1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/evacuationInfo.hpp"
  29 #include "gc/g1/g1BarrierSet.hpp"
  30 #include "gc/g1/g1BiasedArray.hpp"
  31 #include "gc/g1/g1CardTable.hpp"
  32 #include "gc/g1/g1CollectionSet.hpp"
  33 #include "gc/g1/g1CollectorState.hpp"
  34 #include "gc/g1/g1ConcurrentMark.hpp"
  35 #include "gc/g1/g1EdenRegions.hpp"
  36 #include "gc/g1/g1EvacFailure.hpp"
  37 #include "gc/g1/g1EvacStats.hpp"
  38 #include "gc/g1/g1HeapTransition.hpp"
  39 #include "gc/g1/g1HeapVerifier.hpp"
  40 #include "gc/g1/g1HRPrinter.hpp"
  41 #include "gc/g1/g1InCSetState.hpp"
  42 #include "gc/g1/g1MonitoringSupport.hpp"
  43 #include "gc/g1/g1SurvivorRegions.hpp"
  44 #include "gc/g1/g1YCTypes.hpp"
  45 #include "gc/g1/heapRegionManager.hpp"
  46 #include "gc/g1/heapRegionSet.hpp"
  47 #include "gc/shared/barrierSet.hpp"
  48 #include "gc/shared/collectedHeap.hpp"
  49 #include "gc/shared/gcHeapSummary.hpp"
  50 #include "gc/shared/plab.hpp"
  51 #include "gc/shared/preservedMarks.hpp"
  52 #include "gc/shared/softRefPolicy.hpp"
  53 #include "memory/memRegion.hpp"
  54 #include "services/memoryManager.hpp"
  55 #include "utilities/stack.hpp"
  56 
  57 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  58 // It uses the "Garbage First" heap organization and algorithm, which
  59 // may combine concurrent marking with parallel, incremental compaction of
  60 // heap subsets that will yield large amounts of garbage.
  61 
  62 // Forward declarations
  63 class HeapRegion;
  64 class HRRSCleanupTask;
  65 class GenerationSpec;
  66 class G1ParScanThreadState;
  67 class G1ParScanThreadStateSet;
  68 class G1ParScanThreadState;
  69 class MemoryPool;
  70 class ObjectClosure;
  71 class SpaceClosure;
  72 class CompactibleSpaceClosure;
  73 class Space;
  74 class G1CollectionSet;
  75 class G1CollectorPolicy;
  76 class G1Policy;
  77 class G1HotCardCache;
  78 class G1RemSet;
  79 class G1YoungRemSetSamplingThread;
  80 class HeapRegionRemSetIterator;
  81 class G1ConcurrentMark;
  82 class G1ConcurrentMarkThread;
  83 class G1ConcurrentRefine;
  84 class GenerationCounters;
  85 class STWGCTimer;
  86 class G1NewTracer;
  87 class EvacuationFailedInfo;
  88 class nmethod;
  89 class WorkGang;
  90 class G1Allocator;
  91 class G1ArchiveAllocator;
  92 class G1FullGCScope;
  93 class G1HeapVerifier;
  94 class G1HeapSizingPolicy;
  95 class G1HeapSummary;
  96 class G1EvacSummary;
  97 
  98 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  99 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
 100 
 101 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 102 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 103 
 104 // The G1 STW is alive closure.
 105 // An instance is embedded into the G1CH and used as the
 106 // (optional) _is_alive_non_header closure in the STW
 107 // reference processor. It is also extensively used during
 108 // reference processing during STW evacuation pauses.
 109 class G1STWIsAliveClosure : public BoolObjectClosure {
 110   G1CollectedHeap* _g1h;
 111 public:
 112   G1STWIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 113   bool do_object_b(oop p);
 114 };
 115 
 116 class G1STWSubjectToDiscoveryClosure : public BoolObjectClosure {
 117   G1CollectedHeap* _g1h;
 118 public:
 119   G1STWSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
 120   bool do_object_b(oop p);
 121 };
 122 
 123 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 124  private:
 125   void reset_from_card_cache(uint start_idx, size_t num_regions);
 126  public:
 127   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 128 };
 129 
 130 class G1CollectedHeap : public CollectedHeap {
 131   friend class G1FreeCollectionSetTask;
 132   friend class VM_CollectForMetadataAllocation;
 133   friend class VM_G1CollectForAllocation;
 134   friend class VM_G1CollectFull;
 135   friend class VMStructs;
 136   friend class MutatorAllocRegion;
 137   friend class G1FullCollector;
 138   friend class G1GCAllocRegion;
 139   friend class G1HeapVerifier;
 140 
 141   // Closures used in implementation.
 142   friend class G1ParScanThreadState;
 143   friend class G1ParScanThreadStateSet;
 144   friend class G1ParTask;
 145   friend class G1PLABAllocator;
 146   friend class G1PrepareCompactClosure;
 147 
 148   // Other related classes.
 149   friend class HeapRegionClaimer;
 150 
 151   // Testing classes.
 152   friend class G1CheckCSetFastTableClosure;
 153 
 154 private:
 155   G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
 156 
 157   WorkGang* _workers;
 158   G1CollectorPolicy* _collector_policy;
 159   G1CardTable* _card_table;
 160 
 161   SoftRefPolicy      _soft_ref_policy;
 162 
 163   GCMemoryManager _memory_manager;
 164   GCMemoryManager _full_gc_memory_manager;
 165 
 166   MemoryPool* _eden_pool;
 167   MemoryPool* _survivor_pool;
 168   MemoryPool* _old_pool;
 169 
 170   static size_t _humongous_object_threshold_in_words;
 171 
 172   // It keeps track of the old regions.
 173   HeapRegionSet _old_set;
 174 
 175   // It keeps track of the humongous regions.
 176   HeapRegionSet _humongous_set;
 177 
 178   virtual void initialize_serviceability();
 179 
 180   void eagerly_reclaim_humongous_regions();
 181   // Start a new incremental collection set for the next pause.
 182   void start_new_collection_set();
 183 
 184   // The block offset table for the G1 heap.
 185   G1BlockOffsetTable* _bot;
 186 
 187   // Tears down the region sets / lists so that they are empty and the
 188   // regions on the heap do not belong to a region set / list. The
 189   // only exception is the humongous set which we leave unaltered. If
 190   // free_list_only is true, it will only tear down the master free
 191   // list. It is called before a Full GC (free_list_only == false) or
 192   // before heap shrinking (free_list_only == true).
 193   void tear_down_region_sets(bool free_list_only);
 194 
 195   // Rebuilds the region sets / lists so that they are repopulated to
 196   // reflect the contents of the heap. The only exception is the
 197   // humongous set which was not torn down in the first place. If
 198   // free_list_only is true, it will only rebuild the master free
 199   // list. It is called after a Full GC (free_list_only == false) or
 200   // after heap shrinking (free_list_only == true).
 201   void rebuild_region_sets(bool free_list_only);
 202 
 203   // Callback for region mapping changed events.
 204   G1RegionMappingChangedListener _listener;
 205 
 206   // The sequence of all heap regions in the heap.
 207   HeapRegionManager _hrm;
 208 
 209   // Manages all allocations with regions except humongous object allocations.
 210   G1Allocator* _allocator;
 211 
 212   // Manages all heap verification.
 213   G1HeapVerifier* _verifier;
 214 
 215   // Outside of GC pauses, the number of bytes used in all regions other
 216   // than the current allocation region(s).
 217   size_t _summary_bytes_used;
 218 
 219   void increase_used(size_t bytes);
 220   void decrease_used(size_t bytes);
 221 
 222   void set_used(size_t bytes);
 223 
 224   // Class that handles archive allocation ranges.
 225   G1ArchiveAllocator* _archive_allocator;
 226 
 227   // GC allocation statistics policy for survivors.
 228   G1EvacStats _survivor_evac_stats;
 229 
 230   // GC allocation statistics policy for tenured objects.
 231   G1EvacStats _old_evac_stats;
 232 
 233   // It specifies whether we should attempt to expand the heap after a
 234   // region allocation failure. If heap expansion fails we set this to
 235   // false so that we don't re-attempt the heap expansion (it's likely
 236   // that subsequent expansion attempts will also fail if one fails).
 237   // Currently, it is only consulted during GC and it's reset at the
 238   // start of each GC.
 239   bool _expand_heap_after_alloc_failure;
 240 
 241   // Helper for monitoring and management support.
 242   G1MonitoringSupport* _g1mm;
 243 
 244   // Records whether the region at the given index is (still) a
 245   // candidate for eager reclaim.  Only valid for humongous start
 246   // regions; other regions have unspecified values.  Humongous start
 247   // regions are initialized at start of collection pause, with
 248   // candidates removed from the set as they are found reachable from
 249   // roots or the young generation.
 250   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 251    protected:
 252     bool default_value() const { return false; }
 253    public:
 254     void clear() { G1BiasedMappedArray<bool>::clear(); }
 255     void set_candidate(uint region, bool value) {
 256       set_by_index(region, value);
 257     }
 258     bool is_candidate(uint region) {
 259       return get_by_index(region);
 260     }
 261   };
 262 
 263   HumongousReclaimCandidates _humongous_reclaim_candidates;
 264   // Stores whether during humongous object registration we found candidate regions.
 265   // If not, we can skip a few steps.
 266   bool _has_humongous_reclaim_candidates;
 267 
 268   G1HRPrinter _hr_printer;
 269 
 270   // It decides whether an explicit GC should start a concurrent cycle
 271   // instead of doing a STW GC. Currently, a concurrent cycle is
 272   // explicitly started if:
 273   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 274   // (b) cause == _g1_humongous_allocation
 275   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 276   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 277   // (e) cause == _wb_conc_mark
 278   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 279 
 280   // indicates whether we are in young or mixed GC mode
 281   G1CollectorState _collector_state;
 282 
 283   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 284   // concurrent cycles) we have started.
 285   volatile uint _old_marking_cycles_started;
 286 
 287   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 288   // concurrent cycles) we have completed.
 289   volatile uint _old_marking_cycles_completed;
 290 
 291   // This is a non-product method that is helpful for testing. It is
 292   // called at the end of a GC and artificially expands the heap by
 293   // allocating a number of dead regions. This way we can induce very
 294   // frequent marking cycles and stress the cleanup / concurrent
 295   // cleanup code more (as all the regions that will be allocated by
 296   // this method will be found dead by the marking cycle).
 297   void allocate_dummy_regions() PRODUCT_RETURN;
 298 
 299   // If the HR printer is active, dump the state of the regions in the
 300   // heap after a compaction.
 301   void print_hrm_post_compaction();
 302 
 303   // Create a memory mapper for auxiliary data structures of the given size and
 304   // translation factor.
 305   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 306                                                          size_t size,
 307                                                          size_t translation_factor);
 308 
 309   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 310 
 311   // These are macros so that, if the assert fires, we get the correct
 312   // line number, file, etc.
 313 
 314 #define heap_locking_asserts_params(_extra_message_)                          \
 315   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 316   (_extra_message_),                                                          \
 317   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 318   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 319   BOOL_TO_STR(Thread::current()->is_VM_thread())
 320 
 321 #define assert_heap_locked()                                                  \
 322   do {                                                                        \
 323     assert(Heap_lock->owned_by_self(),                                        \
 324            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 325   } while (0)
 326 
 327 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 328   do {                                                                        \
 329     assert(Heap_lock->owned_by_self() ||                                      \
 330            (SafepointSynchronize::is_at_safepoint() &&                        \
 331              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 332            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 333                                         "should be at a safepoint"));         \
 334   } while (0)
 335 
 336 #define assert_heap_locked_and_not_at_safepoint()                             \
 337   do {                                                                        \
 338     assert(Heap_lock->owned_by_self() &&                                      \
 339                                     !SafepointSynchronize::is_at_safepoint(), \
 340           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 341                                        "should not be at a safepoint"));      \
 342   } while (0)
 343 
 344 #define assert_heap_not_locked()                                              \
 345   do {                                                                        \
 346     assert(!Heap_lock->owned_by_self(),                                       \
 347         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 348   } while (0)
 349 
 350 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 351   do {                                                                        \
 352     assert(!Heap_lock->owned_by_self() &&                                     \
 353                                     !SafepointSynchronize::is_at_safepoint(), \
 354       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 355                                    "should not be at a safepoint"));          \
 356   } while (0)
 357 
 358 #define assert_at_safepoint_on_vm_thread()                                    \
 359   do {                                                                        \
 360     assert_at_safepoint();                                                    \
 361     assert(Thread::current_or_null() != NULL, "no current thread");           \
 362     assert(Thread::current()->is_VM_thread(), "current thread is not VM thread"); \
 363   } while (0)
 364 
 365   // The young region list.
 366   G1EdenRegions _eden;
 367   G1SurvivorRegions _survivor;
 368 
 369   STWGCTimer* _gc_timer_stw;
 370 
 371   G1NewTracer* _gc_tracer_stw;
 372 
 373   // The current policy object for the collector.
 374   G1Policy* _g1_policy;
 375   G1HeapSizingPolicy* _heap_sizing_policy;
 376 
 377   G1CollectionSet _collection_set;
 378 
 379   // Try to allocate a single non-humongous HeapRegion sufficient for
 380   // an allocation of the given word_size. If do_expand is true,
 381   // attempt to expand the heap if necessary to satisfy the allocation
 382   // request. If the region is to be used as an old region or for a
 383   // humongous object, set is_old to true. If not, to false.
 384   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 385 
 386   // Initialize a contiguous set of free regions of length num_regions
 387   // and starting at index first so that they appear as a single
 388   // humongous region.
 389   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 390                                                       uint num_regions,
 391                                                       size_t word_size);
 392 
 393   // Attempt to allocate a humongous object of the given size. Return
 394   // NULL if unsuccessful.
 395   HeapWord* humongous_obj_allocate(size_t word_size);
 396 
 397   // The following two methods, allocate_new_tlab() and
 398   // mem_allocate(), are the two main entry points from the runtime
 399   // into the G1's allocation routines. They have the following
 400   // assumptions:
 401   //
 402   // * They should both be called outside safepoints.
 403   //
 404   // * They should both be called without holding the Heap_lock.
 405   //
 406   // * All allocation requests for new TLABs should go to
 407   //   allocate_new_tlab().
 408   //
 409   // * All non-TLAB allocation requests should go to mem_allocate().
 410   //
 411   // * If either call cannot satisfy the allocation request using the
 412   //   current allocating region, they will try to get a new one. If
 413   //   this fails, they will attempt to do an evacuation pause and
 414   //   retry the allocation.
 415   //
 416   // * If all allocation attempts fail, even after trying to schedule
 417   //   an evacuation pause, allocate_new_tlab() will return NULL,
 418   //   whereas mem_allocate() will attempt a heap expansion and/or
 419   //   schedule a Full GC.
 420   //
 421   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 422   //   should never be called with word_size being humongous. All
 423   //   humongous allocation requests should go to mem_allocate() which
 424   //   will satisfy them with a special path.
 425 
 426   virtual HeapWord* allocate_new_tlab(size_t min_size,
 427                                       size_t requested_size,
 428                                       size_t* actual_size);
 429 
 430   virtual HeapWord* mem_allocate(size_t word_size,
 431                                  bool*  gc_overhead_limit_was_exceeded);
 432 
 433   // First-level mutator allocation attempt: try to allocate out of
 434   // the mutator alloc region without taking the Heap_lock. This
 435   // should only be used for non-humongous allocations.
 436   inline HeapWord* attempt_allocation(size_t min_word_size,
 437                                       size_t desired_word_size,
 438                                       size_t* actual_word_size);
 439 
 440   // Second-level mutator allocation attempt: take the Heap_lock and
 441   // retry the allocation attempt, potentially scheduling a GC
 442   // pause. This should only be used for non-humongous allocations.
 443   HeapWord* attempt_allocation_slow(size_t word_size);
 444 
 445   // Takes the Heap_lock and attempts a humongous allocation. It can
 446   // potentially schedule a GC pause.
 447   HeapWord* attempt_allocation_humongous(size_t word_size);
 448 
 449   // Allocation attempt that should be called during safepoints (e.g.,
 450   // at the end of a successful GC). expect_null_mutator_alloc_region
 451   // specifies whether the mutator alloc region is expected to be NULL
 452   // or not.
 453   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 454                                             bool expect_null_mutator_alloc_region);
 455 
 456   // These methods are the "callbacks" from the G1AllocRegion class.
 457 
 458   // For mutator alloc regions.
 459   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 460   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 461                                    size_t allocated_bytes);
 462 
 463   // For GC alloc regions.
 464   bool has_more_regions(InCSetState dest);
 465   HeapRegion* new_gc_alloc_region(size_t word_size, InCSetState dest);
 466   void retire_gc_alloc_region(HeapRegion* alloc_region,
 467                               size_t allocated_bytes, InCSetState dest);
 468 
 469   // - if explicit_gc is true, the GC is for a System.gc() etc,
 470   //   otherwise it's for a failed allocation.
 471   // - if clear_all_soft_refs is true, all soft references should be
 472   //   cleared during the GC.
 473   // - it returns false if it is unable to do the collection due to the
 474   //   GC locker being active, true otherwise.
 475   bool do_full_collection(bool explicit_gc,
 476                           bool clear_all_soft_refs);
 477 
 478   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 479   virtual void do_full_collection(bool clear_all_soft_refs);
 480 
 481   // Resize the heap if necessary after a full collection.
 482   void resize_if_necessary_after_full_collection();
 483 
 484   // Callback from VM_G1CollectForAllocation operation.
 485   // This function does everything necessary/possible to satisfy a
 486   // failed allocation request (including collection, expansion, etc.)
 487   HeapWord* satisfy_failed_allocation(size_t word_size,
 488                                       bool* succeeded);
 489   // Internal helpers used during full GC to split it up to
 490   // increase readability.
 491   void abort_concurrent_cycle();
 492   void verify_before_full_collection(bool explicit_gc);
 493   void prepare_heap_for_full_collection();
 494   void prepare_heap_for_mutators();
 495   void abort_refinement();
 496   void verify_after_full_collection();
 497   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 498 
 499   // Helper method for satisfy_failed_allocation()
 500   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 501                                              bool do_gc,
 502                                              bool clear_all_soft_refs,
 503                                              bool expect_null_mutator_alloc_region,
 504                                              bool* gc_succeeded);
 505 
 506   // Attempting to expand the heap sufficiently
 507   // to support an allocation of the given "word_size".  If
 508   // successful, perform the allocation and return the address of the
 509   // allocated block, or else "NULL".
 510   HeapWord* expand_and_allocate(size_t word_size);
 511 
 512   // Process any reference objects discovered.
 513   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 514 
 515   // If during an initial mark pause we may install a pending list head which is not
 516   // otherwise reachable ensure that it is marked in the bitmap for concurrent marking
 517   // to discover.
 518   void make_pending_list_reachable();
 519 
 520   // Merges the information gathered on a per-thread basis for all worker threads
 521   // during GC into global variables.
 522   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 523 public:
 524   G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
 525 
 526   WorkGang* workers() const { return _workers; }
 527 
 528   G1Allocator* allocator() {
 529     return _allocator;
 530   }
 531 
 532   G1HeapVerifier* verifier() {
 533     return _verifier;
 534   }
 535 
 536   G1MonitoringSupport* g1mm() {
 537     assert(_g1mm != NULL, "should have been initialized");
 538     return _g1mm;
 539   }
 540 
 541   // Expand the garbage-first heap by at least the given size (in bytes!).
 542   // Returns true if the heap was expanded by the requested amount;
 543   // false otherwise.
 544   // (Rounds up to a HeapRegion boundary.)
 545   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 546 
 547   // Returns the PLAB statistics for a given destination.
 548   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 549 
 550   // Determines PLAB size for a given destination.
 551   inline size_t desired_plab_sz(InCSetState dest);
 552 
 553   // Do anything common to GC's.
 554   void gc_prologue(bool full);
 555   void gc_epilogue(bool full);
 556 
 557   // Does the given region fulfill remembered set based eager reclaim candidate requirements?
 558   bool is_potential_eager_reclaim_candidate(HeapRegion* r) const;
 559 
 560   // Modify the reclaim candidate set and test for presence.
 561   // These are only valid for starts_humongous regions.
 562   inline void set_humongous_reclaim_candidate(uint region, bool value);
 563   inline bool is_humongous_reclaim_candidate(uint region);
 564 
 565   // Remove from the reclaim candidate set.  Also remove from the
 566   // collection set so that later encounters avoid the slow path.
 567   inline void set_humongous_is_live(oop obj);
 568 
 569   // Register the given region to be part of the collection set.
 570   inline void register_humongous_region_with_cset(uint index);
 571   // Register regions with humongous objects (actually on the start region) in
 572   // the in_cset_fast_test table.
 573   void register_humongous_regions_with_cset();
 574   // We register a region with the fast "in collection set" test. We
 575   // simply set to true the array slot corresponding to this region.
 576   void register_young_region_with_cset(HeapRegion* r) {
 577     _in_cset_fast_test.set_in_young(r->hrm_index());
 578   }
 579   void register_old_region_with_cset(HeapRegion* r) {
 580     _in_cset_fast_test.set_in_old(r->hrm_index());
 581   }
 582   void clear_in_cset(const HeapRegion* hr) {
 583     _in_cset_fast_test.clear(hr);
 584   }
 585 
 586   void clear_cset_fast_test() {
 587     _in_cset_fast_test.clear();
 588   }
 589 
 590   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 591 
 592   // This is called at the start of either a concurrent cycle or a Full
 593   // GC to update the number of old marking cycles started.
 594   void increment_old_marking_cycles_started();
 595 
 596   // This is called at the end of either a concurrent cycle or a Full
 597   // GC to update the number of old marking cycles completed. Those two
 598   // can happen in a nested fashion, i.e., we start a concurrent
 599   // cycle, a Full GC happens half-way through it which ends first,
 600   // and then the cycle notices that a Full GC happened and ends
 601   // too. The concurrent parameter is a boolean to help us do a bit
 602   // tighter consistency checking in the method. If concurrent is
 603   // false, the caller is the inner caller in the nesting (i.e., the
 604   // Full GC). If concurrent is true, the caller is the outer caller
 605   // in this nesting (i.e., the concurrent cycle). Further nesting is
 606   // not currently supported. The end of this call also notifies
 607   // the FullGCCount_lock in case a Java thread is waiting for a full
 608   // GC to happen (e.g., it called System.gc() with
 609   // +ExplicitGCInvokesConcurrent).
 610   void increment_old_marking_cycles_completed(bool concurrent);
 611 
 612   uint old_marking_cycles_completed() {
 613     return _old_marking_cycles_completed;
 614   }
 615 
 616   G1HRPrinter* hr_printer() { return &_hr_printer; }
 617 
 618   // Allocates a new heap region instance.
 619   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 620 
 621   // Allocate the highest free region in the reserved heap. This will commit
 622   // regions as necessary.
 623   HeapRegion* alloc_highest_free_region();
 624 
 625   // Frees a non-humongous region by initializing its contents and
 626   // adding it to the free list that's passed as a parameter (this is
 627   // usually a local list which will be appended to the master free
 628   // list later). The used bytes of freed regions are accumulated in
 629   // pre_used. If skip_remset is true, the region's RSet will not be freed
 630   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 631   // be freed up. The assumption is that this will be done later.
 632   // The locked parameter indicates if the caller has already taken
 633   // care of proper synchronization. This may allow some optimizations.
 634   void free_region(HeapRegion* hr,
 635                    FreeRegionList* free_list,
 636                    bool skip_remset,
 637                    bool skip_hot_card_cache = false,
 638                    bool locked = false);
 639 
 640   // It dirties the cards that cover the block so that the post
 641   // write barrier never queues anything when updating objects on this
 642   // block. It is assumed (and in fact we assert) that the block
 643   // belongs to a young region.
 644   inline void dirty_young_block(HeapWord* start, size_t word_size);
 645 
 646   // Frees a humongous region by collapsing it into individual regions
 647   // and calling free_region() for each of them. The freed regions
 648   // will be added to the free list that's passed as a parameter (this
 649   // is usually a local list which will be appended to the master free
 650   // list later).
 651   // The method assumes that only a single thread is ever calling
 652   // this for a particular region at once.
 653   void free_humongous_region(HeapRegion* hr,
 654                              FreeRegionList* free_list);
 655 
 656   // Facility for allocating in 'archive' regions in high heap memory and
 657   // recording the allocated ranges. These should all be called from the
 658   // VM thread at safepoints, without the heap lock held. They can be used
 659   // to create and archive a set of heap regions which can be mapped at the
 660   // same fixed addresses in a subsequent JVM invocation.
 661   void begin_archive_alloc_range(bool open = false);
 662 
 663   // Check if the requested size would be too large for an archive allocation.
 664   bool is_archive_alloc_too_large(size_t word_size);
 665 
 666   // Allocate memory of the requested size from the archive region. This will
 667   // return NULL if the size is too large or if no memory is available. It
 668   // does not trigger a garbage collection.
 669   HeapWord* archive_mem_allocate(size_t word_size);
 670 
 671   // Optionally aligns the end address and returns the allocated ranges in
 672   // an array of MemRegions in order of ascending addresses.
 673   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 674                                size_t end_alignment_in_bytes = 0);
 675 
 676   // Facility for allocating a fixed range within the heap and marking
 677   // the containing regions as 'archive'. For use at JVM init time, when the
 678   // caller may mmap archived heap data at the specified range(s).
 679   // Verify that the MemRegions specified in the argument array are within the
 680   // reserved heap.
 681   bool check_archive_addresses(MemRegion* range, size_t count);
 682 
 683   // Commit the appropriate G1 regions containing the specified MemRegions
 684   // and mark them as 'archive' regions. The regions in the array must be
 685   // non-overlapping and in order of ascending address.
 686   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 687 
 688   // Insert any required filler objects in the G1 regions around the specified
 689   // ranges to make the regions parseable. This must be called after
 690   // alloc_archive_regions, and after class loading has occurred.
 691   void fill_archive_regions(MemRegion* range, size_t count);
 692 
 693   // For each of the specified MemRegions, uncommit the containing G1 regions
 694   // which had been allocated by alloc_archive_regions. This should be called
 695   // rather than fill_archive_regions at JVM init time if the archive file
 696   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 697   void dealloc_archive_regions(MemRegion* range, size_t count);
 698 
 699   oop materialize_archived_object(oop obj);
 700 
 701 private:
 702 
 703   // Shrink the garbage-first heap by at most the given size (in bytes!).
 704   // (Rounds down to a HeapRegion boundary.)
 705   void shrink(size_t expand_bytes);
 706   void shrink_helper(size_t expand_bytes);
 707 
 708   #if TASKQUEUE_STATS
 709   static void print_taskqueue_stats_hdr(outputStream* const st);
 710   void print_taskqueue_stats() const;
 711   void reset_taskqueue_stats();
 712   #endif // TASKQUEUE_STATS
 713 
 714   // Schedule the VM operation that will do an evacuation pause to
 715   // satisfy an allocation request of word_size. *succeeded will
 716   // return whether the VM operation was successful (it did do an
 717   // evacuation pause) or not (another thread beat us to it or the GC
 718   // locker was active). Given that we should not be holding the
 719   // Heap_lock when we enter this method, we will pass the
 720   // gc_count_before (i.e., total_collections()) as a parameter since
 721   // it has to be read while holding the Heap_lock. Currently, both
 722   // methods that call do_collection_pause() release the Heap_lock
 723   // before the call, so it's easy to read gc_count_before just before.
 724   HeapWord* do_collection_pause(size_t         word_size,
 725                                 uint           gc_count_before,
 726                                 bool*          succeeded,
 727                                 GCCause::Cause gc_cause);
 728 
 729   void wait_for_root_region_scanning();
 730 
 731   // The guts of the incremental collection pause, executed by the vm
 732   // thread. It returns false if it is unable to do the collection due
 733   // to the GC locker being active, true otherwise
 734   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 735 
 736   // Actually do the work of evacuating the collection set.
 737   void evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states);
 738 
 739   void pre_evacuate_collection_set();
 740   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 741 
 742   // Print the header for the per-thread termination statistics.
 743   static void print_termination_stats_hdr();
 744   // Print actual per-thread termination statistics.
 745   void print_termination_stats(uint worker_id,
 746                                double elapsed_ms,
 747                                double strong_roots_ms,
 748                                double term_ms,
 749                                size_t term_attempts,
 750                                size_t alloc_buffer_waste,
 751                                size_t undo_waste) const;
 752   // Update object copying statistics.
 753   void record_obj_copy_mem_stats();
 754 
 755   // The hot card cache for remembered set insertion optimization.
 756   G1HotCardCache* _hot_card_cache;
 757 
 758   // The g1 remembered set of the heap.
 759   G1RemSet* _g1_rem_set;
 760 
 761   // A set of cards that cover the objects for which the Rsets should be updated
 762   // concurrently after the collection.
 763   DirtyCardQueueSet _dirty_card_queue_set;
 764 
 765   // After a collection pause, convert the regions in the collection set into free
 766   // regions.
 767   void free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 768 
 769   // Abandon the current collection set without recording policy
 770   // statistics or updating free lists.
 771   void abandon_collection_set(G1CollectionSet* collection_set);
 772 
 773   // The concurrent marker (and the thread it runs in.)
 774   G1ConcurrentMark* _cm;
 775   G1ConcurrentMarkThread* _cm_thread;
 776 
 777   // The concurrent refiner.
 778   G1ConcurrentRefine* _cr;
 779 
 780   // The parallel task queues
 781   RefToScanQueueSet *_task_queues;
 782 
 783   // True iff a evacuation has failed in the current collection.
 784   bool _evacuation_failed;
 785 
 786   EvacuationFailedInfo* _evacuation_failed_info_array;
 787 
 788   // Failed evacuations cause some logical from-space objects to have
 789   // forwarding pointers to themselves.  Reset them.
 790   void remove_self_forwarding_pointers();
 791 
 792   // Restore the objects in the regions in the collection set after an
 793   // evacuation failure.
 794   void restore_after_evac_failure();
 795 
 796   PreservedMarksSet _preserved_marks_set;
 797 
 798   // Preserve the mark of "obj", if necessary, in preparation for its mark
 799   // word being overwritten with a self-forwarding-pointer.
 800   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 801 
 802 #ifndef PRODUCT
 803   // Support for forcing evacuation failures. Analogous to
 804   // PromotionFailureALot for the other collectors.
 805 
 806   // Records whether G1EvacuationFailureALot should be in effect
 807   // for the current GC
 808   bool _evacuation_failure_alot_for_current_gc;
 809 
 810   // Used to record the GC number for interval checking when
 811   // determining whether G1EvaucationFailureALot is in effect
 812   // for the current GC.
 813   size_t _evacuation_failure_alot_gc_number;
 814 
 815   // Count of the number of evacuations between failures.
 816   volatile size_t _evacuation_failure_alot_count;
 817 
 818   // Set whether G1EvacuationFailureALot should be in effect
 819   // for the current GC (based upon the type of GC and which
 820   // command line flags are set);
 821   inline bool evacuation_failure_alot_for_gc_type(bool for_young_gc,
 822                                                   bool during_initial_mark,
 823                                                   bool mark_or_rebuild_in_progress);
 824 
 825   inline void set_evacuation_failure_alot_for_current_gc();
 826 
 827   // Return true if it's time to cause an evacuation failure.
 828   inline bool evacuation_should_fail();
 829 
 830   // Reset the G1EvacuationFailureALot counters.  Should be called at
 831   // the end of an evacuation pause in which an evacuation failure occurred.
 832   inline void reset_evacuation_should_fail();
 833 #endif // !PRODUCT
 834 
 835   // ("Weak") Reference processing support.
 836   //
 837   // G1 has 2 instances of the reference processor class. One
 838   // (_ref_processor_cm) handles reference object discovery
 839   // and subsequent processing during concurrent marking cycles.
 840   //
 841   // The other (_ref_processor_stw) handles reference object
 842   // discovery and processing during full GCs and incremental
 843   // evacuation pauses.
 844   //
 845   // During an incremental pause, reference discovery will be
 846   // temporarily disabled for _ref_processor_cm and will be
 847   // enabled for _ref_processor_stw. At the end of the evacuation
 848   // pause references discovered by _ref_processor_stw will be
 849   // processed and discovery will be disabled. The previous
 850   // setting for reference object discovery for _ref_processor_cm
 851   // will be re-instated.
 852   //
 853   // At the start of marking:
 854   //  * Discovery by the CM ref processor is verified to be inactive
 855   //    and it's discovered lists are empty.
 856   //  * Discovery by the CM ref processor is then enabled.
 857   //
 858   // At the end of marking:
 859   //  * Any references on the CM ref processor's discovered
 860   //    lists are processed (possibly MT).
 861   //
 862   // At the start of full GC we:
 863   //  * Disable discovery by the CM ref processor and
 864   //    empty CM ref processor's discovered lists
 865   //    (without processing any entries).
 866   //  * Verify that the STW ref processor is inactive and it's
 867   //    discovered lists are empty.
 868   //  * Temporarily set STW ref processor discovery as single threaded.
 869   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 870   //    field.
 871   //  * Finally enable discovery by the STW ref processor.
 872   //
 873   // The STW ref processor is used to record any discovered
 874   // references during the full GC.
 875   //
 876   // At the end of a full GC we:
 877   //  * Enqueue any reference objects discovered by the STW ref processor
 878   //    that have non-live referents. This has the side-effect of
 879   //    making the STW ref processor inactive by disabling discovery.
 880   //  * Verify that the CM ref processor is still inactive
 881   //    and no references have been placed on it's discovered
 882   //    lists (also checked as a precondition during initial marking).
 883 
 884   // The (stw) reference processor...
 885   ReferenceProcessor* _ref_processor_stw;
 886 
 887   // During reference object discovery, the _is_alive_non_header
 888   // closure (if non-null) is applied to the referent object to
 889   // determine whether the referent is live. If so then the
 890   // reference object does not need to be 'discovered' and can
 891   // be treated as a regular oop. This has the benefit of reducing
 892   // the number of 'discovered' reference objects that need to
 893   // be processed.
 894   //
 895   // Instance of the is_alive closure for embedding into the
 896   // STW reference processor as the _is_alive_non_header field.
 897   // Supplying a value for the _is_alive_non_header field is
 898   // optional but doing so prevents unnecessary additions to
 899   // the discovered lists during reference discovery.
 900   G1STWIsAliveClosure _is_alive_closure_stw;
 901 
 902   G1STWSubjectToDiscoveryClosure _is_subject_to_discovery_stw;
 903 
 904   // The (concurrent marking) reference processor...
 905   ReferenceProcessor* _ref_processor_cm;
 906 
 907   // Instance of the concurrent mark is_alive closure for embedding
 908   // into the Concurrent Marking reference processor as the
 909   // _is_alive_non_header field. Supplying a value for the
 910   // _is_alive_non_header field is optional but doing so prevents
 911   // unnecessary additions to the discovered lists during reference
 912   // discovery.
 913   G1CMIsAliveClosure _is_alive_closure_cm;
 914 
 915   G1CMSubjectToDiscoveryClosure _is_subject_to_discovery_cm;
 916 public:
 917 
 918   RefToScanQueue *task_queue(uint i) const;
 919 
 920   uint num_task_queues() const;
 921 
 922   // A set of cards where updates happened during the GC
 923   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 924 
 925   // Create a G1CollectedHeap with the specified policy.
 926   // Must call the initialize method afterwards.
 927   // May not return if something goes wrong.
 928   G1CollectedHeap(G1CollectorPolicy* policy);
 929 
 930 private:
 931   jint initialize_concurrent_refinement();
 932   jint initialize_young_gen_sampling_thread();
 933 public:
 934   // Initialize the G1CollectedHeap to have the initial and
 935   // maximum sizes and remembered and barrier sets
 936   // specified by the policy object.
 937   jint initialize();
 938 
 939   virtual void stop();
 940   virtual void safepoint_synchronize_begin();
 941   virtual void safepoint_synchronize_end();
 942 
 943   // Return the (conservative) maximum heap alignment for any G1 heap
 944   static size_t conservative_max_heap_alignment();
 945 
 946   // Does operations required after initialization has been done.
 947   void post_initialize();
 948 
 949   // Initialize weak reference processing.
 950   void ref_processing_init();
 951 
 952   virtual Name kind() const {
 953     return CollectedHeap::G1;
 954   }
 955 
 956   virtual const char* name() const {
 957     return "G1";
 958   }
 959 
 960   const G1CollectorState* collector_state() const { return &_collector_state; }
 961   G1CollectorState* collector_state() { return &_collector_state; }
 962 
 963   // The current policy object for the collector.
 964   G1Policy* g1_policy() const { return _g1_policy; }
 965 
 966   const G1CollectionSet* collection_set() const { return &_collection_set; }
 967   G1CollectionSet* collection_set() { return &_collection_set; }
 968 
 969   virtual CollectorPolicy* collector_policy() const;
 970 
 971   virtual SoftRefPolicy* soft_ref_policy();
 972 
 973   virtual GrowableArray<GCMemoryManager*> memory_managers();
 974   virtual GrowableArray<MemoryPool*> memory_pools();
 975 
 976   // The rem set and barrier set.
 977   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 978 
 979   // Try to minimize the remembered set.
 980   void scrub_rem_set();
 981 
 982   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
 983   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
 984 
 985   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
 986   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
 987 
 988   // The shared block offset table array.
 989   G1BlockOffsetTable* bot() const { return _bot; }
 990 
 991   // Reference Processing accessors
 992 
 993   // The STW reference processor....
 994   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
 995 
 996   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
 997 
 998   // The Concurrent Marking reference processor...
 999   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1000 
1001   size_t unused_committed_regions_in_bytes() const;
1002   virtual size_t capacity() const;
1003   virtual size_t used() const;
1004   // This should be called when we're not holding the heap lock. The
1005   // result might be a bit inaccurate.
1006   size_t used_unlocked() const;
1007   size_t recalculate_used() const;
1008 
1009   // These virtual functions do the actual allocation.
1010   // Some heaps may offer a contiguous region for shared non-blocking
1011   // allocation, via inlined code (by exporting the address of the top and
1012   // end fields defining the extent of the contiguous allocation region.)
1013   // But G1CollectedHeap doesn't yet support this.
1014 
1015   virtual bool is_maximal_no_gc() const {
1016     return _hrm.available() == 0;
1017   }
1018 
1019   // Returns whether there are any regions left in the heap for allocation.
1020   bool has_regions_left_for_allocation() const {
1021     return !is_maximal_no_gc() || num_free_regions() != 0;
1022   }
1023 
1024   // The current number of regions in the heap.
1025   uint num_regions() const { return _hrm.length(); }
1026 
1027   // The max number of regions in the heap.
1028   uint max_regions() const { return _hrm.max_length(); }
1029 
1030   // The number of regions that are completely free.
1031   uint num_free_regions() const { return _hrm.num_free_regions(); }
1032 
1033   MemoryUsage get_auxiliary_data_memory_usage() const {
1034     return _hrm.get_auxiliary_data_memory_usage();
1035   }
1036 
1037   // The number of regions that are not completely free.
1038   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1039 
1040 #ifdef ASSERT
1041   bool is_on_master_free_list(HeapRegion* hr) {
1042     return _hrm.is_free(hr);
1043   }
1044 #endif // ASSERT
1045 
1046   inline void old_set_add(HeapRegion* hr);
1047   inline void old_set_remove(HeapRegion* hr);
1048 
1049   size_t non_young_capacity_bytes() {
1050     return (_old_set.length() + _humongous_set.length()) * HeapRegion::GrainBytes;
1051   }
1052 
1053   // Determine whether the given region is one that we are using as an
1054   // old GC alloc region.
1055   bool is_old_gc_alloc_region(HeapRegion* hr);
1056 
1057   // Perform a collection of the heap; intended for use in implementing
1058   // "System.gc".  This probably implies as full a collection as the
1059   // "CollectedHeap" supports.
1060   virtual void collect(GCCause::Cause cause);
1061 
1062   // True iff an evacuation has failed in the most-recent collection.
1063   bool evacuation_failed() { return _evacuation_failed; }
1064 
1065   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1066   void prepend_to_freelist(FreeRegionList* list);
1067   void decrement_summary_bytes(size_t bytes);
1068 
1069   virtual bool is_in(const void* p) const;
1070 #ifdef ASSERT
1071   // Returns whether p is in one of the available areas of the heap. Slow but
1072   // extensive version.
1073   bool is_in_exact(const void* p) const;
1074 #endif
1075 
1076   // Return "TRUE" iff the given object address is within the collection
1077   // set. Assumes that the reference points into the heap.
1078   inline bool is_in_cset(const HeapRegion *hr);
1079   inline bool is_in_cset(oop obj);
1080   inline bool is_in_cset(HeapWord* addr);
1081 
1082   inline bool is_in_cset_or_humongous(const oop obj);
1083 
1084  private:
1085   // This array is used for a quick test on whether a reference points into
1086   // the collection set or not. Each of the array's elements denotes whether the
1087   // corresponding region is in the collection set or not.
1088   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1089 
1090  public:
1091 
1092   inline InCSetState in_cset_state(const oop obj);
1093 
1094   // Return "TRUE" iff the given object address is in the reserved
1095   // region of g1.
1096   bool is_in_g1_reserved(const void* p) const {
1097     return _hrm.reserved().contains(p);
1098   }
1099 
1100   // Returns a MemRegion that corresponds to the space that has been
1101   // reserved for the heap
1102   MemRegion g1_reserved() const {
1103     return _hrm.reserved();
1104   }
1105 
1106   virtual bool is_in_closed_subset(const void* p) const;
1107 
1108   G1HotCardCache* g1_hot_card_cache() const { return _hot_card_cache; }
1109 
1110   G1CardTable* card_table() const {
1111     return _card_table;
1112   }
1113 
1114   // Iteration functions.
1115 
1116   // Iterate over all objects, calling "cl.do_object" on each.
1117   virtual void object_iterate(ObjectClosure* cl);
1118 
1119   virtual void safe_object_iterate(ObjectClosure* cl) {
1120     object_iterate(cl);
1121   }
1122 
1123   // Iterate over heap regions, in address order, terminating the
1124   // iteration early if the "do_heap_region" method returns "true".
1125   void heap_region_iterate(HeapRegionClosure* blk) const;
1126 
1127   // Return the region with the given index. It assumes the index is valid.
1128   inline HeapRegion* region_at(uint index) const;
1129 
1130   // Return the next region (by index) that is part of the same
1131   // humongous object that hr is part of.
1132   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1133 
1134   // Calculate the region index of the given address. Given address must be
1135   // within the heap.
1136   inline uint addr_to_region(HeapWord* addr) const;
1137 
1138   inline HeapWord* bottom_addr_for_region(uint index) const;
1139 
1140   // Two functions to iterate over the heap regions in parallel. Threads
1141   // compete using the HeapRegionClaimer to claim the regions before
1142   // applying the closure on them.
1143   // The _from_worker_offset version uses the HeapRegionClaimer and
1144   // the worker id to calculate a start offset to prevent all workers to
1145   // start from the point.
1146   void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1147                                                   HeapRegionClaimer* hrclaimer,
1148                                                   uint worker_id) const;
1149 
1150   void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1151                                           HeapRegionClaimer* hrclaimer) const;
1152 
1153   // Iterate over the regions (if any) in the current collection set.
1154   void collection_set_iterate(HeapRegionClosure* blk);
1155 
1156   // Iterate over the regions (if any) in the current collection set. Starts the
1157   // iteration over the entire collection set so that the start regions of a given
1158   // worker id over the set active_workers are evenly spread across the set of
1159   // collection set regions.
1160   void collection_set_iterate_from(HeapRegionClosure *blk, uint worker_id);
1161 
1162   // Returns the HeapRegion that contains addr. addr must not be NULL.
1163   template <class T>
1164   inline HeapRegion* heap_region_containing(const T addr) const;
1165 
1166   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1167   // each address in the (reserved) heap is a member of exactly
1168   // one block.  The defining characteristic of a block is that it is
1169   // possible to find its size, and thus to progress forward to the next
1170   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1171   // represent Java objects, or they might be free blocks in a
1172   // free-list-based heap (or subheap), as long as the two kinds are
1173   // distinguishable and the size of each is determinable.
1174 
1175   // Returns the address of the start of the "block" that contains the
1176   // address "addr".  We say "blocks" instead of "object" since some heaps
1177   // may not pack objects densely; a chunk may either be an object or a
1178   // non-object.
1179   virtual HeapWord* block_start(const void* addr) const;
1180 
1181   // Requires "addr" to be the start of a chunk, and returns its size.
1182   // "addr + size" is required to be the start of a new chunk, or the end
1183   // of the active area of the heap.
1184   virtual size_t block_size(const HeapWord* addr) const;
1185 
1186   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1187   // the block is an object.
1188   virtual bool block_is_obj(const HeapWord* addr) const;
1189 
1190   // Section on thread-local allocation buffers (TLABs)
1191   // See CollectedHeap for semantics.
1192 
1193   bool supports_tlab_allocation() const;
1194   size_t tlab_capacity(Thread* ignored) const;
1195   size_t tlab_used(Thread* ignored) const;
1196   size_t max_tlab_size() const;
1197   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1198 
1199   inline bool is_in_young(const oop obj);
1200 
1201   // Returns "true" iff the given word_size is "very large".
1202   static bool is_humongous(size_t word_size) {
1203     // Note this has to be strictly greater-than as the TLABs
1204     // are capped at the humongous threshold and we want to
1205     // ensure that we don't try to allocate a TLAB as
1206     // humongous and that we don't allocate a humongous
1207     // object in a TLAB.
1208     return word_size > _humongous_object_threshold_in_words;
1209   }
1210 
1211   // Returns the humongous threshold for a specific region size
1212   static size_t humongous_threshold_for(size_t region_size) {
1213     return (region_size / 2);
1214   }
1215 
1216   // Returns the number of regions the humongous object of the given word size
1217   // requires.
1218   static size_t humongous_obj_size_in_regions(size_t word_size);
1219 
1220   // Print the maximum heap capacity.
1221   virtual size_t max_capacity() const;
1222 
1223   virtual jlong millis_since_last_gc();
1224 
1225 
1226   // Convenience function to be used in situations where the heap type can be
1227   // asserted to be this type.
1228   static G1CollectedHeap* heap();
1229 
1230   void set_region_short_lived_locked(HeapRegion* hr);
1231   // add appropriate methods for any other surv rate groups
1232 
1233   const G1SurvivorRegions* survivor() const { return &_survivor; }
1234 
1235   uint survivor_regions_count() const {
1236     return _survivor.length();
1237   }
1238 
1239   uint eden_regions_count() const {
1240     return _eden.length();
1241   }
1242 
1243   uint young_regions_count() const {
1244     return _eden.length() + _survivor.length();
1245   }
1246 
1247   uint old_regions_count() const { return _old_set.length(); }
1248 
1249   uint humongous_regions_count() const { return _humongous_set.length(); }
1250 
1251 #ifdef ASSERT
1252   bool check_young_list_empty();
1253 #endif
1254 
1255   // *** Stuff related to concurrent marking.  It's not clear to me that so
1256   // many of these need to be public.
1257 
1258   // The functions below are helper functions that a subclass of
1259   // "CollectedHeap" can use in the implementation of its virtual
1260   // functions.
1261   // This performs a concurrent marking of the live objects in a
1262   // bitmap off to the side.
1263   void do_concurrent_mark();
1264 
1265   bool is_marked_next(oop obj) const;
1266 
1267   // Determine if an object is dead, given the object and also
1268   // the region to which the object belongs. An object is dead
1269   // iff a) it was not allocated since the last mark, b) it
1270   // is not marked, and c) it is not in an archive region.
1271   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1272     return
1273       hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
1274       !hr->is_archive();
1275   }
1276 
1277   // This function returns true when an object has been
1278   // around since the previous marking and hasn't yet
1279   // been marked during this marking, and is not in an archive region.
1280   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1281     return
1282       !hr->obj_allocated_since_next_marking(obj) &&
1283       !is_marked_next(obj) &&
1284       !hr->is_archive();
1285   }
1286 
1287   // Determine if an object is dead, given only the object itself.
1288   // This will find the region to which the object belongs and
1289   // then call the region version of the same function.
1290 
1291   // Added if it is NULL it isn't dead.
1292 
1293   inline bool is_obj_dead(const oop obj) const;
1294 
1295   inline bool is_obj_ill(const oop obj) const;
1296 
1297   inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
1298   inline bool is_obj_dead_full(const oop obj) const;
1299 
1300   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1301 
1302   // Refinement
1303 
1304   G1ConcurrentRefine* concurrent_refine() const { return _cr; }
1305 
1306   // Optimized nmethod scanning support routines
1307 
1308   // Is an oop scavengeable
1309   virtual bool is_scavengable(oop obj);
1310 
1311   // Register the given nmethod with the G1 heap.
1312   virtual void register_nmethod(nmethod* nm);
1313 
1314   // Unregister the given nmethod from the G1 heap.
1315   virtual void unregister_nmethod(nmethod* nm);
1316 
1317   // Free up superfluous code root memory.
1318   void purge_code_root_memory();
1319 
1320   // Rebuild the strong code root lists for each region
1321   // after a full GC.
1322   void rebuild_strong_code_roots();
1323 
1324   // Partial cleaning used when class unloading is disabled.
1325   // Let the caller choose what structures to clean out:
1326   // - StringTable
1327   // - StringDeduplication structures
1328   void partial_cleaning(BoolObjectClosure* is_alive, bool unlink_strings, bool unlink_string_dedup);
1329 
1330   // Complete cleaning used when class unloading is enabled.
1331   // Cleans out all structures handled by partial_cleaning and also the CodeCache.
1332   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1333 
1334   // Redirty logged cards in the refinement queue.
1335   void redirty_logged_cards();
1336   // Verification
1337 
1338   // Deduplicate the string
1339   virtual void deduplicate_string(oop str);
1340 
1341   // Perform any cleanup actions necessary before allowing a verification.
1342   virtual void prepare_for_verify();
1343 
1344   // Perform verification.
1345 
1346   // vo == UsePrevMarking -> use "prev" marking information,
1347   // vo == UseNextMarking -> use "next" marking information
1348   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
1349   //
1350   // NOTE: Only the "prev" marking information is guaranteed to be
1351   // consistent most of the time, so most calls to this should use
1352   // vo == UsePrevMarking.
1353   // Currently, there is only one case where this is called with
1354   // vo == UseNextMarking, which is to verify the "next" marking
1355   // information at the end of remark.
1356   // Currently there is only one place where this is called with
1357   // vo == UseFullMarking, which is to verify the marking during a
1358   // full GC.
1359   void verify(VerifyOption vo);
1360 
1361   // WhiteBox testing support.
1362   virtual bool supports_concurrent_phase_control() const;
1363   virtual const char* const* concurrent_phases() const;
1364   virtual bool request_concurrent_phase(const char* phase);
1365 
1366   virtual WorkGang* get_safepoint_workers() { return _workers; }
1367 
1368   // The methods below are here for convenience and dispatch the
1369   // appropriate method depending on value of the given VerifyOption
1370   // parameter. The values for that parameter, and their meanings,
1371   // are the same as those above.
1372 
1373   bool is_obj_dead_cond(const oop obj,
1374                         const HeapRegion* hr,
1375                         const VerifyOption vo) const;
1376 
1377   bool is_obj_dead_cond(const oop obj,
1378                         const VerifyOption vo) const;
1379 
1380   G1HeapSummary create_g1_heap_summary();
1381   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1382 
1383   // Printing
1384 private:
1385   void print_heap_regions() const;
1386   void print_regions_on(outputStream* st) const;
1387 
1388 public:
1389   virtual void print_on(outputStream* st) const;
1390   virtual void print_extended_on(outputStream* st) const;
1391   virtual void print_on_error(outputStream* st) const;
1392 
1393   virtual void print_gc_threads_on(outputStream* st) const;
1394   virtual void gc_threads_do(ThreadClosure* tc) const;
1395 
1396   // Override
1397   void print_tracing_info() const;
1398 
1399   // The following two methods are helpful for debugging RSet issues.
1400   void print_cset_rsets() PRODUCT_RETURN;
1401   void print_all_rsets() PRODUCT_RETURN;
1402 
1403 public:
1404   size_t pending_card_num();
1405 
1406 private:
1407   size_t _max_heap_capacity;
1408 };
1409 
1410 class G1ParEvacuateFollowersClosure : public VoidClosure {
1411 private:
1412   double _start_term;
1413   double _term_time;
1414   size_t _term_attempts;
1415 
1416   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1417   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1418 protected:
1419   G1CollectedHeap*              _g1h;
1420   G1ParScanThreadState*         _par_scan_state;
1421   RefToScanQueueSet*            _queues;
1422   ParallelTaskTerminator*       _terminator;
1423 
1424   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1425   RefToScanQueueSet*      queues()         { return _queues; }
1426   ParallelTaskTerminator* terminator()     { return _terminator; }
1427 
1428 public:
1429   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1430                                 G1ParScanThreadState* par_scan_state,
1431                                 RefToScanQueueSet* queues,
1432                                 ParallelTaskTerminator* terminator)
1433     : _start_term(0.0), _term_time(0.0), _term_attempts(0),
1434       _g1h(g1h), _par_scan_state(par_scan_state),
1435       _queues(queues), _terminator(terminator) {}
1436 
1437   void do_void();
1438 
1439   double term_time() const { return _term_time; }
1440   size_t term_attempts() const { return _term_attempts; }
1441 
1442 private:
1443   inline bool offer_termination();
1444 };
1445 
1446 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP