm->threads_do(tc);
2314   _cr->threads_do(tc);
2315   tc->do_thread(_young_gen_sampling_thread);
2316   if (G1StringDedup::is_enabled()) {
2317     G1StringDedup::threads_do(tc);
2318   }
2319 }
2320 
2321 void G1CollectedHeap::print_tracing_info() const {
2322   g1_rem_set()->print_summary_info();
2323   concurrent_mark()->print_summary_info();
2324 }
2325 
2326 #ifndef PRODUCT
2327 // Helpful for debugging RSet issues.
2328 
2329 class PrintRSetsClosure : public HeapRegionClosure {
2330 private:
2331   const char* _msg;
2332   size_t _occupied_sum;
2333 
2334 public:
2335   bool do_heap_region(HeapRegion* r) {
2336     HeapRegionRemSet* hrrs = r->rem_set();
2337     size_t occupied = hrrs->occupied();
2338     _occupied_sum += occupied;
2339 
2340     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2341     if (occupied == 0) {
2342       tty->print_cr("  RSet is empty");
2343     } else {
2344       hrrs->print();
2345     }
2346     tty->print_cr("----------");
2347     return false;
2348   }
2349 
2350   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2351     tty->cr();
2352     tty->print_cr("========================================");
2353     tty->print_cr("%s", msg);
2354     tty->cr();
2355   }
2356 
2357   ~PrintRSetsClosure() {
2358     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2359     tty->print_cr("========================================");
2360     tty->cr();
2361   }
2362 };
2363 
2364 void G1CollectedHeap::print_cset_rsets() {
2365   PrintRSetsClosure cl("Printing CSet RSets");
2366   collection_set_iterate(&cl);
2367 }
2368 
2369 void G1CollectedHeap::print_all_rsets() {
2370   PrintRSetsClosure cl("Printing All RSets");;
2371   heap_region_iterate(&cl);
2372 }
2373 #endif // PRODUCT
2374 
2375 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2376 
2377   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2378   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2379   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2380 
2381   size_t eden_capacity_bytes =
2382     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2383 
2384   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2385   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2386                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2387 }
2388 
2389 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2390   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2391                        stats->unused(), stats->used(), stats->region_end_waste(),
2392                        stats->regions_filled(), stats->direct_allocated(),
2393                        stats->failure_used(), stats->failure_waste());
2394 }
2395 
2396 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2397   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2398   gc_tracer->report_gc_heap_summary(when, heap_summary);
2399 
2400   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2401   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2402 }
2403 
2404 G1CollectedHeap* G1CollectedHeap::heap() {
2405   CollectedHeap* heap = Universe::heap();
2406   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2407   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2408   return (G1CollectedHeap*)heap;
2409 }
2410 
2411 void G1CollectedHeap::gc_prologue(bool full) {
2412   // always_do_update_barrier = false;
2413   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2414 
2415   // This summary needs to be printed before incrementing total collections.
2416   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2417 
2418   // Update common counters.
2419   increment_total_collections(full /* full gc */);
2420   if (full) {
2421     increment_old_marking_cycles_started();
2422   }
2423 
2424   // Fill TLAB's and such
2425   double start = os::elapsedTime();
2426   accumulate_statistics_all_tlabs();
2427   ensure_parsability(true);
2428   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2429 }
2430 
2431 void G1CollectedHeap::gc_epilogue(bool full) {
2432   // Update common counters.
2433   if (full) {
2434     // Update the number of full collections that have been completed.
2435     increment_old_marking_cycles_completed(false /* concurrent */);
2436   }
2437 
2438   // We are at the end of the GC. Total collections has already been increased.
2439   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2440 
2441   // FIXME: what is this about?
2442   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2443   // is set.
2444 #if COMPILER2_OR_JVMCI
2445   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2446 #endif
2447   // always_do_update_barrier = true;
2448 
2449   double start = os::elapsedTime();
2450   resize_all_tlabs();
2451   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2452 
2453   MemoryService::track_memory_usage();
2454   // We have just completed a GC. Update the soft reference
2455   // policy with the new heap occupancy
2456   Universe::update_heap_info_at_gc();
2457 }
2458 
2459 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2460                                                uint gc_count_before,
2461                                                bool* succeeded,
2462                                                GCCause::Cause gc_cause) {
2463   assert_heap_not_locked_and_not_at_safepoint();
2464   VM_G1CollectForAllocation op(word_size,
2465                                gc_count_before,
2466                                gc_cause,
2467                                false, /* should_initiate_conc_mark */
2468                                g1_policy()->max_pause_time_ms());
2469   VMThread::execute(&op);
2470 
2471   HeapWord* result = op.result();
2472   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2473   assert(result == NULL || ret_succeeded,
2474          "the result should be NULL if the VM did not succeed");
2475   *succeeded = ret_succeeded;
2476 
2477   assert_heap_not_locked();
2478   return result;
2479 }
2480 
2481 void G1CollectedHeap::do_concurrent_mark() {
2482   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2483   if (!_cm_thread->in_progress()) {
2484     _cm_thread->set_started();
2485     CGC_lock->notify();
2486   }
2487 }
2488 
2489 size_t G1CollectedHeap::pending_card_num() {
2490   size_t extra_cards = 0;
2491   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2492     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2493     extra_cards += dcq.size();
2494   }
2495   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2496   size_t buffer_size = dcqs.buffer_size();
2497   size_t buffer_num = dcqs.completed_buffers_num();
2498 
2499   return buffer_size * buffer_num + extra_cards;
2500 }
2501 
2502 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2503   // We don't nominate objects with many remembered set entries, on
2504   // the assumption that such objects are likely still live.
2505   HeapRegionRemSet* rem_set = r->rem_set();
2506 
2507   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2508          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2509          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2510 }
2511 
2512 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2513  private:
2514   size_t _total_humongous;
2515   size_t _candidate_humongous;
2516 
2517   DirtyCardQueue _dcq;
2518 
2519   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2520     assert(region->is_starts_humongous(), "Must start a humongous object");
2521 
2522     oop obj = oop(region->bottom());
2523 
2524     // Dead objects cannot be eager reclaim candidates. Due to class
2525     // unloading it is unsafe to query their classes so we return early.
2526     if (g1h->is_obj_dead(obj, region)) {
2527       return false;
2528     }
2529 
2530     // If we do not have a complete remembered set for the region, then we can
2531     // not be sure that we have all references to it.
2532     if (!region->rem_set()->is_complete()) {
2533       return false;
2534     }
2535     // Candidate selection must satisfy the following constraints
2536     // while concurrent marking is in progress:
2537     //
2538     // * In order to maintain SATB invariants, an object must not be
2539     // reclaimed if it was allocated before the start of marking and
2540     // has not had its references scanned.  Such an object must have
2541     // its references (including type metadata) scanned to ensure no
2542     // live objects are missed by the marking process.  Objects
2543     // allocated after the start of concurrent marking don't need to
2544     // be scanned.
2545     //
2546     // * An object must not be reclaimed if it is on the concurrent
2547     // mark stack.  Objects allocated after the start of concurrent
2548     // marking are never pushed on the mark stack.
2549     //
2550     // Nominating only objects allocated after the start of concurrent
2551     // marking is sufficient to meet both constraints.  This may miss
2552     // some objects that satisfy the constraints, but the marking data
2553     // structures don't support efficiently performing the needed
2554     // additional tests or scrubbing of the mark stack.
2555     //
2556     // However, we presently only nominate is_typeArray() objects.
2557     // A humongous object containing references induces remembered
2558     // set entries on other regions.  In order to reclaim such an
2559     // object, those remembered sets would need to be cleaned up.
2560     //
2561     // We also treat is_typeArray() objects specially, allowing them
2562     // to be reclaimed even if allocated before the start of
2563     // concurrent mark.  For this we rely on mark stack insertion to
2564     // exclude is_typeArray() objects, preventing reclaiming an object
2565     // that is in the mark stack.  We also rely on the metadata for
2566     // such objects to be built-in and so ensured to be kept live.
2567     // Frequent allocation and drop of large binary blobs is an
2568     // important use case for eager reclaim, and this special handling
2569     // may reduce needed headroom.
2570 
2571     return obj->is_typeArray() &&
2572            g1h->is_potential_eager_reclaim_candidate(region);
2573   }
2574 
2575  public:
2576   RegisterHumongousWithInCSetFastTestClosure()
2577   : _total_humongous(0),
2578     _candidate_humongous(0),
2579     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2580   }
2581 
2582   virtual bool do_heap_region(HeapRegion* r) {
2583     if (!r->is_starts_humongous()) {
2584       return false;
2585     }
2586     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2587 
2588     bool is_candidate = humongous_region_is_candidate(g1h, r);
2589     uint rindex = r->hrm_index();
2590     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2591     if (is_candidate) {
2592       _candidate_humongous++;
2593       g1h->register_humongous_region_with_cset(rindex);
2594       // Is_candidate already filters out humongous object with large remembered sets.
2595       // If we have a humongous object with a few remembered sets, we simply flush these
2596       // remembered set entries into the DCQS. That will result in automatic
2597       // re-evaluation of their remembered set entries during the following evacuation
2598       // phase.
2599       if (!r->rem_set()->is_empty()) {
2600         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2601                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2602         G1CardTable* ct = g1h->card_table();
2603         HeapRegionRemSetIterator hrrs(r->rem_set());
2604         size_t card_index;
2605         while (hrrs.has_next(card_index)) {
2606           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2607           // The remembered set might contain references to already freed
2608           // regions. Filter out such entries to avoid failing card table
2609           // verification.
2610           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2611             if (*card_ptr != G1CardTable::dirty_card_val()) {
2612               *card_ptr = G1CardTable::dirty_card_val();
2613               _dcq.enqueue(card_ptr);
2614             }
2615           }
2616         }
2617         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2618                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2619                hrrs.n_yielded(), r->rem_set()->occupied());
2620         // We should only clear the card based remembered set here as we will not
2621         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2622         // (and probably never) we do not enter this path if there are other kind of
2623         // remembered sets for this region.
2624         r->rem_set()->clear_locked(true /* only_cardset */);
2625         // Clear_locked() above sets the state to Empty. However we want to continue
2626         // collecting remembered set entries for humongous regions that were not
2627         // reclaimed.
2628         r->rem_set()->set_state_complete();
2629       }
2630       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2631     }
2632     _total_humongous++;
2633 
2634     return false;
2635   }
2636 
2637   size_t total_humongous() const { return _total_humongous; }
2638   size_t candidate_humongous() const { return _candidate_humongous; }
2639 
2640   void flush_rem_set_entries() { _dcq.flush(); }
2641 };
2642 
2643 void G1CollectedHeap::register_humongous_regions_with_cset() {
2644   if (!G1EagerReclaimHumongousObjects) {
2645     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2646     return;
2647   }
2648   double time = os::elapsed_counter();
2649 
2650   // Collect reclaim candidate information and register candidates with cset.
2651   RegisterHumongousWithInCSetFastTestClosure cl;
2652   heap_region_iterate(&cl);
2653 
2654   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2655   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2656                                                                   cl.total_humongous(),
2657                                                                   cl.candidate_humongous());
2658   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2659 
2660   // Finally flush all remembered set entries to re-check into the global DCQS.
2661   cl.flush_rem_set_entries();
2662 }
2663 
2664 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2665   public:
2666     bool do_heap_region(HeapRegion* hr) {
2667       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2668         hr->verify_rem_set();
2669       }
2670       return false;
2671     }
2672 };
2673 
2674 uint G1CollectedHeap::num_task_queues() const {
2675   return _task_queues->size();
2676 }
2677 
2678 #if TASKQUEUE_STATS
2679 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2680   st->print_raw_cr("GC Task Stats");
2681   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2682   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2683 }
2684 
2685 void G1CollectedHeap::print_taskqueue_stats() const {
2686   if (!log_is_enabled(Trace, gc, task, stats)) {
2687     return;
2688   }
2689   Log(gc, task, stats) log;
2690   ResourceMark rm;
2691   LogStream ls(log.trace());
2692   outputStream* st = &ls;
2693 
2694   print_taskqueue_stats_hdr(st);
2695 
2696   TaskQueueStats totals;
2697   const uint n = num_task_queues();
2698   for (uint i = 0; i < n; ++i) {
2699     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2700     totals += task_queue(i)->stats;
2701   }
2702   st->print_raw("tot "); totals.print(st); st->cr();
2703 
2704   DEBUG_ONLY(totals.verify());
2705 }
2706 
2707 void G1CollectedHeap::reset_taskqueue_stats() {
2708   const uint n = num_task_queues();
2709   for (uint i = 0; i < n; ++i) {
2710     task_queue(i)->stats.reset();
2711   }
2712 }
2713 #endif // TASKQUEUE_STATS
2714 
2715 void G1CollectedHeap::wait_for_root_region_scanning() {
2716   double scan_wait_start = os::elapsedTime();
2717   // We have to wait until the CM threads finish scanning the
2718   // root regions as it's the only way to ensure that all the
2719   // objects on them have been correctly scanned before we start
2720   // moving them during the GC.
2721   bool waited = _cm->root_regions()->wait_until_scan_finished();
2722   double wait_time_ms = 0.0;
2723   if (waited) {
2724     double scan_wait_end = os::elapsedTime();
2725     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2726   }
2727   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2728 }
2729 
2730 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2731 private:
2732   G1HRPrinter* _hr_printer;
2733 public:
2734   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2735 
2736   virtual bool do_heap_region(HeapRegion* r) {
2737     _hr_printer->cset(r);
2738     return false;
2739   }
2740 };
2741 
2742 void G1CollectedHeap::start_new_collection_set() {
2743   collection_set()->start_incremental_building();
2744 
2745   clear_cset_fast_test();
2746 
2747   guarantee(_eden.length() == 0, "eden should have been cleared");
2748   g1_policy()->transfer_survivors_to_cset(survivor());
2749 }
2750 
2751 bool
2752 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2753   assert_at_safepoint_on_vm_thread();
2754   guarantee(!is_gc_active(), "collection is not reentrant");
2755 
2756   if (GCLocker::check_active_before_gc()) {
2757     return false;
2758   }
2759 
2760   _gc_timer_stw->register_gc_start();
2761 
2762   GCIdMark gc_id_mark;
2763   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2764 
2765   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2766   ResourceMark rm;
2767 
2768   g1_policy()->note_gc_start();
2769 
2770   wait_for_root_region_scanning();
2771 
2772   print_heap_before_gc();
2773   print_heap_regions();
2774   trace_heap_before_gc(_gc_tracer_stw);
2775 
2776   _verifier->verify_region_sets_optional();
2777   _verifier->verify_dirty_young_regions();
2778 
2779   // We should not be doing initial mark unless the conc mark thread is running
2780   if (!_cm_thread->should_terminate()) {
2781     // This call will decide whether this pause is an initial-mark
2782     // pause. If it is, in_initial_mark_gc() will return true
2783     // for the duration of this pause.
2784     g1_policy()->decide_on_conc_mark_initiation();
2785   }
2786 
2787   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2788   assert(!collector_state()->in_initial_mark_gc() ||
2789           collector_state()->in_young_only_phase(), "sanity");
2790 
2791   // We also do not allow mixed GCs during marking.
2792   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2793 
2794   // Record whether this pause is an initial mark. When the current
2795   // thread has completed its logging output and it's safe to signal
2796   // the CM thread, the flag's value in the policy has been reset.
2797   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2798 
2799   // Inner scope for scope based logging, timers, and stats collection
2800   {
2801     EvacuationInfo evacuation_info;
2802 
2803     if (collector_state()->in_initial_mark_gc()) {
2804       // We are about to start a marking cycle, so we increment the
2805       // full collection counter.
2806       increment_old_marking_cycles_started();
2807       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2808     }
2809 
2810     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2811 
2812     GCTraceCPUTime tcpu;
2813 
2814     G1HeapVerifier::G1VerifyType verify_type;
2815     FormatBuffer<> gc_string("Pause Young ");
2816     if (collector_state()->in_initial_mark_gc()) {
2817       gc_string.append("(Concurrent Start)");
2818       verify_type = G1HeapVerifier::G1VerifyConcurrentStart;
2819     } else if (collector_state()->in_young_only_phase()) {
2820       if (collector_state()->in_young_gc_before_mixed()) {
2821         gc_string.append("(Prepare Mixed)");
2822       } else {
2823         gc_string.append("(Normal)");
2824       }
2825       verify_type = G1HeapVerifier::G1VerifyYoungNormal;
2826     } else {
2827       gc_string.append("(Mixed)");
2828       verify_type = G1HeapVerifier::G1VerifyMixed;
2829     }
2830     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2831 
2832     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2833                                                                   workers()->active_workers(),
2834                                                                   Threads::number_of_non_daemon_threads());
2835     active_workers = workers()->update_active_workers(active_workers);
2836     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2837 
2838     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2839     TraceMemoryManagerStats tms(&_memory_manager, gc_cause(),
2840                                 collector_state()->yc_type() == Mixed /* allMemoryPoolsAffected */);
2841 
2842     G1HeapTransition heap_transition(this);
2843     size_t heap_used_bytes_before_gc = used();
2844 
2845     // Don't dynamically change the number of GC threads this early.  A value of
2846     // 0 is used to indicate serial work.  When parallel work is done,
2847     // it will be set.
2848 
2849     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2850       IsGCActiveMark x;
2851 
2852       gc_prologue(false);
2853 
2854       if (VerifyRememberedSets) {
2855         log_info(gc, verify)("[Verifying RemSets before GC]");
2856         VerifyRegionRemSetClosure v_cl;
2857         heap_region_iterate(&v_cl);
2858       }
2859 
2860       _verifier->verify_before_gc(verify_type);
2861 
2862       _verifier->check_bitmaps("GC Start");
2863 
2864 #if COMPILER2_OR_JVMCI
2865       DerivedPointerTable::clear();
2866 #endif
2867 
2868       // Please see comment in g1CollectedHeap.hpp and
2869       // G1CollectedHeap::ref_processing_init() to see how
2870       // reference processing currently works in G1.
2871 
2872       // Enable discovery in the STW reference processor
2873       _ref_processor_stw->enable_discovery();
2874 
2875       {
2876         // We want to temporarily turn off discovery by the
2877         // CM ref processor, if necessary, and turn it back on
2878         // on again later if we do. Using a scoped
2879         // NoRefDiscovery object will do this.
2880         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2881 
2882         // Forget the current alloc region (we might even choose it to be part
2883         // of the collection set!).
2884         _allocator->release_mutator_alloc_region();
2885 
2886         // This timing is only used by the ergonomics to handle our pause target.
2887         // It is unclear why this should not include the full pause. We will
2888         // investigate this in CR 7178365.
2889         //
2890         // Preserving the old comment here if that helps the investigation:
2891         //
2892         // The elapsed time induced by the start time below deliberately elides
2893         // the possible verification above.
2894         double sample_start_time_sec = os::elapsedTime();
2895 
2896         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2897 
2898         if (collector_state()->in_initial_mark_gc()) {
2899           concurrent_mark()->pre_initial_mark();
2900         }
2901 
2902         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2903 
2904         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2905 
2906         // Make sure the remembered sets are up to date. This needs to be
2907         // done before register_humongous_regions_with_cset(), because the
2908         // remembered sets are used there to choose eager reclaim candidates.
2909         // If the remembered sets are not up to date we might miss some
2910         // entries that need to be handled.
2911         g1_rem_set()->cleanupHRRS();
2912 
2913         register_humongous_regions_with_cset();
2914 
2915         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2916 
2917         // We call this after finalize_cset() to
2918         // ensure that the CSet has been finalized.
2919         _cm->verify_no_cset_oops();
2920 
2921         if (_hr_printer.is_active()) {
2922           G1PrintCollectionSetClosure cl(&_hr_printer);
2923           _collection_set.iterate(&cl);
2924         }
2925 
2926         // Initialize the GC alloc regions.
2927         _allocator->init_gc_alloc_regions(evacuation_info);
2928 
2929         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
2930         pre_evacuate_collection_set();
2931 
2932         // Actually do the work...
2933         evacuate_collection_set(&per_thread_states);
2934 
2935         post_evacuate_collection_set(evacuation_info, &per_thread_states);
2936 
2937         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
2938         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
2939 
2940         eagerly_reclaim_humongous_regions();
2941 
2942         record_obj_copy_mem_stats();
2943         _survivor_evac_stats.adjust_desired_plab_sz();
2944         _old_evac_stats.adjust_desired_plab_sz();
2945 
2946         double start = os::elapsedTime();
2947         start_new_collection_set();
2948         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2949 
2950         if (evacuation_failed()) {
2951           set_used(recalculate_used());
2952           if (_archive_allocator != NULL) {
2953             _archive_allocator->clear_used();
2954           }
2955           for (uint i = 0; i < ParallelGCThreads; i++) {
2956             if (_evacuation_failed_info_array[i].has_failed()) {
2957               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
2958             }
2959           }
2960         } else {
2961           // The "used" of the the collection set have already been subtracted
2962           // when they were freed.  Add in the bytes evacuated.
2963           increase_used(g1_policy()->bytes_copied_during_gc());
2964         }
2965 
2966         if (collector_state()->in_initial_mark_gc()) {
2967           // We have to do this before we notify the CM threads that
2968           // they can start working to make sure that all the
2969           // appropriate initialization is done on the CM object.
2970           concurrent_mark()->post_initial_mark();
2971           // Note that we don't actually trigger the CM thread at
2972           // this point. We do that later when we're sure that
2973           // the current thread has completed its logging output.
2974         }
2975 
2976         allocate_dummy_regions();
2977 
2978         _allocator->init_mutator_alloc_region();
2979 
2980         {
2981           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2982           if (expand_bytes > 0) {
2983             size_t bytes_before = capacity();
2984             // No need for an ergo logging here,
2985             // expansion_amount() does this when it returns a value > 0.
2986             double expand_ms;
2987             if (!expand(expand_bytes, _workers, &expand_ms)) {
2988               // We failed to expand the heap. Cannot do anything about it.
2989             }
2990             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
2991           }
2992         }
2993 
2994         // We redo the verification but now wrt to the new CSet which
2995         // has just got initialized after the previous CSet was freed.
2996         _cm->verify_no_cset_oops();
2997 
2998         // This timing is only used by the ergonomics to handle our pause target.
2999         // It is unclear why this should not include the full pause. We will
3000         // investigate this in CR 7178365.
3001         double sample_end_time_sec = os::elapsedTime();
3002         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3003         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3004         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3005 
3006         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3007         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3008 
3009         if (VerifyRememberedSets) {
3010           log_info(gc, verify)("[Verifying RemSets after GC]");
3011           VerifyRegionRemSetClosure v_cl;
3012           heap_region_iterate(&v_cl);
3013         }
3014 
3015         _verifier->verify_after_gc(verify_type);
3016         _verifier->check_bitmaps("GC End");
3017 
3018         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
3019         _ref_processor_stw->verify_no_references_recorded();
3020 
3021         // CM reference discovery will be re-enabled if necessary.
3022       }
3023 
3024 #ifdef TRACESPINNING
3025       ParallelTaskTerminator::print_termination_counts();
3026 #endif
3027 
3028       gc_epilogue(false);
3029     }
3030 
3031     // Print the remainder of the GC log output.
3032     if (evacuation_failed()) {
3033       log_info(gc)("To-space exhausted");
3034     }
3035 
3036     g1_policy()->print_phases();
3037     heap_transition.print();
3038 
3039     // It is not yet to safe to tell the concurrent mark to
3040     // start as we have some optional output below. We don't want the
3041     // output from the concurrent mark thread interfering with this
3042     // logging output either.
3043 
3044     _hrm.verify_optional();
3045     _verifier->verify_region_sets_optional();
3046 
3047     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3048     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3049 
3050     print_heap_after_gc();
3051     print_heap_regions();
3052     trace_heap_after_gc(_gc_tracer_stw);
3053 
3054     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3055     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3056     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3057     // before any GC notifications are raised.
3058     g1mm()->update_sizes();
3059 
3060     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3061     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3062     _gc_timer_stw->register_gc_end();
3063     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3064   }
3065   // It should now be safe to tell the concurrent mark thread to start
3066   // without its logging output interfering with the logging output
3067   // that came from the pause.
3068 
3069   if (should_start_conc_mark) {
3070     // CAUTION: after the doConcurrentMark() call below,
3071     // the concurrent marking thread(s) could be running
3072     // concurrently with us. Make sure that anything after
3073     // this point does not assume that we are the only GC thread
3074     // running. Note: of course, the actual marking work will
3075     // not start until the safepoint itself is released in
3076     // SuspendibleThreadSet::desynchronize().
3077     do_concurrent_mark();
3078   }
3079 
3080   return true;
3081 }
3082 
3083 void G1CollectedHeap::remove_self_forwarding_pointers() {
3084   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3085   workers()->run_task(&rsfp_task);
3086 }
3087 
3088 void G1CollectedHeap::restore_after_evac_failure() {
3089   double remove_self_forwards_start = os::elapsedTime();
3090 
3091   remove_self_forwarding_pointers();
3092   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3093   _preserved_marks_set.restore(&task_executor);
3094 
3095   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3096 }
3097 
3098 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3099   if (!_evacuation_failed) {
3100     _evacuation_failed = true;
3101   }
3102 
3103   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3104   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3105 }
3106 
3107 bool G1ParEvacuateFollowersClosure::offer_termination() {
3108   G1ParScanThreadState* const pss = par_scan_state();
3109   start_term_time();
3110   const bool res = terminator()->offer_termination();
3111   end_term_time();
3112   return res;
3113 }
3114 
3115 void G1ParEvacuateFollowersClosure::do_void() {
3116   G1ParScanThreadState* const pss = par_scan_state();
3117   pss->trim_queue();
3118   do {
3119     pss->steal_and_trim_queue(queues());
3120   } while (!offer_termination());
3121 }
3122 
3123 class G1ParTask : public AbstractGangTask {
3124 protected:
3125   G1CollectedHeap*         _g1h;
3126   G1ParScanThreadStateSet* _pss;
3127   RefToScanQueueSet*       _queues;
3128   G1RootProcessor*         _root_processor;
3129   ParallelTaskTerminator   _terminator;
3130   uint                     _n_workers;
3131 
3132 public:
3133   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3134     : AbstractGangTask("G1 collection"),
3135       _g1h(g1h),
3136       _pss(per_thread_states),
3137       _queues(task_queues),
3138       _root_processor(root_processor),
3139       _terminator(n_workers, _queues),
3140       _n_workers(n_workers)
3141   {}
3142 
3143   void work(uint worker_id) {
3144     if (worker_id >= _n_workers) return;  // no work needed this round
3145 
3146     double start_sec = os::elapsedTime();
3147     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3148 
3149     {
3150       ResourceMark rm;
3151       HandleMark   hm;
3152 
3153       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3154 
3155       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3156       pss->set_ref_discoverer(rp);
3157 
3158       double start_strong_roots_sec = os::elapsedTime();
3159 
3160       _root_processor->evacuate_roots(pss, worker_id);
3161 
3162       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3163       // treating the nmethods visited to act as roots for concurrent marking.
3164       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3165       // objects copied by the current evacuation.
3166       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3167 
3168       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3169 
3170       double term_sec = 0.0;
3171       size_t evac_term_attempts = 0;
3172       {
3173         double start = os::elapsedTime();
3174         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3175         evac.do_void();
3176 
3177         evac_term_attempts = evac.term_attempts();
3178         term_sec = evac.term_time();
3179         double elapsed_sec = os::elapsedTime() - start;
3180 
3181         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3182         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3183         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3184         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3185       }
3186 
3187       assert(pss->queue_is_empty(), "should be empty");
3188 
3189       if (log_is_enabled(Debug, gc, task, stats)) {
3190         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3191         size_t lab_waste;
3192         size_t lab_undo_waste;
3193         pss->waste(lab_waste, lab_undo_waste);
3194         _g1h->print_termination_stats(worker_id,
3195                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3196                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3197                                       term_sec * 1000.0,                          /* evac term time */
3198                                       evac_term_attempts,                         /* evac term attempts */
3199                                       lab_waste,                                  /* alloc buffer waste */
3200                                       lab_undo_waste                              /* undo waste */
3201                                       );
3202       }
3203 
3204       // Close the inner scope so that the ResourceMark and HandleMark
3205       // destructors are executed here and are included as part of the
3206       // "GC Worker Time".
3207     }
3208     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3209   }
3210 };
3211 
3212 void G1CollectedHeap::print_termination_stats_hdr() {
3213   log_debug(gc, task, stats)("GC Termination Stats");
3214   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3215   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3216   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3217 }
3218 
3219 void G1CollectedHeap::print_termination_stats(uint worker_id,
3220                                               double elapsed_ms,
3221                                               double strong_roots_ms,
3222                                               double term_ms,
3223                                               size_t term_attempts,
3224                                               size_t alloc_buffer_waste,
3225                                               size_t undo_waste) const {
3226   log_debug(gc, task, stats)
3227               ("%3d %9.2f %9.2f %6.2f "
3228                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3229                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3230                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3231                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3232                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3233                alloc_buffer_waste * HeapWordSize / K,
3234                undo_waste * HeapWordSize / K);
3235 }
3236 
3237 class G1StringCleaningTask : public AbstractGangTask {
3238 private:
3239   BoolObjectClosure* _is_alive;
3240   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3241   OopStorage::ParState<false /* concurrent */, false /* const */> _par_state_string;
3242 
3243   int _initial_string_table_size;
3244 
3245   bool  _process_strings;
3246   int _strings_processed;
3247   int _strings_removed;
3248 
3249   bool _process_string_dedup;
3250 
3251 public:
3252   G1StringCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_string_dedup) :
3253     AbstractGangTask("String Unlinking"),
3254     _is_alive(is_alive),
3255     _dedup_closure(is_alive, NULL, false),
3256     _par_state_string(StringTable::weak_storage()),
3257     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3258     _process_string_dedup(process_string_dedup) {
3259 
3260     _initial_string_table_size = (int) StringTable::the_table()->table_size();
3261     if (process_strings) {
3262       StringTable::reset_dead_counter();
3263     }
3264   }
3265 
3266   ~G1StringCleaningTask() {
3267     log_info(gc, stringtable)(
3268         "Cleaned string table, "
3269         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3270         strings_processed(), strings_removed());
3271     if (_process_strings) {
3272       StringTable::finish_dead_counter();
3273     }
3274   }
3275 
3276   void work(uint worker_id) {
3277     int strings_processed = 0;
3278     int strings_removed = 0;
3279     if (_process_strings) {
3280       StringTable::possibly_parallel_unlink(&_par_state_string, _is_alive, &strings_processed, &strings_removed);
3281       Atomic::add(strings_processed, &_strings_processed);
3282       Atomic::add(strings_removed, &_strings_removed);
3283     }
3284     if (_process_string_dedup) {
3285       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3286     }
3287   }
3288 
3289   size_t strings_processed() const { return (size_t)_strings_processed; }
3290   size_t strings_removed()   const { return (size_t)_strings_removed; }
3291 };
3292 
3293 class G1CodeCacheUnloadingTask {
3294 private:
3295   static Monitor* _lock;
3296 
3297   BoolObjectClosure* const _is_alive;
3298   const bool               _unloading_occurred;
3299   const uint               _num_workers;
3300 
3301   // Variables used to claim nmethods.
3302   CompiledMethod* _first_nmethod;
3303   CompiledMethod* volatile _claimed_nmethod;
3304 
3305   // The list of nmethods that need to be processed by the second pass.
3306   CompiledMethod* volatile _postponed_list;
3307   volatile uint            _num_entered_barrier;
3308 
3309  public:
3310   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3311       _is_alive(is_alive),
3312       _unloading_occurred(unloading_occurred),
3313       _num_workers(num_workers),
3314       _first_nmethod(NULL),
3315       _claimed_nmethod(NULL),
3316       _postponed_list(NULL),
3317       _num_entered_barrier(0)
3318   {
3319     CompiledMethod::increase_unloading_clock();
3320     // Get first alive nmethod
3321     CompiledMethodIterator iter = CompiledMethodIterator();
3322     if(iter.next_alive()) {
3323       _first_nmethod = iter.method();
3324     }
3325     _claimed_nmethod = _first_nmethod;
3326   }
3327 
3328   ~G1CodeCacheUnloadingTask() {
3329     CodeCache::verify_clean_inline_caches();
3330 
3331     CodeCache::set_needs_cache_clean(false);
3332     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3333 
3334     CodeCache::verify_icholder_relocations();
3335   }
3336 
3337  private:
3338   void add_to_postponed_list(CompiledMethod* nm) {
3339       CompiledMethod* old;
3340       do {
3341         old = _postponed_list;
3342         nm->set_unloading_next(old);
3343       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3344   }
3345 
3346   void clean_nmethod(CompiledMethod* nm) {
3347     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3348 
3349     if (postponed) {
3350       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3351       add_to_postponed_list(nm);
3352     }
3353 
3354     // Mark that this nmethod has been cleaned/unloaded.
3355     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3356     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3357   }
3358 
3359   void clean_nmethod_postponed(CompiledMethod* nm) {
3360     nm->do_unloading_parallel_postponed();
3361   }
3362 
3363   static const int MaxClaimNmethods = 16;
3364 
3365   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3366     CompiledMethod* first;
3367     CompiledMethodIterator last;
3368 
3369     do {
3370       *num_claimed_nmethods = 0;
3371 
3372       first = _claimed_nmethod;
3373       last = CompiledMethodIterator(first);
3374 
3375       if (first != NULL) {
3376 
3377         for (int i = 0; i < MaxClaimNmethods; i++) {
3378           if (!last.next_alive()) {
3379             break;
3380           }
3381           claimed_nmethods[i] = last.method();
3382           (*num_claimed_nmethods)++;
3383         }
3384       }
3385 
3386     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3387   }
3388 
3389   CompiledMethod* claim_postponed_nmethod() {
3390     CompiledMethod* claim;
3391     CompiledMethod* next;
3392 
3393     do {
3394       claim = _postponed_list;
3395       if (claim == NULL) {
3396         return NULL;
3397       }
3398 
3399       next = claim->unloading_next();
3400 
3401     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3402 
3403     return claim;
3404   }
3405 
3406  public:
3407   // Mark that we're done with the first pass of nmethod cleaning.
3408   void barrier_mark(uint worker_id) {
3409     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3410     _num_entered_barrier++;
3411     if (_num_entered_barrier == _num_workers) {
3412       ml.notify_all();
3413     }
3414   }
3415 
3416   // See if we have to wait for the other workers to
3417   // finish their first-pass nmethod cleaning work.
3418   void barrier_wait(uint worker_id) {
3419     if (_num_entered_barrier < _num_workers) {
3420       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3421       while (_num_entered_barrier < _num_workers) {
3422           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3423       }
3424     }
3425   }
3426 
3427   // Cleaning and unloading of nmethods. Some work has to be postponed
3428   // to the second pass, when we know which nmethods survive.
3429   void work_first_pass(uint worker_id) {
3430     // The first nmethods is claimed by the first worker.
3431     if (worker_id == 0 && _first_nmethod != NULL) {
3432       clean_nmethod(_first_nmethod);
3433       _first_nmethod = NULL;
3434     }
3435 
3436     int num_claimed_nmethods;
3437     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3438 
3439     while (true) {
3440       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3441 
3442       if (num_claimed_nmethods == 0) {
3443         break;
3444       }
3445 
3446       for (int i = 0; i < num_claimed_nmethods; i++) {
3447         clean_nmethod(claimed_nmethods[i]);
3448       }
3449     }
3450   }
3451 
3452   void work_second_pass(uint worker_id) {
3453     CompiledMethod* nm;
3454     // Take care of postponed nmethods.
3455     while ((nm = claim_postponed_nmethod()) != NULL) {
3456       clean_nmethod_postponed(nm);
3457     }
3458   }
3459 };
3460 
3461 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3462 
3463 class G1KlassCleaningTask : public StackObj {
3464   volatile int                            _clean_klass_tree_claimed;
3465   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3466 
3467  public:
3468   G1KlassCleaningTask() :
3469       _clean_klass_tree_claimed(0),
3470       _klass_iterator() {
3471   }
3472 
3473  private:
3474   bool claim_clean_klass_tree_task() {
3475     if (_clean_klass_tree_claimed) {
3476       return false;
3477     }
3478 
3479     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3480   }
3481 
3482   InstanceKlass* claim_next_klass() {
3483     Klass* klass;
3484     do {
3485       klass =_klass_iterator.next_klass();
3486     } while (klass != NULL && !klass->is_instance_klass());
3487 
3488     // this can be null so don't call InstanceKlass::cast
3489     return static_cast<InstanceKlass*>(klass);
3490   }
3491 
3492 public:
3493 
3494   void clean_klass(InstanceKlass* ik) {
3495     ik->clean_weak_instanceklass_links();
3496   }
3497 
3498   void work() {
3499     ResourceMark rm;
3500 
3501     // One worker will clean the subklass/sibling klass tree.
3502     if (claim_clean_klass_tree_task()) {
3503       Klass::clean_subklass_tree();
3504     }
3505 
3506     // All workers will help cleaning the classes,
3507     InstanceKlass* klass;
3508     while ((klass = claim_next_klass()) != NULL) {
3509       clean_klass(klass);
3510     }
3511   }
3512 };
3513 
3514 class G1ResolvedMethodCleaningTask : public StackObj {
3515   volatile int       _resolved_method_task_claimed;
3516 public:
3517   G1ResolvedMethodCleaningTask() :
3518       _resolved_method_task_claimed(0) {}
3519 
3520   bool claim_resolved_method_task() {
3521     if (_resolved_method_task_claimed) {
3522       return false;
3523     }
3524     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3525   }
3526 
3527   // These aren't big, one thread can do it all.
3528   void work() {
3529     if (claim_resolved_method_task()) {
3530       ResolvedMethodTable::unlink();
3531     }
3532   }
3533 };
3534 
3535 
3536 // To minimize the remark pause times, the tasks below are done in parallel.
3537 class G1ParallelCleaningTask : public AbstractGangTask {
3538 private:
3539   bool                          _unloading_occurred;
3540   G1StringCleaningTask          _string_task;
3541   G1CodeCacheUnloadingTask      _code_cache_task;
3542   G1KlassCleaningTask           _klass_cleaning_task;
3543   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3544 
3545 public:
3546   // The constructor is run in the VMThread.
3547   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3548       AbstractGangTask("Parallel Cleaning"),
3549       _string_task(is_alive, true, G1StringDedup::is_enabled()),
3550       _code_cache_task(num_workers, is_alive, unloading_occurred),
3551       _klass_cleaning_task(),
3552       _unloading_occurred(unloading_occurred),
3553       _resolved_method_cleaning_task() {
3554   }
3555 
3556   // The parallel work done by all worker threads.
3557   void work(uint worker_id) {
3558     // Do first pass of code cache cleaning.
3559     _code_cache_task.work_first_pass(worker_id);
3560 
3561     // Let the threads mark that the first pass is done.
3562     _code_cache_task.barrier_mark(worker_id);
3563 
3564     // Clean the Strings.
3565     _string_task.work(worker_id);
3566 
3567     // Clean unreferenced things in the ResolvedMethodTable
3568     _resolved_method_cleaning_task.work();
3569 
3570     // Wait for all workers to finish the first code cache cleaning pass.
3571     _code_cache_task.barrier_wait(worker_id);
3572 
3573     // Do the second code cache cleaning work, which realize on
3574     // the liveness information gathered during the first pass.
3575     _code_cache_task.work_second_pass(worker_id);
3576 
3577     // Clean all klasses that were not unloaded.
3578     // The weak metadata in klass doesn't need to be
3579     // processed if there was no unloading.
3580     if (_unloading_occurred) {
3581       _klass_cleaning_task.work();
3582     }
3583   }
3584 };
3585 
3586 
3587 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3588                                         bool class_unloading_occurred) {
3589   uint n_workers = workers()->active_workers();
3590 
3591   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3592   workers()->run_task(&g1_unlink_task);
3593 }
3594 
3595 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3596                                        bool process_strings,
3597                                        bool process_string_dedup) {
3598   if (!process_strings && !process_string_dedup) {
3599     // Nothing to clean.
3600     return;
3601   }
3602 
3603   G1StringCleaningTask g1_unlink_task(is_alive, process_strings, process_string_dedup);
3604   workers()->run_task(&g1_unlink_task);
3605 }
3606 
3607 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3608  private:
3609   DirtyCardQueueSet* _queue;
3610   G1CollectedHeap* _g1h;
3611  public:
3612   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3613     _queue(queue), _g1h(g1h) { }
3614 
3615   virtual void work(uint worker_id) {
3616     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3617     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3618 
3619     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3620     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3621 
3622     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3623   }
3624 };
3625 
3626 void G1CollectedHeap::redirty_logged_cards() {
3627   double redirty_logged_cards_start = os::elapsedTime();
3628 
3629   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3630   dirty_card_queue_set().reset_for_par_iteration();
3631   workers()->run_task(&redirty_task);
3632 
3633   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3634   dcq.merge_bufferlists(&dirty_card_queue_set());
3635   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3636 
3637   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3638 }
3639 
3640 // Weak Reference Processing support
3641 
3642 bool G1STWIsAliveClosure::do_object_b(oop p) {
3643   // An object is reachable if it is outside the collection set,
3644   // or is inside and copied.
3645   return !_g1h->is_in_cset(p) || p->is_forwarded();
3646 }
3647 
3648 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3649   assert(obj != NULL, "must not be NULL");
3650   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3651   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3652   // may falsely indicate that this is not the case here: however the collection set only
3653   // contains old regions when concurrent mark is not running.
3654   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3655 }
3656 
3657 // Non Copying Keep Alive closure
3658 class G1KeepAliveClosure: public OopClosure {
3659   G1CollectedHeap*_g1h;
3660 public:
3661   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3662   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3663   void do_oop(oop* p) {
3664     oop obj = *p;
3665     assert(obj != NULL, "the caller should have filtered out NULL values");
3666 
3667     const InCSetState cset_state =_g1h->in_cset_state(obj);
3668     if (!cset_state.is_in_cset_or_humongous()) {
3669       return;
3670     }
3671     if (cset_state.is_in_cset()) {
3672       assert( obj->is_forwarded(), "invariant" );
3673       *p = obj->forwardee();
3674     } else {
3675       assert(!obj->is_forwarded(), "invariant" );
3676       assert(cset_state.is_humongous(),
3677              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3678      _g1h->set_humongous_is_live(obj);
3679     }
3680   }
3681 };
3682 
3683 // Copying Keep Alive closure - can be called from both
3684 // serial and parallel code as long as different worker
3685 // threads utilize different G1ParScanThreadState instances
3686 // and different queues.
3687 
3688 class G1CopyingKeepAliveClosure: public OopClosure {
3689   G1CollectedHeap*         _g1h;
3690   G1ParScanThreadState*    _par_scan_state;
3691 
3692 public:
3693   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3694                             G1ParScanThreadState* pss):
3695     _g1h(g1h),
3696     _par_scan_state(pss)
3697   {}
3698 
3699   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3700   virtual void do_oop(      oop* p) { do_oop_work(p); }
3701 
3702   template <class T> void do_oop_work(T* p) {
3703     oop obj = RawAccess<>::oop_load(p);
3704 
3705     if (_g1h->is_in_cset_or_humongous(obj)) {
3706       // If the referent object has been forwarded (either copied
3707       // to a new location or to itself in the event of an
3708       // evacuation failure) then we need to update the reference
3709       // field and, if both reference and referent are in the G1
3710       // heap, update the RSet for the referent.
3711       //
3712       // If the referent has not been forwarded then we have to keep
3713       // it alive by policy. Therefore we have copy the referent.
3714       //
3715       // When the queue is drained (after each phase of reference processing)
3716       // the object and it's followers will be copied, the reference field set
3717       // to point to the new location, and the RSet updated.
3718       _par_scan_state->push_on_queue(p);
3719     }
3720   }
3721 };
3722 
3723 // Serial drain queue closure. Called as the 'complete_gc'
3724 // closure for each discovered list in some of the
3725 // reference processing phases.
3726 
3727 class G1STWDrainQueueClosure: public VoidClosure {
3728 protected:
3729   G1CollectedHeap* _g1h;
3730   G1ParScanThreadState* _par_scan_state;
3731 
3732   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3733 
3734 public:
3735   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3736     _g1h(g1h),
3737     _par_scan_state(pss)
3738   { }
3739 
3740   void do_void() {
3741     G1ParScanThreadState* const pss = par_scan_state();
3742     pss->trim_queue();
3743   }
3744 };
3745 
3746 // Parallel Reference Processing closures
3747 
3748 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3749 // processing during G1 evacuation pauses.
3750 
3751 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3752 private:
3753   G1CollectedHeap*          _g1h;
3754   G1ParScanThreadStateSet*  _pss;
3755   RefToScanQueueSet*        _queues;
3756   WorkGang*                 _workers;
3757 
3758 public:
3759   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3760                            G1ParScanThreadStateSet* per_thread_states,
3761                            WorkGang* workers,
3762                            RefToScanQueueSet *task_queues) :
3763     _g1h(g1h),
3764     _pss(per_thread_states),
3765     _queues(task_queues),
3766     _workers(workers)
3767   {
3768     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3769   }
3770 
3771   // Executes the given task using concurrent marking worker threads.
3772   virtual void execute(ProcessTask& task, uint ergo_workers);
3773 };
3774 
3775 // Gang task for possibly parallel reference processing
3776 
3777 class G1STWRefProcTaskProxy: public AbstractGangTask {
3778   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3779   ProcessTask&     _proc_task;
3780   G1CollectedHeap* _g1h;
3781   G1ParScanThreadStateSet* _pss;
3782   RefToScanQueueSet* _task_queues;
3783   ParallelTaskTerminator* _terminator;
3784 
3785 public:
3786   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3787                         G1CollectedHeap* g1h,
3788                         G1ParScanThreadStateSet* per_thread_states,
3789                         RefToScanQueueSet *task_queues,
3790                         ParallelTaskTerminator* terminator) :
3791     AbstractGangTask("Process reference objects in parallel"),
3792     _proc_task(proc_task),
3793     _g1h(g1h),
3794     _pss(per_thread_states),
3795     _task_queues(task_queues),
3796     _terminator(terminator)
3797   {}
3798 
3799   virtual void work(uint worker_id) {
3800     // The reference processing task executed by a single worker.
3801     ResourceMark rm;
3802     HandleMark   hm;
3803 
3804     G1STWIsAliveClosure is_alive(_g1h);
3805 
3806     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3807     pss->set_ref_discoverer(NULL);
3808 
3809     // Keep alive closure.
3810     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3811 
3812     // Complete GC closure
3813     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3814 
3815     // Call the reference processing task's work routine.
3816     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3817 
3818     // Note we cannot assert that the refs array is empty here as not all
3819     // of the processing tasks (specifically phase2 - pp2_work) execute
3820     // the complete_gc closure (which ordinarily would drain the queue) so
3821     // the queue may not be empty.
3822   }
3823 };
3824 
3825 // Driver routine for parallel reference processing.
3826 // Creates an instance of the ref processing gang
3827 // task and has the worker threads execute it.
3828 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3829   assert(_workers != NULL, "Need parallel worker threads.");
3830 
3831   assert(_workers->active_workers() >= ergo_workers,
3832          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3833          ergo_workers, _workers->active_workers());
3834   ParallelTaskTerminator terminator(ergo_workers, _queues);
3835   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3836 
3837   _workers->run_task(&proc_task_proxy, ergo_workers);
3838 }
3839 
3840 // End of weak reference support closures
3841 
3842 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3843   double ref_proc_start = os::elapsedTime();
3844 
3845   ReferenceProcessor* rp = _ref_processor_stw;
3846   assert(rp->discovery_enabled(), "should have been enabled");
3847 
3848   // Closure to test whether a referent is alive.
3849   G1STWIsAliveClosure is_alive(this);
3850 
3851   // Even when parallel reference processing is enabled, the processing
3852   // of JNI refs is serial and performed serially by the current thread
3853   // rather than by a worker. The following PSS will be used for processing
3854   // JNI refs.
3855 
3856   // Use only a single queue for this PSS.
3857   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3858   pss->set_ref_discoverer(NULL);
3859   assert(pss->queue_is_empty(), "pre-condition");
3860 
3861   // Keep alive closure.
3862   G1CopyingKeepAliveClosure keep_alive(this, pss);
3863 
3864   // Serial Complete GC closure
3865   G1STWDrainQueueClosure drain_queue(this, pss);
3866 
3867   // Setup the soft refs policy...
3868   rp->setup_policy(false);
3869 
3870   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3871 
3872   ReferenceProcessorStats stats;
3873   if (!rp->processing_is_mt()) {
3874     // Serial reference processing...
3875     stats = rp->process_discovered_references(&is_alive,
3876                                               &keep_alive,
3877                                               &drain_queue,
3878                                               NULL,
3879                                               pt);
3880   } else {
3881     uint no_of_gc_workers = workers()->active_workers();
3882 
3883     // Parallel reference processing
3884     assert(no_of_gc_workers <= rp->max_num_queues(),
3885            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3886            no_of_gc_workers,  rp->max_num_queues());
3887 
3888     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3889     stats = rp->process_discovered_references(&is_alive,
3890                                               &keep_alive,
3891                                               &drain_queue,
3892                                               &par_task_executor,
3893                                               pt);
3894   }
3895 
3896   _gc_tracer_stw->report_gc_reference_stats(stats);
3897 
3898   // We have completed copying any necessary live referent objects.
3899   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3900 
3901   make_pending_list_reachable();
3902 
3903   rp->verify_no_references_recorded();
3904 
3905   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3906   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3907 }
3908 
3909 void G1CollectedHeap::make_pending_list_reachable() {
3910   if (collector_state()->in_initial_mark_gc()) {
3911     oop pll_head = Universe::reference_pending_list();
3912     if (pll_head != NULL) {
3913       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3914       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3915     }
3916   }
3917 }
3918 
3919 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3920   double merge_pss_time_start = os::elapsedTime();
3921   per_thread_states->flush();
3922   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3923 }
3924 
3925 void G1CollectedHeap::pre_evacuate_collection_set() {
3926   _expand_heap_after_alloc_failure = true;
3927   _evacuation_failed = false;
3928 
3929   // Disable the hot card cache.
3930   _hot_card_cache->reset_hot_cache_claimed_index();
3931   _hot_card_cache->set_use_cache(false);
3932 
3933   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3934   _preserved_marks_set.assert_empty();
3935 
3936   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3937 
3938   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3939   if (collector_state()->in_initial_mark_gc()) {
3940     double start_clear_claimed_marks = os::elapsedTime();
3941 
3942     ClassLoaderDataGraph::clear_claimed_marks();
3943 
3944     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3945     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3946   }
3947 }
3948 
3949 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3950   // Should G1EvacuationFailureALot be in effect for this GC?
3951   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3952 
3953   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3954 
3955   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3956 
3957   double start_par_time_sec = os::elapsedTime();
3958   double end_par_time_sec;
3959 
3960   {
3961     const uint n_workers = workers()->active_workers();
3962     G1RootProcessor root_processor(this, n_workers);
3963     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
3964 
3965     print_termination_stats_hdr();
3966 
3967     workers()->run_task(&g1_par_task);
3968     end_par_time_sec = os::elapsedTime();
3969 
3970     // Closing the inner scope will execute the destructor
3971     // for the G1RootProcessor object. We record the current
3972     // elapsed time before closing the scope so that time
3973     // taken for the destructor is NOT included in the
3974     // reported parallel time.
3975   }
3976 
3977   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
3978   phase_times->record_par_time(par_time_ms);
3979 
3980   double code_root_fixup_time_ms =
3981         (os::elapsedTime() - end_par_time_sec) * 1000.0;
3982   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
3983 }
3984 
3985 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3986   // Also cleans the card table from temporary duplicate detection information used
3987   // during UpdateRS/ScanRS.
3988   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
3989 
3990   // Process any discovered reference objects - we have
3991   // to do this _before_ we retire the GC alloc regions
3992   // as we may have to copy some 'reachable' referent
3993   // objects (and their reachable sub-graphs) that were
3994   // not copied during the pause.
3995   process_discovered_references(per_thread_states);
3996 
3997   // FIXME
3998   // CM's reference processing also cleans up the string table.
3999   // Should we do that here also? We could, but it is a serial operation
4000   // and could significantly increase the pause time.
4001 
4002   G1STWIsAliveClosure is_alive(this);
4003   G1KeepAliveClosure keep_alive(this);
4004 
4005   {
4006     double start = os::elapsedTime();
4007 
4008     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4009 
4010     double time_ms = (os::elapsedTime() - start) * 1000.0;
4011     g1_policy()->phase_times()->record_weak_ref_proc_time(time_ms);
4012   }
4013 
4014   if (G1StringDedup::is_enabled()) {
4015     double fixup_start = os::elapsedTime();
4016 
4017     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4018 
4019     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4020     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4021   }
4022 
4023   if (evacuation_failed()) {
4024     restore_after_evac_failure();
4025 
4026     // Reset the G1EvacuationFailureALot counters and flags
4027     // Note: the values are reset only when an actual
4028     // evacuation failure occurs.
4029     NOT_PRODUCT(reset_evacuation_should_fail();)
4030   }
4031 
4032   _preserved_marks_set.assert_empty();
4033 
4034   _allocator->release_gc_alloc_regions(evacuation_info);
4035 
4036   merge_per_thread_state_info(per_thread_states);
4037 
4038   // Reset and re-enable the hot card cache.
4039   // Note the counts for the cards in the regions in the
4040   // collection set are reset when the collection set is freed.
4041   _hot_card_cache->reset_hot_cache();
4042   _hot_card_cache->set_use_cache(true);
4043 
4044   purge_code_root_memory();
4045 
4046   redirty_logged_cards();
4047 #if COMPILER2_OR_JVMCI
4048   double start = os::elapsedTime();
4049   DerivedPointerTable::update_pointers();
4050   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4051 #endif
4052   g1_policy()->print_age_table();
4053 }
4054 
4055 void G1CollectedHeap::record_obj_copy_mem_stats() {
4056   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4057 
4058   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4059                                                create_g1_evac_summary(&_old_evac_stats));
4060 }
4061 
4062 void G1CollectedHeap::free_region(HeapRegion* hr,
4063                                   FreeRegionList* free_list,
4064                                   bool skip_remset,
4065                                   bool skip_hot_card_cache,
4066                                   bool locked) {
4067   assert(!hr->is_free(), "the region should not be free");
4068   assert(!hr->is_empty(), "the region should not be empty");
4069   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4070   assert(free_list != NULL, "pre-condition");
4071 
4072   if (G1VerifyBitmaps) {
4073     MemRegion mr(hr->bottom(), hr->end());
4074     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4075   }
4076 
4077   // Clear the card counts for this region.
4078   // Note: we only need to do this if the region is not young
4079   // (since we don't refine cards in young regions).
4080   if (!skip_hot_card_cache && !hr->is_young()) {
4081     _hot_card_cache->reset_card_counts(hr);
4082   }
4083   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4084   _g1_policy->remset_tracker()->update_at_free(hr);
4085   free_list->add_ordered(hr);
4086 }
4087 
4088 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4089                                             FreeRegionList* free_list) {
4090   assert(hr->is_humongous(), "this is only for humongous regions");
4091   assert(free_list != NULL, "pre-condition");
4092   hr->clear_humongous();
4093   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4094 }
4095 
4096 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4097                                            const uint humongous_regions_removed) {
4098   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4099     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4100     _old_set.bulk_remove(old_regions_removed);
4101     _humongous_set.bulk_remove(humongous_regions_removed);
4102   }
4103 
4104 }
4105 
4106 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4107   assert(list != NULL, "list can't be null");
4108   if (!list->is_empty()) {
4109     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4110     _hrm.insert_list_into_free_list(list);
4111   }
4112 }
4113 
4114 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4115   decrease_used(bytes);
4116 }
4117 
4118 class G1FreeCollectionSetTask : public AbstractGangTask {
4119 private:
4120 
4121   // Closure applied to all regions in the collection set to do work that needs to
4122   // be done serially in a single thread.
4123   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4124   private:
4125     EvacuationInfo* _evacuation_info;
4126     const size_t* _surviving_young_words;
4127 
4128     // Bytes used in successfully evacuated regions before the evacuation.
4129     size_t _before_used_bytes;
4130     // Bytes used in unsucessfully evacuated regions before the evacuation
4131     size_t _after_used_bytes;
4132 
4133     size_t _bytes_allocated_in_old_since_last_gc;
4134 
4135     size_t _failure_used_words;
4136     size_t _failure_waste_words;
4137 
4138     FreeRegionList _local_free_list;
4139   public:
4140     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4141       HeapRegionClosure(),
4142       _evacuation_info(evacuation_info),
4143       _surviving_young_words(surviving_young_words),
4144       _before_used_bytes(0),
4145       _after_used_bytes(0),
4146       _bytes_allocated_in_old_since_last_gc(0),
4147       _failure_used_words(0),
4148       _failure_waste_words(0),
4149       _local_free_list("Local Region List for CSet Freeing") {
4150     }
4151 
4152     virtual bool do_heap_region(HeapRegion* r) {
4153       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4154 
4155       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4156       g1h->clear_in_cset(r);
4157 
4158       if (r->is_young()) {
4159         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4160                "Young index %d is wrong for region %u of type %s with %u young regions",
4161                r->young_index_in_cset(),
4162                r->hrm_index(),
4163                r->get_type_str(),
4164                g1h->collection_set()->young_region_length());
4165         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4166         r->record_surv_words_in_group(words_survived);
4167       }
4168 
4169       if (!r->evacuation_failed()) {
4170         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4171         _before_used_bytes += r->used();
4172         g1h->free_region(r,
4173                          &_local_free_list,
4174                          true, /* skip_remset */
4175                          true, /* skip_hot_card_cache */
4176                          true  /* locked */);
4177       } else {
4178         r->uninstall_surv_rate_group();
4179         r->set_young_index_in_cset(-1);
4180         r->set_evacuation_failed(false);
4181         // When moving a young gen region to old gen, we "allocate" that whole region
4182         // there. This is in addition to any already evacuated objects. Notify the
4183         // policy about that.
4184         // Old gen regions do not cause an additional allocation: both the objects
4185         // still in the region and the ones already moved are accounted for elsewhere.
4186         if (r->is_young()) {
4187           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4188         }
4189         // The region is now considered to be old.
4190         r->set_old();
4191         // Do some allocation statistics accounting. Regions that failed evacuation
4192         // are always made old, so there is no need to update anything in the young
4193         // gen statistics, but we need to update old gen statistics.
4194         size_t used_words = r->marked_bytes() / HeapWordSize;
4195 
4196         _failure_used_words += used_words;
4197         _failure_waste_words += HeapRegion::GrainWords - used_words;
4198 
4199         g1h->old_set_add(r);
4200         _after_used_bytes += r->used();
4201       }
4202       return false;
4203     }
4204 
4205     void complete_work() {
4206       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4207 
4208       _evacuation_info->set_regions_freed(_local_free_list.length());
4209       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4210 
4211       g1h->prepend_to_freelist(&_local_free_list);
4212       g1h->decrement_summary_bytes(_before_used_bytes);
4213 
4214       G1Policy* policy = g1h->g1_policy();
4215       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4216 
4217       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4218     }
4219   };
4220 
4221   G1CollectionSet* _collection_set;
4222   G1SerialFreeCollectionSetClosure _cl;
4223   const size_t* _surviving_young_words;
4224 
4225   size_t _rs_lengths;
4226 
4227   volatile jint _serial_work_claim;
4228 
4229   struct WorkItem {
4230     uint region_idx;
4231     bool is_young;
4232     bool evacuation_failed;
4233 
4234     WorkItem(HeapRegion* r) {
4235       region_idx = r->hrm_index();
4236       is_young = r->is_young();
4237       evacuation_failed = r->evacuation_failed();
4238     }
4239   };
4240 
4241   volatile size_t _parallel_work_claim;
4242   size_t _num_work_items;
4243   WorkItem* _work_items;
4244 
4245   void do_serial_work() {
4246     // Need to grab the lock to be allowed to modify the old region list.
4247     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4248     _collection_set->iterate(&_cl);
4249   }
4250 
4251   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4252     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4253 
4254     HeapRegion* r = g1h->region_at(region_idx);
4255     assert(!g1h->is_on_master_free_list(r), "sanity");
4256 
4257     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4258 
4259     if (!is_young) {
4260       g1h->_hot_card_cache->reset_card_counts(r);
4261     }
4262 
4263     if (!evacuation_failed) {
4264       r->rem_set()->clear_locked();
4265     }
4266   }
4267 
4268   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4269   private:
4270     size_t _cur_idx;
4271     WorkItem* _work_items;
4272   public:
4273     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4274 
4275     virtual bool do_heap_region(HeapRegion* r) {
4276       _work_items[_cur_idx++] = WorkItem(r);
4277       return false;
4278     }
4279   };
4280 
4281   void prepare_work() {
4282     G1PrepareFreeCollectionSetClosure cl(_work_items);
4283     _collection_set->iterate(&cl);
4284   }
4285 
4286   void complete_work() {
4287     _cl.complete_work();
4288 
4289     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4290     policy->record_max_rs_lengths(_rs_lengths);
4291     policy->cset_regions_freed();
4292   }
4293 public:
4294   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4295     AbstractGangTask("G1 Free Collection Set"),
4296     _cl(evacuation_info, surviving_young_words),
4297     _collection_set(collection_set),
4298     _surviving_young_words(surviving_young_words),
4299     _serial_work_claim(0),
4300     _rs_lengths(0),
4301     _parallel_work_claim(0),
4302     _num_work_items(collection_set->region_length()),
4303     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4304     prepare_work();
4305   }
4306 
4307   ~G1FreeCollectionSetTask() {
4308     complete_work();
4309     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4310   }
4311 
4312   // Chunk size for work distribution. The chosen value has been determined experimentally
4313   // to be a good tradeoff between overhead and achievable parallelism.
4314   static uint chunk_size() { return 32; }
4315 
4316   virtual void work(uint worker_id) {
4317     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4318 
4319     // Claim serial work.
4320     if (_serial_work_claim == 0) {
4321       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4322       if (value == 0) {
4323         double serial_time = os::elapsedTime();
4324         do_serial_work();
4325         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4326       }
4327     }
4328 
4329     // Start parallel work.
4330     double young_time = 0.0;
4331     bool has_young_time = false;
4332     double non_young_time = 0.0;
4333     bool has_non_young_time = false;
4334 
4335     while (true) {
4336       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4337       size_t cur = end - chunk_size();
4338 
4339       if (cur >= _num_work_items) {
4340         break;
4341       }
4342 
4343       double start_time = os::elapsedTime();
4344 
4345       end = MIN2(end, _num_work_items);
4346 
4347       for (; cur < end; cur++) {
4348         bool is_young = _work_items[cur].is_young;
4349 
4350         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4351 
4352         double end_time = os::elapsedTime();
4353         double time_taken = end_time - start_time;
4354         if (is_young) {
4355           young_time += time_taken;
4356           has_young_time = true;
4357         } else {
4358           non_young_time += time_taken;
4359           has_non_young_time = true;
4360         }
4361         start_time = end_time;
4362       }
4363     }
4364 
4365     if (has_young_time) {
4366       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4367     }
4368     if (has_non_young_time) {
4369       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4370     }
4371   }
4372 };
4373 
4374 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4375   _eden.clear();
4376 
4377   double free_cset_start_time = os::elapsedTime();
4378 
4379   {
4380     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4381     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4382 
4383     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4384 
4385     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4386                         cl.name(),
4387                         num_workers,
4388                         _collection_set.region_length());
4389     workers()->run_task(&cl, num_workers);
4390   }
4391   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4392 
4393   collection_set->clear();
4394 }
4395 
4396 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4397  private:
4398   FreeRegionList* _free_region_list;
4399   HeapRegionSet* _proxy_set;
4400   uint _humongous_objects_reclaimed;
4401   uint _humongous_regions_reclaimed;
4402   size_t _freed_bytes;
4403  public:
4404 
4405   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4406     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4407   }
4408 
4409   virtual bool do_heap_region(HeapRegion* r) {
4410     if (!r->is_starts_humongous()) {
4411       return false;
4412     }
4413 
4414     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4415 
4416     oop obj = (oop)r->bottom();
4417     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4418 
4419     // The following checks whether the humongous object is live are sufficient.
4420     // The main additional check (in addition to having a reference from the roots
4421     // or the young gen) is whether the humongous object has a remembered set entry.
4422     //
4423     // A humongous object cannot be live if there is no remembered set for it
4424     // because:
4425     // - there can be no references from within humongous starts regions referencing
4426     // the object because we never allocate other objects into them.
4427     // (I.e. there are no intra-region references that may be missed by the
4428     // remembered set)
4429     // - as soon there is a remembered set entry to the humongous starts region
4430     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4431     // until the end of a concurrent mark.
4432     //
4433     // It is not required to check whether the object has been found dead by marking
4434     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4435     // all objects allocated during that time are considered live.
4436     // SATB marking is even more conservative than the remembered set.
4437     // So if at this point in the collection there is no remembered set entry,
4438     // nobody has a reference to it.
4439     // At the start of collection we flush all refinement logs, and remembered sets
4440     // are completely up-to-date wrt to references to the humongous object.
4441     //
4442     // Other implementation considerations:
4443     // - never consider object arrays at this time because they would pose
4444     // considerable effort for cleaning up the the remembered sets. This is
4445     // required because stale remembered sets might reference locations that
4446     // are currently allocated into.
4447     uint region_idx = r->hrm_index();
4448     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4449         !r->rem_set()->is_empty()) {
4450       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4451                                region_idx,
4452                                (size_t)obj->size() * HeapWordSize,
4453                                p2i(r->bottom()),
4454                                r->rem_set()->occupied(),
4455                                r->rem_set()->strong_code_roots_list_length(),
4456                                next_bitmap->is_marked(r->bottom()),
4457                                g1h->is_humongous_reclaim_candidate(region_idx),
4458                                obj->is_typeArray()
4459                               );
4460       return false;
4461     }
4462 
4463     guarantee(obj->is_typeArray(),
4464               "Only eagerly reclaiming type arrays is supported, but the object "
4465               PTR_FORMAT " is not.", p2i(r->bottom()));
4466 
4467     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4468                              region_idx,
4469                              (size_t)obj->size() * HeapWordSize,
4470                              p2i(r->bottom()),
4471                              r->rem_set()->occupied(),
4472                              r->rem_set()->strong_code_roots_list_length(),
4473                              next_bitmap->is_marked(r->bottom()),
4474                              g1h->is_humongous_reclaim_candidate(region_idx),
4475                              obj->is_typeArray()
4476                             );
4477 
4478     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4479     cm->humongous_object_eagerly_reclaimed(r);
4480     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4481            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4482            region_idx,
4483            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4484            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4485     _humongous_objects_reclaimed++;
4486     do {
4487       HeapRegion* next = g1h->next_region_in_humongous(r);
4488       _freed_bytes += r->used();
4489       r->set_containing_set(NULL);
4490       _humongous_regions_reclaimed++;
4491       g1h->free_humongous_region(r, _free_region_list);
4492       r = next;
4493     } while (r != NULL);
4494 
4495     return false;
4496   }
4497 
4498   uint humongous_objects_reclaimed() {
4499     return _humongous_objects_reclaimed;
4500   }
4501 
4502   uint humongous_regions_reclaimed() {
4503     return _humongous_regions_reclaimed;
4504   }
4505 
4506   size_t bytes_freed() const {
4507     return _freed_bytes;
4508   }
4509 };
4510 
4511 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4512   assert_at_safepoint_on_vm_thread();
4513 
4514   if (!G1EagerReclaimHumongousObjects ||
4515       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4516     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4517     return;
4518   }
4519 
4520   double start_time = os::elapsedTime();
4521 
4522   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4523 
4524   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4525   heap_region_iterate(&cl);
4526 
4527   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4528 
4529   G1HRPrinter* hrp = hr_printer();
4530   if (hrp->is_active()) {
4531     FreeRegionListIterator iter(&local_cleanup_list);
4532     while (iter.more_available()) {
4533       HeapRegion* hr = iter.get_next();
4534       hrp->cleanup(hr);
4535     }
4536   }
4537 
4538   prepend_to_freelist(&local_cleanup_list);
4539   decrement_summary_bytes(cl.bytes_freed());
4540 
4541   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4542                                                                     cl.humongous_objects_reclaimed());
4543 }
4544 
4545 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4546 public:
4547   virtual bool do_heap_region(HeapRegion* r) {
4548     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4549     G1CollectedHeap::heap()->clear_in_cset(r);
4550     r->set_young_index_in_cset(-1);
4551     return false;
4552   }
4553 };
4554 
4555 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4556   G1AbandonCollectionSetClosure cl;
4557   collection_set->iterate(&cl);
4558 
4559   collection_set->clear();
4560   collection_set->stop_incremental_building();
4561 }
4562 
4563 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4564   return _allocator->is_retained_old_region(hr);
4565 }
4566 
4567 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4568   _eden.add(hr);
4569   _g1_policy->set_region_eden(hr);
4570 }
4571 
4572 #ifdef ASSERT
4573 
4574 class NoYoungRegionsClosure: public HeapRegionClosure {
4575 private:
4576   bool _success;
4577 public:
4578   NoYoungRegionsClosure() : _success(true) { }
4579   bool do_heap_region(HeapRegion* r) {
4580     if (r->is_young()) {
4581       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4582                             p2i(r->bottom()), p2i(r->end()));
4583       _success = false;
4584     }
4585     return false;
4586   }
4587   bool success() { return _success; }
4588 };
4589 
4590 bool G1CollectedHeap::check_young_list_empty() {
4591   bool ret = (young_regions_count() == 0);
4592 
4593   NoYoungRegionsClosure closure;
4594   heap_region_iterate(&closure);
4595   ret = ret && closure.success();
4596 
4597   return ret;
4598 }
4599 
4600 #endif // ASSERT
4601 
4602 class TearDownRegionSetsClosure : public HeapRegionClosure {
4603 private:
4604   HeapRegionSet *_old_set;
4605 
4606 public:
4607   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4608 
4609   bool do_heap_region(HeapRegion* r) {
4610     if (r->is_old()) {
4611       _old_set->remove(r);
4612     } else if(r->is_young()) {
4613       r->uninstall_surv_rate_group();
4614     } else {
4615       // We ignore free regions, we'll empty the free list afterwards.
4616       // We ignore humongous regions, we're not tearing down the
4617       // humongous regions set.
4618       assert(r->is_free() || r->is_humongous(),
4619              "it cannot be another type");
4620     }
4621     return false;
4622   }
4623 
4624   ~TearDownRegionSetsClosure() {
4625     assert(_old_set->is_empty(), "post-condition");
4626   }
4627 };
4628 
4629 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4630   assert_at_safepoint_on_vm_thread();
4631 
4632   if (!free_list_only) {
4633     TearDownRegionSetsClosure cl(&_old_set);
4634     heap_region_iterate(&cl);
4635 
4636     // Note that emptying the _young_list is postponed and instead done as
4637     // the first step when rebuilding the regions sets again. The reason for
4638     // this is that during a full GC string deduplication needs to know if
4639     // a collected region was young or old when the full GC was initiated.
4640   }
4641   _hrm.remove_all_free_regions();
4642 }
4643 
4644 void G1CollectedHeap::increase_used(size_t bytes) {
4645   _summary_bytes_used += bytes;
4646 }
4647 
4648 void G1CollectedHeap::decrease_used(size_t bytes) {
4649   assert(_summary_bytes_used >= bytes,
4650          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4651          _summary_bytes_used, bytes);
4652   _summary_bytes_used -= bytes;
4653 }
4654 
4655 void G1CollectedHeap::set_used(size_t bytes) {
4656   _summary_bytes_used = bytes;
4657 }
4658 
4659 class RebuildRegionSetsClosure : public HeapRegionClosure {
4660 private:
4661   bool            _free_list_only;
4662   HeapRegionSet*   _old_set;
4663   HeapRegionManager*   _hrm;
4664   size_t          _total_used;
4665 
4666 public:
4667   RebuildRegionSetsClosure(bool free_list_only,
4668                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
4669     _free_list_only(free_list_only),
4670     _old_set(old_set), _hrm(hrm), _total_used(0) {
4671     assert(_hrm->num_free_regions() == 0, "pre-condition");
4672     if (!free_list_only) {
4673       assert(_old_set->is_empty(), "pre-condition");
4674     }
4675   }
4676 
4677   bool do_heap_region(HeapRegion* r) {
4678     // After full GC, no region should have a remembered set.
4679     r->rem_set()->clear(true);
4680     if (r->is_empty()) {
4681       // Add free regions to the free list
4682       r->set_free();
4683       _hrm->insert_into_free_list(r);
4684     } else if (!_free_list_only) {
4685 
4686       if (r->is_humongous()) {
4687         // We ignore humongous regions. We left the humongous set unchanged.
4688       } else {
4689         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4690         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
4691         r->move_to_old();
4692         _old_set->add(r);
4693       }
4694       _total_used += r->used();
4695     }
4696 
4697     return false;
4698   }
4699 
4700   size_t total_used() {
4701     return _total_used;
4702   }
4703 };
4704 
4705 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4706   assert_at_safepoint_on_vm_thread();
4707 
4708   if (!free_list_only) {
4709     _eden.clear();
4710     _survivor.clear();
4711   }
4712 
4713   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4714   heap_region_iterate(&cl);
4715 
4716   if (!free_list_only) {
4717     set_used(cl.total_used());
4718     if (_archive_allocator != NULL) {
4719       _archive_allocator->clear_used();
4720     }
4721   }
4722   assert(used_unlocked() == recalculate_used(),
4723          "inconsistent used_unlocked(), "
4724          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4725          used_unlocked(), recalculate_used());
4726 }
4727 
4728 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4729   HeapRegion* hr = heap_region_containing(p);
4730   return hr->is_in(p);
4731 }
4732 
4733 // Methods for the mutator alloc region
4734 
4735 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4736                                                       bool force) {
4737   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4738   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4739   if (force || should_allocate) {
4740     HeapRegion* new_alloc_region = new_region(word_size,
4741                                               false /* is_old */,
4742                                               false /* do_expand */);
4743     if (new_alloc_region != NULL) {
4744       set_region_short_lived_locked(new_alloc_region);
4745       _hr_printer.alloc(new_alloc_region, !should_allocate);
4746       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4747       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4748       return new_alloc_region;
4749     }
4750   }
4751   return NULL;
4752 }
4753 
4754 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4755                                                   size_t allocated_bytes) {
4756   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4757   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4758 
4759   collection_set()->add_eden_region(alloc_region);
4760   increase_used(allocated_bytes);
4761   _hr_printer.retire(alloc_region);
4762   // We update the eden sizes here, when the region is retired,
4763   // instead of when it's allocated, since this is the point that its
4764   // used space has been recored in _summary_bytes_used.
4765   g1mm()->update_eden_size();
4766 }
4767 
4768 // Methods for the GC alloc regions
4769 
4770 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4771   if (dest.is_old()) {
4772     return true;
4773   } else {
4774     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4775   }
4776 }
4777 
4778 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4779   assert(FreeList_lock->owned_by_self(), "pre-condition");
4780 
4781   if (!has_more_regions(dest)) {
4782     return NULL;
4783   }
4784 
4785   const bool is_survivor = dest.is_young();
4786 
4787   HeapRegion* new_alloc_region = new_region(word_size,
4788                                             !is_survivor,
4789                                             true /* do_expand */);
4790   if (new_alloc_region != NULL) {
4791     if (is_survivor) {
4792       new_alloc_region->set_survivor();
4793       _survivor.add(new_alloc_region);
4794       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4795     } else {
4796       new_alloc_region->set_old();
4797       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4798     }
4799     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4800     _hr_printer.alloc(new_alloc_region);
4801     bool during_im = collector_state()->in_initial_mark_gc();
4802     new_alloc_region->note_start_of_copying(during_im);
4803     return new_alloc_region;
4804   }
4805   return NULL;
4806 }
4807 
4808 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4809                                              size_t allocated_bytes,
4810                                              InCSetState dest) {
4811   bool during_im = collector_state()->in_initial_mark_gc();
4812   alloc_region->note_end_of_copying(during_im);
4813   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4814   if (dest.is_old()) {
4815     _old_set.add(alloc_region);
4816   }
4817   _hr_printer.retire(alloc_region);
4818 }
4819 
4820 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4821   bool expanded = false;
4822   uint index = _hrm.find_highest_free(&expanded);
4823 
4824   if (index != G1_NO_HRM_INDEX) {
4825     if (expanded) {
4826       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4827                                 HeapRegion::GrainWords * HeapWordSize);
4828     }
4829     _hrm.allocate_free_regions_starting_at(index, 1);
4830     return region_at(index);
4831   }
4832   return NULL;
4833 }
4834 
4835 // Optimized nmethod scanning
4836 
4837 class RegisterNMethodOopClosure: public OopClosure {
4838   G1CollectedHeap* _g1h;
4839   nmethod* _nm;
4840 
4841   template <class T> void do_oop_work(T* p) {
4842     T heap_oop = RawAccess<>::oop_load(p);
4843     if (!CompressedOops::is_null(heap_oop)) {
4844       oop obj = CompressedOops::decode_not_null(heap_oop);
4845       HeapRegion* hr = _g1h->heap_region_containing(obj);
4846       assert(!hr->is_continues_humongous(),
4847              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4848              " starting at " HR_FORMAT,
4849              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4850 
4851       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4852       hr->add_strong_code_root_locked(_nm);
4853     }
4854   }
4855 
4856 public:
4857   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4858     _g1h(g1h), _nm(nm) {}
4859 
4860   void do_oop(oop* p)       { do_oop_work(p); }
4861   void do_oop(narrowOop* p) { do_oop_work(p); }
4862 };
4863 
4864 class UnregisterNMethodOopClosure: public OopClosure {
4865   G1CollectedHeap* _g1h;
4866   nmethod* _nm;
4867 
4868   template <class T> void do_oop_work(T* p) {
4869     T heap_oop = RawAccess<>::oop_load(p);
4870     if (!CompressedOops::is_null(heap_oop)) {
4871       oop obj = CompressedOops::decode_not_null(heap_oop);
4872       HeapRegion* hr = _g1h->heap_region_containing(obj);
4873       assert(!hr->is_continues_humongous(),
4874              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4875              " starting at " HR_FORMAT,
4876              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4877 
4878       hr->remove_strong_code_root(_nm);
4879     }
4880   }
4881 
4882 public:
4883   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4884     _g1h(g1h), _nm(nm) {}
4885 
4886   void do_oop(oop* p)       { do_oop_work(p); }
4887   void do_oop(narrowOop* p) { do_oop_work(p); }
4888 };
4889 
4890 // Returns true if the reference points to an object that
4891 // can move in an incremental collection.
4892 bool G1CollectedHeap::is_scavengable(oop obj) {
4893   HeapRegion* hr = heap_region_containing(obj);
4894   return !hr->is_pinned();
4895 }
4896 
4897 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4898   guarantee(nm != NULL, "sanity");
4899   RegisterNMethodOopClosure reg_cl(this, nm);
4900   nm->oops_do(&reg_cl);
4901 }
4902 
4903 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4904   guarantee(nm != NULL, "sanity");
4905   UnregisterNMethodOopClosure reg_cl(this, nm);
4906   nm->oops_do(&reg_cl, true);
4907 }
4908 
4909 void G1CollectedHeap::purge_code_root_memory() {
4910   double purge_start = os::elapsedTime();
4911   G1CodeRootSet::purge();
4912   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4913   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4914 }
4915 
4916 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4917   G1CollectedHeap* _g1h;
4918 
4919 public:
4920   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4921     _g1h(g1h) {}
4922 
4923   void do_code_blob(CodeBlob* cb) {
4924     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4925     if (nm == NULL) {
4926       return;
4927     }
4928 
4929     if (ScavengeRootsInCode) {
4930       _g1h->register_nmethod(nm);
4931     }
4932   }
4933 };
4934 
4935 void G1CollectedHeap::rebuild_strong_code_roots() {
4936   RebuildStrongCodeRootClosure blob_cl(this);
4937   CodeCache::blobs_do(&blob_cl);
4938 }
4939 
4940 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4941   GrowableArray<GCMemoryManager*> memory_managers(2);
4942   memory_managers.append(&_memory_manager);
4943   memory_managers.append(&_full_gc_memory_manager);
4944   return memory_managers;
4945 }
4946 
4947 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4948   GrowableArray<MemoryPool*> memory_pools(3);
4949   memory_pools.append(_eden_pool);
4950   memory_pools.append(_survivor_pool);
4951   memory_pools.append(_old_pool);
4952   return memory_pools;
4953 }