1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1SATBMarkQueueFilter.hpp"
  56 #include "gc/g1/g1StringDedup.hpp"
  57 #include "gc/g1/g1ThreadLocalData.hpp"
  58 #include "gc/g1/g1YCTypes.hpp"
  59 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  60 #include "gc/g1/heapRegion.inline.hpp"
  61 #include "gc/g1/heapRegionRemSet.hpp"
  62 #include "gc/g1/heapRegionSet.inline.hpp"
  63 #include "gc/g1/vm_operations_g1.hpp"
  64 #include "gc/shared/adaptiveSizePolicy.hpp"
  65 #include "gc/shared/gcHeapSummary.hpp"
  66 #include "gc/shared/gcId.hpp"
  67 #include "gc/shared/gcLocker.hpp"
  68 #include "gc/shared/gcTimer.hpp"
  69 #include "gc/shared/gcTrace.hpp"
  70 #include "gc/shared/gcTraceTime.inline.hpp"
  71 #include "gc/shared/generationSpec.hpp"
  72 #include "gc/shared/isGCActiveMark.hpp"
  73 #include "gc/shared/oopStorageParState.hpp"
  74 #include "gc/shared/preservedMarks.inline.hpp"
  75 #include "gc/shared/suspendibleThreadSet.hpp"
  76 #include "gc/shared/referenceProcessor.inline.hpp"
  77 #include "gc/shared/taskqueue.inline.hpp"
  78 #include "gc/shared/weakProcessor.hpp"
  79 #include "logging/log.hpp"
  80 #include "memory/allocation.hpp"
  81 #include "memory/iterator.hpp"
  82 #include "memory/metaspaceShared.hpp"
  83 #include "memory/resourceArea.hpp"
  84 #include "oops/access.inline.hpp"
  85 #include "oops/compressedOops.inline.hpp"
  86 #include "oops/oop.inline.hpp"
  87 #include "prims/resolvedMethodTable.hpp"
  88 #include "runtime/atomic.hpp"
  89 #include "runtime/flags/flagSetting.hpp"
  90 #include "runtime/handles.inline.hpp"
  91 #include "runtime/init.hpp"
  92 #include "runtime/orderAccess.hpp"
  93 #include "runtime/threadSMR.hpp"
  94 #include "runtime/vmThread.hpp"
  95 #include "utilities/align.hpp"
  96 #include "utilities/globalDefinitions.hpp"
  97 #include "utilities/stack.inline.hpp"
  98 
  99 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 100 
 101 // INVARIANTS/NOTES
 102 //
 103 // All allocation activity covered by the G1CollectedHeap interface is
 104 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 105 // and allocate_new_tlab, which are the "entry" points to the
 106 // allocation code from the rest of the JVM.  (Note that this does not
 107 // apply to TLAB allocation, which is not part of this interface: it
 108 // is done by clients of this interface.)
 109 
 110 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 111  private:
 112   size_t _num_dirtied;
 113   G1CollectedHeap* _g1h;
 114   G1CardTable* _g1_ct;
 115 
 116   HeapRegion* region_for_card(jbyte* card_ptr) const {
 117     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 118   }
 119 
 120   bool will_become_free(HeapRegion* hr) const {
 121     // A region will be freed by free_collection_set if the region is in the
 122     // collection set and has not had an evacuation failure.
 123     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 124   }
 125 
 126  public:
 127   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 128     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 129 
 130   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 131     HeapRegion* hr = region_for_card(card_ptr);
 132 
 133     // Should only dirty cards in regions that won't be freed.
 134     if (!will_become_free(hr)) {
 135       *card_ptr = G1CardTable::dirty_card_val();
 136       _num_dirtied++;
 137     }
 138 
 139     return true;
 140   }
 141 
 142   size_t num_dirtied()   const { return _num_dirtied; }
 143 };
 144 
 145 
 146 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 147   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 148 }
 149 
 150 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 151   // The from card cache is not the memory that is actually committed. So we cannot
 152   // take advantage of the zero_filled parameter.
 153   reset_from_card_cache(start_idx, num_regions);
 154 }
 155 
 156 
 157 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 158                                              MemRegion mr) {
 159   return new HeapRegion(hrs_index, bot(), mr);
 160 }
 161 
 162 // Private methods.
 163 
 164 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 165   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 166          "the only time we use this to allocate a humongous region is "
 167          "when we are allocating a single humongous region");
 168 
 169   HeapRegion* res = _hrm.allocate_free_region(is_old);
 170 
 171   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 172     // Currently, only attempts to allocate GC alloc regions set
 173     // do_expand to true. So, we should only reach here during a
 174     // safepoint. If this assumption changes we might have to
 175     // reconsider the use of _expand_heap_after_alloc_failure.
 176     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 177 
 178     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 179                               word_size * HeapWordSize);
 180 
 181     if (expand(word_size * HeapWordSize)) {
 182       // Given that expand() succeeded in expanding the heap, and we
 183       // always expand the heap by an amount aligned to the heap
 184       // region size, the free list should in theory not be empty.
 185       // In either case allocate_free_region() will check for NULL.
 186       res = _hrm.allocate_free_region(is_old);
 187     } else {
 188       _expand_heap_after_alloc_failure = false;
 189     }
 190   }
 191   return res;
 192 }
 193 
 194 HeapWord*
 195 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 196                                                            uint num_regions,
 197                                                            size_t word_size) {
 198   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 199   assert(is_humongous(word_size), "word_size should be humongous");
 200   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 201 
 202   // Index of last region in the series.
 203   uint last = first + num_regions - 1;
 204 
 205   // We need to initialize the region(s) we just discovered. This is
 206   // a bit tricky given that it can happen concurrently with
 207   // refinement threads refining cards on these regions and
 208   // potentially wanting to refine the BOT as they are scanning
 209   // those cards (this can happen shortly after a cleanup; see CR
 210   // 6991377). So we have to set up the region(s) carefully and in
 211   // a specific order.
 212 
 213   // The word size sum of all the regions we will allocate.
 214   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 215   assert(word_size <= word_size_sum, "sanity");
 216 
 217   // This will be the "starts humongous" region.
 218   HeapRegion* first_hr = region_at(first);
 219   // The header of the new object will be placed at the bottom of
 220   // the first region.
 221   HeapWord* new_obj = first_hr->bottom();
 222   // This will be the new top of the new object.
 223   HeapWord* obj_top = new_obj + word_size;
 224 
 225   // First, we need to zero the header of the space that we will be
 226   // allocating. When we update top further down, some refinement
 227   // threads might try to scan the region. By zeroing the header we
 228   // ensure that any thread that will try to scan the region will
 229   // come across the zero klass word and bail out.
 230   //
 231   // NOTE: It would not have been correct to have used
 232   // CollectedHeap::fill_with_object() and make the space look like
 233   // an int array. The thread that is doing the allocation will
 234   // later update the object header to a potentially different array
 235   // type and, for a very short period of time, the klass and length
 236   // fields will be inconsistent. This could cause a refinement
 237   // thread to calculate the object size incorrectly.
 238   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 239 
 240   // Next, pad out the unused tail of the last region with filler
 241   // objects, for improved usage accounting.
 242   // How many words we use for filler objects.
 243   size_t word_fill_size = word_size_sum - word_size;
 244 
 245   // How many words memory we "waste" which cannot hold a filler object.
 246   size_t words_not_fillable = 0;
 247 
 248   if (word_fill_size >= min_fill_size()) {
 249     fill_with_objects(obj_top, word_fill_size);
 250   } else if (word_fill_size > 0) {
 251     // We have space to fill, but we cannot fit an object there.
 252     words_not_fillable = word_fill_size;
 253     word_fill_size = 0;
 254   }
 255 
 256   // We will set up the first region as "starts humongous". This
 257   // will also update the BOT covering all the regions to reflect
 258   // that there is a single object that starts at the bottom of the
 259   // first region.
 260   first_hr->set_starts_humongous(obj_top, word_fill_size);
 261   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 262   // Then, if there are any, we will set up the "continues
 263   // humongous" regions.
 264   HeapRegion* hr = NULL;
 265   for (uint i = first + 1; i <= last; ++i) {
 266     hr = region_at(i);
 267     hr->set_continues_humongous(first_hr);
 268     _g1_policy->remset_tracker()->update_at_allocate(hr);
 269   }
 270 
 271   // Up to this point no concurrent thread would have been able to
 272   // do any scanning on any region in this series. All the top
 273   // fields still point to bottom, so the intersection between
 274   // [bottom,top] and [card_start,card_end] will be empty. Before we
 275   // update the top fields, we'll do a storestore to make sure that
 276   // no thread sees the update to top before the zeroing of the
 277   // object header and the BOT initialization.
 278   OrderAccess::storestore();
 279 
 280   // Now, we will update the top fields of the "continues humongous"
 281   // regions except the last one.
 282   for (uint i = first; i < last; ++i) {
 283     hr = region_at(i);
 284     hr->set_top(hr->end());
 285   }
 286 
 287   hr = region_at(last);
 288   // If we cannot fit a filler object, we must set top to the end
 289   // of the humongous object, otherwise we cannot iterate the heap
 290   // and the BOT will not be complete.
 291   hr->set_top(hr->end() - words_not_fillable);
 292 
 293   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 294          "obj_top should be in last region");
 295 
 296   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 297 
 298   assert(words_not_fillable == 0 ||
 299          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 300          "Miscalculation in humongous allocation");
 301 
 302   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 303 
 304   for (uint i = first; i <= last; ++i) {
 305     hr = region_at(i);
 306     _humongous_set.add(hr);
 307     _hr_printer.alloc(hr);
 308   }
 309 
 310   return new_obj;
 311 }
 312 
 313 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 314   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 315   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 316 }
 317 
 318 // If could fit into free regions w/o expansion, try.
 319 // Otherwise, if can expand, do so.
 320 // Otherwise, if using ex regions might help, try with ex given back.
 321 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 322   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 323 
 324   _verifier->verify_region_sets_optional();
 325 
 326   uint first = G1_NO_HRM_INDEX;
 327   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 328 
 329   if (obj_regions == 1) {
 330     // Only one region to allocate, try to use a fast path by directly allocating
 331     // from the free lists. Do not try to expand here, we will potentially do that
 332     // later.
 333     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 334     if (hr != NULL) {
 335       first = hr->hrm_index();
 336     }
 337   } else {
 338     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 339     // are lucky enough to find some.
 340     first = _hrm.find_contiguous_only_empty(obj_regions);
 341     if (first != G1_NO_HRM_INDEX) {
 342       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 343     }
 344   }
 345 
 346   if (first == G1_NO_HRM_INDEX) {
 347     // Policy: We could not find enough regions for the humongous object in the
 348     // free list. Look through the heap to find a mix of free and uncommitted regions.
 349     // If so, try expansion.
 350     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 351     if (first != G1_NO_HRM_INDEX) {
 352       // We found something. Make sure these regions are committed, i.e. expand
 353       // the heap. Alternatively we could do a defragmentation GC.
 354       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 355                                     word_size * HeapWordSize);
 356 
 357       _hrm.expand_at(first, obj_regions, workers());
 358       g1_policy()->record_new_heap_size(num_regions());
 359 
 360 #ifdef ASSERT
 361       for (uint i = first; i < first + obj_regions; ++i) {
 362         HeapRegion* hr = region_at(i);
 363         assert(hr->is_free(), "sanity");
 364         assert(hr->is_empty(), "sanity");
 365         assert(is_on_master_free_list(hr), "sanity");
 366       }
 367 #endif
 368       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 369     } else {
 370       // Policy: Potentially trigger a defragmentation GC.
 371     }
 372   }
 373 
 374   HeapWord* result = NULL;
 375   if (first != G1_NO_HRM_INDEX) {
 376     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 377     assert(result != NULL, "it should always return a valid result");
 378 
 379     // A successful humongous object allocation changes the used space
 380     // information of the old generation so we need to recalculate the
 381     // sizes and update the jstat counters here.
 382     g1mm()->update_sizes();
 383   }
 384 
 385   _verifier->verify_region_sets_optional();
 386 
 387   return result;
 388 }
 389 
 390 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 391                                              size_t requested_size,
 392                                              size_t* actual_size) {
 393   assert_heap_not_locked_and_not_at_safepoint();
 394   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 395 
 396   return attempt_allocation(min_size, requested_size, actual_size);
 397 }
 398 
 399 HeapWord*
 400 G1CollectedHeap::mem_allocate(size_t word_size,
 401                               bool*  gc_overhead_limit_was_exceeded) {
 402   assert_heap_not_locked_and_not_at_safepoint();
 403 
 404   if (is_humongous(word_size)) {
 405     return attempt_allocation_humongous(word_size);
 406   }
 407   size_t dummy = 0;
 408   return attempt_allocation(word_size, word_size, &dummy);
 409 }
 410 
 411 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 412   ResourceMark rm; // For retrieving the thread names in log messages.
 413 
 414   // Make sure you read the note in attempt_allocation_humongous().
 415 
 416   assert_heap_not_locked_and_not_at_safepoint();
 417   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 418          "be called for humongous allocation requests");
 419 
 420   // We should only get here after the first-level allocation attempt
 421   // (attempt_allocation()) failed to allocate.
 422 
 423   // We will loop until a) we manage to successfully perform the
 424   // allocation or b) we successfully schedule a collection which
 425   // fails to perform the allocation. b) is the only case when we'll
 426   // return NULL.
 427   HeapWord* result = NULL;
 428   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 429     bool should_try_gc;
 430     uint gc_count_before;
 431 
 432     {
 433       MutexLockerEx x(Heap_lock);
 434       result = _allocator->attempt_allocation_locked(word_size);
 435       if (result != NULL) {
 436         return result;
 437       }
 438 
 439       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 440       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 441       // waiting because the GCLocker is active to not wait too long.
 442       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 443         // No need for an ergo message here, can_expand_young_list() does this when
 444         // it returns true.
 445         result = _allocator->attempt_allocation_force(word_size);
 446         if (result != NULL) {
 447           return result;
 448         }
 449       }
 450       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 451       // the GCLocker initiated GC has been performed and then retry. This includes
 452       // the case when the GC Locker is not active but has not been performed.
 453       should_try_gc = !GCLocker::needs_gc();
 454       // Read the GC count while still holding the Heap_lock.
 455       gc_count_before = total_collections();
 456     }
 457 
 458     if (should_try_gc) {
 459       bool succeeded;
 460       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 461                                    GCCause::_g1_inc_collection_pause);
 462       if (result != NULL) {
 463         assert(succeeded, "only way to get back a non-NULL result");
 464         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 465                              Thread::current()->name(), p2i(result));
 466         return result;
 467       }
 468 
 469       if (succeeded) {
 470         // We successfully scheduled a collection which failed to allocate. No
 471         // point in trying to allocate further. We'll just return NULL.
 472         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 473                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 474         return NULL;
 475       }
 476       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 477                            Thread::current()->name(), word_size);
 478     } else {
 479       // Failed to schedule a collection.
 480       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 481         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 482                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 483         return NULL;
 484       }
 485       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 486       // The GCLocker is either active or the GCLocker initiated
 487       // GC has not yet been performed. Stall until it is and
 488       // then retry the allocation.
 489       GCLocker::stall_until_clear();
 490       gclocker_retry_count += 1;
 491     }
 492 
 493     // We can reach here if we were unsuccessful in scheduling a
 494     // collection (because another thread beat us to it) or if we were
 495     // stalled due to the GC locker. In either can we should retry the
 496     // allocation attempt in case another thread successfully
 497     // performed a collection and reclaimed enough space. We do the
 498     // first attempt (without holding the Heap_lock) here and the
 499     // follow-on attempt will be at the start of the next loop
 500     // iteration (after taking the Heap_lock).
 501     size_t dummy = 0;
 502     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 503     if (result != NULL) {
 504       return result;
 505     }
 506 
 507     // Give a warning if we seem to be looping forever.
 508     if ((QueuedAllocationWarningCount > 0) &&
 509         (try_count % QueuedAllocationWarningCount == 0)) {
 510       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 511                              Thread::current()->name(), try_count, word_size);
 512     }
 513   }
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 520   assert_at_safepoint_on_vm_thread();
 521   if (_archive_allocator == NULL) {
 522     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 523   }
 524 }
 525 
 526 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 527   // Allocations in archive regions cannot be of a size that would be considered
 528   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 529   // may be different at archive-restore time.
 530   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 531 }
 532 
 533 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 534   assert_at_safepoint_on_vm_thread();
 535   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 536   if (is_archive_alloc_too_large(word_size)) {
 537     return NULL;
 538   }
 539   return _archive_allocator->archive_mem_allocate(word_size);
 540 }
 541 
 542 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 543                                               size_t end_alignment_in_bytes) {
 544   assert_at_safepoint_on_vm_thread();
 545   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 546 
 547   // Call complete_archive to do the real work, filling in the MemRegion
 548   // array with the archive regions.
 549   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 550   delete _archive_allocator;
 551   _archive_allocator = NULL;
 552 }
 553 
 554 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 555   assert(ranges != NULL, "MemRegion array NULL");
 556   assert(count != 0, "No MemRegions provided");
 557   MemRegion reserved = _hrm.reserved();
 558   for (size_t i = 0; i < count; i++) {
 559     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 560       return false;
 561     }
 562   }
 563   return true;
 564 }
 565 
 566 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 567                                             size_t count,
 568                                             bool open) {
 569   assert(!is_init_completed(), "Expect to be called at JVM init time");
 570   assert(ranges != NULL, "MemRegion array NULL");
 571   assert(count != 0, "No MemRegions provided");
 572   MutexLockerEx x(Heap_lock);
 573 
 574   MemRegion reserved = _hrm.reserved();
 575   HeapWord* prev_last_addr = NULL;
 576   HeapRegion* prev_last_region = NULL;
 577 
 578   // Temporarily disable pretouching of heap pages. This interface is used
 579   // when mmap'ing archived heap data in, so pre-touching is wasted.
 580   FlagSetting fs(AlwaysPreTouch, false);
 581 
 582   // Enable archive object checking used by G1MarkSweep. We have to let it know
 583   // about each archive range, so that objects in those ranges aren't marked.
 584   G1ArchiveAllocator::enable_archive_object_check();
 585 
 586   // For each specified MemRegion range, allocate the corresponding G1
 587   // regions and mark them as archive regions. We expect the ranges
 588   // in ascending starting address order, without overlap.
 589   for (size_t i = 0; i < count; i++) {
 590     MemRegion curr_range = ranges[i];
 591     HeapWord* start_address = curr_range.start();
 592     size_t word_size = curr_range.word_size();
 593     HeapWord* last_address = curr_range.last();
 594     size_t commits = 0;
 595 
 596     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 597               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 598               p2i(start_address), p2i(last_address));
 599     guarantee(start_address > prev_last_addr,
 600               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 601               p2i(start_address), p2i(prev_last_addr));
 602     prev_last_addr = last_address;
 603 
 604     // Check for ranges that start in the same G1 region in which the previous
 605     // range ended, and adjust the start address so we don't try to allocate
 606     // the same region again. If the current range is entirely within that
 607     // region, skip it, just adjusting the recorded top.
 608     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 609     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 610       start_address = start_region->end();
 611       if (start_address > last_address) {
 612         increase_used(word_size * HeapWordSize);
 613         start_region->set_top(last_address + 1);
 614         continue;
 615       }
 616       start_region->set_top(start_address);
 617       curr_range = MemRegion(start_address, last_address + 1);
 618       start_region = _hrm.addr_to_region(start_address);
 619     }
 620 
 621     // Perform the actual region allocation, exiting if it fails.
 622     // Then note how much new space we have allocated.
 623     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 624       return false;
 625     }
 626     increase_used(word_size * HeapWordSize);
 627     if (commits != 0) {
 628       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 629                                 HeapRegion::GrainWords * HeapWordSize * commits);
 630 
 631     }
 632 
 633     // Mark each G1 region touched by the range as archive, add it to
 634     // the old set, and set top.
 635     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 636     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 637     prev_last_region = last_region;
 638 
 639     while (curr_region != NULL) {
 640       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 641              "Region already in use (index %u)", curr_region->hrm_index());
 642       if (open) {
 643         curr_region->set_open_archive();
 644       } else {
 645         curr_region->set_closed_archive();
 646       }
 647       _hr_printer.alloc(curr_region);
 648       _old_set.add(curr_region);
 649       HeapWord* top;
 650       HeapRegion* next_region;
 651       if (curr_region != last_region) {
 652         top = curr_region->end();
 653         next_region = _hrm.next_region_in_heap(curr_region);
 654       } else {
 655         top = last_address + 1;
 656         next_region = NULL;
 657       }
 658       curr_region->set_top(top);
 659       curr_region->set_first_dead(top);
 660       curr_region->set_end_of_live(top);
 661       curr_region = next_region;
 662     }
 663 
 664     // Notify mark-sweep of the archive
 665     G1ArchiveAllocator::set_range_archive(curr_range, open);
 666   }
 667   return true;
 668 }
 669 
 670 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 671   assert(!is_init_completed(), "Expect to be called at JVM init time");
 672   assert(ranges != NULL, "MemRegion array NULL");
 673   assert(count != 0, "No MemRegions provided");
 674   MemRegion reserved = _hrm.reserved();
 675   HeapWord *prev_last_addr = NULL;
 676   HeapRegion* prev_last_region = NULL;
 677 
 678   // For each MemRegion, create filler objects, if needed, in the G1 regions
 679   // that contain the address range. The address range actually within the
 680   // MemRegion will not be modified. That is assumed to have been initialized
 681   // elsewhere, probably via an mmap of archived heap data.
 682   MutexLockerEx x(Heap_lock);
 683   for (size_t i = 0; i < count; i++) {
 684     HeapWord* start_address = ranges[i].start();
 685     HeapWord* last_address = ranges[i].last();
 686 
 687     assert(reserved.contains(start_address) && reserved.contains(last_address),
 688            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 689            p2i(start_address), p2i(last_address));
 690     assert(start_address > prev_last_addr,
 691            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 692            p2i(start_address), p2i(prev_last_addr));
 693 
 694     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 695     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 696     HeapWord* bottom_address = start_region->bottom();
 697 
 698     // Check for a range beginning in the same region in which the
 699     // previous one ended.
 700     if (start_region == prev_last_region) {
 701       bottom_address = prev_last_addr + 1;
 702     }
 703 
 704     // Verify that the regions were all marked as archive regions by
 705     // alloc_archive_regions.
 706     HeapRegion* curr_region = start_region;
 707     while (curr_region != NULL) {
 708       guarantee(curr_region->is_archive(),
 709                 "Expected archive region at index %u", curr_region->hrm_index());
 710       if (curr_region != last_region) {
 711         curr_region = _hrm.next_region_in_heap(curr_region);
 712       } else {
 713         curr_region = NULL;
 714       }
 715     }
 716 
 717     prev_last_addr = last_address;
 718     prev_last_region = last_region;
 719 
 720     // Fill the memory below the allocated range with dummy object(s),
 721     // if the region bottom does not match the range start, or if the previous
 722     // range ended within the same G1 region, and there is a gap.
 723     if (start_address != bottom_address) {
 724       size_t fill_size = pointer_delta(start_address, bottom_address);
 725       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 726       increase_used(fill_size * HeapWordSize);
 727     }
 728   }
 729 }
 730 
 731 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 732                                                      size_t desired_word_size,
 733                                                      size_t* actual_word_size) {
 734   assert_heap_not_locked_and_not_at_safepoint();
 735   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 736          "be called for humongous allocation requests");
 737 
 738   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 739 
 740   if (result == NULL) {
 741     *actual_word_size = desired_word_size;
 742     result = attempt_allocation_slow(desired_word_size);
 743   }
 744 
 745   assert_heap_not_locked();
 746   if (result != NULL) {
 747     assert(*actual_word_size != 0, "Actual size must have been set here");
 748     dirty_young_block(result, *actual_word_size);
 749   } else {
 750     *actual_word_size = 0;
 751   }
 752 
 753   return result;
 754 }
 755 
 756 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 757   assert(!is_init_completed(), "Expect to be called at JVM init time");
 758   assert(ranges != NULL, "MemRegion array NULL");
 759   assert(count != 0, "No MemRegions provided");
 760   MemRegion reserved = _hrm.reserved();
 761   HeapWord* prev_last_addr = NULL;
 762   HeapRegion* prev_last_region = NULL;
 763   size_t size_used = 0;
 764   size_t uncommitted_regions = 0;
 765 
 766   // For each Memregion, free the G1 regions that constitute it, and
 767   // notify mark-sweep that the range is no longer to be considered 'archive.'
 768   MutexLockerEx x(Heap_lock);
 769   for (size_t i = 0; i < count; i++) {
 770     HeapWord* start_address = ranges[i].start();
 771     HeapWord* last_address = ranges[i].last();
 772 
 773     assert(reserved.contains(start_address) && reserved.contains(last_address),
 774            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 775            p2i(start_address), p2i(last_address));
 776     assert(start_address > prev_last_addr,
 777            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 778            p2i(start_address), p2i(prev_last_addr));
 779     size_used += ranges[i].byte_size();
 780     prev_last_addr = last_address;
 781 
 782     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 783     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 784 
 785     // Check for ranges that start in the same G1 region in which the previous
 786     // range ended, and adjust the start address so we don't try to free
 787     // the same region again. If the current range is entirely within that
 788     // region, skip it.
 789     if (start_region == prev_last_region) {
 790       start_address = start_region->end();
 791       if (start_address > last_address) {
 792         continue;
 793       }
 794       start_region = _hrm.addr_to_region(start_address);
 795     }
 796     prev_last_region = last_region;
 797 
 798     // After verifying that each region was marked as an archive region by
 799     // alloc_archive_regions, set it free and empty and uncommit it.
 800     HeapRegion* curr_region = start_region;
 801     while (curr_region != NULL) {
 802       guarantee(curr_region->is_archive(),
 803                 "Expected archive region at index %u", curr_region->hrm_index());
 804       uint curr_index = curr_region->hrm_index();
 805       _old_set.remove(curr_region);
 806       curr_region->set_free();
 807       curr_region->set_top(curr_region->bottom());
 808       if (curr_region != last_region) {
 809         curr_region = _hrm.next_region_in_heap(curr_region);
 810       } else {
 811         curr_region = NULL;
 812       }
 813       _hrm.shrink_at(curr_index, 1);
 814       uncommitted_regions++;
 815     }
 816 
 817     // Notify mark-sweep that this is no longer an archive range.
 818     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 819   }
 820 
 821   if (uncommitted_regions != 0) {
 822     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 823                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 824   }
 825   decrease_used(size_used);
 826 }
 827 
 828 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 829   assert(obj != NULL, "archived obj is NULL");
 830   assert(MetaspaceShared::is_archive_object(obj), "must be archived object");
 831 
 832   // Loading an archived object makes it strongly reachable. If it is
 833   // loaded during concurrent marking, it must be enqueued to the SATB
 834   // queue, shading the previously white object gray.
 835   G1BarrierSet::enqueue(obj);
 836 
 837   return obj;
 838 }
 839 
 840 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 841   ResourceMark rm; // For retrieving the thread names in log messages.
 842 
 843   // The structure of this method has a lot of similarities to
 844   // attempt_allocation_slow(). The reason these two were not merged
 845   // into a single one is that such a method would require several "if
 846   // allocation is not humongous do this, otherwise do that"
 847   // conditional paths which would obscure its flow. In fact, an early
 848   // version of this code did use a unified method which was harder to
 849   // follow and, as a result, it had subtle bugs that were hard to
 850   // track down. So keeping these two methods separate allows each to
 851   // be more readable. It will be good to keep these two in sync as
 852   // much as possible.
 853 
 854   assert_heap_not_locked_and_not_at_safepoint();
 855   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 856          "should only be called for humongous allocations");
 857 
 858   // Humongous objects can exhaust the heap quickly, so we should check if we
 859   // need to start a marking cycle at each humongous object allocation. We do
 860   // the check before we do the actual allocation. The reason for doing it
 861   // before the allocation is that we avoid having to keep track of the newly
 862   // allocated memory while we do a GC.
 863   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 864                                            word_size)) {
 865     collect(GCCause::_g1_humongous_allocation);
 866   }
 867 
 868   // We will loop until a) we manage to successfully perform the
 869   // allocation or b) we successfully schedule a collection which
 870   // fails to perform the allocation. b) is the only case when we'll
 871   // return NULL.
 872   HeapWord* result = NULL;
 873   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 874     bool should_try_gc;
 875     uint gc_count_before;
 876 
 877 
 878     {
 879       MutexLockerEx x(Heap_lock);
 880 
 881       // Given that humongous objects are not allocated in young
 882       // regions, we'll first try to do the allocation without doing a
 883       // collection hoping that there's enough space in the heap.
 884       result = humongous_obj_allocate(word_size);
 885       if (result != NULL) {
 886         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 887         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 888         return result;
 889       }
 890 
 891       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 892       // the GCLocker initiated GC has been performed and then retry. This includes
 893       // the case when the GC Locker is not active but has not been performed.
 894       should_try_gc = !GCLocker::needs_gc();
 895       // Read the GC count while still holding the Heap_lock.
 896       gc_count_before = total_collections();
 897     }
 898 
 899     if (should_try_gc) {
 900       bool succeeded;
 901       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 902                                    GCCause::_g1_humongous_allocation);
 903       if (result != NULL) {
 904         assert(succeeded, "only way to get back a non-NULL result");
 905         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 906                              Thread::current()->name(), p2i(result));
 907         return result;
 908       }
 909 
 910       if (succeeded) {
 911         // We successfully scheduled a collection which failed to allocate. No
 912         // point in trying to allocate further. We'll just return NULL.
 913         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 914                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 915         return NULL;
 916       }
 917       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 918                            Thread::current()->name(), word_size);
 919     } else {
 920       // Failed to schedule a collection.
 921       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 922         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 923                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 924         return NULL;
 925       }
 926       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 927       // The GCLocker is either active or the GCLocker initiated
 928       // GC has not yet been performed. Stall until it is and
 929       // then retry the allocation.
 930       GCLocker::stall_until_clear();
 931       gclocker_retry_count += 1;
 932     }
 933 
 934 
 935     // We can reach here if we were unsuccessful in scheduling a
 936     // collection (because another thread beat us to it) or if we were
 937     // stalled due to the GC locker. In either can we should retry the
 938     // allocation attempt in case another thread successfully
 939     // performed a collection and reclaimed enough space.
 940     // Humongous object allocation always needs a lock, so we wait for the retry
 941     // in the next iteration of the loop, unlike for the regular iteration case.
 942     // Give a warning if we seem to be looping forever.
 943 
 944     if ((QueuedAllocationWarningCount > 0) &&
 945         (try_count % QueuedAllocationWarningCount == 0)) {
 946       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 947                              Thread::current()->name(), try_count, word_size);
 948     }
 949   }
 950 
 951   ShouldNotReachHere();
 952   return NULL;
 953 }
 954 
 955 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 956                                                            bool expect_null_mutator_alloc_region) {
 957   assert_at_safepoint_on_vm_thread();
 958   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 959          "the current alloc region was unexpectedly found to be non-NULL");
 960 
 961   if (!is_humongous(word_size)) {
 962     return _allocator->attempt_allocation_locked(word_size);
 963   } else {
 964     HeapWord* result = humongous_obj_allocate(word_size);
 965     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 966       collector_state()->set_initiate_conc_mark_if_possible(true);
 967     }
 968     return result;
 969   }
 970 
 971   ShouldNotReachHere();
 972 }
 973 
 974 class PostCompactionPrinterClosure: public HeapRegionClosure {
 975 private:
 976   G1HRPrinter* _hr_printer;
 977 public:
 978   bool do_heap_region(HeapRegion* hr) {
 979     assert(!hr->is_young(), "not expecting to find young regions");
 980     _hr_printer->post_compaction(hr);
 981     return false;
 982   }
 983 
 984   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 985     : _hr_printer(hr_printer) { }
 986 };
 987 
 988 void G1CollectedHeap::print_hrm_post_compaction() {
 989   if (_hr_printer.is_active()) {
 990     PostCompactionPrinterClosure cl(hr_printer());
 991     heap_region_iterate(&cl);
 992   }
 993 }
 994 
 995 void G1CollectedHeap::abort_concurrent_cycle() {
 996   // If we start the compaction before the CM threads finish
 997   // scanning the root regions we might trip them over as we'll
 998   // be moving objects / updating references. So let's wait until
 999   // they are done. By telling them to abort, they should complete
1000   // early.
1001   _cm->root_regions()->abort();
1002   _cm->root_regions()->wait_until_scan_finished();
1003 
1004   // Disable discovery and empty the discovered lists
1005   // for the CM ref processor.
1006   _ref_processor_cm->disable_discovery();
1007   _ref_processor_cm->abandon_partial_discovery();
1008   _ref_processor_cm->verify_no_references_recorded();
1009 
1010   // Abandon current iterations of concurrent marking and concurrent
1011   // refinement, if any are in progress.
1012   concurrent_mark()->concurrent_cycle_abort();
1013 }
1014 
1015 void G1CollectedHeap::prepare_heap_for_full_collection() {
1016   // Make sure we'll choose a new allocation region afterwards.
1017   _allocator->release_mutator_alloc_region();
1018   _allocator->abandon_gc_alloc_regions();
1019   g1_rem_set()->cleanupHRRS();
1020 
1021   // We may have added regions to the current incremental collection
1022   // set between the last GC or pause and now. We need to clear the
1023   // incremental collection set and then start rebuilding it afresh
1024   // after this full GC.
1025   abandon_collection_set(collection_set());
1026 
1027   tear_down_region_sets(false /* free_list_only */);
1028 }
1029 
1030 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1031   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1032   assert(used() == recalculate_used(), "Should be equal");
1033   _verifier->verify_region_sets_optional();
1034   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1035   _verifier->check_bitmaps("Full GC Start");
1036 }
1037 
1038 void G1CollectedHeap::prepare_heap_for_mutators() {
1039   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1040   ClassLoaderDataGraph::purge();
1041   MetaspaceUtils::verify_metrics();
1042 
1043   // Prepare heap for normal collections.
1044   assert(num_free_regions() == 0, "we should not have added any free regions");
1045   rebuild_region_sets(false /* free_list_only */);
1046   abort_refinement();
1047   resize_if_necessary_after_full_collection();
1048 
1049   // Rebuild the strong code root lists for each region
1050   rebuild_strong_code_roots();
1051 
1052   // Start a new incremental collection set for the next pause
1053   start_new_collection_set();
1054 
1055   _allocator->init_mutator_alloc_region();
1056 
1057   // Post collection state updates.
1058   MetaspaceGC::compute_new_size();
1059 }
1060 
1061 void G1CollectedHeap::abort_refinement() {
1062   if (_hot_card_cache->use_cache()) {
1063     _hot_card_cache->reset_hot_cache();
1064   }
1065 
1066   // Discard all remembered set updates.
1067   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1068   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1069 }
1070 
1071 void G1CollectedHeap::verify_after_full_collection() {
1072   _hrm.verify_optional();
1073   _verifier->verify_region_sets_optional();
1074   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1075   // Clear the previous marking bitmap, if needed for bitmap verification.
1076   // Note we cannot do this when we clear the next marking bitmap in
1077   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1078   // objects marked during a full GC against the previous bitmap.
1079   // But we need to clear it before calling check_bitmaps below since
1080   // the full GC has compacted objects and updated TAMS but not updated
1081   // the prev bitmap.
1082   if (G1VerifyBitmaps) {
1083     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1084     _cm->clear_prev_bitmap(workers());
1085   }
1086   _verifier->check_bitmaps("Full GC End");
1087 
1088   // At this point there should be no regions in the
1089   // entire heap tagged as young.
1090   assert(check_young_list_empty(), "young list should be empty at this point");
1091 
1092   // Note: since we've just done a full GC, concurrent
1093   // marking is no longer active. Therefore we need not
1094   // re-enable reference discovery for the CM ref processor.
1095   // That will be done at the start of the next marking cycle.
1096   // We also know that the STW processor should no longer
1097   // discover any new references.
1098   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1099   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1100   _ref_processor_stw->verify_no_references_recorded();
1101   _ref_processor_cm->verify_no_references_recorded();
1102 }
1103 
1104 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1105   // Post collection logging.
1106   // We should do this after we potentially resize the heap so
1107   // that all the COMMIT / UNCOMMIT events are generated before
1108   // the compaction events.
1109   print_hrm_post_compaction();
1110   heap_transition->print();
1111   print_heap_after_gc();
1112   print_heap_regions();
1113 #ifdef TRACESPINNING
1114   ParallelTaskTerminator::print_termination_counts();
1115 #endif
1116 }
1117 
1118 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1119                                          bool clear_all_soft_refs) {
1120   assert_at_safepoint_on_vm_thread();
1121 
1122   if (GCLocker::check_active_before_gc()) {
1123     // Full GC was not completed.
1124     return false;
1125   }
1126 
1127   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1128       soft_ref_policy()->should_clear_all_soft_refs();
1129 
1130   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1131   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1132 
1133   collector.prepare_collection();
1134   collector.collect();
1135   collector.complete_collection();
1136 
1137   // Full collection was successfully completed.
1138   return true;
1139 }
1140 
1141 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1142   // Currently, there is no facility in the do_full_collection(bool) API to notify
1143   // the caller that the collection did not succeed (e.g., because it was locked
1144   // out by the GC locker). So, right now, we'll ignore the return value.
1145   bool dummy = do_full_collection(true,                /* explicit_gc */
1146                                   clear_all_soft_refs);
1147 }
1148 
1149 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1150   // Capacity, free and used after the GC counted as full regions to
1151   // include the waste in the following calculations.
1152   const size_t capacity_after_gc = capacity();
1153   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1154 
1155   // This is enforced in arguments.cpp.
1156   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1157          "otherwise the code below doesn't make sense");
1158 
1159   // We don't have floating point command-line arguments
1160   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1161   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1162   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1163   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1164 
1165   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1166   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1167 
1168   // We have to be careful here as these two calculations can overflow
1169   // 32-bit size_t's.
1170   double used_after_gc_d = (double) used_after_gc;
1171   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1172   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1173 
1174   // Let's make sure that they are both under the max heap size, which
1175   // by default will make them fit into a size_t.
1176   double desired_capacity_upper_bound = (double) max_heap_size;
1177   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1178                                     desired_capacity_upper_bound);
1179   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1180                                     desired_capacity_upper_bound);
1181 
1182   // We can now safely turn them into size_t's.
1183   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1184   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1185 
1186   // This assert only makes sense here, before we adjust them
1187   // with respect to the min and max heap size.
1188   assert(minimum_desired_capacity <= maximum_desired_capacity,
1189          "minimum_desired_capacity = " SIZE_FORMAT ", "
1190          "maximum_desired_capacity = " SIZE_FORMAT,
1191          minimum_desired_capacity, maximum_desired_capacity);
1192 
1193   // Should not be greater than the heap max size. No need to adjust
1194   // it with respect to the heap min size as it's a lower bound (i.e.,
1195   // we'll try to make the capacity larger than it, not smaller).
1196   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1197   // Should not be less than the heap min size. No need to adjust it
1198   // with respect to the heap max size as it's an upper bound (i.e.,
1199   // we'll try to make the capacity smaller than it, not greater).
1200   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1201 
1202   if (capacity_after_gc < minimum_desired_capacity) {
1203     // Don't expand unless it's significant
1204     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1205 
1206     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1207                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1208                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1209                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1210 
1211     expand(expand_bytes, _workers);
1212 
1213     // No expansion, now see if we want to shrink
1214   } else if (capacity_after_gc > maximum_desired_capacity) {
1215     // Capacity too large, compute shrinking size
1216     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1217 
1218     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1219                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1220                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1221                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1222 
1223     shrink(shrink_bytes);
1224   }
1225 }
1226 
1227 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1228                                                             bool do_gc,
1229                                                             bool clear_all_soft_refs,
1230                                                             bool expect_null_mutator_alloc_region,
1231                                                             bool* gc_succeeded) {
1232   *gc_succeeded = true;
1233   // Let's attempt the allocation first.
1234   HeapWord* result =
1235     attempt_allocation_at_safepoint(word_size,
1236                                     expect_null_mutator_alloc_region);
1237   if (result != NULL) {
1238     return result;
1239   }
1240 
1241   // In a G1 heap, we're supposed to keep allocation from failing by
1242   // incremental pauses.  Therefore, at least for now, we'll favor
1243   // expansion over collection.  (This might change in the future if we can
1244   // do something smarter than full collection to satisfy a failed alloc.)
1245   result = expand_and_allocate(word_size);
1246   if (result != NULL) {
1247     return result;
1248   }
1249 
1250   if (do_gc) {
1251     // Expansion didn't work, we'll try to do a Full GC.
1252     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1253                                        clear_all_soft_refs);
1254   }
1255 
1256   return NULL;
1257 }
1258 
1259 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1260                                                      bool* succeeded) {
1261   assert_at_safepoint_on_vm_thread();
1262 
1263   // Attempts to allocate followed by Full GC.
1264   HeapWord* result =
1265     satisfy_failed_allocation_helper(word_size,
1266                                      true,  /* do_gc */
1267                                      false, /* clear_all_soft_refs */
1268                                      false, /* expect_null_mutator_alloc_region */
1269                                      succeeded);
1270 
1271   if (result != NULL || !*succeeded) {
1272     return result;
1273   }
1274 
1275   // Attempts to allocate followed by Full GC that will collect all soft references.
1276   result = satisfy_failed_allocation_helper(word_size,
1277                                             true, /* do_gc */
1278                                             true, /* clear_all_soft_refs */
1279                                             true, /* expect_null_mutator_alloc_region */
1280                                             succeeded);
1281 
1282   if (result != NULL || !*succeeded) {
1283     return result;
1284   }
1285 
1286   // Attempts to allocate, no GC
1287   result = satisfy_failed_allocation_helper(word_size,
1288                                             false, /* do_gc */
1289                                             false, /* clear_all_soft_refs */
1290                                             true,  /* expect_null_mutator_alloc_region */
1291                                             succeeded);
1292 
1293   if (result != NULL) {
1294     return result;
1295   }
1296 
1297   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1298          "Flag should have been handled and cleared prior to this point");
1299 
1300   // What else?  We might try synchronous finalization later.  If the total
1301   // space available is large enough for the allocation, then a more
1302   // complete compaction phase than we've tried so far might be
1303   // appropriate.
1304   return NULL;
1305 }
1306 
1307 // Attempting to expand the heap sufficiently
1308 // to support an allocation of the given "word_size".  If
1309 // successful, perform the allocation and return the address of the
1310 // allocated block, or else "NULL".
1311 
1312 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1313   assert_at_safepoint_on_vm_thread();
1314 
1315   _verifier->verify_region_sets_optional();
1316 
1317   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1318   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1319                             word_size * HeapWordSize);
1320 
1321 
1322   if (expand(expand_bytes, _workers)) {
1323     _hrm.verify_optional();
1324     _verifier->verify_region_sets_optional();
1325     return attempt_allocation_at_safepoint(word_size,
1326                                            false /* expect_null_mutator_alloc_region */);
1327   }
1328   return NULL;
1329 }
1330 
1331 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1332   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1333   aligned_expand_bytes = align_up(aligned_expand_bytes,
1334                                        HeapRegion::GrainBytes);
1335 
1336   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1337                             expand_bytes, aligned_expand_bytes);
1338 
1339   if (is_maximal_no_gc()) {
1340     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1341     return false;
1342   }
1343 
1344   double expand_heap_start_time_sec = os::elapsedTime();
1345   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1346   assert(regions_to_expand > 0, "Must expand by at least one region");
1347 
1348   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1349   if (expand_time_ms != NULL) {
1350     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1351   }
1352 
1353   if (expanded_by > 0) {
1354     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1355     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1356     g1_policy()->record_new_heap_size(num_regions());
1357   } else {
1358     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1359 
1360     // The expansion of the virtual storage space was unsuccessful.
1361     // Let's see if it was because we ran out of swap.
1362     if (G1ExitOnExpansionFailure &&
1363         _hrm.available() >= regions_to_expand) {
1364       // We had head room...
1365       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1366     }
1367   }
1368   return regions_to_expand > 0;
1369 }
1370 
1371 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1372   size_t aligned_shrink_bytes =
1373     ReservedSpace::page_align_size_down(shrink_bytes);
1374   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1375                                          HeapRegion::GrainBytes);
1376   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1377 
1378   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1379   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1380 
1381 
1382   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1383                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1384   if (num_regions_removed > 0) {
1385     g1_policy()->record_new_heap_size(num_regions());
1386   } else {
1387     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1388   }
1389 }
1390 
1391 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1392   _verifier->verify_region_sets_optional();
1393 
1394   // We should only reach here at the end of a Full GC which means we
1395   // should not not be holding to any GC alloc regions. The method
1396   // below will make sure of that and do any remaining clean up.
1397   _allocator->abandon_gc_alloc_regions();
1398 
1399   // Instead of tearing down / rebuilding the free lists here, we
1400   // could instead use the remove_all_pending() method on free_list to
1401   // remove only the ones that we need to remove.
1402   tear_down_region_sets(true /* free_list_only */);
1403   shrink_helper(shrink_bytes);
1404   rebuild_region_sets(true /* free_list_only */);
1405 
1406   _hrm.verify_optional();
1407   _verifier->verify_region_sets_optional();
1408 }
1409 
1410 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1411   CollectedHeap(),
1412   _young_gen_sampling_thread(NULL),
1413   _workers(NULL),
1414   _collector_policy(collector_policy),
1415   _card_table(NULL),
1416   _soft_ref_policy(),
1417   _memory_manager("G1 Young Generation", "end of minor GC"),
1418   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1419   _eden_pool(NULL),
1420   _survivor_pool(NULL),
1421   _old_pool(NULL),
1422   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1423   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1424   _bot(NULL),
1425   _listener(),
1426   _hrm(),
1427   _allocator(NULL),
1428   _verifier(NULL),
1429   _summary_bytes_used(0),
1430   _archive_allocator(NULL),
1431   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1432   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1433   _expand_heap_after_alloc_failure(true),
1434   _g1mm(NULL),
1435   _humongous_reclaim_candidates(),
1436   _has_humongous_reclaim_candidates(false),
1437   _hr_printer(),
1438   _collector_state(),
1439   _old_marking_cycles_started(0),
1440   _old_marking_cycles_completed(0),
1441   _eden(),
1442   _survivor(),
1443   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1444   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1445   _g1_policy(new G1Policy(_gc_timer_stw)),
1446   _heap_sizing_policy(NULL),
1447   _collection_set(this, _g1_policy),
1448   _hot_card_cache(NULL),
1449   _g1_rem_set(NULL),
1450   _dirty_card_queue_set(false),
1451   _cm(NULL),
1452   _cm_thread(NULL),
1453   _cr(NULL),
1454   _task_queues(NULL),
1455   _evacuation_failed(false),
1456   _evacuation_failed_info_array(NULL),
1457   _preserved_marks_set(true /* in_c_heap */),
1458 #ifndef PRODUCT
1459   _evacuation_failure_alot_for_current_gc(false),
1460   _evacuation_failure_alot_gc_number(0),
1461   _evacuation_failure_alot_count(0),
1462 #endif
1463   _ref_processor_stw(NULL),
1464   _is_alive_closure_stw(this),
1465   _is_subject_to_discovery_stw(this),
1466   _ref_processor_cm(NULL),
1467   _is_alive_closure_cm(this),
1468   _is_subject_to_discovery_cm(this),
1469   _in_cset_fast_test() {
1470 
1471   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1472                           true /* are_GC_task_threads */,
1473                           false /* are_ConcurrentGC_threads */);
1474   _workers->initialize_workers();
1475   _verifier = new G1HeapVerifier(this);
1476 
1477   _allocator = new G1Allocator(this);
1478 
1479   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1480 
1481   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1482 
1483   // Override the default _filler_array_max_size so that no humongous filler
1484   // objects are created.
1485   _filler_array_max_size = _humongous_object_threshold_in_words;
1486 
1487   uint n_queues = ParallelGCThreads;
1488   _task_queues = new RefToScanQueueSet(n_queues);
1489 
1490   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1491 
1492   for (uint i = 0; i < n_queues; i++) {
1493     RefToScanQueue* q = new RefToScanQueue();
1494     q->initialize();
1495     _task_queues->register_queue(i, q);
1496     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1497   }
1498 
1499   // Initialize the G1EvacuationFailureALot counters and flags.
1500   NOT_PRODUCT(reset_evacuation_should_fail();)
1501 
1502   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1503 }
1504 
1505 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1506                                                                  size_t size,
1507                                                                  size_t translation_factor) {
1508   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1509   // Allocate a new reserved space, preferring to use large pages.
1510   ReservedSpace rs(size, preferred_page_size);
1511   G1RegionToSpaceMapper* result  =
1512     G1RegionToSpaceMapper::create_mapper(rs,
1513                                          size,
1514                                          rs.alignment(),
1515                                          HeapRegion::GrainBytes,
1516                                          translation_factor,
1517                                          mtGC);
1518 
1519   os::trace_page_sizes_for_requested_size(description,
1520                                           size,
1521                                           preferred_page_size,
1522                                           rs.alignment(),
1523                                           rs.base(),
1524                                           rs.size());
1525 
1526   return result;
1527 }
1528 
1529 jint G1CollectedHeap::initialize_concurrent_refinement() {
1530   jint ecode = JNI_OK;
1531   _cr = G1ConcurrentRefine::create(&ecode);
1532   return ecode;
1533 }
1534 
1535 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1536   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1537   if (_young_gen_sampling_thread->osthread() == NULL) {
1538     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1539     return JNI_ENOMEM;
1540   }
1541   return JNI_OK;
1542 }
1543 
1544 jint G1CollectedHeap::initialize() {
1545   os::enable_vtime();
1546 
1547   // Necessary to satisfy locking discipline assertions.
1548 
1549   MutexLocker x(Heap_lock);
1550 
1551   // While there are no constraints in the GC code that HeapWordSize
1552   // be any particular value, there are multiple other areas in the
1553   // system which believe this to be true (e.g. oop->object_size in some
1554   // cases incorrectly returns the size in wordSize units rather than
1555   // HeapWordSize).
1556   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1557 
1558   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1559   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1560   size_t heap_alignment = collector_policy()->heap_alignment();
1561 
1562   // Ensure that the sizes are properly aligned.
1563   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1564   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1565   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1566 
1567   // Reserve the maximum.
1568 
1569   // When compressed oops are enabled, the preferred heap base
1570   // is calculated by subtracting the requested size from the
1571   // 32Gb boundary and using the result as the base address for
1572   // heap reservation. If the requested size is not aligned to
1573   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1574   // into the ReservedHeapSpace constructor) then the actual
1575   // base of the reserved heap may end up differing from the
1576   // address that was requested (i.e. the preferred heap base).
1577   // If this happens then we could end up using a non-optimal
1578   // compressed oops mode.
1579 
1580   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1581                                                  heap_alignment);
1582 
1583   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1584 
1585   // Create the barrier set for the entire reserved region.
1586   G1CardTable* ct = new G1CardTable(reserved_region());
1587   ct->initialize();
1588   G1BarrierSet* bs = new G1BarrierSet(ct);
1589   bs->initialize();
1590   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1591   BarrierSet::set_barrier_set(bs);
1592   _card_table = ct;
1593 
1594   // Create the hot card cache.
1595   _hot_card_cache = new G1HotCardCache(this);
1596 
1597   // Carve out the G1 part of the heap.
1598   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1599   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1600   G1RegionToSpaceMapper* heap_storage =
1601     G1RegionToSpaceMapper::create_mapper(g1_rs,
1602                                          g1_rs.size(),
1603                                          page_size,
1604                                          HeapRegion::GrainBytes,
1605                                          1,
1606                                          mtJavaHeap);
1607   os::trace_page_sizes("Heap",
1608                        collector_policy()->min_heap_byte_size(),
1609                        max_byte_size,
1610                        page_size,
1611                        heap_rs.base(),
1612                        heap_rs.size());
1613   heap_storage->set_mapping_changed_listener(&_listener);
1614 
1615   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1616   G1RegionToSpaceMapper* bot_storage =
1617     create_aux_memory_mapper("Block Offset Table",
1618                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1619                              G1BlockOffsetTable::heap_map_factor());
1620 
1621   G1RegionToSpaceMapper* cardtable_storage =
1622     create_aux_memory_mapper("Card Table",
1623                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1624                              G1CardTable::heap_map_factor());
1625 
1626   G1RegionToSpaceMapper* card_counts_storage =
1627     create_aux_memory_mapper("Card Counts Table",
1628                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1629                              G1CardCounts::heap_map_factor());
1630 
1631   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1632   G1RegionToSpaceMapper* prev_bitmap_storage =
1633     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1634   G1RegionToSpaceMapper* next_bitmap_storage =
1635     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1636 
1637   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1638   _card_table->initialize(cardtable_storage);
1639   // Do later initialization work for concurrent refinement.
1640   _hot_card_cache->initialize(card_counts_storage);
1641 
1642   // 6843694 - ensure that the maximum region index can fit
1643   // in the remembered set structures.
1644   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1645   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1646 
1647   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1648   // start within the first card.
1649   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1650   // Also create a G1 rem set.
1651   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1652   _g1_rem_set->initialize(max_capacity(), max_regions());
1653 
1654   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1655   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1656   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1657             "too many cards per region");
1658 
1659   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1660 
1661   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1662 
1663   {
1664     HeapWord* start = _hrm.reserved().start();
1665     HeapWord* end = _hrm.reserved().end();
1666     size_t granularity = HeapRegion::GrainBytes;
1667 
1668     _in_cset_fast_test.initialize(start, end, granularity);
1669     _humongous_reclaim_candidates.initialize(start, end, granularity);
1670   }
1671 
1672   // Create the G1ConcurrentMark data structure and thread.
1673   // (Must do this late, so that "max_regions" is defined.)
1674   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1675   if (_cm == NULL || !_cm->completed_initialization()) {
1676     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1677     return JNI_ENOMEM;
1678   }
1679   _cm_thread = _cm->cm_thread();
1680 
1681   // Now expand into the initial heap size.
1682   if (!expand(init_byte_size, _workers)) {
1683     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1684     return JNI_ENOMEM;
1685   }
1686 
1687   // Perform any initialization actions delegated to the policy.
1688   g1_policy()->init(this, &_collection_set);
1689 
1690   G1SATBMarkQueueFilter* satb_filter = new G1SATBMarkQueueFilter(this);
1691   G1BarrierSet::satb_mark_queue_set().initialize(satb_filter,
1692                                                  SATB_Q_CBL_mon,
1693                                                  SATB_Q_FL_lock,
1694                                                  G1SATBProcessCompletedThreshold,
1695                                                  Shared_SATB_Q_lock);
1696 
1697   jint ecode = initialize_concurrent_refinement();
1698   if (ecode != JNI_OK) {
1699     return ecode;
1700   }
1701 
1702   ecode = initialize_young_gen_sampling_thread();
1703   if (ecode != JNI_OK) {
1704     return ecode;
1705   }
1706 
1707   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1708                                                   DirtyCardQ_FL_lock,
1709                                                   (int)concurrent_refine()->yellow_zone(),
1710                                                   (int)concurrent_refine()->red_zone(),
1711                                                   Shared_DirtyCardQ_lock,
1712                                                   NULL,  // fl_owner
1713                                                   true); // init_free_ids
1714 
1715   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1716                                     DirtyCardQ_FL_lock,
1717                                     -1, // never trigger processing
1718                                     -1, // no limit on length
1719                                     Shared_DirtyCardQ_lock,
1720                                     &G1BarrierSet::dirty_card_queue_set());
1721 
1722   // Here we allocate the dummy HeapRegion that is required by the
1723   // G1AllocRegion class.
1724   HeapRegion* dummy_region = _hrm.get_dummy_region();
1725 
1726   // We'll re-use the same region whether the alloc region will
1727   // require BOT updates or not and, if it doesn't, then a non-young
1728   // region will complain that it cannot support allocations without
1729   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1730   dummy_region->set_eden();
1731   // Make sure it's full.
1732   dummy_region->set_top(dummy_region->end());
1733   G1AllocRegion::setup(this, dummy_region);
1734 
1735   _allocator->init_mutator_alloc_region();
1736 
1737   // Do create of the monitoring and management support so that
1738   // values in the heap have been properly initialized.
1739   _g1mm = new G1MonitoringSupport(this);
1740 
1741   G1StringDedup::initialize();
1742 
1743   _preserved_marks_set.init(ParallelGCThreads);
1744 
1745   _collection_set.initialize(max_regions());
1746 
1747   return JNI_OK;
1748 }
1749 
1750 void G1CollectedHeap::initialize_serviceability() {
1751   _eden_pool = new G1EdenPool(this);
1752   _survivor_pool = new G1SurvivorPool(this);
1753   _old_pool = new G1OldGenPool(this);
1754 
1755   _full_gc_memory_manager.add_pool(_eden_pool);
1756   _full_gc_memory_manager.add_pool(_survivor_pool);
1757   _full_gc_memory_manager.add_pool(_old_pool);
1758 
1759   _memory_manager.add_pool(_eden_pool);
1760   _memory_manager.add_pool(_survivor_pool);
1761   _memory_manager.add_pool(_old_pool, false /* always_affected_by_gc */);
1762 }
1763 
1764 void G1CollectedHeap::stop() {
1765   // Stop all concurrent threads. We do this to make sure these threads
1766   // do not continue to execute and access resources (e.g. logging)
1767   // that are destroyed during shutdown.
1768   _cr->stop();
1769   _young_gen_sampling_thread->stop();
1770   _cm_thread->stop();
1771   if (G1StringDedup::is_enabled()) {
1772     G1StringDedup::stop();
1773   }
1774 }
1775 
1776 void G1CollectedHeap::safepoint_synchronize_begin() {
1777   SuspendibleThreadSet::synchronize();
1778 }
1779 
1780 void G1CollectedHeap::safepoint_synchronize_end() {
1781   SuspendibleThreadSet::desynchronize();
1782 }
1783 
1784 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1785   return HeapRegion::max_region_size();
1786 }
1787 
1788 void G1CollectedHeap::post_initialize() {
1789   CollectedHeap::post_initialize();
1790   ref_processing_init();
1791 }
1792 
1793 void G1CollectedHeap::ref_processing_init() {
1794   // Reference processing in G1 currently works as follows:
1795   //
1796   // * There are two reference processor instances. One is
1797   //   used to record and process discovered references
1798   //   during concurrent marking; the other is used to
1799   //   record and process references during STW pauses
1800   //   (both full and incremental).
1801   // * Both ref processors need to 'span' the entire heap as
1802   //   the regions in the collection set may be dotted around.
1803   //
1804   // * For the concurrent marking ref processor:
1805   //   * Reference discovery is enabled at initial marking.
1806   //   * Reference discovery is disabled and the discovered
1807   //     references processed etc during remarking.
1808   //   * Reference discovery is MT (see below).
1809   //   * Reference discovery requires a barrier (see below).
1810   //   * Reference processing may or may not be MT
1811   //     (depending on the value of ParallelRefProcEnabled
1812   //     and ParallelGCThreads).
1813   //   * A full GC disables reference discovery by the CM
1814   //     ref processor and abandons any entries on it's
1815   //     discovered lists.
1816   //
1817   // * For the STW processor:
1818   //   * Non MT discovery is enabled at the start of a full GC.
1819   //   * Processing and enqueueing during a full GC is non-MT.
1820   //   * During a full GC, references are processed after marking.
1821   //
1822   //   * Discovery (may or may not be MT) is enabled at the start
1823   //     of an incremental evacuation pause.
1824   //   * References are processed near the end of a STW evacuation pause.
1825   //   * For both types of GC:
1826   //     * Discovery is atomic - i.e. not concurrent.
1827   //     * Reference discovery will not need a barrier.
1828 
1829   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1830 
1831   // Concurrent Mark ref processor
1832   _ref_processor_cm =
1833     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1834                            mt_processing,                                  // mt processing
1835                            ParallelGCThreads,                              // degree of mt processing
1836                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1837                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1838                            false,                                          // Reference discovery is not atomic
1839                            &_is_alive_closure_cm,                          // is alive closure
1840                            true);                                          // allow changes to number of processing threads
1841 
1842   // STW ref processor
1843   _ref_processor_stw =
1844     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1845                            mt_processing,                        // mt processing
1846                            ParallelGCThreads,                    // degree of mt processing
1847                            (ParallelGCThreads > 1),              // mt discovery
1848                            ParallelGCThreads,                    // degree of mt discovery
1849                            true,                                 // Reference discovery is atomic
1850                            &_is_alive_closure_stw,               // is alive closure
1851                            true);                                // allow changes to number of processing threads
1852 }
1853 
1854 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1855   return _collector_policy;
1856 }
1857 
1858 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1859   return &_soft_ref_policy;
1860 }
1861 
1862 size_t G1CollectedHeap::capacity() const {
1863   return _hrm.length() * HeapRegion::GrainBytes;
1864 }
1865 
1866 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1867   return _hrm.total_free_bytes();
1868 }
1869 
1870 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1871   _hot_card_cache->drain(cl, worker_i);
1872 }
1873 
1874 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1875   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1876   size_t n_completed_buffers = 0;
1877   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1878     n_completed_buffers++;
1879   }
1880   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1881   dcqs.clear_n_completed_buffers();
1882   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1883 }
1884 
1885 // Computes the sum of the storage used by the various regions.
1886 size_t G1CollectedHeap::used() const {
1887   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1888   if (_archive_allocator != NULL) {
1889     result += _archive_allocator->used();
1890   }
1891   return result;
1892 }
1893 
1894 size_t G1CollectedHeap::used_unlocked() const {
1895   return _summary_bytes_used;
1896 }
1897 
1898 class SumUsedClosure: public HeapRegionClosure {
1899   size_t _used;
1900 public:
1901   SumUsedClosure() : _used(0) {}
1902   bool do_heap_region(HeapRegion* r) {
1903     _used += r->used();
1904     return false;
1905   }
1906   size_t result() { return _used; }
1907 };
1908 
1909 size_t G1CollectedHeap::recalculate_used() const {
1910   double recalculate_used_start = os::elapsedTime();
1911 
1912   SumUsedClosure blk;
1913   heap_region_iterate(&blk);
1914 
1915   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1916   return blk.result();
1917 }
1918 
1919 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1920   switch (cause) {
1921     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1922     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1923     case GCCause::_wb_conc_mark:                        return true;
1924     default :                                           return false;
1925   }
1926 }
1927 
1928 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1929   switch (cause) {
1930     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1931     case GCCause::_g1_humongous_allocation: return true;
1932     default:                                return is_user_requested_concurrent_full_gc(cause);
1933   }
1934 }
1935 
1936 #ifndef PRODUCT
1937 void G1CollectedHeap::allocate_dummy_regions() {
1938   // Let's fill up most of the region
1939   size_t word_size = HeapRegion::GrainWords - 1024;
1940   // And as a result the region we'll allocate will be humongous.
1941   guarantee(is_humongous(word_size), "sanity");
1942 
1943   // _filler_array_max_size is set to humongous object threshold
1944   // but temporarily change it to use CollectedHeap::fill_with_object().
1945   SizeTFlagSetting fs(_filler_array_max_size, word_size);
1946 
1947   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1948     // Let's use the existing mechanism for the allocation
1949     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1950     if (dummy_obj != NULL) {
1951       MemRegion mr(dummy_obj, word_size);
1952       CollectedHeap::fill_with_object(mr);
1953     } else {
1954       // If we can't allocate once, we probably cannot allocate
1955       // again. Let's get out of the loop.
1956       break;
1957     }
1958   }
1959 }
1960 #endif // !PRODUCT
1961 
1962 void G1CollectedHeap::increment_old_marking_cycles_started() {
1963   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1964          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1965          "Wrong marking cycle count (started: %d, completed: %d)",
1966          _old_marking_cycles_started, _old_marking_cycles_completed);
1967 
1968   _old_marking_cycles_started++;
1969 }
1970 
1971 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
1972   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
1973 
1974   // We assume that if concurrent == true, then the caller is a
1975   // concurrent thread that was joined the Suspendible Thread
1976   // Set. If there's ever a cheap way to check this, we should add an
1977   // assert here.
1978 
1979   // Given that this method is called at the end of a Full GC or of a
1980   // concurrent cycle, and those can be nested (i.e., a Full GC can
1981   // interrupt a concurrent cycle), the number of full collections
1982   // completed should be either one (in the case where there was no
1983   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1984   // behind the number of full collections started.
1985 
1986   // This is the case for the inner caller, i.e. a Full GC.
1987   assert(concurrent ||
1988          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1989          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1990          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1991          "is inconsistent with _old_marking_cycles_completed = %u",
1992          _old_marking_cycles_started, _old_marking_cycles_completed);
1993 
1994   // This is the case for the outer caller, i.e. the concurrent cycle.
1995   assert(!concurrent ||
1996          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1997          "for outer caller (concurrent cycle): "
1998          "_old_marking_cycles_started = %u "
1999          "is inconsistent with _old_marking_cycles_completed = %u",
2000          _old_marking_cycles_started, _old_marking_cycles_completed);
2001 
2002   _old_marking_cycles_completed += 1;
2003 
2004   // We need to clear the "in_progress" flag in the CM thread before
2005   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2006   // is set) so that if a waiter requests another System.gc() it doesn't
2007   // incorrectly see that a marking cycle is still in progress.
2008   if (concurrent) {
2009     _cm_thread->set_idle();
2010   }
2011 
2012   // This notify_all() will ensure that a thread that called
2013   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2014   // and it's waiting for a full GC to finish will be woken up. It is
2015   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2016   FullGCCount_lock->notify_all();
2017 }
2018 
2019 void G1CollectedHeap::collect(GCCause::Cause cause) {
2020   assert_heap_not_locked();
2021 
2022   uint gc_count_before;
2023   uint old_marking_count_before;
2024   uint full_gc_count_before;
2025   bool retry_gc;
2026 
2027   do {
2028     retry_gc = false;
2029 
2030     {
2031       MutexLocker ml(Heap_lock);
2032 
2033       // Read the GC count while holding the Heap_lock
2034       gc_count_before = total_collections();
2035       full_gc_count_before = total_full_collections();
2036       old_marking_count_before = _old_marking_cycles_started;
2037     }
2038 
2039     if (should_do_concurrent_full_gc(cause)) {
2040       // Schedule an initial-mark evacuation pause that will start a
2041       // concurrent cycle. We're setting word_size to 0 which means that
2042       // we are not requesting a post-GC allocation.
2043       VM_G1CollectForAllocation op(0,     /* word_size */
2044                                    gc_count_before,
2045                                    cause,
2046                                    true,  /* should_initiate_conc_mark */
2047                                    g1_policy()->max_pause_time_ms());
2048       VMThread::execute(&op);
2049       if (!op.pause_succeeded()) {
2050         if (old_marking_count_before == _old_marking_cycles_started) {
2051           retry_gc = op.should_retry_gc();
2052         } else {
2053           // A Full GC happened while we were trying to schedule the
2054           // initial-mark GC. No point in starting a new cycle given
2055           // that the whole heap was collected anyway.
2056         }
2057 
2058         if (retry_gc) {
2059           if (GCLocker::is_active_and_needs_gc()) {
2060             GCLocker::stall_until_clear();
2061           }
2062         }
2063       }
2064     } else {
2065       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2066           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2067 
2068         // Schedule a standard evacuation pause. We're setting word_size
2069         // to 0 which means that we are not requesting a post-GC allocation.
2070         VM_G1CollectForAllocation op(0,     /* word_size */
2071                                      gc_count_before,
2072                                      cause,
2073                                      false, /* should_initiate_conc_mark */
2074                                      g1_policy()->max_pause_time_ms());
2075         VMThread::execute(&op);
2076       } else {
2077         // Schedule a Full GC.
2078         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2079         VMThread::execute(&op);
2080       }
2081     }
2082   } while (retry_gc);
2083 }
2084 
2085 bool G1CollectedHeap::is_in(const void* p) const {
2086   if (_hrm.reserved().contains(p)) {
2087     // Given that we know that p is in the reserved space,
2088     // heap_region_containing() should successfully
2089     // return the containing region.
2090     HeapRegion* hr = heap_region_containing(p);
2091     return hr->is_in(p);
2092   } else {
2093     return false;
2094   }
2095 }
2096 
2097 #ifdef ASSERT
2098 bool G1CollectedHeap::is_in_exact(const void* p) const {
2099   bool contains = reserved_region().contains(p);
2100   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2101   if (contains && available) {
2102     return true;
2103   } else {
2104     return false;
2105   }
2106 }
2107 #endif
2108 
2109 // Iteration functions.
2110 
2111 // Iterates an ObjectClosure over all objects within a HeapRegion.
2112 
2113 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2114   ObjectClosure* _cl;
2115 public:
2116   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2117   bool do_heap_region(HeapRegion* r) {
2118     if (!r->is_continues_humongous()) {
2119       r->object_iterate(_cl);
2120     }
2121     return false;
2122   }
2123 };
2124 
2125 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2126   IterateObjectClosureRegionClosure blk(cl);
2127   heap_region_iterate(&blk);
2128 }
2129 
2130 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2131   _hrm.iterate(cl);
2132 }
2133 
2134 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2135                                                                  HeapRegionClaimer *hrclaimer,
2136                                                                  uint worker_id) const {
2137   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2138 }
2139 
2140 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2141                                                          HeapRegionClaimer *hrclaimer) const {
2142   _hrm.par_iterate(cl, hrclaimer, 0);
2143 }
2144 
2145 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2146   _collection_set.iterate(cl);
2147 }
2148 
2149 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2150   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2151 }
2152 
2153 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2154   HeapRegion* hr = heap_region_containing(addr);
2155   return hr->block_start(addr);
2156 }
2157 
2158 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2159   HeapRegion* hr = heap_region_containing(addr);
2160   return hr->block_size(addr);
2161 }
2162 
2163 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2164   HeapRegion* hr = heap_region_containing(addr);
2165   return hr->block_is_obj(addr);
2166 }
2167 
2168 bool G1CollectedHeap::supports_tlab_allocation() const {
2169   return true;
2170 }
2171 
2172 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2173   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2174 }
2175 
2176 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2177   return _eden.length() * HeapRegion::GrainBytes;
2178 }
2179 
2180 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2181 // must be equal to the humongous object limit.
2182 size_t G1CollectedHeap::max_tlab_size() const {
2183   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2184 }
2185 
2186 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2187   return _allocator->unsafe_max_tlab_alloc();
2188 }
2189 
2190 size_t G1CollectedHeap::max_capacity() const {
2191   return _hrm.reserved().byte_size();
2192 }
2193 
2194 jlong G1CollectedHeap::millis_since_last_gc() {
2195   // See the notes in GenCollectedHeap::millis_since_last_gc()
2196   // for more information about the implementation.
2197   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2198     _g1_policy->collection_pause_end_millis();
2199   if (ret_val < 0) {
2200     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2201       ". returning zero instead.", ret_val);
2202     return 0;
2203   }
2204   return ret_val;
2205 }
2206 
2207 void G1CollectedHeap::deduplicate_string(oop str) {
2208   assert(java_lang_String::is_instance(str), "invariant");
2209 
2210   if (G1StringDedup::is_enabled()) {
2211     G1StringDedup::deduplicate(str);
2212   }
2213 }
2214 
2215 void G1CollectedHeap::prepare_for_verify() {
2216   _verifier->prepare_for_verify();
2217 }
2218 
2219 void G1CollectedHeap::verify(VerifyOption vo) {
2220   _verifier->verify(vo);
2221 }
2222 
2223 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2224   return true;
2225 }
2226 
2227 const char* const* G1CollectedHeap::concurrent_phases() const {
2228   return _cm_thread->concurrent_phases();
2229 }
2230 
2231 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2232   return _cm_thread->request_concurrent_phase(phase);
2233 }
2234 
2235 class PrintRegionClosure: public HeapRegionClosure {
2236   outputStream* _st;
2237 public:
2238   PrintRegionClosure(outputStream* st) : _st(st) {}
2239   bool do_heap_region(HeapRegion* r) {
2240     r->print_on(_st);
2241     return false;
2242   }
2243 };
2244 
2245 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2246                                        const HeapRegion* hr,
2247                                        const VerifyOption vo) const {
2248   switch (vo) {
2249   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2250   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2251   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2252   default:                            ShouldNotReachHere();
2253   }
2254   return false; // keep some compilers happy
2255 }
2256 
2257 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2258                                        const VerifyOption vo) const {
2259   switch (vo) {
2260   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2261   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2262   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2263   default:                            ShouldNotReachHere();
2264   }
2265   return false; // keep some compilers happy
2266 }
2267 
2268 void G1CollectedHeap::print_heap_regions() const {
2269   LogTarget(Trace, gc, heap, region) lt;
2270   if (lt.is_enabled()) {
2271     LogStream ls(lt);
2272     print_regions_on(&ls);
2273   }
2274 }
2275 
2276 void G1CollectedHeap::print_on(outputStream* st) const {
2277   st->print(" %-20s", "garbage-first heap");
2278   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2279             capacity()/K, used_unlocked()/K);
2280   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2281             p2i(_hrm.reserved().start()),
2282             p2i(_hrm.reserved().end()));
2283   st->cr();
2284   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2285   uint young_regions = young_regions_count();
2286   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2287             (size_t) young_regions * HeapRegion::GrainBytes / K);
2288   uint survivor_regions = survivor_regions_count();
2289   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2290             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2291   st->cr();
2292   MetaspaceUtils::print_on(st);
2293 }
2294 
2295 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2296   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2297                "HS=humongous(starts), HC=humongous(continues), "
2298                "CS=collection set, F=free, A=archive, "
2299                "TAMS=top-at-mark-start (previous, next)");
2300   PrintRegionClosure blk(st);
2301   heap_region_iterate(&blk);
2302 }
2303 
2304 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2305   print_on(st);
2306 
2307   // Print the per-region information.
2308   print_regions_on(st);
2309 }
2310 
2311 void G1CollectedHeap::print_on_error(outputStream* st) const {
2312   this->CollectedHeap::print_on_error(st);
2313 
2314   if (_cm != NULL) {
2315     st->cr();
2316     _cm->print_on_error(st);
2317   }
2318 }
2319 
2320 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2321   workers()->print_worker_threads_on(st);
2322   _cm_thread->print_on(st);
2323   st->cr();
2324   _cm->print_worker_threads_on(st);
2325   _cr->print_threads_on(st);
2326   _young_gen_sampling_thread->print_on(st);
2327   if (G1StringDedup::is_enabled()) {
2328     G1StringDedup::print_worker_threads_on(st);
2329   }
2330 }
2331 
2332 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2333   workers()->threads_do(tc);
2334   tc->do_thread(_cm_thread);
2335   _cm->threads_do(tc);
2336   _cr->threads_do(tc);
2337   tc->do_thread(_young_gen_sampling_thread);
2338   if (G1StringDedup::is_enabled()) {
2339     G1StringDedup::threads_do(tc);
2340   }
2341 }
2342 
2343 void G1CollectedHeap::print_tracing_info() const {
2344   g1_rem_set()->print_summary_info();
2345   concurrent_mark()->print_summary_info();
2346 }
2347 
2348 #ifndef PRODUCT
2349 // Helpful for debugging RSet issues.
2350 
2351 class PrintRSetsClosure : public HeapRegionClosure {
2352 private:
2353   const char* _msg;
2354   size_t _occupied_sum;
2355 
2356 public:
2357   bool do_heap_region(HeapRegion* r) {
2358     HeapRegionRemSet* hrrs = r->rem_set();
2359     size_t occupied = hrrs->occupied();
2360     _occupied_sum += occupied;
2361 
2362     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2363     if (occupied == 0) {
2364       tty->print_cr("  RSet is empty");
2365     } else {
2366       hrrs->print();
2367     }
2368     tty->print_cr("----------");
2369     return false;
2370   }
2371 
2372   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2373     tty->cr();
2374     tty->print_cr("========================================");
2375     tty->print_cr("%s", msg);
2376     tty->cr();
2377   }
2378 
2379   ~PrintRSetsClosure() {
2380     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2381     tty->print_cr("========================================");
2382     tty->cr();
2383   }
2384 };
2385 
2386 void G1CollectedHeap::print_cset_rsets() {
2387   PrintRSetsClosure cl("Printing CSet RSets");
2388   collection_set_iterate(&cl);
2389 }
2390 
2391 void G1CollectedHeap::print_all_rsets() {
2392   PrintRSetsClosure cl("Printing All RSets");;
2393   heap_region_iterate(&cl);
2394 }
2395 #endif // PRODUCT
2396 
2397 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2398 
2399   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2400   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2401   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2402 
2403   size_t eden_capacity_bytes =
2404     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2405 
2406   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2407   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2408                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2409 }
2410 
2411 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2412   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2413                        stats->unused(), stats->used(), stats->region_end_waste(),
2414                        stats->regions_filled(), stats->direct_allocated(),
2415                        stats->failure_used(), stats->failure_waste());
2416 }
2417 
2418 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2419   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2420   gc_tracer->report_gc_heap_summary(when, heap_summary);
2421 
2422   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2423   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2424 }
2425 
2426 G1CollectedHeap* G1CollectedHeap::heap() {
2427   CollectedHeap* heap = Universe::heap();
2428   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2429   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2430   return (G1CollectedHeap*)heap;
2431 }
2432 
2433 void G1CollectedHeap::gc_prologue(bool full) {
2434   // always_do_update_barrier = false;
2435   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2436 
2437   // This summary needs to be printed before incrementing total collections.
2438   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2439 
2440   // Update common counters.
2441   increment_total_collections(full /* full gc */);
2442   if (full) {
2443     increment_old_marking_cycles_started();
2444   }
2445 
2446   // Fill TLAB's and such
2447   double start = os::elapsedTime();
2448   accumulate_statistics_all_tlabs();
2449   ensure_parsability(true);
2450   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2451 }
2452 
2453 void G1CollectedHeap::gc_epilogue(bool full) {
2454   // Update common counters.
2455   if (full) {
2456     // Update the number of full collections that have been completed.
2457     increment_old_marking_cycles_completed(false /* concurrent */);
2458   }
2459 
2460   // We are at the end of the GC. Total collections has already been increased.
2461   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2462 
2463   // FIXME: what is this about?
2464   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2465   // is set.
2466 #if COMPILER2_OR_JVMCI
2467   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2468 #endif
2469   // always_do_update_barrier = true;
2470 
2471   double start = os::elapsedTime();
2472   resize_all_tlabs();
2473   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2474 
2475   MemoryService::track_memory_usage();
2476   // We have just completed a GC. Update the soft reference
2477   // policy with the new heap occupancy
2478   Universe::update_heap_info_at_gc();
2479 }
2480 
2481 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2482                                                uint gc_count_before,
2483                                                bool* succeeded,
2484                                                GCCause::Cause gc_cause) {
2485   assert_heap_not_locked_and_not_at_safepoint();
2486   VM_G1CollectForAllocation op(word_size,
2487                                gc_count_before,
2488                                gc_cause,
2489                                false, /* should_initiate_conc_mark */
2490                                g1_policy()->max_pause_time_ms());
2491   VMThread::execute(&op);
2492 
2493   HeapWord* result = op.result();
2494   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2495   assert(result == NULL || ret_succeeded,
2496          "the result should be NULL if the VM did not succeed");
2497   *succeeded = ret_succeeded;
2498 
2499   assert_heap_not_locked();
2500   return result;
2501 }
2502 
2503 void G1CollectedHeap::do_concurrent_mark() {
2504   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2505   if (!_cm_thread->in_progress()) {
2506     _cm_thread->set_started();
2507     CGC_lock->notify();
2508   }
2509 }
2510 
2511 size_t G1CollectedHeap::pending_card_num() {
2512   size_t extra_cards = 0;
2513   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2514     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2515     extra_cards += dcq.size();
2516   }
2517   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2518   size_t buffer_size = dcqs.buffer_size();
2519   size_t buffer_num = dcqs.completed_buffers_num();
2520 
2521   return buffer_size * buffer_num + extra_cards;
2522 }
2523 
2524 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2525   // We don't nominate objects with many remembered set entries, on
2526   // the assumption that such objects are likely still live.
2527   HeapRegionRemSet* rem_set = r->rem_set();
2528 
2529   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2530          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2531          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2532 }
2533 
2534 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2535  private:
2536   size_t _total_humongous;
2537   size_t _candidate_humongous;
2538 
2539   DirtyCardQueue _dcq;
2540 
2541   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2542     assert(region->is_starts_humongous(), "Must start a humongous object");
2543 
2544     oop obj = oop(region->bottom());
2545 
2546     // Dead objects cannot be eager reclaim candidates. Due to class
2547     // unloading it is unsafe to query their classes so we return early.
2548     if (g1h->is_obj_dead(obj, region)) {
2549       return false;
2550     }
2551 
2552     // If we do not have a complete remembered set for the region, then we can
2553     // not be sure that we have all references to it.
2554     if (!region->rem_set()->is_complete()) {
2555       return false;
2556     }
2557     // Candidate selection must satisfy the following constraints
2558     // while concurrent marking is in progress:
2559     //
2560     // * In order to maintain SATB invariants, an object must not be
2561     // reclaimed if it was allocated before the start of marking and
2562     // has not had its references scanned.  Such an object must have
2563     // its references (including type metadata) scanned to ensure no
2564     // live objects are missed by the marking process.  Objects
2565     // allocated after the start of concurrent marking don't need to
2566     // be scanned.
2567     //
2568     // * An object must not be reclaimed if it is on the concurrent
2569     // mark stack.  Objects allocated after the start of concurrent
2570     // marking are never pushed on the mark stack.
2571     //
2572     // Nominating only objects allocated after the start of concurrent
2573     // marking is sufficient to meet both constraints.  This may miss
2574     // some objects that satisfy the constraints, but the marking data
2575     // structures don't support efficiently performing the needed
2576     // additional tests or scrubbing of the mark stack.
2577     //
2578     // However, we presently only nominate is_typeArray() objects.
2579     // A humongous object containing references induces remembered
2580     // set entries on other regions.  In order to reclaim such an
2581     // object, those remembered sets would need to be cleaned up.
2582     //
2583     // We also treat is_typeArray() objects specially, allowing them
2584     // to be reclaimed even if allocated before the start of
2585     // concurrent mark.  For this we rely on mark stack insertion to
2586     // exclude is_typeArray() objects, preventing reclaiming an object
2587     // that is in the mark stack.  We also rely on the metadata for
2588     // such objects to be built-in and so ensured to be kept live.
2589     // Frequent allocation and drop of large binary blobs is an
2590     // important use case for eager reclaim, and this special handling
2591     // may reduce needed headroom.
2592 
2593     return obj->is_typeArray() &&
2594            g1h->is_potential_eager_reclaim_candidate(region);
2595   }
2596 
2597  public:
2598   RegisterHumongousWithInCSetFastTestClosure()
2599   : _total_humongous(0),
2600     _candidate_humongous(0),
2601     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2602   }
2603 
2604   virtual bool do_heap_region(HeapRegion* r) {
2605     if (!r->is_starts_humongous()) {
2606       return false;
2607     }
2608     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2609 
2610     bool is_candidate = humongous_region_is_candidate(g1h, r);
2611     uint rindex = r->hrm_index();
2612     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2613     if (is_candidate) {
2614       _candidate_humongous++;
2615       g1h->register_humongous_region_with_cset(rindex);
2616       // Is_candidate already filters out humongous object with large remembered sets.
2617       // If we have a humongous object with a few remembered sets, we simply flush these
2618       // remembered set entries into the DCQS. That will result in automatic
2619       // re-evaluation of their remembered set entries during the following evacuation
2620       // phase.
2621       if (!r->rem_set()->is_empty()) {
2622         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2623                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2624         G1CardTable* ct = g1h->card_table();
2625         HeapRegionRemSetIterator hrrs(r->rem_set());
2626         size_t card_index;
2627         while (hrrs.has_next(card_index)) {
2628           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2629           // The remembered set might contain references to already freed
2630           // regions. Filter out such entries to avoid failing card table
2631           // verification.
2632           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2633             if (*card_ptr != G1CardTable::dirty_card_val()) {
2634               *card_ptr = G1CardTable::dirty_card_val();
2635               _dcq.enqueue(card_ptr);
2636             }
2637           }
2638         }
2639         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2640                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2641                hrrs.n_yielded(), r->rem_set()->occupied());
2642         // We should only clear the card based remembered set here as we will not
2643         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2644         // (and probably never) we do not enter this path if there are other kind of
2645         // remembered sets for this region.
2646         r->rem_set()->clear_locked(true /* only_cardset */);
2647         // Clear_locked() above sets the state to Empty. However we want to continue
2648         // collecting remembered set entries for humongous regions that were not
2649         // reclaimed.
2650         r->rem_set()->set_state_complete();
2651       }
2652       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2653     }
2654     _total_humongous++;
2655 
2656     return false;
2657   }
2658 
2659   size_t total_humongous() const { return _total_humongous; }
2660   size_t candidate_humongous() const { return _candidate_humongous; }
2661 
2662   void flush_rem_set_entries() { _dcq.flush(); }
2663 };
2664 
2665 void G1CollectedHeap::register_humongous_regions_with_cset() {
2666   if (!G1EagerReclaimHumongousObjects) {
2667     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2668     return;
2669   }
2670   double time = os::elapsed_counter();
2671 
2672   // Collect reclaim candidate information and register candidates with cset.
2673   RegisterHumongousWithInCSetFastTestClosure cl;
2674   heap_region_iterate(&cl);
2675 
2676   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2677   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2678                                                                   cl.total_humongous(),
2679                                                                   cl.candidate_humongous());
2680   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2681 
2682   // Finally flush all remembered set entries to re-check into the global DCQS.
2683   cl.flush_rem_set_entries();
2684 }
2685 
2686 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2687   public:
2688     bool do_heap_region(HeapRegion* hr) {
2689       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2690         hr->verify_rem_set();
2691       }
2692       return false;
2693     }
2694 };
2695 
2696 uint G1CollectedHeap::num_task_queues() const {
2697   return _task_queues->size();
2698 }
2699 
2700 #if TASKQUEUE_STATS
2701 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2702   st->print_raw_cr("GC Task Stats");
2703   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2704   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2705 }
2706 
2707 void G1CollectedHeap::print_taskqueue_stats() const {
2708   if (!log_is_enabled(Trace, gc, task, stats)) {
2709     return;
2710   }
2711   Log(gc, task, stats) log;
2712   ResourceMark rm;
2713   LogStream ls(log.trace());
2714   outputStream* st = &ls;
2715 
2716   print_taskqueue_stats_hdr(st);
2717 
2718   TaskQueueStats totals;
2719   const uint n = num_task_queues();
2720   for (uint i = 0; i < n; ++i) {
2721     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2722     totals += task_queue(i)->stats;
2723   }
2724   st->print_raw("tot "); totals.print(st); st->cr();
2725 
2726   DEBUG_ONLY(totals.verify());
2727 }
2728 
2729 void G1CollectedHeap::reset_taskqueue_stats() {
2730   const uint n = num_task_queues();
2731   for (uint i = 0; i < n; ++i) {
2732     task_queue(i)->stats.reset();
2733   }
2734 }
2735 #endif // TASKQUEUE_STATS
2736 
2737 void G1CollectedHeap::wait_for_root_region_scanning() {
2738   double scan_wait_start = os::elapsedTime();
2739   // We have to wait until the CM threads finish scanning the
2740   // root regions as it's the only way to ensure that all the
2741   // objects on them have been correctly scanned before we start
2742   // moving them during the GC.
2743   bool waited = _cm->root_regions()->wait_until_scan_finished();
2744   double wait_time_ms = 0.0;
2745   if (waited) {
2746     double scan_wait_end = os::elapsedTime();
2747     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2748   }
2749   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2750 }
2751 
2752 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2753 private:
2754   G1HRPrinter* _hr_printer;
2755 public:
2756   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2757 
2758   virtual bool do_heap_region(HeapRegion* r) {
2759     _hr_printer->cset(r);
2760     return false;
2761   }
2762 };
2763 
2764 void G1CollectedHeap::start_new_collection_set() {
2765   collection_set()->start_incremental_building();
2766 
2767   clear_cset_fast_test();
2768 
2769   guarantee(_eden.length() == 0, "eden should have been cleared");
2770   g1_policy()->transfer_survivors_to_cset(survivor());
2771 }
2772 
2773 bool
2774 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2775   assert_at_safepoint_on_vm_thread();
2776   guarantee(!is_gc_active(), "collection is not reentrant");
2777 
2778   if (GCLocker::check_active_before_gc()) {
2779     return false;
2780   }
2781 
2782   _gc_timer_stw->register_gc_start();
2783 
2784   GCIdMark gc_id_mark;
2785   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2786 
2787   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2788   ResourceMark rm;
2789 
2790   g1_policy()->note_gc_start();
2791 
2792   wait_for_root_region_scanning();
2793 
2794   print_heap_before_gc();
2795   print_heap_regions();
2796   trace_heap_before_gc(_gc_tracer_stw);
2797 
2798   _verifier->verify_region_sets_optional();
2799   _verifier->verify_dirty_young_regions();
2800 
2801   // We should not be doing initial mark unless the conc mark thread is running
2802   if (!_cm_thread->should_terminate()) {
2803     // This call will decide whether this pause is an initial-mark
2804     // pause. If it is, in_initial_mark_gc() will return true
2805     // for the duration of this pause.
2806     g1_policy()->decide_on_conc_mark_initiation();
2807   }
2808 
2809   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2810   assert(!collector_state()->in_initial_mark_gc() ||
2811           collector_state()->in_young_only_phase(), "sanity");
2812 
2813   // We also do not allow mixed GCs during marking.
2814   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2815 
2816   // Record whether this pause is an initial mark. When the current
2817   // thread has completed its logging output and it's safe to signal
2818   // the CM thread, the flag's value in the policy has been reset.
2819   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2820 
2821   // Inner scope for scope based logging, timers, and stats collection
2822   {
2823     EvacuationInfo evacuation_info;
2824 
2825     if (collector_state()->in_initial_mark_gc()) {
2826       // We are about to start a marking cycle, so we increment the
2827       // full collection counter.
2828       increment_old_marking_cycles_started();
2829       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2830     }
2831 
2832     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2833 
2834     GCTraceCPUTime tcpu;
2835 
2836     G1HeapVerifier::G1VerifyType verify_type;
2837     FormatBuffer<> gc_string("Pause Young ");
2838     if (collector_state()->in_initial_mark_gc()) {
2839       gc_string.append("(Concurrent Start)");
2840       verify_type = G1HeapVerifier::G1VerifyConcurrentStart;
2841     } else if (collector_state()->in_young_only_phase()) {
2842       if (collector_state()->in_young_gc_before_mixed()) {
2843         gc_string.append("(Prepare Mixed)");
2844       } else {
2845         gc_string.append("(Normal)");
2846       }
2847       verify_type = G1HeapVerifier::G1VerifyYoungNormal;
2848     } else {
2849       gc_string.append("(Mixed)");
2850       verify_type = G1HeapVerifier::G1VerifyMixed;
2851     }
2852     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2853 
2854     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2855                                                                   workers()->active_workers(),
2856                                                                   Threads::number_of_non_daemon_threads());
2857     active_workers = workers()->update_active_workers(active_workers);
2858     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2859 
2860     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2861     TraceMemoryManagerStats tms(&_memory_manager, gc_cause(),
2862                                 collector_state()->yc_type() == Mixed /* allMemoryPoolsAffected */);
2863 
2864     G1HeapTransition heap_transition(this);
2865     size_t heap_used_bytes_before_gc = used();
2866 
2867     // Don't dynamically change the number of GC threads this early.  A value of
2868     // 0 is used to indicate serial work.  When parallel work is done,
2869     // it will be set.
2870 
2871     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2872       IsGCActiveMark x;
2873 
2874       gc_prologue(false);
2875 
2876       if (VerifyRememberedSets) {
2877         log_info(gc, verify)("[Verifying RemSets before GC]");
2878         VerifyRegionRemSetClosure v_cl;
2879         heap_region_iterate(&v_cl);
2880       }
2881 
2882       _verifier->verify_before_gc(verify_type);
2883 
2884       _verifier->check_bitmaps("GC Start");
2885 
2886 #if COMPILER2_OR_JVMCI
2887       DerivedPointerTable::clear();
2888 #endif
2889 
2890       // Please see comment in g1CollectedHeap.hpp and
2891       // G1CollectedHeap::ref_processing_init() to see how
2892       // reference processing currently works in G1.
2893 
2894       // Enable discovery in the STW reference processor
2895       _ref_processor_stw->enable_discovery();
2896 
2897       {
2898         // We want to temporarily turn off discovery by the
2899         // CM ref processor, if necessary, and turn it back on
2900         // on again later if we do. Using a scoped
2901         // NoRefDiscovery object will do this.
2902         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2903 
2904         // Forget the current alloc region (we might even choose it to be part
2905         // of the collection set!).
2906         _allocator->release_mutator_alloc_region();
2907 
2908         // This timing is only used by the ergonomics to handle our pause target.
2909         // It is unclear why this should not include the full pause. We will
2910         // investigate this in CR 7178365.
2911         //
2912         // Preserving the old comment here if that helps the investigation:
2913         //
2914         // The elapsed time induced by the start time below deliberately elides
2915         // the possible verification above.
2916         double sample_start_time_sec = os::elapsedTime();
2917 
2918         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2919 
2920         if (collector_state()->in_initial_mark_gc()) {
2921           concurrent_mark()->pre_initial_mark();
2922         }
2923 
2924         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2925 
2926         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2927 
2928         // Make sure the remembered sets are up to date. This needs to be
2929         // done before register_humongous_regions_with_cset(), because the
2930         // remembered sets are used there to choose eager reclaim candidates.
2931         // If the remembered sets are not up to date we might miss some
2932         // entries that need to be handled.
2933         g1_rem_set()->cleanupHRRS();
2934 
2935         register_humongous_regions_with_cset();
2936 
2937         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2938 
2939         // We call this after finalize_cset() to
2940         // ensure that the CSet has been finalized.
2941         _cm->verify_no_cset_oops();
2942 
2943         if (_hr_printer.is_active()) {
2944           G1PrintCollectionSetClosure cl(&_hr_printer);
2945           _collection_set.iterate(&cl);
2946         }
2947 
2948         // Initialize the GC alloc regions.
2949         _allocator->init_gc_alloc_regions(evacuation_info);
2950 
2951         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
2952         pre_evacuate_collection_set();
2953 
2954         // Actually do the work...
2955         evacuate_collection_set(&per_thread_states);
2956 
2957         post_evacuate_collection_set(evacuation_info, &per_thread_states);
2958 
2959         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
2960         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
2961 
2962         eagerly_reclaim_humongous_regions();
2963 
2964         record_obj_copy_mem_stats();
2965         _survivor_evac_stats.adjust_desired_plab_sz();
2966         _old_evac_stats.adjust_desired_plab_sz();
2967 
2968         double start = os::elapsedTime();
2969         start_new_collection_set();
2970         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2971 
2972         if (evacuation_failed()) {
2973           set_used(recalculate_used());
2974           if (_archive_allocator != NULL) {
2975             _archive_allocator->clear_used();
2976           }
2977           for (uint i = 0; i < ParallelGCThreads; i++) {
2978             if (_evacuation_failed_info_array[i].has_failed()) {
2979               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
2980             }
2981           }
2982         } else {
2983           // The "used" of the the collection set have already been subtracted
2984           // when they were freed.  Add in the bytes evacuated.
2985           increase_used(g1_policy()->bytes_copied_during_gc());
2986         }
2987 
2988         if (collector_state()->in_initial_mark_gc()) {
2989           // We have to do this before we notify the CM threads that
2990           // they can start working to make sure that all the
2991           // appropriate initialization is done on the CM object.
2992           concurrent_mark()->post_initial_mark();
2993           // Note that we don't actually trigger the CM thread at
2994           // this point. We do that later when we're sure that
2995           // the current thread has completed its logging output.
2996         }
2997 
2998         allocate_dummy_regions();
2999 
3000         _allocator->init_mutator_alloc_region();
3001 
3002         {
3003           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3004           if (expand_bytes > 0) {
3005             size_t bytes_before = capacity();
3006             // No need for an ergo logging here,
3007             // expansion_amount() does this when it returns a value > 0.
3008             double expand_ms;
3009             if (!expand(expand_bytes, _workers, &expand_ms)) {
3010               // We failed to expand the heap. Cannot do anything about it.
3011             }
3012             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3013           }
3014         }
3015 
3016         // We redo the verification but now wrt to the new CSet which
3017         // has just got initialized after the previous CSet was freed.
3018         _cm->verify_no_cset_oops();
3019 
3020         // This timing is only used by the ergonomics to handle our pause target.
3021         // It is unclear why this should not include the full pause. We will
3022         // investigate this in CR 7178365.
3023         double sample_end_time_sec = os::elapsedTime();
3024         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3025         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3026         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3027 
3028         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3029         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3030 
3031         if (VerifyRememberedSets) {
3032           log_info(gc, verify)("[Verifying RemSets after GC]");
3033           VerifyRegionRemSetClosure v_cl;
3034           heap_region_iterate(&v_cl);
3035         }
3036 
3037         _verifier->verify_after_gc(verify_type);
3038         _verifier->check_bitmaps("GC End");
3039 
3040         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
3041         _ref_processor_stw->verify_no_references_recorded();
3042 
3043         // CM reference discovery will be re-enabled if necessary.
3044       }
3045 
3046 #ifdef TRACESPINNING
3047       ParallelTaskTerminator::print_termination_counts();
3048 #endif
3049 
3050       gc_epilogue(false);
3051     }
3052 
3053     // Print the remainder of the GC log output.
3054     if (evacuation_failed()) {
3055       log_info(gc)("To-space exhausted");
3056     }
3057 
3058     g1_policy()->print_phases();
3059     heap_transition.print();
3060 
3061     // It is not yet to safe to tell the concurrent mark to
3062     // start as we have some optional output below. We don't want the
3063     // output from the concurrent mark thread interfering with this
3064     // logging output either.
3065 
3066     _hrm.verify_optional();
3067     _verifier->verify_region_sets_optional();
3068 
3069     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3070     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3071 
3072     print_heap_after_gc();
3073     print_heap_regions();
3074     trace_heap_after_gc(_gc_tracer_stw);
3075 
3076     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3077     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3078     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3079     // before any GC notifications are raised.
3080     g1mm()->update_sizes();
3081 
3082     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3083     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3084     _gc_timer_stw->register_gc_end();
3085     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3086   }
3087   // It should now be safe to tell the concurrent mark thread to start
3088   // without its logging output interfering with the logging output
3089   // that came from the pause.
3090 
3091   if (should_start_conc_mark) {
3092     // CAUTION: after the doConcurrentMark() call below,
3093     // the concurrent marking thread(s) could be running
3094     // concurrently with us. Make sure that anything after
3095     // this point does not assume that we are the only GC thread
3096     // running. Note: of course, the actual marking work will
3097     // not start until the safepoint itself is released in
3098     // SuspendibleThreadSet::desynchronize().
3099     do_concurrent_mark();
3100   }
3101 
3102   return true;
3103 }
3104 
3105 void G1CollectedHeap::remove_self_forwarding_pointers() {
3106   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3107   workers()->run_task(&rsfp_task);
3108 }
3109 
3110 void G1CollectedHeap::restore_after_evac_failure() {
3111   double remove_self_forwards_start = os::elapsedTime();
3112 
3113   remove_self_forwarding_pointers();
3114   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3115   _preserved_marks_set.restore(&task_executor);
3116 
3117   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3118 }
3119 
3120 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3121   if (!_evacuation_failed) {
3122     _evacuation_failed = true;
3123   }
3124 
3125   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3126   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3127 }
3128 
3129 bool G1ParEvacuateFollowersClosure::offer_termination() {
3130   G1ParScanThreadState* const pss = par_scan_state();
3131   start_term_time();
3132   const bool res = terminator()->offer_termination();
3133   end_term_time();
3134   return res;
3135 }
3136 
3137 void G1ParEvacuateFollowersClosure::do_void() {
3138   G1ParScanThreadState* const pss = par_scan_state();
3139   pss->trim_queue();
3140   do {
3141     pss->steal_and_trim_queue(queues());
3142   } while (!offer_termination());
3143 }
3144 
3145 class G1ParTask : public AbstractGangTask {
3146 protected:
3147   G1CollectedHeap*         _g1h;
3148   G1ParScanThreadStateSet* _pss;
3149   RefToScanQueueSet*       _queues;
3150   G1RootProcessor*         _root_processor;
3151   ParallelTaskTerminator   _terminator;
3152   uint                     _n_workers;
3153 
3154 public:
3155   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3156     : AbstractGangTask("G1 collection"),
3157       _g1h(g1h),
3158       _pss(per_thread_states),
3159       _queues(task_queues),
3160       _root_processor(root_processor),
3161       _terminator(n_workers, _queues),
3162       _n_workers(n_workers)
3163   {}
3164 
3165   void work(uint worker_id) {
3166     if (worker_id >= _n_workers) return;  // no work needed this round
3167 
3168     double start_sec = os::elapsedTime();
3169     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3170 
3171     {
3172       ResourceMark rm;
3173       HandleMark   hm;
3174 
3175       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3176 
3177       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3178       pss->set_ref_discoverer(rp);
3179 
3180       double start_strong_roots_sec = os::elapsedTime();
3181 
3182       _root_processor->evacuate_roots(pss, worker_id);
3183 
3184       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3185       // treating the nmethods visited to act as roots for concurrent marking.
3186       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3187       // objects copied by the current evacuation.
3188       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3189 
3190       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3191 
3192       double term_sec = 0.0;
3193       size_t evac_term_attempts = 0;
3194       {
3195         double start = os::elapsedTime();
3196         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3197         evac.do_void();
3198 
3199         evac_term_attempts = evac.term_attempts();
3200         term_sec = evac.term_time();
3201         double elapsed_sec = os::elapsedTime() - start;
3202 
3203         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3204         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3205         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3206         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3207       }
3208 
3209       assert(pss->queue_is_empty(), "should be empty");
3210 
3211       if (log_is_enabled(Debug, gc, task, stats)) {
3212         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3213         size_t lab_waste;
3214         size_t lab_undo_waste;
3215         pss->waste(lab_waste, lab_undo_waste);
3216         _g1h->print_termination_stats(worker_id,
3217                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3218                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3219                                       term_sec * 1000.0,                          /* evac term time */
3220                                       evac_term_attempts,                         /* evac term attempts */
3221                                       lab_waste,                                  /* alloc buffer waste */
3222                                       lab_undo_waste                              /* undo waste */
3223                                       );
3224       }
3225 
3226       // Close the inner scope so that the ResourceMark and HandleMark
3227       // destructors are executed here and are included as part of the
3228       // "GC Worker Time".
3229     }
3230     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3231   }
3232 };
3233 
3234 void G1CollectedHeap::print_termination_stats_hdr() {
3235   log_debug(gc, task, stats)("GC Termination Stats");
3236   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3237   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3238   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3239 }
3240 
3241 void G1CollectedHeap::print_termination_stats(uint worker_id,
3242                                               double elapsed_ms,
3243                                               double strong_roots_ms,
3244                                               double term_ms,
3245                                               size_t term_attempts,
3246                                               size_t alloc_buffer_waste,
3247                                               size_t undo_waste) const {
3248   log_debug(gc, task, stats)
3249               ("%3d %9.2f %9.2f %6.2f "
3250                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3251                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3252                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3253                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3254                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3255                alloc_buffer_waste * HeapWordSize / K,
3256                undo_waste * HeapWordSize / K);
3257 }
3258 
3259 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3260 private:
3261   BoolObjectClosure* _is_alive;
3262   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3263   OopStorage::ParState<false /* concurrent */, false /* const */> _par_state_string;
3264 
3265   int _initial_string_table_size;
3266   int _initial_symbol_table_size;
3267 
3268   bool  _process_strings;
3269   int _strings_processed;
3270   int _strings_removed;
3271 
3272   bool  _process_symbols;
3273   int _symbols_processed;
3274   int _symbols_removed;
3275 
3276   bool _process_string_dedup;
3277 
3278 public:
3279   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3280     AbstractGangTask("String/Symbol Unlinking"),
3281     _is_alive(is_alive),
3282     _dedup_closure(is_alive, NULL, false),
3283     _par_state_string(StringTable::weak_storage()),
3284     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3285     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3286     _process_string_dedup(process_string_dedup) {
3287 
3288     _initial_string_table_size = (int) StringTable::the_table()->table_size();
3289     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3290     if (process_symbols) {
3291       SymbolTable::clear_parallel_claimed_index();
3292     }
3293     if (process_strings) {
3294       StringTable::reset_dead_counter();
3295     }
3296   }
3297 
3298   ~G1StringAndSymbolCleaningTask() {
3299     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3300               "claim value %d after unlink less than initial symbol table size %d",
3301               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3302 
3303     log_info(gc, stringtable)(
3304         "Cleaned string and symbol table, "
3305         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3306         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3307         strings_processed(), strings_removed(),
3308         symbols_processed(), symbols_removed());
3309     if (_process_strings) {
3310       StringTable::finish_dead_counter();
3311     }
3312   }
3313 
3314   void work(uint worker_id) {
3315     int strings_processed = 0;
3316     int strings_removed = 0;
3317     int symbols_processed = 0;
3318     int symbols_removed = 0;
3319     if (_process_strings) {
3320       StringTable::possibly_parallel_unlink(&_par_state_string, _is_alive, &strings_processed, &strings_removed);
3321       Atomic::add(strings_processed, &_strings_processed);
3322       Atomic::add(strings_removed, &_strings_removed);
3323     }
3324     if (_process_symbols) {
3325       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3326       Atomic::add(symbols_processed, &_symbols_processed);
3327       Atomic::add(symbols_removed, &_symbols_removed);
3328     }
3329     if (_process_string_dedup) {
3330       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3331     }
3332   }
3333 
3334   size_t strings_processed() const { return (size_t)_strings_processed; }
3335   size_t strings_removed()   const { return (size_t)_strings_removed; }
3336 
3337   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3338   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3339 };
3340 
3341 class G1CodeCacheUnloadingTask {
3342 private:
3343   static Monitor* _lock;
3344 
3345   BoolObjectClosure* const _is_alive;
3346   const bool               _unloading_occurred;
3347   const uint               _num_workers;
3348 
3349   // Variables used to claim nmethods.
3350   CompiledMethod* _first_nmethod;
3351   CompiledMethod* volatile _claimed_nmethod;
3352 
3353   // The list of nmethods that need to be processed by the second pass.
3354   CompiledMethod* volatile _postponed_list;
3355   volatile uint            _num_entered_barrier;
3356 
3357  public:
3358   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3359       _is_alive(is_alive),
3360       _unloading_occurred(unloading_occurred),
3361       _num_workers(num_workers),
3362       _first_nmethod(NULL),
3363       _claimed_nmethod(NULL),
3364       _postponed_list(NULL),
3365       _num_entered_barrier(0)
3366   {
3367     CompiledMethod::increase_unloading_clock();
3368     // Get first alive nmethod
3369     CompiledMethodIterator iter = CompiledMethodIterator();
3370     if(iter.next_alive()) {
3371       _first_nmethod = iter.method();
3372     }
3373     _claimed_nmethod = _first_nmethod;
3374   }
3375 
3376   ~G1CodeCacheUnloadingTask() {
3377     CodeCache::verify_clean_inline_caches();
3378 
3379     CodeCache::set_needs_cache_clean(false);
3380     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3381 
3382     CodeCache::verify_icholder_relocations();
3383   }
3384 
3385  private:
3386   void add_to_postponed_list(CompiledMethod* nm) {
3387       CompiledMethod* old;
3388       do {
3389         old = _postponed_list;
3390         nm->set_unloading_next(old);
3391       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3392   }
3393 
3394   void clean_nmethod(CompiledMethod* nm) {
3395     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3396 
3397     if (postponed) {
3398       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3399       add_to_postponed_list(nm);
3400     }
3401 
3402     // Mark that this nmethod has been cleaned/unloaded.
3403     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3404     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3405   }
3406 
3407   void clean_nmethod_postponed(CompiledMethod* nm) {
3408     nm->do_unloading_parallel_postponed();
3409   }
3410 
3411   static const int MaxClaimNmethods = 16;
3412 
3413   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3414     CompiledMethod* first;
3415     CompiledMethodIterator last;
3416 
3417     do {
3418       *num_claimed_nmethods = 0;
3419 
3420       first = _claimed_nmethod;
3421       last = CompiledMethodIterator(first);
3422 
3423       if (first != NULL) {
3424 
3425         for (int i = 0; i < MaxClaimNmethods; i++) {
3426           if (!last.next_alive()) {
3427             break;
3428           }
3429           claimed_nmethods[i] = last.method();
3430           (*num_claimed_nmethods)++;
3431         }
3432       }
3433 
3434     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3435   }
3436 
3437   CompiledMethod* claim_postponed_nmethod() {
3438     CompiledMethod* claim;
3439     CompiledMethod* next;
3440 
3441     do {
3442       claim = _postponed_list;
3443       if (claim == NULL) {
3444         return NULL;
3445       }
3446 
3447       next = claim->unloading_next();
3448 
3449     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3450 
3451     return claim;
3452   }
3453 
3454  public:
3455   // Mark that we're done with the first pass of nmethod cleaning.
3456   void barrier_mark(uint worker_id) {
3457     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3458     _num_entered_barrier++;
3459     if (_num_entered_barrier == _num_workers) {
3460       ml.notify_all();
3461     }
3462   }
3463 
3464   // See if we have to wait for the other workers to
3465   // finish their first-pass nmethod cleaning work.
3466   void barrier_wait(uint worker_id) {
3467     if (_num_entered_barrier < _num_workers) {
3468       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3469       while (_num_entered_barrier < _num_workers) {
3470           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3471       }
3472     }
3473   }
3474 
3475   // Cleaning and unloading of nmethods. Some work has to be postponed
3476   // to the second pass, when we know which nmethods survive.
3477   void work_first_pass(uint worker_id) {
3478     // The first nmethods is claimed by the first worker.
3479     if (worker_id == 0 && _first_nmethod != NULL) {
3480       clean_nmethod(_first_nmethod);
3481       _first_nmethod = NULL;
3482     }
3483 
3484     int num_claimed_nmethods;
3485     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3486 
3487     while (true) {
3488       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3489 
3490       if (num_claimed_nmethods == 0) {
3491         break;
3492       }
3493 
3494       for (int i = 0; i < num_claimed_nmethods; i++) {
3495         clean_nmethod(claimed_nmethods[i]);
3496       }
3497     }
3498   }
3499 
3500   void work_second_pass(uint worker_id) {
3501     CompiledMethod* nm;
3502     // Take care of postponed nmethods.
3503     while ((nm = claim_postponed_nmethod()) != NULL) {
3504       clean_nmethod_postponed(nm);
3505     }
3506   }
3507 };
3508 
3509 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3510 
3511 class G1KlassCleaningTask : public StackObj {
3512   volatile int                            _clean_klass_tree_claimed;
3513   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3514 
3515  public:
3516   G1KlassCleaningTask() :
3517       _clean_klass_tree_claimed(0),
3518       _klass_iterator() {
3519   }
3520 
3521  private:
3522   bool claim_clean_klass_tree_task() {
3523     if (_clean_klass_tree_claimed) {
3524       return false;
3525     }
3526 
3527     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3528   }
3529 
3530   InstanceKlass* claim_next_klass() {
3531     Klass* klass;
3532     do {
3533       klass =_klass_iterator.next_klass();
3534     } while (klass != NULL && !klass->is_instance_klass());
3535 
3536     // this can be null so don't call InstanceKlass::cast
3537     return static_cast<InstanceKlass*>(klass);
3538   }
3539 
3540 public:
3541 
3542   void clean_klass(InstanceKlass* ik) {
3543     ik->clean_weak_instanceklass_links();
3544   }
3545 
3546   void work() {
3547     ResourceMark rm;
3548 
3549     // One worker will clean the subklass/sibling klass tree.
3550     if (claim_clean_klass_tree_task()) {
3551       Klass::clean_subklass_tree();
3552     }
3553 
3554     // All workers will help cleaning the classes,
3555     InstanceKlass* klass;
3556     while ((klass = claim_next_klass()) != NULL) {
3557       clean_klass(klass);
3558     }
3559   }
3560 };
3561 
3562 class G1ResolvedMethodCleaningTask : public StackObj {
3563   volatile int       _resolved_method_task_claimed;
3564 public:
3565   G1ResolvedMethodCleaningTask() :
3566       _resolved_method_task_claimed(0) {}
3567 
3568   bool claim_resolved_method_task() {
3569     if (_resolved_method_task_claimed) {
3570       return false;
3571     }
3572     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3573   }
3574 
3575   // These aren't big, one thread can do it all.
3576   void work() {
3577     if (claim_resolved_method_task()) {
3578       ResolvedMethodTable::unlink();
3579     }
3580   }
3581 };
3582 
3583 
3584 // To minimize the remark pause times, the tasks below are done in parallel.
3585 class G1ParallelCleaningTask : public AbstractGangTask {
3586 private:
3587   bool                          _unloading_occurred;
3588   G1StringAndSymbolCleaningTask _string_symbol_task;
3589   G1CodeCacheUnloadingTask      _code_cache_task;
3590   G1KlassCleaningTask           _klass_cleaning_task;
3591   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3592 
3593 public:
3594   // The constructor is run in the VMThread.
3595   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3596       AbstractGangTask("Parallel Cleaning"),
3597       _unloading_occurred(unloading_occurred),
3598       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3599       _code_cache_task(num_workers, is_alive, unloading_occurred),
3600       _klass_cleaning_task(),
3601       _resolved_method_cleaning_task() {
3602   }
3603 
3604   // The parallel work done by all worker threads.
3605   void work(uint worker_id) {
3606     // Do first pass of code cache cleaning.
3607     _code_cache_task.work_first_pass(worker_id);
3608 
3609     // Let the threads mark that the first pass is done.
3610     _code_cache_task.barrier_mark(worker_id);
3611 
3612     // Clean the Strings and Symbols.
3613     _string_symbol_task.work(worker_id);
3614 
3615     // Clean unreferenced things in the ResolvedMethodTable
3616     _resolved_method_cleaning_task.work();
3617 
3618     // Wait for all workers to finish the first code cache cleaning pass.
3619     _code_cache_task.barrier_wait(worker_id);
3620 
3621     // Do the second code cache cleaning work, which realize on
3622     // the liveness information gathered during the first pass.
3623     _code_cache_task.work_second_pass(worker_id);
3624 
3625     // Clean all klasses that were not unloaded.
3626     // The weak metadata in klass doesn't need to be
3627     // processed if there was no unloading.
3628     if (_unloading_occurred) {
3629       _klass_cleaning_task.work();
3630     }
3631   }
3632 };
3633 
3634 
3635 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3636                                         bool class_unloading_occurred) {
3637   uint n_workers = workers()->active_workers();
3638 
3639   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3640   workers()->run_task(&g1_unlink_task);
3641 }
3642 
3643 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3644                                        bool process_strings,
3645                                        bool process_symbols,
3646                                        bool process_string_dedup) {
3647   if (!process_strings && !process_symbols && !process_string_dedup) {
3648     // Nothing to clean.
3649     return;
3650   }
3651 
3652   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3653   workers()->run_task(&g1_unlink_task);
3654 
3655 }
3656 
3657 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3658  private:
3659   DirtyCardQueueSet* _queue;
3660   G1CollectedHeap* _g1h;
3661  public:
3662   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3663     _queue(queue), _g1h(g1h) { }
3664 
3665   virtual void work(uint worker_id) {
3666     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3667     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3668 
3669     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3670     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3671 
3672     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3673   }
3674 };
3675 
3676 void G1CollectedHeap::redirty_logged_cards() {
3677   double redirty_logged_cards_start = os::elapsedTime();
3678 
3679   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3680   dirty_card_queue_set().reset_for_par_iteration();
3681   workers()->run_task(&redirty_task);
3682 
3683   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3684   dcq.merge_bufferlists(&dirty_card_queue_set());
3685   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3686 
3687   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3688 }
3689 
3690 // Weak Reference Processing support
3691 
3692 bool G1STWIsAliveClosure::do_object_b(oop p) {
3693   // An object is reachable if it is outside the collection set,
3694   // or is inside and copied.
3695   return !_g1h->is_in_cset(p) || p->is_forwarded();
3696 }
3697 
3698 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3699   assert(obj != NULL, "must not be NULL");
3700   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3701   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3702   // may falsely indicate that this is not the case here: however the collection set only
3703   // contains old regions when concurrent mark is not running.
3704   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3705 }
3706 
3707 // Non Copying Keep Alive closure
3708 class G1KeepAliveClosure: public OopClosure {
3709   G1CollectedHeap*_g1h;
3710 public:
3711   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3712   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3713   void do_oop(oop* p) {
3714     oop obj = *p;
3715     assert(obj != NULL, "the caller should have filtered out NULL values");
3716 
3717     const InCSetState cset_state =_g1h->in_cset_state(obj);
3718     if (!cset_state.is_in_cset_or_humongous()) {
3719       return;
3720     }
3721     if (cset_state.is_in_cset()) {
3722       assert( obj->is_forwarded(), "invariant" );
3723       *p = obj->forwardee();
3724     } else {
3725       assert(!obj->is_forwarded(), "invariant" );
3726       assert(cset_state.is_humongous(),
3727              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3728      _g1h->set_humongous_is_live(obj);
3729     }
3730   }
3731 };
3732 
3733 // Copying Keep Alive closure - can be called from both
3734 // serial and parallel code as long as different worker
3735 // threads utilize different G1ParScanThreadState instances
3736 // and different queues.
3737 
3738 class G1CopyingKeepAliveClosure: public OopClosure {
3739   G1CollectedHeap*         _g1h;
3740   G1ParScanThreadState*    _par_scan_state;
3741 
3742 public:
3743   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3744                             G1ParScanThreadState* pss):
3745     _g1h(g1h),
3746     _par_scan_state(pss)
3747   {}
3748 
3749   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3750   virtual void do_oop(      oop* p) { do_oop_work(p); }
3751 
3752   template <class T> void do_oop_work(T* p) {
3753     oop obj = RawAccess<>::oop_load(p);
3754 
3755     if (_g1h->is_in_cset_or_humongous(obj)) {
3756       // If the referent object has been forwarded (either copied
3757       // to a new location or to itself in the event of an
3758       // evacuation failure) then we need to update the reference
3759       // field and, if both reference and referent are in the G1
3760       // heap, update the RSet for the referent.
3761       //
3762       // If the referent has not been forwarded then we have to keep
3763       // it alive by policy. Therefore we have copy the referent.
3764       //
3765       // When the queue is drained (after each phase of reference processing)
3766       // the object and it's followers will be copied, the reference field set
3767       // to point to the new location, and the RSet updated.
3768       _par_scan_state->push_on_queue(p);
3769     }
3770   }
3771 };
3772 
3773 // Serial drain queue closure. Called as the 'complete_gc'
3774 // closure for each discovered list in some of the
3775 // reference processing phases.
3776 
3777 class G1STWDrainQueueClosure: public VoidClosure {
3778 protected:
3779   G1CollectedHeap* _g1h;
3780   G1ParScanThreadState* _par_scan_state;
3781 
3782   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3783 
3784 public:
3785   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3786     _g1h(g1h),
3787     _par_scan_state(pss)
3788   { }
3789 
3790   void do_void() {
3791     G1ParScanThreadState* const pss = par_scan_state();
3792     pss->trim_queue();
3793   }
3794 };
3795 
3796 // Parallel Reference Processing closures
3797 
3798 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3799 // processing during G1 evacuation pauses.
3800 
3801 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3802 private:
3803   G1CollectedHeap*          _g1h;
3804   G1ParScanThreadStateSet*  _pss;
3805   RefToScanQueueSet*        _queues;
3806   WorkGang*                 _workers;
3807 
3808 public:
3809   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3810                            G1ParScanThreadStateSet* per_thread_states,
3811                            WorkGang* workers,
3812                            RefToScanQueueSet *task_queues) :
3813     _g1h(g1h),
3814     _pss(per_thread_states),
3815     _queues(task_queues),
3816     _workers(workers)
3817   {
3818     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3819   }
3820 
3821   // Executes the given task using concurrent marking worker threads.
3822   virtual void execute(ProcessTask& task, uint ergo_workers);
3823 };
3824 
3825 // Gang task for possibly parallel reference processing
3826 
3827 class G1STWRefProcTaskProxy: public AbstractGangTask {
3828   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3829   ProcessTask&     _proc_task;
3830   G1CollectedHeap* _g1h;
3831   G1ParScanThreadStateSet* _pss;
3832   RefToScanQueueSet* _task_queues;
3833   ParallelTaskTerminator* _terminator;
3834 
3835 public:
3836   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3837                         G1CollectedHeap* g1h,
3838                         G1ParScanThreadStateSet* per_thread_states,
3839                         RefToScanQueueSet *task_queues,
3840                         ParallelTaskTerminator* terminator) :
3841     AbstractGangTask("Process reference objects in parallel"),
3842     _proc_task(proc_task),
3843     _g1h(g1h),
3844     _pss(per_thread_states),
3845     _task_queues(task_queues),
3846     _terminator(terminator)
3847   {}
3848 
3849   virtual void work(uint worker_id) {
3850     // The reference processing task executed by a single worker.
3851     ResourceMark rm;
3852     HandleMark   hm;
3853 
3854     G1STWIsAliveClosure is_alive(_g1h);
3855 
3856     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3857     pss->set_ref_discoverer(NULL);
3858 
3859     // Keep alive closure.
3860     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3861 
3862     // Complete GC closure
3863     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3864 
3865     // Call the reference processing task's work routine.
3866     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3867 
3868     // Note we cannot assert that the refs array is empty here as not all
3869     // of the processing tasks (specifically phase2 - pp2_work) execute
3870     // the complete_gc closure (which ordinarily would drain the queue) so
3871     // the queue may not be empty.
3872   }
3873 };
3874 
3875 // Driver routine for parallel reference processing.
3876 // Creates an instance of the ref processing gang
3877 // task and has the worker threads execute it.
3878 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3879   assert(_workers != NULL, "Need parallel worker threads.");
3880 
3881   assert(_workers->active_workers() >= ergo_workers,
3882          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3883          ergo_workers, _workers->active_workers());
3884   ParallelTaskTerminator terminator(ergo_workers, _queues);
3885   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3886 
3887   _workers->run_task(&proc_task_proxy, ergo_workers);
3888 }
3889 
3890 // End of weak reference support closures
3891 
3892 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3893   double ref_proc_start = os::elapsedTime();
3894 
3895   ReferenceProcessor* rp = _ref_processor_stw;
3896   assert(rp->discovery_enabled(), "should have been enabled");
3897 
3898   // Closure to test whether a referent is alive.
3899   G1STWIsAliveClosure is_alive(this);
3900 
3901   // Even when parallel reference processing is enabled, the processing
3902   // of JNI refs is serial and performed serially by the current thread
3903   // rather than by a worker. The following PSS will be used for processing
3904   // JNI refs.
3905 
3906   // Use only a single queue for this PSS.
3907   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3908   pss->set_ref_discoverer(NULL);
3909   assert(pss->queue_is_empty(), "pre-condition");
3910 
3911   // Keep alive closure.
3912   G1CopyingKeepAliveClosure keep_alive(this, pss);
3913 
3914   // Serial Complete GC closure
3915   G1STWDrainQueueClosure drain_queue(this, pss);
3916 
3917   // Setup the soft refs policy...
3918   rp->setup_policy(false);
3919 
3920   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3921 
3922   ReferenceProcessorStats stats;
3923   if (!rp->processing_is_mt()) {
3924     // Serial reference processing...
3925     stats = rp->process_discovered_references(&is_alive,
3926                                               &keep_alive,
3927                                               &drain_queue,
3928                                               NULL,
3929                                               pt);
3930   } else {
3931     uint no_of_gc_workers = workers()->active_workers();
3932 
3933     // Parallel reference processing
3934     assert(no_of_gc_workers <= rp->max_num_queues(),
3935            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3936            no_of_gc_workers,  rp->max_num_queues());
3937 
3938     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3939     stats = rp->process_discovered_references(&is_alive,
3940                                               &keep_alive,
3941                                               &drain_queue,
3942                                               &par_task_executor,
3943                                               pt);
3944   }
3945 
3946   _gc_tracer_stw->report_gc_reference_stats(stats);
3947 
3948   // We have completed copying any necessary live referent objects.
3949   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3950 
3951   make_pending_list_reachable();
3952 
3953   rp->verify_no_references_recorded();
3954 
3955   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3956   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3957 }
3958 
3959 void G1CollectedHeap::make_pending_list_reachable() {
3960   if (collector_state()->in_initial_mark_gc()) {
3961     oop pll_head = Universe::reference_pending_list();
3962     if (pll_head != NULL) {
3963       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3964       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3965     }
3966   }
3967 }
3968 
3969 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3970   double merge_pss_time_start = os::elapsedTime();
3971   per_thread_states->flush();
3972   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3973 }
3974 
3975 void G1CollectedHeap::pre_evacuate_collection_set() {
3976   _expand_heap_after_alloc_failure = true;
3977   _evacuation_failed = false;
3978 
3979   // Disable the hot card cache.
3980   _hot_card_cache->reset_hot_cache_claimed_index();
3981   _hot_card_cache->set_use_cache(false);
3982 
3983   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3984   _preserved_marks_set.assert_empty();
3985 
3986   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3987 
3988   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3989   if (collector_state()->in_initial_mark_gc()) {
3990     double start_clear_claimed_marks = os::elapsedTime();
3991 
3992     ClassLoaderDataGraph::clear_claimed_marks();
3993 
3994     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3995     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3996   }
3997 }
3998 
3999 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
4000   // Should G1EvacuationFailureALot be in effect for this GC?
4001   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4002 
4003   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4004 
4005   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4006 
4007   double start_par_time_sec = os::elapsedTime();
4008   double end_par_time_sec;
4009 
4010   {
4011     const uint n_workers = workers()->active_workers();
4012     G1RootProcessor root_processor(this, n_workers);
4013     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4014 
4015     print_termination_stats_hdr();
4016 
4017     workers()->run_task(&g1_par_task);
4018     end_par_time_sec = os::elapsedTime();
4019 
4020     // Closing the inner scope will execute the destructor
4021     // for the G1RootProcessor object. We record the current
4022     // elapsed time before closing the scope so that time
4023     // taken for the destructor is NOT included in the
4024     // reported parallel time.
4025   }
4026 
4027   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4028   phase_times->record_par_time(par_time_ms);
4029 
4030   double code_root_fixup_time_ms =
4031         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4032   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4033 }
4034 
4035 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4036   // Also cleans the card table from temporary duplicate detection information used
4037   // during UpdateRS/ScanRS.
4038   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4039 
4040   // Process any discovered reference objects - we have
4041   // to do this _before_ we retire the GC alloc regions
4042   // as we may have to copy some 'reachable' referent
4043   // objects (and their reachable sub-graphs) that were
4044   // not copied during the pause.
4045   process_discovered_references(per_thread_states);
4046 
4047   // FIXME
4048   // CM's reference processing also cleans up the string and symbol tables.
4049   // Should we do that here also? We could, but it is a serial operation
4050   // and could significantly increase the pause time.
4051 
4052   G1STWIsAliveClosure is_alive(this);
4053   G1KeepAliveClosure keep_alive(this);
4054 
4055   {
4056     double start = os::elapsedTime();
4057 
4058     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4059 
4060     double time_ms = (os::elapsedTime() - start) * 1000.0;
4061     g1_policy()->phase_times()->record_weak_ref_proc_time(time_ms);
4062   }
4063 
4064   if (G1StringDedup::is_enabled()) {
4065     double fixup_start = os::elapsedTime();
4066 
4067     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4068 
4069     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4070     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4071   }
4072 
4073   if (evacuation_failed()) {
4074     restore_after_evac_failure();
4075 
4076     // Reset the G1EvacuationFailureALot counters and flags
4077     // Note: the values are reset only when an actual
4078     // evacuation failure occurs.
4079     NOT_PRODUCT(reset_evacuation_should_fail();)
4080   }
4081 
4082   _preserved_marks_set.assert_empty();
4083 
4084   _allocator->release_gc_alloc_regions(evacuation_info);
4085 
4086   merge_per_thread_state_info(per_thread_states);
4087 
4088   // Reset and re-enable the hot card cache.
4089   // Note the counts for the cards in the regions in the
4090   // collection set are reset when the collection set is freed.
4091   _hot_card_cache->reset_hot_cache();
4092   _hot_card_cache->set_use_cache(true);
4093 
4094   purge_code_root_memory();
4095 
4096   redirty_logged_cards();
4097 #if COMPILER2_OR_JVMCI
4098   double start = os::elapsedTime();
4099   DerivedPointerTable::update_pointers();
4100   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4101 #endif
4102   g1_policy()->print_age_table();
4103 }
4104 
4105 void G1CollectedHeap::record_obj_copy_mem_stats() {
4106   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4107 
4108   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4109                                                create_g1_evac_summary(&_old_evac_stats));
4110 }
4111 
4112 void G1CollectedHeap::free_region(HeapRegion* hr,
4113                                   FreeRegionList* free_list,
4114                                   bool skip_remset,
4115                                   bool skip_hot_card_cache,
4116                                   bool locked) {
4117   assert(!hr->is_free(), "the region should not be free");
4118   assert(!hr->is_empty(), "the region should not be empty");
4119   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4120   assert(free_list != NULL, "pre-condition");
4121 
4122   if (G1VerifyBitmaps) {
4123     MemRegion mr(hr->bottom(), hr->end());
4124     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4125   }
4126 
4127   // Clear the card counts for this region.
4128   // Note: we only need to do this if the region is not young
4129   // (since we don't refine cards in young regions).
4130   if (!skip_hot_card_cache && !hr->is_young()) {
4131     _hot_card_cache->reset_card_counts(hr);
4132   }
4133   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4134   _g1_policy->remset_tracker()->update_at_free(hr);
4135   free_list->add_ordered(hr);
4136 }
4137 
4138 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4139                                             FreeRegionList* free_list) {
4140   assert(hr->is_humongous(), "this is only for humongous regions");
4141   assert(free_list != NULL, "pre-condition");
4142   hr->clear_humongous();
4143   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4144 }
4145 
4146 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4147                                            const uint humongous_regions_removed) {
4148   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4149     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4150     _old_set.bulk_remove(old_regions_removed);
4151     _humongous_set.bulk_remove(humongous_regions_removed);
4152   }
4153 
4154 }
4155 
4156 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4157   assert(list != NULL, "list can't be null");
4158   if (!list->is_empty()) {
4159     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4160     _hrm.insert_list_into_free_list(list);
4161   }
4162 }
4163 
4164 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4165   decrease_used(bytes);
4166 }
4167 
4168 class G1FreeCollectionSetTask : public AbstractGangTask {
4169 private:
4170 
4171   // Closure applied to all regions in the collection set to do work that needs to
4172   // be done serially in a single thread.
4173   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4174   private:
4175     EvacuationInfo* _evacuation_info;
4176     const size_t* _surviving_young_words;
4177 
4178     // Bytes used in successfully evacuated regions before the evacuation.
4179     size_t _before_used_bytes;
4180     // Bytes used in unsucessfully evacuated regions before the evacuation
4181     size_t _after_used_bytes;
4182 
4183     size_t _bytes_allocated_in_old_since_last_gc;
4184 
4185     size_t _failure_used_words;
4186     size_t _failure_waste_words;
4187 
4188     FreeRegionList _local_free_list;
4189   public:
4190     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4191       HeapRegionClosure(),
4192       _evacuation_info(evacuation_info),
4193       _surviving_young_words(surviving_young_words),
4194       _before_used_bytes(0),
4195       _after_used_bytes(0),
4196       _bytes_allocated_in_old_since_last_gc(0),
4197       _failure_used_words(0),
4198       _failure_waste_words(0),
4199       _local_free_list("Local Region List for CSet Freeing") {
4200     }
4201 
4202     virtual bool do_heap_region(HeapRegion* r) {
4203       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4204 
4205       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4206       g1h->clear_in_cset(r);
4207 
4208       if (r->is_young()) {
4209         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4210                "Young index %d is wrong for region %u of type %s with %u young regions",
4211                r->young_index_in_cset(),
4212                r->hrm_index(),
4213                r->get_type_str(),
4214                g1h->collection_set()->young_region_length());
4215         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4216         r->record_surv_words_in_group(words_survived);
4217       }
4218 
4219       if (!r->evacuation_failed()) {
4220         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4221         _before_used_bytes += r->used();
4222         g1h->free_region(r,
4223                          &_local_free_list,
4224                          true, /* skip_remset */
4225                          true, /* skip_hot_card_cache */
4226                          true  /* locked */);
4227       } else {
4228         r->uninstall_surv_rate_group();
4229         r->set_young_index_in_cset(-1);
4230         r->set_evacuation_failed(false);
4231         // When moving a young gen region to old gen, we "allocate" that whole region
4232         // there. This is in addition to any already evacuated objects. Notify the
4233         // policy about that.
4234         // Old gen regions do not cause an additional allocation: both the objects
4235         // still in the region and the ones already moved are accounted for elsewhere.
4236         if (r->is_young()) {
4237           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4238         }
4239         // The region is now considered to be old.
4240         r->set_old();
4241         // Do some allocation statistics accounting. Regions that failed evacuation
4242         // are always made old, so there is no need to update anything in the young
4243         // gen statistics, but we need to update old gen statistics.
4244         size_t used_words = r->marked_bytes() / HeapWordSize;
4245 
4246         _failure_used_words += used_words;
4247         _failure_waste_words += HeapRegion::GrainWords - used_words;
4248 
4249         g1h->old_set_add(r);
4250         _after_used_bytes += r->used();
4251       }
4252       return false;
4253     }
4254 
4255     void complete_work() {
4256       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4257 
4258       _evacuation_info->set_regions_freed(_local_free_list.length());
4259       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4260 
4261       g1h->prepend_to_freelist(&_local_free_list);
4262       g1h->decrement_summary_bytes(_before_used_bytes);
4263 
4264       G1Policy* policy = g1h->g1_policy();
4265       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4266 
4267       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4268     }
4269   };
4270 
4271   G1CollectionSet* _collection_set;
4272   G1SerialFreeCollectionSetClosure _cl;
4273   const size_t* _surviving_young_words;
4274 
4275   size_t _rs_lengths;
4276 
4277   volatile jint _serial_work_claim;
4278 
4279   struct WorkItem {
4280     uint region_idx;
4281     bool is_young;
4282     bool evacuation_failed;
4283 
4284     WorkItem(HeapRegion* r) {
4285       region_idx = r->hrm_index();
4286       is_young = r->is_young();
4287       evacuation_failed = r->evacuation_failed();
4288     }
4289   };
4290 
4291   volatile size_t _parallel_work_claim;
4292   size_t _num_work_items;
4293   WorkItem* _work_items;
4294 
4295   void do_serial_work() {
4296     // Need to grab the lock to be allowed to modify the old region list.
4297     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4298     _collection_set->iterate(&_cl);
4299   }
4300 
4301   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4302     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4303 
4304     HeapRegion* r = g1h->region_at(region_idx);
4305     assert(!g1h->is_on_master_free_list(r), "sanity");
4306 
4307     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4308 
4309     if (!is_young) {
4310       g1h->_hot_card_cache->reset_card_counts(r);
4311     }
4312 
4313     if (!evacuation_failed) {
4314       r->rem_set()->clear_locked();
4315     }
4316   }
4317 
4318   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4319   private:
4320     size_t _cur_idx;
4321     WorkItem* _work_items;
4322   public:
4323     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4324 
4325     virtual bool do_heap_region(HeapRegion* r) {
4326       _work_items[_cur_idx++] = WorkItem(r);
4327       return false;
4328     }
4329   };
4330 
4331   void prepare_work() {
4332     G1PrepareFreeCollectionSetClosure cl(_work_items);
4333     _collection_set->iterate(&cl);
4334   }
4335 
4336   void complete_work() {
4337     _cl.complete_work();
4338 
4339     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4340     policy->record_max_rs_lengths(_rs_lengths);
4341     policy->cset_regions_freed();
4342   }
4343 public:
4344   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4345     AbstractGangTask("G1 Free Collection Set"),
4346     _collection_set(collection_set),
4347     _cl(evacuation_info, surviving_young_words),
4348     _surviving_young_words(surviving_young_words),
4349     _rs_lengths(0),
4350     _serial_work_claim(0),
4351     _parallel_work_claim(0),
4352     _num_work_items(collection_set->region_length()),
4353     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4354     prepare_work();
4355   }
4356 
4357   ~G1FreeCollectionSetTask() {
4358     complete_work();
4359     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4360   }
4361 
4362   // Chunk size for work distribution. The chosen value has been determined experimentally
4363   // to be a good tradeoff between overhead and achievable parallelism.
4364   static uint chunk_size() { return 32; }
4365 
4366   virtual void work(uint worker_id) {
4367     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4368 
4369     // Claim serial work.
4370     if (_serial_work_claim == 0) {
4371       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4372       if (value == 0) {
4373         double serial_time = os::elapsedTime();
4374         do_serial_work();
4375         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4376       }
4377     }
4378 
4379     // Start parallel work.
4380     double young_time = 0.0;
4381     bool has_young_time = false;
4382     double non_young_time = 0.0;
4383     bool has_non_young_time = false;
4384 
4385     while (true) {
4386       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4387       size_t cur = end - chunk_size();
4388 
4389       if (cur >= _num_work_items) {
4390         break;
4391       }
4392 
4393       double start_time = os::elapsedTime();
4394 
4395       end = MIN2(end, _num_work_items);
4396 
4397       for (; cur < end; cur++) {
4398         bool is_young = _work_items[cur].is_young;
4399 
4400         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4401 
4402         double end_time = os::elapsedTime();
4403         double time_taken = end_time - start_time;
4404         if (is_young) {
4405           young_time += time_taken;
4406           has_young_time = true;
4407         } else {
4408           non_young_time += time_taken;
4409           has_non_young_time = true;
4410         }
4411         start_time = end_time;
4412       }
4413     }
4414 
4415     if (has_young_time) {
4416       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4417     }
4418     if (has_non_young_time) {
4419       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4420     }
4421   }
4422 };
4423 
4424 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4425   _eden.clear();
4426 
4427   double free_cset_start_time = os::elapsedTime();
4428 
4429   {
4430     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4431     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4432 
4433     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4434 
4435     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4436                         cl.name(),
4437                         num_workers,
4438                         _collection_set.region_length());
4439     workers()->run_task(&cl, num_workers);
4440   }
4441   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4442 
4443   collection_set->clear();
4444 }
4445 
4446 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4447  private:
4448   FreeRegionList* _free_region_list;
4449   HeapRegionSet* _proxy_set;
4450   uint _humongous_objects_reclaimed;
4451   uint _humongous_regions_reclaimed;
4452   size_t _freed_bytes;
4453  public:
4454 
4455   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4456     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4457   }
4458 
4459   virtual bool do_heap_region(HeapRegion* r) {
4460     if (!r->is_starts_humongous()) {
4461       return false;
4462     }
4463 
4464     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4465 
4466     oop obj = (oop)r->bottom();
4467     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4468 
4469     // The following checks whether the humongous object is live are sufficient.
4470     // The main additional check (in addition to having a reference from the roots
4471     // or the young gen) is whether the humongous object has a remembered set entry.
4472     //
4473     // A humongous object cannot be live if there is no remembered set for it
4474     // because:
4475     // - there can be no references from within humongous starts regions referencing
4476     // the object because we never allocate other objects into them.
4477     // (I.e. there are no intra-region references that may be missed by the
4478     // remembered set)
4479     // - as soon there is a remembered set entry to the humongous starts region
4480     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4481     // until the end of a concurrent mark.
4482     //
4483     // It is not required to check whether the object has been found dead by marking
4484     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4485     // all objects allocated during that time are considered live.
4486     // SATB marking is even more conservative than the remembered set.
4487     // So if at this point in the collection there is no remembered set entry,
4488     // nobody has a reference to it.
4489     // At the start of collection we flush all refinement logs, and remembered sets
4490     // are completely up-to-date wrt to references to the humongous object.
4491     //
4492     // Other implementation considerations:
4493     // - never consider object arrays at this time because they would pose
4494     // considerable effort for cleaning up the the remembered sets. This is
4495     // required because stale remembered sets might reference locations that
4496     // are currently allocated into.
4497     uint region_idx = r->hrm_index();
4498     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4499         !r->rem_set()->is_empty()) {
4500       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4501                                region_idx,
4502                                (size_t)obj->size() * HeapWordSize,
4503                                p2i(r->bottom()),
4504                                r->rem_set()->occupied(),
4505                                r->rem_set()->strong_code_roots_list_length(),
4506                                next_bitmap->is_marked(r->bottom()),
4507                                g1h->is_humongous_reclaim_candidate(region_idx),
4508                                obj->is_typeArray()
4509                               );
4510       return false;
4511     }
4512 
4513     guarantee(obj->is_typeArray(),
4514               "Only eagerly reclaiming type arrays is supported, but the object "
4515               PTR_FORMAT " is not.", p2i(r->bottom()));
4516 
4517     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4518                              region_idx,
4519                              (size_t)obj->size() * HeapWordSize,
4520                              p2i(r->bottom()),
4521                              r->rem_set()->occupied(),
4522                              r->rem_set()->strong_code_roots_list_length(),
4523                              next_bitmap->is_marked(r->bottom()),
4524                              g1h->is_humongous_reclaim_candidate(region_idx),
4525                              obj->is_typeArray()
4526                             );
4527 
4528     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4529     cm->humongous_object_eagerly_reclaimed(r);
4530     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4531            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4532            region_idx,
4533            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4534            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4535     _humongous_objects_reclaimed++;
4536     do {
4537       HeapRegion* next = g1h->next_region_in_humongous(r);
4538       _freed_bytes += r->used();
4539       r->set_containing_set(NULL);
4540       _humongous_regions_reclaimed++;
4541       g1h->free_humongous_region(r, _free_region_list);
4542       r = next;
4543     } while (r != NULL);
4544 
4545     return false;
4546   }
4547 
4548   uint humongous_objects_reclaimed() {
4549     return _humongous_objects_reclaimed;
4550   }
4551 
4552   uint humongous_regions_reclaimed() {
4553     return _humongous_regions_reclaimed;
4554   }
4555 
4556   size_t bytes_freed() const {
4557     return _freed_bytes;
4558   }
4559 };
4560 
4561 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4562   assert_at_safepoint_on_vm_thread();
4563 
4564   if (!G1EagerReclaimHumongousObjects ||
4565       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4566     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4567     return;
4568   }
4569 
4570   double start_time = os::elapsedTime();
4571 
4572   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4573 
4574   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4575   heap_region_iterate(&cl);
4576 
4577   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4578 
4579   G1HRPrinter* hrp = hr_printer();
4580   if (hrp->is_active()) {
4581     FreeRegionListIterator iter(&local_cleanup_list);
4582     while (iter.more_available()) {
4583       HeapRegion* hr = iter.get_next();
4584       hrp->cleanup(hr);
4585     }
4586   }
4587 
4588   prepend_to_freelist(&local_cleanup_list);
4589   decrement_summary_bytes(cl.bytes_freed());
4590 
4591   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4592                                                                     cl.humongous_objects_reclaimed());
4593 }
4594 
4595 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4596 public:
4597   virtual bool do_heap_region(HeapRegion* r) {
4598     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4599     G1CollectedHeap::heap()->clear_in_cset(r);
4600     r->set_young_index_in_cset(-1);
4601     return false;
4602   }
4603 };
4604 
4605 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4606   G1AbandonCollectionSetClosure cl;
4607   collection_set->iterate(&cl);
4608 
4609   collection_set->clear();
4610   collection_set->stop_incremental_building();
4611 }
4612 
4613 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4614   return _allocator->is_retained_old_region(hr);
4615 }
4616 
4617 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4618   _eden.add(hr);
4619   _g1_policy->set_region_eden(hr);
4620 }
4621 
4622 #ifdef ASSERT
4623 
4624 class NoYoungRegionsClosure: public HeapRegionClosure {
4625 private:
4626   bool _success;
4627 public:
4628   NoYoungRegionsClosure() : _success(true) { }
4629   bool do_heap_region(HeapRegion* r) {
4630     if (r->is_young()) {
4631       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4632                             p2i(r->bottom()), p2i(r->end()));
4633       _success = false;
4634     }
4635     return false;
4636   }
4637   bool success() { return _success; }
4638 };
4639 
4640 bool G1CollectedHeap::check_young_list_empty() {
4641   bool ret = (young_regions_count() == 0);
4642 
4643   NoYoungRegionsClosure closure;
4644   heap_region_iterate(&closure);
4645   ret = ret && closure.success();
4646 
4647   return ret;
4648 }
4649 
4650 #endif // ASSERT
4651 
4652 class TearDownRegionSetsClosure : public HeapRegionClosure {
4653 private:
4654   HeapRegionSet *_old_set;
4655 
4656 public:
4657   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4658 
4659   bool do_heap_region(HeapRegion* r) {
4660     if (r->is_old()) {
4661       _old_set->remove(r);
4662     } else if(r->is_young()) {
4663       r->uninstall_surv_rate_group();
4664     } else {
4665       // We ignore free regions, we'll empty the free list afterwards.
4666       // We ignore humongous regions, we're not tearing down the
4667       // humongous regions set.
4668       assert(r->is_free() || r->is_humongous(),
4669              "it cannot be another type");
4670     }
4671     return false;
4672   }
4673 
4674   ~TearDownRegionSetsClosure() {
4675     assert(_old_set->is_empty(), "post-condition");
4676   }
4677 };
4678 
4679 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4680   assert_at_safepoint_on_vm_thread();
4681 
4682   if (!free_list_only) {
4683     TearDownRegionSetsClosure cl(&_old_set);
4684     heap_region_iterate(&cl);
4685 
4686     // Note that emptying the _young_list is postponed and instead done as
4687     // the first step when rebuilding the regions sets again. The reason for
4688     // this is that during a full GC string deduplication needs to know if
4689     // a collected region was young or old when the full GC was initiated.
4690   }
4691   _hrm.remove_all_free_regions();
4692 }
4693 
4694 void G1CollectedHeap::increase_used(size_t bytes) {
4695   _summary_bytes_used += bytes;
4696 }
4697 
4698 void G1CollectedHeap::decrease_used(size_t bytes) {
4699   assert(_summary_bytes_used >= bytes,
4700          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4701          _summary_bytes_used, bytes);
4702   _summary_bytes_used -= bytes;
4703 }
4704 
4705 void G1CollectedHeap::set_used(size_t bytes) {
4706   _summary_bytes_used = bytes;
4707 }
4708 
4709 class RebuildRegionSetsClosure : public HeapRegionClosure {
4710 private:
4711   bool            _free_list_only;
4712   HeapRegionSet*   _old_set;
4713   HeapRegionManager*   _hrm;
4714   size_t          _total_used;
4715 
4716 public:
4717   RebuildRegionSetsClosure(bool free_list_only,
4718                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
4719     _free_list_only(free_list_only),
4720     _old_set(old_set), _hrm(hrm), _total_used(0) {
4721     assert(_hrm->num_free_regions() == 0, "pre-condition");
4722     if (!free_list_only) {
4723       assert(_old_set->is_empty(), "pre-condition");
4724     }
4725   }
4726 
4727   bool do_heap_region(HeapRegion* r) {
4728     // After full GC, no region should have a remembered set.
4729     r->rem_set()->clear(true);
4730     if (r->is_empty()) {
4731       // Add free regions to the free list
4732       r->set_free();
4733       _hrm->insert_into_free_list(r);
4734     } else if (!_free_list_only) {
4735 
4736       if (r->is_humongous()) {
4737         // We ignore humongous regions. We left the humongous set unchanged.
4738       } else {
4739         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4740         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
4741         r->move_to_old();
4742         _old_set->add(r);
4743       }
4744       _total_used += r->used();
4745     }
4746 
4747     return false;
4748   }
4749 
4750   size_t total_used() {
4751     return _total_used;
4752   }
4753 };
4754 
4755 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4756   assert_at_safepoint_on_vm_thread();
4757 
4758   if (!free_list_only) {
4759     _eden.clear();
4760     _survivor.clear();
4761   }
4762 
4763   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4764   heap_region_iterate(&cl);
4765 
4766   if (!free_list_only) {
4767     set_used(cl.total_used());
4768     if (_archive_allocator != NULL) {
4769       _archive_allocator->clear_used();
4770     }
4771   }
4772   assert(used_unlocked() == recalculate_used(),
4773          "inconsistent used_unlocked(), "
4774          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4775          used_unlocked(), recalculate_used());
4776 }
4777 
4778 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4779   HeapRegion* hr = heap_region_containing(p);
4780   return hr->is_in(p);
4781 }
4782 
4783 // Methods for the mutator alloc region
4784 
4785 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4786                                                       bool force) {
4787   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4788   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4789   if (force || should_allocate) {
4790     HeapRegion* new_alloc_region = new_region(word_size,
4791                                               false /* is_old */,
4792                                               false /* do_expand */);
4793     if (new_alloc_region != NULL) {
4794       set_region_short_lived_locked(new_alloc_region);
4795       _hr_printer.alloc(new_alloc_region, !should_allocate);
4796       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4797       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4798       return new_alloc_region;
4799     }
4800   }
4801   return NULL;
4802 }
4803 
4804 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4805                                                   size_t allocated_bytes) {
4806   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4807   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4808 
4809   collection_set()->add_eden_region(alloc_region);
4810   increase_used(allocated_bytes);
4811   _hr_printer.retire(alloc_region);
4812   // We update the eden sizes here, when the region is retired,
4813   // instead of when it's allocated, since this is the point that its
4814   // used space has been recored in _summary_bytes_used.
4815   g1mm()->update_eden_size();
4816 }
4817 
4818 // Methods for the GC alloc regions
4819 
4820 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4821   if (dest.is_old()) {
4822     return true;
4823   } else {
4824     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4825   }
4826 }
4827 
4828 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4829   assert(FreeList_lock->owned_by_self(), "pre-condition");
4830 
4831   if (!has_more_regions(dest)) {
4832     return NULL;
4833   }
4834 
4835   const bool is_survivor = dest.is_young();
4836 
4837   HeapRegion* new_alloc_region = new_region(word_size,
4838                                             !is_survivor,
4839                                             true /* do_expand */);
4840   if (new_alloc_region != NULL) {
4841     if (is_survivor) {
4842       new_alloc_region->set_survivor();
4843       _survivor.add(new_alloc_region);
4844       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4845     } else {
4846       new_alloc_region->set_old();
4847       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4848     }
4849     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4850     _hr_printer.alloc(new_alloc_region);
4851     bool during_im = collector_state()->in_initial_mark_gc();
4852     new_alloc_region->note_start_of_copying(during_im);
4853     return new_alloc_region;
4854   }
4855   return NULL;
4856 }
4857 
4858 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4859                                              size_t allocated_bytes,
4860                                              InCSetState dest) {
4861   bool during_im = collector_state()->in_initial_mark_gc();
4862   alloc_region->note_end_of_copying(during_im);
4863   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4864   if (dest.is_old()) {
4865     _old_set.add(alloc_region);
4866   }
4867   _hr_printer.retire(alloc_region);
4868 }
4869 
4870 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4871   bool expanded = false;
4872   uint index = _hrm.find_highest_free(&expanded);
4873 
4874   if (index != G1_NO_HRM_INDEX) {
4875     if (expanded) {
4876       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4877                                 HeapRegion::GrainWords * HeapWordSize);
4878     }
4879     _hrm.allocate_free_regions_starting_at(index, 1);
4880     return region_at(index);
4881   }
4882   return NULL;
4883 }
4884 
4885 // Optimized nmethod scanning
4886 
4887 class RegisterNMethodOopClosure: public OopClosure {
4888   G1CollectedHeap* _g1h;
4889   nmethod* _nm;
4890 
4891   template <class T> void do_oop_work(T* p) {
4892     T heap_oop = RawAccess<>::oop_load(p);
4893     if (!CompressedOops::is_null(heap_oop)) {
4894       oop obj = CompressedOops::decode_not_null(heap_oop);
4895       HeapRegion* hr = _g1h->heap_region_containing(obj);
4896       assert(!hr->is_continues_humongous(),
4897              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4898              " starting at " HR_FORMAT,
4899              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4900 
4901       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4902       hr->add_strong_code_root_locked(_nm);
4903     }
4904   }
4905 
4906 public:
4907   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4908     _g1h(g1h), _nm(nm) {}
4909 
4910   void do_oop(oop* p)       { do_oop_work(p); }
4911   void do_oop(narrowOop* p) { do_oop_work(p); }
4912 };
4913 
4914 class UnregisterNMethodOopClosure: public OopClosure {
4915   G1CollectedHeap* _g1h;
4916   nmethod* _nm;
4917 
4918   template <class T> void do_oop_work(T* p) {
4919     T heap_oop = RawAccess<>::oop_load(p);
4920     if (!CompressedOops::is_null(heap_oop)) {
4921       oop obj = CompressedOops::decode_not_null(heap_oop);
4922       HeapRegion* hr = _g1h->heap_region_containing(obj);
4923       assert(!hr->is_continues_humongous(),
4924              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4925              " starting at " HR_FORMAT,
4926              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4927 
4928       hr->remove_strong_code_root(_nm);
4929     }
4930   }
4931 
4932 public:
4933   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4934     _g1h(g1h), _nm(nm) {}
4935 
4936   void do_oop(oop* p)       { do_oop_work(p); }
4937   void do_oop(narrowOop* p) { do_oop_work(p); }
4938 };
4939 
4940 // Returns true if the reference points to an object that
4941 // can move in an incremental collection.
4942 bool G1CollectedHeap::is_scavengable(oop obj) {
4943   HeapRegion* hr = heap_region_containing(obj);
4944   return !hr->is_pinned();
4945 }
4946 
4947 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4948   guarantee(nm != NULL, "sanity");
4949   RegisterNMethodOopClosure reg_cl(this, nm);
4950   nm->oops_do(&reg_cl);
4951 }
4952 
4953 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4954   guarantee(nm != NULL, "sanity");
4955   UnregisterNMethodOopClosure reg_cl(this, nm);
4956   nm->oops_do(&reg_cl, true);
4957 }
4958 
4959 void G1CollectedHeap::purge_code_root_memory() {
4960   double purge_start = os::elapsedTime();
4961   G1CodeRootSet::purge();
4962   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4963   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4964 }
4965 
4966 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4967   G1CollectedHeap* _g1h;
4968 
4969 public:
4970   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4971     _g1h(g1h) {}
4972 
4973   void do_code_blob(CodeBlob* cb) {
4974     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4975     if (nm == NULL) {
4976       return;
4977     }
4978 
4979     if (ScavengeRootsInCode) {
4980       _g1h->register_nmethod(nm);
4981     }
4982   }
4983 };
4984 
4985 void G1CollectedHeap::rebuild_strong_code_roots() {
4986   RebuildStrongCodeRootClosure blob_cl(this);
4987   CodeCache::blobs_do(&blob_cl);
4988 }
4989 
4990 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4991   GrowableArray<GCMemoryManager*> memory_managers(2);
4992   memory_managers.append(&_memory_manager);
4993   memory_managers.append(&_full_gc_memory_manager);
4994   return memory_managers;
4995 }
4996 
4997 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4998   GrowableArray<MemoryPool*> memory_pools(3);
4999   memory_pools.append(_eden_pool);
5000   memory_pools.append(_survivor_pool);
5001   memory_pools.append(_old_pool);
5002   return memory_pools;
5003 }