1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include COMPILER_HEADER(utilities/globalDefinitions)
  33 
  34 // Defaults for macros that might be defined per compiler.
  35 #ifndef NOINLINE
  36 #define NOINLINE
  37 #endif
  38 #ifndef ALWAYSINLINE
  39 #define ALWAYSINLINE inline
  40 #endif
  41 
  42 #ifndef ATTRIBUTE_ALIGNED
  43 #define ATTRIBUTE_ALIGNED(x)
  44 #endif
  45 
  46 // This file holds all globally used constants & types, class (forward)
  47 // declarations and a few frequently used utility functions.
  48 
  49 //----------------------------------------------------------------------------------------------------
  50 // Printf-style formatters for fixed- and variable-width types as pointers and
  51 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  52 // doesn't provide appropriate definitions, they should be provided in
  53 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  54 
  55 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  56 
  57 // Format 32-bit quantities.
  58 #define INT32_FORMAT           "%" PRId32
  59 #define UINT32_FORMAT          "%" PRIu32
  60 #define INT32_FORMAT_W(width)  "%" #width PRId32
  61 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  62 
  63 #define PTR32_FORMAT           "0x%08" PRIx32
  64 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  65 
  66 // Format 64-bit quantities.
  67 #define INT64_FORMAT           "%" PRId64
  68 #define UINT64_FORMAT          "%" PRIu64
  69 #define UINT64_FORMAT_X        "%" PRIx64
  70 #define INT64_FORMAT_W(width)  "%" #width PRId64
  71 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  72 
  73 #define PTR64_FORMAT           "0x%016" PRIx64
  74 
  75 // Format jlong, if necessary
  76 #ifndef JLONG_FORMAT
  77 #define JLONG_FORMAT           INT64_FORMAT
  78 #endif
  79 #ifndef JULONG_FORMAT
  80 #define JULONG_FORMAT          UINT64_FORMAT
  81 #endif
  82 #ifndef JULONG_FORMAT_X
  83 #define JULONG_FORMAT_X        UINT64_FORMAT_X
  84 #endif
  85 
  86 // Format pointers which change size between 32- and 64-bit.
  87 #ifdef  _LP64
  88 #define INTPTR_FORMAT "0x%016" PRIxPTR
  89 #define PTR_FORMAT    "0x%016" PRIxPTR
  90 #else   // !_LP64
  91 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  92 #define PTR_FORMAT    "0x%08"  PRIxPTR
  93 #endif  // _LP64
  94 
  95 // Format pointers without leading zeros
  96 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
  97 
  98 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
  99 
 100 #define SSIZE_FORMAT             "%"   PRIdPTR
 101 #define SIZE_FORMAT              "%"   PRIuPTR
 102 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
 103 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 104 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 105 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 106 
 107 #define INTX_FORMAT           "%" PRIdPTR
 108 #define UINTX_FORMAT          "%" PRIuPTR
 109 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 110 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 111 
 112 //----------------------------------------------------------------------------------------------------
 113 // Constants
 114 
 115 const int LogBytesPerShort   = 1;
 116 const int LogBytesPerInt     = 2;
 117 #ifdef _LP64
 118 const int LogBytesPerWord    = 3;
 119 #else
 120 const int LogBytesPerWord    = 2;
 121 #endif
 122 const int LogBytesPerLong    = 3;
 123 
 124 const int BytesPerShort      = 1 << LogBytesPerShort;
 125 const int BytesPerInt        = 1 << LogBytesPerInt;
 126 const int BytesPerWord       = 1 << LogBytesPerWord;
 127 const int BytesPerLong       = 1 << LogBytesPerLong;
 128 
 129 const int LogBitsPerByte     = 3;
 130 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 131 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 132 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 133 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 134 
 135 const int BitsPerByte        = 1 << LogBitsPerByte;
 136 const int BitsPerShort       = 1 << LogBitsPerShort;
 137 const int BitsPerInt         = 1 << LogBitsPerInt;
 138 const int BitsPerWord        = 1 << LogBitsPerWord;
 139 const int BitsPerLong        = 1 << LogBitsPerLong;
 140 
 141 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 142 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 143 
 144 const int WordsPerLong       = 2;       // Number of stack entries for longs
 145 
 146 const int oopSize            = sizeof(char*); // Full-width oop
 147 extern int heapOopSize;                       // Oop within a java object
 148 const int wordSize           = sizeof(char*);
 149 const int longSize           = sizeof(jlong);
 150 const int jintSize           = sizeof(jint);
 151 const int size_tSize         = sizeof(size_t);
 152 
 153 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 154 
 155 extern int LogBytesPerHeapOop;                // Oop within a java object
 156 extern int LogBitsPerHeapOop;
 157 extern int BytesPerHeapOop;
 158 extern int BitsPerHeapOop;
 159 
 160 const int BitsPerJavaInteger = 32;
 161 const int BitsPerJavaLong    = 64;
 162 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 163 
 164 // Size of a char[] needed to represent a jint as a string in decimal.
 165 const int jintAsStringSize = 12;
 166 
 167 // In fact this should be
 168 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 169 // see os::set_memory_serialize_page()
 170 #ifdef _LP64
 171 const int SerializePageShiftCount = 4;
 172 #else
 173 const int SerializePageShiftCount = 3;
 174 #endif
 175 
 176 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 177 // pointer into the heap.  We require that object sizes be measured in
 178 // units of heap words, so that that
 179 //   HeapWord* hw;
 180 //   hw += oop(hw)->foo();
 181 // works, where foo is a method (like size or scavenge) that returns the
 182 // object size.
 183 class HeapWord {
 184   friend class VMStructs;
 185  private:
 186   char* i;
 187 #ifndef PRODUCT
 188  public:
 189   char* value() { return i; }
 190 #endif
 191 };
 192 
 193 // Analogous opaque struct for metadata allocated from
 194 // metaspaces.
 195 class MetaWord {
 196  private:
 197   char* i;
 198 };
 199 
 200 // HeapWordSize must be 2^LogHeapWordSize.
 201 const int HeapWordSize        = sizeof(HeapWord);
 202 #ifdef _LP64
 203 const int LogHeapWordSize     = 3;
 204 #else
 205 const int LogHeapWordSize     = 2;
 206 #endif
 207 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 208 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 209 
 210 // The minimum number of native machine words necessary to contain "byte_size"
 211 // bytes.
 212 inline size_t heap_word_size(size_t byte_size) {
 213   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 214 }
 215 
 216 //-------------------------------------------
 217 // Constant for jlong (standardized by C++11)
 218 
 219 // Build a 64bit integer constant
 220 #define CONST64(x)  (x ## LL)
 221 #define UCONST64(x) (x ## ULL)
 222 
 223 const jlong min_jlong = CONST64(0x8000000000000000);
 224 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 225 
 226 const size_t K                  = 1024;
 227 const size_t M                  = K*K;
 228 const size_t G                  = M*K;
 229 const size_t HWperKB            = K / sizeof(HeapWord);
 230 
 231 // Constants for converting from a base unit to milli-base units.  For
 232 // example from seconds to milliseconds and microseconds
 233 
 234 const int MILLIUNITS    = 1000;         // milli units per base unit
 235 const int MICROUNITS    = 1000000;      // micro units per base unit
 236 const int NANOUNITS     = 1000000000;   // nano units per base unit
 237 
 238 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 239 const jint  NANOSECS_PER_MILLISEC = 1000000;
 240 
 241 inline const char* proper_unit_for_byte_size(size_t s) {
 242 #ifdef _LP64
 243   if (s >= 10*G) {
 244     return "G";
 245   }
 246 #endif
 247   if (s >= 10*M) {
 248     return "M";
 249   } else if (s >= 10*K) {
 250     return "K";
 251   } else {
 252     return "B";
 253   }
 254 }
 255 
 256 template <class T>
 257 inline T byte_size_in_proper_unit(T s) {
 258 #ifdef _LP64
 259   if (s >= 10*G) {
 260     return (T)(s/G);
 261   }
 262 #endif
 263   if (s >= 10*M) {
 264     return (T)(s/M);
 265   } else if (s >= 10*K) {
 266     return (T)(s/K);
 267   } else {
 268     return s;
 269   }
 270 }
 271 
 272 inline const char* exact_unit_for_byte_size(size_t s) {
 273 #ifdef _LP64
 274   if (s >= G && (s % G) == 0) {
 275     return "G";
 276   }
 277 #endif
 278   if (s >= M && (s % M) == 0) {
 279     return "M";
 280   }
 281   if (s >= K && (s % K) == 0) {
 282     return "K";
 283   }
 284   return "B";
 285 }
 286 
 287 inline size_t byte_size_in_exact_unit(size_t s) {
 288 #ifdef _LP64
 289   if (s >= G && (s % G) == 0) {
 290     return s / G;
 291   }
 292 #endif
 293   if (s >= M && (s % M) == 0) {
 294     return s / M;
 295   }
 296   if (s >= K && (s % K) == 0) {
 297     return s / K;
 298   }
 299   return s;
 300 }
 301 
 302 //----------------------------------------------------------------------------------------------------
 303 // VM type definitions
 304 
 305 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 306 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 307 
 308 typedef intptr_t  intx;
 309 typedef uintptr_t uintx;
 310 
 311 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 312 const intx  max_intx  = (uintx)min_intx - 1;
 313 const uintx max_uintx = (uintx)-1;
 314 
 315 // Table of values:
 316 //      sizeof intx         4               8
 317 // min_intx             0x80000000      0x8000000000000000
 318 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 319 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 320 
 321 typedef unsigned int uint;   NEEDS_CLEANUP
 322 
 323 
 324 //----------------------------------------------------------------------------------------------------
 325 // Java type definitions
 326 
 327 // All kinds of 'plain' byte addresses
 328 typedef   signed char s_char;
 329 typedef unsigned char u_char;
 330 typedef u_char*       address;
 331 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 332                                     // except for some implementations of a C++
 333                                     // linkage pointer to function. Should never
 334                                     // need one of those to be placed in this
 335                                     // type anyway.
 336 
 337 //  Utility functions to "portably" (?) bit twiddle pointers
 338 //  Where portable means keep ANSI C++ compilers quiet
 339 
 340 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 341 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 342 
 343 //  Utility functions to "portably" make cast to/from function pointers.
 344 
 345 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 346 inline address_word  castable_address(address x)              { return address_word(x) ; }
 347 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 348 
 349 // Pointer subtraction.
 350 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 351 // the range we might need to find differences from one end of the heap
 352 // to the other.
 353 // A typical use might be:
 354 //     if (pointer_delta(end(), top()) >= size) {
 355 //       // enough room for an object of size
 356 //       ...
 357 // and then additions like
 358 //       ... top() + size ...
 359 // are safe because we know that top() is at least size below end().
 360 inline size_t pointer_delta(const volatile void* left,
 361                             const volatile void* right,
 362                             size_t element_size) {
 363   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 364 }
 365 
 366 // A version specialized for HeapWord*'s.
 367 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 368   return pointer_delta(left, right, sizeof(HeapWord));
 369 }
 370 // A version specialized for MetaWord*'s.
 371 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 372   return pointer_delta(left, right, sizeof(MetaWord));
 373 }
 374 
 375 //
 376 // ANSI C++ does not allow casting from one pointer type to a function pointer
 377 // directly without at best a warning. This macro accomplishes it silently
 378 // In every case that is present at this point the value be cast is a pointer
 379 // to a C linkage function. In some case the type used for the cast reflects
 380 // that linkage and a picky compiler would not complain. In other cases because
 381 // there is no convenient place to place a typedef with extern C linkage (i.e
 382 // a platform dependent header file) it doesn't. At this point no compiler seems
 383 // picky enough to catch these instances (which are few). It is possible that
 384 // using templates could fix these for all cases. This use of templates is likely
 385 // so far from the middle of the road that it is likely to be problematic in
 386 // many C++ compilers.
 387 //
 388 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 389 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 390 
 391 // Unsigned byte types for os and stream.hpp
 392 
 393 // Unsigned one, two, four and eigth byte quantities used for describing
 394 // the .class file format. See JVM book chapter 4.
 395 
 396 typedef jubyte  u1;
 397 typedef jushort u2;
 398 typedef juint   u4;
 399 typedef julong  u8;
 400 
 401 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 402 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 403 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 404 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 405 
 406 typedef jbyte  s1;
 407 typedef jshort s2;
 408 typedef jint   s4;
 409 typedef jlong  s8;
 410 
 411 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 412 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 413 const jshort min_jshort = -(1 << 15);    // smallest jshort
 414 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 415 
 416 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 417 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 418 
 419 //----------------------------------------------------------------------------------------------------
 420 // JVM spec restrictions
 421 
 422 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 423 
 424 //----------------------------------------------------------------------------------------------------
 425 // Default and minimum StringTable and SymbolTable size values
 426 // Must be a power of 2
 427 
 428 const int defaultStringTableSize = NOT_LP64(1024) LP64_ONLY(65536);
 429 const int minimumStringTableSize = 128;
 430 
 431 const int defaultSymbolTableSize = 32768; // 2^15
 432 const int minimumSymbolTableSize = 1024;
 433 
 434 
 435 //----------------------------------------------------------------------------------------------------
 436 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 437 //
 438 // Determines whether on-the-fly class replacement and frame popping are enabled.
 439 
 440 #define HOTSWAP
 441 
 442 //----------------------------------------------------------------------------------------------------
 443 // Object alignment, in units of HeapWords.
 444 //
 445 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 446 // reference fields can be naturally aligned.
 447 
 448 extern int MinObjAlignment;
 449 extern int MinObjAlignmentInBytes;
 450 extern int MinObjAlignmentInBytesMask;
 451 
 452 extern int LogMinObjAlignment;
 453 extern int LogMinObjAlignmentInBytes;
 454 
 455 const int LogKlassAlignmentInBytes = 3;
 456 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 457 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 458 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 459 
 460 // Maximal size of heap where unscaled compression can be used. Also upper bound
 461 // for heap placement: 4GB.
 462 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 463 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 464 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 465 extern uint64_t OopEncodingHeapMax;
 466 
 467 // Maximal size of compressed class space. Above this limit compression is not possible.
 468 // Also upper bound for placement of zero based class space. (Class space is further limited
 469 // to be < 3G, see arguments.cpp.)
 470 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 471 
 472 // Machine dependent stuff
 473 
 474 // The maximum size of the code cache.  Can be overridden by targets.
 475 #define CODE_CACHE_SIZE_LIMIT (2*G)
 476 // Allow targets to reduce the default size of the code cache.
 477 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 478 
 479 #include CPU_HEADER(globalDefinitions)
 480 
 481 // To assure the IRIW property on processors that are not multiple copy
 482 // atomic, sync instructions must be issued between volatile reads to
 483 // assure their ordering, instead of after volatile stores.
 484 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 485 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 486 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 487 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 488 #else
 489 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 490 #endif
 491 
 492 // The expected size in bytes of a cache line, used to pad data structures.
 493 #ifndef DEFAULT_CACHE_LINE_SIZE
 494   #define DEFAULT_CACHE_LINE_SIZE 64
 495 #endif
 496 
 497 
 498 //----------------------------------------------------------------------------------------------------
 499 // Utility macros for compilers
 500 // used to silence compiler warnings
 501 
 502 #define Unused_Variable(var) var
 503 
 504 
 505 //----------------------------------------------------------------------------------------------------
 506 // Miscellaneous
 507 
 508 // 6302670 Eliminate Hotspot __fabsf dependency
 509 // All fabs() callers should call this function instead, which will implicitly
 510 // convert the operand to double, avoiding a dependency on __fabsf which
 511 // doesn't exist in early versions of Solaris 8.
 512 inline double fabsd(double value) {
 513   return fabs(value);
 514 }
 515 
 516 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 517 // is zero, return 0.0.
 518 template<typename T>
 519 inline double percent_of(T numerator, T denominator) {
 520   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 521 }
 522 
 523 //----------------------------------------------------------------------------------------------------
 524 // Special casts
 525 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 526 typedef union {
 527   jfloat f;
 528   jint i;
 529 } FloatIntConv;
 530 
 531 typedef union {
 532   jdouble d;
 533   jlong l;
 534   julong ul;
 535 } DoubleLongConv;
 536 
 537 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 538 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 539 
 540 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 541 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 542 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 543 
 544 inline jint low (jlong value)                    { return jint(value); }
 545 inline jint high(jlong value)                    { return jint(value >> 32); }
 546 
 547 // the fancy casts are a hopefully portable way
 548 // to do unsigned 32 to 64 bit type conversion
 549 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 550                                                    *value |= (jlong)(julong)(juint)low; }
 551 
 552 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 553                                                    *value |= (jlong)high       << 32; }
 554 
 555 inline jlong jlong_from(jint h, jint l) {
 556   jlong result = 0; // initialization to avoid warning
 557   set_high(&result, h);
 558   set_low(&result,  l);
 559   return result;
 560 }
 561 
 562 union jlong_accessor {
 563   jint  words[2];
 564   jlong long_value;
 565 };
 566 
 567 void basic_types_init(); // cannot define here; uses assert
 568 
 569 
 570 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 571 enum BasicType {
 572   T_BOOLEAN     =  4,
 573   T_CHAR        =  5,
 574   T_FLOAT       =  6,
 575   T_DOUBLE      =  7,
 576   T_BYTE        =  8,
 577   T_SHORT       =  9,
 578   T_INT         = 10,
 579   T_LONG        = 11,
 580   T_OBJECT      = 12,
 581   T_ARRAY       = 13,
 582   T_VOID        = 14,
 583   T_ADDRESS     = 15,
 584   T_NARROWOOP   = 16,
 585   T_METADATA    = 17,
 586   T_NARROWKLASS = 18,
 587   T_CONFLICT    = 19, // for stack value type with conflicting contents
 588   T_ILLEGAL     = 99
 589 };
 590 
 591 inline bool is_java_primitive(BasicType t) {
 592   return T_BOOLEAN <= t && t <= T_LONG;
 593 }
 594 
 595 inline bool is_subword_type(BasicType t) {
 596   // these guys are processed exactly like T_INT in calling sequences:
 597   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 598 }
 599 
 600 inline bool is_signed_subword_type(BasicType t) {
 601   return (t == T_BYTE || t == T_SHORT);
 602 }
 603 
 604 inline bool is_reference_type(BasicType t) {
 605   return (t == T_OBJECT || t == T_ARRAY);
 606 }
 607 
 608 // Convert a char from a classfile signature to a BasicType
 609 inline BasicType char2type(char c) {
 610   switch( c ) {
 611   case 'B': return T_BYTE;
 612   case 'C': return T_CHAR;
 613   case 'D': return T_DOUBLE;
 614   case 'F': return T_FLOAT;
 615   case 'I': return T_INT;
 616   case 'J': return T_LONG;
 617   case 'S': return T_SHORT;
 618   case 'Z': return T_BOOLEAN;
 619   case 'V': return T_VOID;
 620   case 'L': return T_OBJECT;
 621   case '[': return T_ARRAY;
 622   }
 623   return T_ILLEGAL;
 624 }
 625 
 626 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 627 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 628 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 629 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 630 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 631 extern BasicType name2type(const char* name);
 632 
 633 // Auxiliary math routines
 634 // least common multiple
 635 extern size_t lcm(size_t a, size_t b);
 636 
 637 
 638 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 639 enum BasicTypeSize {
 640   T_BOOLEAN_size     = 1,
 641   T_CHAR_size        = 1,
 642   T_FLOAT_size       = 1,
 643   T_DOUBLE_size      = 2,
 644   T_BYTE_size        = 1,
 645   T_SHORT_size       = 1,
 646   T_INT_size         = 1,
 647   T_LONG_size        = 2,
 648   T_OBJECT_size      = 1,
 649   T_ARRAY_size       = 1,
 650   T_NARROWOOP_size   = 1,
 651   T_NARROWKLASS_size = 1,
 652   T_VOID_size        = 0
 653 };
 654 
 655 
 656 // maps a BasicType to its instance field storage type:
 657 // all sub-word integral types are widened to T_INT
 658 extern BasicType type2field[T_CONFLICT+1];
 659 extern BasicType type2wfield[T_CONFLICT+1];
 660 
 661 
 662 // size in bytes
 663 enum ArrayElementSize {
 664   T_BOOLEAN_aelem_bytes     = 1,
 665   T_CHAR_aelem_bytes        = 2,
 666   T_FLOAT_aelem_bytes       = 4,
 667   T_DOUBLE_aelem_bytes      = 8,
 668   T_BYTE_aelem_bytes        = 1,
 669   T_SHORT_aelem_bytes       = 2,
 670   T_INT_aelem_bytes         = 4,
 671   T_LONG_aelem_bytes        = 8,
 672 #ifdef _LP64
 673   T_OBJECT_aelem_bytes      = 8,
 674   T_ARRAY_aelem_bytes       = 8,
 675 #else
 676   T_OBJECT_aelem_bytes      = 4,
 677   T_ARRAY_aelem_bytes       = 4,
 678 #endif
 679   T_NARROWOOP_aelem_bytes   = 4,
 680   T_NARROWKLASS_aelem_bytes = 4,
 681   T_VOID_aelem_bytes        = 0
 682 };
 683 
 684 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 685 #ifdef ASSERT
 686 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 687 #else
 688 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 689 #endif
 690 
 691 
 692 // JavaValue serves as a container for arbitrary Java values.
 693 
 694 class JavaValue {
 695 
 696  public:
 697   typedef union JavaCallValue {
 698     jfloat   f;
 699     jdouble  d;
 700     jint     i;
 701     jlong    l;
 702     jobject  h;
 703   } JavaCallValue;
 704 
 705  private:
 706   BasicType _type;
 707   JavaCallValue _value;
 708 
 709  public:
 710   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 711 
 712   JavaValue(jfloat value) {
 713     _type    = T_FLOAT;
 714     _value.f = value;
 715   }
 716 
 717   JavaValue(jdouble value) {
 718     _type    = T_DOUBLE;
 719     _value.d = value;
 720   }
 721 
 722  jfloat get_jfloat() const { return _value.f; }
 723  jdouble get_jdouble() const { return _value.d; }
 724  jint get_jint() const { return _value.i; }
 725  jlong get_jlong() const { return _value.l; }
 726  jobject get_jobject() const { return _value.h; }
 727  JavaCallValue* get_value_addr() { return &_value; }
 728  BasicType get_type() const { return _type; }
 729 
 730  void set_jfloat(jfloat f) { _value.f = f;}
 731  void set_jdouble(jdouble d) { _value.d = d;}
 732  void set_jint(jint i) { _value.i = i;}
 733  void set_jlong(jlong l) { _value.l = l;}
 734  void set_jobject(jobject h) { _value.h = h;}
 735  void set_type(BasicType t) { _type = t; }
 736 
 737  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 738  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 739  jchar get_jchar() const { return (jchar) (_value.i);}
 740  jshort get_jshort() const { return (jshort) (_value.i);}
 741 
 742 };
 743 
 744 
 745 #define STACK_BIAS      0
 746 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 747 // in order to extend the reach of the stack pointer.
 748 #if defined(SPARC) && defined(_LP64)
 749 #undef STACK_BIAS
 750 #define STACK_BIAS      0x7ff
 751 #endif
 752 
 753 
 754 // TosState describes the top-of-stack state before and after the execution of
 755 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 756 // registers. The TosState corresponds to the 'machine representation' of this cached
 757 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 758 // as well as a 5th state in case the top-of-stack value is actually on the top
 759 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 760 // state when it comes to machine representation but is used separately for (oop)
 761 // type specific operations (e.g. verification code).
 762 
 763 enum TosState {         // describes the tos cache contents
 764   btos = 0,             // byte, bool tos cached
 765   ztos = 1,             // byte, bool tos cached
 766   ctos = 2,             // char tos cached
 767   stos = 3,             // short tos cached
 768   itos = 4,             // int tos cached
 769   ltos = 5,             // long tos cached
 770   ftos = 6,             // float tos cached
 771   dtos = 7,             // double tos cached
 772   atos = 8,             // object cached
 773   vtos = 9,             // tos not cached
 774   number_of_states,
 775   ilgl                  // illegal state: should not occur
 776 };
 777 
 778 
 779 inline TosState as_TosState(BasicType type) {
 780   switch (type) {
 781     case T_BYTE   : return btos;
 782     case T_BOOLEAN: return ztos;
 783     case T_CHAR   : return ctos;
 784     case T_SHORT  : return stos;
 785     case T_INT    : return itos;
 786     case T_LONG   : return ltos;
 787     case T_FLOAT  : return ftos;
 788     case T_DOUBLE : return dtos;
 789     case T_VOID   : return vtos;
 790     case T_ARRAY  : // fall through
 791     case T_OBJECT : return atos;
 792     default       : return ilgl;
 793   }
 794 }
 795 
 796 inline BasicType as_BasicType(TosState state) {
 797   switch (state) {
 798     case btos : return T_BYTE;
 799     case ztos : return T_BOOLEAN;
 800     case ctos : return T_CHAR;
 801     case stos : return T_SHORT;
 802     case itos : return T_INT;
 803     case ltos : return T_LONG;
 804     case ftos : return T_FLOAT;
 805     case dtos : return T_DOUBLE;
 806     case atos : return T_OBJECT;
 807     case vtos : return T_VOID;
 808     default   : return T_ILLEGAL;
 809   }
 810 }
 811 
 812 
 813 // Helper function to convert BasicType info into TosState
 814 // Note: Cannot define here as it uses global constant at the time being.
 815 TosState as_TosState(BasicType type);
 816 
 817 
 818 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 819 // information is needed by the safepoint code.
 820 //
 821 // There are 4 essential states:
 822 //
 823 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 824 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 825 //  _thread_in_vm       : Executing in the vm
 826 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 827 //
 828 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 829 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 830 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 831 //
 832 // Given a state, the xxxx_trans state can always be found by adding 1.
 833 //
 834 enum JavaThreadState {
 835   _thread_uninitialized     =  0, // should never happen (missing initialization)
 836   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 837   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 838   _thread_in_native         =  4, // running in native code
 839   _thread_in_native_trans   =  5, // corresponding transition state
 840   _thread_in_vm             =  6, // running in VM
 841   _thread_in_vm_trans       =  7, // corresponding transition state
 842   _thread_in_Java           =  8, // running in Java or in stub code
 843   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 844   _thread_blocked           = 10, // blocked in vm
 845   _thread_blocked_trans     = 11, // corresponding transition state
 846   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 847 };
 848 
 849 
 850 
 851 //----------------------------------------------------------------------------------------------------
 852 // 'Forward' declarations of frequently used classes
 853 // (in order to reduce interface dependencies & reduce
 854 // number of unnecessary compilations after changes)
 855 
 856 class ClassFileStream;
 857 
 858 class Event;
 859 
 860 class Thread;
 861 class  VMThread;
 862 class  JavaThread;
 863 class Threads;
 864 
 865 class VM_Operation;
 866 class VMOperationQueue;
 867 
 868 class CodeBlob;
 869 class  CompiledMethod;
 870 class   nmethod;
 871 class RuntimeBlob;
 872 class  OSRAdapter;
 873 class  I2CAdapter;
 874 class  C2IAdapter;
 875 class CompiledIC;
 876 class relocInfo;
 877 class ScopeDesc;
 878 class PcDesc;
 879 
 880 class Recompiler;
 881 class Recompilee;
 882 class RecompilationPolicy;
 883 class RFrame;
 884 class  CompiledRFrame;
 885 class  InterpretedRFrame;
 886 
 887 class vframe;
 888 class   javaVFrame;
 889 class     interpretedVFrame;
 890 class     compiledVFrame;
 891 class     deoptimizedVFrame;
 892 class   externalVFrame;
 893 class     entryVFrame;
 894 
 895 class RegisterMap;
 896 
 897 class Mutex;
 898 class Monitor;
 899 class BasicLock;
 900 class BasicObjectLock;
 901 
 902 class PeriodicTask;
 903 
 904 class JavaCallWrapper;
 905 
 906 class   oopDesc;
 907 class   metaDataOopDesc;
 908 
 909 class NativeCall;
 910 
 911 class zone;
 912 
 913 class StubQueue;
 914 
 915 class outputStream;
 916 
 917 class ResourceArea;
 918 
 919 class DebugInformationRecorder;
 920 class ScopeValue;
 921 class CompressedStream;
 922 class   DebugInfoReadStream;
 923 class   DebugInfoWriteStream;
 924 class LocationValue;
 925 class ConstantValue;
 926 class IllegalValue;
 927 
 928 class PrivilegedElement;
 929 class MonitorArray;
 930 
 931 class MonitorInfo;
 932 
 933 class OffsetClosure;
 934 class OopMapCache;
 935 class InterpreterOopMap;
 936 class OopMapCacheEntry;
 937 class OSThread;
 938 
 939 typedef int (*OSThreadStartFunc)(void*);
 940 
 941 class Space;
 942 
 943 class JavaValue;
 944 class methodHandle;
 945 class JavaCallArguments;
 946 
 947 //----------------------------------------------------------------------------------------------------
 948 // Special constants for debugging
 949 
 950 const jint     badInt           = -3;                       // generic "bad int" value
 951 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
 952 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
 953 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 954 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
 955 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 956 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 957 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 958 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 959 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
 960 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 961 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 962 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 963 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 964 
 965 
 966 // (These must be implemented as #defines because C++ compilers are
 967 // not obligated to inline non-integral constants!)
 968 #define       badAddress        ((address)::badAddressVal)
 969 #define       badOop            (cast_to_oop(::badOopVal))
 970 #define       badHeapWord       (::badHeapWordVal)
 971 
 972 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 973 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 974 
 975 //----------------------------------------------------------------------------------------------------
 976 // Utility functions for bitfield manipulations
 977 
 978 const intptr_t AllBits    = ~0; // all bits set in a word
 979 const intptr_t NoBits     =  0; // no bits set in a word
 980 const jlong    NoLongBits =  0; // no bits set in a long
 981 const intptr_t OneBit     =  1; // only right_most bit set in a word
 982 
 983 // get a word with the n.th or the right-most or left-most n bits set
 984 // (note: #define used only so that they can be used in enum constant definitions)
 985 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
 986 #define right_n_bits(n)   (nth_bit(n) - 1)
 987 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
 988 
 989 // bit-operations using a mask m
 990 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 991 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 992 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 993 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 994 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 995 
 996 // bit-operations using the n.th bit
 997 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 998 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 999 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1000 
1001 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1002 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1003   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1004 }
1005 
1006 
1007 //----------------------------------------------------------------------------------------------------
1008 // Utility functions for integers
1009 
1010 // Avoid use of global min/max macros which may cause unwanted double
1011 // evaluation of arguments.
1012 #ifdef max
1013 #undef max
1014 #endif
1015 
1016 #ifdef min
1017 #undef min
1018 #endif
1019 
1020 // It is necessary to use templates here. Having normal overloaded
1021 // functions does not work because it is necessary to provide both 32-
1022 // and 64-bit overloaded functions, which does not work, and having
1023 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1024 // will be even more error-prone than macros.
1025 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1026 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1027 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1028 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1029 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1030 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1031 
1032 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1033 
1034 // true if x is a power of 2, false otherwise
1035 inline bool is_power_of_2(intptr_t x) {
1036   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1037 }
1038 
1039 // long version of is_power_of_2
1040 inline bool is_power_of_2_long(jlong x) {
1041   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1042 }
1043 
1044 // Returns largest i such that 2^i <= x.
1045 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1046 // If x == 0, the function returns -1.
1047 inline int log2_intptr(intptr_t x) {
1048   int i = -1;
1049   uintptr_t p = 1;
1050   while (p != 0 && p <= (uintptr_t)x) {
1051     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1052     i++; p *= 2;
1053   }
1054   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1055   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1056   return i;
1057 }
1058 
1059 //* largest i such that 2^i <= x
1060 //  A negative value of 'x' will return '63'
1061 inline int log2_long(jlong x) {
1062   int i = -1;
1063   julong p =  1;
1064   while (p != 0 && p <= (julong)x) {
1065     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1066     i++; p *= 2;
1067   }
1068   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1069   // (if p = 0 then overflow occurred and i = 63)
1070   return i;
1071 }
1072 
1073 //* the argument must be exactly a power of 2
1074 inline int exact_log2(intptr_t x) {
1075   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
1076   return log2_intptr(x);
1077 }
1078 
1079 //* the argument must be exactly a power of 2
1080 inline int exact_log2_long(jlong x) {
1081   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
1082   return log2_long(x);
1083 }
1084 
1085 inline bool is_odd (intx x) { return x & 1;      }
1086 inline bool is_even(intx x) { return !is_odd(x); }
1087 
1088 // "to" should be greater than "from."
1089 inline intx byte_size(void* from, void* to) {
1090   return (address)to - (address)from;
1091 }
1092 
1093 //----------------------------------------------------------------------------------------------------
1094 // Avoid non-portable casts with these routines (DEPRECATED)
1095 
1096 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1097 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1098 
1099 // Given sequence of four bytes, build into a 32-bit word
1100 // following the conventions used in class files.
1101 // On the 386, this could be realized with a simple address cast.
1102 //
1103 
1104 // This routine takes eight bytes:
1105 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1106   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1107        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1108        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1109        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1110        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1111        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1112        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1113        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1114 }
1115 
1116 // This routine takes four bytes:
1117 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1118   return  (( u4(c1) << 24 )  &  0xff000000)
1119        |  (( u4(c2) << 16 )  &  0x00ff0000)
1120        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1121        |  (( u4(c4) <<  0 )  &  0x000000ff);
1122 }
1123 
1124 // And this one works if the four bytes are contiguous in memory:
1125 inline u4 build_u4_from( u1* p ) {
1126   return  build_u4_from( p[0], p[1], p[2], p[3] );
1127 }
1128 
1129 // Ditto for two-byte ints:
1130 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1131   return  u2((( u2(c1) <<  8 )  &  0xff00)
1132           |  (( u2(c2) <<  0 )  &  0x00ff));
1133 }
1134 
1135 // And this one works if the two bytes are contiguous in memory:
1136 inline u2 build_u2_from( u1* p ) {
1137   return  build_u2_from( p[0], p[1] );
1138 }
1139 
1140 // Ditto for floats:
1141 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1142   u4 u = build_u4_from( c1, c2, c3, c4 );
1143   return  *(jfloat*)&u;
1144 }
1145 
1146 inline jfloat build_float_from( u1* p ) {
1147   u4 u = build_u4_from( p );
1148   return  *(jfloat*)&u;
1149 }
1150 
1151 
1152 // now (64-bit) longs
1153 
1154 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1155   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1156        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1157        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1158        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1159        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1160        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1161        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1162        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1163 }
1164 
1165 inline jlong build_long_from( u1* p ) {
1166   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1167 }
1168 
1169 
1170 // Doubles, too!
1171 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1172   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1173   return  *(jdouble*)&u;
1174 }
1175 
1176 inline jdouble build_double_from( u1* p ) {
1177   jlong u = build_long_from( p );
1178   return  *(jdouble*)&u;
1179 }
1180 
1181 
1182 // Portable routines to go the other way:
1183 
1184 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1185   c1 = u1(x >> 8);
1186   c2 = u1(x);
1187 }
1188 
1189 inline void explode_short_to( u2 x, u1* p ) {
1190   explode_short_to( x, p[0], p[1]);
1191 }
1192 
1193 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1194   c1 = u1(x >> 24);
1195   c2 = u1(x >> 16);
1196   c3 = u1(x >>  8);
1197   c4 = u1(x);
1198 }
1199 
1200 inline void explode_int_to( u4 x, u1* p ) {
1201   explode_int_to( x, p[0], p[1], p[2], p[3]);
1202 }
1203 
1204 
1205 // Pack and extract shorts to/from ints:
1206 
1207 inline int extract_low_short_from_int(jint x) {
1208   return x & 0xffff;
1209 }
1210 
1211 inline int extract_high_short_from_int(jint x) {
1212   return (x >> 16) & 0xffff;
1213 }
1214 
1215 inline int build_int_from_shorts( jushort low, jushort high ) {
1216   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1217 }
1218 
1219 // Convert pointer to intptr_t, for use in printing pointers.
1220 inline intptr_t p2i(const void * p) {
1221   return (intptr_t) p;
1222 }
1223 
1224 // swap a & b
1225 template<class T> static void swap(T& a, T& b) {
1226   T tmp = a;
1227   a = b;
1228   b = tmp;
1229 }
1230 
1231 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1232 
1233 //----------------------------------------------------------------------------------------------------
1234 // Sum and product which can never overflow: they wrap, just like the
1235 // Java operations.  Note that we don't intend these to be used for
1236 // general-purpose arithmetic: their purpose is to emulate Java
1237 // operations.
1238 
1239 // The goal of this code to avoid undefined or implementation-defined
1240 // behavior.  The use of an lvalue to reference cast is explicitly
1241 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1242 // 15 in C++03]
1243 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1244 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1245   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1246   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1247   return reinterpret_cast<TYPE&>(ures);                 \
1248 }
1249 
1250 JAVA_INTEGER_OP(+, java_add, jint, juint)
1251 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1252 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1253 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1254 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1255 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1256 
1257 #undef JAVA_INTEGER_OP
1258 
1259 // Dereference vptr
1260 // All C++ compilers that we know of have the vtbl pointer in the first
1261 // word.  If there are exceptions, this function needs to be made compiler
1262 // specific.
1263 static inline void* dereference_vptr(const void* addr) {
1264   return *(void**)addr;
1265 }
1266 
1267 //----------------------------------------------------------------------------------------------------
1268 // String type aliases used by command line flag declarations and
1269 // processing utilities.
1270 
1271 typedef const char* ccstr;
1272 typedef const char* ccstrlist;   // represents string arguments which accumulate
1273 
1274 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP